Merge branches 'clk-of-refcount', 'clk-mmio-fixed-clock', 'clk-remove-clps', 'clk...
[sfrench/cifs-2.6.git] / drivers / infiniband / hw / hfi1 / sdma.c
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "qp.h"
60 #include "sdma.h"
61 #include "iowait.h"
62 #include "trace.h"
63
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
68
69 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
70 module_param(sdma_descq_cnt, uint, S_IRUGO);
71 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
72
73 static uint sdma_idle_cnt = 250;
74 module_param(sdma_idle_cnt, uint, S_IRUGO);
75 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
76
77 uint mod_num_sdma;
78 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
79 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
80
81 static uint sdma_desct_intr = SDMA_DESC_INTR;
82 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
84
85 #define SDMA_WAIT_BATCH_SIZE 20
86 /* max wait time for a SDMA engine to indicate it has halted */
87 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88 /* all SDMA engine errors that cause a halt */
89
90 #define SD(name) SEND_DMA_##name
91 #define ALL_SDMA_ENG_HALT_ERRS \
92         (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93         | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94         | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95         | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96         | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97         | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98         | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99         | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100         | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101         | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102         | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103         | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104         | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105         | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106         | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107         | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108         | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109         | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
110
111 /* sdma_sendctrl operations */
112 #define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
113 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114 #define SDMA_SENDCTRL_OP_HALT      BIT(2)
115 #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
116
117 /* handle long defines */
118 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
122
123 static const char * const sdma_state_names[] = {
124         [sdma_state_s00_hw_down]                = "s00_HwDown",
125         [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
126         [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
127         [sdma_state_s20_idle]                   = "s20_Idle",
128         [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
129         [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
130         [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
131         [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
132         [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
133         [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
134         [sdma_state_s99_running]                = "s99_Running",
135 };
136
137 #ifdef CONFIG_SDMA_VERBOSITY
138 static const char * const sdma_event_names[] = {
139         [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
140         [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
141         [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
142         [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
143         [sdma_event_e30_go_running]   = "e30_GoRunning",
144         [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
145         [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
146         [sdma_event_e60_hw_halted]    = "e60_HwHalted",
147         [sdma_event_e70_go_idle]      = "e70_GoIdle",
148         [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
149         [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
150         [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
151         [sdma_event_e85_link_down]    = "e85_LinkDown",
152         [sdma_event_e90_sw_halted]    = "e90_SwHalted",
153 };
154 #endif
155
156 static const struct sdma_set_state_action sdma_action_table[] = {
157         [sdma_state_s00_hw_down] = {
158                 .go_s99_running_tofalse = 1,
159                 .op_enable = 0,
160                 .op_intenable = 0,
161                 .op_halt = 0,
162                 .op_cleanup = 0,
163         },
164         [sdma_state_s10_hw_start_up_halt_wait] = {
165                 .op_enable = 0,
166                 .op_intenable = 0,
167                 .op_halt = 1,
168                 .op_cleanup = 0,
169         },
170         [sdma_state_s15_hw_start_up_clean_wait] = {
171                 .op_enable = 0,
172                 .op_intenable = 1,
173                 .op_halt = 0,
174                 .op_cleanup = 1,
175         },
176         [sdma_state_s20_idle] = {
177                 .op_enable = 0,
178                 .op_intenable = 1,
179                 .op_halt = 0,
180                 .op_cleanup = 0,
181         },
182         [sdma_state_s30_sw_clean_up_wait] = {
183                 .op_enable = 0,
184                 .op_intenable = 0,
185                 .op_halt = 0,
186                 .op_cleanup = 0,
187         },
188         [sdma_state_s40_hw_clean_up_wait] = {
189                 .op_enable = 0,
190                 .op_intenable = 0,
191                 .op_halt = 0,
192                 .op_cleanup = 1,
193         },
194         [sdma_state_s50_hw_halt_wait] = {
195                 .op_enable = 0,
196                 .op_intenable = 0,
197                 .op_halt = 0,
198                 .op_cleanup = 0,
199         },
200         [sdma_state_s60_idle_halt_wait] = {
201                 .go_s99_running_tofalse = 1,
202                 .op_enable = 0,
203                 .op_intenable = 0,
204                 .op_halt = 1,
205                 .op_cleanup = 0,
206         },
207         [sdma_state_s80_hw_freeze] = {
208                 .op_enable = 0,
209                 .op_intenable = 0,
210                 .op_halt = 0,
211                 .op_cleanup = 0,
212         },
213         [sdma_state_s82_freeze_sw_clean] = {
214                 .op_enable = 0,
215                 .op_intenable = 0,
216                 .op_halt = 0,
217                 .op_cleanup = 0,
218         },
219         [sdma_state_s99_running] = {
220                 .op_enable = 1,
221                 .op_intenable = 1,
222                 .op_halt = 0,
223                 .op_cleanup = 0,
224                 .go_s99_running_totrue = 1,
225         },
226 };
227
228 #define SDMA_TAIL_UPDATE_THRESH 0x1F
229
230 /* declare all statics here rather than keep sorting */
231 static void sdma_complete(struct kref *);
232 static void sdma_finalput(struct sdma_state *);
233 static void sdma_get(struct sdma_state *);
234 static void sdma_hw_clean_up_task(unsigned long);
235 static void sdma_put(struct sdma_state *);
236 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
237 static void sdma_start_hw_clean_up(struct sdma_engine *);
238 static void sdma_sw_clean_up_task(unsigned long);
239 static void sdma_sendctrl(struct sdma_engine *, unsigned);
240 static void init_sdma_regs(struct sdma_engine *, u32, uint);
241 static void sdma_process_event(
242         struct sdma_engine *sde,
243         enum sdma_events event);
244 static void __sdma_process_event(
245         struct sdma_engine *sde,
246         enum sdma_events event);
247 static void dump_sdma_state(struct sdma_engine *sde);
248 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
249 static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
250 static void sdma_flush_descq(struct sdma_engine *sde);
251
252 /**
253  * sdma_state_name() - return state string from enum
254  * @state: state
255  */
256 static const char *sdma_state_name(enum sdma_states state)
257 {
258         return sdma_state_names[state];
259 }
260
261 static void sdma_get(struct sdma_state *ss)
262 {
263         kref_get(&ss->kref);
264 }
265
266 static void sdma_complete(struct kref *kref)
267 {
268         struct sdma_state *ss =
269                 container_of(kref, struct sdma_state, kref);
270
271         complete(&ss->comp);
272 }
273
274 static void sdma_put(struct sdma_state *ss)
275 {
276         kref_put(&ss->kref, sdma_complete);
277 }
278
279 static void sdma_finalput(struct sdma_state *ss)
280 {
281         sdma_put(ss);
282         wait_for_completion(&ss->comp);
283 }
284
285 static inline void write_sde_csr(
286         struct sdma_engine *sde,
287         u32 offset0,
288         u64 value)
289 {
290         write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
291 }
292
293 static inline u64 read_sde_csr(
294         struct sdma_engine *sde,
295         u32 offset0)
296 {
297         return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
298 }
299
300 /*
301  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302  * sdma engine 'sde' to drop to 0.
303  */
304 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
305                                         int pause)
306 {
307         u64 off = 8 * sde->this_idx;
308         struct hfi1_devdata *dd = sde->dd;
309         int lcnt = 0;
310         u64 reg_prev;
311         u64 reg = 0;
312
313         while (1) {
314                 reg_prev = reg;
315                 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
316
317                 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
318                 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
319                 if (reg == 0)
320                         break;
321                 /* counter is reest if accupancy count changes */
322                 if (reg != reg_prev)
323                         lcnt = 0;
324                 if (lcnt++ > 500) {
325                         /* timed out - bounce the link */
326                         dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
327                                    __func__, sde->this_idx, (u32)reg);
328                         queue_work(dd->pport->link_wq,
329                                    &dd->pport->link_bounce_work);
330                         break;
331                 }
332                 udelay(1);
333         }
334 }
335
336 /*
337  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338  * and pause for credit return.
339  */
340 void sdma_wait(struct hfi1_devdata *dd)
341 {
342         int i;
343
344         for (i = 0; i < dd->num_sdma; i++) {
345                 struct sdma_engine *sde = &dd->per_sdma[i];
346
347                 sdma_wait_for_packet_egress(sde, 0);
348         }
349 }
350
351 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
352 {
353         u64 reg;
354
355         if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
356                 return;
357         reg = cnt;
358         reg &= SD(DESC_CNT_CNT_MASK);
359         reg <<= SD(DESC_CNT_CNT_SHIFT);
360         write_sde_csr(sde, SD(DESC_CNT), reg);
361 }
362
363 static inline void complete_tx(struct sdma_engine *sde,
364                                struct sdma_txreq *tx,
365                                int res)
366 {
367         /* protect against complete modifying */
368         struct iowait *wait = tx->wait;
369         callback_t complete = tx->complete;
370
371 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
372         trace_hfi1_sdma_out_sn(sde, tx->sn);
373         if (WARN_ON_ONCE(sde->head_sn != tx->sn))
374                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
375                            sde->head_sn, tx->sn);
376         sde->head_sn++;
377 #endif
378         __sdma_txclean(sde->dd, tx);
379         if (complete)
380                 (*complete)(tx, res);
381         if (iowait_sdma_dec(wait))
382                 iowait_drain_wakeup(wait);
383 }
384
385 /*
386  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
387  *
388  * Depending on timing there can be txreqs in two places:
389  * - in the descq ring
390  * - in the flush list
391  *
392  * To avoid ordering issues the descq ring needs to be flushed
393  * first followed by the flush list.
394  *
395  * This routine is called from two places
396  * - From a work queue item
397  * - Directly from the state machine just before setting the
398  *   state to running
399  *
400  * Must be called with head_lock held
401  *
402  */
403 static void sdma_flush(struct sdma_engine *sde)
404 {
405         struct sdma_txreq *txp, *txp_next;
406         LIST_HEAD(flushlist);
407         unsigned long flags;
408
409         /* flush from head to tail */
410         sdma_flush_descq(sde);
411         spin_lock_irqsave(&sde->flushlist_lock, flags);
412         /* copy flush list */
413         list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
414                 list_del_init(&txp->list);
415                 list_add_tail(&txp->list, &flushlist);
416         }
417         spin_unlock_irqrestore(&sde->flushlist_lock, flags);
418         /* flush from flush list */
419         list_for_each_entry_safe(txp, txp_next, &flushlist, list)
420                 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
421 }
422
423 /*
424  * Fields a work request for flushing the descq ring
425  * and the flush list
426  *
427  * If the engine has been brought to running during
428  * the scheduling delay, the flush is ignored, assuming
429  * that the process of bringing the engine to running
430  * would have done this flush prior to going to running.
431  *
432  */
433 static void sdma_field_flush(struct work_struct *work)
434 {
435         unsigned long flags;
436         struct sdma_engine *sde =
437                 container_of(work, struct sdma_engine, flush_worker);
438
439         write_seqlock_irqsave(&sde->head_lock, flags);
440         if (!__sdma_running(sde))
441                 sdma_flush(sde);
442         write_sequnlock_irqrestore(&sde->head_lock, flags);
443 }
444
445 static void sdma_err_halt_wait(struct work_struct *work)
446 {
447         struct sdma_engine *sde = container_of(work, struct sdma_engine,
448                                                 err_halt_worker);
449         u64 statuscsr;
450         unsigned long timeout;
451
452         timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
453         while (1) {
454                 statuscsr = read_sde_csr(sde, SD(STATUS));
455                 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
456                 if (statuscsr)
457                         break;
458                 if (time_after(jiffies, timeout)) {
459                         dd_dev_err(sde->dd,
460                                    "SDMA engine %d - timeout waiting for engine to halt\n",
461                                    sde->this_idx);
462                         /*
463                          * Continue anyway.  This could happen if there was
464                          * an uncorrectable error in the wrong spot.
465                          */
466                         break;
467                 }
468                 usleep_range(80, 120);
469         }
470
471         sdma_process_event(sde, sdma_event_e15_hw_halt_done);
472 }
473
474 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
475 {
476         if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
477                 unsigned index;
478                 struct hfi1_devdata *dd = sde->dd;
479
480                 for (index = 0; index < dd->num_sdma; index++) {
481                         struct sdma_engine *curr_sdma = &dd->per_sdma[index];
482
483                         if (curr_sdma != sde)
484                                 curr_sdma->progress_check_head =
485                                                         curr_sdma->descq_head;
486                 }
487                 dd_dev_err(sde->dd,
488                            "SDMA engine %d - check scheduled\n",
489                                 sde->this_idx);
490                 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
491         }
492 }
493
494 static void sdma_err_progress_check(struct timer_list *t)
495 {
496         unsigned index;
497         struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
498
499         dd_dev_err(sde->dd, "SDE progress check event\n");
500         for (index = 0; index < sde->dd->num_sdma; index++) {
501                 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
502                 unsigned long flags;
503
504                 /* check progress on each engine except the current one */
505                 if (curr_sde == sde)
506                         continue;
507                 /*
508                  * We must lock interrupts when acquiring sde->lock,
509                  * to avoid a deadlock if interrupt triggers and spins on
510                  * the same lock on same CPU
511                  */
512                 spin_lock_irqsave(&curr_sde->tail_lock, flags);
513                 write_seqlock(&curr_sde->head_lock);
514
515                 /* skip non-running queues */
516                 if (curr_sde->state.current_state != sdma_state_s99_running) {
517                         write_sequnlock(&curr_sde->head_lock);
518                         spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
519                         continue;
520                 }
521
522                 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
523                     (curr_sde->descq_head ==
524                                 curr_sde->progress_check_head))
525                         __sdma_process_event(curr_sde,
526                                              sdma_event_e90_sw_halted);
527                 write_sequnlock(&curr_sde->head_lock);
528                 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
529         }
530         schedule_work(&sde->err_halt_worker);
531 }
532
533 static void sdma_hw_clean_up_task(unsigned long opaque)
534 {
535         struct sdma_engine *sde = (struct sdma_engine *)opaque;
536         u64 statuscsr;
537
538         while (1) {
539 #ifdef CONFIG_SDMA_VERBOSITY
540                 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
541                            sde->this_idx, slashstrip(__FILE__), __LINE__,
542                         __func__);
543 #endif
544                 statuscsr = read_sde_csr(sde, SD(STATUS));
545                 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
546                 if (statuscsr)
547                         break;
548                 udelay(10);
549         }
550
551         sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
552 }
553
554 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
555 {
556         return sde->tx_ring[sde->tx_head & sde->sdma_mask];
557 }
558
559 /*
560  * flush ring for recovery
561  */
562 static void sdma_flush_descq(struct sdma_engine *sde)
563 {
564         u16 head, tail;
565         int progress = 0;
566         struct sdma_txreq *txp = get_txhead(sde);
567
568         /* The reason for some of the complexity of this code is that
569          * not all descriptors have corresponding txps.  So, we have to
570          * be able to skip over descs until we wander into the range of
571          * the next txp on the list.
572          */
573         head = sde->descq_head & sde->sdma_mask;
574         tail = sde->descq_tail & sde->sdma_mask;
575         while (head != tail) {
576                 /* advance head, wrap if needed */
577                 head = ++sde->descq_head & sde->sdma_mask;
578                 /* if now past this txp's descs, do the callback */
579                 if (txp && txp->next_descq_idx == head) {
580                         /* remove from list */
581                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
582                         complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
583                         trace_hfi1_sdma_progress(sde, head, tail, txp);
584                         txp = get_txhead(sde);
585                 }
586                 progress++;
587         }
588         if (progress)
589                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
590 }
591
592 static void sdma_sw_clean_up_task(unsigned long opaque)
593 {
594         struct sdma_engine *sde = (struct sdma_engine *)opaque;
595         unsigned long flags;
596
597         spin_lock_irqsave(&sde->tail_lock, flags);
598         write_seqlock(&sde->head_lock);
599
600         /*
601          * At this point, the following should always be true:
602          * - We are halted, so no more descriptors are getting retired.
603          * - We are not running, so no one is submitting new work.
604          * - Only we can send the e40_sw_cleaned, so we can't start
605          *   running again until we say so.  So, the active list and
606          *   descq are ours to play with.
607          */
608
609         /*
610          * In the error clean up sequence, software clean must be called
611          * before the hardware clean so we can use the hardware head in
612          * the progress routine.  A hardware clean or SPC unfreeze will
613          * reset the hardware head.
614          *
615          * Process all retired requests. The progress routine will use the
616          * latest physical hardware head - we are not running so speed does
617          * not matter.
618          */
619         sdma_make_progress(sde, 0);
620
621         sdma_flush(sde);
622
623         /*
624          * Reset our notion of head and tail.
625          * Note that the HW registers have been reset via an earlier
626          * clean up.
627          */
628         sde->descq_tail = 0;
629         sde->descq_head = 0;
630         sde->desc_avail = sdma_descq_freecnt(sde);
631         *sde->head_dma = 0;
632
633         __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
634
635         write_sequnlock(&sde->head_lock);
636         spin_unlock_irqrestore(&sde->tail_lock, flags);
637 }
638
639 static void sdma_sw_tear_down(struct sdma_engine *sde)
640 {
641         struct sdma_state *ss = &sde->state;
642
643         /* Releasing this reference means the state machine has stopped. */
644         sdma_put(ss);
645
646         /* stop waiting for all unfreeze events to complete */
647         atomic_set(&sde->dd->sdma_unfreeze_count, -1);
648         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
649 }
650
651 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
652 {
653         tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
654 }
655
656 static void sdma_set_state(struct sdma_engine *sde,
657                            enum sdma_states next_state)
658 {
659         struct sdma_state *ss = &sde->state;
660         const struct sdma_set_state_action *action = sdma_action_table;
661         unsigned op = 0;
662
663         trace_hfi1_sdma_state(
664                 sde,
665                 sdma_state_names[ss->current_state],
666                 sdma_state_names[next_state]);
667
668         /* debugging bookkeeping */
669         ss->previous_state = ss->current_state;
670         ss->previous_op = ss->current_op;
671         ss->current_state = next_state;
672
673         if (ss->previous_state != sdma_state_s99_running &&
674             next_state == sdma_state_s99_running)
675                 sdma_flush(sde);
676
677         if (action[next_state].op_enable)
678                 op |= SDMA_SENDCTRL_OP_ENABLE;
679
680         if (action[next_state].op_intenable)
681                 op |= SDMA_SENDCTRL_OP_INTENABLE;
682
683         if (action[next_state].op_halt)
684                 op |= SDMA_SENDCTRL_OP_HALT;
685
686         if (action[next_state].op_cleanup)
687                 op |= SDMA_SENDCTRL_OP_CLEANUP;
688
689         if (action[next_state].go_s99_running_tofalse)
690                 ss->go_s99_running = 0;
691
692         if (action[next_state].go_s99_running_totrue)
693                 ss->go_s99_running = 1;
694
695         ss->current_op = op;
696         sdma_sendctrl(sde, ss->current_op);
697 }
698
699 /**
700  * sdma_get_descq_cnt() - called when device probed
701  *
702  * Return a validated descq count.
703  *
704  * This is currently only used in the verbs initialization to build the tx
705  * list.
706  *
707  * This will probably be deleted in favor of a more scalable approach to
708  * alloc tx's.
709  *
710  */
711 u16 sdma_get_descq_cnt(void)
712 {
713         u16 count = sdma_descq_cnt;
714
715         if (!count)
716                 return SDMA_DESCQ_CNT;
717         /* count must be a power of 2 greater than 64 and less than
718          * 32768.   Otherwise return default.
719          */
720         if (!is_power_of_2(count))
721                 return SDMA_DESCQ_CNT;
722         if (count < 64 || count > 32768)
723                 return SDMA_DESCQ_CNT;
724         return count;
725 }
726
727 /**
728  * sdma_engine_get_vl() - return vl for a given sdma engine
729  * @sde: sdma engine
730  *
731  * This function returns the vl mapped to a given engine, or an error if
732  * the mapping can't be found. The mapping fields are protected by RCU.
733  */
734 int sdma_engine_get_vl(struct sdma_engine *sde)
735 {
736         struct hfi1_devdata *dd = sde->dd;
737         struct sdma_vl_map *m;
738         u8 vl;
739
740         if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
741                 return -EINVAL;
742
743         rcu_read_lock();
744         m = rcu_dereference(dd->sdma_map);
745         if (unlikely(!m)) {
746                 rcu_read_unlock();
747                 return -EINVAL;
748         }
749         vl = m->engine_to_vl[sde->this_idx];
750         rcu_read_unlock();
751
752         return vl;
753 }
754
755 /**
756  * sdma_select_engine_vl() - select sdma engine
757  * @dd: devdata
758  * @selector: a spreading factor
759  * @vl: this vl
760  *
761  *
762  * This function returns an engine based on the selector and a vl.  The
763  * mapping fields are protected by RCU.
764  */
765 struct sdma_engine *sdma_select_engine_vl(
766         struct hfi1_devdata *dd,
767         u32 selector,
768         u8 vl)
769 {
770         struct sdma_vl_map *m;
771         struct sdma_map_elem *e;
772         struct sdma_engine *rval;
773
774         /* NOTE This should only happen if SC->VL changed after the initial
775          *      checks on the QP/AH
776          *      Default will return engine 0 below
777          */
778         if (vl >= num_vls) {
779                 rval = NULL;
780                 goto done;
781         }
782
783         rcu_read_lock();
784         m = rcu_dereference(dd->sdma_map);
785         if (unlikely(!m)) {
786                 rcu_read_unlock();
787                 return &dd->per_sdma[0];
788         }
789         e = m->map[vl & m->mask];
790         rval = e->sde[selector & e->mask];
791         rcu_read_unlock();
792
793 done:
794         rval =  !rval ? &dd->per_sdma[0] : rval;
795         trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
796         return rval;
797 }
798
799 /**
800  * sdma_select_engine_sc() - select sdma engine
801  * @dd: devdata
802  * @selector: a spreading factor
803  * @sc5: the 5 bit sc
804  *
805  *
806  * This function returns an engine based on the selector and an sc.
807  */
808 struct sdma_engine *sdma_select_engine_sc(
809         struct hfi1_devdata *dd,
810         u32 selector,
811         u8 sc5)
812 {
813         u8 vl = sc_to_vlt(dd, sc5);
814
815         return sdma_select_engine_vl(dd, selector, vl);
816 }
817
818 struct sdma_rht_map_elem {
819         u32 mask;
820         u8 ctr;
821         struct sdma_engine *sde[0];
822 };
823
824 struct sdma_rht_node {
825         unsigned long cpu_id;
826         struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
827         struct rhash_head node;
828 };
829
830 #define NR_CPUS_HINT 192
831
832 static const struct rhashtable_params sdma_rht_params = {
833         .nelem_hint = NR_CPUS_HINT,
834         .head_offset = offsetof(struct sdma_rht_node, node),
835         .key_offset = offsetof(struct sdma_rht_node, cpu_id),
836         .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
837         .max_size = NR_CPUS,
838         .min_size = 8,
839         .automatic_shrinking = true,
840 };
841
842 /*
843  * sdma_select_user_engine() - select sdma engine based on user setup
844  * @dd: devdata
845  * @selector: a spreading factor
846  * @vl: this vl
847  *
848  * This function returns an sdma engine for a user sdma request.
849  * User defined sdma engine affinity setting is honored when applicable,
850  * otherwise system default sdma engine mapping is used. To ensure correct
851  * ordering, the mapping from <selector, vl> to sde must remain unchanged.
852  */
853 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
854                                             u32 selector, u8 vl)
855 {
856         struct sdma_rht_node *rht_node;
857         struct sdma_engine *sde = NULL;
858         const struct cpumask *current_mask = &current->cpus_allowed;
859         unsigned long cpu_id;
860
861         /*
862          * To ensure that always the same sdma engine(s) will be
863          * selected make sure the process is pinned to this CPU only.
864          */
865         if (cpumask_weight(current_mask) != 1)
866                 goto out;
867
868         cpu_id = smp_processor_id();
869         rcu_read_lock();
870         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
871                                           sdma_rht_params);
872
873         if (rht_node && rht_node->map[vl]) {
874                 struct sdma_rht_map_elem *map = rht_node->map[vl];
875
876                 sde = map->sde[selector & map->mask];
877         }
878         rcu_read_unlock();
879
880         if (sde)
881                 return sde;
882
883 out:
884         return sdma_select_engine_vl(dd, selector, vl);
885 }
886
887 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
888 {
889         int i;
890
891         for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
892                 map->sde[map->ctr + i] = map->sde[i];
893 }
894
895 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
896                                  struct sdma_engine *sde)
897 {
898         unsigned int i, pow;
899
900         /* only need to check the first ctr entries for a match */
901         for (i = 0; i < map->ctr; i++) {
902                 if (map->sde[i] == sde) {
903                         memmove(&map->sde[i], &map->sde[i + 1],
904                                 (map->ctr - i - 1) * sizeof(map->sde[0]));
905                         map->ctr--;
906                         pow = roundup_pow_of_two(map->ctr ? : 1);
907                         map->mask = pow - 1;
908                         sdma_populate_sde_map(map);
909                         break;
910                 }
911         }
912 }
913
914 /*
915  * Prevents concurrent reads and writes of the sdma engine cpu_mask
916  */
917 static DEFINE_MUTEX(process_to_sde_mutex);
918
919 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
920                                 size_t count)
921 {
922         struct hfi1_devdata *dd = sde->dd;
923         cpumask_var_t mask, new_mask;
924         unsigned long cpu;
925         int ret, vl, sz;
926         struct sdma_rht_node *rht_node;
927
928         vl = sdma_engine_get_vl(sde);
929         if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
930                 return -EINVAL;
931
932         ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
933         if (!ret)
934                 return -ENOMEM;
935
936         ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
937         if (!ret) {
938                 free_cpumask_var(mask);
939                 return -ENOMEM;
940         }
941         ret = cpulist_parse(buf, mask);
942         if (ret)
943                 goto out_free;
944
945         if (!cpumask_subset(mask, cpu_online_mask)) {
946                 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
947                 ret = -EINVAL;
948                 goto out_free;
949         }
950
951         sz = sizeof(struct sdma_rht_map_elem) +
952                         (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
953
954         mutex_lock(&process_to_sde_mutex);
955
956         for_each_cpu(cpu, mask) {
957                 /* Check if we have this already mapped */
958                 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
959                         cpumask_set_cpu(cpu, new_mask);
960                         continue;
961                 }
962
963                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
964                                                   sdma_rht_params);
965                 if (!rht_node) {
966                         rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
967                         if (!rht_node) {
968                                 ret = -ENOMEM;
969                                 goto out;
970                         }
971
972                         rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
973                         if (!rht_node->map[vl]) {
974                                 kfree(rht_node);
975                                 ret = -ENOMEM;
976                                 goto out;
977                         }
978                         rht_node->cpu_id = cpu;
979                         rht_node->map[vl]->mask = 0;
980                         rht_node->map[vl]->ctr = 1;
981                         rht_node->map[vl]->sde[0] = sde;
982
983                         ret = rhashtable_insert_fast(dd->sdma_rht,
984                                                      &rht_node->node,
985                                                      sdma_rht_params);
986                         if (ret) {
987                                 kfree(rht_node->map[vl]);
988                                 kfree(rht_node);
989                                 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
990                                            cpu);
991                                 goto out;
992                         }
993
994                 } else {
995                         int ctr, pow;
996
997                         /* Add new user mappings */
998                         if (!rht_node->map[vl])
999                                 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1000
1001                         if (!rht_node->map[vl]) {
1002                                 ret = -ENOMEM;
1003                                 goto out;
1004                         }
1005
1006                         rht_node->map[vl]->ctr++;
1007                         ctr = rht_node->map[vl]->ctr;
1008                         rht_node->map[vl]->sde[ctr - 1] = sde;
1009                         pow = roundup_pow_of_two(ctr);
1010                         rht_node->map[vl]->mask = pow - 1;
1011
1012                         /* Populate the sde map table */
1013                         sdma_populate_sde_map(rht_node->map[vl]);
1014                 }
1015                 cpumask_set_cpu(cpu, new_mask);
1016         }
1017
1018         /* Clean up old mappings */
1019         for_each_cpu(cpu, cpu_online_mask) {
1020                 struct sdma_rht_node *rht_node;
1021
1022                 /* Don't cleanup sdes that are set in the new mask */
1023                 if (cpumask_test_cpu(cpu, mask))
1024                         continue;
1025
1026                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1027                                                   sdma_rht_params);
1028                 if (rht_node) {
1029                         bool empty = true;
1030                         int i;
1031
1032                         /* Remove mappings for old sde */
1033                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1034                                 if (rht_node->map[i])
1035                                         sdma_cleanup_sde_map(rht_node->map[i],
1036                                                              sde);
1037
1038                         /* Free empty hash table entries */
1039                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1040                                 if (!rht_node->map[i])
1041                                         continue;
1042
1043                                 if (rht_node->map[i]->ctr) {
1044                                         empty = false;
1045                                         break;
1046                                 }
1047                         }
1048
1049                         if (empty) {
1050                                 ret = rhashtable_remove_fast(dd->sdma_rht,
1051                                                              &rht_node->node,
1052                                                              sdma_rht_params);
1053                                 WARN_ON(ret);
1054
1055                                 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1056                                         kfree(rht_node->map[i]);
1057
1058                                 kfree(rht_node);
1059                         }
1060                 }
1061         }
1062
1063         cpumask_copy(&sde->cpu_mask, new_mask);
1064 out:
1065         mutex_unlock(&process_to_sde_mutex);
1066 out_free:
1067         free_cpumask_var(mask);
1068         free_cpumask_var(new_mask);
1069         return ret ? : strnlen(buf, PAGE_SIZE);
1070 }
1071
1072 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1073 {
1074         mutex_lock(&process_to_sde_mutex);
1075         if (cpumask_empty(&sde->cpu_mask))
1076                 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1077         else
1078                 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1079         mutex_unlock(&process_to_sde_mutex);
1080         return strnlen(buf, PAGE_SIZE);
1081 }
1082
1083 static void sdma_rht_free(void *ptr, void *arg)
1084 {
1085         struct sdma_rht_node *rht_node = ptr;
1086         int i;
1087
1088         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1089                 kfree(rht_node->map[i]);
1090
1091         kfree(rht_node);
1092 }
1093
1094 /**
1095  * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1096  * @s: seq file
1097  * @dd: hfi1_devdata
1098  * @cpuid: cpu id
1099  *
1100  * This routine dumps the process to sde mappings per cpu
1101  */
1102 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1103                                 struct hfi1_devdata *dd,
1104                                 unsigned long cpuid)
1105 {
1106         struct sdma_rht_node *rht_node;
1107         int i, j;
1108
1109         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1110                                           sdma_rht_params);
1111         if (!rht_node)
1112                 return;
1113
1114         seq_printf(s, "cpu%3lu: ", cpuid);
1115         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1116                 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1117                         continue;
1118
1119                 seq_printf(s, " vl%d: [", i);
1120
1121                 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1122                         if (!rht_node->map[i]->sde[j])
1123                                 continue;
1124
1125                         if (j > 0)
1126                                 seq_puts(s, ",");
1127
1128                         seq_printf(s, " sdma%2d",
1129                                    rht_node->map[i]->sde[j]->this_idx);
1130                 }
1131                 seq_puts(s, " ]");
1132         }
1133
1134         seq_puts(s, "\n");
1135 }
1136
1137 /*
1138  * Free the indicated map struct
1139  */
1140 static void sdma_map_free(struct sdma_vl_map *m)
1141 {
1142         int i;
1143
1144         for (i = 0; m && i < m->actual_vls; i++)
1145                 kfree(m->map[i]);
1146         kfree(m);
1147 }
1148
1149 /*
1150  * Handle RCU callback
1151  */
1152 static void sdma_map_rcu_callback(struct rcu_head *list)
1153 {
1154         struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1155
1156         sdma_map_free(m);
1157 }
1158
1159 /**
1160  * sdma_map_init - called when # vls change
1161  * @dd: hfi1_devdata
1162  * @port: port number
1163  * @num_vls: number of vls
1164  * @vl_engines: per vl engine mapping (optional)
1165  *
1166  * This routine changes the mapping based on the number of vls.
1167  *
1168  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1169  * implies auto computing the loading and giving each VLs a uniform
1170  * distribution of engines per VL.
1171  *
1172  * The auto algorithm computes the sde_per_vl and the number of extra
1173  * engines.  Any extra engines are added from the last VL on down.
1174  *
1175  * rcu locking is used here to control access to the mapping fields.
1176  *
1177  * If either the num_vls or num_sdma are non-power of 2, the array sizes
1178  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1179  * up to the next highest power of 2 and the first entry is reused
1180  * in a round robin fashion.
1181  *
1182  * If an error occurs the map change is not done and the mapping is
1183  * not changed.
1184  *
1185  */
1186 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1187 {
1188         int i, j;
1189         int extra, sde_per_vl;
1190         int engine = 0;
1191         u8 lvl_engines[OPA_MAX_VLS];
1192         struct sdma_vl_map *oldmap, *newmap;
1193
1194         if (!(dd->flags & HFI1_HAS_SEND_DMA))
1195                 return 0;
1196
1197         if (!vl_engines) {
1198                 /* truncate divide */
1199                 sde_per_vl = dd->num_sdma / num_vls;
1200                 /* extras */
1201                 extra = dd->num_sdma % num_vls;
1202                 vl_engines = lvl_engines;
1203                 /* add extras from last vl down */
1204                 for (i = num_vls - 1; i >= 0; i--, extra--)
1205                         vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1206         }
1207         /* build new map */
1208         newmap = kzalloc(
1209                 sizeof(struct sdma_vl_map) +
1210                         roundup_pow_of_two(num_vls) *
1211                         sizeof(struct sdma_map_elem *),
1212                 GFP_KERNEL);
1213         if (!newmap)
1214                 goto bail;
1215         newmap->actual_vls = num_vls;
1216         newmap->vls = roundup_pow_of_two(num_vls);
1217         newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1218         /* initialize back-map */
1219         for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1220                 newmap->engine_to_vl[i] = -1;
1221         for (i = 0; i < newmap->vls; i++) {
1222                 /* save for wrap around */
1223                 int first_engine = engine;
1224
1225                 if (i < newmap->actual_vls) {
1226                         int sz = roundup_pow_of_two(vl_engines[i]);
1227
1228                         /* only allocate once */
1229                         newmap->map[i] = kzalloc(
1230                                 sizeof(struct sdma_map_elem) +
1231                                         sz * sizeof(struct sdma_engine *),
1232                                 GFP_KERNEL);
1233                         if (!newmap->map[i])
1234                                 goto bail;
1235                         newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1236                         /* assign engines */
1237                         for (j = 0; j < sz; j++) {
1238                                 newmap->map[i]->sde[j] =
1239                                         &dd->per_sdma[engine];
1240                                 if (++engine >= first_engine + vl_engines[i])
1241                                         /* wrap back to first engine */
1242                                         engine = first_engine;
1243                         }
1244                         /* assign back-map */
1245                         for (j = 0; j < vl_engines[i]; j++)
1246                                 newmap->engine_to_vl[first_engine + j] = i;
1247                 } else {
1248                         /* just re-use entry without allocating */
1249                         newmap->map[i] = newmap->map[i % num_vls];
1250                 }
1251                 engine = first_engine + vl_engines[i];
1252         }
1253         /* newmap in hand, save old map */
1254         spin_lock_irq(&dd->sde_map_lock);
1255         oldmap = rcu_dereference_protected(dd->sdma_map,
1256                                            lockdep_is_held(&dd->sde_map_lock));
1257
1258         /* publish newmap */
1259         rcu_assign_pointer(dd->sdma_map, newmap);
1260
1261         spin_unlock_irq(&dd->sde_map_lock);
1262         /* success, free any old map after grace period */
1263         if (oldmap)
1264                 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1265         return 0;
1266 bail:
1267         /* free any partial allocation */
1268         sdma_map_free(newmap);
1269         return -ENOMEM;
1270 }
1271
1272 /**
1273  * sdma_clean()  Clean up allocated memory
1274  * @dd:          struct hfi1_devdata
1275  * @num_engines: num sdma engines
1276  *
1277  * This routine can be called regardless of the success of
1278  * sdma_init()
1279  */
1280 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1281 {
1282         size_t i;
1283         struct sdma_engine *sde;
1284
1285         if (dd->sdma_pad_dma) {
1286                 dma_free_coherent(&dd->pcidev->dev, 4,
1287                                   (void *)dd->sdma_pad_dma,
1288                                   dd->sdma_pad_phys);
1289                 dd->sdma_pad_dma = NULL;
1290                 dd->sdma_pad_phys = 0;
1291         }
1292         if (dd->sdma_heads_dma) {
1293                 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1294                                   (void *)dd->sdma_heads_dma,
1295                                   dd->sdma_heads_phys);
1296                 dd->sdma_heads_dma = NULL;
1297                 dd->sdma_heads_phys = 0;
1298         }
1299         for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1300                 sde = &dd->per_sdma[i];
1301
1302                 sde->head_dma = NULL;
1303                 sde->head_phys = 0;
1304
1305                 if (sde->descq) {
1306                         dma_free_coherent(
1307                                 &dd->pcidev->dev,
1308                                 sde->descq_cnt * sizeof(u64[2]),
1309                                 sde->descq,
1310                                 sde->descq_phys
1311                         );
1312                         sde->descq = NULL;
1313                         sde->descq_phys = 0;
1314                 }
1315                 kvfree(sde->tx_ring);
1316                 sde->tx_ring = NULL;
1317         }
1318         spin_lock_irq(&dd->sde_map_lock);
1319         sdma_map_free(rcu_access_pointer(dd->sdma_map));
1320         RCU_INIT_POINTER(dd->sdma_map, NULL);
1321         spin_unlock_irq(&dd->sde_map_lock);
1322         synchronize_rcu();
1323         kfree(dd->per_sdma);
1324         dd->per_sdma = NULL;
1325
1326         if (dd->sdma_rht) {
1327                 rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1328                 kfree(dd->sdma_rht);
1329                 dd->sdma_rht = NULL;
1330         }
1331 }
1332
1333 /**
1334  * sdma_init() - called when device probed
1335  * @dd: hfi1_devdata
1336  * @port: port number (currently only zero)
1337  *
1338  * Initializes each sde and its csrs.
1339  * Interrupts are not required to be enabled.
1340  *
1341  * Returns:
1342  * 0 - success, -errno on failure
1343  */
1344 int sdma_init(struct hfi1_devdata *dd, u8 port)
1345 {
1346         unsigned this_idx;
1347         struct sdma_engine *sde;
1348         struct rhashtable *tmp_sdma_rht;
1349         u16 descq_cnt;
1350         void *curr_head;
1351         struct hfi1_pportdata *ppd = dd->pport + port;
1352         u32 per_sdma_credits;
1353         uint idle_cnt = sdma_idle_cnt;
1354         size_t num_engines = chip_sdma_engines(dd);
1355         int ret = -ENOMEM;
1356
1357         if (!HFI1_CAP_IS_KSET(SDMA)) {
1358                 HFI1_CAP_CLEAR(SDMA_AHG);
1359                 return 0;
1360         }
1361         if (mod_num_sdma &&
1362             /* can't exceed chip support */
1363             mod_num_sdma <= chip_sdma_engines(dd) &&
1364             /* count must be >= vls */
1365             mod_num_sdma >= num_vls)
1366                 num_engines = mod_num_sdma;
1367
1368         dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1369         dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1370         dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1371                     chip_sdma_mem_size(dd));
1372
1373         per_sdma_credits =
1374                 chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1375
1376         /* set up freeze waitqueue */
1377         init_waitqueue_head(&dd->sdma_unfreeze_wq);
1378         atomic_set(&dd->sdma_unfreeze_count, 0);
1379
1380         descq_cnt = sdma_get_descq_cnt();
1381         dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1382                     num_engines, descq_cnt);
1383
1384         /* alloc memory for array of send engines */
1385         dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1386                                     GFP_KERNEL, dd->node);
1387         if (!dd->per_sdma)
1388                 return ret;
1389
1390         idle_cnt = ns_to_cclock(dd, idle_cnt);
1391         if (idle_cnt)
1392                 dd->default_desc1 =
1393                         SDMA_DESC1_HEAD_TO_HOST_FLAG;
1394         else
1395                 dd->default_desc1 =
1396                         SDMA_DESC1_INT_REQ_FLAG;
1397
1398         if (!sdma_desct_intr)
1399                 sdma_desct_intr = SDMA_DESC_INTR;
1400
1401         /* Allocate memory for SendDMA descriptor FIFOs */
1402         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1403                 sde = &dd->per_sdma[this_idx];
1404                 sde->dd = dd;
1405                 sde->ppd = ppd;
1406                 sde->this_idx = this_idx;
1407                 sde->descq_cnt = descq_cnt;
1408                 sde->desc_avail = sdma_descq_freecnt(sde);
1409                 sde->sdma_shift = ilog2(descq_cnt);
1410                 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1411
1412                 /* Create a mask specifically for each interrupt source */
1413                 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1414                                            this_idx);
1415                 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1416                                                 this_idx);
1417                 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1418                                             this_idx);
1419                 /* Create a combined mask to cover all 3 interrupt sources */
1420                 sde->imask = sde->int_mask | sde->progress_mask |
1421                              sde->idle_mask;
1422
1423                 spin_lock_init(&sde->tail_lock);
1424                 seqlock_init(&sde->head_lock);
1425                 spin_lock_init(&sde->senddmactrl_lock);
1426                 spin_lock_init(&sde->flushlist_lock);
1427                 seqlock_init(&sde->waitlock);
1428                 /* insure there is always a zero bit */
1429                 sde->ahg_bits = 0xfffffffe00000000ULL;
1430
1431                 sdma_set_state(sde, sdma_state_s00_hw_down);
1432
1433                 /* set up reference counting */
1434                 kref_init(&sde->state.kref);
1435                 init_completion(&sde->state.comp);
1436
1437                 INIT_LIST_HEAD(&sde->flushlist);
1438                 INIT_LIST_HEAD(&sde->dmawait);
1439
1440                 sde->tail_csr =
1441                         get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1442
1443                 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1444                              (unsigned long)sde);
1445
1446                 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1447                              (unsigned long)sde);
1448                 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1449                 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1450
1451                 sde->progress_check_head = 0;
1452
1453                 timer_setup(&sde->err_progress_check_timer,
1454                             sdma_err_progress_check, 0);
1455
1456                 sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
1457                                                 descq_cnt * sizeof(u64[2]),
1458                                                 &sde->descq_phys, GFP_KERNEL);
1459                 if (!sde->descq)
1460                         goto bail;
1461                 sde->tx_ring =
1462                         kvzalloc_node(array_size(descq_cnt,
1463                                                  sizeof(struct sdma_txreq *)),
1464                                       GFP_KERNEL, dd->node);
1465                 if (!sde->tx_ring)
1466                         goto bail;
1467         }
1468
1469         dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1470         /* Allocate memory for DMA of head registers to memory */
1471         dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
1472                                                 dd->sdma_heads_size,
1473                                                 &dd->sdma_heads_phys,
1474                                                 GFP_KERNEL);
1475         if (!dd->sdma_heads_dma) {
1476                 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1477                 goto bail;
1478         }
1479
1480         /* Allocate memory for pad */
1481         dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, sizeof(u32),
1482                                               &dd->sdma_pad_phys, GFP_KERNEL);
1483         if (!dd->sdma_pad_dma) {
1484                 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1485                 goto bail;
1486         }
1487
1488         /* assign each engine to different cacheline and init registers */
1489         curr_head = (void *)dd->sdma_heads_dma;
1490         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1491                 unsigned long phys_offset;
1492
1493                 sde = &dd->per_sdma[this_idx];
1494
1495                 sde->head_dma = curr_head;
1496                 curr_head += L1_CACHE_BYTES;
1497                 phys_offset = (unsigned long)sde->head_dma -
1498                               (unsigned long)dd->sdma_heads_dma;
1499                 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1500                 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1501         }
1502         dd->flags |= HFI1_HAS_SEND_DMA;
1503         dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1504         dd->num_sdma = num_engines;
1505         ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1506         if (ret < 0)
1507                 goto bail;
1508
1509         tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1510         if (!tmp_sdma_rht) {
1511                 ret = -ENOMEM;
1512                 goto bail;
1513         }
1514
1515         ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1516         if (ret < 0)
1517                 goto bail;
1518         dd->sdma_rht = tmp_sdma_rht;
1519
1520         dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1521         return 0;
1522
1523 bail:
1524         sdma_clean(dd, num_engines);
1525         return ret;
1526 }
1527
1528 /**
1529  * sdma_all_running() - called when the link goes up
1530  * @dd: hfi1_devdata
1531  *
1532  * This routine moves all engines to the running state.
1533  */
1534 void sdma_all_running(struct hfi1_devdata *dd)
1535 {
1536         struct sdma_engine *sde;
1537         unsigned int i;
1538
1539         /* move all engines to running */
1540         for (i = 0; i < dd->num_sdma; ++i) {
1541                 sde = &dd->per_sdma[i];
1542                 sdma_process_event(sde, sdma_event_e30_go_running);
1543         }
1544 }
1545
1546 /**
1547  * sdma_all_idle() - called when the link goes down
1548  * @dd: hfi1_devdata
1549  *
1550  * This routine moves all engines to the idle state.
1551  */
1552 void sdma_all_idle(struct hfi1_devdata *dd)
1553 {
1554         struct sdma_engine *sde;
1555         unsigned int i;
1556
1557         /* idle all engines */
1558         for (i = 0; i < dd->num_sdma; ++i) {
1559                 sde = &dd->per_sdma[i];
1560                 sdma_process_event(sde, sdma_event_e70_go_idle);
1561         }
1562 }
1563
1564 /**
1565  * sdma_start() - called to kick off state processing for all engines
1566  * @dd: hfi1_devdata
1567  *
1568  * This routine is for kicking off the state processing for all required
1569  * sdma engines.  Interrupts need to be working at this point.
1570  *
1571  */
1572 void sdma_start(struct hfi1_devdata *dd)
1573 {
1574         unsigned i;
1575         struct sdma_engine *sde;
1576
1577         /* kick off the engines state processing */
1578         for (i = 0; i < dd->num_sdma; ++i) {
1579                 sde = &dd->per_sdma[i];
1580                 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1581         }
1582 }
1583
1584 /**
1585  * sdma_exit() - used when module is removed
1586  * @dd: hfi1_devdata
1587  */
1588 void sdma_exit(struct hfi1_devdata *dd)
1589 {
1590         unsigned this_idx;
1591         struct sdma_engine *sde;
1592
1593         for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1594                         ++this_idx) {
1595                 sde = &dd->per_sdma[this_idx];
1596                 if (!list_empty(&sde->dmawait))
1597                         dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1598                                    sde->this_idx);
1599                 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1600
1601                 del_timer_sync(&sde->err_progress_check_timer);
1602
1603                 /*
1604                  * This waits for the state machine to exit so it is not
1605                  * necessary to kill the sdma_sw_clean_up_task to make sure
1606                  * it is not running.
1607                  */
1608                 sdma_finalput(&sde->state);
1609         }
1610 }
1611
1612 /*
1613  * unmap the indicated descriptor
1614  */
1615 static inline void sdma_unmap_desc(
1616         struct hfi1_devdata *dd,
1617         struct sdma_desc *descp)
1618 {
1619         switch (sdma_mapping_type(descp)) {
1620         case SDMA_MAP_SINGLE:
1621                 dma_unmap_single(
1622                         &dd->pcidev->dev,
1623                         sdma_mapping_addr(descp),
1624                         sdma_mapping_len(descp),
1625                         DMA_TO_DEVICE);
1626                 break;
1627         case SDMA_MAP_PAGE:
1628                 dma_unmap_page(
1629                         &dd->pcidev->dev,
1630                         sdma_mapping_addr(descp),
1631                         sdma_mapping_len(descp),
1632                         DMA_TO_DEVICE);
1633                 break;
1634         }
1635 }
1636
1637 /*
1638  * return the mode as indicated by the first
1639  * descriptor in the tx.
1640  */
1641 static inline u8 ahg_mode(struct sdma_txreq *tx)
1642 {
1643         return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1644                 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1645 }
1646
1647 /**
1648  * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1649  * @dd: hfi1_devdata for unmapping
1650  * @tx: tx request to clean
1651  *
1652  * This is used in the progress routine to clean the tx or
1653  * by the ULP to toss an in-process tx build.
1654  *
1655  * The code can be called multiple times without issue.
1656  *
1657  */
1658 void __sdma_txclean(
1659         struct hfi1_devdata *dd,
1660         struct sdma_txreq *tx)
1661 {
1662         u16 i;
1663
1664         if (tx->num_desc) {
1665                 u8 skip = 0, mode = ahg_mode(tx);
1666
1667                 /* unmap first */
1668                 sdma_unmap_desc(dd, &tx->descp[0]);
1669                 /* determine number of AHG descriptors to skip */
1670                 if (mode > SDMA_AHG_APPLY_UPDATE1)
1671                         skip = mode >> 1;
1672                 for (i = 1 + skip; i < tx->num_desc; i++)
1673                         sdma_unmap_desc(dd, &tx->descp[i]);
1674                 tx->num_desc = 0;
1675         }
1676         kfree(tx->coalesce_buf);
1677         tx->coalesce_buf = NULL;
1678         /* kmalloc'ed descp */
1679         if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1680                 tx->desc_limit = ARRAY_SIZE(tx->descs);
1681                 kfree(tx->descp);
1682         }
1683 }
1684
1685 static inline u16 sdma_gethead(struct sdma_engine *sde)
1686 {
1687         struct hfi1_devdata *dd = sde->dd;
1688         int use_dmahead;
1689         u16 hwhead;
1690
1691 #ifdef CONFIG_SDMA_VERBOSITY
1692         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1693                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1694 #endif
1695
1696 retry:
1697         use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1698                                         (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1699         hwhead = use_dmahead ?
1700                 (u16)le64_to_cpu(*sde->head_dma) :
1701                 (u16)read_sde_csr(sde, SD(HEAD));
1702
1703         if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1704                 u16 cnt;
1705                 u16 swtail;
1706                 u16 swhead;
1707                 int sane;
1708
1709                 swhead = sde->descq_head & sde->sdma_mask;
1710                 /* this code is really bad for cache line trading */
1711                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1712                 cnt = sde->descq_cnt;
1713
1714                 if (swhead < swtail)
1715                         /* not wrapped */
1716                         sane = (hwhead >= swhead) & (hwhead <= swtail);
1717                 else if (swhead > swtail)
1718                         /* wrapped around */
1719                         sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1720                                 (hwhead <= swtail);
1721                 else
1722                         /* empty */
1723                         sane = (hwhead == swhead);
1724
1725                 if (unlikely(!sane)) {
1726                         dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1727                                    sde->this_idx,
1728                                    use_dmahead ? "dma" : "kreg",
1729                                    hwhead, swhead, swtail, cnt);
1730                         if (use_dmahead) {
1731                                 /* try one more time, using csr */
1732                                 use_dmahead = 0;
1733                                 goto retry;
1734                         }
1735                         /* proceed as if no progress */
1736                         hwhead = swhead;
1737                 }
1738         }
1739         return hwhead;
1740 }
1741
1742 /*
1743  * This is called when there are send DMA descriptors that might be
1744  * available.
1745  *
1746  * This is called with head_lock held.
1747  */
1748 static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1749 {
1750         struct iowait *wait, *nw;
1751         struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1752         uint i, n = 0, seq, max_idx = 0;
1753         u8 max_starved_cnt = 0;
1754
1755 #ifdef CONFIG_SDMA_VERBOSITY
1756         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1757                    slashstrip(__FILE__), __LINE__, __func__);
1758         dd_dev_err(sde->dd, "avail: %u\n", avail);
1759 #endif
1760
1761         do {
1762                 seq = read_seqbegin(&sde->waitlock);
1763                 if (!list_empty(&sde->dmawait)) {
1764                         /* at least one item */
1765                         write_seqlock(&sde->waitlock);
1766                         /* Harvest waiters wanting DMA descriptors */
1767                         list_for_each_entry_safe(
1768                                         wait,
1769                                         nw,
1770                                         &sde->dmawait,
1771                                         list) {
1772                                 u32 num_desc;
1773
1774                                 if (!wait->wakeup)
1775                                         continue;
1776                                 if (n == ARRAY_SIZE(waits))
1777                                         break;
1778                                 num_desc = iowait_get_all_desc(wait);
1779                                 if (num_desc > avail)
1780                                         break;
1781                                 avail -= num_desc;
1782                                 /* Find the most starved wait memeber */
1783                                 iowait_starve_find_max(wait, &max_starved_cnt,
1784                                                        n, &max_idx);
1785                                 list_del_init(&wait->list);
1786                                 waits[n++] = wait;
1787                         }
1788                         write_sequnlock(&sde->waitlock);
1789                         break;
1790                 }
1791         } while (read_seqretry(&sde->waitlock, seq));
1792
1793         /* Schedule the most starved one first */
1794         if (n)
1795                 waits[max_idx]->wakeup(waits[max_idx], SDMA_AVAIL_REASON);
1796
1797         for (i = 0; i < n; i++)
1798                 if (i != max_idx)
1799                         waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1800 }
1801
1802 /* head_lock must be held */
1803 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1804 {
1805         struct sdma_txreq *txp = NULL;
1806         int progress = 0;
1807         u16 hwhead, swhead;
1808         int idle_check_done = 0;
1809
1810         hwhead = sdma_gethead(sde);
1811
1812         /* The reason for some of the complexity of this code is that
1813          * not all descriptors have corresponding txps.  So, we have to
1814          * be able to skip over descs until we wander into the range of
1815          * the next txp on the list.
1816          */
1817
1818 retry:
1819         txp = get_txhead(sde);
1820         swhead = sde->descq_head & sde->sdma_mask;
1821         trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1822         while (swhead != hwhead) {
1823                 /* advance head, wrap if needed */
1824                 swhead = ++sde->descq_head & sde->sdma_mask;
1825
1826                 /* if now past this txp's descs, do the callback */
1827                 if (txp && txp->next_descq_idx == swhead) {
1828                         /* remove from list */
1829                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1830                         complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1831                         /* see if there is another txp */
1832                         txp = get_txhead(sde);
1833                 }
1834                 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1835                 progress++;
1836         }
1837
1838         /*
1839          * The SDMA idle interrupt is not guaranteed to be ordered with respect
1840          * to updates to the the dma_head location in host memory. The head
1841          * value read might not be fully up to date. If there are pending
1842          * descriptors and the SDMA idle interrupt fired then read from the
1843          * CSR SDMA head instead to get the latest value from the hardware.
1844          * The hardware SDMA head should be read at most once in this invocation
1845          * of sdma_make_progress(..) which is ensured by idle_check_done flag
1846          */
1847         if ((status & sde->idle_mask) && !idle_check_done) {
1848                 u16 swtail;
1849
1850                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1851                 if (swtail != hwhead) {
1852                         hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1853                         idle_check_done = 1;
1854                         goto retry;
1855                 }
1856         }
1857
1858         sde->last_status = status;
1859         if (progress)
1860                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1861 }
1862
1863 /*
1864  * sdma_engine_interrupt() - interrupt handler for engine
1865  * @sde: sdma engine
1866  * @status: sdma interrupt reason
1867  *
1868  * Status is a mask of the 3 possible interrupts for this engine.  It will
1869  * contain bits _only_ for this SDMA engine.  It will contain at least one
1870  * bit, it may contain more.
1871  */
1872 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1873 {
1874         trace_hfi1_sdma_engine_interrupt(sde, status);
1875         write_seqlock(&sde->head_lock);
1876         sdma_set_desc_cnt(sde, sdma_desct_intr);
1877         if (status & sde->idle_mask)
1878                 sde->idle_int_cnt++;
1879         else if (status & sde->progress_mask)
1880                 sde->progress_int_cnt++;
1881         else if (status & sde->int_mask)
1882                 sde->sdma_int_cnt++;
1883         sdma_make_progress(sde, status);
1884         write_sequnlock(&sde->head_lock);
1885 }
1886
1887 /**
1888  * sdma_engine_error() - error handler for engine
1889  * @sde: sdma engine
1890  * @status: sdma interrupt reason
1891  */
1892 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1893 {
1894         unsigned long flags;
1895
1896 #ifdef CONFIG_SDMA_VERBOSITY
1897         dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1898                    sde->this_idx,
1899                    (unsigned long long)status,
1900                    sdma_state_names[sde->state.current_state]);
1901 #endif
1902         spin_lock_irqsave(&sde->tail_lock, flags);
1903         write_seqlock(&sde->head_lock);
1904         if (status & ALL_SDMA_ENG_HALT_ERRS)
1905                 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1906         if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1907                 dd_dev_err(sde->dd,
1908                            "SDMA (%u) engine error: 0x%llx state %s\n",
1909                            sde->this_idx,
1910                            (unsigned long long)status,
1911                            sdma_state_names[sde->state.current_state]);
1912                 dump_sdma_state(sde);
1913         }
1914         write_sequnlock(&sde->head_lock);
1915         spin_unlock_irqrestore(&sde->tail_lock, flags);
1916 }
1917
1918 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1919 {
1920         u64 set_senddmactrl = 0;
1921         u64 clr_senddmactrl = 0;
1922         unsigned long flags;
1923
1924 #ifdef CONFIG_SDMA_VERBOSITY
1925         dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1926                    sde->this_idx,
1927                    (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1928                    (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1929                    (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1930                    (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1931 #endif
1932
1933         if (op & SDMA_SENDCTRL_OP_ENABLE)
1934                 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1935         else
1936                 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1937
1938         if (op & SDMA_SENDCTRL_OP_INTENABLE)
1939                 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1940         else
1941                 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1942
1943         if (op & SDMA_SENDCTRL_OP_HALT)
1944                 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1945         else
1946                 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1947
1948         spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1949
1950         sde->p_senddmactrl |= set_senddmactrl;
1951         sde->p_senddmactrl &= ~clr_senddmactrl;
1952
1953         if (op & SDMA_SENDCTRL_OP_CLEANUP)
1954                 write_sde_csr(sde, SD(CTRL),
1955                               sde->p_senddmactrl |
1956                               SD(CTRL_SDMA_CLEANUP_SMASK));
1957         else
1958                 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1959
1960         spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1961
1962 #ifdef CONFIG_SDMA_VERBOSITY
1963         sdma_dumpstate(sde);
1964 #endif
1965 }
1966
1967 static void sdma_setlengen(struct sdma_engine *sde)
1968 {
1969 #ifdef CONFIG_SDMA_VERBOSITY
1970         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1971                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1972 #endif
1973
1974         /*
1975          * Set SendDmaLenGen and clear-then-set the MSB of the generation
1976          * count to enable generation checking and load the internal
1977          * generation counter.
1978          */
1979         write_sde_csr(sde, SD(LEN_GEN),
1980                       (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
1981         write_sde_csr(sde, SD(LEN_GEN),
1982                       ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1983                       (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
1984 }
1985
1986 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1987 {
1988         /* Commit writes to memory and advance the tail on the chip */
1989         smp_wmb(); /* see get_txhead() */
1990         writeq(tail, sde->tail_csr);
1991 }
1992
1993 /*
1994  * This is called when changing to state s10_hw_start_up_halt_wait as
1995  * a result of send buffer errors or send DMA descriptor errors.
1996  */
1997 static void sdma_hw_start_up(struct sdma_engine *sde)
1998 {
1999         u64 reg;
2000
2001 #ifdef CONFIG_SDMA_VERBOSITY
2002         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2003                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2004 #endif
2005
2006         sdma_setlengen(sde);
2007         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2008         *sde->head_dma = 0;
2009
2010         reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2011               SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2012         write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2013 }
2014
2015 /*
2016  * set_sdma_integrity
2017  *
2018  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2019  */
2020 static void set_sdma_integrity(struct sdma_engine *sde)
2021 {
2022         struct hfi1_devdata *dd = sde->dd;
2023
2024         write_sde_csr(sde, SD(CHECK_ENABLE),
2025                       hfi1_pkt_base_sdma_integrity(dd));
2026 }
2027
2028 static void init_sdma_regs(
2029         struct sdma_engine *sde,
2030         u32 credits,
2031         uint idle_cnt)
2032 {
2033         u8 opval, opmask;
2034 #ifdef CONFIG_SDMA_VERBOSITY
2035         struct hfi1_devdata *dd = sde->dd;
2036
2037         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2038                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2039 #endif
2040
2041         write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2042         sdma_setlengen(sde);
2043         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2044         write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2045         write_sde_csr(sde, SD(DESC_CNT), 0);
2046         write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2047         write_sde_csr(sde, SD(MEMORY),
2048                       ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2049                       ((u64)(credits * sde->this_idx) <<
2050                        SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2051         write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2052         set_sdma_integrity(sde);
2053         opmask = OPCODE_CHECK_MASK_DISABLED;
2054         opval = OPCODE_CHECK_VAL_DISABLED;
2055         write_sde_csr(sde, SD(CHECK_OPCODE),
2056                       (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2057                       (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2058 }
2059
2060 #ifdef CONFIG_SDMA_VERBOSITY
2061
2062 #define sdma_dumpstate_helper0(reg) do { \
2063                 csr = read_csr(sde->dd, reg); \
2064                 dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2065         } while (0)
2066
2067 #define sdma_dumpstate_helper(reg) do { \
2068                 csr = read_sde_csr(sde, reg); \
2069                 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2070                         #reg, sde->this_idx, csr); \
2071         } while (0)
2072
2073 #define sdma_dumpstate_helper2(reg) do { \
2074                 csr = read_csr(sde->dd, reg + (8 * i)); \
2075                 dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2076                                 #reg, i, csr); \
2077         } while (0)
2078
2079 void sdma_dumpstate(struct sdma_engine *sde)
2080 {
2081         u64 csr;
2082         unsigned i;
2083
2084         sdma_dumpstate_helper(SD(CTRL));
2085         sdma_dumpstate_helper(SD(STATUS));
2086         sdma_dumpstate_helper0(SD(ERR_STATUS));
2087         sdma_dumpstate_helper0(SD(ERR_MASK));
2088         sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2089         sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2090
2091         for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2092                 sdma_dumpstate_helper2(CCE_INT_STATUS);
2093                 sdma_dumpstate_helper2(CCE_INT_MASK);
2094                 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2095         }
2096
2097         sdma_dumpstate_helper(SD(TAIL));
2098         sdma_dumpstate_helper(SD(HEAD));
2099         sdma_dumpstate_helper(SD(PRIORITY_THLD));
2100         sdma_dumpstate_helper(SD(IDLE_CNT));
2101         sdma_dumpstate_helper(SD(RELOAD_CNT));
2102         sdma_dumpstate_helper(SD(DESC_CNT));
2103         sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2104         sdma_dumpstate_helper(SD(MEMORY));
2105         sdma_dumpstate_helper0(SD(ENGINES));
2106         sdma_dumpstate_helper0(SD(MEM_SIZE));
2107         /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2108         sdma_dumpstate_helper(SD(BASE_ADDR));
2109         sdma_dumpstate_helper(SD(LEN_GEN));
2110         sdma_dumpstate_helper(SD(HEAD_ADDR));
2111         sdma_dumpstate_helper(SD(CHECK_ENABLE));
2112         sdma_dumpstate_helper(SD(CHECK_VL));
2113         sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2114         sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2115         sdma_dumpstate_helper(SD(CHECK_SLID));
2116         sdma_dumpstate_helper(SD(CHECK_OPCODE));
2117 }
2118 #endif
2119
2120 static void dump_sdma_state(struct sdma_engine *sde)
2121 {
2122         struct hw_sdma_desc *descqp;
2123         u64 desc[2];
2124         u64 addr;
2125         u8 gen;
2126         u16 len;
2127         u16 head, tail, cnt;
2128
2129         head = sde->descq_head & sde->sdma_mask;
2130         tail = sde->descq_tail & sde->sdma_mask;
2131         cnt = sdma_descq_freecnt(sde);
2132
2133         dd_dev_err(sde->dd,
2134                    "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2135                    sde->this_idx, head, tail, cnt,
2136                    !list_empty(&sde->flushlist));
2137
2138         /* print info for each entry in the descriptor queue */
2139         while (head != tail) {
2140                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2141
2142                 descqp = &sde->descq[head];
2143                 desc[0] = le64_to_cpu(descqp->qw[0]);
2144                 desc[1] = le64_to_cpu(descqp->qw[1]);
2145                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2146                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2147                                 'H' : '-';
2148                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2149                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2150                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2151                         & SDMA_DESC0_PHY_ADDR_MASK;
2152                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2153                         & SDMA_DESC1_GENERATION_MASK;
2154                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2155                         & SDMA_DESC0_BYTE_COUNT_MASK;
2156                 dd_dev_err(sde->dd,
2157                            "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2158                            head, flags, addr, gen, len);
2159                 dd_dev_err(sde->dd,
2160                            "\tdesc0:0x%016llx desc1 0x%016llx\n",
2161                            desc[0], desc[1]);
2162                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2163                         dd_dev_err(sde->dd,
2164                                    "\taidx: %u amode: %u alen: %u\n",
2165                                    (u8)((desc[1] &
2166                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2167                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2168                                    (u8)((desc[1] &
2169                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2170                                         SDMA_DESC1_HEADER_MODE_SHIFT),
2171                                    (u8)((desc[1] &
2172                                          SDMA_DESC1_HEADER_DWS_SMASK) >>
2173                                         SDMA_DESC1_HEADER_DWS_SHIFT));
2174                 head++;
2175                 head &= sde->sdma_mask;
2176         }
2177 }
2178
2179 #define SDE_FMT \
2180         "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2181 /**
2182  * sdma_seqfile_dump_sde() - debugfs dump of sde
2183  * @s: seq file
2184  * @sde: send dma engine to dump
2185  *
2186  * This routine dumps the sde to the indicated seq file.
2187  */
2188 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2189 {
2190         u16 head, tail;
2191         struct hw_sdma_desc *descqp;
2192         u64 desc[2];
2193         u64 addr;
2194         u8 gen;
2195         u16 len;
2196
2197         head = sde->descq_head & sde->sdma_mask;
2198         tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2199         seq_printf(s, SDE_FMT, sde->this_idx,
2200                    sde->cpu,
2201                    sdma_state_name(sde->state.current_state),
2202                    (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2203                    (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2204                    (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2205                    (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2206                    (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2207                    (unsigned long long)le64_to_cpu(*sde->head_dma),
2208                    (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2209                    (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2210                    (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2211                    (unsigned long long)sde->last_status,
2212                    (unsigned long long)sde->ahg_bits,
2213                    sde->tx_tail,
2214                    sde->tx_head,
2215                    sde->descq_tail,
2216                    sde->descq_head,
2217                    !list_empty(&sde->flushlist),
2218                    sde->descq_full_count,
2219                    (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2220
2221         /* print info for each entry in the descriptor queue */
2222         while (head != tail) {
2223                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2224
2225                 descqp = &sde->descq[head];
2226                 desc[0] = le64_to_cpu(descqp->qw[0]);
2227                 desc[1] = le64_to_cpu(descqp->qw[1]);
2228                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2229                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2230                                 'H' : '-';
2231                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2232                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2233                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2234                         & SDMA_DESC0_PHY_ADDR_MASK;
2235                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2236                         & SDMA_DESC1_GENERATION_MASK;
2237                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2238                         & SDMA_DESC0_BYTE_COUNT_MASK;
2239                 seq_printf(s,
2240                            "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2241                            head, flags, addr, gen, len);
2242                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2243                         seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2244                                    (u8)((desc[1] &
2245                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2246                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2247                                    (u8)((desc[1] &
2248                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2249                                         SDMA_DESC1_HEADER_MODE_SHIFT));
2250                 head = (head + 1) & sde->sdma_mask;
2251         }
2252 }
2253
2254 /*
2255  * add the generation number into
2256  * the qw1 and return
2257  */
2258 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2259 {
2260         u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2261
2262         qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2263         qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2264                         << SDMA_DESC1_GENERATION_SHIFT;
2265         return qw1;
2266 }
2267
2268 /*
2269  * This routine submits the indicated tx
2270  *
2271  * Space has already been guaranteed and
2272  * tail side of ring is locked.
2273  *
2274  * The hardware tail update is done
2275  * in the caller and that is facilitated
2276  * by returning the new tail.
2277  *
2278  * There is special case logic for ahg
2279  * to not add the generation number for
2280  * up to 2 descriptors that follow the
2281  * first descriptor.
2282  *
2283  */
2284 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2285 {
2286         int i;
2287         u16 tail;
2288         struct sdma_desc *descp = tx->descp;
2289         u8 skip = 0, mode = ahg_mode(tx);
2290
2291         tail = sde->descq_tail & sde->sdma_mask;
2292         sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2293         sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2294         trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2295                                    tail, &sde->descq[tail]);
2296         tail = ++sde->descq_tail & sde->sdma_mask;
2297         descp++;
2298         if (mode > SDMA_AHG_APPLY_UPDATE1)
2299                 skip = mode >> 1;
2300         for (i = 1; i < tx->num_desc; i++, descp++) {
2301                 u64 qw1;
2302
2303                 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2304                 if (skip) {
2305                         /* edits don't have generation */
2306                         qw1 = descp->qw[1];
2307                         skip--;
2308                 } else {
2309                         /* replace generation with real one for non-edits */
2310                         qw1 = add_gen(sde, descp->qw[1]);
2311                 }
2312                 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2313                 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2314                                            tail, &sde->descq[tail]);
2315                 tail = ++sde->descq_tail & sde->sdma_mask;
2316         }
2317         tx->next_descq_idx = tail;
2318 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2319         tx->sn = sde->tail_sn++;
2320         trace_hfi1_sdma_in_sn(sde, tx->sn);
2321         WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2322 #endif
2323         sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2324         sde->desc_avail -= tx->num_desc;
2325         return tail;
2326 }
2327
2328 /*
2329  * Check for progress
2330  */
2331 static int sdma_check_progress(
2332         struct sdma_engine *sde,
2333         struct iowait_work *wait,
2334         struct sdma_txreq *tx,
2335         bool pkts_sent)
2336 {
2337         int ret;
2338
2339         sde->desc_avail = sdma_descq_freecnt(sde);
2340         if (tx->num_desc <= sde->desc_avail)
2341                 return -EAGAIN;
2342         /* pulse the head_lock */
2343         if (wait && iowait_ioww_to_iow(wait)->sleep) {
2344                 unsigned seq;
2345
2346                 seq = raw_seqcount_begin(
2347                         (const seqcount_t *)&sde->head_lock.seqcount);
2348                 ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
2349                 if (ret == -EAGAIN)
2350                         sde->desc_avail = sdma_descq_freecnt(sde);
2351         } else {
2352                 ret = -EBUSY;
2353         }
2354         return ret;
2355 }
2356
2357 /**
2358  * sdma_send_txreq() - submit a tx req to ring
2359  * @sde: sdma engine to use
2360  * @wait: SE wait structure to use when full (may be NULL)
2361  * @tx: sdma_txreq to submit
2362  * @pkts_sent: has any packet been sent yet?
2363  *
2364  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2365  * the packet will be queued to the list in wait.
2366  *
2367  * Return:
2368  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2369  * ring (wait == NULL)
2370  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2371  */
2372 int sdma_send_txreq(struct sdma_engine *sde,
2373                     struct iowait_work *wait,
2374                     struct sdma_txreq *tx,
2375                     bool pkts_sent)
2376 {
2377         int ret = 0;
2378         u16 tail;
2379         unsigned long flags;
2380
2381         /* user should have supplied entire packet */
2382         if (unlikely(tx->tlen))
2383                 return -EINVAL;
2384         tx->wait = iowait_ioww_to_iow(wait);
2385         spin_lock_irqsave(&sde->tail_lock, flags);
2386 retry:
2387         if (unlikely(!__sdma_running(sde)))
2388                 goto unlock_noconn;
2389         if (unlikely(tx->num_desc > sde->desc_avail))
2390                 goto nodesc;
2391         tail = submit_tx(sde, tx);
2392         if (wait)
2393                 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2394         sdma_update_tail(sde, tail);
2395 unlock:
2396         spin_unlock_irqrestore(&sde->tail_lock, flags);
2397         return ret;
2398 unlock_noconn:
2399         if (wait)
2400                 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2401         tx->next_descq_idx = 0;
2402 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2403         tx->sn = sde->tail_sn++;
2404         trace_hfi1_sdma_in_sn(sde, tx->sn);
2405 #endif
2406         spin_lock(&sde->flushlist_lock);
2407         list_add_tail(&tx->list, &sde->flushlist);
2408         spin_unlock(&sde->flushlist_lock);
2409         iowait_inc_wait_count(wait, tx->num_desc);
2410         schedule_work(&sde->flush_worker);
2411         ret = -ECOMM;
2412         goto unlock;
2413 nodesc:
2414         ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2415         if (ret == -EAGAIN) {
2416                 ret = 0;
2417                 goto retry;
2418         }
2419         sde->descq_full_count++;
2420         goto unlock;
2421 }
2422
2423 /**
2424  * sdma_send_txlist() - submit a list of tx req to ring
2425  * @sde: sdma engine to use
2426  * @wait: SE wait structure to use when full (may be NULL)
2427  * @tx_list: list of sdma_txreqs to submit
2428  * @count: pointer to a u16 which, after return will contain the total number of
2429  *         sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2430  *         whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2431  *         which are added to SDMA engine flush list if the SDMA engine state is
2432  *         not running.
2433  *
2434  * The call submits the list into the ring.
2435  *
2436  * If the iowait structure is non-NULL and not equal to the iowait list
2437  * the unprocessed part of the list  will be appended to the list in wait.
2438  *
2439  * In all cases, the tx_list will be updated so the head of the tx_list is
2440  * the list of descriptors that have yet to be transmitted.
2441  *
2442  * The intent of this call is to provide a more efficient
2443  * way of submitting multiple packets to SDMA while holding the tail
2444  * side locking.
2445  *
2446  * Return:
2447  * 0 - Success,
2448  * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2449  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2450  */
2451 int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
2452                      struct list_head *tx_list, u16 *count_out)
2453 {
2454         struct sdma_txreq *tx, *tx_next;
2455         int ret = 0;
2456         unsigned long flags;
2457         u16 tail = INVALID_TAIL;
2458         u32 submit_count = 0, flush_count = 0, total_count;
2459
2460         spin_lock_irqsave(&sde->tail_lock, flags);
2461 retry:
2462         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2463                 tx->wait = iowait_ioww_to_iow(wait);
2464                 if (unlikely(!__sdma_running(sde)))
2465                         goto unlock_noconn;
2466                 if (unlikely(tx->num_desc > sde->desc_avail))
2467                         goto nodesc;
2468                 if (unlikely(tx->tlen)) {
2469                         ret = -EINVAL;
2470                         goto update_tail;
2471                 }
2472                 list_del_init(&tx->list);
2473                 tail = submit_tx(sde, tx);
2474                 submit_count++;
2475                 if (tail != INVALID_TAIL &&
2476                     (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2477                         sdma_update_tail(sde, tail);
2478                         tail = INVALID_TAIL;
2479                 }
2480         }
2481 update_tail:
2482         total_count = submit_count + flush_count;
2483         if (wait) {
2484                 iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
2485                 iowait_starve_clear(submit_count > 0,
2486                                     iowait_ioww_to_iow(wait));
2487         }
2488         if (tail != INVALID_TAIL)
2489                 sdma_update_tail(sde, tail);
2490         spin_unlock_irqrestore(&sde->tail_lock, flags);
2491         *count_out = total_count;
2492         return ret;
2493 unlock_noconn:
2494         spin_lock(&sde->flushlist_lock);
2495         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2496                 tx->wait = iowait_ioww_to_iow(wait);
2497                 list_del_init(&tx->list);
2498                 tx->next_descq_idx = 0;
2499 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2500                 tx->sn = sde->tail_sn++;
2501                 trace_hfi1_sdma_in_sn(sde, tx->sn);
2502 #endif
2503                 list_add_tail(&tx->list, &sde->flushlist);
2504                 flush_count++;
2505                 iowait_inc_wait_count(wait, tx->num_desc);
2506         }
2507         spin_unlock(&sde->flushlist_lock);
2508         schedule_work(&sde->flush_worker);
2509         ret = -ECOMM;
2510         goto update_tail;
2511 nodesc:
2512         ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2513         if (ret == -EAGAIN) {
2514                 ret = 0;
2515                 goto retry;
2516         }
2517         sde->descq_full_count++;
2518         goto update_tail;
2519 }
2520
2521 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2522 {
2523         unsigned long flags;
2524
2525         spin_lock_irqsave(&sde->tail_lock, flags);
2526         write_seqlock(&sde->head_lock);
2527
2528         __sdma_process_event(sde, event);
2529
2530         if (sde->state.current_state == sdma_state_s99_running)
2531                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2532
2533         write_sequnlock(&sde->head_lock);
2534         spin_unlock_irqrestore(&sde->tail_lock, flags);
2535 }
2536
2537 static void __sdma_process_event(struct sdma_engine *sde,
2538                                  enum sdma_events event)
2539 {
2540         struct sdma_state *ss = &sde->state;
2541         int need_progress = 0;
2542
2543         /* CONFIG SDMA temporary */
2544 #ifdef CONFIG_SDMA_VERBOSITY
2545         dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2546                    sdma_state_names[ss->current_state],
2547                    sdma_event_names[event]);
2548 #endif
2549
2550         switch (ss->current_state) {
2551         case sdma_state_s00_hw_down:
2552                 switch (event) {
2553                 case sdma_event_e00_go_hw_down:
2554                         break;
2555                 case sdma_event_e30_go_running:
2556                         /*
2557                          * If down, but running requested (usually result
2558                          * of link up, then we need to start up.
2559                          * This can happen when hw down is requested while
2560                          * bringing the link up with traffic active on
2561                          * 7220, e.g.
2562                          */
2563                         ss->go_s99_running = 1;
2564                         /* fall through -- and start dma engine */
2565                 case sdma_event_e10_go_hw_start:
2566                         /* This reference means the state machine is started */
2567                         sdma_get(&sde->state);
2568                         sdma_set_state(sde,
2569                                        sdma_state_s10_hw_start_up_halt_wait);
2570                         break;
2571                 case sdma_event_e15_hw_halt_done:
2572                         break;
2573                 case sdma_event_e25_hw_clean_up_done:
2574                         break;
2575                 case sdma_event_e40_sw_cleaned:
2576                         sdma_sw_tear_down(sde);
2577                         break;
2578                 case sdma_event_e50_hw_cleaned:
2579                         break;
2580                 case sdma_event_e60_hw_halted:
2581                         break;
2582                 case sdma_event_e70_go_idle:
2583                         break;
2584                 case sdma_event_e80_hw_freeze:
2585                         break;
2586                 case sdma_event_e81_hw_frozen:
2587                         break;
2588                 case sdma_event_e82_hw_unfreeze:
2589                         break;
2590                 case sdma_event_e85_link_down:
2591                         break;
2592                 case sdma_event_e90_sw_halted:
2593                         break;
2594                 }
2595                 break;
2596
2597         case sdma_state_s10_hw_start_up_halt_wait:
2598                 switch (event) {
2599                 case sdma_event_e00_go_hw_down:
2600                         sdma_set_state(sde, sdma_state_s00_hw_down);
2601                         sdma_sw_tear_down(sde);
2602                         break;
2603                 case sdma_event_e10_go_hw_start:
2604                         break;
2605                 case sdma_event_e15_hw_halt_done:
2606                         sdma_set_state(sde,
2607                                        sdma_state_s15_hw_start_up_clean_wait);
2608                         sdma_start_hw_clean_up(sde);
2609                         break;
2610                 case sdma_event_e25_hw_clean_up_done:
2611                         break;
2612                 case sdma_event_e30_go_running:
2613                         ss->go_s99_running = 1;
2614                         break;
2615                 case sdma_event_e40_sw_cleaned:
2616                         break;
2617                 case sdma_event_e50_hw_cleaned:
2618                         break;
2619                 case sdma_event_e60_hw_halted:
2620                         schedule_work(&sde->err_halt_worker);
2621                         break;
2622                 case sdma_event_e70_go_idle:
2623                         ss->go_s99_running = 0;
2624                         break;
2625                 case sdma_event_e80_hw_freeze:
2626                         break;
2627                 case sdma_event_e81_hw_frozen:
2628                         break;
2629                 case sdma_event_e82_hw_unfreeze:
2630                         break;
2631                 case sdma_event_e85_link_down:
2632                         break;
2633                 case sdma_event_e90_sw_halted:
2634                         break;
2635                 }
2636                 break;
2637
2638         case sdma_state_s15_hw_start_up_clean_wait:
2639                 switch (event) {
2640                 case sdma_event_e00_go_hw_down:
2641                         sdma_set_state(sde, sdma_state_s00_hw_down);
2642                         sdma_sw_tear_down(sde);
2643                         break;
2644                 case sdma_event_e10_go_hw_start:
2645                         break;
2646                 case sdma_event_e15_hw_halt_done:
2647                         break;
2648                 case sdma_event_e25_hw_clean_up_done:
2649                         sdma_hw_start_up(sde);
2650                         sdma_set_state(sde, ss->go_s99_running ?
2651                                        sdma_state_s99_running :
2652                                        sdma_state_s20_idle);
2653                         break;
2654                 case sdma_event_e30_go_running:
2655                         ss->go_s99_running = 1;
2656                         break;
2657                 case sdma_event_e40_sw_cleaned:
2658                         break;
2659                 case sdma_event_e50_hw_cleaned:
2660                         break;
2661                 case sdma_event_e60_hw_halted:
2662                         break;
2663                 case sdma_event_e70_go_idle:
2664                         ss->go_s99_running = 0;
2665                         break;
2666                 case sdma_event_e80_hw_freeze:
2667                         break;
2668                 case sdma_event_e81_hw_frozen:
2669                         break;
2670                 case sdma_event_e82_hw_unfreeze:
2671                         break;
2672                 case sdma_event_e85_link_down:
2673                         break;
2674                 case sdma_event_e90_sw_halted:
2675                         break;
2676                 }
2677                 break;
2678
2679         case sdma_state_s20_idle:
2680                 switch (event) {
2681                 case sdma_event_e00_go_hw_down:
2682                         sdma_set_state(sde, sdma_state_s00_hw_down);
2683                         sdma_sw_tear_down(sde);
2684                         break;
2685                 case sdma_event_e10_go_hw_start:
2686                         break;
2687                 case sdma_event_e15_hw_halt_done:
2688                         break;
2689                 case sdma_event_e25_hw_clean_up_done:
2690                         break;
2691                 case sdma_event_e30_go_running:
2692                         sdma_set_state(sde, sdma_state_s99_running);
2693                         ss->go_s99_running = 1;
2694                         break;
2695                 case sdma_event_e40_sw_cleaned:
2696                         break;
2697                 case sdma_event_e50_hw_cleaned:
2698                         break;
2699                 case sdma_event_e60_hw_halted:
2700                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2701                         schedule_work(&sde->err_halt_worker);
2702                         break;
2703                 case sdma_event_e70_go_idle:
2704                         break;
2705                 case sdma_event_e85_link_down:
2706                         /* fall through */
2707                 case sdma_event_e80_hw_freeze:
2708                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2709                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2710                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2711                         break;
2712                 case sdma_event_e81_hw_frozen:
2713                         break;
2714                 case sdma_event_e82_hw_unfreeze:
2715                         break;
2716                 case sdma_event_e90_sw_halted:
2717                         break;
2718                 }
2719                 break;
2720
2721         case sdma_state_s30_sw_clean_up_wait:
2722                 switch (event) {
2723                 case sdma_event_e00_go_hw_down:
2724                         sdma_set_state(sde, sdma_state_s00_hw_down);
2725                         break;
2726                 case sdma_event_e10_go_hw_start:
2727                         break;
2728                 case sdma_event_e15_hw_halt_done:
2729                         break;
2730                 case sdma_event_e25_hw_clean_up_done:
2731                         break;
2732                 case sdma_event_e30_go_running:
2733                         ss->go_s99_running = 1;
2734                         break;
2735                 case sdma_event_e40_sw_cleaned:
2736                         sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2737                         sdma_start_hw_clean_up(sde);
2738                         break;
2739                 case sdma_event_e50_hw_cleaned:
2740                         break;
2741                 case sdma_event_e60_hw_halted:
2742                         break;
2743                 case sdma_event_e70_go_idle:
2744                         ss->go_s99_running = 0;
2745                         break;
2746                 case sdma_event_e80_hw_freeze:
2747                         break;
2748                 case sdma_event_e81_hw_frozen:
2749                         break;
2750                 case sdma_event_e82_hw_unfreeze:
2751                         break;
2752                 case sdma_event_e85_link_down:
2753                         ss->go_s99_running = 0;
2754                         break;
2755                 case sdma_event_e90_sw_halted:
2756                         break;
2757                 }
2758                 break;
2759
2760         case sdma_state_s40_hw_clean_up_wait:
2761                 switch (event) {
2762                 case sdma_event_e00_go_hw_down:
2763                         sdma_set_state(sde, sdma_state_s00_hw_down);
2764                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2765                         break;
2766                 case sdma_event_e10_go_hw_start:
2767                         break;
2768                 case sdma_event_e15_hw_halt_done:
2769                         break;
2770                 case sdma_event_e25_hw_clean_up_done:
2771                         sdma_hw_start_up(sde);
2772                         sdma_set_state(sde, ss->go_s99_running ?
2773                                        sdma_state_s99_running :
2774                                        sdma_state_s20_idle);
2775                         break;
2776                 case sdma_event_e30_go_running:
2777                         ss->go_s99_running = 1;
2778                         break;
2779                 case sdma_event_e40_sw_cleaned:
2780                         break;
2781                 case sdma_event_e50_hw_cleaned:
2782                         break;
2783                 case sdma_event_e60_hw_halted:
2784                         break;
2785                 case sdma_event_e70_go_idle:
2786                         ss->go_s99_running = 0;
2787                         break;
2788                 case sdma_event_e80_hw_freeze:
2789                         break;
2790                 case sdma_event_e81_hw_frozen:
2791                         break;
2792                 case sdma_event_e82_hw_unfreeze:
2793                         break;
2794                 case sdma_event_e85_link_down:
2795                         ss->go_s99_running = 0;
2796                         break;
2797                 case sdma_event_e90_sw_halted:
2798                         break;
2799                 }
2800                 break;
2801
2802         case sdma_state_s50_hw_halt_wait:
2803                 switch (event) {
2804                 case sdma_event_e00_go_hw_down:
2805                         sdma_set_state(sde, sdma_state_s00_hw_down);
2806                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2807                         break;
2808                 case sdma_event_e10_go_hw_start:
2809                         break;
2810                 case sdma_event_e15_hw_halt_done:
2811                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2812                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2813                         break;
2814                 case sdma_event_e25_hw_clean_up_done:
2815                         break;
2816                 case sdma_event_e30_go_running:
2817                         ss->go_s99_running = 1;
2818                         break;
2819                 case sdma_event_e40_sw_cleaned:
2820                         break;
2821                 case sdma_event_e50_hw_cleaned:
2822                         break;
2823                 case sdma_event_e60_hw_halted:
2824                         schedule_work(&sde->err_halt_worker);
2825                         break;
2826                 case sdma_event_e70_go_idle:
2827                         ss->go_s99_running = 0;
2828                         break;
2829                 case sdma_event_e80_hw_freeze:
2830                         break;
2831                 case sdma_event_e81_hw_frozen:
2832                         break;
2833                 case sdma_event_e82_hw_unfreeze:
2834                         break;
2835                 case sdma_event_e85_link_down:
2836                         ss->go_s99_running = 0;
2837                         break;
2838                 case sdma_event_e90_sw_halted:
2839                         break;
2840                 }
2841                 break;
2842
2843         case sdma_state_s60_idle_halt_wait:
2844                 switch (event) {
2845                 case sdma_event_e00_go_hw_down:
2846                         sdma_set_state(sde, sdma_state_s00_hw_down);
2847                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2848                         break;
2849                 case sdma_event_e10_go_hw_start:
2850                         break;
2851                 case sdma_event_e15_hw_halt_done:
2852                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2853                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2854                         break;
2855                 case sdma_event_e25_hw_clean_up_done:
2856                         break;
2857                 case sdma_event_e30_go_running:
2858                         ss->go_s99_running = 1;
2859                         break;
2860                 case sdma_event_e40_sw_cleaned:
2861                         break;
2862                 case sdma_event_e50_hw_cleaned:
2863                         break;
2864                 case sdma_event_e60_hw_halted:
2865                         schedule_work(&sde->err_halt_worker);
2866                         break;
2867                 case sdma_event_e70_go_idle:
2868                         ss->go_s99_running = 0;
2869                         break;
2870                 case sdma_event_e80_hw_freeze:
2871                         break;
2872                 case sdma_event_e81_hw_frozen:
2873                         break;
2874                 case sdma_event_e82_hw_unfreeze:
2875                         break;
2876                 case sdma_event_e85_link_down:
2877                         break;
2878                 case sdma_event_e90_sw_halted:
2879                         break;
2880                 }
2881                 break;
2882
2883         case sdma_state_s80_hw_freeze:
2884                 switch (event) {
2885                 case sdma_event_e00_go_hw_down:
2886                         sdma_set_state(sde, sdma_state_s00_hw_down);
2887                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2888                         break;
2889                 case sdma_event_e10_go_hw_start:
2890                         break;
2891                 case sdma_event_e15_hw_halt_done:
2892                         break;
2893                 case sdma_event_e25_hw_clean_up_done:
2894                         break;
2895                 case sdma_event_e30_go_running:
2896                         ss->go_s99_running = 1;
2897                         break;
2898                 case sdma_event_e40_sw_cleaned:
2899                         break;
2900                 case sdma_event_e50_hw_cleaned:
2901                         break;
2902                 case sdma_event_e60_hw_halted:
2903                         break;
2904                 case sdma_event_e70_go_idle:
2905                         ss->go_s99_running = 0;
2906                         break;
2907                 case sdma_event_e80_hw_freeze:
2908                         break;
2909                 case sdma_event_e81_hw_frozen:
2910                         sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2911                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2912                         break;
2913                 case sdma_event_e82_hw_unfreeze:
2914                         break;
2915                 case sdma_event_e85_link_down:
2916                         break;
2917                 case sdma_event_e90_sw_halted:
2918                         break;
2919                 }
2920                 break;
2921
2922         case sdma_state_s82_freeze_sw_clean:
2923                 switch (event) {
2924                 case sdma_event_e00_go_hw_down:
2925                         sdma_set_state(sde, sdma_state_s00_hw_down);
2926                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2927                         break;
2928                 case sdma_event_e10_go_hw_start:
2929                         break;
2930                 case sdma_event_e15_hw_halt_done:
2931                         break;
2932                 case sdma_event_e25_hw_clean_up_done:
2933                         break;
2934                 case sdma_event_e30_go_running:
2935                         ss->go_s99_running = 1;
2936                         break;
2937                 case sdma_event_e40_sw_cleaned:
2938                         /* notify caller this engine is done cleaning */
2939                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2940                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2941                         break;
2942                 case sdma_event_e50_hw_cleaned:
2943                         break;
2944                 case sdma_event_e60_hw_halted:
2945                         break;
2946                 case sdma_event_e70_go_idle:
2947                         ss->go_s99_running = 0;
2948                         break;
2949                 case sdma_event_e80_hw_freeze:
2950                         break;
2951                 case sdma_event_e81_hw_frozen:
2952                         break;
2953                 case sdma_event_e82_hw_unfreeze:
2954                         sdma_hw_start_up(sde);
2955                         sdma_set_state(sde, ss->go_s99_running ?
2956                                        sdma_state_s99_running :
2957                                        sdma_state_s20_idle);
2958                         break;
2959                 case sdma_event_e85_link_down:
2960                         break;
2961                 case sdma_event_e90_sw_halted:
2962                         break;
2963                 }
2964                 break;
2965
2966         case sdma_state_s99_running:
2967                 switch (event) {
2968                 case sdma_event_e00_go_hw_down:
2969                         sdma_set_state(sde, sdma_state_s00_hw_down);
2970                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2971                         break;
2972                 case sdma_event_e10_go_hw_start:
2973                         break;
2974                 case sdma_event_e15_hw_halt_done:
2975                         break;
2976                 case sdma_event_e25_hw_clean_up_done:
2977                         break;
2978                 case sdma_event_e30_go_running:
2979                         break;
2980                 case sdma_event_e40_sw_cleaned:
2981                         break;
2982                 case sdma_event_e50_hw_cleaned:
2983                         break;
2984                 case sdma_event_e60_hw_halted:
2985                         need_progress = 1;
2986                         sdma_err_progress_check_schedule(sde);
2987                         /* fall through */
2988                 case sdma_event_e90_sw_halted:
2989                         /*
2990                         * SW initiated halt does not perform engines
2991                         * progress check
2992                         */
2993                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2994                         schedule_work(&sde->err_halt_worker);
2995                         break;
2996                 case sdma_event_e70_go_idle:
2997                         sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
2998                         break;
2999                 case sdma_event_e85_link_down:
3000                         ss->go_s99_running = 0;
3001                         /* fall through */
3002                 case sdma_event_e80_hw_freeze:
3003                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
3004                         atomic_dec(&sde->dd->sdma_unfreeze_count);
3005                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3006                         break;
3007                 case sdma_event_e81_hw_frozen:
3008                         break;
3009                 case sdma_event_e82_hw_unfreeze:
3010                         break;
3011                 }
3012                 break;
3013         }
3014
3015         ss->last_event = event;
3016         if (need_progress)
3017                 sdma_make_progress(sde, 0);
3018 }
3019
3020 /*
3021  * _extend_sdma_tx_descs() - helper to extend txreq
3022  *
3023  * This is called once the initial nominal allocation
3024  * of descriptors in the sdma_txreq is exhausted.
3025  *
3026  * The code will bump the allocation up to the max
3027  * of MAX_DESC (64) descriptors. There doesn't seem
3028  * much point in an interim step. The last descriptor
3029  * is reserved for coalesce buffer in order to support
3030  * cases where input packet has >MAX_DESC iovecs.
3031  *
3032  */
3033 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3034 {
3035         int i;
3036
3037         /* Handle last descriptor */
3038         if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3039                 /* if tlen is 0, it is for padding, release last descriptor */
3040                 if (!tx->tlen) {
3041                         tx->desc_limit = MAX_DESC;
3042                 } else if (!tx->coalesce_buf) {
3043                         /* allocate coalesce buffer with space for padding */
3044                         tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3045                                                    GFP_ATOMIC);
3046                         if (!tx->coalesce_buf)
3047                                 goto enomem;
3048                         tx->coalesce_idx = 0;
3049                 }
3050                 return 0;
3051         }
3052
3053         if (unlikely(tx->num_desc == MAX_DESC))
3054                 goto enomem;
3055
3056         tx->descp = kmalloc_array(
3057                         MAX_DESC,
3058                         sizeof(struct sdma_desc),
3059                         GFP_ATOMIC);
3060         if (!tx->descp)
3061                 goto enomem;
3062
3063         /* reserve last descriptor for coalescing */
3064         tx->desc_limit = MAX_DESC - 1;
3065         /* copy ones already built */
3066         for (i = 0; i < tx->num_desc; i++)
3067                 tx->descp[i] = tx->descs[i];
3068         return 0;
3069 enomem:
3070         __sdma_txclean(dd, tx);
3071         return -ENOMEM;
3072 }
3073
3074 /*
3075  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3076  *
3077  * This is called once the initial nominal allocation of descriptors
3078  * in the sdma_txreq is exhausted.
3079  *
3080  * This function calls _extend_sdma_tx_descs to extend or allocate
3081  * coalesce buffer. If there is a allocated coalesce buffer, it will
3082  * copy the input packet data into the coalesce buffer. It also adds
3083  * coalesce buffer descriptor once when whole packet is received.
3084  *
3085  * Return:
3086  * <0 - error
3087  * 0 - coalescing, don't populate descriptor
3088  * 1 - continue with populating descriptor
3089  */
3090 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3091                            int type, void *kvaddr, struct page *page,
3092                            unsigned long offset, u16 len)
3093 {
3094         int pad_len, rval;
3095         dma_addr_t addr;
3096
3097         rval = _extend_sdma_tx_descs(dd, tx);
3098         if (rval) {
3099                 __sdma_txclean(dd, tx);
3100                 return rval;
3101         }
3102
3103         /* If coalesce buffer is allocated, copy data into it */
3104         if (tx->coalesce_buf) {
3105                 if (type == SDMA_MAP_NONE) {
3106                         __sdma_txclean(dd, tx);
3107                         return -EINVAL;
3108                 }
3109
3110                 if (type == SDMA_MAP_PAGE) {
3111                         kvaddr = kmap(page);
3112                         kvaddr += offset;
3113                 } else if (WARN_ON(!kvaddr)) {
3114                         __sdma_txclean(dd, tx);
3115                         return -EINVAL;
3116                 }
3117
3118                 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3119                 tx->coalesce_idx += len;
3120                 if (type == SDMA_MAP_PAGE)
3121                         kunmap(page);
3122
3123                 /* If there is more data, return */
3124                 if (tx->tlen - tx->coalesce_idx)
3125                         return 0;
3126
3127                 /* Whole packet is received; add any padding */
3128                 pad_len = tx->packet_len & (sizeof(u32) - 1);
3129                 if (pad_len) {
3130                         pad_len = sizeof(u32) - pad_len;
3131                         memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3132                         /* padding is taken care of for coalescing case */
3133                         tx->packet_len += pad_len;
3134                         tx->tlen += pad_len;
3135                 }
3136
3137                 /* dma map the coalesce buffer */
3138                 addr = dma_map_single(&dd->pcidev->dev,
3139                                       tx->coalesce_buf,
3140                                       tx->tlen,
3141                                       DMA_TO_DEVICE);
3142
3143                 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3144                         __sdma_txclean(dd, tx);
3145                         return -ENOSPC;
3146                 }
3147
3148                 /* Add descriptor for coalesce buffer */
3149                 tx->desc_limit = MAX_DESC;
3150                 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3151                                          addr, tx->tlen);
3152         }
3153
3154         return 1;
3155 }
3156
3157 /* Update sdes when the lmc changes */
3158 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3159 {
3160         struct sdma_engine *sde;
3161         int i;
3162         u64 sreg;
3163
3164         sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3165                 SD(CHECK_SLID_MASK_SHIFT)) |
3166                 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3167                 SD(CHECK_SLID_VALUE_SHIFT));
3168
3169         for (i = 0; i < dd->num_sdma; i++) {
3170                 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3171                           i, (u32)sreg);
3172                 sde = &dd->per_sdma[i];
3173                 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3174         }
3175 }
3176
3177 /* tx not dword sized - pad */
3178 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3179 {
3180         int rval = 0;
3181
3182         tx->num_desc++;
3183         if ((unlikely(tx->num_desc == tx->desc_limit))) {
3184                 rval = _extend_sdma_tx_descs(dd, tx);
3185                 if (rval) {
3186                         __sdma_txclean(dd, tx);
3187                         return rval;
3188                 }
3189         }
3190         /* finish the one just added */
3191         make_tx_sdma_desc(
3192                 tx,
3193                 SDMA_MAP_NONE,
3194                 dd->sdma_pad_phys,
3195                 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3196         _sdma_close_tx(dd, tx);
3197         return rval;
3198 }
3199
3200 /*
3201  * Add ahg to the sdma_txreq
3202  *
3203  * The logic will consume up to 3
3204  * descriptors at the beginning of
3205  * sdma_txreq.
3206  */
3207 void _sdma_txreq_ahgadd(
3208         struct sdma_txreq *tx,
3209         u8 num_ahg,
3210         u8 ahg_entry,
3211         u32 *ahg,
3212         u8 ahg_hlen)
3213 {
3214         u32 i, shift = 0, desc = 0;
3215         u8 mode;
3216
3217         WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3218         /* compute mode */
3219         if (num_ahg == 1)
3220                 mode = SDMA_AHG_APPLY_UPDATE1;
3221         else if (num_ahg <= 5)
3222                 mode = SDMA_AHG_APPLY_UPDATE2;
3223         else
3224                 mode = SDMA_AHG_APPLY_UPDATE3;
3225         tx->num_desc++;
3226         /* initialize to consumed descriptors to zero */
3227         switch (mode) {
3228         case SDMA_AHG_APPLY_UPDATE3:
3229                 tx->num_desc++;
3230                 tx->descs[2].qw[0] = 0;
3231                 tx->descs[2].qw[1] = 0;
3232                 /* FALLTHROUGH */
3233         case SDMA_AHG_APPLY_UPDATE2:
3234                 tx->num_desc++;
3235                 tx->descs[1].qw[0] = 0;
3236                 tx->descs[1].qw[1] = 0;
3237                 break;
3238         }
3239         ahg_hlen >>= 2;
3240         tx->descs[0].qw[1] |=
3241                 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3242                         << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3243                 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3244                         << SDMA_DESC1_HEADER_DWS_SHIFT) |
3245                 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3246                         << SDMA_DESC1_HEADER_MODE_SHIFT) |
3247                 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3248                         << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3249         for (i = 0; i < (num_ahg - 1); i++) {
3250                 if (!shift && !(i & 2))
3251                         desc++;
3252                 tx->descs[desc].qw[!!(i & 2)] |=
3253                         (((u64)ahg[i + 1])
3254                                 << shift);
3255                 shift = (shift + 32) & 63;
3256         }
3257 }
3258
3259 /**
3260  * sdma_ahg_alloc - allocate an AHG entry
3261  * @sde: engine to allocate from
3262  *
3263  * Return:
3264  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3265  * -ENOSPC if an entry is not available
3266  */
3267 int sdma_ahg_alloc(struct sdma_engine *sde)
3268 {
3269         int nr;
3270         int oldbit;
3271
3272         if (!sde) {
3273                 trace_hfi1_ahg_allocate(sde, -EINVAL);
3274                 return -EINVAL;
3275         }
3276         while (1) {
3277                 nr = ffz(READ_ONCE(sde->ahg_bits));
3278                 if (nr > 31) {
3279                         trace_hfi1_ahg_allocate(sde, -ENOSPC);
3280                         return -ENOSPC;
3281                 }
3282                 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3283                 if (!oldbit)
3284                         break;
3285                 cpu_relax();
3286         }
3287         trace_hfi1_ahg_allocate(sde, nr);
3288         return nr;
3289 }
3290
3291 /**
3292  * sdma_ahg_free - free an AHG entry
3293  * @sde: engine to return AHG entry
3294  * @ahg_index: index to free
3295  *
3296  * This routine frees the indicate AHG entry.
3297  */
3298 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3299 {
3300         if (!sde)
3301                 return;
3302         trace_hfi1_ahg_deallocate(sde, ahg_index);
3303         if (ahg_index < 0 || ahg_index > 31)
3304                 return;
3305         clear_bit(ahg_index, &sde->ahg_bits);
3306 }
3307
3308 /*
3309  * SPC freeze handling for SDMA engines.  Called when the driver knows
3310  * the SPC is going into a freeze but before the freeze is fully
3311  * settled.  Generally an error interrupt.
3312  *
3313  * This event will pull the engine out of running so no more entries can be
3314  * added to the engine's queue.
3315  */
3316 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3317 {
3318         int i;
3319         enum sdma_events event = link_down ? sdma_event_e85_link_down :
3320                                              sdma_event_e80_hw_freeze;
3321
3322         /* set up the wait but do not wait here */
3323         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3324
3325         /* tell all engines to stop running and wait */
3326         for (i = 0; i < dd->num_sdma; i++)
3327                 sdma_process_event(&dd->per_sdma[i], event);
3328
3329         /* sdma_freeze() will wait for all engines to have stopped */
3330 }
3331
3332 /*
3333  * SPC freeze handling for SDMA engines.  Called when the driver knows
3334  * the SPC is fully frozen.
3335  */
3336 void sdma_freeze(struct hfi1_devdata *dd)
3337 {
3338         int i;
3339         int ret;
3340
3341         /*
3342          * Make sure all engines have moved out of the running state before
3343          * continuing.
3344          */
3345         ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3346                                        atomic_read(&dd->sdma_unfreeze_count) <=
3347                                        0);
3348         /* interrupted or count is negative, then unloading - just exit */
3349         if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3350                 return;
3351
3352         /* set up the count for the next wait */
3353         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3354
3355         /* tell all engines that the SPC is frozen, they can start cleaning */
3356         for (i = 0; i < dd->num_sdma; i++)
3357                 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3358
3359         /*
3360          * Wait for everyone to finish software clean before exiting.  The
3361          * software clean will read engine CSRs, so must be completed before
3362          * the next step, which will clear the engine CSRs.
3363          */
3364         (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3365                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3366         /* no need to check results - done no matter what */
3367 }
3368
3369 /*
3370  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3371  *
3372  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3373  * that is left is a software clean.  We could do it after the SPC is fully
3374  * frozen, but then we'd have to add another state to wait for the unfreeze.
3375  * Instead, just defer the software clean until the unfreeze step.
3376  */
3377 void sdma_unfreeze(struct hfi1_devdata *dd)
3378 {
3379         int i;
3380
3381         /* tell all engines start freeze clean up */
3382         for (i = 0; i < dd->num_sdma; i++)
3383                 sdma_process_event(&dd->per_sdma[i],
3384                                    sdma_event_e82_hw_unfreeze);
3385 }
3386
3387 /**
3388  * _sdma_engine_progress_schedule() - schedule progress on engine
3389  * @sde: sdma_engine to schedule progress
3390  *
3391  */
3392 void _sdma_engine_progress_schedule(
3393         struct sdma_engine *sde)
3394 {
3395         trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3396         /* assume we have selected a good cpu */
3397         write_csr(sde->dd,
3398                   CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3399                   sde->progress_mask);
3400 }