Remove 'type' argument from access_ok() function
[sfrench/cifs-2.6.git] / drivers / infiniband / hw / hfi1 / user_exp_rcv.c
1 /*
2  * Copyright(c) 2015-2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <asm/page.h>
48 #include <linux/string.h>
49
50 #include "mmu_rb.h"
51 #include "user_exp_rcv.h"
52 #include "trace.h"
53
54 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
55                             struct exp_tid_set *set,
56                             struct hfi1_filedata *fd);
57 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages);
58 static int set_rcvarray_entry(struct hfi1_filedata *fd,
59                               struct tid_user_buf *tbuf,
60                               u32 rcventry, struct tid_group *grp,
61                               u16 pageidx, unsigned int npages);
62 static int tid_rb_insert(void *arg, struct mmu_rb_node *node);
63 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
64                                     struct tid_rb_node *tnode);
65 static void tid_rb_remove(void *arg, struct mmu_rb_node *node);
66 static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode);
67 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *,
68                             struct tid_group *grp,
69                             unsigned int start, u16 count,
70                             u32 *tidlist, unsigned int *tididx,
71                             unsigned int *pmapped);
72 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
73                               struct tid_group **grp);
74 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node);
75
76 static struct mmu_rb_ops tid_rb_ops = {
77         .insert = tid_rb_insert,
78         .remove = tid_rb_remove,
79         .invalidate = tid_rb_invalidate
80 };
81
82 /*
83  * Initialize context and file private data needed for Expected
84  * receive caching. This needs to be done after the context has
85  * been configured with the eager/expected RcvEntry counts.
86  */
87 int hfi1_user_exp_rcv_init(struct hfi1_filedata *fd,
88                            struct hfi1_ctxtdata *uctxt)
89 {
90         struct hfi1_devdata *dd = uctxt->dd;
91         int ret = 0;
92
93         spin_lock_init(&fd->tid_lock);
94         spin_lock_init(&fd->invalid_lock);
95
96         fd->entry_to_rb = kcalloc(uctxt->expected_count,
97                                   sizeof(struct rb_node *),
98                                   GFP_KERNEL);
99         if (!fd->entry_to_rb)
100                 return -ENOMEM;
101
102         if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) {
103                 fd->invalid_tid_idx = 0;
104                 fd->invalid_tids = kcalloc(uctxt->expected_count,
105                                            sizeof(*fd->invalid_tids),
106                                            GFP_KERNEL);
107                 if (!fd->invalid_tids) {
108                         kfree(fd->entry_to_rb);
109                         fd->entry_to_rb = NULL;
110                         return -ENOMEM;
111                 }
112
113                 /*
114                  * Register MMU notifier callbacks. If the registration
115                  * fails, continue without TID caching for this context.
116                  */
117                 ret = hfi1_mmu_rb_register(fd, fd->mm, &tid_rb_ops,
118                                            dd->pport->hfi1_wq,
119                                            &fd->handler);
120                 if (ret) {
121                         dd_dev_info(dd,
122                                     "Failed MMU notifier registration %d\n",
123                                     ret);
124                         ret = 0;
125                 }
126         }
127
128         /*
129          * PSM does not have a good way to separate, count, and
130          * effectively enforce a limit on RcvArray entries used by
131          * subctxts (when context sharing is used) when TID caching
132          * is enabled. To help with that, we calculate a per-process
133          * RcvArray entry share and enforce that.
134          * If TID caching is not in use, PSM deals with usage on its
135          * own. In that case, we allow any subctxt to take all of the
136          * entries.
137          *
138          * Make sure that we set the tid counts only after successful
139          * init.
140          */
141         spin_lock(&fd->tid_lock);
142         if (uctxt->subctxt_cnt && fd->handler) {
143                 u16 remainder;
144
145                 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
146                 remainder = uctxt->expected_count % uctxt->subctxt_cnt;
147                 if (remainder && fd->subctxt < remainder)
148                         fd->tid_limit++;
149         } else {
150                 fd->tid_limit = uctxt->expected_count;
151         }
152         spin_unlock(&fd->tid_lock);
153
154         return ret;
155 }
156
157 void hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
158 {
159         struct hfi1_ctxtdata *uctxt = fd->uctxt;
160
161         /*
162          * The notifier would have been removed when the process'es mm
163          * was freed.
164          */
165         if (fd->handler) {
166                 hfi1_mmu_rb_unregister(fd->handler);
167         } else {
168                 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
169                         unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd);
170                 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
171                         unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd);
172         }
173
174         kfree(fd->invalid_tids);
175         fd->invalid_tids = NULL;
176
177         kfree(fd->entry_to_rb);
178         fd->entry_to_rb = NULL;
179 }
180
181 /**
182  * Release pinned receive buffer pages.
183  *
184  * @mapped - true if the pages have been DMA mapped. false otherwise.
185  * @idx - Index of the first page to unpin.
186  * @npages - No of pages to unpin.
187  *
188  * If the pages have been DMA mapped (indicated by mapped parameter), their
189  * info will be passed via a struct tid_rb_node. If they haven't been mapped,
190  * their info will be passed via a struct tid_user_buf.
191  */
192 static void unpin_rcv_pages(struct hfi1_filedata *fd,
193                             struct tid_user_buf *tidbuf,
194                             struct tid_rb_node *node,
195                             unsigned int idx,
196                             unsigned int npages,
197                             bool mapped)
198 {
199         struct page **pages;
200         struct hfi1_devdata *dd = fd->uctxt->dd;
201
202         if (mapped) {
203                 pci_unmap_single(dd->pcidev, node->dma_addr,
204                                  node->mmu.len, PCI_DMA_FROMDEVICE);
205                 pages = &node->pages[idx];
206         } else {
207                 pages = &tidbuf->pages[idx];
208         }
209         hfi1_release_user_pages(fd->mm, pages, npages, mapped);
210         fd->tid_n_pinned -= npages;
211 }
212
213 /**
214  * Pin receive buffer pages.
215  */
216 static int pin_rcv_pages(struct hfi1_filedata *fd, struct tid_user_buf *tidbuf)
217 {
218         int pinned;
219         unsigned int npages;
220         unsigned long vaddr = tidbuf->vaddr;
221         struct page **pages = NULL;
222         struct hfi1_devdata *dd = fd->uctxt->dd;
223
224         /* Get the number of pages the user buffer spans */
225         npages = num_user_pages(vaddr, tidbuf->length);
226         if (!npages)
227                 return -EINVAL;
228
229         if (npages > fd->uctxt->expected_count) {
230                 dd_dev_err(dd, "Expected buffer too big\n");
231                 return -EINVAL;
232         }
233
234         /* Verify that access is OK for the user buffer */
235         if (!access_ok((void __user *)vaddr,
236                        npages * PAGE_SIZE)) {
237                 dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
238                            (void *)vaddr, npages);
239                 return -EFAULT;
240         }
241         /* Allocate the array of struct page pointers needed for pinning */
242         pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
243         if (!pages)
244                 return -ENOMEM;
245
246         /*
247          * Pin all the pages of the user buffer. If we can't pin all the
248          * pages, accept the amount pinned so far and program only that.
249          * User space knows how to deal with partially programmed buffers.
250          */
251         if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) {
252                 kfree(pages);
253                 return -ENOMEM;
254         }
255
256         pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages);
257         if (pinned <= 0) {
258                 kfree(pages);
259                 return pinned;
260         }
261         tidbuf->pages = pages;
262         tidbuf->npages = npages;
263         fd->tid_n_pinned += pinned;
264         return pinned;
265 }
266
267 /*
268  * RcvArray entry allocation for Expected Receives is done by the
269  * following algorithm:
270  *
271  * The context keeps 3 lists of groups of RcvArray entries:
272  *   1. List of empty groups - tid_group_list
273  *      This list is created during user context creation and
274  *      contains elements which describe sets (of 8) of empty
275  *      RcvArray entries.
276  *   2. List of partially used groups - tid_used_list
277  *      This list contains sets of RcvArray entries which are
278  *      not completely used up. Another mapping request could
279  *      use some of all of the remaining entries.
280  *   3. List of full groups - tid_full_list
281  *      This is the list where sets that are completely used
282  *      up go.
283  *
284  * An attempt to optimize the usage of RcvArray entries is
285  * made by finding all sets of physically contiguous pages in a
286  * user's buffer.
287  * These physically contiguous sets are further split into
288  * sizes supported by the receive engine of the HFI. The
289  * resulting sets of pages are stored in struct tid_pageset,
290  * which describes the sets as:
291  *    * .count - number of pages in this set
292  *    * .idx - starting index into struct page ** array
293  *                    of this set
294  *
295  * From this point on, the algorithm deals with the page sets
296  * described above. The number of pagesets is divided by the
297  * RcvArray group size to produce the number of full groups
298  * needed.
299  *
300  * Groups from the 3 lists are manipulated using the following
301  * rules:
302  *   1. For each set of 8 pagesets, a complete group from
303  *      tid_group_list is taken, programmed, and moved to
304  *      the tid_full_list list.
305  *   2. For all remaining pagesets:
306  *      2.1 If the tid_used_list is empty and the tid_group_list
307  *          is empty, stop processing pageset and return only
308  *          what has been programmed up to this point.
309  *      2.2 If the tid_used_list is empty and the tid_group_list
310  *          is not empty, move a group from tid_group_list to
311  *          tid_used_list.
312  *      2.3 For each group is tid_used_group, program as much as
313  *          can fit into the group. If the group becomes fully
314  *          used, move it to tid_full_list.
315  */
316 int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd,
317                             struct hfi1_tid_info *tinfo)
318 {
319         int ret = 0, need_group = 0, pinned;
320         struct hfi1_ctxtdata *uctxt = fd->uctxt;
321         struct hfi1_devdata *dd = uctxt->dd;
322         unsigned int ngroups, pageidx = 0, pageset_count,
323                 tididx = 0, mapped, mapped_pages = 0;
324         u32 *tidlist = NULL;
325         struct tid_user_buf *tidbuf;
326
327         tidbuf = kzalloc(sizeof(*tidbuf), GFP_KERNEL);
328         if (!tidbuf)
329                 return -ENOMEM;
330
331         tidbuf->vaddr = tinfo->vaddr;
332         tidbuf->length = tinfo->length;
333         tidbuf->psets = kcalloc(uctxt->expected_count, sizeof(*tidbuf->psets),
334                                 GFP_KERNEL);
335         if (!tidbuf->psets) {
336                 kfree(tidbuf);
337                 return -ENOMEM;
338         }
339
340         pinned = pin_rcv_pages(fd, tidbuf);
341         if (pinned <= 0) {
342                 kfree(tidbuf->psets);
343                 kfree(tidbuf);
344                 return pinned;
345         }
346
347         /* Find sets of physically contiguous pages */
348         tidbuf->n_psets = find_phys_blocks(tidbuf, pinned);
349
350         /*
351          * We don't need to access this under a lock since tid_used is per
352          * process and the same process cannot be in hfi1_user_exp_rcv_clear()
353          * and hfi1_user_exp_rcv_setup() at the same time.
354          */
355         spin_lock(&fd->tid_lock);
356         if (fd->tid_used + tidbuf->n_psets > fd->tid_limit)
357                 pageset_count = fd->tid_limit - fd->tid_used;
358         else
359                 pageset_count = tidbuf->n_psets;
360         spin_unlock(&fd->tid_lock);
361
362         if (!pageset_count)
363                 goto bail;
364
365         ngroups = pageset_count / dd->rcv_entries.group_size;
366         tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
367         if (!tidlist) {
368                 ret = -ENOMEM;
369                 goto nomem;
370         }
371
372         tididx = 0;
373
374         /*
375          * From this point on, we are going to be using shared (between master
376          * and subcontexts) context resources. We need to take the lock.
377          */
378         mutex_lock(&uctxt->exp_mutex);
379         /*
380          * The first step is to program the RcvArray entries which are complete
381          * groups.
382          */
383         while (ngroups && uctxt->tid_group_list.count) {
384                 struct tid_group *grp =
385                         tid_group_pop(&uctxt->tid_group_list);
386
387                 ret = program_rcvarray(fd, tidbuf, grp,
388                                        pageidx, dd->rcv_entries.group_size,
389                                        tidlist, &tididx, &mapped);
390                 /*
391                  * If there was a failure to program the RcvArray
392                  * entries for the entire group, reset the grp fields
393                  * and add the grp back to the free group list.
394                  */
395                 if (ret <= 0) {
396                         tid_group_add_tail(grp, &uctxt->tid_group_list);
397                         hfi1_cdbg(TID,
398                                   "Failed to program RcvArray group %d", ret);
399                         goto unlock;
400                 }
401
402                 tid_group_add_tail(grp, &uctxt->tid_full_list);
403                 ngroups--;
404                 pageidx += ret;
405                 mapped_pages += mapped;
406         }
407
408         while (pageidx < pageset_count) {
409                 struct tid_group *grp, *ptr;
410                 /*
411                  * If we don't have any partially used tid groups, check
412                  * if we have empty groups. If so, take one from there and
413                  * put in the partially used list.
414                  */
415                 if (!uctxt->tid_used_list.count || need_group) {
416                         if (!uctxt->tid_group_list.count)
417                                 goto unlock;
418
419                         grp = tid_group_pop(&uctxt->tid_group_list);
420                         tid_group_add_tail(grp, &uctxt->tid_used_list);
421                         need_group = 0;
422                 }
423                 /*
424                  * There is an optimization opportunity here - instead of
425                  * fitting as many page sets as we can, check for a group
426                  * later on in the list that could fit all of them.
427                  */
428                 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
429                                          list) {
430                         unsigned use = min_t(unsigned, pageset_count - pageidx,
431                                              grp->size - grp->used);
432
433                         ret = program_rcvarray(fd, tidbuf, grp,
434                                                pageidx, use, tidlist,
435                                                &tididx, &mapped);
436                         if (ret < 0) {
437                                 hfi1_cdbg(TID,
438                                           "Failed to program RcvArray entries %d",
439                                           ret);
440                                 goto unlock;
441                         } else if (ret > 0) {
442                                 if (grp->used == grp->size)
443                                         tid_group_move(grp,
444                                                        &uctxt->tid_used_list,
445                                                        &uctxt->tid_full_list);
446                                 pageidx += ret;
447                                 mapped_pages += mapped;
448                                 need_group = 0;
449                                 /* Check if we are done so we break out early */
450                                 if (pageidx >= pageset_count)
451                                         break;
452                         } else if (WARN_ON(ret == 0)) {
453                                 /*
454                                  * If ret is 0, we did not program any entries
455                                  * into this group, which can only happen if
456                                  * we've screwed up the accounting somewhere.
457                                  * Warn and try to continue.
458                                  */
459                                 need_group = 1;
460                         }
461                 }
462         }
463 unlock:
464         mutex_unlock(&uctxt->exp_mutex);
465 nomem:
466         hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
467                   mapped_pages, ret);
468         if (tididx) {
469                 spin_lock(&fd->tid_lock);
470                 fd->tid_used += tididx;
471                 spin_unlock(&fd->tid_lock);
472                 tinfo->tidcnt = tididx;
473                 tinfo->length = mapped_pages * PAGE_SIZE;
474
475                 if (copy_to_user(u64_to_user_ptr(tinfo->tidlist),
476                                  tidlist, sizeof(tidlist[0]) * tididx)) {
477                         /*
478                          * On failure to copy to the user level, we need to undo
479                          * everything done so far so we don't leak resources.
480                          */
481                         tinfo->tidlist = (unsigned long)&tidlist;
482                         hfi1_user_exp_rcv_clear(fd, tinfo);
483                         tinfo->tidlist = 0;
484                         ret = -EFAULT;
485                         goto bail;
486                 }
487         }
488
489         /*
490          * If not everything was mapped (due to insufficient RcvArray entries,
491          * for example), unpin all unmapped pages so we can pin them nex time.
492          */
493         if (mapped_pages != pinned)
494                 unpin_rcv_pages(fd, tidbuf, NULL, mapped_pages,
495                                 (pinned - mapped_pages), false);
496 bail:
497         kfree(tidbuf->psets);
498         kfree(tidlist);
499         kfree(tidbuf->pages);
500         kfree(tidbuf);
501         return ret > 0 ? 0 : ret;
502 }
503
504 int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd,
505                             struct hfi1_tid_info *tinfo)
506 {
507         int ret = 0;
508         struct hfi1_ctxtdata *uctxt = fd->uctxt;
509         u32 *tidinfo;
510         unsigned tididx;
511
512         if (unlikely(tinfo->tidcnt > fd->tid_used))
513                 return -EINVAL;
514
515         tidinfo = memdup_user(u64_to_user_ptr(tinfo->tidlist),
516                               sizeof(tidinfo[0]) * tinfo->tidcnt);
517         if (IS_ERR(tidinfo))
518                 return PTR_ERR(tidinfo);
519
520         mutex_lock(&uctxt->exp_mutex);
521         for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
522                 ret = unprogram_rcvarray(fd, tidinfo[tididx], NULL);
523                 if (ret) {
524                         hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
525                                   ret);
526                         break;
527                 }
528         }
529         spin_lock(&fd->tid_lock);
530         fd->tid_used -= tididx;
531         spin_unlock(&fd->tid_lock);
532         tinfo->tidcnt = tididx;
533         mutex_unlock(&uctxt->exp_mutex);
534
535         kfree(tidinfo);
536         return ret;
537 }
538
539 int hfi1_user_exp_rcv_invalid(struct hfi1_filedata *fd,
540                               struct hfi1_tid_info *tinfo)
541 {
542         struct hfi1_ctxtdata *uctxt = fd->uctxt;
543         unsigned long *ev = uctxt->dd->events +
544                 (uctxt_offset(uctxt) + fd->subctxt);
545         u32 *array;
546         int ret = 0;
547
548         /*
549          * copy_to_user() can sleep, which will leave the invalid_lock
550          * locked and cause the MMU notifier to be blocked on the lock
551          * for a long time.
552          * Copy the data to a local buffer so we can release the lock.
553          */
554         array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
555         if (!array)
556                 return -EFAULT;
557
558         spin_lock(&fd->invalid_lock);
559         if (fd->invalid_tid_idx) {
560                 memcpy(array, fd->invalid_tids, sizeof(*array) *
561                        fd->invalid_tid_idx);
562                 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
563                        fd->invalid_tid_idx);
564                 tinfo->tidcnt = fd->invalid_tid_idx;
565                 fd->invalid_tid_idx = 0;
566                 /*
567                  * Reset the user flag while still holding the lock.
568                  * Otherwise, PSM can miss events.
569                  */
570                 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
571         } else {
572                 tinfo->tidcnt = 0;
573         }
574         spin_unlock(&fd->invalid_lock);
575
576         if (tinfo->tidcnt) {
577                 if (copy_to_user((void __user *)tinfo->tidlist,
578                                  array, sizeof(*array) * tinfo->tidcnt))
579                         ret = -EFAULT;
580         }
581         kfree(array);
582
583         return ret;
584 }
585
586 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages)
587 {
588         unsigned pagecount, pageidx, setcount = 0, i;
589         unsigned long pfn, this_pfn;
590         struct page **pages = tidbuf->pages;
591         struct tid_pageset *list = tidbuf->psets;
592
593         if (!npages)
594                 return 0;
595
596         /*
597          * Look for sets of physically contiguous pages in the user buffer.
598          * This will allow us to optimize Expected RcvArray entry usage by
599          * using the bigger supported sizes.
600          */
601         pfn = page_to_pfn(pages[0]);
602         for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
603                 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
604
605                 /*
606                  * If the pfn's are not sequential, pages are not physically
607                  * contiguous.
608                  */
609                 if (this_pfn != ++pfn) {
610                         /*
611                          * At this point we have to loop over the set of
612                          * physically contiguous pages and break them down it
613                          * sizes supported by the HW.
614                          * There are two main constraints:
615                          *     1. The max buffer size is MAX_EXPECTED_BUFFER.
616                          *        If the total set size is bigger than that
617                          *        program only a MAX_EXPECTED_BUFFER chunk.
618                          *     2. The buffer size has to be a power of two. If
619                          *        it is not, round down to the closes power of
620                          *        2 and program that size.
621                          */
622                         while (pagecount) {
623                                 int maxpages = pagecount;
624                                 u32 bufsize = pagecount * PAGE_SIZE;
625
626                                 if (bufsize > MAX_EXPECTED_BUFFER)
627                                         maxpages =
628                                                 MAX_EXPECTED_BUFFER >>
629                                                 PAGE_SHIFT;
630                                 else if (!is_power_of_2(bufsize))
631                                         maxpages =
632                                                 rounddown_pow_of_two(bufsize) >>
633                                                 PAGE_SHIFT;
634
635                                 list[setcount].idx = pageidx;
636                                 list[setcount].count = maxpages;
637                                 pagecount -= maxpages;
638                                 pageidx += maxpages;
639                                 setcount++;
640                         }
641                         pageidx = i;
642                         pagecount = 1;
643                         pfn = this_pfn;
644                 } else {
645                         pagecount++;
646                 }
647         }
648         return setcount;
649 }
650
651 /**
652  * program_rcvarray() - program an RcvArray group with receive buffers
653  * @fd: filedata pointer
654  * @tbuf: pointer to struct tid_user_buf that has the user buffer starting
655  *        virtual address, buffer length, page pointers, pagesets (array of
656  *        struct tid_pageset holding information on physically contiguous
657  *        chunks from the user buffer), and other fields.
658  * @grp: RcvArray group
659  * @start: starting index into sets array
660  * @count: number of struct tid_pageset's to program
661  * @tidlist: the array of u32 elements when the information about the
662  *           programmed RcvArray entries is to be encoded.
663  * @tididx: starting offset into tidlist
664  * @pmapped: (output parameter) number of pages programmed into the RcvArray
665  *           entries.
666  *
667  * This function will program up to 'count' number of RcvArray entries from the
668  * group 'grp'. To make best use of write-combining writes, the function will
669  * perform writes to the unused RcvArray entries which will be ignored by the
670  * HW. Each RcvArray entry will be programmed with a physically contiguous
671  * buffer chunk from the user's virtual buffer.
672  *
673  * Return:
674  * -EINVAL if the requested count is larger than the size of the group,
675  * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
676  * number of RcvArray entries programmed.
677  */
678 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *tbuf,
679                             struct tid_group *grp,
680                             unsigned int start, u16 count,
681                             u32 *tidlist, unsigned int *tididx,
682                             unsigned int *pmapped)
683 {
684         struct hfi1_ctxtdata *uctxt = fd->uctxt;
685         struct hfi1_devdata *dd = uctxt->dd;
686         u16 idx;
687         u32 tidinfo = 0, rcventry, useidx = 0;
688         int mapped = 0;
689
690         /* Count should never be larger than the group size */
691         if (count > grp->size)
692                 return -EINVAL;
693
694         /* Find the first unused entry in the group */
695         for (idx = 0; idx < grp->size; idx++) {
696                 if (!(grp->map & (1 << idx))) {
697                         useidx = idx;
698                         break;
699                 }
700                 rcv_array_wc_fill(dd, grp->base + idx);
701         }
702
703         idx = 0;
704         while (idx < count) {
705                 u16 npages, pageidx, setidx = start + idx;
706                 int ret = 0;
707
708                 /*
709                  * If this entry in the group is used, move to the next one.
710                  * If we go past the end of the group, exit the loop.
711                  */
712                 if (useidx >= grp->size) {
713                         break;
714                 } else if (grp->map & (1 << useidx)) {
715                         rcv_array_wc_fill(dd, grp->base + useidx);
716                         useidx++;
717                         continue;
718                 }
719
720                 rcventry = grp->base + useidx;
721                 npages = tbuf->psets[setidx].count;
722                 pageidx = tbuf->psets[setidx].idx;
723
724                 ret = set_rcvarray_entry(fd, tbuf,
725                                          rcventry, grp, pageidx,
726                                          npages);
727                 if (ret)
728                         return ret;
729                 mapped += npages;
730
731                 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
732                         EXP_TID_SET(LEN, npages);
733                 tidlist[(*tididx)++] = tidinfo;
734                 grp->used++;
735                 grp->map |= 1 << useidx++;
736                 idx++;
737         }
738
739         /* Fill the rest of the group with "blank" writes */
740         for (; useidx < grp->size; useidx++)
741                 rcv_array_wc_fill(dd, grp->base + useidx);
742         *pmapped = mapped;
743         return idx;
744 }
745
746 static int set_rcvarray_entry(struct hfi1_filedata *fd,
747                               struct tid_user_buf *tbuf,
748                               u32 rcventry, struct tid_group *grp,
749                               u16 pageidx, unsigned int npages)
750 {
751         int ret;
752         struct hfi1_ctxtdata *uctxt = fd->uctxt;
753         struct tid_rb_node *node;
754         struct hfi1_devdata *dd = uctxt->dd;
755         dma_addr_t phys;
756         struct page **pages = tbuf->pages + pageidx;
757
758         /*
759          * Allocate the node first so we can handle a potential
760          * failure before we've programmed anything.
761          */
762         node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
763                        GFP_KERNEL);
764         if (!node)
765                 return -ENOMEM;
766
767         phys = pci_map_single(dd->pcidev,
768                               __va(page_to_phys(pages[0])),
769                               npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
770         if (dma_mapping_error(&dd->pcidev->dev, phys)) {
771                 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
772                            phys);
773                 kfree(node);
774                 return -EFAULT;
775         }
776
777         node->mmu.addr = tbuf->vaddr + (pageidx * PAGE_SIZE);
778         node->mmu.len = npages * PAGE_SIZE;
779         node->phys = page_to_phys(pages[0]);
780         node->npages = npages;
781         node->rcventry = rcventry;
782         node->dma_addr = phys;
783         node->grp = grp;
784         node->freed = false;
785         memcpy(node->pages, pages, sizeof(struct page *) * npages);
786
787         if (!fd->handler)
788                 ret = tid_rb_insert(fd, &node->mmu);
789         else
790                 ret = hfi1_mmu_rb_insert(fd->handler, &node->mmu);
791
792         if (ret) {
793                 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
794                           node->rcventry, node->mmu.addr, node->phys, ret);
795                 pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
796                                  PCI_DMA_FROMDEVICE);
797                 kfree(node);
798                 return -EFAULT;
799         }
800         hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
801         trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
802                                node->mmu.addr, node->phys, phys);
803         return 0;
804 }
805
806 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
807                               struct tid_group **grp)
808 {
809         struct hfi1_ctxtdata *uctxt = fd->uctxt;
810         struct hfi1_devdata *dd = uctxt->dd;
811         struct tid_rb_node *node;
812         u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
813         u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
814
815         if (tididx >= uctxt->expected_count) {
816                 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
817                            tididx, uctxt->ctxt);
818                 return -EINVAL;
819         }
820
821         if (tidctrl == 0x3)
822                 return -EINVAL;
823
824         rcventry = tididx + (tidctrl - 1);
825
826         node = fd->entry_to_rb[rcventry];
827         if (!node || node->rcventry != (uctxt->expected_base + rcventry))
828                 return -EBADF;
829
830         if (grp)
831                 *grp = node->grp;
832
833         if (!fd->handler)
834                 cacheless_tid_rb_remove(fd, node);
835         else
836                 hfi1_mmu_rb_remove(fd->handler, &node->mmu);
837
838         return 0;
839 }
840
841 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
842 {
843         struct hfi1_ctxtdata *uctxt = fd->uctxt;
844         struct hfi1_devdata *dd = uctxt->dd;
845
846         trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
847                                  node->npages, node->mmu.addr, node->phys,
848                                  node->dma_addr);
849
850         /*
851          * Make sure device has seen the write before we unpin the
852          * pages.
853          */
854         hfi1_put_tid(dd, node->rcventry, PT_INVALID_FLUSH, 0, 0);
855
856         unpin_rcv_pages(fd, NULL, node, 0, node->npages, true);
857
858         node->grp->used--;
859         node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
860
861         if (node->grp->used == node->grp->size - 1)
862                 tid_group_move(node->grp, &uctxt->tid_full_list,
863                                &uctxt->tid_used_list);
864         else if (!node->grp->used)
865                 tid_group_move(node->grp, &uctxt->tid_used_list,
866                                &uctxt->tid_group_list);
867         kfree(node);
868 }
869
870 /*
871  * As a simple helper for hfi1_user_exp_rcv_free, this function deals with
872  * clearing nodes in the non-cached case.
873  */
874 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
875                             struct exp_tid_set *set,
876                             struct hfi1_filedata *fd)
877 {
878         struct tid_group *grp, *ptr;
879         int i;
880
881         list_for_each_entry_safe(grp, ptr, &set->list, list) {
882                 list_del_init(&grp->list);
883
884                 for (i = 0; i < grp->size; i++) {
885                         if (grp->map & (1 << i)) {
886                                 u16 rcventry = grp->base + i;
887                                 struct tid_rb_node *node;
888
889                                 node = fd->entry_to_rb[rcventry -
890                                                           uctxt->expected_base];
891                                 if (!node || node->rcventry != rcventry)
892                                         continue;
893
894                                 cacheless_tid_rb_remove(fd, node);
895                         }
896                 }
897         }
898 }
899
900 /*
901  * Always return 0 from this function.  A non-zero return indicates that the
902  * remove operation will be called and that memory should be unpinned.
903  * However, the driver cannot unpin out from under PSM.  Instead, retain the
904  * memory (by returning 0) and inform PSM that the memory is going away.  PSM
905  * will call back later when it has removed the memory from its list.
906  */
907 static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode)
908 {
909         struct hfi1_filedata *fdata = arg;
910         struct hfi1_ctxtdata *uctxt = fdata->uctxt;
911         struct tid_rb_node *node =
912                 container_of(mnode, struct tid_rb_node, mmu);
913
914         if (node->freed)
915                 return 0;
916
917         trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr,
918                                  node->rcventry, node->npages, node->dma_addr);
919         node->freed = true;
920
921         spin_lock(&fdata->invalid_lock);
922         if (fdata->invalid_tid_idx < uctxt->expected_count) {
923                 fdata->invalid_tids[fdata->invalid_tid_idx] =
924                         rcventry2tidinfo(node->rcventry - uctxt->expected_base);
925                 fdata->invalid_tids[fdata->invalid_tid_idx] |=
926                         EXP_TID_SET(LEN, node->npages);
927                 if (!fdata->invalid_tid_idx) {
928                         unsigned long *ev;
929
930                         /*
931                          * hfi1_set_uevent_bits() sets a user event flag
932                          * for all processes. Because calling into the
933                          * driver to process TID cache invalidations is
934                          * expensive and TID cache invalidations are
935                          * handled on a per-process basis, we can
936                          * optimize this to set the flag only for the
937                          * process in question.
938                          */
939                         ev = uctxt->dd->events +
940                                 (uctxt_offset(uctxt) + fdata->subctxt);
941                         set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
942                 }
943                 fdata->invalid_tid_idx++;
944         }
945         spin_unlock(&fdata->invalid_lock);
946         return 0;
947 }
948
949 static int tid_rb_insert(void *arg, struct mmu_rb_node *node)
950 {
951         struct hfi1_filedata *fdata = arg;
952         struct tid_rb_node *tnode =
953                 container_of(node, struct tid_rb_node, mmu);
954         u32 base = fdata->uctxt->expected_base;
955
956         fdata->entry_to_rb[tnode->rcventry - base] = tnode;
957         return 0;
958 }
959
960 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
961                                     struct tid_rb_node *tnode)
962 {
963         u32 base = fdata->uctxt->expected_base;
964
965         fdata->entry_to_rb[tnode->rcventry - base] = NULL;
966         clear_tid_node(fdata, tnode);
967 }
968
969 static void tid_rb_remove(void *arg, struct mmu_rb_node *node)
970 {
971         struct hfi1_filedata *fdata = arg;
972         struct tid_rb_node *tnode =
973                 container_of(node, struct tid_rb_node, mmu);
974
975         cacheless_tid_rb_remove(fdata, tnode);
976 }