Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[sfrench/cifs-2.6.git] / drivers / infiniband / hw / hfi1 / verbs.c
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "device.h"
60 #include "trace.h"
61 #include "qp.h"
62 #include "verbs_txreq.h"
63
64 static unsigned int hfi1_lkey_table_size = 16;
65 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
66                    S_IRUGO);
67 MODULE_PARM_DESC(lkey_table_size,
68                  "LKEY table size in bits (2^n, 1 <= n <= 23)");
69
70 static unsigned int hfi1_max_pds = 0xFFFF;
71 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
72 MODULE_PARM_DESC(max_pds,
73                  "Maximum number of protection domains to support");
74
75 static unsigned int hfi1_max_ahs = 0xFFFF;
76 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
77 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
78
79 unsigned int hfi1_max_cqes = 0x2FFFFF;
80 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_cqes,
82                  "Maximum number of completion queue entries to support");
83
84 unsigned int hfi1_max_cqs = 0x1FFFF;
85 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
86 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
87
88 unsigned int hfi1_max_qp_wrs = 0x3FFF;
89 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
90 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
91
92 unsigned int hfi1_max_qps = 32768;
93 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
94 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
95
96 unsigned int hfi1_max_sges = 0x60;
97 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
98 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
99
100 unsigned int hfi1_max_mcast_grps = 16384;
101 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
102 MODULE_PARM_DESC(max_mcast_grps,
103                  "Maximum number of multicast groups to support");
104
105 unsigned int hfi1_max_mcast_qp_attached = 16;
106 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
107                    uint, S_IRUGO);
108 MODULE_PARM_DESC(max_mcast_qp_attached,
109                  "Maximum number of attached QPs to support");
110
111 unsigned int hfi1_max_srqs = 1024;
112 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
113 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
114
115 unsigned int hfi1_max_srq_sges = 128;
116 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
117 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
118
119 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
120 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
121 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
122
123 unsigned short piothreshold = 256;
124 module_param(piothreshold, ushort, S_IRUGO);
125 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
126
127 #define COPY_CACHELESS 1
128 #define COPY_ADAPTIVE  2
129 static unsigned int sge_copy_mode;
130 module_param(sge_copy_mode, uint, S_IRUGO);
131 MODULE_PARM_DESC(sge_copy_mode,
132                  "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
133
134 static void verbs_sdma_complete(
135         struct sdma_txreq *cookie,
136         int status);
137
138 static int pio_wait(struct rvt_qp *qp,
139                     struct send_context *sc,
140                     struct hfi1_pkt_state *ps,
141                     u32 flag);
142
143 /* Length of buffer to create verbs txreq cache name */
144 #define TXREQ_NAME_LEN 24
145
146 static uint wss_threshold;
147 module_param(wss_threshold, uint, S_IRUGO);
148 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
149 static uint wss_clean_period = 256;
150 module_param(wss_clean_period, uint, S_IRUGO);
151 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
152
153 /* memory working set size */
154 struct hfi1_wss {
155         unsigned long *entries;
156         atomic_t total_count;
157         atomic_t clean_counter;
158         atomic_t clean_entry;
159
160         int threshold;
161         int num_entries;
162         long pages_mask;
163 };
164
165 static struct hfi1_wss wss;
166
167 int hfi1_wss_init(void)
168 {
169         long llc_size;
170         long llc_bits;
171         long table_size;
172         long table_bits;
173
174         /* check for a valid percent range - default to 80 if none or invalid */
175         if (wss_threshold < 1 || wss_threshold > 100)
176                 wss_threshold = 80;
177         /* reject a wildly large period */
178         if (wss_clean_period > 1000000)
179                 wss_clean_period = 256;
180         /* reject a zero period */
181         if (wss_clean_period == 0)
182                 wss_clean_period = 1;
183
184         /*
185          * Calculate the table size - the next power of 2 larger than the
186          * LLC size.  LLC size is in KiB.
187          */
188         llc_size = wss_llc_size() * 1024;
189         table_size = roundup_pow_of_two(llc_size);
190
191         /* one bit per page in rounded up table */
192         llc_bits = llc_size / PAGE_SIZE;
193         table_bits = table_size / PAGE_SIZE;
194         wss.pages_mask = table_bits - 1;
195         wss.num_entries = table_bits / BITS_PER_LONG;
196
197         wss.threshold = (llc_bits * wss_threshold) / 100;
198         if (wss.threshold == 0)
199                 wss.threshold = 1;
200
201         atomic_set(&wss.clean_counter, wss_clean_period);
202
203         wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
204                               GFP_KERNEL);
205         if (!wss.entries) {
206                 hfi1_wss_exit();
207                 return -ENOMEM;
208         }
209
210         return 0;
211 }
212
213 void hfi1_wss_exit(void)
214 {
215         /* coded to handle partially initialized and repeat callers */
216         kfree(wss.entries);
217         wss.entries = NULL;
218 }
219
220 /*
221  * Advance the clean counter.  When the clean period has expired,
222  * clean an entry.
223  *
224  * This is implemented in atomics to avoid locking.  Because multiple
225  * variables are involved, it can be racy which can lead to slightly
226  * inaccurate information.  Since this is only a heuristic, this is
227  * OK.  Any innaccuracies will clean themselves out as the counter
228  * advances.  That said, it is unlikely the entry clean operation will
229  * race - the next possible racer will not start until the next clean
230  * period.
231  *
232  * The clean counter is implemented as a decrement to zero.  When zero
233  * is reached an entry is cleaned.
234  */
235 static void wss_advance_clean_counter(void)
236 {
237         int entry;
238         int weight;
239         unsigned long bits;
240
241         /* become the cleaner if we decrement the counter to zero */
242         if (atomic_dec_and_test(&wss.clean_counter)) {
243                 /*
244                  * Set, not add, the clean period.  This avoids an issue
245                  * where the counter could decrement below the clean period.
246                  * Doing a set can result in lost decrements, slowing the
247                  * clean advance.  Since this a heuristic, this possible
248                  * slowdown is OK.
249                  *
250                  * An alternative is to loop, advancing the counter by a
251                  * clean period until the result is > 0. However, this could
252                  * lead to several threads keeping another in the clean loop.
253                  * This could be mitigated by limiting the number of times
254                  * we stay in the loop.
255                  */
256                 atomic_set(&wss.clean_counter, wss_clean_period);
257
258                 /*
259                  * Uniquely grab the entry to clean and move to next.
260                  * The current entry is always the lower bits of
261                  * wss.clean_entry.  The table size, wss.num_entries,
262                  * is always a power-of-2.
263                  */
264                 entry = (atomic_inc_return(&wss.clean_entry) - 1)
265                         & (wss.num_entries - 1);
266
267                 /* clear the entry and count the bits */
268                 bits = xchg(&wss.entries[entry], 0);
269                 weight = hweight64((u64)bits);
270                 /* only adjust the contended total count if needed */
271                 if (weight)
272                         atomic_sub(weight, &wss.total_count);
273         }
274 }
275
276 /*
277  * Insert the given address into the working set array.
278  */
279 static void wss_insert(void *address)
280 {
281         u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
282         u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
283         u32 nr = page & (BITS_PER_LONG - 1);
284
285         if (!test_and_set_bit(nr, &wss.entries[entry]))
286                 atomic_inc(&wss.total_count);
287
288         wss_advance_clean_counter();
289 }
290
291 /*
292  * Is the working set larger than the threshold?
293  */
294 static inline bool wss_exceeds_threshold(void)
295 {
296         return atomic_read(&wss.total_count) >= wss.threshold;
297 }
298
299 /*
300  * Length of header by opcode, 0 --> not supported
301  */
302 const u8 hdr_len_by_opcode[256] = {
303         /* RC */
304         [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
305         [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
306         [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
307         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
308         [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
309         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
310         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
311         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
312         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
313         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
314         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
315         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
316         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
317         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
318         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
319         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
320         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
321         [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
322         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
323         [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
324         [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
325         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
326         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
327         /* UC */
328         [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
329         [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
330         [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
331         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
332         [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
333         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
334         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
335         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
336         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
337         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
338         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
339         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
340         /* UD */
341         [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
342         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
343 };
344
345 static const opcode_handler opcode_handler_tbl[256] = {
346         /* RC */
347         [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
348         [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
349         [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
350         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
351         [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
352         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
353         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
354         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
355         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
356         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
357         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
358         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
359         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
360         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
361         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
362         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
363         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
364         [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
365         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
366         [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
367         [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
368         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
369         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
370         /* UC */
371         [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
372         [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
373         [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
374         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
375         [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
376         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
377         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
378         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
379         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
380         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
381         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
382         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
383         /* UD */
384         [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
385         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
386         /* CNP */
387         [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
388 };
389
390 #define OPMASK 0x1f
391
392 static const u32 pio_opmask[BIT(3)] = {
393         /* RC */
394         [IB_OPCODE_RC >> 5] =
395                 BIT(RC_OP(SEND_ONLY) & OPMASK) |
396                 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
397                 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
398                 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
399                 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
400                 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
401                 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
402                 BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
403                 BIT(RC_OP(FETCH_ADD) & OPMASK),
404         /* UC */
405         [IB_OPCODE_UC >> 5] =
406                 BIT(UC_OP(SEND_ONLY) & OPMASK) |
407                 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
408                 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
409                 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
410 };
411
412 /*
413  * System image GUID.
414  */
415 __be64 ib_hfi1_sys_image_guid;
416
417 /**
418  * hfi1_copy_sge - copy data to SGE memory
419  * @ss: the SGE state
420  * @data: the data to copy
421  * @length: the length of the data
422  * @release: boolean to release MR
423  * @copy_last: do a separate copy of the last 8 bytes
424  */
425 void hfi1_copy_sge(
426         struct rvt_sge_state *ss,
427         void *data, u32 length,
428         bool release,
429         bool copy_last)
430 {
431         struct rvt_sge *sge = &ss->sge;
432         int i;
433         bool in_last = false;
434         bool cacheless_copy = false;
435
436         if (sge_copy_mode == COPY_CACHELESS) {
437                 cacheless_copy = length >= PAGE_SIZE;
438         } else if (sge_copy_mode == COPY_ADAPTIVE) {
439                 if (length >= PAGE_SIZE) {
440                         /*
441                          * NOTE: this *assumes*:
442                          * o The first vaddr is the dest.
443                          * o If multiple pages, then vaddr is sequential.
444                          */
445                         wss_insert(sge->vaddr);
446                         if (length >= (2 * PAGE_SIZE))
447                                 wss_insert(sge->vaddr + PAGE_SIZE);
448
449                         cacheless_copy = wss_exceeds_threshold();
450                 } else {
451                         wss_advance_clean_counter();
452                 }
453         }
454         if (copy_last) {
455                 if (length > 8) {
456                         length -= 8;
457                 } else {
458                         copy_last = false;
459                         in_last = true;
460                 }
461         }
462
463 again:
464         while (length) {
465                 u32 len = rvt_get_sge_length(sge, length);
466
467                 WARN_ON_ONCE(len == 0);
468                 if (unlikely(in_last)) {
469                         /* enforce byte transfer ordering */
470                         for (i = 0; i < len; i++)
471                                 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
472                 } else if (cacheless_copy) {
473                         cacheless_memcpy(sge->vaddr, data, len);
474                 } else {
475                         memcpy(sge->vaddr, data, len);
476                 }
477                 rvt_update_sge(ss, len, release);
478                 data += len;
479                 length -= len;
480         }
481
482         if (copy_last) {
483                 copy_last = false;
484                 in_last = true;
485                 length = 8;
486                 goto again;
487         }
488 }
489
490 /*
491  * Make sure the QP is ready and able to accept the given opcode.
492  */
493 static inline opcode_handler qp_ok(int opcode, struct hfi1_packet *packet)
494 {
495         if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
496                 return NULL;
497         if (((opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
498             (opcode == IB_OPCODE_CNP))
499                 return opcode_handler_tbl[opcode];
500
501         return NULL;
502 }
503
504 /**
505  * hfi1_ib_rcv - process an incoming packet
506  * @packet: data packet information
507  *
508  * This is called to process an incoming packet at interrupt level.
509  *
510  * Tlen is the length of the header + data + CRC in bytes.
511  */
512 void hfi1_ib_rcv(struct hfi1_packet *packet)
513 {
514         struct hfi1_ctxtdata *rcd = packet->rcd;
515         struct ib_header *hdr = packet->hdr;
516         u32 tlen = packet->tlen;
517         struct hfi1_pportdata *ppd = rcd->ppd;
518         struct hfi1_ibport *ibp = rcd_to_iport(rcd);
519         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
520         opcode_handler packet_handler;
521         unsigned long flags;
522         u32 qp_num;
523         int lnh;
524         u8 opcode;
525         u16 lid;
526
527         /* Check for GRH */
528         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
529         if (lnh == HFI1_LRH_BTH) {
530                 packet->ohdr = &hdr->u.oth;
531         } else if (lnh == HFI1_LRH_GRH) {
532                 u32 vtf;
533
534                 packet->ohdr = &hdr->u.l.oth;
535                 if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
536                         goto drop;
537                 vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
538                 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
539                         goto drop;
540                 packet->rcv_flags |= HFI1_HAS_GRH;
541         } else {
542                 goto drop;
543         }
544
545         trace_input_ibhdr(rcd->dd, hdr);
546
547         opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
548         inc_opstats(tlen, &rcd->opstats->stats[opcode]);
549
550         /* Get the destination QP number. */
551         qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK;
552         lid = be16_to_cpu(hdr->lrh[1]);
553         if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
554                      (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) {
555                 struct rvt_mcast *mcast;
556                 struct rvt_mcast_qp *p;
557
558                 if (lnh != HFI1_LRH_GRH)
559                         goto drop;
560                 mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid);
561                 if (!mcast)
562                         goto drop;
563                 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
564                         packet->qp = p->qp;
565                         spin_lock_irqsave(&packet->qp->r_lock, flags);
566                         packet_handler = qp_ok(opcode, packet);
567                         if (likely(packet_handler))
568                                 packet_handler(packet);
569                         else
570                                 ibp->rvp.n_pkt_drops++;
571                         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
572                 }
573                 /*
574                  * Notify rvt_multicast_detach() if it is waiting for us
575                  * to finish.
576                  */
577                 if (atomic_dec_return(&mcast->refcount) <= 1)
578                         wake_up(&mcast->wait);
579         } else {
580                 rcu_read_lock();
581                 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
582                 if (!packet->qp) {
583                         rcu_read_unlock();
584                         goto drop;
585                 }
586                 spin_lock_irqsave(&packet->qp->r_lock, flags);
587                 packet_handler = qp_ok(opcode, packet);
588                 if (likely(packet_handler))
589                         packet_handler(packet);
590                 else
591                         ibp->rvp.n_pkt_drops++;
592                 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
593                 rcu_read_unlock();
594         }
595         return;
596
597 drop:
598         ibp->rvp.n_pkt_drops++;
599 }
600
601 /*
602  * This is called from a timer to check for QPs
603  * which need kernel memory in order to send a packet.
604  */
605 static void mem_timer(unsigned long data)
606 {
607         struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
608         struct list_head *list = &dev->memwait;
609         struct rvt_qp *qp = NULL;
610         struct iowait *wait;
611         unsigned long flags;
612         struct hfi1_qp_priv *priv;
613
614         write_seqlock_irqsave(&dev->iowait_lock, flags);
615         if (!list_empty(list)) {
616                 wait = list_first_entry(list, struct iowait, list);
617                 qp = iowait_to_qp(wait);
618                 priv = qp->priv;
619                 list_del_init(&priv->s_iowait.list);
620                 priv->s_iowait.lock = NULL;
621                 /* refcount held until actual wake up */
622                 if (!list_empty(list))
623                         mod_timer(&dev->mem_timer, jiffies + 1);
624         }
625         write_sequnlock_irqrestore(&dev->iowait_lock, flags);
626
627         if (qp)
628                 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
629 }
630
631 /*
632  * This is called with progress side lock held.
633  */
634 /* New API */
635 static void verbs_sdma_complete(
636         struct sdma_txreq *cookie,
637         int status)
638 {
639         struct verbs_txreq *tx =
640                 container_of(cookie, struct verbs_txreq, txreq);
641         struct rvt_qp *qp = tx->qp;
642
643         spin_lock(&qp->s_lock);
644         if (tx->wqe) {
645                 hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
646         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
647                 struct ib_header *hdr;
648
649                 hdr = &tx->phdr.hdr;
650                 hfi1_rc_send_complete(qp, hdr);
651         }
652         spin_unlock(&qp->s_lock);
653
654         hfi1_put_txreq(tx);
655 }
656
657 static int wait_kmem(struct hfi1_ibdev *dev,
658                      struct rvt_qp *qp,
659                      struct hfi1_pkt_state *ps)
660 {
661         struct hfi1_qp_priv *priv = qp->priv;
662         unsigned long flags;
663         int ret = 0;
664
665         spin_lock_irqsave(&qp->s_lock, flags);
666         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
667                 write_seqlock(&dev->iowait_lock);
668                 list_add_tail(&ps->s_txreq->txreq.list,
669                               &priv->s_iowait.tx_head);
670                 if (list_empty(&priv->s_iowait.list)) {
671                         if (list_empty(&dev->memwait))
672                                 mod_timer(&dev->mem_timer, jiffies + 1);
673                         qp->s_flags |= RVT_S_WAIT_KMEM;
674                         list_add_tail(&priv->s_iowait.list, &dev->memwait);
675                         priv->s_iowait.lock = &dev->iowait_lock;
676                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
677                         rvt_get_qp(qp);
678                 }
679                 write_sequnlock(&dev->iowait_lock);
680                 qp->s_flags &= ~RVT_S_BUSY;
681                 ret = -EBUSY;
682         }
683         spin_unlock_irqrestore(&qp->s_lock, flags);
684
685         return ret;
686 }
687
688 /*
689  * This routine calls txadds for each sg entry.
690  *
691  * Add failures will revert the sge cursor
692  */
693 static noinline int build_verbs_ulp_payload(
694         struct sdma_engine *sde,
695         u32 length,
696         struct verbs_txreq *tx)
697 {
698         struct rvt_sge_state *ss = tx->ss;
699         struct rvt_sge *sg_list = ss->sg_list;
700         struct rvt_sge sge = ss->sge;
701         u8 num_sge = ss->num_sge;
702         u32 len;
703         int ret = 0;
704
705         while (length) {
706                 len = ss->sge.length;
707                 if (len > length)
708                         len = length;
709                 if (len > ss->sge.sge_length)
710                         len = ss->sge.sge_length;
711                 WARN_ON_ONCE(len == 0);
712                 ret = sdma_txadd_kvaddr(
713                         sde->dd,
714                         &tx->txreq,
715                         ss->sge.vaddr,
716                         len);
717                 if (ret)
718                         goto bail_txadd;
719                 rvt_update_sge(ss, len, false);
720                 length -= len;
721         }
722         return ret;
723 bail_txadd:
724         /* unwind cursor */
725         ss->sge = sge;
726         ss->num_sge = num_sge;
727         ss->sg_list = sg_list;
728         return ret;
729 }
730
731 /*
732  * Build the number of DMA descriptors needed to send length bytes of data.
733  *
734  * NOTE: DMA mapping is held in the tx until completed in the ring or
735  *       the tx desc is freed without having been submitted to the ring
736  *
737  * This routine ensures all the helper routine calls succeed.
738  */
739 /* New API */
740 static int build_verbs_tx_desc(
741         struct sdma_engine *sde,
742         u32 length,
743         struct verbs_txreq *tx,
744         struct hfi1_ahg_info *ahg_info,
745         u64 pbc)
746 {
747         int ret = 0;
748         struct hfi1_sdma_header *phdr = &tx->phdr;
749         u16 hdrbytes = tx->hdr_dwords << 2;
750
751         if (!ahg_info->ahgcount) {
752                 ret = sdma_txinit_ahg(
753                         &tx->txreq,
754                         ahg_info->tx_flags,
755                         hdrbytes + length,
756                         ahg_info->ahgidx,
757                         0,
758                         NULL,
759                         0,
760                         verbs_sdma_complete);
761                 if (ret)
762                         goto bail_txadd;
763                 phdr->pbc = cpu_to_le64(pbc);
764                 ret = sdma_txadd_kvaddr(
765                         sde->dd,
766                         &tx->txreq,
767                         phdr,
768                         hdrbytes);
769                 if (ret)
770                         goto bail_txadd;
771         } else {
772                 ret = sdma_txinit_ahg(
773                         &tx->txreq,
774                         ahg_info->tx_flags,
775                         length,
776                         ahg_info->ahgidx,
777                         ahg_info->ahgcount,
778                         ahg_info->ahgdesc,
779                         hdrbytes,
780                         verbs_sdma_complete);
781                 if (ret)
782                         goto bail_txadd;
783         }
784
785         /* add the ulp payload - if any. tx->ss can be NULL for acks */
786         if (tx->ss)
787                 ret = build_verbs_ulp_payload(sde, length, tx);
788 bail_txadd:
789         return ret;
790 }
791
792 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
793                         u64 pbc)
794 {
795         struct hfi1_qp_priv *priv = qp->priv;
796         struct hfi1_ahg_info *ahg_info = priv->s_ahg;
797         u32 hdrwords = qp->s_hdrwords;
798         u32 len = ps->s_txreq->s_cur_size;
799         u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */
800         struct hfi1_ibdev *dev = ps->dev;
801         struct hfi1_pportdata *ppd = ps->ppd;
802         struct verbs_txreq *tx;
803         u64 pbc_flags = 0;
804         u8 sc5 = priv->s_sc;
805
806         int ret;
807
808         tx = ps->s_txreq;
809         if (!sdma_txreq_built(&tx->txreq)) {
810                 if (likely(pbc == 0)) {
811                         u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
812                         /* No vl15 here */
813                         /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
814                         pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
815
816                         pbc = create_pbc(ppd,
817                                          pbc_flags,
818                                          qp->srate_mbps,
819                                          vl,
820                                          plen);
821                 }
822                 tx->wqe = qp->s_wqe;
823                 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
824                 if (unlikely(ret))
825                         goto bail_build;
826         }
827         ret =  sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq);
828         if (unlikely(ret < 0)) {
829                 if (ret == -ECOMM)
830                         goto bail_ecomm;
831                 return ret;
832         }
833         trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
834                                 &ps->s_txreq->phdr.hdr);
835         return ret;
836
837 bail_ecomm:
838         /* The current one got "sent" */
839         return 0;
840 bail_build:
841         ret = wait_kmem(dev, qp, ps);
842         if (!ret) {
843                 /* free txreq - bad state */
844                 hfi1_put_txreq(ps->s_txreq);
845                 ps->s_txreq = NULL;
846         }
847         return ret;
848 }
849
850 /*
851  * If we are now in the error state, return zero to flush the
852  * send work request.
853  */
854 static int pio_wait(struct rvt_qp *qp,
855                     struct send_context *sc,
856                     struct hfi1_pkt_state *ps,
857                     u32 flag)
858 {
859         struct hfi1_qp_priv *priv = qp->priv;
860         struct hfi1_devdata *dd = sc->dd;
861         struct hfi1_ibdev *dev = &dd->verbs_dev;
862         unsigned long flags;
863         int ret = 0;
864
865         /*
866          * Note that as soon as want_buffer() is called and
867          * possibly before it returns, sc_piobufavail()
868          * could be called. Therefore, put QP on the I/O wait list before
869          * enabling the PIO avail interrupt.
870          */
871         spin_lock_irqsave(&qp->s_lock, flags);
872         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
873                 write_seqlock(&dev->iowait_lock);
874                 list_add_tail(&ps->s_txreq->txreq.list,
875                               &priv->s_iowait.tx_head);
876                 if (list_empty(&priv->s_iowait.list)) {
877                         struct hfi1_ibdev *dev = &dd->verbs_dev;
878                         int was_empty;
879
880                         dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
881                         dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
882                         qp->s_flags |= flag;
883                         was_empty = list_empty(&sc->piowait);
884                         list_add_tail(&priv->s_iowait.list, &sc->piowait);
885                         priv->s_iowait.lock = &dev->iowait_lock;
886                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
887                         rvt_get_qp(qp);
888                         /* counting: only call wantpiobuf_intr if first user */
889                         if (was_empty)
890                                 hfi1_sc_wantpiobuf_intr(sc, 1);
891                 }
892                 write_sequnlock(&dev->iowait_lock);
893                 qp->s_flags &= ~RVT_S_BUSY;
894                 ret = -EBUSY;
895         }
896         spin_unlock_irqrestore(&qp->s_lock, flags);
897         return ret;
898 }
899
900 static void verbs_pio_complete(void *arg, int code)
901 {
902         struct rvt_qp *qp = (struct rvt_qp *)arg;
903         struct hfi1_qp_priv *priv = qp->priv;
904
905         if (iowait_pio_dec(&priv->s_iowait))
906                 iowait_drain_wakeup(&priv->s_iowait);
907 }
908
909 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
910                         u64 pbc)
911 {
912         struct hfi1_qp_priv *priv = qp->priv;
913         u32 hdrwords = qp->s_hdrwords;
914         struct rvt_sge_state *ss = ps->s_txreq->ss;
915         u32 len = ps->s_txreq->s_cur_size;
916         u32 dwords = (len + 3) >> 2;
917         u32 plen = hdrwords + dwords + 2; /* includes pbc */
918         struct hfi1_pportdata *ppd = ps->ppd;
919         u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr;
920         u64 pbc_flags = 0;
921         u8 sc5;
922         unsigned long flags = 0;
923         struct send_context *sc;
924         struct pio_buf *pbuf;
925         int wc_status = IB_WC_SUCCESS;
926         int ret = 0;
927         pio_release_cb cb = NULL;
928
929         /* only RC/UC use complete */
930         switch (qp->ibqp.qp_type) {
931         case IB_QPT_RC:
932         case IB_QPT_UC:
933                 cb = verbs_pio_complete;
934                 break;
935         default:
936                 break;
937         }
938
939         /* vl15 special case taken care of in ud.c */
940         sc5 = priv->s_sc;
941         sc = ps->s_txreq->psc;
942
943         if (likely(pbc == 0)) {
944                 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
945                 /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
946                 pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
947                 pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
948         }
949         if (cb)
950                 iowait_pio_inc(&priv->s_iowait);
951         pbuf = sc_buffer_alloc(sc, plen, cb, qp);
952         if (unlikely(!pbuf)) {
953                 if (cb)
954                         verbs_pio_complete(qp, 0);
955                 if (ppd->host_link_state != HLS_UP_ACTIVE) {
956                         /*
957                          * If we have filled the PIO buffers to capacity and are
958                          * not in an active state this request is not going to
959                          * go out to so just complete it with an error or else a
960                          * ULP or the core may be stuck waiting.
961                          */
962                         hfi1_cdbg(
963                                 PIO,
964                                 "alloc failed. state not active, completing");
965                         wc_status = IB_WC_GENERAL_ERR;
966                         goto pio_bail;
967                 } else {
968                         /*
969                          * This is a normal occurrence. The PIO buffs are full
970                          * up but we are still happily sending, well we could be
971                          * so lets continue to queue the request.
972                          */
973                         hfi1_cdbg(PIO, "alloc failed. state active, queuing");
974                         ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
975                         if (!ret)
976                                 /* txreq not queued - free */
977                                 goto bail;
978                         /* tx consumed in wait */
979                         return ret;
980                 }
981         }
982
983         if (len == 0) {
984                 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
985         } else {
986                 if (ss) {
987                         seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4);
988                         while (len) {
989                                 void *addr = ss->sge.vaddr;
990                                 u32 slen = ss->sge.length;
991
992                                 if (slen > len)
993                                         slen = len;
994                                 rvt_update_sge(ss, slen, false);
995                                 seg_pio_copy_mid(pbuf, addr, slen);
996                                 len -= slen;
997                         }
998                         seg_pio_copy_end(pbuf);
999                 }
1000         }
1001
1002         trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1003                                &ps->s_txreq->phdr.hdr);
1004
1005 pio_bail:
1006         if (qp->s_wqe) {
1007                 spin_lock_irqsave(&qp->s_lock, flags);
1008                 hfi1_send_complete(qp, qp->s_wqe, wc_status);
1009                 spin_unlock_irqrestore(&qp->s_lock, flags);
1010         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1011                 spin_lock_irqsave(&qp->s_lock, flags);
1012                 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1013                 spin_unlock_irqrestore(&qp->s_lock, flags);
1014         }
1015
1016         ret = 0;
1017
1018 bail:
1019         hfi1_put_txreq(ps->s_txreq);
1020         return ret;
1021 }
1022
1023 /*
1024  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1025  * being an entry from the partition key table), return 0
1026  * otherwise. Use the matching criteria for egress partition keys
1027  * specified in the OPAv1 spec., section 9.1l.7.
1028  */
1029 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1030 {
1031         u16 mkey = pkey & PKEY_LOW_15_MASK;
1032         u16 mentry = ent & PKEY_LOW_15_MASK;
1033
1034         if (mkey == mentry) {
1035                 /*
1036                  * If pkey[15] is set (full partition member),
1037                  * is bit 15 in the corresponding table element
1038                  * clear (limited member)?
1039                  */
1040                 if (pkey & PKEY_MEMBER_MASK)
1041                         return !!(ent & PKEY_MEMBER_MASK);
1042                 return 1;
1043         }
1044         return 0;
1045 }
1046
1047 /**
1048  * egress_pkey_check - check P_KEY of a packet
1049  * @ppd:    Physical IB port data
1050  * @lrh: Local route header
1051  * @bth: Base transport header
1052  * @sc5:    SC for packet
1053  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1054  * only. If it is negative value, then it means user contexts is calling this
1055  * function.
1056  *
1057  * It checks if hdr's pkey is valid.
1058  *
1059  * Return: 0 on success, otherwise, 1
1060  */
1061 int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth,
1062                       u8 sc5, int8_t s_pkey_index)
1063 {
1064         struct hfi1_devdata *dd;
1065         int i;
1066         u16 pkey;
1067         int is_user_ctxt_mechanism = (s_pkey_index < 0);
1068
1069         if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1070                 return 0;
1071
1072         pkey = (u16)be32_to_cpu(bth[0]);
1073
1074         /* If SC15, pkey[0:14] must be 0x7fff */
1075         if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1076                 goto bad;
1077
1078         /* Is the pkey = 0x0, or 0x8000? */
1079         if ((pkey & PKEY_LOW_15_MASK) == 0)
1080                 goto bad;
1081
1082         /*
1083          * For the kernel contexts only, if a qp is passed into the function,
1084          * the most likely matching pkey has index qp->s_pkey_index
1085          */
1086         if (!is_user_ctxt_mechanism &&
1087             egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1088                 return 0;
1089         }
1090
1091         for (i = 0; i < MAX_PKEY_VALUES; i++) {
1092                 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1093                         return 0;
1094         }
1095 bad:
1096         /*
1097          * For the user-context mechanism, the P_KEY check would only happen
1098          * once per SDMA request, not once per packet.  Therefore, there's no
1099          * need to increment the counter for the user-context mechanism.
1100          */
1101         if (!is_user_ctxt_mechanism) {
1102                 incr_cntr64(&ppd->port_xmit_constraint_errors);
1103                 dd = ppd->dd;
1104                 if (!(dd->err_info_xmit_constraint.status &
1105                       OPA_EI_STATUS_SMASK)) {
1106                         u16 slid = be16_to_cpu(lrh[3]);
1107
1108                         dd->err_info_xmit_constraint.status |=
1109                                 OPA_EI_STATUS_SMASK;
1110                         dd->err_info_xmit_constraint.slid = slid;
1111                         dd->err_info_xmit_constraint.pkey = pkey;
1112                 }
1113         }
1114         return 1;
1115 }
1116
1117 /**
1118  * get_send_routine - choose an egress routine
1119  *
1120  * Choose an egress routine based on QP type
1121  * and size
1122  */
1123 static inline send_routine get_send_routine(struct rvt_qp *qp,
1124                                             struct verbs_txreq *tx)
1125 {
1126         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1127         struct hfi1_qp_priv *priv = qp->priv;
1128         struct ib_header *h = &tx->phdr.hdr;
1129
1130         if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1131                 return dd->process_pio_send;
1132         switch (qp->ibqp.qp_type) {
1133         case IB_QPT_SMI:
1134                 return dd->process_pio_send;
1135         case IB_QPT_GSI:
1136         case IB_QPT_UD:
1137                 break;
1138         case IB_QPT_UC:
1139         case IB_QPT_RC: {
1140                 u8 op = get_opcode(h);
1141
1142                 if (piothreshold &&
1143                     tx->s_cur_size <= min(piothreshold, qp->pmtu) &&
1144                     (BIT(op & OPMASK) & pio_opmask[op >> 5]) &&
1145                     iowait_sdma_pending(&priv->s_iowait) == 0 &&
1146                     !sdma_txreq_built(&tx->txreq))
1147                         return dd->process_pio_send;
1148                 break;
1149         }
1150         default:
1151                 break;
1152         }
1153         return dd->process_dma_send;
1154 }
1155
1156 /**
1157  * hfi1_verbs_send - send a packet
1158  * @qp: the QP to send on
1159  * @ps: the state of the packet to send
1160  *
1161  * Return zero if packet is sent or queued OK.
1162  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1163  */
1164 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1165 {
1166         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1167         struct hfi1_qp_priv *priv = qp->priv;
1168         struct ib_other_headers *ohdr;
1169         struct ib_header *hdr;
1170         send_routine sr;
1171         int ret;
1172         u8 lnh;
1173
1174         hdr = &ps->s_txreq->phdr.hdr;
1175         /* locate the pkey within the headers */
1176         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1177         if (lnh == HFI1_LRH_GRH)
1178                 ohdr = &hdr->u.l.oth;
1179         else
1180                 ohdr = &hdr->u.oth;
1181
1182         sr = get_send_routine(qp, ps->s_txreq);
1183         ret = egress_pkey_check(dd->pport,
1184                                 hdr->lrh,
1185                                 ohdr->bth,
1186                                 priv->s_sc,
1187                                 qp->s_pkey_index);
1188         if (unlikely(ret)) {
1189                 /*
1190                  * The value we are returning here does not get propagated to
1191                  * the verbs caller. Thus we need to complete the request with
1192                  * error otherwise the caller could be sitting waiting on the
1193                  * completion event. Only do this for PIO. SDMA has its own
1194                  * mechanism for handling the errors. So for SDMA we can just
1195                  * return.
1196                  */
1197                 if (sr == dd->process_pio_send) {
1198                         unsigned long flags;
1199
1200                         hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1201                                   __func__);
1202                         spin_lock_irqsave(&qp->s_lock, flags);
1203                         hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1204                         spin_unlock_irqrestore(&qp->s_lock, flags);
1205                 }
1206                 return -EINVAL;
1207         }
1208         if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1209                 return pio_wait(qp,
1210                                 ps->s_txreq->psc,
1211                                 ps,
1212                                 RVT_S_WAIT_PIO_DRAIN);
1213         return sr(qp, ps, 0);
1214 }
1215
1216 /**
1217  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1218  * @dd: the device data structure
1219  */
1220 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1221 {
1222         struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1223         u16 ver = dd->dc8051_ver;
1224
1225         memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1226
1227         rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 16) |
1228                                     (u64)dc8051_ver_min(ver);
1229         rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1230                         IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1231                         IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1232                         IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1233                         IB_DEVICE_MEM_MGT_EXTENSIONS;
1234         rdi->dparms.props.page_size_cap = PAGE_SIZE;
1235         rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1236         rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1237         rdi->dparms.props.hw_ver = dd->minrev;
1238         rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1239         rdi->dparms.props.max_mr_size = U64_MAX;
1240         rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1241         rdi->dparms.props.max_qp = hfi1_max_qps;
1242         rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1243         rdi->dparms.props.max_sge = hfi1_max_sges;
1244         rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1245         rdi->dparms.props.max_cq = hfi1_max_cqs;
1246         rdi->dparms.props.max_ah = hfi1_max_ahs;
1247         rdi->dparms.props.max_cqe = hfi1_max_cqes;
1248         rdi->dparms.props.max_mr = rdi->lkey_table.max;
1249         rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1250         rdi->dparms.props.max_map_per_fmr = 32767;
1251         rdi->dparms.props.max_pd = hfi1_max_pds;
1252         rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1253         rdi->dparms.props.max_qp_init_rd_atom = 255;
1254         rdi->dparms.props.max_srq = hfi1_max_srqs;
1255         rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1256         rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1257         rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1258         rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1259         rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1260         rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1261         rdi->dparms.props.max_total_mcast_qp_attach =
1262                                         rdi->dparms.props.max_mcast_qp_attach *
1263                                         rdi->dparms.props.max_mcast_grp;
1264 }
1265
1266 static inline u16 opa_speed_to_ib(u16 in)
1267 {
1268         u16 out = 0;
1269
1270         if (in & OPA_LINK_SPEED_25G)
1271                 out |= IB_SPEED_EDR;
1272         if (in & OPA_LINK_SPEED_12_5G)
1273                 out |= IB_SPEED_FDR;
1274
1275         return out;
1276 }
1277
1278 /*
1279  * Convert a single OPA link width (no multiple flags) to an IB value.
1280  * A zero OPA link width means link down, which means the IB width value
1281  * is a don't care.
1282  */
1283 static inline u16 opa_width_to_ib(u16 in)
1284 {
1285         switch (in) {
1286         case OPA_LINK_WIDTH_1X:
1287         /* map 2x and 3x to 1x as they don't exist in IB */
1288         case OPA_LINK_WIDTH_2X:
1289         case OPA_LINK_WIDTH_3X:
1290                 return IB_WIDTH_1X;
1291         default: /* link down or unknown, return our largest width */
1292         case OPA_LINK_WIDTH_4X:
1293                 return IB_WIDTH_4X;
1294         }
1295 }
1296
1297 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1298                       struct ib_port_attr *props)
1299 {
1300         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1301         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1302         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1303         u16 lid = ppd->lid;
1304
1305         /* props being zeroed by the caller, avoid zeroing it here */
1306         props->lid = lid ? lid : 0;
1307         props->lmc = ppd->lmc;
1308         /* OPA logical states match IB logical states */
1309         props->state = driver_lstate(ppd);
1310         props->phys_state = hfi1_ibphys_portstate(ppd);
1311         props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1312         props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1313         /* see rate_show() in ib core/sysfs.c */
1314         props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1315         props->max_vl_num = ppd->vls_supported;
1316
1317         /* Once we are a "first class" citizen and have added the OPA MTUs to
1318          * the core we can advertise the larger MTU enum to the ULPs, for now
1319          * advertise only 4K.
1320          *
1321          * Those applications which are either OPA aware or pass the MTU enum
1322          * from the Path Records to us will get the new 8k MTU.  Those that
1323          * attempt to process the MTU enum may fail in various ways.
1324          */
1325         props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1326                                       4096 : hfi1_max_mtu), IB_MTU_4096);
1327         props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1328                 mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1329
1330         return 0;
1331 }
1332
1333 static int modify_device(struct ib_device *device,
1334                          int device_modify_mask,
1335                          struct ib_device_modify *device_modify)
1336 {
1337         struct hfi1_devdata *dd = dd_from_ibdev(device);
1338         unsigned i;
1339         int ret;
1340
1341         if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1342                                    IB_DEVICE_MODIFY_NODE_DESC)) {
1343                 ret = -EOPNOTSUPP;
1344                 goto bail;
1345         }
1346
1347         if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1348                 memcpy(device->node_desc, device_modify->node_desc,
1349                        IB_DEVICE_NODE_DESC_MAX);
1350                 for (i = 0; i < dd->num_pports; i++) {
1351                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1352
1353                         hfi1_node_desc_chg(ibp);
1354                 }
1355         }
1356
1357         if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1358                 ib_hfi1_sys_image_guid =
1359                         cpu_to_be64(device_modify->sys_image_guid);
1360                 for (i = 0; i < dd->num_pports; i++) {
1361                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1362
1363                         hfi1_sys_guid_chg(ibp);
1364                 }
1365         }
1366
1367         ret = 0;
1368
1369 bail:
1370         return ret;
1371 }
1372
1373 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1374 {
1375         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1376         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1377         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1378         int ret;
1379
1380         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1381                              OPA_LINKDOWN_REASON_UNKNOWN);
1382         ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1383         return ret;
1384 }
1385
1386 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1387                             int guid_index, __be64 *guid)
1388 {
1389         struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1390
1391         if (guid_index >= HFI1_GUIDS_PER_PORT)
1392                 return -EINVAL;
1393
1394         *guid = get_sguid(ibp, guid_index);
1395         return 0;
1396 }
1397
1398 /*
1399  * convert ah port,sl to sc
1400  */
1401 u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1402 {
1403         struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1404
1405         return ibp->sl_to_sc[ah->sl];
1406 }
1407
1408 static int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1409 {
1410         struct hfi1_ibport *ibp;
1411         struct hfi1_pportdata *ppd;
1412         struct hfi1_devdata *dd;
1413         u8 sc5;
1414
1415         /* test the mapping for validity */
1416         ibp = to_iport(ibdev, ah_attr->port_num);
1417         ppd = ppd_from_ibp(ibp);
1418         sc5 = ibp->sl_to_sc[ah_attr->sl];
1419         dd = dd_from_ppd(ppd);
1420         if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1421                 return -EINVAL;
1422         return 0;
1423 }
1424
1425 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1426                                struct ib_ah_attr *ah_attr,
1427                                struct rvt_ah *ah)
1428 {
1429         struct hfi1_ibport *ibp;
1430         struct hfi1_pportdata *ppd;
1431         struct hfi1_devdata *dd;
1432         u8 sc5;
1433
1434         /*
1435          * Do not trust reading anything from rvt_ah at this point as it is not
1436          * done being setup. We can however modify things which we need to set.
1437          */
1438
1439         ibp = to_iport(ibdev, ah_attr->port_num);
1440         ppd = ppd_from_ibp(ibp);
1441         sc5 = ibp->sl_to_sc[ah->attr.sl];
1442         dd = dd_from_ppd(ppd);
1443         ah->vl = sc_to_vlt(dd, sc5);
1444         if (ah->vl < num_vls || ah->vl == 15)
1445                 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1446 }
1447
1448 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1449 {
1450         struct ib_ah_attr attr;
1451         struct ib_ah *ah = ERR_PTR(-EINVAL);
1452         struct rvt_qp *qp0;
1453
1454         memset(&attr, 0, sizeof(attr));
1455         attr.dlid = dlid;
1456         attr.port_num = ppd_from_ibp(ibp)->port;
1457         rcu_read_lock();
1458         qp0 = rcu_dereference(ibp->rvp.qp[0]);
1459         if (qp0)
1460                 ah = ib_create_ah(qp0->ibqp.pd, &attr);
1461         rcu_read_unlock();
1462         return ah;
1463 }
1464
1465 /**
1466  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1467  * @dd: the hfi1_ib device
1468  */
1469 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1470 {
1471         return ARRAY_SIZE(dd->pport[0].pkeys);
1472 }
1473
1474 static void init_ibport(struct hfi1_pportdata *ppd)
1475 {
1476         struct hfi1_ibport *ibp = &ppd->ibport_data;
1477         size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1478         int i;
1479
1480         for (i = 0; i < sz; i++) {
1481                 ibp->sl_to_sc[i] = i;
1482                 ibp->sc_to_sl[i] = i;
1483         }
1484
1485         spin_lock_init(&ibp->rvp.lock);
1486         /* Set the prefix to the default value (see ch. 4.1.1) */
1487         ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1488         ibp->rvp.sm_lid = 0;
1489         /* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1490         ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1491                 IB_PORT_CAP_MASK_NOTICE_SUP;
1492         ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1493         ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1494         ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1495         ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1496         ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1497
1498         RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1499         RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1500 }
1501
1502 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str,
1503                                 size_t str_len)
1504 {
1505         struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1506         struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1507         u16 ver = dd_from_dev(dev)->dc8051_ver;
1508
1509         snprintf(str, str_len, "%u.%u", dc8051_ver_maj(ver),
1510                  dc8051_ver_min(ver));
1511 }
1512
1513 static const char * const driver_cntr_names[] = {
1514         /* must be element 0*/
1515         "DRIVER_KernIntr",
1516         "DRIVER_ErrorIntr",
1517         "DRIVER_Tx_Errs",
1518         "DRIVER_Rcv_Errs",
1519         "DRIVER_HW_Errs",
1520         "DRIVER_NoPIOBufs",
1521         "DRIVER_CtxtsOpen",
1522         "DRIVER_RcvLen_Errs",
1523         "DRIVER_EgrBufFull",
1524         "DRIVER_EgrHdrFull"
1525 };
1526
1527 static const char **dev_cntr_names;
1528 static const char **port_cntr_names;
1529 static int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1530 static int num_dev_cntrs;
1531 static int num_port_cntrs;
1532 static int cntr_names_initialized;
1533
1534 /*
1535  * Convert a list of names separated by '\n' into an array of NULL terminated
1536  * strings. Optionally some entries can be reserved in the array to hold extra
1537  * external strings.
1538  */
1539 static int init_cntr_names(const char *names_in,
1540                            const size_t names_len,
1541                            int num_extra_names,
1542                            int *num_cntrs,
1543                            const char ***cntr_names)
1544 {
1545         char *names_out, *p, **q;
1546         int i, n;
1547
1548         n = 0;
1549         for (i = 0; i < names_len; i++)
1550                 if (names_in[i] == '\n')
1551                         n++;
1552
1553         names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1554                             GFP_KERNEL);
1555         if (!names_out) {
1556                 *num_cntrs = 0;
1557                 *cntr_names = NULL;
1558                 return -ENOMEM;
1559         }
1560
1561         p = names_out + (n + num_extra_names) * sizeof(char *);
1562         memcpy(p, names_in, names_len);
1563
1564         q = (char **)names_out;
1565         for (i = 0; i < n; i++) {
1566                 q[i] = p;
1567                 p = strchr(p, '\n');
1568                 *p++ = '\0';
1569         }
1570
1571         *num_cntrs = n;
1572         *cntr_names = (const char **)names_out;
1573         return 0;
1574 }
1575
1576 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1577                                             u8 port_num)
1578 {
1579         int i, err;
1580
1581         if (!cntr_names_initialized) {
1582                 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1583
1584                 err = init_cntr_names(dd->cntrnames,
1585                                       dd->cntrnameslen,
1586                                       num_driver_cntrs,
1587                                       &num_dev_cntrs,
1588                                       &dev_cntr_names);
1589                 if (err)
1590                         return NULL;
1591
1592                 for (i = 0; i < num_driver_cntrs; i++)
1593                         dev_cntr_names[num_dev_cntrs + i] =
1594                                 driver_cntr_names[i];
1595
1596                 err = init_cntr_names(dd->portcntrnames,
1597                                       dd->portcntrnameslen,
1598                                       0,
1599                                       &num_port_cntrs,
1600                                       &port_cntr_names);
1601                 if (err) {
1602                         kfree(dev_cntr_names);
1603                         dev_cntr_names = NULL;
1604                         return NULL;
1605                 }
1606                 cntr_names_initialized = 1;
1607         }
1608
1609         if (!port_num)
1610                 return rdma_alloc_hw_stats_struct(
1611                                 dev_cntr_names,
1612                                 num_dev_cntrs + num_driver_cntrs,
1613                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1614         else
1615                 return rdma_alloc_hw_stats_struct(
1616                                 port_cntr_names,
1617                                 num_port_cntrs,
1618                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1619 }
1620
1621 static u64 hfi1_sps_ints(void)
1622 {
1623         unsigned long flags;
1624         struct hfi1_devdata *dd;
1625         u64 sps_ints = 0;
1626
1627         spin_lock_irqsave(&hfi1_devs_lock, flags);
1628         list_for_each_entry(dd, &hfi1_dev_list, list) {
1629                 sps_ints += get_all_cpu_total(dd->int_counter);
1630         }
1631         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1632         return sps_ints;
1633 }
1634
1635 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1636                         u8 port, int index)
1637 {
1638         u64 *values;
1639         int count;
1640
1641         if (!port) {
1642                 u64 *stats = (u64 *)&hfi1_stats;
1643                 int i;
1644
1645                 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1646                 values[num_dev_cntrs] = hfi1_sps_ints();
1647                 for (i = 1; i < num_driver_cntrs; i++)
1648                         values[num_dev_cntrs + i] = stats[i];
1649                 count = num_dev_cntrs + num_driver_cntrs;
1650         } else {
1651                 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1652
1653                 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1654                 count = num_port_cntrs;
1655         }
1656
1657         memcpy(stats->value, values, count * sizeof(u64));
1658         return count;
1659 }
1660
1661 /**
1662  * hfi1_register_ib_device - register our device with the infiniband core
1663  * @dd: the device data structure
1664  * Return 0 if successful, errno if unsuccessful.
1665  */
1666 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1667 {
1668         struct hfi1_ibdev *dev = &dd->verbs_dev;
1669         struct ib_device *ibdev = &dev->rdi.ibdev;
1670         struct hfi1_pportdata *ppd = dd->pport;
1671         struct hfi1_ibport *ibp = &ppd->ibport_data;
1672         unsigned i;
1673         int ret;
1674         size_t lcpysz = IB_DEVICE_NAME_MAX;
1675
1676         for (i = 0; i < dd->num_pports; i++)
1677                 init_ibport(ppd + i);
1678
1679         /* Only need to initialize non-zero fields. */
1680
1681         setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1682
1683         seqlock_init(&dev->iowait_lock);
1684         seqlock_init(&dev->txwait_lock);
1685         INIT_LIST_HEAD(&dev->txwait);
1686         INIT_LIST_HEAD(&dev->memwait);
1687
1688         ret = verbs_txreq_init(dev);
1689         if (ret)
1690                 goto err_verbs_txreq;
1691
1692         /* Use first-port GUID as node guid */
1693         ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1694
1695         /*
1696          * The system image GUID is supposed to be the same for all
1697          * HFIs in a single system but since there can be other
1698          * device types in the system, we can't be sure this is unique.
1699          */
1700         if (!ib_hfi1_sys_image_guid)
1701                 ib_hfi1_sys_image_guid = ibdev->node_guid;
1702         lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1703         strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1704         ibdev->owner = THIS_MODULE;
1705         ibdev->phys_port_cnt = dd->num_pports;
1706         ibdev->dev.parent = &dd->pcidev->dev;
1707         ibdev->modify_device = modify_device;
1708         ibdev->alloc_hw_stats = alloc_hw_stats;
1709         ibdev->get_hw_stats = get_hw_stats;
1710
1711         /* keep process mad in the driver */
1712         ibdev->process_mad = hfi1_process_mad;
1713         ibdev->get_dev_fw_str = hfi1_get_dev_fw_str;
1714
1715         strncpy(ibdev->node_desc, init_utsname()->nodename,
1716                 sizeof(ibdev->node_desc));
1717
1718         /*
1719          * Fill in rvt info object.
1720          */
1721         dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1722         dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1723         dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1724         dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1725         dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1726         dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1727         dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1728         dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1729         dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1730         /*
1731          * Fill in rvt info device attributes.
1732          */
1733         hfi1_fill_device_attr(dd);
1734
1735         /* queue pair */
1736         dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1737         dd->verbs_dev.rdi.dparms.qpn_start = 0;
1738         dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1739         dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1740         dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1741         dd->verbs_dev.rdi.dparms.qpn_res_end =
1742         dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1743         dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1744         dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1745         dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1746         dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1747         dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1748         dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1749
1750         dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1751         dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1752         dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1753         dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1754         dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send;
1755         dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1756         dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1757         dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1758         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1759         dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1760         dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1761         dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1762         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1763         dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1764         dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1765         dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1766         dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1767         dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1768         dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1769
1770         /* completeion queue */
1771         snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1772                  sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1773                  "hfi1_cq%d", dd->unit);
1774         dd->verbs_dev.rdi.dparms.node = dd->node;
1775
1776         /* misc settings */
1777         dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1778         dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1779         dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1780         dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1781
1782         /* post send table */
1783         dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1784
1785         ppd = dd->pport;
1786         for (i = 0; i < dd->num_pports; i++, ppd++)
1787                 rvt_init_port(&dd->verbs_dev.rdi,
1788                               &ppd->ibport_data.rvp,
1789                               i,
1790                               ppd->pkeys);
1791
1792         ret = rvt_register_device(&dd->verbs_dev.rdi);
1793         if (ret)
1794                 goto err_verbs_txreq;
1795
1796         ret = hfi1_verbs_register_sysfs(dd);
1797         if (ret)
1798                 goto err_class;
1799
1800         return ret;
1801
1802 err_class:
1803         rvt_unregister_device(&dd->verbs_dev.rdi);
1804 err_verbs_txreq:
1805         verbs_txreq_exit(dev);
1806         dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1807         return ret;
1808 }
1809
1810 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1811 {
1812         struct hfi1_ibdev *dev = &dd->verbs_dev;
1813
1814         hfi1_verbs_unregister_sysfs(dd);
1815
1816         rvt_unregister_device(&dd->verbs_dev.rdi);
1817
1818         if (!list_empty(&dev->txwait))
1819                 dd_dev_err(dd, "txwait list not empty!\n");
1820         if (!list_empty(&dev->memwait))
1821                 dd_dev_err(dd, "memwait list not empty!\n");
1822
1823         del_timer_sync(&dev->mem_timer);
1824         verbs_txreq_exit(dev);
1825
1826         kfree(dev_cntr_names);
1827         kfree(port_cntr_names);
1828         cntr_names_initialized = 0;
1829 }
1830
1831 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1832 {
1833         struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1834         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1835         struct ib_header *hdr = packet->hdr;
1836         struct rvt_qp *qp = packet->qp;
1837         u32 lqpn, rqpn = 0;
1838         u16 rlid = 0;
1839         u8 sl, sc5, svc_type;
1840
1841         switch (packet->qp->ibqp.qp_type) {
1842         case IB_QPT_UC:
1843                 rlid = qp->remote_ah_attr.dlid;
1844                 rqpn = qp->remote_qpn;
1845                 svc_type = IB_CC_SVCTYPE_UC;
1846                 break;
1847         case IB_QPT_RC:
1848                 rlid = qp->remote_ah_attr.dlid;
1849                 rqpn = qp->remote_qpn;
1850                 svc_type = IB_CC_SVCTYPE_RC;
1851                 break;
1852         case IB_QPT_SMI:
1853         case IB_QPT_GSI:
1854         case IB_QPT_UD:
1855                 svc_type = IB_CC_SVCTYPE_UD;
1856                 break;
1857         default:
1858                 ibp->rvp.n_pkt_drops++;
1859                 return;
1860         }
1861
1862         sc5 = hdr2sc(hdr, packet->rhf);
1863         sl = ibp->sc_to_sl[sc5];
1864         lqpn = qp->ibqp.qp_num;
1865
1866         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1867 }