Merge tag 'qcom-arm64-defconfig-fixes-for-4.13-rc2' of git://git.kernel.org/pub/scm...
[sfrench/cifs-2.6.git] / drivers / infiniband / hw / hfi1 / chip.c
1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68
69 #define NUM_IB_PORTS 1
70
71 uint kdeth_qp;
72 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
73 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
74
75 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
76 module_param(num_vls, uint, S_IRUGO);
77 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
78
79 /*
80  * Default time to aggregate two 10K packets from the idle state
81  * (timer not running). The timer starts at the end of the first packet,
82  * so only the time for one 10K packet and header plus a bit extra is needed.
83  * 10 * 1024 + 64 header byte = 10304 byte
84  * 10304 byte / 12.5 GB/s = 824.32ns
85  */
86 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
87 module_param(rcv_intr_timeout, uint, S_IRUGO);
88 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
89
90 uint rcv_intr_count = 16; /* same as qib */
91 module_param(rcv_intr_count, uint, S_IRUGO);
92 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
93
94 ushort link_crc_mask = SUPPORTED_CRCS;
95 module_param(link_crc_mask, ushort, S_IRUGO);
96 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
97
98 uint loopback;
99 module_param_named(loopback, loopback, uint, S_IRUGO);
100 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
101
102 /* Other driver tunables */
103 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
104 static ushort crc_14b_sideband = 1;
105 static uint use_flr = 1;
106 uint quick_linkup; /* skip LNI */
107
108 struct flag_table {
109         u64 flag;       /* the flag */
110         char *str;      /* description string */
111         u16 extra;      /* extra information */
112         u16 unused0;
113         u32 unused1;
114 };
115
116 /* str must be a string constant */
117 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
118 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
119
120 /* Send Error Consequences */
121 #define SEC_WRITE_DROPPED       0x1
122 #define SEC_PACKET_DROPPED      0x2
123 #define SEC_SC_HALTED           0x4     /* per-context only */
124 #define SEC_SPC_FREEZE          0x8     /* per-HFI only */
125
126 #define DEFAULT_KRCVQS            2
127 #define MIN_KERNEL_KCTXTS         2
128 #define FIRST_KERNEL_KCTXT        1
129
130 /*
131  * RSM instance allocation
132  *   0 - Verbs
133  *   1 - User Fecn Handling
134  *   2 - Vnic
135  */
136 #define RSM_INS_VERBS             0
137 #define RSM_INS_FECN              1
138 #define RSM_INS_VNIC              2
139
140 /* Bit offset into the GUID which carries HFI id information */
141 #define GUID_HFI_INDEX_SHIFT     39
142
143 /* extract the emulation revision */
144 #define emulator_rev(dd) ((dd)->irev >> 8)
145 /* parallel and serial emulation versions are 3 and 4 respectively */
146 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
147 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
148
149 /* RSM fields for Verbs */
150 /* packet type */
151 #define IB_PACKET_TYPE         2ull
152 #define QW_SHIFT               6ull
153 /* QPN[7..1] */
154 #define QPN_WIDTH              7ull
155
156 /* LRH.BTH: QW 0, OFFSET 48 - for match */
157 #define LRH_BTH_QW             0ull
158 #define LRH_BTH_BIT_OFFSET     48ull
159 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
160 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
161 #define LRH_BTH_SELECT
162 #define LRH_BTH_MASK           3ull
163 #define LRH_BTH_VALUE          2ull
164
165 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
166 #define LRH_SC_QW              0ull
167 #define LRH_SC_BIT_OFFSET      56ull
168 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
169 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
170 #define LRH_SC_MASK            128ull
171 #define LRH_SC_VALUE           0ull
172
173 /* SC[n..0] QW 0, OFFSET 60 - for select */
174 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
175
176 /* QPN[m+n:1] QW 1, OFFSET 1 */
177 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
178
179 /* RSM fields for Vnic */
180 /* L2_TYPE: QW 0, OFFSET 61 - for match */
181 #define L2_TYPE_QW             0ull
182 #define L2_TYPE_BIT_OFFSET     61ull
183 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
184 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
185 #define L2_TYPE_MASK           3ull
186 #define L2_16B_VALUE           2ull
187
188 /* L4_TYPE QW 1, OFFSET 0 - for match */
189 #define L4_TYPE_QW              1ull
190 #define L4_TYPE_BIT_OFFSET      0ull
191 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
192 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
193 #define L4_16B_TYPE_MASK        0xFFull
194 #define L4_16B_ETH_VALUE        0x78ull
195
196 /* 16B VESWID - for select */
197 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
198 /* 16B ENTROPY - for select */
199 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
200
201 /* defines to build power on SC2VL table */
202 #define SC2VL_VAL( \
203         num, \
204         sc0, sc0val, \
205         sc1, sc1val, \
206         sc2, sc2val, \
207         sc3, sc3val, \
208         sc4, sc4val, \
209         sc5, sc5val, \
210         sc6, sc6val, \
211         sc7, sc7val) \
212 ( \
213         ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
214         ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
215         ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
216         ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
217         ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
218         ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
219         ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
220         ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
221 )
222
223 #define DC_SC_VL_VAL( \
224         range, \
225         e0, e0val, \
226         e1, e1val, \
227         e2, e2val, \
228         e3, e3val, \
229         e4, e4val, \
230         e5, e5val, \
231         e6, e6val, \
232         e7, e7val, \
233         e8, e8val, \
234         e9, e9val, \
235         e10, e10val, \
236         e11, e11val, \
237         e12, e12val, \
238         e13, e13val, \
239         e14, e14val, \
240         e15, e15val) \
241 ( \
242         ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
243         ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
244         ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
245         ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
246         ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
247         ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
248         ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
249         ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
250         ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
251         ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
252         ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
253         ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
254         ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
255         ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
256         ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
257         ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
258 )
259
260 /* all CceStatus sub-block freeze bits */
261 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
262                         | CCE_STATUS_RXE_FROZE_SMASK \
263                         | CCE_STATUS_TXE_FROZE_SMASK \
264                         | CCE_STATUS_TXE_PIO_FROZE_SMASK)
265 /* all CceStatus sub-block TXE pause bits */
266 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
267                         | CCE_STATUS_TXE_PAUSED_SMASK \
268                         | CCE_STATUS_SDMA_PAUSED_SMASK)
269 /* all CceStatus sub-block RXE pause bits */
270 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
271
272 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
273 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
274
275 /*
276  * CCE Error flags.
277  */
278 static struct flag_table cce_err_status_flags[] = {
279 /* 0*/  FLAG_ENTRY0("CceCsrParityErr",
280                 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
281 /* 1*/  FLAG_ENTRY0("CceCsrReadBadAddrErr",
282                 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
283 /* 2*/  FLAG_ENTRY0("CceCsrWriteBadAddrErr",
284                 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
285 /* 3*/  FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
286                 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
287 /* 4*/  FLAG_ENTRY0("CceTrgtAccessErr",
288                 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
289 /* 5*/  FLAG_ENTRY0("CceRspdDataParityErr",
290                 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
291 /* 6*/  FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
292                 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
293 /* 7*/  FLAG_ENTRY0("CceCsrCfgBusParityErr",
294                 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
295 /* 8*/  FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
296                 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
297 /* 9*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
298             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
299 /*10*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
300             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
301 /*11*/  FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
302             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
303 /*12*/  FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
304                 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
305 /*13*/  FLAG_ENTRY0("PcicRetryMemCorErr",
306                 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
307 /*14*/  FLAG_ENTRY0("PcicRetryMemCorErr",
308                 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
309 /*15*/  FLAG_ENTRY0("PcicPostHdQCorErr",
310                 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
311 /*16*/  FLAG_ENTRY0("PcicPostHdQCorErr",
312                 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
313 /*17*/  FLAG_ENTRY0("PcicPostHdQCorErr",
314                 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
315 /*18*/  FLAG_ENTRY0("PcicCplDatQCorErr",
316                 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
317 /*19*/  FLAG_ENTRY0("PcicNPostHQParityErr",
318                 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
319 /*20*/  FLAG_ENTRY0("PcicNPostDatQParityErr",
320                 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
321 /*21*/  FLAG_ENTRY0("PcicRetryMemUncErr",
322                 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
323 /*22*/  FLAG_ENTRY0("PcicRetrySotMemUncErr",
324                 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
325 /*23*/  FLAG_ENTRY0("PcicPostHdQUncErr",
326                 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
327 /*24*/  FLAG_ENTRY0("PcicPostDatQUncErr",
328                 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
329 /*25*/  FLAG_ENTRY0("PcicCplHdQUncErr",
330                 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
331 /*26*/  FLAG_ENTRY0("PcicCplDatQUncErr",
332                 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
333 /*27*/  FLAG_ENTRY0("PcicTransmitFrontParityErr",
334                 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
335 /*28*/  FLAG_ENTRY0("PcicTransmitBackParityErr",
336                 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
337 /*29*/  FLAG_ENTRY0("PcicReceiveParityErr",
338                 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
339 /*30*/  FLAG_ENTRY0("CceTrgtCplTimeoutErr",
340                 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
341 /*31*/  FLAG_ENTRY0("LATriggered",
342                 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
343 /*32*/  FLAG_ENTRY0("CceSegReadBadAddrErr",
344                 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
345 /*33*/  FLAG_ENTRY0("CceSegWriteBadAddrErr",
346                 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
347 /*34*/  FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
348                 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
349 /*35*/  FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
350                 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
351 /*36*/  FLAG_ENTRY0("CceMsixTableCorErr",
352                 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
353 /*37*/  FLAG_ENTRY0("CceMsixTableUncErr",
354                 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
355 /*38*/  FLAG_ENTRY0("CceIntMapCorErr",
356                 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
357 /*39*/  FLAG_ENTRY0("CceIntMapUncErr",
358                 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
359 /*40*/  FLAG_ENTRY0("CceMsixCsrParityErr",
360                 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
361 /*41-63 reserved*/
362 };
363
364 /*
365  * Misc Error flags
366  */
367 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
368 static struct flag_table misc_err_status_flags[] = {
369 /* 0*/  FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
370 /* 1*/  FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
371 /* 2*/  FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
372 /* 3*/  FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
373 /* 4*/  FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
374 /* 5*/  FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
375 /* 6*/  FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
376 /* 7*/  FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
377 /* 8*/  FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
378 /* 9*/  FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
379 /*10*/  FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
380 /*11*/  FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
381 /*12*/  FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
382 };
383
384 /*
385  * TXE PIO Error flags and consequences
386  */
387 static struct flag_table pio_err_status_flags[] = {
388 /* 0*/  FLAG_ENTRY("PioWriteBadCtxt",
389         SEC_WRITE_DROPPED,
390         SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
391 /* 1*/  FLAG_ENTRY("PioWriteAddrParity",
392         SEC_SPC_FREEZE,
393         SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
394 /* 2*/  FLAG_ENTRY("PioCsrParity",
395         SEC_SPC_FREEZE,
396         SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
397 /* 3*/  FLAG_ENTRY("PioSbMemFifo0",
398         SEC_SPC_FREEZE,
399         SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
400 /* 4*/  FLAG_ENTRY("PioSbMemFifo1",
401         SEC_SPC_FREEZE,
402         SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
403 /* 5*/  FLAG_ENTRY("PioPccFifoParity",
404         SEC_SPC_FREEZE,
405         SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
406 /* 6*/  FLAG_ENTRY("PioPecFifoParity",
407         SEC_SPC_FREEZE,
408         SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
409 /* 7*/  FLAG_ENTRY("PioSbrdctlCrrelParity",
410         SEC_SPC_FREEZE,
411         SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
412 /* 8*/  FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
413         SEC_SPC_FREEZE,
414         SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
415 /* 9*/  FLAG_ENTRY("PioPktEvictFifoParityErr",
416         SEC_SPC_FREEZE,
417         SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
418 /*10*/  FLAG_ENTRY("PioSmPktResetParity",
419         SEC_SPC_FREEZE,
420         SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
421 /*11*/  FLAG_ENTRY("PioVlLenMemBank0Unc",
422         SEC_SPC_FREEZE,
423         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
424 /*12*/  FLAG_ENTRY("PioVlLenMemBank1Unc",
425         SEC_SPC_FREEZE,
426         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
427 /*13*/  FLAG_ENTRY("PioVlLenMemBank0Cor",
428         0,
429         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
430 /*14*/  FLAG_ENTRY("PioVlLenMemBank1Cor",
431         0,
432         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
433 /*15*/  FLAG_ENTRY("PioCreditRetFifoParity",
434         SEC_SPC_FREEZE,
435         SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
436 /*16*/  FLAG_ENTRY("PioPpmcPblFifo",
437         SEC_SPC_FREEZE,
438         SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
439 /*17*/  FLAG_ENTRY("PioInitSmIn",
440         0,
441         SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
442 /*18*/  FLAG_ENTRY("PioPktEvictSmOrArbSm",
443         SEC_SPC_FREEZE,
444         SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
445 /*19*/  FLAG_ENTRY("PioHostAddrMemUnc",
446         SEC_SPC_FREEZE,
447         SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
448 /*20*/  FLAG_ENTRY("PioHostAddrMemCor",
449         0,
450         SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
451 /*21*/  FLAG_ENTRY("PioWriteDataParity",
452         SEC_SPC_FREEZE,
453         SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
454 /*22*/  FLAG_ENTRY("PioStateMachine",
455         SEC_SPC_FREEZE,
456         SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
457 /*23*/  FLAG_ENTRY("PioWriteQwValidParity",
458         SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
459         SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
460 /*24*/  FLAG_ENTRY("PioBlockQwCountParity",
461         SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
462         SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
463 /*25*/  FLAG_ENTRY("PioVlfVlLenParity",
464         SEC_SPC_FREEZE,
465         SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
466 /*26*/  FLAG_ENTRY("PioVlfSopParity",
467         SEC_SPC_FREEZE,
468         SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
469 /*27*/  FLAG_ENTRY("PioVlFifoParity",
470         SEC_SPC_FREEZE,
471         SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
472 /*28*/  FLAG_ENTRY("PioPpmcBqcMemParity",
473         SEC_SPC_FREEZE,
474         SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
475 /*29*/  FLAG_ENTRY("PioPpmcSopLen",
476         SEC_SPC_FREEZE,
477         SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
478 /*30-31 reserved*/
479 /*32*/  FLAG_ENTRY("PioCurrentFreeCntParity",
480         SEC_SPC_FREEZE,
481         SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
482 /*33*/  FLAG_ENTRY("PioLastReturnedCntParity",
483         SEC_SPC_FREEZE,
484         SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
485 /*34*/  FLAG_ENTRY("PioPccSopHeadParity",
486         SEC_SPC_FREEZE,
487         SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
488 /*35*/  FLAG_ENTRY("PioPecSopHeadParityErr",
489         SEC_SPC_FREEZE,
490         SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
491 /*36-63 reserved*/
492 };
493
494 /* TXE PIO errors that cause an SPC freeze */
495 #define ALL_PIO_FREEZE_ERR \
496         (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
497         | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
498         | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
499         | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
500         | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
501         | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
502         | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
503         | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
504         | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
505         | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
506         | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
507         | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
508         | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
509         | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
510         | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
511         | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
512         | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
513         | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
514         | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
515         | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
516         | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
517         | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
518         | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
519         | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
520         | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
521         | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
522         | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
523         | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
524         | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
525
526 /*
527  * TXE SDMA Error flags
528  */
529 static struct flag_table sdma_err_status_flags[] = {
530 /* 0*/  FLAG_ENTRY0("SDmaRpyTagErr",
531                 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
532 /* 1*/  FLAG_ENTRY0("SDmaCsrParityErr",
533                 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
534 /* 2*/  FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
535                 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
536 /* 3*/  FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
537                 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
538 /*04-63 reserved*/
539 };
540
541 /* TXE SDMA errors that cause an SPC freeze */
542 #define ALL_SDMA_FREEZE_ERR  \
543                 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
544                 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
545                 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
546
547 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
548 #define PORT_DISCARD_EGRESS_ERRS \
549         (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
550         | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
551         | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
552
553 /*
554  * TXE Egress Error flags
555  */
556 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
557 static struct flag_table egress_err_status_flags[] = {
558 /* 0*/  FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
559 /* 1*/  FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
560 /* 2 reserved */
561 /* 3*/  FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
562                 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
563 /* 4*/  FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
564 /* 5*/  FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
565 /* 6 reserved */
566 /* 7*/  FLAG_ENTRY0("TxPioLaunchIntfParityErr",
567                 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
568 /* 8*/  FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
569                 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
570 /* 9-10 reserved */
571 /*11*/  FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
572                 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
573 /*12*/  FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
574 /*13*/  FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
575 /*14*/  FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
576 /*15*/  FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
577 /*16*/  FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
578                 SEES(TX_SDMA0_DISALLOWED_PACKET)),
579 /*17*/  FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
580                 SEES(TX_SDMA1_DISALLOWED_PACKET)),
581 /*18*/  FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
582                 SEES(TX_SDMA2_DISALLOWED_PACKET)),
583 /*19*/  FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
584                 SEES(TX_SDMA3_DISALLOWED_PACKET)),
585 /*20*/  FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
586                 SEES(TX_SDMA4_DISALLOWED_PACKET)),
587 /*21*/  FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
588                 SEES(TX_SDMA5_DISALLOWED_PACKET)),
589 /*22*/  FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
590                 SEES(TX_SDMA6_DISALLOWED_PACKET)),
591 /*23*/  FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
592                 SEES(TX_SDMA7_DISALLOWED_PACKET)),
593 /*24*/  FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
594                 SEES(TX_SDMA8_DISALLOWED_PACKET)),
595 /*25*/  FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
596                 SEES(TX_SDMA9_DISALLOWED_PACKET)),
597 /*26*/  FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
598                 SEES(TX_SDMA10_DISALLOWED_PACKET)),
599 /*27*/  FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
600                 SEES(TX_SDMA11_DISALLOWED_PACKET)),
601 /*28*/  FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
602                 SEES(TX_SDMA12_DISALLOWED_PACKET)),
603 /*29*/  FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
604                 SEES(TX_SDMA13_DISALLOWED_PACKET)),
605 /*30*/  FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
606                 SEES(TX_SDMA14_DISALLOWED_PACKET)),
607 /*31*/  FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
608                 SEES(TX_SDMA15_DISALLOWED_PACKET)),
609 /*32*/  FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
610                 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
611 /*33*/  FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
612                 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
613 /*34*/  FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
614                 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
615 /*35*/  FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
616                 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
617 /*36*/  FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
618                 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
619 /*37*/  FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
620                 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
621 /*38*/  FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
622                 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
623 /*39*/  FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
624                 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
625 /*40*/  FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
626                 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
627 /*41*/  FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
628 /*42*/  FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
629 /*43*/  FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
630 /*44*/  FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
631 /*45*/  FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
632 /*46*/  FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
633 /*47*/  FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
634 /*48*/  FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
635 /*49*/  FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
636 /*50*/  FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
637 /*51*/  FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
638 /*52*/  FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
639 /*53*/  FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
640 /*54*/  FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
641 /*55*/  FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
642 /*56*/  FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
643 /*57*/  FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
644 /*58*/  FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
645 /*59*/  FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
646 /*60*/  FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
647 /*61*/  FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
648 /*62*/  FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
649                 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
650 /*63*/  FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
651                 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
652 };
653
654 /*
655  * TXE Egress Error Info flags
656  */
657 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
658 static struct flag_table egress_err_info_flags[] = {
659 /* 0*/  FLAG_ENTRY0("Reserved", 0ull),
660 /* 1*/  FLAG_ENTRY0("VLErr", SEEI(VL)),
661 /* 2*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 3*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663 /* 4*/  FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
664 /* 5*/  FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
665 /* 6*/  FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
666 /* 7*/  FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
667 /* 8*/  FLAG_ENTRY0("RawErr", SEEI(RAW)),
668 /* 9*/  FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
669 /*10*/  FLAG_ENTRY0("GRHErr", SEEI(GRH)),
670 /*11*/  FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
671 /*12*/  FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
672 /*13*/  FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
673 /*14*/  FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
674 /*15*/  FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
675 /*16*/  FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
676 /*17*/  FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
677 /*18*/  FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
678 /*19*/  FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
679 /*20*/  FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
680 /*21*/  FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
681 };
682
683 /* TXE Egress errors that cause an SPC freeze */
684 #define ALL_TXE_EGRESS_FREEZE_ERR \
685         (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
686         | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
687         | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
688         | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
689         | SEES(TX_LAUNCH_CSR_PARITY) \
690         | SEES(TX_SBRD_CTL_CSR_PARITY) \
691         | SEES(TX_CONFIG_PARITY) \
692         | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
693         | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
694         | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
695         | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
696         | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
697         | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
698         | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
699         | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
700         | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
701         | SEES(TX_CREDIT_RETURN_PARITY))
702
703 /*
704  * TXE Send error flags
705  */
706 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
707 static struct flag_table send_err_status_flags[] = {
708 /* 0*/  FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
709 /* 1*/  FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
710 /* 2*/  FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
711 };
712
713 /*
714  * TXE Send Context Error flags and consequences
715  */
716 static struct flag_table sc_err_status_flags[] = {
717 /* 0*/  FLAG_ENTRY("InconsistentSop",
718                 SEC_PACKET_DROPPED | SEC_SC_HALTED,
719                 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
720 /* 1*/  FLAG_ENTRY("DisallowedPacket",
721                 SEC_PACKET_DROPPED | SEC_SC_HALTED,
722                 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
723 /* 2*/  FLAG_ENTRY("WriteCrossesBoundary",
724                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
725                 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
726 /* 3*/  FLAG_ENTRY("WriteOverflow",
727                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
728                 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
729 /* 4*/  FLAG_ENTRY("WriteOutOfBounds",
730                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
731                 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
732 /* 5-63 reserved*/
733 };
734
735 /*
736  * RXE Receive Error flags
737  */
738 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
739 static struct flag_table rxe_err_status_flags[] = {
740 /* 0*/  FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
741 /* 1*/  FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
742 /* 2*/  FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
743 /* 3*/  FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
744 /* 4*/  FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
745 /* 5*/  FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
746 /* 6*/  FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
747 /* 7*/  FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
748 /* 8*/  FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
749 /* 9*/  FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
750 /*10*/  FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
751 /*11*/  FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
752 /*12*/  FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
753 /*13*/  FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
754 /*14*/  FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
755 /*15*/  FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
756 /*16*/  FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
757                 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
758 /*17*/  FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
759 /*18*/  FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
760 /*19*/  FLAG_ENTRY0("RxRbufBlockListReadUncErr",
761                 RXES(RBUF_BLOCK_LIST_READ_UNC)),
762 /*20*/  FLAG_ENTRY0("RxRbufBlockListReadCorErr",
763                 RXES(RBUF_BLOCK_LIST_READ_COR)),
764 /*21*/  FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
765                 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
766 /*22*/  FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
767                 RXES(RBUF_CSR_QENT_CNT_PARITY)),
768 /*23*/  FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
769                 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
770 /*24*/  FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
771                 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
772 /*25*/  FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
773 /*26*/  FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
774 /*27*/  FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
775                 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
776 /*28*/  FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
777 /*29*/  FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
778 /*30*/  FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
779 /*31*/  FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
780 /*32*/  FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
781 /*33*/  FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
782 /*34*/  FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
783 /*35*/  FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
784                 RXES(RBUF_FL_INITDONE_PARITY)),
785 /*36*/  FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
786                 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
787 /*37*/  FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
788 /*38*/  FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
789 /*39*/  FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
790 /*40*/  FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
791                 RXES(LOOKUP_DES_PART1_UNC_COR)),
792 /*41*/  FLAG_ENTRY0("RxLookupDesPart2ParityErr",
793                 RXES(LOOKUP_DES_PART2_PARITY)),
794 /*42*/  FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
795 /*43*/  FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
796 /*44*/  FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
797 /*45*/  FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
798 /*46*/  FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
799 /*47*/  FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
800 /*48*/  FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
801 /*49*/  FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
802 /*50*/  FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
803 /*51*/  FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
804 /*52*/  FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
805 /*53*/  FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
806 /*54*/  FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
807 /*55*/  FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
808 /*56*/  FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
809 /*57*/  FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
810 /*58*/  FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
811 /*59*/  FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
812 /*60*/  FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
813 /*61*/  FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
814 /*62*/  FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
815 /*63*/  FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
816 };
817
818 /* RXE errors that will trigger an SPC freeze */
819 #define ALL_RXE_FREEZE_ERR  \
820         (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
821         | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
822         | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
823         | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
824         | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
825         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
826         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
827         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
828         | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
829         | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
830         | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
831         | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
832         | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
833         | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
834         | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
835         | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
836         | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
837         | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
838         | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
839         | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
840         | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
841         | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
842         | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
843         | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
844         | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
845         | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
846         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
847         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
848         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
849         | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
850         | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
851         | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
852         | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
853         | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
854         | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
855         | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
856         | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
857         | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
858         | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
859         | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
860         | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
861         | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
862         | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
863         | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
864
865 #define RXE_FREEZE_ABORT_MASK \
866         (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
867         RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
868         RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
869
870 /*
871  * DCC Error Flags
872  */
873 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
874 static struct flag_table dcc_err_flags[] = {
875         FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
876         FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
877         FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
878         FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
879         FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
880         FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
881         FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
882         FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
883         FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
884         FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
885         FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
886         FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
887         FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
888         FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
889         FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
890         FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
891         FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
892         FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
893         FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
894         FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
895         FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
896         FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
897         FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
898         FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
899         FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
900         FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
901         FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
902         FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
903         FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
904         FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
905         FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
906         FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
907         FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
908         FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
909         FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
910         FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
911         FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
912         FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
913         FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
914         FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
915         FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
916         FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
917         FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
918         FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
919         FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
920         FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
921 };
922
923 /*
924  * LCB error flags
925  */
926 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
927 static struct flag_table lcb_err_flags[] = {
928 /* 0*/  FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
929 /* 1*/  FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
930 /* 2*/  FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
931 /* 3*/  FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
932                 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
933 /* 4*/  FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
934 /* 5*/  FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
935 /* 6*/  FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
936 /* 7*/  FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
937 /* 8*/  FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
938 /* 9*/  FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
939 /*10*/  FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
940 /*11*/  FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
941 /*12*/  FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
942 /*13*/  FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
943                 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
944 /*14*/  FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
945 /*15*/  FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
946 /*16*/  FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
947 /*17*/  FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
948 /*18*/  FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
949 /*19*/  FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
950                 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
951 /*20*/  FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
952 /*21*/  FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
953 /*22*/  FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
954 /*23*/  FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
955 /*24*/  FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
956 /*25*/  FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
957 /*26*/  FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
958                 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
959 /*27*/  FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
960 /*28*/  FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
961                 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
962 /*29*/  FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
963                 LCBE(REDUNDANT_FLIT_PARITY_ERR))
964 };
965
966 /*
967  * DC8051 Error Flags
968  */
969 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
970 static struct flag_table dc8051_err_flags[] = {
971         FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
972         FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
973         FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
974         FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
975         FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
976         FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
977         FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
978         FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
979         FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
980                     D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
981         FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
982 };
983
984 /*
985  * DC8051 Information Error flags
986  *
987  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
988  */
989 static struct flag_table dc8051_info_err_flags[] = {
990         FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
991         FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
992         FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
993         FLAG_ENTRY0("Serdes internal loopback failure",
994                     FAILED_SERDES_INTERNAL_LOOPBACK),
995         FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
996         FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
997         FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
998         FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
999         FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1000         FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1001         FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1002         FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1003         FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1004         FLAG_ENTRY0("External Device Request Timeout",
1005                     EXTERNAL_DEVICE_REQ_TIMEOUT),
1006 };
1007
1008 /*
1009  * DC8051 Information Host Information flags
1010  *
1011  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1012  */
1013 static struct flag_table dc8051_info_host_msg_flags[] = {
1014         FLAG_ENTRY0("Host request done", 0x0001),
1015         FLAG_ENTRY0("BC SMA message", 0x0002),
1016         FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
1017         FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1018         FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1019         FLAG_ENTRY0("External device config request", 0x0020),
1020         FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1021         FLAG_ENTRY0("LinkUp achieved", 0x0080),
1022         FLAG_ENTRY0("Link going down", 0x0100),
1023 };
1024
1025 static u32 encoded_size(u32 size);
1026 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1027 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1028 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1029                                u8 *continuous);
1030 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1031                                   u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1032 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1033                                       u8 *remote_tx_rate, u16 *link_widths);
1034 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1035                                      u8 *flag_bits, u16 *link_widths);
1036 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1037                                   u8 *device_rev);
1038 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1039 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1040 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1041                             u8 *tx_polarity_inversion,
1042                             u8 *rx_polarity_inversion, u8 *max_rate);
1043 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1044                                 unsigned int context, u64 err_status);
1045 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1046 static void handle_dcc_err(struct hfi1_devdata *dd,
1047                            unsigned int context, u64 err_status);
1048 static void handle_lcb_err(struct hfi1_devdata *dd,
1049                            unsigned int context, u64 err_status);
1050 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1051 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058 static void set_partition_keys(struct hfi1_pportdata *ppd);
1059 static const char *link_state_name(u32 state);
1060 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1061                                           u32 state);
1062 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1063                            u64 *out_data);
1064 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1065 static int thermal_init(struct hfi1_devdata *dd);
1066
1067 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1068                                   int msecs);
1069 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1070 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1071 static void handle_temp_err(struct hfi1_devdata *dd);
1072 static void dc_shutdown(struct hfi1_devdata *dd);
1073 static void dc_start(struct hfi1_devdata *dd);
1074 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1075                            unsigned int *np);
1076 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1077 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1078 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1079
1080 /*
1081  * Error interrupt table entry.  This is used as input to the interrupt
1082  * "clear down" routine used for all second tier error interrupt register.
1083  * Second tier interrupt registers have a single bit representing them
1084  * in the top-level CceIntStatus.
1085  */
1086 struct err_reg_info {
1087         u32 status;             /* status CSR offset */
1088         u32 clear;              /* clear CSR offset */
1089         u32 mask;               /* mask CSR offset */
1090         void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1091         const char *desc;
1092 };
1093
1094 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1095 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1096 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1097
1098 /*
1099  * Helpers for building HFI and DC error interrupt table entries.  Different
1100  * helpers are needed because of inconsistent register names.
1101  */
1102 #define EE(reg, handler, desc) \
1103         { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1104                 handler, desc }
1105 #define DC_EE1(reg, handler, desc) \
1106         { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1107 #define DC_EE2(reg, handler, desc) \
1108         { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1109
1110 /*
1111  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1112  * another register containing more information.
1113  */
1114 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1115 /* 0*/  EE(CCE_ERR,             handle_cce_err,    "CceErr"),
1116 /* 1*/  EE(RCV_ERR,             handle_rxe_err,    "RxeErr"),
1117 /* 2*/  EE(MISC_ERR,    handle_misc_err,   "MiscErr"),
1118 /* 3*/  { 0, 0, 0, NULL }, /* reserved */
1119 /* 4*/  EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1120 /* 5*/  EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1121 /* 6*/  EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1122 /* 7*/  EE(SEND_ERR,    handle_txe_err,    "TxeErr")
1123         /* the rest are reserved */
1124 };
1125
1126 /*
1127  * Index into the Various section of the interrupt sources
1128  * corresponding to the Critical Temperature interrupt.
1129  */
1130 #define TCRIT_INT_SOURCE 4
1131
1132 /*
1133  * SDMA error interrupt entry - refers to another register containing more
1134  * information.
1135  */
1136 static const struct err_reg_info sdma_eng_err =
1137         EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1138
1139 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1140 /* 0*/  { 0, 0, 0, NULL }, /* PbcInt */
1141 /* 1*/  { 0, 0, 0, NULL }, /* GpioAssertInt */
1142 /* 2*/  EE(ASIC_QSFP1,  handle_qsfp_int,        "QSFP1"),
1143 /* 3*/  EE(ASIC_QSFP2,  handle_qsfp_int,        "QSFP2"),
1144 /* 4*/  { 0, 0, 0, NULL }, /* TCritInt */
1145         /* rest are reserved */
1146 };
1147
1148 /*
1149  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1150  * register can not be derived from the MTU value because 10K is not
1151  * a power of 2. Therefore, we need a constant. Everything else can
1152  * be calculated.
1153  */
1154 #define DCC_CFG_PORT_MTU_CAP_10240 7
1155
1156 /*
1157  * Table of the DC grouping of error interrupts.  Each entry refers to
1158  * another register containing more information.
1159  */
1160 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1161 /* 0*/  DC_EE1(DCC_ERR,         handle_dcc_err,        "DCC Err"),
1162 /* 1*/  DC_EE2(DC_LCB_ERR,      handle_lcb_err,        "LCB Err"),
1163 /* 2*/  DC_EE2(DC_DC8051_ERR,   handle_8051_interrupt, "DC8051 Interrupt"),
1164 /* 3*/  /* dc_lbm_int - special, see is_dc_int() */
1165         /* the rest are reserved */
1166 };
1167
1168 struct cntr_entry {
1169         /*
1170          * counter name
1171          */
1172         char *name;
1173
1174         /*
1175          * csr to read for name (if applicable)
1176          */
1177         u64 csr;
1178
1179         /*
1180          * offset into dd or ppd to store the counter's value
1181          */
1182         int offset;
1183
1184         /*
1185          * flags
1186          */
1187         u8 flags;
1188
1189         /*
1190          * accessor for stat element, context either dd or ppd
1191          */
1192         u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1193                        int mode, u64 data);
1194 };
1195
1196 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1197 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1198
1199 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1200 { \
1201         name, \
1202         csr, \
1203         offset, \
1204         flags, \
1205         accessor \
1206 }
1207
1208 /* 32bit RXE */
1209 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1210 CNTR_ELEM(#name, \
1211           (counter * 8 + RCV_COUNTER_ARRAY32), \
1212           0, flags | CNTR_32BIT, \
1213           port_access_u32_csr)
1214
1215 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1216 CNTR_ELEM(#name, \
1217           (counter * 8 + RCV_COUNTER_ARRAY32), \
1218           0, flags | CNTR_32BIT, \
1219           dev_access_u32_csr)
1220
1221 /* 64bit RXE */
1222 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1223 CNTR_ELEM(#name, \
1224           (counter * 8 + RCV_COUNTER_ARRAY64), \
1225           0, flags, \
1226           port_access_u64_csr)
1227
1228 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1229 CNTR_ELEM(#name, \
1230           (counter * 8 + RCV_COUNTER_ARRAY64), \
1231           0, flags, \
1232           dev_access_u64_csr)
1233
1234 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1235 #define OVR_ELM(ctx) \
1236 CNTR_ELEM("RcvHdrOvr" #ctx, \
1237           (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1238           0, CNTR_NORMAL, port_access_u64_csr)
1239
1240 /* 32bit TXE */
1241 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1242 CNTR_ELEM(#name, \
1243           (counter * 8 + SEND_COUNTER_ARRAY32), \
1244           0, flags | CNTR_32BIT, \
1245           port_access_u32_csr)
1246
1247 /* 64bit TXE */
1248 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1249 CNTR_ELEM(#name, \
1250           (counter * 8 + SEND_COUNTER_ARRAY64), \
1251           0, flags, \
1252           port_access_u64_csr)
1253
1254 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1255 CNTR_ELEM(#name,\
1256           counter * 8 + SEND_COUNTER_ARRAY64, \
1257           0, \
1258           flags, \
1259           dev_access_u64_csr)
1260
1261 /* CCE */
1262 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1263 CNTR_ELEM(#name, \
1264           (counter * 8 + CCE_COUNTER_ARRAY32), \
1265           0, flags | CNTR_32BIT, \
1266           dev_access_u32_csr)
1267
1268 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1269 CNTR_ELEM(#name, \
1270           (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1271           0, flags | CNTR_32BIT, \
1272           dev_access_u32_csr)
1273
1274 /* DC */
1275 #define DC_PERF_CNTR(name, counter, flags) \
1276 CNTR_ELEM(#name, \
1277           counter, \
1278           0, \
1279           flags, \
1280           dev_access_u64_csr)
1281
1282 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1283 CNTR_ELEM(#name, \
1284           counter, \
1285           0, \
1286           flags, \
1287           dc_access_lcb_cntr)
1288
1289 /* ibp counters */
1290 #define SW_IBP_CNTR(name, cntr) \
1291 CNTR_ELEM(#name, \
1292           0, \
1293           0, \
1294           CNTR_SYNTH, \
1295           access_ibp_##cntr)
1296
1297 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1298 {
1299         if (dd->flags & HFI1_PRESENT) {
1300                 return readq((void __iomem *)dd->kregbase + offset);
1301         }
1302         return -1;
1303 }
1304
1305 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1306 {
1307         if (dd->flags & HFI1_PRESENT)
1308                 writeq(value, (void __iomem *)dd->kregbase + offset);
1309 }
1310
1311 void __iomem *get_csr_addr(
1312         struct hfi1_devdata *dd,
1313         u32 offset)
1314 {
1315         return (void __iomem *)dd->kregbase + offset;
1316 }
1317
1318 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1319                                  int mode, u64 value)
1320 {
1321         u64 ret;
1322
1323         if (mode == CNTR_MODE_R) {
1324                 ret = read_csr(dd, csr);
1325         } else if (mode == CNTR_MODE_W) {
1326                 write_csr(dd, csr, value);
1327                 ret = value;
1328         } else {
1329                 dd_dev_err(dd, "Invalid cntr register access mode");
1330                 return 0;
1331         }
1332
1333         hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1334         return ret;
1335 }
1336
1337 /* Dev Access */
1338 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1339                               void *context, int vl, int mode, u64 data)
1340 {
1341         struct hfi1_devdata *dd = context;
1342         u64 csr = entry->csr;
1343
1344         if (entry->flags & CNTR_SDMA) {
1345                 if (vl == CNTR_INVALID_VL)
1346                         return 0;
1347                 csr += 0x100 * vl;
1348         } else {
1349                 if (vl != CNTR_INVALID_VL)
1350                         return 0;
1351         }
1352         return read_write_csr(dd, csr, mode, data);
1353 }
1354
1355 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1356                               void *context, int idx, int mode, u64 data)
1357 {
1358         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1359
1360         if (dd->per_sdma && idx < dd->num_sdma)
1361                 return dd->per_sdma[idx].err_cnt;
1362         return 0;
1363 }
1364
1365 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1366                               void *context, int idx, int mode, u64 data)
1367 {
1368         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1369
1370         if (dd->per_sdma && idx < dd->num_sdma)
1371                 return dd->per_sdma[idx].sdma_int_cnt;
1372         return 0;
1373 }
1374
1375 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1376                                    void *context, int idx, int mode, u64 data)
1377 {
1378         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1379
1380         if (dd->per_sdma && idx < dd->num_sdma)
1381                 return dd->per_sdma[idx].idle_int_cnt;
1382         return 0;
1383 }
1384
1385 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1386                                        void *context, int idx, int mode,
1387                                        u64 data)
1388 {
1389         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1390
1391         if (dd->per_sdma && idx < dd->num_sdma)
1392                 return dd->per_sdma[idx].progress_int_cnt;
1393         return 0;
1394 }
1395
1396 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1397                               int vl, int mode, u64 data)
1398 {
1399         struct hfi1_devdata *dd = context;
1400
1401         u64 val = 0;
1402         u64 csr = entry->csr;
1403
1404         if (entry->flags & CNTR_VL) {
1405                 if (vl == CNTR_INVALID_VL)
1406                         return 0;
1407                 csr += 8 * vl;
1408         } else {
1409                 if (vl != CNTR_INVALID_VL)
1410                         return 0;
1411         }
1412
1413         val = read_write_csr(dd, csr, mode, data);
1414         return val;
1415 }
1416
1417 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1418                               int vl, int mode, u64 data)
1419 {
1420         struct hfi1_devdata *dd = context;
1421         u32 csr = entry->csr;
1422         int ret = 0;
1423
1424         if (vl != CNTR_INVALID_VL)
1425                 return 0;
1426         if (mode == CNTR_MODE_R)
1427                 ret = read_lcb_csr(dd, csr, &data);
1428         else if (mode == CNTR_MODE_W)
1429                 ret = write_lcb_csr(dd, csr, data);
1430
1431         if (ret) {
1432                 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1433                 return 0;
1434         }
1435
1436         hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1437         return data;
1438 }
1439
1440 /* Port Access */
1441 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1442                                int vl, int mode, u64 data)
1443 {
1444         struct hfi1_pportdata *ppd = context;
1445
1446         if (vl != CNTR_INVALID_VL)
1447                 return 0;
1448         return read_write_csr(ppd->dd, entry->csr, mode, data);
1449 }
1450
1451 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1452                                void *context, int vl, int mode, u64 data)
1453 {
1454         struct hfi1_pportdata *ppd = context;
1455         u64 val;
1456         u64 csr = entry->csr;
1457
1458         if (entry->flags & CNTR_VL) {
1459                 if (vl == CNTR_INVALID_VL)
1460                         return 0;
1461                 csr += 8 * vl;
1462         } else {
1463                 if (vl != CNTR_INVALID_VL)
1464                         return 0;
1465         }
1466         val = read_write_csr(ppd->dd, csr, mode, data);
1467         return val;
1468 }
1469
1470 /* Software defined */
1471 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1472                                 u64 data)
1473 {
1474         u64 ret;
1475
1476         if (mode == CNTR_MODE_R) {
1477                 ret = *cntr;
1478         } else if (mode == CNTR_MODE_W) {
1479                 *cntr = data;
1480                 ret = data;
1481         } else {
1482                 dd_dev_err(dd, "Invalid cntr sw access mode");
1483                 return 0;
1484         }
1485
1486         hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1487
1488         return ret;
1489 }
1490
1491 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1492                                  int vl, int mode, u64 data)
1493 {
1494         struct hfi1_pportdata *ppd = context;
1495
1496         if (vl != CNTR_INVALID_VL)
1497                 return 0;
1498         return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1499 }
1500
1501 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1502                                  int vl, int mode, u64 data)
1503 {
1504         struct hfi1_pportdata *ppd = context;
1505
1506         if (vl != CNTR_INVALID_VL)
1507                 return 0;
1508         return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1509 }
1510
1511 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1512                                        void *context, int vl, int mode,
1513                                        u64 data)
1514 {
1515         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1516
1517         if (vl != CNTR_INVALID_VL)
1518                 return 0;
1519         return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1520 }
1521
1522 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1523                                    void *context, int vl, int mode, u64 data)
1524 {
1525         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1526         u64 zero = 0;
1527         u64 *counter;
1528
1529         if (vl == CNTR_INVALID_VL)
1530                 counter = &ppd->port_xmit_discards;
1531         else if (vl >= 0 && vl < C_VL_COUNT)
1532                 counter = &ppd->port_xmit_discards_vl[vl];
1533         else
1534                 counter = &zero;
1535
1536         return read_write_sw(ppd->dd, counter, mode, data);
1537 }
1538
1539 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1540                                        void *context, int vl, int mode,
1541                                        u64 data)
1542 {
1543         struct hfi1_pportdata *ppd = context;
1544
1545         if (vl != CNTR_INVALID_VL)
1546                 return 0;
1547
1548         return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1549                              mode, data);
1550 }
1551
1552 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1553                                       void *context, int vl, int mode, u64 data)
1554 {
1555         struct hfi1_pportdata *ppd = context;
1556
1557         if (vl != CNTR_INVALID_VL)
1558                 return 0;
1559
1560         return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1561                              mode, data);
1562 }
1563
1564 u64 get_all_cpu_total(u64 __percpu *cntr)
1565 {
1566         int cpu;
1567         u64 counter = 0;
1568
1569         for_each_possible_cpu(cpu)
1570                 counter += *per_cpu_ptr(cntr, cpu);
1571         return counter;
1572 }
1573
1574 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1575                           u64 __percpu *cntr,
1576                           int vl, int mode, u64 data)
1577 {
1578         u64 ret = 0;
1579
1580         if (vl != CNTR_INVALID_VL)
1581                 return 0;
1582
1583         if (mode == CNTR_MODE_R) {
1584                 ret = get_all_cpu_total(cntr) - *z_val;
1585         } else if (mode == CNTR_MODE_W) {
1586                 /* A write can only zero the counter */
1587                 if (data == 0)
1588                         *z_val = get_all_cpu_total(cntr);
1589                 else
1590                         dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1591         } else {
1592                 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1593                 return 0;
1594         }
1595
1596         return ret;
1597 }
1598
1599 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1600                               void *context, int vl, int mode, u64 data)
1601 {
1602         struct hfi1_devdata *dd = context;
1603
1604         return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1605                               mode, data);
1606 }
1607
1608 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1609                                    void *context, int vl, int mode, u64 data)
1610 {
1611         struct hfi1_devdata *dd = context;
1612
1613         return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1614                               mode, data);
1615 }
1616
1617 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1618                               void *context, int vl, int mode, u64 data)
1619 {
1620         struct hfi1_devdata *dd = context;
1621
1622         return dd->verbs_dev.n_piowait;
1623 }
1624
1625 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1626                                void *context, int vl, int mode, u64 data)
1627 {
1628         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1629
1630         return dd->verbs_dev.n_piodrain;
1631 }
1632
1633 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1634                               void *context, int vl, int mode, u64 data)
1635 {
1636         struct hfi1_devdata *dd = context;
1637
1638         return dd->verbs_dev.n_txwait;
1639 }
1640
1641 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1642                                void *context, int vl, int mode, u64 data)
1643 {
1644         struct hfi1_devdata *dd = context;
1645
1646         return dd->verbs_dev.n_kmem_wait;
1647 }
1648
1649 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1650                                    void *context, int vl, int mode, u64 data)
1651 {
1652         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1653
1654         return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1655                               mode, data);
1656 }
1657
1658 /* Software counters for the error status bits within MISC_ERR_STATUS */
1659 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1660                                              void *context, int vl, int mode,
1661                                              u64 data)
1662 {
1663         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1664
1665         return dd->misc_err_status_cnt[12];
1666 }
1667
1668 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1669                                           void *context, int vl, int mode,
1670                                           u64 data)
1671 {
1672         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1673
1674         return dd->misc_err_status_cnt[11];
1675 }
1676
1677 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1678                                                void *context, int vl, int mode,
1679                                                u64 data)
1680 {
1681         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1682
1683         return dd->misc_err_status_cnt[10];
1684 }
1685
1686 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1687                                                  void *context, int vl,
1688                                                  int mode, u64 data)
1689 {
1690         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1691
1692         return dd->misc_err_status_cnt[9];
1693 }
1694
1695 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1696                                            void *context, int vl, int mode,
1697                                            u64 data)
1698 {
1699         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1700
1701         return dd->misc_err_status_cnt[8];
1702 }
1703
1704 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1705                                 const struct cntr_entry *entry,
1706                                 void *context, int vl, int mode, u64 data)
1707 {
1708         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1709
1710         return dd->misc_err_status_cnt[7];
1711 }
1712
1713 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1714                                                 void *context, int vl,
1715                                                 int mode, u64 data)
1716 {
1717         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1718
1719         return dd->misc_err_status_cnt[6];
1720 }
1721
1722 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1723                                               void *context, int vl, int mode,
1724                                               u64 data)
1725 {
1726         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1727
1728         return dd->misc_err_status_cnt[5];
1729 }
1730
1731 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1732                                             void *context, int vl, int mode,
1733                                             u64 data)
1734 {
1735         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1736
1737         return dd->misc_err_status_cnt[4];
1738 }
1739
1740 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1741                                                  void *context, int vl,
1742                                                  int mode, u64 data)
1743 {
1744         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1745
1746         return dd->misc_err_status_cnt[3];
1747 }
1748
1749 static u64 access_misc_csr_write_bad_addr_err_cnt(
1750                                 const struct cntr_entry *entry,
1751                                 void *context, int vl, int mode, u64 data)
1752 {
1753         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754
1755         return dd->misc_err_status_cnt[2];
1756 }
1757
1758 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1759                                                  void *context, int vl,
1760                                                  int mode, u64 data)
1761 {
1762         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1763
1764         return dd->misc_err_status_cnt[1];
1765 }
1766
1767 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1768                                           void *context, int vl, int mode,
1769                                           u64 data)
1770 {
1771         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1772
1773         return dd->misc_err_status_cnt[0];
1774 }
1775
1776 /*
1777  * Software counter for the aggregate of
1778  * individual CceErrStatus counters
1779  */
1780 static u64 access_sw_cce_err_status_aggregated_cnt(
1781                                 const struct cntr_entry *entry,
1782                                 void *context, int vl, int mode, u64 data)
1783 {
1784         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1785
1786         return dd->sw_cce_err_status_aggregate;
1787 }
1788
1789 /*
1790  * Software counters corresponding to each of the
1791  * error status bits within CceErrStatus
1792  */
1793 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1794                                               void *context, int vl, int mode,
1795                                               u64 data)
1796 {
1797         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1798
1799         return dd->cce_err_status_cnt[40];
1800 }
1801
1802 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1803                                           void *context, int vl, int mode,
1804                                           u64 data)
1805 {
1806         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1807
1808         return dd->cce_err_status_cnt[39];
1809 }
1810
1811 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1812                                           void *context, int vl, int mode,
1813                                           u64 data)
1814 {
1815         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1816
1817         return dd->cce_err_status_cnt[38];
1818 }
1819
1820 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1821                                              void *context, int vl, int mode,
1822                                              u64 data)
1823 {
1824         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1825
1826         return dd->cce_err_status_cnt[37];
1827 }
1828
1829 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1830                                              void *context, int vl, int mode,
1831                                              u64 data)
1832 {
1833         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1834
1835         return dd->cce_err_status_cnt[36];
1836 }
1837
1838 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1839                                 const struct cntr_entry *entry,
1840                                 void *context, int vl, int mode, u64 data)
1841 {
1842         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1843
1844         return dd->cce_err_status_cnt[35];
1845 }
1846
1847 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1848                                 const struct cntr_entry *entry,
1849                                 void *context, int vl, int mode, u64 data)
1850 {
1851         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1852
1853         return dd->cce_err_status_cnt[34];
1854 }
1855
1856 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1857                                                  void *context, int vl,
1858                                                  int mode, u64 data)
1859 {
1860         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1861
1862         return dd->cce_err_status_cnt[33];
1863 }
1864
1865 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1866                                                 void *context, int vl, int mode,
1867                                                 u64 data)
1868 {
1869         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1870
1871         return dd->cce_err_status_cnt[32];
1872 }
1873
1874 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1875                                    void *context, int vl, int mode, u64 data)
1876 {
1877         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1878
1879         return dd->cce_err_status_cnt[31];
1880 }
1881
1882 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1883                                                void *context, int vl, int mode,
1884                                                u64 data)
1885 {
1886         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1887
1888         return dd->cce_err_status_cnt[30];
1889 }
1890
1891 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1892                                               void *context, int vl, int mode,
1893                                               u64 data)
1894 {
1895         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1896
1897         return dd->cce_err_status_cnt[29];
1898 }
1899
1900 static u64 access_pcic_transmit_back_parity_err_cnt(
1901                                 const struct cntr_entry *entry,
1902                                 void *context, int vl, int mode, u64 data)
1903 {
1904         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1905
1906         return dd->cce_err_status_cnt[28];
1907 }
1908
1909 static u64 access_pcic_transmit_front_parity_err_cnt(
1910                                 const struct cntr_entry *entry,
1911                                 void *context, int vl, int mode, u64 data)
1912 {
1913         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1914
1915         return dd->cce_err_status_cnt[27];
1916 }
1917
1918 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1919                                              void *context, int vl, int mode,
1920                                              u64 data)
1921 {
1922         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1923
1924         return dd->cce_err_status_cnt[26];
1925 }
1926
1927 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1928                                             void *context, int vl, int mode,
1929                                             u64 data)
1930 {
1931         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1932
1933         return dd->cce_err_status_cnt[25];
1934 }
1935
1936 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1937                                               void *context, int vl, int mode,
1938                                               u64 data)
1939 {
1940         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1941
1942         return dd->cce_err_status_cnt[24];
1943 }
1944
1945 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1946                                              void *context, int vl, int mode,
1947                                              u64 data)
1948 {
1949         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1950
1951         return dd->cce_err_status_cnt[23];
1952 }
1953
1954 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1955                                                  void *context, int vl,
1956                                                  int mode, u64 data)
1957 {
1958         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1959
1960         return dd->cce_err_status_cnt[22];
1961 }
1962
1963 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1964                                          void *context, int vl, int mode,
1965                                          u64 data)
1966 {
1967         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1968
1969         return dd->cce_err_status_cnt[21];
1970 }
1971
1972 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1973                                 const struct cntr_entry *entry,
1974                                 void *context, int vl, int mode, u64 data)
1975 {
1976         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1977
1978         return dd->cce_err_status_cnt[20];
1979 }
1980
1981 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1982                                                  void *context, int vl,
1983                                                  int mode, u64 data)
1984 {
1985         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1986
1987         return dd->cce_err_status_cnt[19];
1988 }
1989
1990 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1991                                              void *context, int vl, int mode,
1992                                              u64 data)
1993 {
1994         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1995
1996         return dd->cce_err_status_cnt[18];
1997 }
1998
1999 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2000                                             void *context, int vl, int mode,
2001                                             u64 data)
2002 {
2003         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2004
2005         return dd->cce_err_status_cnt[17];
2006 }
2007
2008 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2009                                               void *context, int vl, int mode,
2010                                               u64 data)
2011 {
2012         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2013
2014         return dd->cce_err_status_cnt[16];
2015 }
2016
2017 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2018                                              void *context, int vl, int mode,
2019                                              u64 data)
2020 {
2021         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2022
2023         return dd->cce_err_status_cnt[15];
2024 }
2025
2026 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2027                                                  void *context, int vl,
2028                                                  int mode, u64 data)
2029 {
2030         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2031
2032         return dd->cce_err_status_cnt[14];
2033 }
2034
2035 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2036                                              void *context, int vl, int mode,
2037                                              u64 data)
2038 {
2039         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2040
2041         return dd->cce_err_status_cnt[13];
2042 }
2043
2044 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2045                                 const struct cntr_entry *entry,
2046                                 void *context, int vl, int mode, u64 data)
2047 {
2048         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2049
2050         return dd->cce_err_status_cnt[12];
2051 }
2052
2053 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2054                                 const struct cntr_entry *entry,
2055                                 void *context, int vl, int mode, u64 data)
2056 {
2057         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2058
2059         return dd->cce_err_status_cnt[11];
2060 }
2061
2062 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2063                                 const struct cntr_entry *entry,
2064                                 void *context, int vl, int mode, u64 data)
2065 {
2066         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2067
2068         return dd->cce_err_status_cnt[10];
2069 }
2070
2071 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2072                                 const struct cntr_entry *entry,
2073                                 void *context, int vl, int mode, u64 data)
2074 {
2075         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2076
2077         return dd->cce_err_status_cnt[9];
2078 }
2079
2080 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2081                                 const struct cntr_entry *entry,
2082                                 void *context, int vl, int mode, u64 data)
2083 {
2084         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2085
2086         return dd->cce_err_status_cnt[8];
2087 }
2088
2089 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2090                                                  void *context, int vl,
2091                                                  int mode, u64 data)
2092 {
2093         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2094
2095         return dd->cce_err_status_cnt[7];
2096 }
2097
2098 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2099                                 const struct cntr_entry *entry,
2100                                 void *context, int vl, int mode, u64 data)
2101 {
2102         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2103
2104         return dd->cce_err_status_cnt[6];
2105 }
2106
2107 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2108                                                void *context, int vl, int mode,
2109                                                u64 data)
2110 {
2111         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2112
2113         return dd->cce_err_status_cnt[5];
2114 }
2115
2116 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2117                                           void *context, int vl, int mode,
2118                                           u64 data)
2119 {
2120         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2121
2122         return dd->cce_err_status_cnt[4];
2123 }
2124
2125 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2126                                 const struct cntr_entry *entry,
2127                                 void *context, int vl, int mode, u64 data)
2128 {
2129         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2130
2131         return dd->cce_err_status_cnt[3];
2132 }
2133
2134 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2135                                                  void *context, int vl,
2136                                                  int mode, u64 data)
2137 {
2138         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139
2140         return dd->cce_err_status_cnt[2];
2141 }
2142
2143 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2144                                                 void *context, int vl,
2145                                                 int mode, u64 data)
2146 {
2147         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148
2149         return dd->cce_err_status_cnt[1];
2150 }
2151
2152 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2153                                          void *context, int vl, int mode,
2154                                          u64 data)
2155 {
2156         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157
2158         return dd->cce_err_status_cnt[0];
2159 }
2160
2161 /*
2162  * Software counters corresponding to each of the
2163  * error status bits within RcvErrStatus
2164  */
2165 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2166                                         void *context, int vl, int mode,
2167                                         u64 data)
2168 {
2169         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2170
2171         return dd->rcv_err_status_cnt[63];
2172 }
2173
2174 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2175                                                 void *context, int vl,
2176                                                 int mode, u64 data)
2177 {
2178         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2179
2180         return dd->rcv_err_status_cnt[62];
2181 }
2182
2183 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2184                                                void *context, int vl, int mode,
2185                                                u64 data)
2186 {
2187         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2188
2189         return dd->rcv_err_status_cnt[61];
2190 }
2191
2192 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2193                                          void *context, int vl, int mode,
2194                                          u64 data)
2195 {
2196         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2197
2198         return dd->rcv_err_status_cnt[60];
2199 }
2200
2201 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2202                                                  void *context, int vl,
2203                                                  int mode, u64 data)
2204 {
2205         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2206
2207         return dd->rcv_err_status_cnt[59];
2208 }
2209
2210 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2211                                                  void *context, int vl,
2212                                                  int mode, u64 data)
2213 {
2214         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2215
2216         return dd->rcv_err_status_cnt[58];
2217 }
2218
2219 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2220                                             void *context, int vl, int mode,
2221                                             u64 data)
2222 {
2223         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2224
2225         return dd->rcv_err_status_cnt[57];
2226 }
2227
2228 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2229                                            void *context, int vl, int mode,
2230                                            u64 data)
2231 {
2232         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2233
2234         return dd->rcv_err_status_cnt[56];
2235 }
2236
2237 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2238                                            void *context, int vl, int mode,
2239                                            u64 data)
2240 {
2241         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2242
2243         return dd->rcv_err_status_cnt[55];
2244 }
2245
2246 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2247                                 const struct cntr_entry *entry,
2248                                 void *context, int vl, int mode, u64 data)
2249 {
2250         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2251
2252         return dd->rcv_err_status_cnt[54];
2253 }
2254
2255 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2256                                 const struct cntr_entry *entry,
2257                                 void *context, int vl, int mode, u64 data)
2258 {
2259         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2260
2261         return dd->rcv_err_status_cnt[53];
2262 }
2263
2264 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2265                                                  void *context, int vl,
2266                                                  int mode, u64 data)
2267 {
2268         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2269
2270         return dd->rcv_err_status_cnt[52];
2271 }
2272
2273 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2274                                                  void *context, int vl,
2275                                                  int mode, u64 data)
2276 {
2277         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2278
2279         return dd->rcv_err_status_cnt[51];
2280 }
2281
2282 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2283                                                  void *context, int vl,
2284                                                  int mode, u64 data)
2285 {
2286         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2287
2288         return dd->rcv_err_status_cnt[50];
2289 }
2290
2291 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2292                                                  void *context, int vl,
2293                                                  int mode, u64 data)
2294 {
2295         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2296
2297         return dd->rcv_err_status_cnt[49];
2298 }
2299
2300 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2301                                                  void *context, int vl,
2302                                                  int mode, u64 data)
2303 {
2304         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2305
2306         return dd->rcv_err_status_cnt[48];
2307 }
2308
2309 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2310                                                  void *context, int vl,
2311                                                  int mode, u64 data)
2312 {
2313         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2314
2315         return dd->rcv_err_status_cnt[47];
2316 }
2317
2318 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2319                                          void *context, int vl, int mode,
2320                                          u64 data)
2321 {
2322         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2323
2324         return dd->rcv_err_status_cnt[46];
2325 }
2326
2327 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2328                                 const struct cntr_entry *entry,
2329                                 void *context, int vl, int mode, u64 data)
2330 {
2331         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2332
2333         return dd->rcv_err_status_cnt[45];
2334 }
2335
2336 static u64 access_rx_lookup_csr_parity_err_cnt(
2337                                 const struct cntr_entry *entry,
2338                                 void *context, int vl, int mode, u64 data)
2339 {
2340         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2341
2342         return dd->rcv_err_status_cnt[44];
2343 }
2344
2345 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2346                                 const struct cntr_entry *entry,
2347                                 void *context, int vl, int mode, u64 data)
2348 {
2349         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2350
2351         return dd->rcv_err_status_cnt[43];
2352 }
2353
2354 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2355                                 const struct cntr_entry *entry,
2356                                 void *context, int vl, int mode, u64 data)
2357 {
2358         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2359
2360         return dd->rcv_err_status_cnt[42];
2361 }
2362
2363 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2364                                 const struct cntr_entry *entry,
2365                                 void *context, int vl, int mode, u64 data)
2366 {
2367         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2368
2369         return dd->rcv_err_status_cnt[41];
2370 }
2371
2372 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2373                                 const struct cntr_entry *entry,
2374                                 void *context, int vl, int mode, u64 data)
2375 {
2376         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2377
2378         return dd->rcv_err_status_cnt[40];
2379 }
2380
2381 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2382                                 const struct cntr_entry *entry,
2383                                 void *context, int vl, int mode, u64 data)
2384 {
2385         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2386
2387         return dd->rcv_err_status_cnt[39];
2388 }
2389
2390 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2391                                 const struct cntr_entry *entry,
2392                                 void *context, int vl, int mode, u64 data)
2393 {
2394         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2395
2396         return dd->rcv_err_status_cnt[38];
2397 }
2398
2399 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2400                                 const struct cntr_entry *entry,
2401                                 void *context, int vl, int mode, u64 data)
2402 {
2403         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2404
2405         return dd->rcv_err_status_cnt[37];
2406 }
2407
2408 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2409                                 const struct cntr_entry *entry,
2410                                 void *context, int vl, int mode, u64 data)
2411 {
2412         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2413
2414         return dd->rcv_err_status_cnt[36];
2415 }
2416
2417 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2418                                 const struct cntr_entry *entry,
2419                                 void *context, int vl, int mode, u64 data)
2420 {
2421         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2422
2423         return dd->rcv_err_status_cnt[35];
2424 }
2425
2426 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2427                                 const struct cntr_entry *entry,
2428                                 void *context, int vl, int mode, u64 data)
2429 {
2430         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2431
2432         return dd->rcv_err_status_cnt[34];
2433 }
2434
2435 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2436                                 const struct cntr_entry *entry,
2437                                 void *context, int vl, int mode, u64 data)
2438 {
2439         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2440
2441         return dd->rcv_err_status_cnt[33];
2442 }
2443
2444 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2445                                         void *context, int vl, int mode,
2446                                         u64 data)
2447 {
2448         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2449
2450         return dd->rcv_err_status_cnt[32];
2451 }
2452
2453 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2454                                        void *context, int vl, int mode,
2455                                        u64 data)
2456 {
2457         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2458
2459         return dd->rcv_err_status_cnt[31];
2460 }
2461
2462 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2463                                           void *context, int vl, int mode,
2464                                           u64 data)
2465 {
2466         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2467
2468         return dd->rcv_err_status_cnt[30];
2469 }
2470
2471 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2472                                              void *context, int vl, int mode,
2473                                              u64 data)
2474 {
2475         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2476
2477         return dd->rcv_err_status_cnt[29];
2478 }
2479
2480 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2481                                                  void *context, int vl,
2482                                                  int mode, u64 data)
2483 {
2484         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2485
2486         return dd->rcv_err_status_cnt[28];
2487 }
2488
2489 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2490                                 const struct cntr_entry *entry,
2491                                 void *context, int vl, int mode, u64 data)
2492 {
2493         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2494
2495         return dd->rcv_err_status_cnt[27];
2496 }
2497
2498 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2499                                 const struct cntr_entry *entry,
2500                                 void *context, int vl, int mode, u64 data)
2501 {
2502         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2503
2504         return dd->rcv_err_status_cnt[26];
2505 }
2506
2507 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2508                                 const struct cntr_entry *entry,
2509                                 void *context, int vl, int mode, u64 data)
2510 {
2511         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2512
2513         return dd->rcv_err_status_cnt[25];
2514 }
2515
2516 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2517                                 const struct cntr_entry *entry,
2518                                 void *context, int vl, int mode, u64 data)
2519 {
2520         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2521
2522         return dd->rcv_err_status_cnt[24];
2523 }
2524
2525 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2526                                 const struct cntr_entry *entry,
2527                                 void *context, int vl, int mode, u64 data)
2528 {
2529         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2530
2531         return dd->rcv_err_status_cnt[23];
2532 }
2533
2534 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2535                                 const struct cntr_entry *entry,
2536                                 void *context, int vl, int mode, u64 data)
2537 {
2538         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2539
2540         return dd->rcv_err_status_cnt[22];
2541 }
2542
2543 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2544                                 const struct cntr_entry *entry,
2545                                 void *context, int vl, int mode, u64 data)
2546 {
2547         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2548
2549         return dd->rcv_err_status_cnt[21];
2550 }
2551
2552 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2553                                 const struct cntr_entry *entry,
2554                                 void *context, int vl, int mode, u64 data)
2555 {
2556         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2557
2558         return dd->rcv_err_status_cnt[20];
2559 }
2560
2561 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2562                                 const struct cntr_entry *entry,
2563                                 void *context, int vl, int mode, u64 data)
2564 {
2565         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2566
2567         return dd->rcv_err_status_cnt[19];
2568 }
2569
2570 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2571                                                  void *context, int vl,
2572                                                  int mode, u64 data)
2573 {
2574         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2575
2576         return dd->rcv_err_status_cnt[18];
2577 }
2578
2579 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2580                                                  void *context, int vl,
2581                                                  int mode, u64 data)
2582 {
2583         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2584
2585         return dd->rcv_err_status_cnt[17];
2586 }
2587
2588 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2589                                 const struct cntr_entry *entry,
2590                                 void *context, int vl, int mode, u64 data)
2591 {
2592         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2593
2594         return dd->rcv_err_status_cnt[16];
2595 }
2596
2597 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2598                                 const struct cntr_entry *entry,
2599                                 void *context, int vl, int mode, u64 data)
2600 {
2601         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2602
2603         return dd->rcv_err_status_cnt[15];
2604 }
2605
2606 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2607                                                 void *context, int vl,
2608                                                 int mode, u64 data)
2609 {
2610         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2611
2612         return dd->rcv_err_status_cnt[14];
2613 }
2614
2615 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2616                                                 void *context, int vl,
2617                                                 int mode, u64 data)
2618 {
2619         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2620
2621         return dd->rcv_err_status_cnt[13];
2622 }
2623
2624 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2625                                               void *context, int vl, int mode,
2626                                               u64 data)
2627 {
2628         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2629
2630         return dd->rcv_err_status_cnt[12];
2631 }
2632
2633 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2634                                           void *context, int vl, int mode,
2635                                           u64 data)
2636 {
2637         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2638
2639         return dd->rcv_err_status_cnt[11];
2640 }
2641
2642 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2643                                           void *context, int vl, int mode,
2644                                           u64 data)
2645 {
2646         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2647
2648         return dd->rcv_err_status_cnt[10];
2649 }
2650
2651 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2652                                                void *context, int vl, int mode,
2653                                                u64 data)
2654 {
2655         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2656
2657         return dd->rcv_err_status_cnt[9];
2658 }
2659
2660 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2661                                             void *context, int vl, int mode,
2662                                             u64 data)
2663 {
2664         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2665
2666         return dd->rcv_err_status_cnt[8];
2667 }
2668
2669 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2670                                 const struct cntr_entry *entry,
2671                                 void *context, int vl, int mode, u64 data)
2672 {
2673         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2674
2675         return dd->rcv_err_status_cnt[7];
2676 }
2677
2678 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2679                                 const struct cntr_entry *entry,
2680                                 void *context, int vl, int mode, u64 data)
2681 {
2682         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2683
2684         return dd->rcv_err_status_cnt[6];
2685 }
2686
2687 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2688                                           void *context, int vl, int mode,
2689                                           u64 data)
2690 {
2691         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2692
2693         return dd->rcv_err_status_cnt[5];
2694 }
2695
2696 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2697                                           void *context, int vl, int mode,
2698                                           u64 data)
2699 {
2700         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2701
2702         return dd->rcv_err_status_cnt[4];
2703 }
2704
2705 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2706                                          void *context, int vl, int mode,
2707                                          u64 data)
2708 {
2709         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2710
2711         return dd->rcv_err_status_cnt[3];
2712 }
2713
2714 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2715                                          void *context, int vl, int mode,
2716                                          u64 data)
2717 {
2718         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719
2720         return dd->rcv_err_status_cnt[2];
2721 }
2722
2723 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2724                                             void *context, int vl, int mode,
2725                                             u64 data)
2726 {
2727         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728
2729         return dd->rcv_err_status_cnt[1];
2730 }
2731
2732 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2733                                          void *context, int vl, int mode,
2734                                          u64 data)
2735 {
2736         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737
2738         return dd->rcv_err_status_cnt[0];
2739 }
2740
2741 /*
2742  * Software counters corresponding to each of the
2743  * error status bits within SendPioErrStatus
2744  */
2745 static u64 access_pio_pec_sop_head_parity_err_cnt(
2746                                 const struct cntr_entry *entry,
2747                                 void *context, int vl, int mode, u64 data)
2748 {
2749         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2750
2751         return dd->send_pio_err_status_cnt[35];
2752 }
2753
2754 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2755                                 const struct cntr_entry *entry,
2756                                 void *context, int vl, int mode, u64 data)
2757 {
2758         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2759
2760         return dd->send_pio_err_status_cnt[34];
2761 }
2762
2763 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2764                                 const struct cntr_entry *entry,
2765                                 void *context, int vl, int mode, u64 data)
2766 {
2767         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2768
2769         return dd->send_pio_err_status_cnt[33];
2770 }
2771
2772 static u64 access_pio_current_free_cnt_parity_err_cnt(
2773                                 const struct cntr_entry *entry,
2774                                 void *context, int vl, int mode, u64 data)
2775 {
2776         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2777
2778         return dd->send_pio_err_status_cnt[32];
2779 }
2780
2781 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2782                                           void *context, int vl, int mode,
2783                                           u64 data)
2784 {
2785         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2786
2787         return dd->send_pio_err_status_cnt[31];
2788 }
2789
2790 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2791                                           void *context, int vl, int mode,
2792                                           u64 data)
2793 {
2794         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2795
2796         return dd->send_pio_err_status_cnt[30];
2797 }
2798
2799 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2800                                            void *context, int vl, int mode,
2801                                            u64 data)
2802 {
2803         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2804
2805         return dd->send_pio_err_status_cnt[29];
2806 }
2807
2808 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2809                                 const struct cntr_entry *entry,
2810                                 void *context, int vl, int mode, u64 data)
2811 {
2812         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2813
2814         return dd->send_pio_err_status_cnt[28];
2815 }
2816
2817 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2818                                              void *context, int vl, int mode,
2819                                              u64 data)
2820 {
2821         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2822
2823         return dd->send_pio_err_status_cnt[27];
2824 }
2825
2826 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2827                                              void *context, int vl, int mode,
2828                                              u64 data)
2829 {
2830         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2831
2832         return dd->send_pio_err_status_cnt[26];
2833 }
2834
2835 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2836                                                 void *context, int vl,
2837                                                 int mode, u64 data)
2838 {
2839         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2840
2841         return dd->send_pio_err_status_cnt[25];
2842 }
2843
2844 static u64 access_pio_block_qw_count_parity_err_cnt(
2845                                 const struct cntr_entry *entry,
2846                                 void *context, int vl, int mode, u64 data)
2847 {
2848         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2849
2850         return dd->send_pio_err_status_cnt[24];
2851 }
2852
2853 static u64 access_pio_write_qw_valid_parity_err_cnt(
2854                                 const struct cntr_entry *entry,
2855                                 void *context, int vl, int mode, u64 data)
2856 {
2857         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2858
2859         return dd->send_pio_err_status_cnt[23];
2860 }
2861
2862 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2863                                             void *context, int vl, int mode,
2864                                             u64 data)
2865 {
2866         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2867
2868         return dd->send_pio_err_status_cnt[22];
2869 }
2870
2871 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2872                                                 void *context, int vl,
2873                                                 int mode, u64 data)
2874 {
2875         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2876
2877         return dd->send_pio_err_status_cnt[21];
2878 }
2879
2880 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2881                                                 void *context, int vl,
2882                                                 int mode, u64 data)
2883 {
2884         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2885
2886         return dd->send_pio_err_status_cnt[20];
2887 }
2888
2889 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2890                                                 void *context, int vl,
2891                                                 int mode, u64 data)
2892 {
2893         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2894
2895         return dd->send_pio_err_status_cnt[19];
2896 }
2897
2898 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2899                                 const struct cntr_entry *entry,
2900                                 void *context, int vl, int mode, u64 data)
2901 {
2902         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2903
2904         return dd->send_pio_err_status_cnt[18];
2905 }
2906
2907 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2908                                          void *context, int vl, int mode,
2909                                          u64 data)
2910 {
2911         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2912
2913         return dd->send_pio_err_status_cnt[17];
2914 }
2915
2916 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2917                                             void *context, int vl, int mode,
2918                                             u64 data)
2919 {
2920         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2921
2922         return dd->send_pio_err_status_cnt[16];
2923 }
2924
2925 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2926                                 const struct cntr_entry *entry,
2927                                 void *context, int vl, int mode, u64 data)
2928 {
2929         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2930
2931         return dd->send_pio_err_status_cnt[15];
2932 }
2933
2934 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2935                                 const struct cntr_entry *entry,
2936                                 void *context, int vl, int mode, u64 data)
2937 {
2938         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2939
2940         return dd->send_pio_err_status_cnt[14];
2941 }
2942
2943 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2944                                 const struct cntr_entry *entry,
2945                                 void *context, int vl, int mode, u64 data)
2946 {
2947         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2948
2949         return dd->send_pio_err_status_cnt[13];
2950 }
2951
2952 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2953                                 const struct cntr_entry *entry,
2954                                 void *context, int vl, int mode, u64 data)
2955 {
2956         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2957
2958         return dd->send_pio_err_status_cnt[12];
2959 }
2960
2961 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2962                                 const struct cntr_entry *entry,
2963                                 void *context, int vl, int mode, u64 data)
2964 {
2965         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2966
2967         return dd->send_pio_err_status_cnt[11];
2968 }
2969
2970 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2971                                 const struct cntr_entry *entry,
2972                                 void *context, int vl, int mode, u64 data)
2973 {
2974         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2975
2976         return dd->send_pio_err_status_cnt[10];
2977 }
2978
2979 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2980                                 const struct cntr_entry *entry,
2981                                 void *context, int vl, int mode, u64 data)
2982 {
2983         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2984
2985         return dd->send_pio_err_status_cnt[9];
2986 }
2987
2988 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2989                                 const struct cntr_entry *entry,
2990                                 void *context, int vl, int mode, u64 data)
2991 {
2992         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2993
2994         return dd->send_pio_err_status_cnt[8];
2995 }
2996
2997 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
2998                                 const struct cntr_entry *entry,
2999                                 void *context, int vl, int mode, u64 data)
3000 {
3001         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3002
3003         return dd->send_pio_err_status_cnt[7];
3004 }
3005
3006 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3007                                               void *context, int vl, int mode,
3008                                               u64 data)
3009 {
3010         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3011
3012         return dd->send_pio_err_status_cnt[6];
3013 }
3014
3015 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3016                                               void *context, int vl, int mode,
3017                                               u64 data)
3018 {
3019         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3020
3021         return dd->send_pio_err_status_cnt[5];
3022 }
3023
3024 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3025                                            void *context, int vl, int mode,
3026                                            u64 data)
3027 {
3028         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3029
3030         return dd->send_pio_err_status_cnt[4];
3031 }
3032
3033 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3034                                            void *context, int vl, int mode,
3035                                            u64 data)
3036 {
3037         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3038
3039         return dd->send_pio_err_status_cnt[3];
3040 }
3041
3042 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3043                                          void *context, int vl, int mode,
3044                                          u64 data)
3045 {
3046         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047
3048         return dd->send_pio_err_status_cnt[2];
3049 }
3050
3051 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3052                                                 void *context, int vl,
3053                                                 int mode, u64 data)
3054 {
3055         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056
3057         return dd->send_pio_err_status_cnt[1];
3058 }
3059
3060 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3061                                              void *context, int vl, int mode,
3062                                              u64 data)
3063 {
3064         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065
3066         return dd->send_pio_err_status_cnt[0];
3067 }
3068
3069 /*
3070  * Software counters corresponding to each of the
3071  * error status bits within SendDmaErrStatus
3072  */
3073 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3074                                 const struct cntr_entry *entry,
3075                                 void *context, int vl, int mode, u64 data)
3076 {
3077         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3078
3079         return dd->send_dma_err_status_cnt[3];
3080 }
3081
3082 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3083                                 const struct cntr_entry *entry,
3084                                 void *context, int vl, int mode, u64 data)
3085 {
3086         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3087
3088         return dd->send_dma_err_status_cnt[2];
3089 }
3090
3091 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3092                                           void *context, int vl, int mode,
3093                                           u64 data)
3094 {
3095         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3096
3097         return dd->send_dma_err_status_cnt[1];
3098 }
3099
3100 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3101                                        void *context, int vl, int mode,
3102                                        u64 data)
3103 {
3104         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3105
3106         return dd->send_dma_err_status_cnt[0];
3107 }
3108
3109 /*
3110  * Software counters corresponding to each of the
3111  * error status bits within SendEgressErrStatus
3112  */
3113 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3114                                 const struct cntr_entry *entry,
3115                                 void *context, int vl, int mode, u64 data)
3116 {
3117         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3118
3119         return dd->send_egress_err_status_cnt[63];
3120 }
3121
3122 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3123                                 const struct cntr_entry *entry,
3124                                 void *context, int vl, int mode, u64 data)
3125 {
3126         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3127
3128         return dd->send_egress_err_status_cnt[62];
3129 }
3130
3131 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3132                                              void *context, int vl, int mode,
3133                                              u64 data)
3134 {
3135         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3136
3137         return dd->send_egress_err_status_cnt[61];
3138 }
3139
3140 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3141                                                  void *context, int vl,
3142                                                  int mode, u64 data)
3143 {
3144         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3145
3146         return dd->send_egress_err_status_cnt[60];
3147 }
3148
3149 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3150                                 const struct cntr_entry *entry,
3151                                 void *context, int vl, int mode, u64 data)
3152 {
3153         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3154
3155         return dd->send_egress_err_status_cnt[59];
3156 }
3157
3158 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3159                                         void *context, int vl, int mode,
3160                                         u64 data)
3161 {
3162         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3163
3164         return dd->send_egress_err_status_cnt[58];
3165 }
3166
3167 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3168                                             void *context, int vl, int mode,
3169                                             u64 data)
3170 {
3171         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3172
3173         return dd->send_egress_err_status_cnt[57];
3174 }
3175
3176 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3177                                               void *context, int vl, int mode,
3178                                               u64 data)
3179 {
3180         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3181
3182         return dd->send_egress_err_status_cnt[56];
3183 }
3184
3185 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3186                                               void *context, int vl, int mode,
3187                                               u64 data)
3188 {
3189         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3190
3191         return dd->send_egress_err_status_cnt[55];
3192 }
3193
3194 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3195                                               void *context, int vl, int mode,
3196                                               u64 data)
3197 {
3198         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3199
3200         return dd->send_egress_err_status_cnt[54];
3201 }
3202
3203 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3204                                               void *context, int vl, int mode,
3205                                               u64 data)
3206 {
3207         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3208
3209         return dd->send_egress_err_status_cnt[53];
3210 }
3211
3212 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3213                                               void *context, int vl, int mode,
3214                                               u64 data)
3215 {
3216         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3217
3218         return dd->send_egress_err_status_cnt[52];
3219 }
3220
3221 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3222                                               void *context, int vl, int mode,
3223                                               u64 data)
3224 {
3225         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3226
3227         return dd->send_egress_err_status_cnt[51];
3228 }
3229
3230 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3231                                               void *context, int vl, int mode,
3232                                               u64 data)
3233 {
3234         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3235
3236         return dd->send_egress_err_status_cnt[50];
3237 }
3238
3239 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3240                                               void *context, int vl, int mode,
3241                                               u64 data)
3242 {
3243         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3244
3245         return dd->send_egress_err_status_cnt[49];
3246 }
3247
3248 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3249                                               void *context, int vl, int mode,
3250                                               u64 data)
3251 {
3252         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3253
3254         return dd->send_egress_err_status_cnt[48];
3255 }
3256
3257 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3258                                               void *context, int vl, int mode,
3259                                               u64 data)
3260 {
3261         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3262
3263         return dd->send_egress_err_status_cnt[47];
3264 }
3265
3266 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3267                                             void *context, int vl, int mode,
3268                                             u64 data)
3269 {
3270         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3271
3272         return dd->send_egress_err_status_cnt[46];
3273 }
3274
3275 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3276                                              void *context, int vl, int mode,
3277                                              u64 data)
3278 {
3279         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3280
3281         return dd->send_egress_err_status_cnt[45];
3282 }
3283
3284 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3285                                                  void *context, int vl,
3286                                                  int mode, u64 data)
3287 {
3288         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3289
3290         return dd->send_egress_err_status_cnt[44];
3291 }
3292
3293 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3294                                 const struct cntr_entry *entry,
3295                                 void *context, int vl, int mode, u64 data)
3296 {
3297         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3298
3299         return dd->send_egress_err_status_cnt[43];
3300 }
3301
3302 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3303                                         void *context, int vl, int mode,
3304                                         u64 data)
3305 {
3306         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3307
3308         return dd->send_egress_err_status_cnt[42];
3309 }
3310
3311 static u64 access_tx_credit_return_partiy_err_cnt(
3312                                 const struct cntr_entry *entry,
3313                                 void *context, int vl, int mode, u64 data)
3314 {
3315         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3316
3317         return dd->send_egress_err_status_cnt[41];
3318 }
3319
3320 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3321                                 const struct cntr_entry *entry,
3322                                 void *context, int vl, int mode, u64 data)
3323 {
3324         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3325
3326         return dd->send_egress_err_status_cnt[40];
3327 }
3328
3329 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3330                                 const struct cntr_entry *entry,
3331                                 void *context, int vl, int mode, u64 data)
3332 {
3333         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3334
3335         return dd->send_egress_err_status_cnt[39];
3336 }
3337
3338 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3339                                 const struct cntr_entry *entry,
3340                                 void *context, int vl, int mode, u64 data)
3341 {
3342         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3343
3344         return dd->send_egress_err_status_cnt[38];
3345 }
3346
3347 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3348                                 const struct cntr_entry *entry,
3349                                 void *context, int vl, int mode, u64 data)
3350 {
3351         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3352
3353         return dd->send_egress_err_status_cnt[37];
3354 }
3355
3356 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3357                                 const struct cntr_entry *entry,
3358                                 void *context, int vl, int mode, u64 data)
3359 {
3360         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3361
3362         return dd->send_egress_err_status_cnt[36];
3363 }
3364
3365 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3366                                 const struct cntr_entry *entry,
3367                                 void *context, int vl, int mode, u64 data)
3368 {
3369         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3370
3371         return dd->send_egress_err_status_cnt[35];
3372 }
3373
3374 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3375                                 const struct cntr_entry *entry,
3376                                 void *context, int vl, int mode, u64 data)
3377 {
3378         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3379
3380         return dd->send_egress_err_status_cnt[34];
3381 }
3382
3383 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3384                                 const struct cntr_entry *entry,
3385                                 void *context, int vl, int mode, u64 data)
3386 {
3387         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3388
3389         return dd->send_egress_err_status_cnt[33];
3390 }
3391
3392 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3393                                 const struct cntr_entry *entry,
3394                                 void *context, int vl, int mode, u64 data)
3395 {
3396         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3397
3398         return dd->send_egress_err_status_cnt[32];
3399 }
3400
3401 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3402                                 const struct cntr_entry *entry,
3403                                 void *context, int vl, int mode, u64 data)
3404 {
3405         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3406
3407         return dd->send_egress_err_status_cnt[31];
3408 }
3409
3410 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3411                                 const struct cntr_entry *entry,
3412                                 void *context, int vl, int mode, u64 data)
3413 {
3414         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3415
3416         return dd->send_egress_err_status_cnt[30];
3417 }
3418
3419 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3420                                 const struct cntr_entry *entry,
3421                                 void *context, int vl, int mode, u64 data)
3422 {
3423         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3424
3425         return dd->send_egress_err_status_cnt[29];
3426 }
3427
3428 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3429                                 const struct cntr_entry *entry,
3430                                 void *context, int vl, int mode, u64 data)
3431 {
3432         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3433
3434         return dd->send_egress_err_status_cnt[28];
3435 }
3436
3437 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3438                                 const struct cntr_entry *entry,
3439                                 void *context, int vl, int mode, u64 data)
3440 {
3441         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3442
3443         return dd->send_egress_err_status_cnt[27];
3444 }
3445
3446 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3447                                 const struct cntr_entry *entry,
3448                                 void *context, int vl, int mode, u64 data)
3449 {
3450         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3451
3452         return dd->send_egress_err_status_cnt[26];
3453 }
3454
3455 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3456                                 const struct cntr_entry *entry,
3457                                 void *context, int vl, int mode, u64 data)
3458 {
3459         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3460
3461         return dd->send_egress_err_status_cnt[25];
3462 }
3463
3464 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3465                                 const struct cntr_entry *entry,
3466                                 void *context, int vl, int mode, u64 data)
3467 {
3468         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3469
3470         return dd->send_egress_err_status_cnt[24];
3471 }
3472
3473 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3474                                 const struct cntr_entry *entry,
3475                                 void *context, int vl, int mode, u64 data)
3476 {
3477         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3478
3479         return dd->send_egress_err_status_cnt[23];
3480 }
3481
3482 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3483                                 const struct cntr_entry *entry,
3484                                 void *context, int vl, int mode, u64 data)
3485 {
3486         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3487
3488         return dd->send_egress_err_status_cnt[22];
3489 }
3490
3491 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3492                                 const struct cntr_entry *entry,
3493                                 void *context, int vl, int mode, u64 data)
3494 {
3495         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3496
3497         return dd->send_egress_err_status_cnt[21];
3498 }
3499
3500 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3501                                 const struct cntr_entry *entry,
3502                                 void *context, int vl, int mode, u64 data)
3503 {
3504         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3505
3506         return dd->send_egress_err_status_cnt[20];
3507 }
3508
3509 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3510                                 const struct cntr_entry *entry,
3511                                 void *context, int vl, int mode, u64 data)
3512 {
3513         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3514
3515         return dd->send_egress_err_status_cnt[19];
3516 }
3517
3518 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3519                                 const struct cntr_entry *entry,
3520                                 void *context, int vl, int mode, u64 data)
3521 {
3522         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3523
3524         return dd->send_egress_err_status_cnt[18];
3525 }
3526
3527 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3528                                 const struct cntr_entry *entry,
3529                                 void *context, int vl, int mode, u64 data)
3530 {
3531         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3532
3533         return dd->send_egress_err_status_cnt[17];
3534 }
3535
3536 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3537                                 const struct cntr_entry *entry,
3538                                 void *context, int vl, int mode, u64 data)
3539 {
3540         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3541
3542         return dd->send_egress_err_status_cnt[16];
3543 }
3544
3545 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3546                                            void *context, int vl, int mode,
3547                                            u64 data)
3548 {
3549         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3550
3551         return dd->send_egress_err_status_cnt[15];
3552 }
3553
3554 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3555                                                  void *context, int vl,
3556                                                  int mode, u64 data)
3557 {
3558         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3559
3560         return dd->send_egress_err_status_cnt[14];
3561 }
3562
3563 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3564                                                void *context, int vl, int mode,
3565                                                u64 data)
3566 {
3567         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3568
3569         return dd->send_egress_err_status_cnt[13];
3570 }
3571
3572 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3573                                         void *context, int vl, int mode,
3574                                         u64 data)
3575 {
3576         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3577
3578         return dd->send_egress_err_status_cnt[12];
3579 }
3580
3581 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3582                                 const struct cntr_entry *entry,
3583                                 void *context, int vl, int mode, u64 data)
3584 {
3585         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3586
3587         return dd->send_egress_err_status_cnt[11];
3588 }
3589
3590 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3591                                              void *context, int vl, int mode,
3592                                              u64 data)
3593 {
3594         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3595
3596         return dd->send_egress_err_status_cnt[10];
3597 }
3598
3599 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3600                                             void *context, int vl, int mode,
3601                                             u64 data)
3602 {
3603         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3604
3605         return dd->send_egress_err_status_cnt[9];
3606 }
3607
3608 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3609                                 const struct cntr_entry *entry,
3610                                 void *context, int vl, int mode, u64 data)
3611 {
3612         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3613
3614         return dd->send_egress_err_status_cnt[8];
3615 }
3616
3617 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3618                                 const struct cntr_entry *entry,
3619                                 void *context, int vl, int mode, u64 data)
3620 {
3621         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3622
3623         return dd->send_egress_err_status_cnt[7];
3624 }
3625
3626 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3627                                             void *context, int vl, int mode,
3628                                             u64 data)
3629 {
3630         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3631
3632         return dd->send_egress_err_status_cnt[6];
3633 }
3634
3635 static u64 access_tx_incorrect_link_state_err_cnt(
3636                                 const struct cntr_entry *entry,
3637                                 void *context, int vl, int mode, u64 data)
3638 {
3639         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3640
3641         return dd->send_egress_err_status_cnt[5];
3642 }
3643
3644 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3645                                       void *context, int vl, int mode,
3646                                       u64 data)
3647 {
3648         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3649
3650         return dd->send_egress_err_status_cnt[4];
3651 }
3652
3653 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3654                                 const struct cntr_entry *entry,
3655                                 void *context, int vl, int mode, u64 data)
3656 {
3657         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3658
3659         return dd->send_egress_err_status_cnt[3];
3660 }
3661
3662 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3663                                             void *context, int vl, int mode,
3664                                             u64 data)
3665 {
3666         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667
3668         return dd->send_egress_err_status_cnt[2];
3669 }
3670
3671 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3672                                 const struct cntr_entry *entry,
3673                                 void *context, int vl, int mode, u64 data)
3674 {
3675         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676
3677         return dd->send_egress_err_status_cnt[1];
3678 }
3679
3680 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3681                                 const struct cntr_entry *entry,
3682                                 void *context, int vl, int mode, u64 data)
3683 {
3684         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685
3686         return dd->send_egress_err_status_cnt[0];
3687 }
3688
3689 /*
3690  * Software counters corresponding to each of the
3691  * error status bits within SendErrStatus
3692  */
3693 static u64 access_send_csr_write_bad_addr_err_cnt(
3694                                 const struct cntr_entry *entry,
3695                                 void *context, int vl, int mode, u64 data)
3696 {
3697         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3698
3699         return dd->send_err_status_cnt[2];
3700 }
3701
3702 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3703                                                  void *context, int vl,
3704                                                  int mode, u64 data)
3705 {
3706         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3707
3708         return dd->send_err_status_cnt[1];
3709 }
3710
3711 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3712                                       void *context, int vl, int mode,
3713                                       u64 data)
3714 {
3715         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3716
3717         return dd->send_err_status_cnt[0];
3718 }
3719
3720 /*
3721  * Software counters corresponding to each of the
3722  * error status bits within SendCtxtErrStatus
3723  */
3724 static u64 access_pio_write_out_of_bounds_err_cnt(
3725                                 const struct cntr_entry *entry,
3726                                 void *context, int vl, int mode, u64 data)
3727 {
3728         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3729
3730         return dd->sw_ctxt_err_status_cnt[4];
3731 }
3732
3733 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3734                                              void *context, int vl, int mode,
3735                                              u64 data)
3736 {
3737         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3738
3739         return dd->sw_ctxt_err_status_cnt[3];
3740 }
3741
3742 static u64 access_pio_write_crosses_boundary_err_cnt(
3743                                 const struct cntr_entry *entry,
3744                                 void *context, int vl, int mode, u64 data)
3745 {
3746         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3747
3748         return dd->sw_ctxt_err_status_cnt[2];
3749 }
3750
3751 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3752                                                 void *context, int vl,
3753                                                 int mode, u64 data)
3754 {
3755         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3756
3757         return dd->sw_ctxt_err_status_cnt[1];
3758 }
3759
3760 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3761                                                void *context, int vl, int mode,
3762                                                u64 data)
3763 {
3764         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3765
3766         return dd->sw_ctxt_err_status_cnt[0];
3767 }
3768
3769 /*
3770  * Software counters corresponding to each of the
3771  * error status bits within SendDmaEngErrStatus
3772  */
3773 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3774                                 const struct cntr_entry *entry,
3775                                 void *context, int vl, int mode, u64 data)
3776 {
3777         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3778
3779         return dd->sw_send_dma_eng_err_status_cnt[23];
3780 }
3781
3782 static u64 access_sdma_header_storage_cor_err_cnt(
3783                                 const struct cntr_entry *entry,
3784                                 void *context, int vl, int mode, u64 data)
3785 {
3786         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3787
3788         return dd->sw_send_dma_eng_err_status_cnt[22];
3789 }
3790
3791 static u64 access_sdma_packet_tracking_cor_err_cnt(
3792                                 const struct cntr_entry *entry,
3793                                 void *context, int vl, int mode, u64 data)
3794 {
3795         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3796
3797         return dd->sw_send_dma_eng_err_status_cnt[21];
3798 }
3799
3800 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3801                                             void *context, int vl, int mode,
3802                                             u64 data)
3803 {
3804         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3805
3806         return dd->sw_send_dma_eng_err_status_cnt[20];
3807 }
3808
3809 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3810                                               void *context, int vl, int mode,
3811                                               u64 data)
3812 {
3813         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3814
3815         return dd->sw_send_dma_eng_err_status_cnt[19];
3816 }
3817
3818 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3819                                 const struct cntr_entry *entry,
3820                                 void *context, int vl, int mode, u64 data)
3821 {
3822         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3823
3824         return dd->sw_send_dma_eng_err_status_cnt[18];
3825 }
3826
3827 static u64 access_sdma_header_storage_unc_err_cnt(
3828                                 const struct cntr_entry *entry,
3829                                 void *context, int vl, int mode, u64 data)
3830 {
3831         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3832
3833         return dd->sw_send_dma_eng_err_status_cnt[17];
3834 }
3835
3836 static u64 access_sdma_packet_tracking_unc_err_cnt(
3837                                 const struct cntr_entry *entry,
3838                                 void *context, int vl, int mode, u64 data)
3839 {
3840         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3841
3842         return dd->sw_send_dma_eng_err_status_cnt[16];
3843 }
3844
3845 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3846                                             void *context, int vl, int mode,
3847                                             u64 data)
3848 {
3849         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3850
3851         return dd->sw_send_dma_eng_err_status_cnt[15];
3852 }
3853
3854 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3855                                               void *context, int vl, int mode,
3856                                               u64 data)
3857 {
3858         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3859
3860         return dd->sw_send_dma_eng_err_status_cnt[14];
3861 }
3862
3863 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3864                                        void *context, int vl, int mode,
3865                                        u64 data)
3866 {
3867         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3868
3869         return dd->sw_send_dma_eng_err_status_cnt[13];
3870 }
3871
3872 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3873                                              void *context, int vl, int mode,
3874                                              u64 data)
3875 {
3876         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3877
3878         return dd->sw_send_dma_eng_err_status_cnt[12];
3879 }
3880
3881 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3882                                               void *context, int vl, int mode,
3883                                               u64 data)
3884 {
3885         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3886
3887         return dd->sw_send_dma_eng_err_status_cnt[11];
3888 }
3889
3890 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3891                                              void *context, int vl, int mode,
3892                                              u64 data)
3893 {
3894         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3895
3896         return dd->sw_send_dma_eng_err_status_cnt[10];
3897 }
3898
3899 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3900                                           void *context, int vl, int mode,
3901                                           u64 data)
3902 {
3903         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3904
3905         return dd->sw_send_dma_eng_err_status_cnt[9];
3906 }
3907
3908 static u64 access_sdma_packet_desc_overflow_err_cnt(
3909                                 const struct cntr_entry *entry,
3910                                 void *context, int vl, int mode, u64 data)
3911 {
3912         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3913
3914         return dd->sw_send_dma_eng_err_status_cnt[8];
3915 }
3916
3917 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3918                                                void *context, int vl,
3919                                                int mode, u64 data)
3920 {
3921         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3922
3923         return dd->sw_send_dma_eng_err_status_cnt[7];
3924 }
3925
3926 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3927                                     void *context, int vl, int mode, u64 data)
3928 {
3929         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3930
3931         return dd->sw_send_dma_eng_err_status_cnt[6];
3932 }
3933
3934 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3935                                         void *context, int vl, int mode,
3936                                         u64 data)
3937 {
3938         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3939
3940         return dd->sw_send_dma_eng_err_status_cnt[5];
3941 }
3942
3943 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3944                                           void *context, int vl, int mode,
3945                                           u64 data)
3946 {
3947         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3948
3949         return dd->sw_send_dma_eng_err_status_cnt[4];
3950 }
3951
3952 static u64 access_sdma_tail_out_of_bounds_err_cnt(
3953                                 const struct cntr_entry *entry,
3954                                 void *context, int vl, int mode, u64 data)
3955 {
3956         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3957
3958         return dd->sw_send_dma_eng_err_status_cnt[3];
3959 }
3960
3961 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3962                                         void *context, int vl, int mode,
3963                                         u64 data)
3964 {
3965         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3966
3967         return dd->sw_send_dma_eng_err_status_cnt[2];
3968 }
3969
3970 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3971                                             void *context, int vl, int mode,
3972                                             u64 data)
3973 {
3974         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3975
3976         return dd->sw_send_dma_eng_err_status_cnt[1];
3977 }
3978
3979 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3980                                         void *context, int vl, int mode,
3981                                         u64 data)
3982 {
3983         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3984
3985         return dd->sw_send_dma_eng_err_status_cnt[0];
3986 }
3987
3988 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
3989                                  void *context, int vl, int mode,
3990                                  u64 data)
3991 {
3992         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3993
3994         u64 val = 0;
3995         u64 csr = entry->csr;
3996
3997         val = read_write_csr(dd, csr, mode, data);
3998         if (mode == CNTR_MODE_R) {
3999                 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4000                         CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4001         } else if (mode == CNTR_MODE_W) {
4002                 dd->sw_rcv_bypass_packet_errors = 0;
4003         } else {
4004                 dd_dev_err(dd, "Invalid cntr register access mode");
4005                 return 0;
4006         }
4007         return val;
4008 }
4009
4010 #define def_access_sw_cpu(cntr) \
4011 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,               \
4012                               void *context, int vl, int mode, u64 data)      \
4013 {                                                                             \
4014         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
4015         return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,       \
4016                               ppd->ibport_data.rvp.cntr, vl,                  \
4017                               mode, data);                                    \
4018 }
4019
4020 def_access_sw_cpu(rc_acks);
4021 def_access_sw_cpu(rc_qacks);
4022 def_access_sw_cpu(rc_delayed_comp);
4023
4024 #define def_access_ibp_counter(cntr) \
4025 static u64 access_ibp_##cntr(const struct cntr_entry *entry,                  \
4026                                 void *context, int vl, int mode, u64 data)    \
4027 {                                                                             \
4028         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
4029                                                                               \
4030         if (vl != CNTR_INVALID_VL)                                            \
4031                 return 0;                                                     \
4032                                                                               \
4033         return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,        \
4034                              mode, data);                                     \
4035 }
4036
4037 def_access_ibp_counter(loop_pkts);
4038 def_access_ibp_counter(rc_resends);
4039 def_access_ibp_counter(rnr_naks);
4040 def_access_ibp_counter(other_naks);
4041 def_access_ibp_counter(rc_timeouts);
4042 def_access_ibp_counter(pkt_drops);
4043 def_access_ibp_counter(dmawait);
4044 def_access_ibp_counter(rc_seqnak);
4045 def_access_ibp_counter(rc_dupreq);
4046 def_access_ibp_counter(rdma_seq);
4047 def_access_ibp_counter(unaligned);
4048 def_access_ibp_counter(seq_naks);
4049
4050 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4051 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4052 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4053                         CNTR_NORMAL),
4054 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4055                         CNTR_NORMAL),
4056 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4057                         RCV_TID_FLOW_GEN_MISMATCH_CNT,
4058                         CNTR_NORMAL),
4059 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4060                         CNTR_NORMAL),
4061 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4062                         RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4063 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4064                         CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4065 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4066                         CNTR_NORMAL),
4067 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4068                         CNTR_NORMAL),
4069 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4070                         CNTR_NORMAL),
4071 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4072                         CNTR_NORMAL),
4073 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4074                         CNTR_NORMAL),
4075 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4076                         CNTR_NORMAL),
4077 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4078                         CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4079 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4080                         CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4081 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4082                               CNTR_SYNTH),
4083 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4084                             access_dc_rcv_err_cnt),
4085 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4086                                  CNTR_SYNTH),
4087 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4088                                   CNTR_SYNTH),
4089 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4090                                   CNTR_SYNTH),
4091 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4092                                    DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4093 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4094                                   DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4095                                   CNTR_SYNTH),
4096 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4097                                 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4098 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4099                                CNTR_SYNTH),
4100 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4101                               CNTR_SYNTH),
4102 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4103                                CNTR_SYNTH),
4104 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4105                                  CNTR_SYNTH),
4106 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4107                                 CNTR_SYNTH),
4108 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4109                                 CNTR_SYNTH),
4110 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4111                                CNTR_SYNTH),
4112 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4113                                  CNTR_SYNTH | CNTR_VL),
4114 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4115                                 CNTR_SYNTH | CNTR_VL),
4116 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4117 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4118                                  CNTR_SYNTH | CNTR_VL),
4119 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4120 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4121                                  CNTR_SYNTH | CNTR_VL),
4122 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4123                               CNTR_SYNTH),
4124 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4125                                  CNTR_SYNTH | CNTR_VL),
4126 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4127                                 CNTR_SYNTH),
4128 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4129                                    CNTR_SYNTH | CNTR_VL),
4130 [C_DC_TOTAL_CRC] =
4131         DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4132                          CNTR_SYNTH),
4133 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4134                                   CNTR_SYNTH),
4135 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4136                                   CNTR_SYNTH),
4137 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4138                                   CNTR_SYNTH),
4139 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4140                                   CNTR_SYNTH),
4141 [C_DC_CRC_MULT_LN] =
4142         DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4143                          CNTR_SYNTH),
4144 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4145                                     CNTR_SYNTH),
4146 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4147                                     CNTR_SYNTH),
4148 [C_DC_SEQ_CRC_CNT] =
4149         DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4150                          CNTR_SYNTH),
4151 [C_DC_ESC0_ONLY_CNT] =
4152         DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4153                          CNTR_SYNTH),
4154 [C_DC_ESC0_PLUS1_CNT] =
4155         DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4156                          CNTR_SYNTH),
4157 [C_DC_ESC0_PLUS2_CNT] =
4158         DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4159                          CNTR_SYNTH),
4160 [C_DC_REINIT_FROM_PEER_CNT] =
4161         DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4162                          CNTR_SYNTH),
4163 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4164                                   CNTR_SYNTH),
4165 [C_DC_MISC_FLG_CNT] =
4166         DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4167                          CNTR_SYNTH),
4168 [C_DC_PRF_GOOD_LTP_CNT] =
4169         DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4170 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4171         DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4172                          CNTR_SYNTH),
4173 [C_DC_PRF_RX_FLIT_CNT] =
4174         DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4175 [C_DC_PRF_TX_FLIT_CNT] =
4176         DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4177 [C_DC_PRF_CLK_CNTR] =
4178         DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4179 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4180         DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4181 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4182         DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4183                          CNTR_SYNTH),
4184 [C_DC_PG_STS_TX_SBE_CNT] =
4185         DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4186 [C_DC_PG_STS_TX_MBE_CNT] =
4187         DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4188                          CNTR_SYNTH),
4189 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4190                             access_sw_cpu_intr),
4191 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4192                             access_sw_cpu_rcv_limit),
4193 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4194                             access_sw_vtx_wait),
4195 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4196                             access_sw_pio_wait),
4197 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4198                             access_sw_pio_drain),
4199 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4200                             access_sw_kmem_wait),
4201 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4202                             access_sw_send_schedule),
4203 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4204                                       SEND_DMA_DESC_FETCHED_CNT, 0,
4205                                       CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4206                                       dev_access_u32_csr),
4207 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4208                              CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4209                              access_sde_int_cnt),
4210 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4211                              CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4212                              access_sde_err_cnt),
4213 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4214                                   CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4215                                   access_sde_idle_int_cnt),
4216 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4217                                       CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4218                                       access_sde_progress_int_cnt),
4219 /* MISC_ERR_STATUS */
4220 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4221                                 CNTR_NORMAL,
4222                                 access_misc_pll_lock_fail_err_cnt),
4223 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4224                                 CNTR_NORMAL,
4225                                 access_misc_mbist_fail_err_cnt),
4226 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4227                                 CNTR_NORMAL,
4228                                 access_misc_invalid_eep_cmd_err_cnt),
4229 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4230                                 CNTR_NORMAL,
4231                                 access_misc_efuse_done_parity_err_cnt),
4232 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4233                                 CNTR_NORMAL,
4234                                 access_misc_efuse_write_err_cnt),
4235 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4236                                 0, CNTR_NORMAL,
4237                                 access_misc_efuse_read_bad_addr_err_cnt),
4238 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4239                                 CNTR_NORMAL,
4240                                 access_misc_efuse_csr_parity_err_cnt),
4241 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4242                                 CNTR_NORMAL,
4243                                 access_misc_fw_auth_failed_err_cnt),
4244 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4245                                 CNTR_NORMAL,
4246                                 access_misc_key_mismatch_err_cnt),
4247 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4248                                 CNTR_NORMAL,
4249                                 access_misc_sbus_write_failed_err_cnt),
4250 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4251                                 CNTR_NORMAL,
4252                                 access_misc_csr_write_bad_addr_err_cnt),
4253 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4254                                 CNTR_NORMAL,
4255                                 access_misc_csr_read_bad_addr_err_cnt),
4256 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4257                                 CNTR_NORMAL,
4258                                 access_misc_csr_parity_err_cnt),
4259 /* CceErrStatus */
4260 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4261                                 CNTR_NORMAL,
4262                                 access_sw_cce_err_status_aggregated_cnt),
4263 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4264                                 CNTR_NORMAL,
4265                                 access_cce_msix_csr_parity_err_cnt),
4266 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4267                                 CNTR_NORMAL,
4268                                 access_cce_int_map_unc_err_cnt),
4269 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4270                                 CNTR_NORMAL,
4271                                 access_cce_int_map_cor_err_cnt),
4272 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4273                                 CNTR_NORMAL,
4274                                 access_cce_msix_table_unc_err_cnt),
4275 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4276                                 CNTR_NORMAL,
4277                                 access_cce_msix_table_cor_err_cnt),
4278 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4279                                 0, CNTR_NORMAL,
4280                                 access_cce_rxdma_conv_fifo_parity_err_cnt),
4281 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4282                                 0, CNTR_NORMAL,
4283                                 access_cce_rcpl_async_fifo_parity_err_cnt),
4284 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4285                                 CNTR_NORMAL,
4286                                 access_cce_seg_write_bad_addr_err_cnt),
4287 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4288                                 CNTR_NORMAL,
4289                                 access_cce_seg_read_bad_addr_err_cnt),
4290 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4291                                 CNTR_NORMAL,
4292                                 access_la_triggered_cnt),
4293 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4294                                 CNTR_NORMAL,
4295                                 access_cce_trgt_cpl_timeout_err_cnt),
4296 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4297                                 CNTR_NORMAL,
4298                                 access_pcic_receive_parity_err_cnt),
4299 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4300                                 CNTR_NORMAL,
4301                                 access_pcic_transmit_back_parity_err_cnt),
4302 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4303                                 0, CNTR_NORMAL,
4304                                 access_pcic_transmit_front_parity_err_cnt),
4305 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4306                                 CNTR_NORMAL,
4307                                 access_pcic_cpl_dat_q_unc_err_cnt),
4308 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4309                                 CNTR_NORMAL,
4310                                 access_pcic_cpl_hd_q_unc_err_cnt),
4311 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4312                                 CNTR_NORMAL,
4313                                 access_pcic_post_dat_q_unc_err_cnt),
4314 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4315                                 CNTR_NORMAL,
4316                                 access_pcic_post_hd_q_unc_err_cnt),
4317 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4318                                 CNTR_NORMAL,
4319                                 access_pcic_retry_sot_mem_unc_err_cnt),
4320 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4321                                 CNTR_NORMAL,
4322                                 access_pcic_retry_mem_unc_err),
4323 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4324                                 CNTR_NORMAL,
4325                                 access_pcic_n_post_dat_q_parity_err_cnt),
4326 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4327                                 CNTR_NORMAL,
4328                                 access_pcic_n_post_h_q_parity_err_cnt),
4329 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4330                                 CNTR_NORMAL,
4331                                 access_pcic_cpl_dat_q_cor_err_cnt),
4332 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4333                                 CNTR_NORMAL,
4334                                 access_pcic_cpl_hd_q_cor_err_cnt),
4335 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4336                                 CNTR_NORMAL,
4337                                 access_pcic_post_dat_q_cor_err_cnt),
4338 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4339                                 CNTR_NORMAL,
4340                                 access_pcic_post_hd_q_cor_err_cnt),
4341 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4342                                 CNTR_NORMAL,
4343                                 access_pcic_retry_sot_mem_cor_err_cnt),
4344 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4345                                 CNTR_NORMAL,
4346                                 access_pcic_retry_mem_cor_err_cnt),
4347 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4348                                 "CceCli1AsyncFifoDbgParityError", 0, 0,
4349                                 CNTR_NORMAL,
4350                                 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4351 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4352                                 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4353                                 CNTR_NORMAL,
4354                                 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4355                                 ),
4356 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4357                         "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4358                         CNTR_NORMAL,
4359                         access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4360 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4361                         "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4362                         CNTR_NORMAL,
4363                         access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4364 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4365                         0, CNTR_NORMAL,
4366                         access_cce_cli2_async_fifo_parity_err_cnt),
4367 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4368                         CNTR_NORMAL,
4369                         access_cce_csr_cfg_bus_parity_err_cnt),
4370 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4371                         0, CNTR_NORMAL,
4372                         access_cce_cli0_async_fifo_parity_err_cnt),
4373 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4374                         CNTR_NORMAL,
4375                         access_cce_rspd_data_parity_err_cnt),
4376 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4377                         CNTR_NORMAL,
4378                         access_cce_trgt_access_err_cnt),
4379 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4380                         0, CNTR_NORMAL,
4381                         access_cce_trgt_async_fifo_parity_err_cnt),
4382 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4383                         CNTR_NORMAL,
4384                         access_cce_csr_write_bad_addr_err_cnt),
4385 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4386                         CNTR_NORMAL,
4387                         access_cce_csr_read_bad_addr_err_cnt),
4388 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4389                         CNTR_NORMAL,
4390                         access_ccs_csr_parity_err_cnt),
4391
4392 /* RcvErrStatus */
4393 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4394                         CNTR_NORMAL,
4395                         access_rx_csr_parity_err_cnt),
4396 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4397                         CNTR_NORMAL,
4398                         access_rx_csr_write_bad_addr_err_cnt),
4399 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4400                         CNTR_NORMAL,
4401                         access_rx_csr_read_bad_addr_err_cnt),
4402 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4403                         CNTR_NORMAL,
4404                         access_rx_dma_csr_unc_err_cnt),
4405 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4406                         CNTR_NORMAL,
4407                         access_rx_dma_dq_fsm_encoding_err_cnt),
4408 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4409                         CNTR_NORMAL,
4410                         access_rx_dma_eq_fsm_encoding_err_cnt),
4411 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4412                         CNTR_NORMAL,
4413                         access_rx_dma_csr_parity_err_cnt),
4414 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4415                         CNTR_NORMAL,
4416                         access_rx_rbuf_data_cor_err_cnt),
4417 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4418                         CNTR_NORMAL,
4419                         access_rx_rbuf_data_unc_err_cnt),
4420 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4421                         CNTR_NORMAL,
4422                         access_rx_dma_data_fifo_rd_cor_err_cnt),
4423 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4424                         CNTR_NORMAL,
4425                         access_rx_dma_data_fifo_rd_unc_err_cnt),
4426 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4427                         CNTR_NORMAL,
4428                         access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4429 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4430                         CNTR_NORMAL,
4431                         access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4432 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4433                         CNTR_NORMAL,
4434                         access_rx_rbuf_desc_part2_cor_err_cnt),
4435 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4436                         CNTR_NORMAL,
4437                         access_rx_rbuf_desc_part2_unc_err_cnt),
4438 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4439                         CNTR_NORMAL,
4440                         access_rx_rbuf_desc_part1_cor_err_cnt),
4441 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4442                         CNTR_NORMAL,
4443                         access_rx_rbuf_desc_part1_unc_err_cnt),
4444 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4445                         CNTR_NORMAL,
4446                         access_rx_hq_intr_fsm_err_cnt),
4447 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4448                         CNTR_NORMAL,
4449                         access_rx_hq_intr_csr_parity_err_cnt),
4450 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4451                         CNTR_NORMAL,
4452                         access_rx_lookup_csr_parity_err_cnt),
4453 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4454                         CNTR_NORMAL,
4455                         access_rx_lookup_rcv_array_cor_err_cnt),
4456 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4457                         CNTR_NORMAL,
4458                         access_rx_lookup_rcv_array_unc_err_cnt),
4459 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4460                         0, CNTR_NORMAL,
4461                         access_rx_lookup_des_part2_parity_err_cnt),
4462 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4463                         0, CNTR_NORMAL,
4464                         access_rx_lookup_des_part1_unc_cor_err_cnt),
4465 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4466                         CNTR_NORMAL,
4467                         access_rx_lookup_des_part1_unc_err_cnt),
4468 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4469                         CNTR_NORMAL,
4470                         access_rx_rbuf_next_free_buf_cor_err_cnt),
4471 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4472                         CNTR_NORMAL,
4473                         access_rx_rbuf_next_free_buf_unc_err_cnt),
4474 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4475                         "RxRbufFlInitWrAddrParityErr", 0, 0,
4476                         CNTR_NORMAL,
4477                         access_rbuf_fl_init_wr_addr_parity_err_cnt),
4478 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4479                         0, CNTR_NORMAL,
4480                         access_rx_rbuf_fl_initdone_parity_err_cnt),
4481 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4482                         0, CNTR_NORMAL,
4483                         access_rx_rbuf_fl_write_addr_parity_err_cnt),
4484 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4485                         CNTR_NORMAL,
4486                         access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4487 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4488                         CNTR_NORMAL,
4489                         access_rx_rbuf_empty_err_cnt),
4490 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4491                         CNTR_NORMAL,
4492                         access_rx_rbuf_full_err_cnt),
4493 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4494                         CNTR_NORMAL,
4495                         access_rbuf_bad_lookup_err_cnt),
4496 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4497                         CNTR_NORMAL,
4498                         access_rbuf_ctx_id_parity_err_cnt),
4499 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4500                         CNTR_NORMAL,
4501                         access_rbuf_csr_qeopdw_parity_err_cnt),
4502 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4503                         "RxRbufCsrQNumOfPktParityErr", 0, 0,
4504                         CNTR_NORMAL,
4505                         access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4506 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4507                         "RxRbufCsrQTlPtrParityErr", 0, 0,
4508                         CNTR_NORMAL,
4509                         access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4510 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4511                         0, CNTR_NORMAL,
4512                         access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4513 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4514                         0, CNTR_NORMAL,
4515                         access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4516 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4517                         0, 0, CNTR_NORMAL,
4518                         access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4519 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4520                         0, CNTR_NORMAL,
4521                         access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4522 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4523                         "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4524                         CNTR_NORMAL,
4525                         access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4526 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4527                         0, CNTR_NORMAL,
4528                         access_rx_rbuf_block_list_read_cor_err_cnt),
4529 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4530                         0, CNTR_NORMAL,
4531                         access_rx_rbuf_block_list_read_unc_err_cnt),
4532 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4533                         CNTR_NORMAL,
4534                         access_rx_rbuf_lookup_des_cor_err_cnt),
4535 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4536                         CNTR_NORMAL,
4537                         access_rx_rbuf_lookup_des_unc_err_cnt),
4538 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4539                         "RxRbufLookupDesRegUncCorErr", 0, 0,
4540                         CNTR_NORMAL,
4541                         access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4542 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4543                         CNTR_NORMAL,
4544                         access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4545 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4546                         CNTR_NORMAL,
4547                         access_rx_rbuf_free_list_cor_err_cnt),
4548 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4549                         CNTR_NORMAL,
4550                         access_rx_rbuf_free_list_unc_err_cnt),
4551 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4552                         CNTR_NORMAL,
4553                         access_rx_rcv_fsm_encoding_err_cnt),
4554 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4555                         CNTR_NORMAL,
4556                         access_rx_dma_flag_cor_err_cnt),
4557 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4558                         CNTR_NORMAL,
4559                         access_rx_dma_flag_unc_err_cnt),
4560 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4561                         CNTR_NORMAL,
4562                         access_rx_dc_sop_eop_parity_err_cnt),
4563 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4564                         CNTR_NORMAL,
4565                         access_rx_rcv_csr_parity_err_cnt),
4566 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4567                         CNTR_NORMAL,
4568                         access_rx_rcv_qp_map_table_cor_err_cnt),
4569 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4570                         CNTR_NORMAL,
4571                         access_rx_rcv_qp_map_table_unc_err_cnt),
4572 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4573                         CNTR_NORMAL,
4574                         access_rx_rcv_data_cor_err_cnt),
4575 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4576                         CNTR_NORMAL,
4577                         access_rx_rcv_data_unc_err_cnt),
4578 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4579                         CNTR_NORMAL,
4580                         access_rx_rcv_hdr_cor_err_cnt),
4581 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4582                         CNTR_NORMAL,
4583                         access_rx_rcv_hdr_unc_err_cnt),
4584 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4585                         CNTR_NORMAL,
4586                         access_rx_dc_intf_parity_err_cnt),
4587 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4588                         CNTR_NORMAL,
4589                         access_rx_dma_csr_cor_err_cnt),
4590 /* SendPioErrStatus */
4591 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4592                         CNTR_NORMAL,
4593                         access_pio_pec_sop_head_parity_err_cnt),
4594 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4595                         CNTR_NORMAL,
4596                         access_pio_pcc_sop_head_parity_err_cnt),
4597 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4598                         0, 0, CNTR_NORMAL,
4599                         access_pio_last_returned_cnt_parity_err_cnt),
4600 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4601                         0, CNTR_NORMAL,
4602                         access_pio_current_free_cnt_parity_err_cnt),
4603 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4604                         CNTR_NORMAL,
4605                         access_pio_reserved_31_err_cnt),
4606 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4607                         CNTR_NORMAL,
4608                         access_pio_reserved_30_err_cnt),
4609 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4610                         CNTR_NORMAL,
4611                         access_pio_ppmc_sop_len_err_cnt),
4612 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4613                         CNTR_NORMAL,
4614                         access_pio_ppmc_bqc_mem_parity_err_cnt),
4615 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4616                         CNTR_NORMAL,
4617                         access_pio_vl_fifo_parity_err_cnt),
4618 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4619                         CNTR_NORMAL,
4620                         access_pio_vlf_sop_parity_err_cnt),
4621 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4622                         CNTR_NORMAL,
4623                         access_pio_vlf_v1_len_parity_err_cnt),
4624 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4625                         CNTR_NORMAL,
4626                         access_pio_block_qw_count_parity_err_cnt),
4627 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4628                         CNTR_NORMAL,
4629                         access_pio_write_qw_valid_parity_err_cnt),
4630 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4631                         CNTR_NORMAL,
4632                         access_pio_state_machine_err_cnt),
4633 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4634                         CNTR_NORMAL,
4635                         access_pio_write_data_parity_err_cnt),
4636 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4637                         CNTR_NORMAL,
4638                         access_pio_host_addr_mem_cor_err_cnt),
4639 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4640                         CNTR_NORMAL,
4641                         access_pio_host_addr_mem_unc_err_cnt),
4642 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4643                         CNTR_NORMAL,
4644                         access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4645 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4646                         CNTR_NORMAL,
4647                         access_pio_init_sm_in_err_cnt),
4648 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4649                         CNTR_NORMAL,
4650                         access_pio_ppmc_pbl_fifo_err_cnt),
4651 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4652                         0, CNTR_NORMAL,
4653                         access_pio_credit_ret_fifo_parity_err_cnt),
4654 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4655                         CNTR_NORMAL,
4656                         access_pio_v1_len_mem_bank1_cor_err_cnt),
4657 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4658                         CNTR_NORMAL,
4659                         access_pio_v1_len_mem_bank0_cor_err_cnt),
4660 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4661                         CNTR_NORMAL,
4662                         access_pio_v1_len_mem_bank1_unc_err_cnt),
4663 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4664                         CNTR_NORMAL,
4665                         access_pio_v1_len_mem_bank0_unc_err_cnt),
4666 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4667                         CNTR_NORMAL,
4668                         access_pio_sm_pkt_reset_parity_err_cnt),
4669 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4670                         CNTR_NORMAL,
4671                         access_pio_pkt_evict_fifo_parity_err_cnt),
4672 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4673                         "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4674                         CNTR_NORMAL,
4675                         access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4676 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4677                         CNTR_NORMAL,
4678                         access_pio_sbrdctl_crrel_parity_err_cnt),
4679 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4680                         CNTR_NORMAL,
4681                         access_pio_pec_fifo_parity_err_cnt),
4682 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4683                         CNTR_NORMAL,
4684                         access_pio_pcc_fifo_parity_err_cnt),
4685 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4686                         CNTR_NORMAL,
4687                         access_pio_sb_mem_fifo1_err_cnt),
4688 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4689                         CNTR_NORMAL,
4690                         access_pio_sb_mem_fifo0_err_cnt),
4691 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4692                         CNTR_NORMAL,
4693                         access_pio_csr_parity_err_cnt),
4694 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4695                         CNTR_NORMAL,
4696                         access_pio_write_addr_parity_err_cnt),
4697 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4698                         CNTR_NORMAL,
4699                         access_pio_write_bad_ctxt_err_cnt),
4700 /* SendDmaErrStatus */
4701 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4702                         0, CNTR_NORMAL,
4703                         access_sdma_pcie_req_tracking_cor_err_cnt),
4704 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4705                         0, CNTR_NORMAL,
4706                         access_sdma_pcie_req_tracking_unc_err_cnt),
4707 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4708                         CNTR_NORMAL,
4709                         access_sdma_csr_parity_err_cnt),
4710 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4711                         CNTR_NORMAL,
4712                         access_sdma_rpy_tag_err_cnt),
4713 /* SendEgressErrStatus */
4714 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4715                         CNTR_NORMAL,
4716                         access_tx_read_pio_memory_csr_unc_err_cnt),
4717 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4718                         0, CNTR_NORMAL,
4719                         access_tx_read_sdma_memory_csr_err_cnt),
4720 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4721                         CNTR_NORMAL,
4722                         access_tx_egress_fifo_cor_err_cnt),
4723 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4724                         CNTR_NORMAL,
4725                         access_tx_read_pio_memory_cor_err_cnt),
4726 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4727                         CNTR_NORMAL,
4728                         access_tx_read_sdma_memory_cor_err_cnt),
4729 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4730                         CNTR_NORMAL,
4731                         access_tx_sb_hdr_cor_err_cnt),
4732 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4733                         CNTR_NORMAL,
4734                         access_tx_credit_overrun_err_cnt),
4735 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4736                         CNTR_NORMAL,
4737                         access_tx_launch_fifo8_cor_err_cnt),
4738 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4739                         CNTR_NORMAL,
4740                         access_tx_launch_fifo7_cor_err_cnt),
4741 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4742                         CNTR_NORMAL,
4743                         access_tx_launch_fifo6_cor_err_cnt),
4744 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4745                         CNTR_NORMAL,
4746                         access_tx_launch_fifo5_cor_err_cnt),
4747 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4748                         CNTR_NORMAL,
4749                         access_tx_launch_fifo4_cor_err_cnt),
4750 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4751                         CNTR_NORMAL,
4752                         access_tx_launch_fifo3_cor_err_cnt),
4753 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4754                         CNTR_NORMAL,
4755                         access_tx_launch_fifo2_cor_err_cnt),
4756 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4757                         CNTR_NORMAL,
4758                         access_tx_launch_fifo1_cor_err_cnt),
4759 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4760                         CNTR_NORMAL,
4761                         access_tx_launch_fifo0_cor_err_cnt),
4762 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4763                         CNTR_NORMAL,
4764                         access_tx_credit_return_vl_err_cnt),
4765 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4766                         CNTR_NORMAL,
4767                         access_tx_hcrc_insertion_err_cnt),
4768 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4769                         CNTR_NORMAL,
4770                         access_tx_egress_fifo_unc_err_cnt),
4771 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4772                         CNTR_NORMAL,
4773                         access_tx_read_pio_memory_unc_err_cnt),
4774 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4775                         CNTR_NORMAL,
4776                         access_tx_read_sdma_memory_unc_err_cnt),
4777 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4778                         CNTR_NORMAL,
4779                         access_tx_sb_hdr_unc_err_cnt),
4780 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4781                         CNTR_NORMAL,
4782                         access_tx_credit_return_partiy_err_cnt),
4783 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4784                         0, 0, CNTR_NORMAL,
4785                         access_tx_launch_fifo8_unc_or_parity_err_cnt),
4786 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4787                         0, 0, CNTR_NORMAL,
4788                         access_tx_launch_fifo7_unc_or_parity_err_cnt),
4789 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4790                         0, 0, CNTR_NORMAL,
4791                         access_tx_launch_fifo6_unc_or_parity_err_cnt),
4792 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4793                         0, 0, CNTR_NORMAL,
4794                         access_tx_launch_fifo5_unc_or_parity_err_cnt),
4795 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4796                         0, 0, CNTR_NORMAL,
4797                         access_tx_launch_fifo4_unc_or_parity_err_cnt),
4798 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4799                         0, 0, CNTR_NORMAL,
4800                         access_tx_launch_fifo3_unc_or_parity_err_cnt),
4801 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4802                         0, 0, CNTR_NORMAL,
4803                         access_tx_launch_fifo2_unc_or_parity_err_cnt),
4804 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4805                         0, 0, CNTR_NORMAL,
4806                         access_tx_launch_fifo1_unc_or_parity_err_cnt),
4807 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4808                         0, 0, CNTR_NORMAL,
4809                         access_tx_launch_fifo0_unc_or_parity_err_cnt),
4810 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4811                         0, 0, CNTR_NORMAL,
4812                         access_tx_sdma15_disallowed_packet_err_cnt),
4813 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4814                         0, 0, CNTR_NORMAL,
4815                         access_tx_sdma14_disallowed_packet_err_cnt),
4816 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4817                         0, 0, CNTR_NORMAL,
4818                         access_tx_sdma13_disallowed_packet_err_cnt),
4819 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4820                         0, 0, CNTR_NORMAL,
4821                         access_tx_sdma12_disallowed_packet_err_cnt),
4822 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4823                         0, 0, CNTR_NORMAL,
4824                         access_tx_sdma11_disallowed_packet_err_cnt),
4825 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4826                         0, 0, CNTR_NORMAL,
4827                         access_tx_sdma10_disallowed_packet_err_cnt),
4828 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4829                         0, 0, CNTR_NORMAL,
4830                         access_tx_sdma9_disallowed_packet_err_cnt),
4831 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4832                         0, 0, CNTR_NORMAL,
4833                         access_tx_sdma8_disallowed_packet_err_cnt),
4834 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4835                         0, 0, CNTR_NORMAL,
4836                         access_tx_sdma7_disallowed_packet_err_cnt),
4837 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4838                         0, 0, CNTR_NORMAL,
4839                         access_tx_sdma6_disallowed_packet_err_cnt),
4840 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4841                         0, 0, CNTR_NORMAL,
4842                         access_tx_sdma5_disallowed_packet_err_cnt),
4843 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4844                         0, 0, CNTR_NORMAL,
4845                         access_tx_sdma4_disallowed_packet_err_cnt),
4846 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4847                         0, 0, CNTR_NORMAL,
4848                         access_tx_sdma3_disallowed_packet_err_cnt),
4849 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4850                         0, 0, CNTR_NORMAL,
4851                         access_tx_sdma2_disallowed_packet_err_cnt),
4852 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4853                         0, 0, CNTR_NORMAL,
4854                         access_tx_sdma1_disallowed_packet_err_cnt),
4855 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4856                         0, 0, CNTR_NORMAL,
4857                         access_tx_sdma0_disallowed_packet_err_cnt),
4858 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4859                         CNTR_NORMAL,
4860                         access_tx_config_parity_err_cnt),
4861 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4862                         CNTR_NORMAL,
4863                         access_tx_sbrd_ctl_csr_parity_err_cnt),
4864 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4865                         CNTR_NORMAL,
4866                         access_tx_launch_csr_parity_err_cnt),
4867 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4868                         CNTR_NORMAL,
4869                         access_tx_illegal_vl_err_cnt),
4870 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4871                         "TxSbrdCtlStateMachineParityErr", 0, 0,
4872                         CNTR_NORMAL,
4873                         access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4874 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4875                         CNTR_NORMAL,
4876                         access_egress_reserved_10_err_cnt),
4877 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4878                         CNTR_NORMAL,
4879                         access_egress_reserved_9_err_cnt),
4880 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4881                         0, 0, CNTR_NORMAL,
4882                         access_tx_sdma_launch_intf_parity_err_cnt),
4883 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4884                         CNTR_NORMAL,
4885                         access_tx_pio_launch_intf_parity_err_cnt),
4886 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4887                         CNTR_NORMAL,
4888                         access_egress_reserved_6_err_cnt),
4889 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4890                         CNTR_NORMAL,
4891                         access_tx_incorrect_link_state_err_cnt),
4892 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4893                         CNTR_NORMAL,
4894                         access_tx_linkdown_err_cnt),
4895 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4896                         "EgressFifoUnderrunOrParityErr", 0, 0,
4897                         CNTR_NORMAL,
4898                         access_tx_egress_fifi_underrun_or_parity_err_cnt),
4899 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4900                         CNTR_NORMAL,
4901                         access_egress_reserved_2_err_cnt),
4902 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4903                         CNTR_NORMAL,
4904                         access_tx_pkt_integrity_mem_unc_err_cnt),
4905 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4906                         CNTR_NORMAL,
4907                         access_tx_pkt_integrity_mem_cor_err_cnt),
4908 /* SendErrStatus */
4909 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4910                         CNTR_NORMAL,
4911                         access_send_csr_write_bad_addr_err_cnt),
4912 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4913                         CNTR_NORMAL,
4914                         access_send_csr_read_bad_addr_err_cnt),
4915 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4916                         CNTR_NORMAL,
4917                         access_send_csr_parity_cnt),
4918 /* SendCtxtErrStatus */
4919 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4920                         CNTR_NORMAL,
4921                         access_pio_write_out_of_bounds_err_cnt),
4922 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4923                         CNTR_NORMAL,
4924                         access_pio_write_overflow_err_cnt),
4925 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4926                         0, 0, CNTR_NORMAL,
4927                         access_pio_write_crosses_boundary_err_cnt),
4928 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4929                         CNTR_NORMAL,
4930                         access_pio_disallowed_packet_err_cnt),
4931 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4932                         CNTR_NORMAL,
4933                         access_pio_inconsistent_sop_err_cnt),
4934 /* SendDmaEngErrStatus */
4935 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4936                         0, 0, CNTR_NORMAL,
4937                         access_sdma_header_request_fifo_cor_err_cnt),
4938 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4939                         CNTR_NORMAL,
4940                         access_sdma_header_storage_cor_err_cnt),
4941 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4942                         CNTR_NORMAL,
4943                         access_sdma_packet_tracking_cor_err_cnt),
4944 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4945                         CNTR_NORMAL,
4946                         access_sdma_assembly_cor_err_cnt),
4947 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4948                         CNTR_NORMAL,
4949                         access_sdma_desc_table_cor_err_cnt),
4950 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4951                         0, 0, CNTR_NORMAL,
4952                         access_sdma_header_request_fifo_unc_err_cnt),
4953 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4954                         CNTR_NORMAL,
4955                         access_sdma_header_storage_unc_err_cnt),
4956 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4957                         CNTR_NORMAL,
4958                         access_sdma_packet_tracking_unc_err_cnt),
4959 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4960                         CNTR_NORMAL,
4961                         access_sdma_assembly_unc_err_cnt),
4962 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4963                         CNTR_NORMAL,
4964                         access_sdma_desc_table_unc_err_cnt),
4965 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4966                         CNTR_NORMAL,
4967                         access_sdma_timeout_err_cnt),
4968 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4969                         CNTR_NORMAL,
4970                         access_sdma_header_length_err_cnt),
4971 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4972                         CNTR_NORMAL,
4973                         access_sdma_header_address_err_cnt),
4974 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4975                         CNTR_NORMAL,
4976                         access_sdma_header_select_err_cnt),
4977 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4978                         CNTR_NORMAL,
4979                         access_sdma_reserved_9_err_cnt),
4980 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4981                         CNTR_NORMAL,
4982                         access_sdma_packet_desc_overflow_err_cnt),
4983 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4984                         CNTR_NORMAL,
4985                         access_sdma_length_mismatch_err_cnt),
4986 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4987                         CNTR_NORMAL,
4988                         access_sdma_halt_err_cnt),
4989 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4990                         CNTR_NORMAL,
4991                         access_sdma_mem_read_err_cnt),
4992 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4993                         CNTR_NORMAL,
4994                         access_sdma_first_desc_err_cnt),
4995 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4996                         CNTR_NORMAL,
4997                         access_sdma_tail_out_of_bounds_err_cnt),
4998 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
4999                         CNTR_NORMAL,
5000                         access_sdma_too_long_err_cnt),
5001 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5002                         CNTR_NORMAL,
5003                         access_sdma_gen_mismatch_err_cnt),
5004 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5005                         CNTR_NORMAL,
5006                         access_sdma_wrong_dw_err_cnt),
5007 };
5008
5009 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5010 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5011                         CNTR_NORMAL),
5012 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5013                         CNTR_NORMAL),
5014 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5015                         CNTR_NORMAL),
5016 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5017                         CNTR_NORMAL),
5018 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5019                         CNTR_NORMAL),
5020 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5021                         CNTR_NORMAL),
5022 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5023                         CNTR_NORMAL),
5024 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5025 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5026 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5027 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5028                                       CNTR_SYNTH | CNTR_VL),
5029 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5030                                      CNTR_SYNTH | CNTR_VL),
5031 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5032                                       CNTR_SYNTH | CNTR_VL),
5033 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5034 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5035 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5036                              access_sw_link_dn_cnt),
5037 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5038                            access_sw_link_up_cnt),
5039 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5040                                  access_sw_unknown_frame_cnt),
5041 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5042                              access_sw_xmit_discards),
5043 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5044                                 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5045                                 access_sw_xmit_discards),
5046 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5047                                  access_xmit_constraint_errs),
5048 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5049                                 access_rcv_constraint_errs),
5050 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5051 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5052 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5053 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5054 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5055 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5056 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5057 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5058 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5059 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5060 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5061 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5062 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5063                                access_sw_cpu_rc_acks),
5064 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5065                                 access_sw_cpu_rc_qacks),
5066 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5067                                        access_sw_cpu_rc_delayed_comp),
5068 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5069 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5070 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5071 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5072 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5073 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5074 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5075 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5076 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5077 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5078 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5079 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5080 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5081 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5082 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5083 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5084 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5085 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5086 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5087 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5088 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5089 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5090 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5091 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5092 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5093 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5094 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5095 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5096 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5097 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5098 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5099 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5100 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5101 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5102 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5103 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5104 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5105 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5106 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5107 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5108 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5109 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5110 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5111 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5112 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5113 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5114 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5115 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5116 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5117 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5118 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5119 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5120 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5121 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5122 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5123 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5124 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5125 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5126 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5127 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5128 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5129 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5130 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5131 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5132 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5133 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5134 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5135 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5136 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5137 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5138 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5139 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5140 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5141 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5142 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5143 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5144 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5145 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5146 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5147 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5148 };
5149
5150 /* ======================================================================== */
5151
5152 /* return true if this is chip revision revision a */
5153 int is_ax(struct hfi1_devdata *dd)
5154 {
5155         u8 chip_rev_minor =
5156                 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5157                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
5158         return (chip_rev_minor & 0xf0) == 0;
5159 }
5160
5161 /* return true if this is chip revision revision b */
5162 int is_bx(struct hfi1_devdata *dd)
5163 {
5164         u8 chip_rev_minor =
5165                 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5166                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
5167         return (chip_rev_minor & 0xF0) == 0x10;
5168 }
5169
5170 /*
5171  * Append string s to buffer buf.  Arguments curp and len are the current
5172  * position and remaining length, respectively.
5173  *
5174  * return 0 on success, 1 on out of room
5175  */
5176 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5177 {
5178         char *p = *curp;
5179         int len = *lenp;
5180         int result = 0; /* success */
5181         char c;
5182
5183         /* add a comma, if first in the buffer */
5184         if (p != buf) {
5185                 if (len == 0) {
5186                         result = 1; /* out of room */
5187                         goto done;
5188                 }
5189                 *p++ = ',';
5190                 len--;
5191         }
5192
5193         /* copy the string */
5194         while ((c = *s++) != 0) {
5195                 if (len == 0) {
5196                         result = 1; /* out of room */
5197                         goto done;
5198                 }
5199                 *p++ = c;
5200                 len--;
5201         }
5202
5203 done:
5204         /* write return values */
5205         *curp = p;
5206         *lenp = len;
5207
5208         return result;
5209 }
5210
5211 /*
5212  * Using the given flag table, print a comma separated string into
5213  * the buffer.  End in '*' if the buffer is too short.
5214  */
5215 static char *flag_string(char *buf, int buf_len, u64 flags,
5216                          struct flag_table *table, int table_size)
5217 {
5218         char extra[32];
5219         char *p = buf;
5220         int len = buf_len;
5221         int no_room = 0;
5222         int i;
5223
5224         /* make sure there is at least 2 so we can form "*" */
5225         if (len < 2)
5226                 return "";
5227
5228         len--;  /* leave room for a nul */
5229         for (i = 0; i < table_size; i++) {
5230                 if (flags & table[i].flag) {
5231                         no_room = append_str(buf, &p, &len, table[i].str);
5232                         if (no_room)
5233                                 break;
5234                         flags &= ~table[i].flag;
5235                 }
5236         }
5237
5238         /* any undocumented bits left? */
5239         if (!no_room && flags) {
5240                 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5241                 no_room = append_str(buf, &p, &len, extra);
5242         }
5243
5244         /* add * if ran out of room */
5245         if (no_room) {
5246                 /* may need to back up to add space for a '*' */
5247                 if (len == 0)
5248                         --p;
5249                 *p++ = '*';
5250         }
5251
5252         /* add final nul - space already allocated above */
5253         *p = 0;
5254         return buf;
5255 }
5256
5257 /* first 8 CCE error interrupt source names */
5258 static const char * const cce_misc_names[] = {
5259         "CceErrInt",            /* 0 */
5260         "RxeErrInt",            /* 1 */
5261         "MiscErrInt",           /* 2 */
5262         "Reserved3",            /* 3 */
5263         "PioErrInt",            /* 4 */
5264         "SDmaErrInt",           /* 5 */
5265         "EgressErrInt",         /* 6 */
5266         "TxeErrInt"             /* 7 */
5267 };
5268
5269 /*
5270  * Return the miscellaneous error interrupt name.
5271  */
5272 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5273 {
5274         if (source < ARRAY_SIZE(cce_misc_names))
5275                 strncpy(buf, cce_misc_names[source], bsize);
5276         else
5277                 snprintf(buf, bsize, "Reserved%u",
5278                          source + IS_GENERAL_ERR_START);
5279
5280         return buf;
5281 }
5282
5283 /*
5284  * Return the SDMA engine error interrupt name.
5285  */
5286 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5287 {
5288         snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5289         return buf;
5290 }
5291
5292 /*
5293  * Return the send context error interrupt name.
5294  */
5295 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5296 {
5297         snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5298         return buf;
5299 }
5300
5301 static const char * const various_names[] = {
5302         "PbcInt",
5303         "GpioAssertInt",
5304         "Qsfp1Int",
5305         "Qsfp2Int",
5306         "TCritInt"
5307 };
5308
5309 /*
5310  * Return the various interrupt name.
5311  */
5312 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5313 {
5314         if (source < ARRAY_SIZE(various_names))
5315                 strncpy(buf, various_names[source], bsize);
5316         else
5317                 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5318         return buf;
5319 }
5320
5321 /*
5322  * Return the DC interrupt name.
5323  */
5324 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5325 {
5326         static const char * const dc_int_names[] = {
5327                 "common",
5328                 "lcb",
5329                 "8051",
5330                 "lbm"   /* local block merge */
5331         };
5332
5333         if (source < ARRAY_SIZE(dc_int_names))
5334                 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5335         else
5336                 snprintf(buf, bsize, "DCInt%u", source);
5337         return buf;
5338 }
5339
5340 static const char * const sdma_int_names[] = {
5341         "SDmaInt",
5342         "SdmaIdleInt",
5343         "SdmaProgressInt",
5344 };
5345
5346 /*
5347  * Return the SDMA engine interrupt name.
5348  */
5349 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5350 {
5351         /* what interrupt */
5352         unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5353         /* which engine */
5354         unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5355
5356         if (likely(what < 3))
5357                 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5358         else
5359                 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5360         return buf;
5361 }
5362
5363 /*
5364  * Return the receive available interrupt name.
5365  */
5366 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5367 {
5368         snprintf(buf, bsize, "RcvAvailInt%u", source);
5369         return buf;
5370 }
5371
5372 /*
5373  * Return the receive urgent interrupt name.
5374  */
5375 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5376 {
5377         snprintf(buf, bsize, "RcvUrgentInt%u", source);
5378         return buf;
5379 }
5380
5381 /*
5382  * Return the send credit interrupt name.
5383  */
5384 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5385 {
5386         snprintf(buf, bsize, "SendCreditInt%u", source);
5387         return buf;
5388 }
5389
5390 /*
5391  * Return the reserved interrupt name.
5392  */
5393 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5394 {
5395         snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5396         return buf;
5397 }
5398
5399 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5400 {
5401         return flag_string(buf, buf_len, flags,
5402                            cce_err_status_flags,
5403                            ARRAY_SIZE(cce_err_status_flags));
5404 }
5405
5406 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5407 {
5408         return flag_string(buf, buf_len, flags,
5409                            rxe_err_status_flags,
5410                            ARRAY_SIZE(rxe_err_status_flags));
5411 }
5412
5413 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5414 {
5415         return flag_string(buf, buf_len, flags, misc_err_status_flags,
5416                            ARRAY_SIZE(misc_err_status_flags));
5417 }
5418
5419 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5420 {
5421         return flag_string(buf, buf_len, flags,
5422                            pio_err_status_flags,
5423                            ARRAY_SIZE(pio_err_status_flags));
5424 }
5425
5426 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5427 {
5428         return flag_string(buf, buf_len, flags,
5429                            sdma_err_status_flags,
5430                            ARRAY_SIZE(sdma_err_status_flags));
5431 }
5432
5433 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5434 {
5435         return flag_string(buf, buf_len, flags,
5436                            egress_err_status_flags,
5437                            ARRAY_SIZE(egress_err_status_flags));
5438 }
5439
5440 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5441 {
5442         return flag_string(buf, buf_len, flags,
5443                            egress_err_info_flags,
5444                            ARRAY_SIZE(egress_err_info_flags));
5445 }
5446
5447 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5448 {
5449         return flag_string(buf, buf_len, flags,
5450                            send_err_status_flags,
5451                            ARRAY_SIZE(send_err_status_flags));
5452 }
5453
5454 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5455 {
5456         char buf[96];
5457         int i = 0;
5458
5459         /*
5460          * For most these errors, there is nothing that can be done except
5461          * report or record it.
5462          */
5463         dd_dev_info(dd, "CCE Error: %s\n",
5464                     cce_err_status_string(buf, sizeof(buf), reg));
5465
5466         if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5467             is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5468                 /* this error requires a manual drop into SPC freeze mode */
5469                 /* then a fix up */
5470                 start_freeze_handling(dd->pport, FREEZE_SELF);
5471         }
5472
5473         for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5474                 if (reg & (1ull << i)) {
5475                         incr_cntr64(&dd->cce_err_status_cnt[i]);
5476                         /* maintain a counter over all cce_err_status errors */
5477                         incr_cntr64(&dd->sw_cce_err_status_aggregate);
5478                 }
5479         }
5480 }
5481
5482 /*
5483  * Check counters for receive errors that do not have an interrupt
5484  * associated with them.
5485  */
5486 #define RCVERR_CHECK_TIME 10
5487 static void update_rcverr_timer(unsigned long opaque)
5488 {
5489         struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5490         struct hfi1_pportdata *ppd = dd->pport;
5491         u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5492
5493         if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5494             ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5495                 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5496                 set_link_down_reason(
5497                 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5498                 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5499                 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5500         }
5501         dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5502
5503         mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5504 }
5505
5506 static int init_rcverr(struct hfi1_devdata *dd)
5507 {
5508         setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5509         /* Assume the hardware counter has been reset */
5510         dd->rcv_ovfl_cnt = 0;
5511         return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5512 }
5513
5514 static void free_rcverr(struct hfi1_devdata *dd)
5515 {
5516         if (dd->rcverr_timer.data)
5517                 del_timer_sync(&dd->rcverr_timer);
5518         dd->rcverr_timer.data = 0;
5519 }
5520
5521 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5522 {
5523         char buf[96];
5524         int i = 0;
5525
5526         dd_dev_info(dd, "Receive Error: %s\n",
5527                     rxe_err_status_string(buf, sizeof(buf), reg));
5528
5529         if (reg & ALL_RXE_FREEZE_ERR) {
5530                 int flags = 0;
5531
5532                 /*
5533                  * Freeze mode recovery is disabled for the errors
5534                  * in RXE_FREEZE_ABORT_MASK
5535                  */
5536                 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5537                         flags = FREEZE_ABORT;
5538
5539                 start_freeze_handling(dd->pport, flags);
5540         }
5541
5542         for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5543                 if (reg & (1ull << i))
5544                         incr_cntr64(&dd->rcv_err_status_cnt[i]);
5545         }
5546 }
5547
5548 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5549 {
5550         char buf[96];
5551         int i = 0;
5552
5553         dd_dev_info(dd, "Misc Error: %s",
5554                     misc_err_status_string(buf, sizeof(buf), reg));
5555         for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5556                 if (reg & (1ull << i))
5557                         incr_cntr64(&dd->misc_err_status_cnt[i]);
5558         }
5559 }
5560
5561 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5562 {
5563         char buf[96];
5564         int i = 0;
5565
5566         dd_dev_info(dd, "PIO Error: %s\n",
5567                     pio_err_status_string(buf, sizeof(buf), reg));
5568
5569         if (reg & ALL_PIO_FREEZE_ERR)
5570                 start_freeze_handling(dd->pport, 0);
5571
5572         for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5573                 if (reg & (1ull << i))
5574                         incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5575         }
5576 }
5577
5578 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5579 {
5580         char buf[96];
5581         int i = 0;
5582
5583         dd_dev_info(dd, "SDMA Error: %s\n",
5584                     sdma_err_status_string(buf, sizeof(buf), reg));
5585
5586         if (reg & ALL_SDMA_FREEZE_ERR)
5587                 start_freeze_handling(dd->pport, 0);
5588
5589         for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5590                 if (reg & (1ull << i))
5591                         incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5592         }
5593 }
5594
5595 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5596 {
5597         incr_cntr64(&ppd->port_xmit_discards);
5598 }
5599
5600 static void count_port_inactive(struct hfi1_devdata *dd)
5601 {
5602         __count_port_discards(dd->pport);
5603 }
5604
5605 /*
5606  * We have had a "disallowed packet" error during egress. Determine the
5607  * integrity check which failed, and update relevant error counter, etc.
5608  *
5609  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5610  * bit of state per integrity check, and so we can miss the reason for an
5611  * egress error if more than one packet fails the same integrity check
5612  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5613  */
5614 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5615                                         int vl)
5616 {
5617         struct hfi1_pportdata *ppd = dd->pport;
5618         u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5619         u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5620         char buf[96];
5621
5622         /* clear down all observed info as quickly as possible after read */
5623         write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5624
5625         dd_dev_info(dd,
5626                     "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5627                     info, egress_err_info_string(buf, sizeof(buf), info), src);
5628
5629         /* Eventually add other counters for each bit */
5630         if (info & PORT_DISCARD_EGRESS_ERRS) {
5631                 int weight, i;
5632
5633                 /*
5634                  * Count all applicable bits as individual errors and
5635                  * attribute them to the packet that triggered this handler.
5636                  * This may not be completely accurate due to limitations
5637                  * on the available hardware error information.  There is
5638                  * a single information register and any number of error
5639                  * packets may have occurred and contributed to it before
5640                  * this routine is called.  This means that:
5641                  * a) If multiple packets with the same error occur before
5642                  *    this routine is called, earlier packets are missed.
5643                  *    There is only a single bit for each error type.
5644                  * b) Errors may not be attributed to the correct VL.
5645                  *    The driver is attributing all bits in the info register
5646                  *    to the packet that triggered this call, but bits
5647                  *    could be an accumulation of different packets with
5648                  *    different VLs.
5649                  * c) A single error packet may have multiple counts attached
5650                  *    to it.  There is no way for the driver to know if
5651                  *    multiple bits set in the info register are due to a
5652                  *    single packet or multiple packets.  The driver assumes
5653                  *    multiple packets.
5654                  */
5655                 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5656                 for (i = 0; i < weight; i++) {
5657                         __count_port_discards(ppd);
5658                         if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5659                                 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5660                         else if (vl == 15)
5661                                 incr_cntr64(&ppd->port_xmit_discards_vl
5662                                             [C_VL_15]);
5663                 }
5664         }
5665 }
5666
5667 /*
5668  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5669  * register. Does it represent a 'port inactive' error?
5670  */
5671 static inline int port_inactive_err(u64 posn)
5672 {
5673         return (posn >= SEES(TX_LINKDOWN) &&
5674                 posn <= SEES(TX_INCORRECT_LINK_STATE));
5675 }
5676
5677 /*
5678  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5679  * register. Does it represent a 'disallowed packet' error?
5680  */
5681 static inline int disallowed_pkt_err(int posn)
5682 {
5683         return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5684                 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5685 }
5686
5687 /*
5688  * Input value is a bit position of one of the SDMA engine disallowed
5689  * packet errors.  Return which engine.  Use of this must be guarded by
5690  * disallowed_pkt_err().
5691  */
5692 static inline int disallowed_pkt_engine(int posn)
5693 {
5694         return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5695 }
5696
5697 /*
5698  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5699  * be done.
5700  */
5701 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5702 {
5703         struct sdma_vl_map *m;
5704         int vl;
5705
5706         /* range check */
5707         if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5708                 return -1;
5709
5710         rcu_read_lock();
5711         m = rcu_dereference(dd->sdma_map);
5712         vl = m->engine_to_vl[engine];
5713         rcu_read_unlock();
5714
5715         return vl;
5716 }
5717
5718 /*
5719  * Translate the send context (sofware index) into a VL.  Return -1 if the
5720  * translation cannot be done.
5721  */
5722 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5723 {
5724         struct send_context_info *sci;
5725         struct send_context *sc;
5726         int i;
5727
5728         sci = &dd->send_contexts[sw_index];
5729
5730         /* there is no information for user (PSM) and ack contexts */
5731         if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5732                 return -1;
5733
5734         sc = sci->sc;
5735         if (!sc)
5736                 return -1;
5737         if (dd->vld[15].sc == sc)
5738                 return 15;
5739         for (i = 0; i < num_vls; i++)
5740                 if (dd->vld[i].sc == sc)
5741                         return i;
5742
5743         return -1;
5744 }
5745
5746 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5747 {
5748         u64 reg_copy = reg, handled = 0;
5749         char buf[96];
5750         int i = 0;
5751
5752         if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5753                 start_freeze_handling(dd->pport, 0);
5754         else if (is_ax(dd) &&
5755                  (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5756                  (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5757                 start_freeze_handling(dd->pport, 0);
5758
5759         while (reg_copy) {
5760                 int posn = fls64(reg_copy);
5761                 /* fls64() returns a 1-based offset, we want it zero based */
5762                 int shift = posn - 1;
5763                 u64 mask = 1ULL << shift;
5764
5765                 if (port_inactive_err(shift)) {
5766                         count_port_inactive(dd);
5767                         handled |= mask;
5768                 } else if (disallowed_pkt_err(shift)) {
5769                         int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5770
5771                         handle_send_egress_err_info(dd, vl);
5772                         handled |= mask;
5773                 }
5774                 reg_copy &= ~mask;
5775         }
5776
5777         reg &= ~handled;
5778
5779         if (reg)
5780                 dd_dev_info(dd, "Egress Error: %s\n",
5781                             egress_err_status_string(buf, sizeof(buf), reg));
5782
5783         for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5784                 if (reg & (1ull << i))
5785                         incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5786         }
5787 }
5788
5789 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5790 {
5791         char buf[96];
5792         int i = 0;
5793
5794         dd_dev_info(dd, "Send Error: %s\n",
5795                     send_err_status_string(buf, sizeof(buf), reg));
5796
5797         for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5798                 if (reg & (1ull << i))
5799                         incr_cntr64(&dd->send_err_status_cnt[i]);
5800         }
5801 }
5802
5803 /*
5804  * The maximum number of times the error clear down will loop before
5805  * blocking a repeating error.  This value is arbitrary.
5806  */
5807 #define MAX_CLEAR_COUNT 20
5808
5809 /*
5810  * Clear and handle an error register.  All error interrupts are funneled
5811  * through here to have a central location to correctly handle single-
5812  * or multi-shot errors.
5813  *
5814  * For non per-context registers, call this routine with a context value
5815  * of 0 so the per-context offset is zero.
5816  *
5817  * If the handler loops too many times, assume that something is wrong
5818  * and can't be fixed, so mask the error bits.
5819  */
5820 static void interrupt_clear_down(struct hfi1_devdata *dd,
5821                                  u32 context,
5822                                  const struct err_reg_info *eri)
5823 {
5824         u64 reg;
5825         u32 count;
5826
5827         /* read in a loop until no more errors are seen */
5828         count = 0;
5829         while (1) {
5830                 reg = read_kctxt_csr(dd, context, eri->status);
5831                 if (reg == 0)
5832                         break;
5833                 write_kctxt_csr(dd, context, eri->clear, reg);
5834                 if (likely(eri->handler))
5835                         eri->handler(dd, context, reg);
5836                 count++;
5837                 if (count > MAX_CLEAR_COUNT) {
5838                         u64 mask;
5839
5840                         dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5841                                    eri->desc, reg);
5842                         /*
5843                          * Read-modify-write so any other masked bits
5844                          * remain masked.
5845                          */
5846                         mask = read_kctxt_csr(dd, context, eri->mask);
5847                         mask &= ~reg;
5848                         write_kctxt_csr(dd, context, eri->mask, mask);
5849                         break;
5850                 }
5851         }
5852 }
5853
5854 /*
5855  * CCE block "misc" interrupt.  Source is < 16.
5856  */
5857 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5858 {
5859         const struct err_reg_info *eri = &misc_errs[source];
5860
5861         if (eri->handler) {
5862                 interrupt_clear_down(dd, 0, eri);
5863         } else {
5864                 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5865                            source);
5866         }
5867 }
5868
5869 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5870 {
5871         return flag_string(buf, buf_len, flags,
5872                            sc_err_status_flags,
5873                            ARRAY_SIZE(sc_err_status_flags));
5874 }
5875
5876 /*
5877  * Send context error interrupt.  Source (hw_context) is < 160.
5878  *
5879  * All send context errors cause the send context to halt.  The normal
5880  * clear-down mechanism cannot be used because we cannot clear the
5881  * error bits until several other long-running items are done first.
5882  * This is OK because with the context halted, nothing else is going
5883  * to happen on it anyway.
5884  */
5885 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5886                                 unsigned int hw_context)
5887 {
5888         struct send_context_info *sci;
5889         struct send_context *sc;
5890         char flags[96];
5891         u64 status;
5892         u32 sw_index;
5893         int i = 0;
5894
5895         sw_index = dd->hw_to_sw[hw_context];
5896         if (sw_index >= dd->num_send_contexts) {
5897                 dd_dev_err(dd,
5898                            "out of range sw index %u for send context %u\n",
5899                            sw_index, hw_context);
5900                 return;
5901         }
5902         sci = &dd->send_contexts[sw_index];
5903         sc = sci->sc;
5904         if (!sc) {
5905                 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5906                            sw_index, hw_context);
5907                 return;
5908         }
5909
5910         /* tell the software that a halt has begun */
5911         sc_stop(sc, SCF_HALTED);
5912
5913         status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5914
5915         dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5916                     send_context_err_status_string(flags, sizeof(flags),
5917                                                    status));
5918
5919         if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5920                 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5921
5922         /*
5923          * Automatically restart halted kernel contexts out of interrupt
5924          * context.  User contexts must ask the driver to restart the context.
5925          */
5926         if (sc->type != SC_USER)
5927                 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5928
5929         /*
5930          * Update the counters for the corresponding status bits.
5931          * Note that these particular counters are aggregated over all
5932          * 160 contexts.
5933          */
5934         for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5935                 if (status & (1ull << i))
5936                         incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5937         }
5938 }
5939
5940 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5941                                 unsigned int source, u64 status)
5942 {
5943         struct sdma_engine *sde;
5944         int i = 0;
5945
5946         sde = &dd->per_sdma[source];
5947 #ifdef CONFIG_SDMA_VERBOSITY
5948         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5949                    slashstrip(__FILE__), __LINE__, __func__);
5950         dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5951                    sde->this_idx, source, (unsigned long long)status);
5952 #endif
5953         sde->err_cnt++;
5954         sdma_engine_error(sde, status);
5955
5956         /*
5957         * Update the counters for the corresponding status bits.
5958         * Note that these particular counters are aggregated over
5959         * all 16 DMA engines.
5960         */
5961         for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5962                 if (status & (1ull << i))
5963                         incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5964         }
5965 }
5966
5967 /*
5968  * CCE block SDMA error interrupt.  Source is < 16.
5969  */
5970 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5971 {
5972 #ifdef CONFIG_SDMA_VERBOSITY
5973         struct sdma_engine *sde = &dd->per_sdma[source];
5974
5975         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5976                    slashstrip(__FILE__), __LINE__, __func__);
5977         dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5978                    source);
5979         sdma_dumpstate(sde);
5980 #endif
5981         interrupt_clear_down(dd, source, &sdma_eng_err);
5982 }
5983
5984 /*
5985  * CCE block "various" interrupt.  Source is < 8.
5986  */
5987 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5988 {
5989         const struct err_reg_info *eri = &various_err[source];
5990
5991         /*
5992          * TCritInt cannot go through interrupt_clear_down()
5993          * because it is not a second tier interrupt. The handler
5994          * should be called directly.
5995          */
5996         if (source == TCRIT_INT_SOURCE)
5997                 handle_temp_err(dd);
5998         else if (eri->handler)
5999                 interrupt_clear_down(dd, 0, eri);
6000         else
6001                 dd_dev_info(dd,
6002                             "%s: Unimplemented/reserved interrupt %d\n",
6003                             __func__, source);
6004 }
6005
6006 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6007 {
6008         /* src_ctx is always zero */
6009         struct hfi1_pportdata *ppd = dd->pport;
6010         unsigned long flags;
6011         u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6012
6013         if (reg & QSFP_HFI0_MODPRST_N) {
6014                 if (!qsfp_mod_present(ppd)) {
6015                         dd_dev_info(dd, "%s: QSFP module removed\n",
6016                                     __func__);
6017
6018                         ppd->driver_link_ready = 0;
6019                         /*
6020                          * Cable removed, reset all our information about the
6021                          * cache and cable capabilities
6022                          */
6023
6024                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6025                         /*
6026                          * We don't set cache_refresh_required here as we expect
6027                          * an interrupt when a cable is inserted
6028                          */
6029                         ppd->qsfp_info.cache_valid = 0;
6030                         ppd->qsfp_info.reset_needed = 0;
6031                         ppd->qsfp_info.limiting_active = 0;
6032                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6033                                                flags);
6034                         /* Invert the ModPresent pin now to detect plug-in */
6035                         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6036                                   ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6037
6038                         if ((ppd->offline_disabled_reason >
6039                           HFI1_ODR_MASK(
6040                           OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6041                           (ppd->offline_disabled_reason ==
6042                           HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6043                                 ppd->offline_disabled_reason =
6044                                 HFI1_ODR_MASK(
6045                                 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6046
6047                         if (ppd->host_link_state == HLS_DN_POLL) {
6048                                 /*
6049                                  * The link is still in POLL. This means
6050                                  * that the normal link down processing
6051                                  * will not happen. We have to do it here
6052                                  * before turning the DC off.
6053                                  */
6054                                 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
6055                         }
6056                 } else {
6057                         dd_dev_info(dd, "%s: QSFP module inserted\n",
6058                                     __func__);
6059
6060                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6061                         ppd->qsfp_info.cache_valid = 0;
6062                         ppd->qsfp_info.cache_refresh_required = 1;
6063                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6064                                                flags);
6065
6066                         /*
6067                          * Stop inversion of ModPresent pin to detect
6068                          * removal of the cable
6069                          */
6070                         qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6071                         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6072                                   ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6073
6074                         ppd->offline_disabled_reason =
6075                                 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6076                 }
6077         }
6078
6079         if (reg & QSFP_HFI0_INT_N) {
6080                 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6081                             __func__);
6082                 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6083                 ppd->qsfp_info.check_interrupt_flags = 1;
6084                 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6085         }
6086
6087         /* Schedule the QSFP work only if there is a cable attached. */
6088         if (qsfp_mod_present(ppd))
6089                 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
6090 }
6091
6092 static int request_host_lcb_access(struct hfi1_devdata *dd)
6093 {
6094         int ret;
6095
6096         ret = do_8051_command(dd, HCMD_MISC,
6097                               (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6098                               LOAD_DATA_FIELD_ID_SHIFT, NULL);
6099         if (ret != HCMD_SUCCESS) {
6100                 dd_dev_err(dd, "%s: command failed with error %d\n",
6101                            __func__, ret);
6102         }
6103         return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6104 }
6105
6106 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6107 {
6108         int ret;
6109
6110         ret = do_8051_command(dd, HCMD_MISC,
6111                               (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6112                               LOAD_DATA_FIELD_ID_SHIFT, NULL);
6113         if (ret != HCMD_SUCCESS) {
6114                 dd_dev_err(dd, "%s: command failed with error %d\n",
6115                            __func__, ret);
6116         }
6117         return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6118 }
6119
6120 /*
6121  * Set the LCB selector - allow host access.  The DCC selector always
6122  * points to the host.
6123  */
6124 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6125 {
6126         write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6127                   DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6128                   DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6129 }
6130
6131 /*
6132  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6133  * points to the host.
6134  */
6135 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6136 {
6137         write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6138                   DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6139 }
6140
6141 /*
6142  * Acquire LCB access from the 8051.  If the host already has access,
6143  * just increment a counter.  Otherwise, inform the 8051 that the
6144  * host is taking access.
6145  *
6146  * Returns:
6147  *      0 on success
6148  *      -EBUSY if the 8051 has control and cannot be disturbed
6149  *      -errno if unable to acquire access from the 8051
6150  */
6151 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6152 {
6153         struct hfi1_pportdata *ppd = dd->pport;
6154         int ret = 0;
6155
6156         /*
6157          * Use the host link state lock so the operation of this routine
6158          * { link state check, selector change, count increment } can occur
6159          * as a unit against a link state change.  Otherwise there is a
6160          * race between the state change and the count increment.
6161          */
6162         if (sleep_ok) {
6163                 mutex_lock(&ppd->hls_lock);
6164         } else {
6165                 while (!mutex_trylock(&ppd->hls_lock))
6166                         udelay(1);
6167         }
6168
6169         /* this access is valid only when the link is up */
6170         if (ppd->host_link_state & HLS_DOWN) {
6171                 dd_dev_info(dd, "%s: link state %s not up\n",
6172                             __func__, link_state_name(ppd->host_link_state));
6173                 ret = -EBUSY;
6174                 goto done;
6175         }
6176
6177         if (dd->lcb_access_count == 0) {
6178                 ret = request_host_lcb_access(dd);
6179                 if (ret) {
6180                         dd_dev_err(dd,
6181                                    "%s: unable to acquire LCB access, err %d\n",
6182                                    __func__, ret);
6183                         goto done;
6184                 }
6185                 set_host_lcb_access(dd);
6186         }
6187         dd->lcb_access_count++;
6188 done:
6189         mutex_unlock(&ppd->hls_lock);
6190         return ret;
6191 }
6192
6193 /*
6194  * Release LCB access by decrementing the use count.  If the count is moving
6195  * from 1 to 0, inform 8051 that it has control back.
6196  *
6197  * Returns:
6198  *      0 on success
6199  *      -errno if unable to release access to the 8051
6200  */
6201 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6202 {
6203         int ret = 0;
6204
6205         /*
6206          * Use the host link state lock because the acquire needed it.
6207          * Here, we only need to keep { selector change, count decrement }
6208          * as a unit.
6209          */
6210         if (sleep_ok) {
6211                 mutex_lock(&dd->pport->hls_lock);
6212         } else {
6213                 while (!mutex_trylock(&dd->pport->hls_lock))
6214                         udelay(1);
6215         }
6216
6217         if (dd->lcb_access_count == 0) {
6218                 dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6219                            __func__);
6220                 goto done;
6221         }
6222
6223         if (dd->lcb_access_count == 1) {
6224                 set_8051_lcb_access(dd);
6225                 ret = request_8051_lcb_access(dd);
6226                 if (ret) {
6227                         dd_dev_err(dd,
6228                                    "%s: unable to release LCB access, err %d\n",
6229                                    __func__, ret);
6230                         /* restore host access if the grant didn't work */
6231                         set_host_lcb_access(dd);
6232                         goto done;
6233                 }
6234         }
6235         dd->lcb_access_count--;
6236 done:
6237         mutex_unlock(&dd->pport->hls_lock);
6238         return ret;
6239 }
6240
6241 /*
6242  * Initialize LCB access variables and state.  Called during driver load,
6243  * after most of the initialization is finished.
6244  *
6245  * The DC default is LCB access on for the host.  The driver defaults to
6246  * leaving access to the 8051.  Assign access now - this constrains the call
6247  * to this routine to be after all LCB set-up is done.  In particular, after
6248  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6249  */
6250 static void init_lcb_access(struct hfi1_devdata *dd)
6251 {
6252         dd->lcb_access_count = 0;
6253 }
6254
6255 /*
6256  * Write a response back to a 8051 request.
6257  */
6258 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6259 {
6260         write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6261                   DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6262                   (u64)return_code <<
6263                   DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6264                   (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6265 }
6266
6267 /*
6268  * Handle host requests from the 8051.
6269  */
6270 static void handle_8051_request(struct hfi1_pportdata *ppd)
6271 {
6272         struct hfi1_devdata *dd = ppd->dd;
6273         u64 reg;
6274         u16 data = 0;
6275         u8 type;
6276
6277         reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6278         if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6279                 return; /* no request */
6280
6281         /* zero out COMPLETED so the response is seen */
6282         write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6283
6284         /* extract request details */
6285         type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6286                         & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6287         data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6288                         & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6289
6290         switch (type) {
6291         case HREQ_LOAD_CONFIG:
6292         case HREQ_SAVE_CONFIG:
6293         case HREQ_READ_CONFIG:
6294         case HREQ_SET_TX_EQ_ABS:
6295         case HREQ_SET_TX_EQ_REL:
6296         case HREQ_ENABLE:
6297                 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6298                             type);
6299                 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6300                 break;
6301         case HREQ_CONFIG_DONE:
6302                 hreq_response(dd, HREQ_SUCCESS, 0);
6303                 break;
6304
6305         case HREQ_INTERFACE_TEST:
6306                 hreq_response(dd, HREQ_SUCCESS, data);
6307                 break;
6308         default:
6309                 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6310                 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6311                 break;
6312         }
6313 }
6314
6315 /*
6316  * Set up allocation unit vaulue.
6317  */
6318 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6319 {
6320         u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6321
6322         /* do not modify other values in the register */
6323         reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6324         reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6325         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6326 }
6327
6328 /*
6329  * Set up initial VL15 credits of the remote.  Assumes the rest of
6330  * the CM credit registers are zero from a previous global or credit reset.
6331  * Shared limit for VL15 will always be 0.
6332  */
6333 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6334 {
6335         u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6336
6337         /* set initial values for total and shared credit limit */
6338         reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6339                  SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6340
6341         /*
6342          * Set total limit to be equal to VL15 credits.
6343          * Leave shared limit at 0.
6344          */
6345         reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6346         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6347
6348         write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6349                   << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6350 }
6351
6352 /*
6353  * Zero all credit details from the previous connection and
6354  * reset the CM manager's internal counters.
6355  */
6356 void reset_link_credits(struct hfi1_devdata *dd)
6357 {
6358         int i;
6359
6360         /* remove all previous VL credit limits */
6361         for (i = 0; i < TXE_NUM_DATA_VL; i++)
6362                 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6363         write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6364         write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6365         /* reset the CM block */
6366         pio_send_control(dd, PSC_CM_RESET);
6367         /* reset cached value */
6368         dd->vl15buf_cached = 0;
6369 }
6370
6371 /* convert a vCU to a CU */
6372 static u32 vcu_to_cu(u8 vcu)
6373 {
6374         return 1 << vcu;
6375 }
6376
6377 /* convert a CU to a vCU */
6378 static u8 cu_to_vcu(u32 cu)
6379 {
6380         return ilog2(cu);
6381 }
6382
6383 /* convert a vAU to an AU */
6384 static u32 vau_to_au(u8 vau)
6385 {
6386         return 8 * (1 << vau);
6387 }
6388
6389 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6390 {
6391         ppd->sm_trap_qp = 0x0;
6392         ppd->sa_qp = 0x1;
6393 }
6394
6395 /*
6396  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6397  */
6398 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6399 {
6400         u64 reg;
6401
6402         /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6403         write_csr(dd, DC_LCB_CFG_RUN, 0);
6404         /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6405         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6406                   1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6407         /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6408         dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6409         reg = read_csr(dd, DCC_CFG_RESET);
6410         write_csr(dd, DCC_CFG_RESET, reg |
6411                   (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6412                   (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6413         (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6414         if (!abort) {
6415                 udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6416                 write_csr(dd, DCC_CFG_RESET, reg);
6417                 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6418         }
6419 }
6420
6421 /*
6422  * This routine should be called after the link has been transitioned to
6423  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6424  * reset).
6425  *
6426  * The expectation is that the caller of this routine would have taken
6427  * care of properly transitioning the link into the correct state.
6428  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6429  *       before calling this function.
6430  */
6431 static void _dc_shutdown(struct hfi1_devdata *dd)
6432 {
6433         lockdep_assert_held(&dd->dc8051_lock);
6434
6435         if (dd->dc_shutdown)
6436                 return;
6437
6438         dd->dc_shutdown = 1;
6439         /* Shutdown the LCB */
6440         lcb_shutdown(dd, 1);
6441         /*
6442          * Going to OFFLINE would have causes the 8051 to put the
6443          * SerDes into reset already. Just need to shut down the 8051,
6444          * itself.
6445          */
6446         write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6447 }
6448
6449 static void dc_shutdown(struct hfi1_devdata *dd)
6450 {
6451         mutex_lock(&dd->dc8051_lock);
6452         _dc_shutdown(dd);
6453         mutex_unlock(&dd->dc8051_lock);
6454 }
6455
6456 /*
6457  * Calling this after the DC has been brought out of reset should not
6458  * do any damage.
6459  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6460  *       before calling this function.
6461  */
6462 static void _dc_start(struct hfi1_devdata *dd)
6463 {
6464         lockdep_assert_held(&dd->dc8051_lock);
6465
6466         if (!dd->dc_shutdown)
6467                 return;
6468
6469         /* Take the 8051 out of reset */
6470         write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6471         /* Wait until 8051 is ready */
6472         if (wait_fm_ready(dd, TIMEOUT_8051_START))
6473                 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6474                            __func__);
6475
6476         /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6477         write_csr(dd, DCC_CFG_RESET, 0x10);
6478         /* lcb_shutdown() with abort=1 does not restore these */
6479         write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6480         dd->dc_shutdown = 0;
6481 }
6482
6483 static void dc_start(struct hfi1_devdata *dd)
6484 {
6485         mutex_lock(&dd->dc8051_lock);
6486         _dc_start(dd);
6487         mutex_unlock(&dd->dc8051_lock);
6488 }
6489
6490 /*
6491  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6492  */
6493 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6494 {
6495         u64 rx_radr, tx_radr;
6496         u32 version;
6497
6498         if (dd->icode != ICODE_FPGA_EMULATION)
6499                 return;
6500
6501         /*
6502          * These LCB defaults on emulator _s are good, nothing to do here:
6503          *      LCB_CFG_TX_FIFOS_RADR
6504          *      LCB_CFG_RX_FIFOS_RADR
6505          *      LCB_CFG_LN_DCLK
6506          *      LCB_CFG_IGNORE_LOST_RCLK
6507          */
6508         if (is_emulator_s(dd))
6509                 return;
6510         /* else this is _p */
6511
6512         version = emulator_rev(dd);
6513         if (!is_ax(dd))
6514                 version = 0x2d; /* all B0 use 0x2d or higher settings */
6515
6516         if (version <= 0x12) {
6517                 /* release 0x12 and below */
6518
6519                 /*
6520                  * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6521                  * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6522                  * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6523                  */
6524                 rx_radr =
6525                       0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6526                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6527                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6528                 /*
6529                  * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6530                  * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6531                  */
6532                 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6533         } else if (version <= 0x18) {
6534                 /* release 0x13 up to 0x18 */
6535                 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6536                 rx_radr =
6537                       0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6538                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6539                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6540                 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6541         } else if (version == 0x19) {
6542                 /* release 0x19 */
6543                 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6544                 rx_radr =
6545                       0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6546                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6547                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6548                 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6549         } else if (version == 0x1a) {
6550                 /* release 0x1a */
6551                 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6552                 rx_radr =
6553                       0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6554                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6555                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6556                 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6557                 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6558         } else {
6559                 /* release 0x1b and higher */
6560                 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6561                 rx_radr =
6562                       0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6563                     | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6564                     | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6565                 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6566         }
6567
6568         write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6569         /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6570         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6571                   DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6572         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6573 }
6574
6575 /*
6576  * Handle a SMA idle message
6577  *
6578  * This is a work-queue function outside of the interrupt.
6579  */
6580 void handle_sma_message(struct work_struct *work)
6581 {
6582         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6583                                                         sma_message_work);
6584         struct hfi1_devdata *dd = ppd->dd;
6585         u64 msg;
6586         int ret;
6587
6588         /*
6589          * msg is bytes 1-4 of the 40-bit idle message - the command code
6590          * is stripped off
6591          */
6592         ret = read_idle_sma(dd, &msg);
6593         if (ret)
6594                 return;
6595         dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6596         /*
6597          * React to the SMA message.  Byte[1] (0 for us) is the command.
6598          */
6599         switch (msg & 0xff) {
6600         case SMA_IDLE_ARM:
6601                 /*
6602                  * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6603                  * State Transitions
6604                  *
6605                  * Only expected in INIT or ARMED, discard otherwise.
6606                  */
6607                 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6608                         ppd->neighbor_normal = 1;
6609                 break;
6610         case SMA_IDLE_ACTIVE:
6611                 /*
6612                  * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6613                  * State Transitions
6614                  *
6615                  * Can activate the node.  Discard otherwise.
6616                  */
6617                 if (ppd->host_link_state == HLS_UP_ARMED &&
6618                     ppd->is_active_optimize_enabled) {
6619                         ppd->neighbor_normal = 1;
6620                         ret = set_link_state(ppd, HLS_UP_ACTIVE);
6621                         if (ret)
6622                                 dd_dev_err(
6623                                         dd,
6624                                         "%s: received Active SMA idle message, couldn't set link to Active\n",
6625                                         __func__);
6626                 }
6627                 break;
6628         default:
6629                 dd_dev_err(dd,
6630                            "%s: received unexpected SMA idle message 0x%llx\n",
6631                            __func__, msg);
6632                 break;
6633         }
6634 }
6635
6636 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6637 {
6638         u64 rcvctrl;
6639         unsigned long flags;
6640
6641         spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6642         rcvctrl = read_csr(dd, RCV_CTRL);
6643         rcvctrl |= add;
6644         rcvctrl &= ~clear;
6645         write_csr(dd, RCV_CTRL, rcvctrl);
6646         spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6647 }
6648
6649 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6650 {
6651         adjust_rcvctrl(dd, add, 0);
6652 }
6653
6654 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6655 {
6656         adjust_rcvctrl(dd, 0, clear);
6657 }
6658
6659 /*
6660  * Called from all interrupt handlers to start handling an SPC freeze.
6661  */
6662 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6663 {
6664         struct hfi1_devdata *dd = ppd->dd;
6665         struct send_context *sc;
6666         int i;
6667
6668         if (flags & FREEZE_SELF)
6669                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6670
6671         /* enter frozen mode */
6672         dd->flags |= HFI1_FROZEN;
6673
6674         /* notify all SDMA engines that they are going into a freeze */
6675         sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6676
6677         /* do halt pre-handling on all enabled send contexts */
6678         for (i = 0; i < dd->num_send_contexts; i++) {
6679                 sc = dd->send_contexts[i].sc;
6680                 if (sc && (sc->flags & SCF_ENABLED))
6681                         sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6682         }
6683
6684         /* Send context are frozen. Notify user space */
6685         hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6686
6687         if (flags & FREEZE_ABORT) {
6688                 dd_dev_err(dd,
6689                            "Aborted freeze recovery. Please REBOOT system\n");
6690                 return;
6691         }
6692         /* queue non-interrupt handler */
6693         queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6694 }
6695
6696 /*
6697  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6698  * depending on the "freeze" parameter.
6699  *
6700  * No need to return an error if it times out, our only option
6701  * is to proceed anyway.
6702  */
6703 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6704 {
6705         unsigned long timeout;
6706         u64 reg;
6707
6708         timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6709         while (1) {
6710                 reg = read_csr(dd, CCE_STATUS);
6711                 if (freeze) {
6712                         /* waiting until all indicators are set */
6713                         if ((reg & ALL_FROZE) == ALL_FROZE)
6714                                 return; /* all done */
6715                 } else {
6716                         /* waiting until all indicators are clear */
6717                         if ((reg & ALL_FROZE) == 0)
6718                                 return; /* all done */
6719                 }
6720
6721                 if (time_after(jiffies, timeout)) {
6722                         dd_dev_err(dd,
6723                                    "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6724                                    freeze ? "" : "un", reg & ALL_FROZE,
6725                                    freeze ? ALL_FROZE : 0ull);
6726                         return;
6727                 }
6728                 usleep_range(80, 120);
6729         }
6730 }
6731
6732 /*
6733  * Do all freeze handling for the RXE block.
6734  */
6735 static void rxe_freeze(struct hfi1_devdata *dd)
6736 {
6737         int i;
6738
6739         /* disable port */
6740         clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6741
6742         /* disable all receive contexts */
6743         for (i = 0; i < dd->num_rcv_contexts; i++)
6744                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6745 }
6746
6747 /*
6748  * Unfreeze handling for the RXE block - kernel contexts only.
6749  * This will also enable the port.  User contexts will do unfreeze
6750  * handling on a per-context basis as they call into the driver.
6751  *
6752  */
6753 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6754 {
6755         u32 rcvmask;
6756         int i;
6757
6758         /* enable all kernel contexts */
6759         for (i = 0; i < dd->num_rcv_contexts; i++) {
6760                 struct hfi1_ctxtdata *rcd = dd->rcd[i];
6761
6762                 /* Ensure all non-user contexts(including vnic) are enabled */
6763                 if (!rcd || !rcd->sc || (rcd->sc->type == SC_USER))
6764                         continue;
6765
6766                 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6767                 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6768                 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
6769                         HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6770                 hfi1_rcvctrl(dd, rcvmask, i);
6771         }
6772
6773         /* enable port */
6774         add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6775 }
6776
6777 /*
6778  * Non-interrupt SPC freeze handling.
6779  *
6780  * This is a work-queue function outside of the triggering interrupt.
6781  */
6782 void handle_freeze(struct work_struct *work)
6783 {
6784         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6785                                                                 freeze_work);
6786         struct hfi1_devdata *dd = ppd->dd;
6787
6788         /* wait for freeze indicators on all affected blocks */
6789         wait_for_freeze_status(dd, 1);
6790
6791         /* SPC is now frozen */
6792
6793         /* do send PIO freeze steps */
6794         pio_freeze(dd);
6795
6796         /* do send DMA freeze steps */
6797         sdma_freeze(dd);
6798
6799         /* do send egress freeze steps - nothing to do */
6800
6801         /* do receive freeze steps */
6802         rxe_freeze(dd);
6803
6804         /*
6805          * Unfreeze the hardware - clear the freeze, wait for each
6806          * block's frozen bit to clear, then clear the frozen flag.
6807          */
6808         write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6809         wait_for_freeze_status(dd, 0);
6810
6811         if (is_ax(dd)) {
6812                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6813                 wait_for_freeze_status(dd, 1);
6814                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6815                 wait_for_freeze_status(dd, 0);
6816         }
6817
6818         /* do send PIO unfreeze steps for kernel contexts */
6819         pio_kernel_unfreeze(dd);
6820
6821         /* do send DMA unfreeze steps */
6822         sdma_unfreeze(dd);
6823
6824         /* do send egress unfreeze steps - nothing to do */
6825
6826         /* do receive unfreeze steps for kernel contexts */
6827         rxe_kernel_unfreeze(dd);
6828
6829         /*
6830          * The unfreeze procedure touches global device registers when
6831          * it disables and re-enables RXE. Mark the device unfrozen
6832          * after all that is done so other parts of the driver waiting
6833          * for the device to unfreeze don't do things out of order.
6834          *
6835          * The above implies that the meaning of HFI1_FROZEN flag is
6836          * "Device has gone into freeze mode and freeze mode handling
6837          * is still in progress."
6838          *
6839          * The flag will be removed when freeze mode processing has
6840          * completed.
6841          */
6842         dd->flags &= ~HFI1_FROZEN;
6843         wake_up(&dd->event_queue);
6844
6845         /* no longer frozen */
6846 }
6847
6848 /*
6849  * Handle a link up interrupt from the 8051.
6850  *
6851  * This is a work-queue function outside of the interrupt.
6852  */
6853 void handle_link_up(struct work_struct *work)
6854 {
6855         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6856                                                   link_up_work);
6857         struct hfi1_devdata *dd = ppd->dd;
6858
6859         set_link_state(ppd, HLS_UP_INIT);
6860
6861         /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6862         read_ltp_rtt(dd);
6863         /*
6864          * OPA specifies that certain counters are cleared on a transition
6865          * to link up, so do that.
6866          */
6867         clear_linkup_counters(dd);
6868         /*
6869          * And (re)set link up default values.
6870          */
6871         set_linkup_defaults(ppd);
6872
6873         /*
6874          * Set VL15 credits. Use cached value from verify cap interrupt.
6875          * In case of quick linkup or simulator, vl15 value will be set by
6876          * handle_linkup_change. VerifyCap interrupt handler will not be
6877          * called in those scenarios.
6878          */
6879         if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6880                 set_up_vl15(dd, dd->vl15buf_cached);
6881
6882         /* enforce link speed enabled */
6883         if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6884                 /* oops - current speed is not enabled, bounce */
6885                 dd_dev_err(dd,
6886                            "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6887                            ppd->link_speed_active, ppd->link_speed_enabled);
6888                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6889                                      OPA_LINKDOWN_REASON_SPEED_POLICY);
6890                 set_link_state(ppd, HLS_DN_OFFLINE);
6891                 start_link(ppd);
6892         }
6893 }
6894
6895 /*
6896  * Several pieces of LNI information were cached for SMA in ppd.
6897  * Reset these on link down
6898  */
6899 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6900 {
6901         ppd->neighbor_guid = 0;
6902         ppd->neighbor_port_number = 0;
6903         ppd->neighbor_type = 0;
6904         ppd->neighbor_fm_security = 0;
6905 }
6906
6907 static const char * const link_down_reason_strs[] = {
6908         [OPA_LINKDOWN_REASON_NONE] = "None",
6909         [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Recive error 0",
6910         [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6911         [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6912         [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6913         [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6914         [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6915         [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6916         [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6917         [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6918         [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6919         [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6920         [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6921         [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6922         [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6923         [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6924         [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6925         [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6926         [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6927         [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6928         [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6929         [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6930         [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6931         [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6932         [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6933         [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6934         [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
6935         [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
6936         [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
6937         [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
6938         [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
6939         [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
6940         [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
6941                                         "Excessive buffer overrun",
6942         [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
6943         [OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
6944         [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
6945         [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
6946         [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
6947         [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
6948         [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
6949         [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
6950                                         "Local media not installed",
6951         [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
6952         [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
6953         [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
6954                                         "End to end not installed",
6955         [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
6956         [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
6957         [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
6958         [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
6959         [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
6960         [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
6961 };
6962
6963 /* return the neighbor link down reason string */
6964 static const char *link_down_reason_str(u8 reason)
6965 {
6966         const char *str = NULL;
6967
6968         if (reason < ARRAY_SIZE(link_down_reason_strs))
6969                 str = link_down_reason_strs[reason];
6970         if (!str)
6971                 str = "(invalid)";
6972
6973         return str;
6974 }
6975
6976 /*
6977  * Handle a link down interrupt from the 8051.
6978  *
6979  * This is a work-queue function outside of the interrupt.
6980  */
6981 void handle_link_down(struct work_struct *work)
6982 {
6983         u8 lcl_reason, neigh_reason = 0;
6984         u8 link_down_reason;
6985         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6986                                                   link_down_work);
6987         int was_up;
6988         static const char ldr_str[] = "Link down reason: ";
6989
6990         if ((ppd->host_link_state &
6991              (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
6992              ppd->port_type == PORT_TYPE_FIXED)
6993                 ppd->offline_disabled_reason =
6994                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
6995
6996         /* Go offline first, then deal with reading/writing through 8051 */
6997         was_up = !!(ppd->host_link_state & HLS_UP);
6998         set_link_state(ppd, HLS_DN_OFFLINE);
6999
7000         if (was_up) {
7001                 lcl_reason = 0;
7002                 /* link down reason is only valid if the link was up */
7003                 read_link_down_reason(ppd->dd, &link_down_reason);
7004                 switch (link_down_reason) {
7005                 case LDR_LINK_TRANSFER_ACTIVE_LOW:
7006                         /* the link went down, no idle message reason */
7007                         dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7008                                     ldr_str);
7009                         break;
7010                 case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7011                         /*
7012                          * The neighbor reason is only valid if an idle message
7013                          * was received for it.
7014                          */
7015                         read_planned_down_reason_code(ppd->dd, &neigh_reason);
7016                         dd_dev_info(ppd->dd,
7017                                     "%sNeighbor link down message %d, %s\n",
7018                                     ldr_str, neigh_reason,
7019                                     link_down_reason_str(neigh_reason));
7020                         break;
7021                 case LDR_RECEIVED_HOST_OFFLINE_REQ:
7022                         dd_dev_info(ppd->dd,
7023                                     "%sHost requested link to go offline\n",
7024                                     ldr_str);
7025                         break;
7026                 default:
7027                         dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7028                                     ldr_str, link_down_reason);
7029                         break;
7030                 }
7031
7032                 /*
7033                  * If no reason, assume peer-initiated but missed
7034                  * LinkGoingDown idle flits.
7035                  */
7036                 if (neigh_reason == 0)
7037                         lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7038         } else {
7039                 /* went down while polling or going up */
7040                 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7041         }
7042
7043         set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7044
7045         /* inform the SMA when the link transitions from up to down */
7046         if (was_up && ppd->local_link_down_reason.sma == 0 &&
7047             ppd->neigh_link_down_reason.sma == 0) {
7048                 ppd->local_link_down_reason.sma =
7049                                         ppd->local_link_down_reason.latest;
7050                 ppd->neigh_link_down_reason.sma =
7051                                         ppd->neigh_link_down_reason.latest;
7052         }
7053
7054         reset_neighbor_info(ppd);
7055
7056         /* disable the port */
7057         clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7058
7059         /*
7060          * If there is no cable attached, turn the DC off. Otherwise,
7061          * start the link bring up.
7062          */
7063         if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7064                 dc_shutdown(ppd->dd);
7065         else
7066                 start_link(ppd);
7067 }
7068
7069 void handle_link_bounce(struct work_struct *work)
7070 {
7071         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7072                                                         link_bounce_work);
7073
7074         /*
7075          * Only do something if the link is currently up.
7076          */
7077         if (ppd->host_link_state & HLS_UP) {
7078                 set_link_state(ppd, HLS_DN_OFFLINE);
7079                 start_link(ppd);
7080         } else {
7081                 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7082                             __func__, link_state_name(ppd->host_link_state));
7083         }
7084 }
7085
7086 /*
7087  * Mask conversion: Capability exchange to Port LTP.  The capability
7088  * exchange has an implicit 16b CRC that is mandatory.
7089  */
7090 static int cap_to_port_ltp(int cap)
7091 {
7092         int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7093
7094         if (cap & CAP_CRC_14B)
7095                 port_ltp |= PORT_LTP_CRC_MODE_14;
7096         if (cap & CAP_CRC_48B)
7097                 port_ltp |= PORT_LTP_CRC_MODE_48;
7098         if (cap & CAP_CRC_12B_16B_PER_LANE)
7099                 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7100
7101         return port_ltp;
7102 }
7103
7104 /*
7105  * Convert an OPA Port LTP mask to capability mask
7106  */
7107 int port_ltp_to_cap(int port_ltp)
7108 {
7109         int cap_mask = 0;
7110
7111         if (port_ltp & PORT_LTP_CRC_MODE_14)
7112                 cap_mask |= CAP_CRC_14B;
7113         if (port_ltp & PORT_LTP_CRC_MODE_48)
7114                 cap_mask |= CAP_CRC_48B;
7115         if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7116                 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7117
7118         return cap_mask;
7119 }
7120
7121 /*
7122  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7123  */
7124 static int lcb_to_port_ltp(int lcb_crc)
7125 {
7126         int port_ltp = 0;
7127
7128         if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7129                 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7130         else if (lcb_crc == LCB_CRC_48B)
7131                 port_ltp = PORT_LTP_CRC_MODE_48;
7132         else if (lcb_crc == LCB_CRC_14B)
7133                 port_ltp = PORT_LTP_CRC_MODE_14;
7134         else
7135                 port_ltp = PORT_LTP_CRC_MODE_16;
7136
7137         return port_ltp;
7138 }
7139
7140 /*
7141  * Our neighbor has indicated that we are allowed to act as a fabric
7142  * manager, so place the full management partition key in the second
7143  * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7144  * that we should already have the limited management partition key in
7145  * array element 1, and also that the port is not yet up when
7146  * add_full_mgmt_pkey() is invoked.
7147  */
7148 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7149 {
7150         struct hfi1_devdata *dd = ppd->dd;
7151
7152         /* Sanity check - ppd->pkeys[2] should be 0, or already initialized */
7153         if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7154                 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7155                             __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
7156         ppd->pkeys[2] = FULL_MGMT_P_KEY;
7157         (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7158         hfi1_event_pkey_change(ppd->dd, ppd->port);
7159 }
7160
7161 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7162 {
7163         if (ppd->pkeys[2] != 0) {
7164                 ppd->pkeys[2] = 0;
7165                 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7166                 hfi1_event_pkey_change(ppd->dd, ppd->port);
7167         }
7168 }
7169
7170 /*
7171  * Convert the given link width to the OPA link width bitmask.
7172  */
7173 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7174 {
7175         switch (width) {
7176         case 0:
7177                 /*
7178                  * Simulator and quick linkup do not set the width.
7179                  * Just set it to 4x without complaint.
7180                  */
7181                 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7182                         return OPA_LINK_WIDTH_4X;
7183                 return 0; /* no lanes up */
7184         case 1: return OPA_LINK_WIDTH_1X;
7185         case 2: return OPA_LINK_WIDTH_2X;
7186         case 3: return OPA_LINK_WIDTH_3X;
7187         default:
7188                 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7189                             __func__, width);
7190                 /* fall through */
7191         case 4: return OPA_LINK_WIDTH_4X;
7192         }
7193 }
7194
7195 /*
7196  * Do a population count on the bottom nibble.
7197  */
7198 static const u8 bit_counts[16] = {
7199         0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7200 };
7201
7202 static inline u8 nibble_to_count(u8 nibble)
7203 {
7204         return bit_counts[nibble & 0xf];
7205 }
7206
7207 /*
7208  * Read the active lane information from the 8051 registers and return
7209  * their widths.
7210  *
7211  * Active lane information is found in these 8051 registers:
7212  *      enable_lane_tx
7213  *      enable_lane_rx
7214  */
7215 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7216                             u16 *rx_width)
7217 {
7218         u16 tx, rx;
7219         u8 enable_lane_rx;
7220         u8 enable_lane_tx;
7221         u8 tx_polarity_inversion;
7222         u8 rx_polarity_inversion;
7223         u8 max_rate;
7224
7225         /* read the active lanes */
7226         read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7227                          &rx_polarity_inversion, &max_rate);
7228         read_local_lni(dd, &enable_lane_rx);
7229
7230         /* convert to counts */
7231         tx = nibble_to_count(enable_lane_tx);
7232         rx = nibble_to_count(enable_lane_rx);
7233
7234         /*
7235          * Set link_speed_active here, overriding what was set in
7236          * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7237          * set the max_rate field in handle_verify_cap until v0.19.
7238          */
7239         if ((dd->icode == ICODE_RTL_SILICON) &&
7240             (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7241                 /* max_rate: 0 = 12.5G, 1 = 25G */
7242                 switch (max_rate) {
7243                 case 0:
7244                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7245                         break;
7246                 default:
7247                         dd_dev_err(dd,
7248                                    "%s: unexpected max rate %d, using 25Gb\n",
7249                                    __func__, (int)max_rate);
7250                         /* fall through */
7251                 case 1:
7252                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7253                         break;
7254                 }
7255         }
7256
7257         dd_dev_info(dd,
7258                     "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7259                     enable_lane_tx, tx, enable_lane_rx, rx);
7260         *tx_width = link_width_to_bits(dd, tx);
7261         *rx_width = link_width_to_bits(dd, rx);
7262 }
7263
7264 /*
7265  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7266  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7267  * after link up.  I.e. look elsewhere for downgrade information.
7268  *
7269  * Bits are:
7270  *      + bits [7:4] contain the number of active transmitters
7271  *      + bits [3:0] contain the number of active receivers
7272  * These are numbers 1 through 4 and can be different values if the
7273  * link is asymmetric.
7274  *
7275  * verify_cap_local_fm_link_width[0] retains its original value.
7276  */
7277 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7278                               u16 *rx_width)
7279 {
7280         u16 widths, tx, rx;
7281         u8 misc_bits, local_flags;
7282         u16 active_tx, active_rx;
7283
7284         read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7285         tx = widths >> 12;
7286         rx = (widths >> 8) & 0xf;
7287
7288         *tx_width = link_width_to_bits(dd, tx);
7289         *rx_width = link_width_to_bits(dd, rx);
7290
7291         /* print the active widths */
7292         get_link_widths(dd, &active_tx, &active_rx);
7293 }
7294
7295 /*
7296  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7297  * hardware information when the link first comes up.
7298  *
7299  * The link width is not available until after VerifyCap.AllFramesReceived
7300  * (the trigger for handle_verify_cap), so this is outside that routine
7301  * and should be called when the 8051 signals linkup.
7302  */
7303 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7304 {
7305         u16 tx_width, rx_width;
7306
7307         /* get end-of-LNI link widths */
7308         get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7309
7310         /* use tx_width as the link is supposed to be symmetric on link up */
7311         ppd->link_width_active = tx_width;
7312         /* link width downgrade active (LWD.A) starts out matching LW.A */
7313         ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7314         ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7315         /* per OPA spec, on link up LWD.E resets to LWD.S */
7316         ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7317         /* cache the active egress rate (units {10^6 bits/sec]) */
7318         ppd->current_egress_rate = active_egress_rate(ppd);
7319 }
7320
7321 /*
7322  * Handle a verify capabilities interrupt from the 8051.
7323  *
7324  * This is a work-queue function outside of the interrupt.
7325  */
7326 void handle_verify_cap(struct work_struct *work)
7327 {
7328         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7329                                                                 link_vc_work);
7330         struct hfi1_devdata *dd = ppd->dd;
7331         u64 reg;
7332         u8 power_management;
7333         u8 continious;
7334         u8 vcu;
7335         u8 vau;
7336         u8 z;
7337         u16 vl15buf;
7338         u16 link_widths;
7339         u16 crc_mask;
7340         u16 crc_val;
7341         u16 device_id;
7342         u16 active_tx, active_rx;
7343         u8 partner_supported_crc;
7344         u8 remote_tx_rate;
7345         u8 device_rev;
7346
7347         set_link_state(ppd, HLS_VERIFY_CAP);
7348
7349         lcb_shutdown(dd, 0);
7350         adjust_lcb_for_fpga_serdes(dd);
7351
7352         read_vc_remote_phy(dd, &power_management, &continious);
7353         read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7354                               &partner_supported_crc);
7355         read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7356         read_remote_device_id(dd, &device_id, &device_rev);
7357         /*
7358          * And the 'MgmtAllowed' information, which is exchanged during
7359          * LNI, is also be available at this point.
7360          */
7361         read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7362         /* print the active widths */
7363         get_link_widths(dd, &active_tx, &active_rx);
7364         dd_dev_info(dd,
7365                     "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7366                     (int)power_management, (int)continious);
7367         dd_dev_info(dd,
7368                     "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7369                     (int)vau, (int)z, (int)vcu, (int)vl15buf,
7370                     (int)partner_supported_crc);
7371         dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7372                     (u32)remote_tx_rate, (u32)link_widths);
7373         dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7374                     (u32)device_id, (u32)device_rev);
7375         /*
7376          * The peer vAU value just read is the peer receiver value.  HFI does
7377          * not support a transmit vAU of 0 (AU == 8).  We advertised that
7378          * with Z=1 in the fabric capabilities sent to the peer.  The peer
7379          * will see our Z=1, and, if it advertised a vAU of 0, will move its
7380          * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7381          * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7382          * subject to the Z value exception.
7383          */
7384         if (vau == 0)
7385                 vau = 1;
7386         set_up_vau(dd, vau);
7387
7388         /*
7389          * Set VL15 credits to 0 in global credit register. Cache remote VL15
7390          * credits value and wait for link-up interrupt ot set it.
7391          */
7392         set_up_vl15(dd, 0);
7393         dd->vl15buf_cached = vl15buf;
7394
7395         /* set up the LCB CRC mode */
7396         crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7397
7398         /* order is important: use the lowest bit in common */
7399         if (crc_mask & CAP_CRC_14B)
7400                 crc_val = LCB_CRC_14B;
7401         else if (crc_mask & CAP_CRC_48B)
7402                 crc_val = LCB_CRC_48B;
7403         else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7404                 crc_val = LCB_CRC_12B_16B_PER_LANE;
7405         else
7406                 crc_val = LCB_CRC_16B;
7407
7408         dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7409         write_csr(dd, DC_LCB_CFG_CRC_MODE,
7410                   (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7411
7412         /* set (14b only) or clear sideband credit */
7413         reg = read_csr(dd, SEND_CM_CTRL);
7414         if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7415                 write_csr(dd, SEND_CM_CTRL,
7416                           reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7417         } else {
7418                 write_csr(dd, SEND_CM_CTRL,
7419                           reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7420         }
7421
7422         ppd->link_speed_active = 0;     /* invalid value */
7423         if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7424                 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7425                 switch (remote_tx_rate) {
7426                 case 0:
7427                         ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7428                         break;
7429                 case 1:
7430                         ppd->link_speed_active = OPA_LINK_SPEED_25G;
7431                         break;
7432                 }
7433         } else {
7434                 /* actual rate is highest bit of the ANDed rates */
7435                 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7436
7437                 if (rate & 2)
7438                         ppd->link_speed_active = OPA_LINK_SPEED_25G;
7439                 else if (rate & 1)
7440                         ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7441         }
7442         if (ppd->link_speed_active == 0) {
7443                 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7444                            __func__, (int)remote_tx_rate);
7445                 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7446         }
7447
7448         /*
7449          * Cache the values of the supported, enabled, and active
7450          * LTP CRC modes to return in 'portinfo' queries. But the bit
7451          * flags that are returned in the portinfo query differ from
7452          * what's in the link_crc_mask, crc_sizes, and crc_val
7453          * variables. Convert these here.
7454          */
7455         ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7456                 /* supported crc modes */
7457         ppd->port_ltp_crc_mode |=
7458                 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7459                 /* enabled crc modes */
7460         ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7461                 /* active crc mode */
7462
7463         /* set up the remote credit return table */
7464         assign_remote_cm_au_table(dd, vcu);
7465
7466         /*
7467          * The LCB is reset on entry to handle_verify_cap(), so this must
7468          * be applied on every link up.
7469          *
7470          * Adjust LCB error kill enable to kill the link if
7471          * these RBUF errors are seen:
7472          *      REPLAY_BUF_MBE_SMASK
7473          *      FLIT_INPUT_BUF_MBE_SMASK
7474          */
7475         if (is_ax(dd)) {                        /* fixed in B0 */
7476                 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7477                 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7478                         | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7479                 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7480         }
7481
7482         /* pull LCB fifos out of reset - all fifo clocks must be stable */
7483         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7484
7485         /* give 8051 access to the LCB CSRs */
7486         write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7487         set_8051_lcb_access(dd);
7488
7489         if (ppd->mgmt_allowed)
7490                 add_full_mgmt_pkey(ppd);
7491
7492         /* tell the 8051 to go to LinkUp */
7493         set_link_state(ppd, HLS_GOING_UP);
7494 }
7495
7496 /*
7497  * Apply the link width downgrade enabled policy against the current active
7498  * link widths.
7499  *
7500  * Called when the enabled policy changes or the active link widths change.
7501  */
7502 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7503 {
7504         int do_bounce = 0;
7505         int tries;
7506         u16 lwde;
7507         u16 tx, rx;
7508
7509         /* use the hls lock to avoid a race with actual link up */
7510         tries = 0;
7511 retry:
7512         mutex_lock(&ppd->hls_lock);
7513         /* only apply if the link is up */
7514         if (ppd->host_link_state & HLS_DOWN) {
7515                 /* still going up..wait and retry */
7516                 if (ppd->host_link_state & HLS_GOING_UP) {
7517                         if (++tries < 1000) {
7518                                 mutex_unlock(&ppd->hls_lock);
7519                                 usleep_range(100, 120); /* arbitrary */
7520                                 goto retry;
7521                         }
7522                         dd_dev_err(ppd->dd,
7523                                    "%s: giving up waiting for link state change\n",
7524                                    __func__);
7525                 }
7526                 goto done;
7527         }
7528
7529         lwde = ppd->link_width_downgrade_enabled;
7530
7531         if (refresh_widths) {
7532                 get_link_widths(ppd->dd, &tx, &rx);
7533                 ppd->link_width_downgrade_tx_active = tx;
7534                 ppd->link_width_downgrade_rx_active = rx;
7535         }
7536
7537         if (ppd->link_width_downgrade_tx_active == 0 ||
7538             ppd->link_width_downgrade_rx_active == 0) {
7539                 /* the 8051 reported a dead link as a downgrade */
7540                 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7541         } else if (lwde == 0) {
7542                 /* downgrade is disabled */
7543
7544                 /* bounce if not at starting active width */
7545                 if ((ppd->link_width_active !=
7546                      ppd->link_width_downgrade_tx_active) ||
7547                     (ppd->link_width_active !=
7548                      ppd->link_width_downgrade_rx_active)) {
7549                         dd_dev_err(ppd->dd,
7550                                    "Link downgrade is disabled and link has downgraded, downing link\n");
7551                         dd_dev_err(ppd->dd,
7552                                    "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7553                                    ppd->link_width_active,
7554                                    ppd->link_width_downgrade_tx_active,
7555                                    ppd->link_width_downgrade_rx_active);
7556                         do_bounce = 1;
7557                 }
7558         } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7559                    (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7560                 /* Tx or Rx is outside the enabled policy */
7561                 dd_dev_err(ppd->dd,
7562                            "Link is outside of downgrade allowed, downing link\n");
7563                 dd_dev_err(ppd->dd,
7564                            "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7565                            lwde, ppd->link_width_downgrade_tx_active,
7566                            ppd->link_width_downgrade_rx_active);
7567                 do_bounce = 1;
7568         }
7569
7570 done:
7571         mutex_unlock(&ppd->hls_lock);
7572
7573         if (do_bounce) {
7574                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7575                                      OPA_LINKDOWN_REASON_WIDTH_POLICY);
7576                 set_link_state(ppd, HLS_DN_OFFLINE);
7577                 start_link(ppd);
7578         }
7579 }
7580
7581 /*
7582  * Handle a link downgrade interrupt from the 8051.
7583  *
7584  * This is a work-queue function outside of the interrupt.
7585  */
7586 void handle_link_downgrade(struct work_struct *work)
7587 {
7588         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7589                                                         link_downgrade_work);
7590
7591         dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7592         apply_link_downgrade_policy(ppd, 1);
7593 }
7594
7595 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7596 {
7597         return flag_string(buf, buf_len, flags, dcc_err_flags,
7598                 ARRAY_SIZE(dcc_err_flags));
7599 }
7600
7601 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7602 {
7603         return flag_string(buf, buf_len, flags, lcb_err_flags,
7604                 ARRAY_SIZE(lcb_err_flags));
7605 }
7606
7607 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7608 {
7609         return flag_string(buf, buf_len, flags, dc8051_err_flags,
7610                 ARRAY_SIZE(dc8051_err_flags));
7611 }
7612
7613 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7614 {
7615         return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7616                 ARRAY_SIZE(dc8051_info_err_flags));
7617 }
7618
7619 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7620 {
7621         return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7622                 ARRAY_SIZE(dc8051_info_host_msg_flags));
7623 }
7624
7625 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7626 {
7627         struct hfi1_pportdata *ppd = dd->pport;
7628         u64 info, err, host_msg;
7629         int queue_link_down = 0;
7630         char buf[96];
7631
7632         /* look at the flags */
7633         if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7634                 /* 8051 information set by firmware */
7635                 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7636                 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7637                 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7638                         & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7639                 host_msg = (info >>
7640                         DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7641                         & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7642
7643                 /*
7644                  * Handle error flags.
7645                  */
7646                 if (err & FAILED_LNI) {
7647                         /*
7648                          * LNI error indications are cleared by the 8051
7649                          * only when starting polling.  Only pay attention
7650                          * to them when in the states that occur during
7651                          * LNI.
7652                          */
7653                         if (ppd->host_link_state
7654                             & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7655                                 queue_link_down = 1;
7656                                 dd_dev_info(dd, "Link error: %s\n",
7657                                             dc8051_info_err_string(buf,
7658                                                                    sizeof(buf),
7659                                                                    err &
7660                                                                    FAILED_LNI));
7661                         }
7662                         err &= ~(u64)FAILED_LNI;
7663                 }
7664                 /* unknown frames can happen durning LNI, just count */
7665                 if (err & UNKNOWN_FRAME) {
7666                         ppd->unknown_frame_count++;
7667                         err &= ~(u64)UNKNOWN_FRAME;
7668                 }
7669                 if (err) {
7670                         /* report remaining errors, but do not do anything */
7671                         dd_dev_err(dd, "8051 info error: %s\n",
7672                                    dc8051_info_err_string(buf, sizeof(buf),
7673                                                           err));
7674                 }
7675
7676                 /*
7677                  * Handle host message flags.
7678                  */
7679                 if (host_msg & HOST_REQ_DONE) {
7680                         /*
7681                          * Presently, the driver does a busy wait for
7682                          * host requests to complete.  This is only an
7683                          * informational message.
7684                          * NOTE: The 8051 clears the host message
7685                          * information *on the next 8051 command*.
7686                          * Therefore, when linkup is achieved,
7687                          * this flag will still be set.
7688                          */
7689                         host_msg &= ~(u64)HOST_REQ_DONE;
7690                 }
7691                 if (host_msg & BC_SMA_MSG) {
7692                         queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7693                         host_msg &= ~(u64)BC_SMA_MSG;
7694                 }
7695                 if (host_msg & LINKUP_ACHIEVED) {
7696                         dd_dev_info(dd, "8051: Link up\n");
7697                         queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7698                         host_msg &= ~(u64)LINKUP_ACHIEVED;
7699                 }
7700                 if (host_msg & EXT_DEVICE_CFG_REQ) {
7701                         handle_8051_request(ppd);
7702                         host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7703                 }
7704                 if (host_msg & VERIFY_CAP_FRAME) {
7705                         queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7706                         host_msg &= ~(u64)VERIFY_CAP_FRAME;
7707                 }
7708                 if (host_msg & LINK_GOING_DOWN) {
7709                         const char *extra = "";
7710                         /* no downgrade action needed if going down */
7711                         if (host_msg & LINK_WIDTH_DOWNGRADED) {
7712                                 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7713                                 extra = " (ignoring downgrade)";
7714                         }
7715                         dd_dev_info(dd, "8051: Link down%s\n", extra);
7716                         queue_link_down = 1;
7717                         host_msg &= ~(u64)LINK_GOING_DOWN;
7718                 }
7719                 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7720                         queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7721                         host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7722                 }
7723                 if (host_msg) {
7724                         /* report remaining messages, but do not do anything */
7725                         dd_dev_info(dd, "8051 info host message: %s\n",
7726                                     dc8051_info_host_msg_string(buf,
7727                                                                 sizeof(buf),
7728                                                                 host_msg));
7729                 }
7730
7731                 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7732         }
7733         if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7734                 /*
7735                  * Lost the 8051 heartbeat.  If this happens, we
7736                  * receive constant interrupts about it.  Disable
7737                  * the interrupt after the first.
7738                  */
7739                 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7740                 write_csr(dd, DC_DC8051_ERR_EN,
7741                           read_csr(dd, DC_DC8051_ERR_EN) &
7742                           ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7743
7744                 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7745         }
7746         if (reg) {
7747                 /* report the error, but do not do anything */
7748                 dd_dev_err(dd, "8051 error: %s\n",
7749                            dc8051_err_string(buf, sizeof(buf), reg));
7750         }
7751
7752         if (queue_link_down) {
7753                 /*
7754                  * if the link is already going down or disabled, do not
7755                  * queue another
7756                  */
7757                 if ((ppd->host_link_state &
7758                     (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7759                     ppd->link_enabled == 0) {
7760                         dd_dev_info(dd, "%s: not queuing link down\n",
7761                                     __func__);
7762                 } else {
7763                         queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7764                 }
7765         }
7766 }
7767
7768 static const char * const fm_config_txt[] = {
7769 [0] =
7770         "BadHeadDist: Distance violation between two head flits",
7771 [1] =
7772         "BadTailDist: Distance violation between two tail flits",
7773 [2] =
7774         "BadCtrlDist: Distance violation between two credit control flits",
7775 [3] =
7776         "BadCrdAck: Credits return for unsupported VL",
7777 [4] =
7778         "UnsupportedVLMarker: Received VL Marker",
7779 [5] =
7780         "BadPreempt: Exceeded the preemption nesting level",
7781 [6] =
7782         "BadControlFlit: Received unsupported control flit",
7783 /* no 7 */
7784 [8] =
7785         "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7786 };
7787
7788 static const char * const port_rcv_txt[] = {
7789 [1] =
7790         "BadPktLen: Illegal PktLen",
7791 [2] =
7792         "PktLenTooLong: Packet longer than PktLen",
7793 [3] =
7794         "PktLenTooShort: Packet shorter than PktLen",
7795 [4] =
7796         "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7797 [5] =
7798         "BadDLID: Illegal DLID (0, doesn't match HFI)",
7799 [6] =
7800         "BadL2: Illegal L2 opcode",
7801 [7] =
7802         "BadSC: Unsupported SC",
7803 [9] =
7804         "BadRC: Illegal RC",
7805 [11] =
7806         "PreemptError: Preempting with same VL",
7807 [12] =
7808         "PreemptVL15: Preempting a VL15 packet",
7809 };
7810
7811 #define OPA_LDR_FMCONFIG_OFFSET 16
7812 #define OPA_LDR_PORTRCV_OFFSET 0
7813 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7814 {
7815         u64 info, hdr0, hdr1;
7816         const char *extra;
7817         char buf[96];
7818         struct hfi1_pportdata *ppd = dd->pport;
7819         u8 lcl_reason = 0;
7820         int do_bounce = 0;
7821
7822         if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7823                 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7824                         info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7825                         dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7826                         /* set status bit */
7827                         dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7828                 }
7829                 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7830         }
7831
7832         if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7833                 struct hfi1_pportdata *ppd = dd->pport;
7834                 /* this counter saturates at (2^32) - 1 */
7835                 if (ppd->link_downed < (u32)UINT_MAX)
7836                         ppd->link_downed++;
7837                 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7838         }
7839
7840         if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7841                 u8 reason_valid = 1;
7842
7843                 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7844                 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7845                         dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7846                         /* set status bit */
7847                         dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7848                 }
7849                 switch (info) {
7850                 case 0:
7851                 case 1:
7852                 case 2:
7853                 case 3:
7854                 case 4:
7855                 case 5:
7856                 case 6:
7857                         extra = fm_config_txt[info];
7858                         break;
7859                 case 8:
7860                         extra = fm_config_txt[info];
7861                         if (ppd->port_error_action &
7862                             OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7863                                 do_bounce = 1;
7864                                 /*
7865                                  * lcl_reason cannot be derived from info
7866                                  * for this error
7867                                  */
7868                                 lcl_reason =
7869                                   OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7870                         }
7871                         break;
7872                 default:
7873                         reason_valid = 0;
7874                         snprintf(buf, sizeof(buf), "reserved%lld", info);
7875                         extra = buf;
7876                         break;
7877                 }
7878
7879                 if (reason_valid && !do_bounce) {
7880                         do_bounce = ppd->port_error_action &
7881                                         (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7882                         lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7883                 }
7884
7885                 /* just report this */
7886                 dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7887                                         extra);
7888                 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7889         }
7890
7891         if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7892                 u8 reason_valid = 1;
7893
7894                 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7895                 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7896                 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7897                 if (!(dd->err_info_rcvport.status_and_code &
7898                       OPA_EI_STATUS_SMASK)) {
7899                         dd->err_info_rcvport.status_and_code =
7900                                 info & OPA_EI_CODE_SMASK;
7901                         /* set status bit */
7902                         dd->err_info_rcvport.status_and_code |=
7903                                 OPA_EI_STATUS_SMASK;
7904                         /*
7905                          * save first 2 flits in the packet that caused
7906                          * the error
7907                          */
7908                         dd->err_info_rcvport.packet_flit1 = hdr0;
7909                         dd->err_info_rcvport.packet_flit2 = hdr1;
7910                 }
7911                 switch (info) {
7912                 case 1:
7913                 case 2:
7914                 case 3:
7915                 case 4:
7916                 case 5:
7917                 case 6:
7918                 case 7:
7919                 case 9:
7920                 case 11:
7921                 case 12:
7922                         extra = port_rcv_txt[info];
7923                         break;
7924                 default:
7925                         reason_valid = 0;
7926                         snprintf(buf, sizeof(buf), "reserved%lld", info);
7927                         extra = buf;
7928                         break;
7929                 }
7930
7931                 if (reason_valid && !do_bounce) {
7932                         do_bounce = ppd->port_error_action &
7933                                         (1 << (OPA_LDR_PORTRCV_OFFSET + info));
7934                         lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7935                 }
7936
7937                 /* just report this */
7938                 dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
7939                                         "               hdr0 0x%llx, hdr1 0x%llx\n",
7940                                         extra, hdr0, hdr1);
7941
7942                 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7943         }
7944
7945         if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7946                 /* informative only */
7947                 dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
7948                 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7949         }
7950         if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7951                 /* informative only */
7952                 dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
7953                 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7954         }
7955
7956         if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
7957                 reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
7958
7959         /* report any remaining errors */
7960         if (reg)
7961                 dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
7962                                         dcc_err_string(buf, sizeof(buf), reg));
7963
7964         if (lcl_reason == 0)
7965                 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7966
7967         if (do_bounce) {
7968                 dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
7969                                         __func__);
7970                 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7971                 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7972         }
7973 }
7974
7975 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7976 {
7977         char buf[96];
7978
7979         dd_dev_info(dd, "LCB Error: %s\n",
7980                     lcb_err_string(buf, sizeof(buf), reg));
7981 }
7982
7983 /*
7984  * CCE block DC interrupt.  Source is < 8.
7985  */
7986 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7987 {
7988         const struct err_reg_info *eri = &dc_errs[source];
7989
7990         if (eri->handler) {
7991                 interrupt_clear_down(dd, 0, eri);
7992         } else if (source == 3 /* dc_lbm_int */) {
7993                 /*
7994                  * This indicates that a parity error has occurred on the
7995                  * address/control lines presented to the LBM.  The error
7996                  * is a single pulse, there is no associated error flag,
7997                  * and it is non-maskable.  This is because if a parity
7998                  * error occurs on the request the request is dropped.
7999                  * This should never occur, but it is nice to know if it
8000                  * ever does.
8001                  */
8002                 dd_dev_err(dd, "Parity error in DC LBM block\n");
8003         } else {
8004                 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8005         }
8006 }
8007
8008 /*
8009  * TX block send credit interrupt.  Source is < 160.
8010  */
8011 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8012 {
8013         sc_group_release_update(dd, source);
8014 }
8015
8016 /*
8017  * TX block SDMA interrupt.  Source is < 48.
8018  *
8019  * SDMA interrupts are grouped by type:
8020  *
8021  *       0 -  N-1 = SDma
8022  *       N - 2N-1 = SDmaProgress
8023  *      2N - 3N-1 = SDmaIdle
8024  */
8025 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8026 {
8027         /* what interrupt */
8028         unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8029         /* which engine */
8030         unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8031
8032 #ifdef CONFIG_SDMA_VERBOSITY
8033         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8034                    slashstrip(__FILE__), __LINE__, __func__);
8035         sdma_dumpstate(&dd->per_sdma[which]);
8036 #endif
8037
8038         if (likely(what < 3 && which < dd->num_sdma)) {
8039                 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8040         } else {
8041                 /* should not happen */
8042                 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8043         }
8044 }
8045
8046 /*
8047  * RX block receive available interrupt.  Source is < 160.
8048  */
8049 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8050 {
8051         struct hfi1_ctxtdata *rcd;
8052         char *err_detail;
8053
8054         if (likely(source < dd->num_rcv_contexts)) {
8055                 rcd = dd->rcd[source];
8056                 if (rcd) {
8057                         /* Check for non-user contexts, including vnic */
8058                         if ((source < dd->first_dyn_alloc_ctxt) ||
8059                             (rcd->sc && (rcd->sc->type == SC_KERNEL)))
8060                                 rcd->do_interrupt(rcd, 0);
8061                         else
8062                                 handle_user_interrupt(rcd);
8063                         return; /* OK */
8064                 }
8065                 /* received an interrupt, but no rcd */
8066                 err_detail = "dataless";
8067         } else {
8068                 /* received an interrupt, but are not using that context */
8069                 err_detail = "out of range";
8070         }
8071         dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8072                    err_detail, source);
8073 }
8074
8075 /*
8076  * RX block receive urgent interrupt.  Source is < 160.
8077  */
8078 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8079 {
8080         struct hfi1_ctxtdata *rcd;
8081         char *err_detail;
8082
8083         if (likely(source < dd->num_rcv_contexts)) {
8084                 rcd = dd->rcd[source];
8085                 if (rcd) {
8086                         /* only pay attention to user urgent interrupts */
8087                         if ((source >= dd->first_dyn_alloc_ctxt) &&
8088                             (!rcd->sc || (rcd->sc->type == SC_USER)))
8089                                 handle_user_interrupt(rcd);
8090                         return; /* OK */
8091                 }
8092                 /* received an interrupt, but no rcd */
8093                 err_detail = "dataless";
8094         } else {
8095                 /* received an interrupt, but are not using that context */
8096                 err_detail = "out of range";
8097         }
8098         dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8099                    err_detail, source);
8100 }
8101
8102 /*
8103  * Reserved range interrupt.  Should not be called in normal operation.
8104  */
8105 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8106 {
8107         char name[64];
8108
8109         dd_dev_err(dd, "unexpected %s interrupt\n",
8110                    is_reserved_name(name, sizeof(name), source));
8111 }
8112
8113 static const struct is_table is_table[] = {
8114 /*
8115  * start                 end
8116  *                              name func               interrupt func
8117  */
8118 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8119                                 is_misc_err_name,       is_misc_err_int },
8120 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8121                                 is_sdma_eng_err_name,   is_sdma_eng_err_int },
8122 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8123                                 is_sendctxt_err_name,   is_sendctxt_err_int },
8124 { IS_SDMA_START,             IS_SDMA_END,
8125                                 is_sdma_eng_name,       is_sdma_eng_int },
8126 { IS_VARIOUS_START,          IS_VARIOUS_END,
8127                                 is_various_name,        is_various_int },
8128 { IS_DC_START,       IS_DC_END,
8129                                 is_dc_name,             is_dc_int },
8130 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8131                                 is_rcv_avail_name,      is_rcv_avail_int },
8132 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8133                                 is_rcv_urgent_name,     is_rcv_urgent_int },
8134 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8135                                 is_send_credit_name,    is_send_credit_int},
8136 { IS_RESERVED_START,     IS_RESERVED_END,
8137                                 is_reserved_name,       is_reserved_int},
8138 };
8139
8140 /*
8141  * Interrupt source interrupt - called when the given source has an interrupt.
8142  * Source is a bit index into an array of 64-bit integers.
8143  */
8144 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8145 {
8146         const struct is_table *entry;
8147
8148         /* avoids a double compare by walking the table in-order */
8149         for (entry = &is_table[0]; entry->is_name; entry++) {
8150                 if (source < entry->end) {
8151                         trace_hfi1_interrupt(dd, entry, source);
8152                         entry->is_int(dd, source - entry->start);
8153                         return;
8154                 }
8155         }
8156         /* fell off the end */
8157         dd_dev_err(dd, "invalid interrupt source %u\n", source);
8158 }
8159
8160 /*
8161  * General interrupt handler.  This is able to correctly handle
8162  * all interrupts in case INTx is used.
8163  */
8164 static irqreturn_t general_interrupt(int irq, void *data)
8165 {
8166         struct hfi1_devdata *dd = data;
8167         u64 regs[CCE_NUM_INT_CSRS];
8168         u32 bit;
8169         int i;
8170
8171         this_cpu_inc(*dd->int_counter);
8172
8173         /* phase 1: scan and clear all handled interrupts */
8174         for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8175                 if (dd->gi_mask[i] == 0) {
8176                         regs[i] = 0;    /* used later */
8177                         continue;
8178                 }
8179                 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8180                                 dd->gi_mask[i];
8181                 /* only clear if anything is set */
8182                 if (regs[i])
8183                         write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8184         }
8185
8186         /* phase 2: call the appropriate handler */
8187         for_each_set_bit(bit, (unsigned long *)&regs[0],
8188                          CCE_NUM_INT_CSRS * 64) {
8189                 is_interrupt(dd, bit);
8190         }
8191
8192         return IRQ_HANDLED;
8193 }
8194
8195 static irqreturn_t sdma_interrupt(int irq, void *data)
8196 {
8197         struct sdma_engine *sde = data;
8198         struct hfi1_devdata *dd = sde->dd;
8199         u64 status;
8200
8201 #ifdef CONFIG_SDMA_VERBOSITY
8202         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8203                    slashstrip(__FILE__), __LINE__, __func__);
8204         sdma_dumpstate(sde);
8205 #endif
8206
8207         this_cpu_inc(*dd->int_counter);
8208
8209         /* This read_csr is really bad in the hot path */
8210         status = read_csr(dd,
8211                           CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8212                           & sde->imask;
8213         if (likely(status)) {
8214                 /* clear the interrupt(s) */
8215                 write_csr(dd,
8216                           CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8217                           status);
8218
8219                 /* handle the interrupt(s) */
8220                 sdma_engine_interrupt(sde, status);
8221         } else {
8222                 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
8223                            sde->this_idx);
8224         }
8225         return IRQ_HANDLED;
8226 }
8227
8228 /*
8229  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8230  * to insure that the write completed.  This does NOT guarantee that
8231  * queued DMA writes to memory from the chip are pushed.
8232  */
8233 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8234 {
8235         struct hfi1_devdata *dd = rcd->dd;
8236         u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8237
8238         mmiowb();       /* make sure everything before is written */
8239         write_csr(dd, addr, rcd->imask);
8240         /* force the above write on the chip and get a value back */
8241         (void)read_csr(dd, addr);
8242 }
8243
8244 /* force the receive interrupt */
8245 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8246 {
8247         write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8248 }
8249
8250 /*
8251  * Return non-zero if a packet is present.
8252  *
8253  * This routine is called when rechecking for packets after the RcvAvail
8254  * interrupt has been cleared down.  First, do a quick check of memory for
8255  * a packet present.  If not found, use an expensive CSR read of the context
8256  * tail to determine the actual tail.  The CSR read is necessary because there
8257  * is no method to push pending DMAs to memory other than an interrupt and we
8258  * are trying to determine if we need to force an interrupt.
8259  */
8260 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8261 {
8262         u32 tail;
8263         int present;
8264
8265         if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8266                 present = (rcd->seq_cnt ==
8267                                 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8268         else /* is RDMA rtail */
8269                 present = (rcd->head != get_rcvhdrtail(rcd));
8270
8271         if (present)
8272                 return 1;
8273
8274         /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8275         tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8276         return rcd->head != tail;
8277 }
8278
8279 /*
8280  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8281  * This routine will try to handle packets immediately (latency), but if
8282  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8283  * chip receive interrupt is *not* cleared down until this or the thread (if
8284  * invoked) is finished.  The intent is to avoid extra interrupts while we
8285  * are processing packets anyway.
8286  */
8287 static irqreturn_t receive_context_interrupt(int irq, void *data)
8288 {
8289         struct hfi1_ctxtdata *rcd = data;
8290         struct hfi1_devdata *dd = rcd->dd;
8291         int disposition;
8292         int present;
8293
8294         trace_hfi1_receive_interrupt(dd, rcd->ctxt);
8295         this_cpu_inc(*dd->int_counter);
8296         aspm_ctx_disable(rcd);
8297
8298         /* receive interrupt remains blocked while processing packets */
8299         disposition = rcd->do_interrupt(rcd, 0);
8300
8301         /*
8302          * Too many packets were seen while processing packets in this
8303          * IRQ handler.  Invoke the handler thread.  The receive interrupt
8304          * remains blocked.
8305          */
8306         if (disposition == RCV_PKT_LIMIT)
8307                 return IRQ_WAKE_THREAD;
8308
8309         /*
8310          * The packet processor detected no more packets.  Clear the receive
8311          * interrupt and recheck for a packet packet that may have arrived
8312          * after the previous check and interrupt clear.  If a packet arrived,
8313          * force another interrupt.
8314          */
8315         clear_recv_intr(rcd);
8316         present = check_packet_present(rcd);
8317         if (present)
8318                 force_recv_intr(rcd);
8319
8320         return IRQ_HANDLED;
8321 }
8322
8323 /*
8324  * Receive packet thread handler.  This expects to be invoked with the
8325  * receive interrupt still blocked.
8326  */
8327 static irqreturn_t receive_context_thread(int irq, void *data)
8328 {
8329         struct hfi1_ctxtdata *rcd = data;
8330         int present;
8331
8332         /* receive interrupt is still blocked from the IRQ handler */
8333         (void)rcd->do_interrupt(rcd, 1);
8334
8335         /*
8336          * The packet processor will only return if it detected no more
8337          * packets.  Hold IRQs here so we can safely clear the interrupt and
8338          * recheck for a packet that may have arrived after the previous
8339          * check and the interrupt clear.  If a packet arrived, force another
8340          * interrupt.
8341          */
8342         local_irq_disable();
8343         clear_recv_intr(rcd);
8344         present = check_packet_present(rcd);
8345         if (present)
8346                 force_recv_intr(rcd);
8347         local_irq_enable();
8348
8349         return IRQ_HANDLED;
8350 }
8351
8352 /* ========================================================================= */
8353
8354 u32 read_physical_state(struct hfi1_devdata *dd)
8355 {
8356         u64 reg;
8357
8358         reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8359         return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8360                                 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8361 }
8362
8363 u32 read_logical_state(struct hfi1_devdata *dd)
8364 {
8365         u64 reg;
8366
8367         reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8368         return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8369                                 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8370 }
8371
8372 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8373 {
8374         u64 reg;
8375
8376         reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8377         /* clear current state, set new state */
8378         reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8379         reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8380         write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8381 }
8382
8383 /*
8384  * Use the 8051 to read a LCB CSR.
8385  */
8386 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8387 {
8388         u32 regno;
8389         int ret;
8390
8391         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8392                 if (acquire_lcb_access(dd, 0) == 0) {
8393                         *data = read_csr(dd, addr);
8394                         release_lcb_access(dd, 0);
8395                         return 0;
8396                 }
8397                 return -EBUSY;
8398         }
8399
8400         /* register is an index of LCB registers: (offset - base) / 8 */
8401         regno = (addr - DC_LCB_CFG_RUN) >> 3;
8402         ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8403         if (ret != HCMD_SUCCESS)
8404                 return -EBUSY;
8405         return 0;
8406 }
8407
8408 /*
8409  * Provide a cache for some of the LCB registers in case the LCB is
8410  * unavailable.
8411  * (The LCB is unavailable in certain link states, for example.)
8412  */
8413 struct lcb_datum {
8414         u32 off;
8415         u64 val;
8416 };
8417
8418 static struct lcb_datum lcb_cache[] = {
8419         { DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8420         { DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8421         { DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8422 };
8423
8424 static void update_lcb_cache(struct hfi1_devdata *dd)
8425 {
8426         int i;
8427         int ret;
8428         u64 val;
8429
8430         for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8431                 ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8432
8433                 /* Update if we get good data */
8434                 if (likely(ret != -EBUSY))
8435                         lcb_cache[i].val = val;
8436         }
8437 }
8438
8439 static int read_lcb_cache(u32 off, u64 *val)
8440 {
8441         int i;
8442
8443         for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8444                 if (lcb_cache[i].off == off) {
8445                         *val = lcb_cache[i].val;
8446                         return 0;
8447                 }
8448         }
8449
8450         pr_warn("%s bad offset 0x%x\n", __func__, off);
8451         return -1;
8452 }
8453
8454 /*
8455  * Read an LCB CSR.  Access may not be in host control, so check.
8456  * Return 0 on success, -EBUSY on failure.
8457  */
8458 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8459 {
8460         struct hfi1_pportdata *ppd = dd->pport;
8461
8462         /* if up, go through the 8051 for the value */
8463         if (ppd->host_link_state & HLS_UP)
8464                 return read_lcb_via_8051(dd, addr, data);
8465         /* if going up or down, check the cache, otherwise, no access */
8466         if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8467                 if (read_lcb_cache(addr, data))
8468                         return -EBUSY;
8469                 return 0;
8470         }
8471
8472         /* otherwise, host has access */
8473         *data = read_csr(dd, addr);
8474         return 0;
8475 }
8476
8477 /*
8478  * Use the 8051 to write a LCB CSR.
8479  */
8480 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8481 {
8482         u32 regno;
8483         int ret;
8484
8485         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8486             (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8487                 if (acquire_lcb_access(dd, 0) == 0) {
8488                         write_csr(dd, addr, data);
8489                         release_lcb_access(dd, 0);
8490                         return 0;
8491                 }
8492                 return -EBUSY;
8493         }
8494
8495         /* register is an index of LCB registers: (offset - base) / 8 */
8496         regno = (addr - DC_LCB_CFG_RUN) >> 3;
8497         ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8498         if (ret != HCMD_SUCCESS)
8499                 return -EBUSY;
8500         return 0;
8501 }
8502
8503 /*
8504  * Write an LCB CSR.  Access may not be in host control, so check.
8505  * Return 0 on success, -EBUSY on failure.
8506  */
8507 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8508 {
8509         struct hfi1_pportdata *ppd = dd->pport;
8510
8511         /* if up, go through the 8051 for the value */
8512         if (ppd->host_link_state & HLS_UP)
8513                 return write_lcb_via_8051(dd, addr, data);
8514         /* if going up or down, no access */
8515         if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8516                 return -EBUSY;
8517         /* otherwise, host has access */
8518         write_csr(dd, addr, data);
8519         return 0;
8520 }
8521
8522 /*
8523  * Returns:
8524  *      < 0 = Linux error, not able to get access
8525  *      > 0 = 8051 command RETURN_CODE
8526  */
8527 static int do_8051_command(
8528         struct hfi1_devdata *dd,
8529         u32 type,
8530         u64 in_data,
8531         u64 *out_data)
8532 {
8533         u64 reg, completed;
8534         int return_code;
8535         unsigned long timeout;
8536
8537         hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8538
8539         mutex_lock(&dd->dc8051_lock);
8540
8541         /* We can't send any commands to the 8051 if it's in reset */
8542         if (dd->dc_shutdown) {
8543                 return_code = -ENODEV;
8544                 goto fail;
8545         }
8546
8547         /*
8548          * If an 8051 host command timed out previously, then the 8051 is
8549          * stuck.
8550          *
8551          * On first timeout, attempt to reset and restart the entire DC
8552          * block (including 8051). (Is this too big of a hammer?)
8553          *
8554          * If the 8051 times out a second time, the reset did not bring it
8555          * back to healthy life. In that case, fail any subsequent commands.
8556          */
8557         if (dd->dc8051_timed_out) {
8558                 if (dd->dc8051_timed_out > 1) {
8559                         dd_dev_err(dd,
8560                                    "Previous 8051 host command timed out, skipping command %u\n",
8561                                    type);
8562                         return_code = -ENXIO;
8563                         goto fail;
8564                 }
8565                 _dc_shutdown(dd);
8566                 _dc_start(dd);
8567         }
8568
8569         /*
8570          * If there is no timeout, then the 8051 command interface is
8571          * waiting for a command.
8572          */
8573
8574         /*
8575          * When writing a LCB CSR, out_data contains the full value to
8576          * to be written, while in_data contains the relative LCB
8577          * address in 7:0.  Do the work here, rather than the caller,
8578          * of distrubting the write data to where it needs to go:
8579          *
8580          * Write data
8581          *   39:00 -> in_data[47:8]
8582          *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8583          *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8584          */
8585         if (type == HCMD_WRITE_LCB_CSR) {
8586                 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8587                 /* must preserve COMPLETED - it is tied to hardware */
8588                 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8589                 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8590                 reg |= ((((*out_data) >> 40) & 0xff) <<
8591                                 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8592                       | ((((*out_data) >> 48) & 0xffff) <<
8593                                 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8594                 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8595         }
8596
8597         /*
8598          * Do two writes: the first to stabilize the type and req_data, the
8599          * second to activate.
8600          */
8601         reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8602                         << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8603                 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8604                         << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8605         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8606         reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8607         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8608
8609         /* wait for completion, alternate: interrupt */
8610         timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8611         while (1) {
8612                 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8613                 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8614                 if (completed)
8615                         break;
8616                 if (time_after(jiffies, timeout)) {
8617                         dd->dc8051_timed_out++;
8618                         dd_dev_err(dd, "8051 host command %u timeout\n", type);
8619                         if (out_data)
8620                                 *out_data = 0;
8621                         return_code = -ETIMEDOUT;
8622                         goto fail;
8623                 }
8624                 udelay(2);
8625         }
8626
8627         if (out_data) {
8628                 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8629                                 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8630                 if (type == HCMD_READ_LCB_CSR) {
8631                         /* top 16 bits are in a different register */
8632                         *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8633                                 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8634                                 << (48
8635                                     - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8636                 }
8637         }
8638         return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8639                                 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8640         dd->dc8051_timed_out = 0;
8641         /*
8642          * Clear command for next user.
8643          */
8644         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8645
8646 fail:
8647         mutex_unlock(&dd->dc8051_lock);
8648         return return_code;
8649 }
8650
8651 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8652 {
8653         return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8654 }
8655
8656 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8657                      u8 lane_id, u32 config_data)
8658 {
8659         u64 data;
8660         int ret;
8661
8662         data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8663                 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8664                 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8665         ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8666         if (ret != HCMD_SUCCESS) {
8667                 dd_dev_err(dd,
8668                            "load 8051 config: field id %d, lane %d, err %d\n",
8669                            (int)field_id, (int)lane_id, ret);
8670         }
8671         return ret;
8672 }
8673
8674 /*
8675  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8676  * set the result, even on error.
8677  * Return 0 on success, -errno on failure
8678  */
8679 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8680                      u32 *result)
8681 {
8682         u64 big_data;
8683         u32 addr;
8684         int ret;
8685
8686         /* address start depends on the lane_id */
8687         if (lane_id < 4)
8688                 addr = (4 * NUM_GENERAL_FIELDS)
8689                         + (lane_id * 4 * NUM_LANE_FIELDS);
8690         else
8691                 addr = 0;
8692         addr += field_id * 4;
8693
8694         /* read is in 8-byte chunks, hardware will truncate the address down */
8695         ret = read_8051_data(dd, addr, 8, &big_data);
8696
8697         if (ret == 0) {
8698                 /* extract the 4 bytes we want */
8699                 if (addr & 0x4)
8700                         *result = (u32)(big_data >> 32);
8701                 else
8702                         *result = (u32)big_data;
8703         } else {
8704                 *result = 0;
8705                 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8706                            __func__, lane_id, field_id);
8707         }
8708
8709         return ret;
8710 }
8711
8712 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8713                               u8 continuous)
8714 {
8715         u32 frame;
8716
8717         frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8718                 | power_management << POWER_MANAGEMENT_SHIFT;
8719         return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8720                                 GENERAL_CONFIG, frame);
8721 }
8722
8723 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8724                                  u16 vl15buf, u8 crc_sizes)
8725 {
8726         u32 frame;
8727
8728         frame = (u32)vau << VAU_SHIFT
8729                 | (u32)z << Z_SHIFT
8730                 | (u32)vcu << VCU_SHIFT
8731                 | (u32)vl15buf << VL15BUF_SHIFT
8732                 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8733         return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8734                                 GENERAL_CONFIG, frame);
8735 }
8736
8737 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8738                                      u8 *flag_bits, u16 *link_widths)
8739 {
8740         u32 frame;
8741
8742         read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8743                          &frame);
8744         *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8745         *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8746         *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8747 }
8748
8749 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8750                                      u8 misc_bits,
8751                                      u8 flag_bits,
8752                                      u16 link_widths)
8753 {
8754         u32 frame;
8755
8756         frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8757                 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8758                 | (u32)link_widths << LINK_WIDTH_SHIFT;
8759         return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8760                      frame);
8761 }
8762
8763 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8764                                  u8 device_rev)
8765 {
8766         u32 frame;
8767
8768         frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8769                 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8770         return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8771 }
8772
8773 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8774                                   u8 *device_rev)
8775 {
8776         u32 frame;
8777
8778         read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8779         *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8780         *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8781                         & REMOTE_DEVICE_REV_MASK;
8782 }
8783
8784 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8785                       u8 *ver_patch)
8786 {
8787         u32 frame;
8788
8789         read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8790         *ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8791                 STS_FM_VERSION_MAJOR_MASK;
8792         *ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8793                 STS_FM_VERSION_MINOR_MASK;
8794
8795         read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8796         *ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8797                 STS_FM_VERSION_PATCH_MASK;
8798 }
8799
8800 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8801                                u8 *continuous)
8802 {
8803         u32 frame;
8804
8805         read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8806         *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8807                                         & POWER_MANAGEMENT_MASK;
8808         *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8809                                         & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8810 }
8811
8812 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8813                                   u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8814 {
8815         u32 frame;
8816
8817         read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8818         *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8819         *z = (frame >> Z_SHIFT) & Z_MASK;
8820         *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8821         *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8822         *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8823 }
8824
8825 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8826                                       u8 *remote_tx_rate,
8827                                       u16 *link_widths)
8828 {
8829         u32 frame;
8830
8831         read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8832                          &frame);
8833         *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8834                                 & REMOTE_TX_RATE_MASK;
8835         *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8836 }
8837
8838 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8839 {
8840         u32 frame;
8841
8842         read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8843         *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8844 }
8845
8846 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8847 {
8848         u32 frame;
8849
8850         read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8851         *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8852 }
8853
8854 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8855 {
8856         read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8857 }
8858
8859 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8860 {
8861         read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8862 }
8863
8864 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8865 {
8866         u32 frame;
8867         int ret;
8868
8869         *link_quality = 0;
8870         if (dd->pport->host_link_state & HLS_UP) {
8871                 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8872                                        &frame);
8873                 if (ret == 0)
8874                         *link_quality = (frame >> LINK_QUALITY_SHIFT)
8875                                                 & LINK_QUALITY_MASK;
8876         }
8877 }
8878
8879 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8880 {
8881         u32 frame;
8882
8883         read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8884         *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8885 }
8886
8887 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8888 {
8889         u32 frame;
8890
8891         read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8892         *ldr = (frame & 0xff);
8893 }
8894
8895 static int read_tx_settings(struct hfi1_devdata *dd,
8896                             u8 *enable_lane_tx,
8897                             u8 *tx_polarity_inversion,
8898                             u8 *rx_polarity_inversion,
8899                             u8 *max_rate)
8900 {
8901         u32 frame;
8902         int ret;
8903
8904         ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8905         *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8906                                 & ENABLE_LANE_TX_MASK;
8907         *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8908                                 & TX_POLARITY_INVERSION_MASK;
8909         *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8910                                 & RX_POLARITY_INVERSION_MASK;
8911         *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8912         return ret;
8913 }
8914
8915 static int write_tx_settings(struct hfi1_devdata *dd,
8916                              u8 enable_lane_tx,
8917                              u8 tx_polarity_inversion,
8918                              u8 rx_polarity_inversion,
8919                              u8 max_rate)
8920 {
8921         u32 frame;
8922
8923         /* no need to mask, all variable sizes match field widths */
8924         frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8925                 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8926                 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8927                 | max_rate << MAX_RATE_SHIFT;
8928         return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8929 }
8930
8931 /*
8932  * Read an idle LCB message.
8933  *
8934  * Returns 0 on success, -EINVAL on error
8935  */
8936 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8937 {
8938         int ret;
8939
8940         ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
8941         if (ret != HCMD_SUCCESS) {
8942                 dd_dev_err(dd, "read idle message: type %d, err %d\n",
8943                            (u32)type, ret);
8944                 return -EINVAL;
8945         }
8946         dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8947         /* return only the payload as we already know the type */
8948         *data_out >>= IDLE_PAYLOAD_SHIFT;
8949         return 0;
8950 }
8951
8952 /*
8953  * Read an idle SMA message.  To be done in response to a notification from
8954  * the 8051.
8955  *
8956  * Returns 0 on success, -EINVAL on error
8957  */
8958 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8959 {
8960         return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
8961                                  data);
8962 }
8963
8964 /*
8965  * Send an idle LCB message.
8966  *
8967  * Returns 0 on success, -EINVAL on error
8968  */
8969 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8970 {
8971         int ret;
8972
8973         dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8974         ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8975         if (ret != HCMD_SUCCESS) {
8976                 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
8977                            data, ret);
8978                 return -EINVAL;
8979         }
8980         return 0;
8981 }
8982
8983 /*
8984  * Send an idle SMA message.
8985  *
8986  * Returns 0 on success, -EINVAL on error
8987  */
8988 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8989 {
8990         u64 data;
8991
8992         data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
8993                 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
8994         return send_idle_message(dd, data);
8995 }
8996
8997 /*
8998  * Initialize the LCB then do a quick link up.  This may or may not be
8999  * in loopback.
9000  *
9001  * return 0 on success, -errno on error
9002  */
9003 static int do_quick_linkup(struct hfi1_devdata *dd)
9004 {
9005         int ret;
9006
9007         lcb_shutdown(dd, 0);
9008
9009         if (loopback) {
9010                 /* LCB_CFG_LOOPBACK.VAL = 2 */
9011                 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
9012                 write_csr(dd, DC_LCB_CFG_LOOPBACK,
9013                           IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9014                 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9015         }
9016
9017         /* start the LCBs */
9018         /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9019         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9020
9021         /* simulator only loopback steps */
9022         if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9023                 /* LCB_CFG_RUN.EN = 1 */
9024                 write_csr(dd, DC_LCB_CFG_RUN,
9025                           1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9026
9027                 ret = wait_link_transfer_active(dd, 10);
9028                 if (ret)
9029                         return ret;
9030
9031                 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9032                           1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9033         }
9034
9035         if (!loopback) {
9036                 /*
9037                  * When doing quick linkup and not in loopback, both
9038                  * sides must be done with LCB set-up before either
9039                  * starts the quick linkup.  Put a delay here so that
9040                  * both sides can be started and have a chance to be
9041                  * done with LCB set up before resuming.
9042                  */
9043                 dd_dev_err(dd,
9044                            "Pausing for peer to be finished with LCB set up\n");
9045                 msleep(5000);
9046                 dd_dev_err(dd, "Continuing with quick linkup\n");
9047         }
9048
9049         write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9050         set_8051_lcb_access(dd);
9051
9052         /*
9053          * State "quick" LinkUp request sets the physical link state to
9054          * LinkUp without a verify capability sequence.
9055          * This state is in simulator v37 and later.
9056          */
9057         ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9058         if (ret != HCMD_SUCCESS) {
9059                 dd_dev_err(dd,
9060                            "%s: set physical link state to quick LinkUp failed with return %d\n",
9061                            __func__, ret);
9062
9063                 set_host_lcb_access(dd);
9064                 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9065
9066                 if (ret >= 0)
9067                         ret = -EINVAL;
9068                 return ret;
9069         }
9070
9071         return 0; /* success */
9072 }
9073
9074 /*
9075  * Set the SerDes to internal loopback mode.
9076  * Returns 0 on success, -errno on error.
9077  */
9078 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
9079 {
9080         int ret;
9081
9082         ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
9083         if (ret == HCMD_SUCCESS)
9084                 return 0;
9085         dd_dev_err(dd,
9086                    "Set physical link state to SerDes Loopback failed with return %d\n",
9087                    ret);
9088         if (ret >= 0)
9089                 ret = -EINVAL;
9090         return ret;
9091 }
9092
9093 /*
9094  * Do all special steps to set up loopback.
9095  */
9096 static int init_loopback(struct hfi1_devdata *dd)
9097 {
9098         dd_dev_info(dd, "Entering loopback mode\n");
9099
9100         /* all loopbacks should disable self GUID check */
9101         write_csr(dd, DC_DC8051_CFG_MODE,
9102                   (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9103
9104         /*
9105          * The simulator has only one loopback option - LCB.  Switch
9106          * to that option, which includes quick link up.
9107          *
9108          * Accept all valid loopback values.
9109          */
9110         if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9111             (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9112              loopback == LOOPBACK_CABLE)) {
9113                 loopback = LOOPBACK_LCB;
9114                 quick_linkup = 1;
9115                 return 0;
9116         }
9117
9118         /* handle serdes loopback */
9119         if (loopback == LOOPBACK_SERDES) {
9120                 /* internal serdes loopack needs quick linkup on RTL */
9121                 if (dd->icode == ICODE_RTL_SILICON)
9122                         quick_linkup = 1;
9123                 return set_serdes_loopback_mode(dd);
9124         }
9125
9126         /* LCB loopback - handled at poll time */
9127         if (loopback == LOOPBACK_LCB) {
9128                 quick_linkup = 1; /* LCB is always quick linkup */
9129
9130                 /* not supported in emulation due to emulation RTL changes */
9131                 if (dd->icode == ICODE_FPGA_EMULATION) {
9132                         dd_dev_err(dd,
9133                                    "LCB loopback not supported in emulation\n");
9134                         return -EINVAL;
9135                 }
9136                 return 0;
9137         }
9138
9139         /* external cable loopback requires no extra steps */
9140         if (loopback == LOOPBACK_CABLE)
9141                 return 0;
9142
9143         dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9144         return -EINVAL;
9145 }
9146
9147 /*
9148  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9149  * used in the Verify Capability link width attribute.
9150  */
9151 static u16 opa_to_vc_link_widths(u16 opa_widths)
9152 {
9153         int i;
9154         u16 result = 0;
9155
9156         static const struct link_bits {
9157                 u16 from;
9158                 u16 to;
9159         } opa_link_xlate[] = {
9160                 { OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9161                 { OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9162                 { OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9163                 { OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9164         };
9165
9166         for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9167                 if (opa_widths & opa_link_xlate[i].from)
9168                         result |= opa_link_xlate[i].to;
9169         }
9170         return result;
9171 }
9172
9173 /*
9174  * Set link attributes before moving to polling.
9175  */
9176 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9177 {
9178         struct hfi1_devdata *dd = ppd->dd;
9179         u8 enable_lane_tx;
9180         u8 tx_polarity_inversion;
9181         u8 rx_polarity_inversion;
9182         int ret;
9183
9184         /* reset our fabric serdes to clear any lingering problems */
9185         fabric_serdes_reset(dd);
9186
9187         /* set the local tx rate - need to read-modify-write */
9188         ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9189                                &rx_polarity_inversion, &ppd->local_tx_rate);
9190         if (ret)
9191                 goto set_local_link_attributes_fail;
9192
9193         if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9194                 /* set the tx rate to the fastest enabled */
9195                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9196                         ppd->local_tx_rate = 1;
9197                 else
9198                         ppd->local_tx_rate = 0;
9199         } else {
9200                 /* set the tx rate to all enabled */
9201                 ppd->local_tx_rate = 0;
9202                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9203                         ppd->local_tx_rate |= 2;
9204                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9205                         ppd->local_tx_rate |= 1;
9206         }
9207
9208         enable_lane_tx = 0xF; /* enable all four lanes */
9209         ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9210                                 rx_polarity_inversion, ppd->local_tx_rate);
9211         if (ret != HCMD_SUCCESS)
9212                 goto set_local_link_attributes_fail;
9213
9214         /*
9215          * DC supports continuous updates.
9216          */
9217         ret = write_vc_local_phy(dd,
9218                                  0 /* no power management */,
9219                                  1 /* continuous updates */);
9220         if (ret != HCMD_SUCCESS)
9221                 goto set_local_link_attributes_fail;
9222
9223         /* z=1 in the next call: AU of 0 is not supported by the hardware */
9224         ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9225                                     ppd->port_crc_mode_enabled);
9226         if (ret != HCMD_SUCCESS)
9227                 goto set_local_link_attributes_fail;
9228
9229         ret = write_vc_local_link_width(dd, 0, 0,
9230                                         opa_to_vc_link_widths(
9231                                                 ppd->link_width_enabled));
9232         if (ret != HCMD_SUCCESS)
9233                 goto set_local_link_attributes_fail;
9234
9235         /* let peer know who we are */
9236         ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9237         if (ret == HCMD_SUCCESS)
9238                 return 0;
9239
9240 set_local_link_attributes_fail:
9241         dd_dev_err(dd,
9242                    "Failed to set local link attributes, return 0x%x\n",
9243                    ret);
9244         return ret;
9245 }
9246
9247 /*
9248  * Call this to start the link.
9249  * Do not do anything if the link is disabled.
9250  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9251  */
9252 int start_link(struct hfi1_pportdata *ppd)
9253 {
9254         /*
9255          * Tune the SerDes to a ballpark setting for optimal signal and bit
9256          * error rate.  Needs to be done before starting the link.
9257          */
9258         tune_serdes(ppd);
9259
9260         if (!ppd->link_enabled) {
9261                 dd_dev_info(ppd->dd,
9262                             "%s: stopping link start because link is disabled\n",
9263                             __func__);
9264                 return 0;
9265         }
9266         if (!ppd->driver_link_ready) {
9267                 dd_dev_info(ppd->dd,
9268                             "%s: stopping link start because driver is not ready\n",
9269                             __func__);
9270                 return 0;
9271         }
9272
9273         /*
9274          * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9275          * pkey table can be configured properly if the HFI unit is connected
9276          * to switch port with MgmtAllowed=NO
9277          */
9278         clear_full_mgmt_pkey(ppd);
9279
9280         return set_link_state(ppd, HLS_DN_POLL);
9281 }
9282
9283 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9284 {
9285         struct hfi1_devdata *dd = ppd->dd;
9286         u64 mask;
9287         unsigned long timeout;
9288
9289         /*
9290          * Some QSFP cables have a quirk that asserts the IntN line as a side
9291          * effect of power up on plug-in. We ignore this false positive
9292          * interrupt until the module has finished powering up by waiting for
9293          * a minimum timeout of the module inrush initialization time of
9294          * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9295          * module have stabilized.
9296          */
9297         msleep(500);
9298
9299         /*
9300          * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9301          */
9302         timeout = jiffies + msecs_to_jiffies(2000);
9303         while (1) {
9304                 mask = read_csr(dd, dd->hfi1_id ?
9305                                 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9306                 if (!(mask & QSFP_HFI0_INT_N))
9307                         break;
9308                 if (time_after(jiffies, timeout)) {
9309                         dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9310                                     __func__);
9311                         break;
9312                 }
9313                 udelay(2);
9314         }
9315 }
9316
9317 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9318 {
9319         struct hfi1_devdata *dd = ppd->dd;
9320         u64 mask;
9321
9322         mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9323         if (enable) {
9324                 /*
9325                  * Clear the status register to avoid an immediate interrupt
9326                  * when we re-enable the IntN pin
9327                  */
9328                 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9329                           QSFP_HFI0_INT_N);
9330                 mask |= (u64)QSFP_HFI0_INT_N;
9331         } else {
9332                 mask &= ~(u64)QSFP_HFI0_INT_N;
9333         }
9334         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9335 }
9336
9337 void reset_qsfp(struct hfi1_pportdata *ppd)
9338 {
9339         struct hfi1_devdata *dd = ppd->dd;
9340         u64 mask, qsfp_mask;
9341
9342         /* Disable INT_N from triggering QSFP interrupts */
9343         set_qsfp_int_n(ppd, 0);
9344
9345         /* Reset the QSFP */
9346         mask = (u64)QSFP_HFI0_RESET_N;
9347
9348         qsfp_mask = read_csr(dd,
9349                              dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9350         qsfp_mask &= ~mask;
9351         write_csr(dd,
9352                   dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9353
9354         udelay(10);
9355
9356         qsfp_mask |= mask;
9357         write_csr(dd,
9358                   dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9359
9360         wait_for_qsfp_init(ppd);
9361
9362         /*
9363          * Allow INT_N to trigger the QSFP interrupt to watch
9364          * for alarms and warnings
9365          */
9366         set_qsfp_int_n(ppd, 1);
9367 }
9368
9369 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9370                                         u8 *qsfp_interrupt_status)
9371 {
9372         struct hfi1_devdata *dd = ppd->dd;
9373
9374         if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9375             (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9376                 dd_dev_info(dd, "%s: QSFP cable temperature too high\n",
9377                             __func__);
9378
9379         if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9380             (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9381                 dd_dev_info(dd, "%s: QSFP cable temperature too low\n",
9382                             __func__);
9383
9384         /*
9385          * The remaining alarms/warnings don't matter if the link is down.
9386          */
9387         if (ppd->host_link_state & HLS_DOWN)
9388                 return 0;
9389
9390         if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9391             (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9392                 dd_dev_info(dd, "%s: QSFP supply voltage too high\n",
9393                             __func__);
9394
9395         if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9396             (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9397                 dd_dev_info(dd, "%s: QSFP supply voltage too low\n",
9398                             __func__);
9399
9400         /* Byte 2 is vendor specific */
9401
9402         if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9403             (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9404                 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n",
9405                             __func__);
9406
9407         if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9408             (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9409                 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n",
9410                             __func__);
9411
9412         if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9413             (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9414                 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n",
9415                             __func__);
9416
9417         if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9418             (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9419                 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n",
9420                             __func__);
9421
9422         if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9423             (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9424                 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n",
9425                             __func__);
9426
9427         if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9428             (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9429                 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n",
9430                             __func__);
9431
9432         if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9433             (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9434                 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n",
9435                             __func__);
9436
9437         if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9438             (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9439                 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n",
9440                             __func__);
9441
9442         if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9443             (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9444                 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n",
9445                             __func__);
9446
9447         if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9448             (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9449                 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n",
9450                             __func__);
9451
9452         if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9453             (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9454                 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n",
9455                             __func__);
9456
9457         if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9458             (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9459                 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n",
9460                             __func__);
9461
9462         /* Bytes 9-10 and 11-12 are reserved */
9463         /* Bytes 13-15 are vendor specific */
9464
9465         return 0;
9466 }
9467
9468 /* This routine will only be scheduled if the QSFP module present is asserted */
9469 void qsfp_event(struct work_struct *work)
9470 {
9471         struct qsfp_data *qd;
9472         struct hfi1_pportdata *ppd;
9473         struct hfi1_devdata *dd;
9474
9475         qd = container_of(work, struct qsfp_data, qsfp_work);
9476         ppd = qd->ppd;
9477         dd = ppd->dd;
9478
9479         /* Sanity check */
9480         if (!qsfp_mod_present(ppd))
9481                 return;
9482
9483         /*
9484          * Turn DC back on after cable has been re-inserted. Up until
9485          * now, the DC has been in reset to save power.
9486          */
9487         dc_start(dd);
9488
9489         if (qd->cache_refresh_required) {
9490                 set_qsfp_int_n(ppd, 0);
9491
9492                 wait_for_qsfp_init(ppd);
9493
9494                 /*
9495                  * Allow INT_N to trigger the QSFP interrupt to watch
9496                  * for alarms and warnings
9497                  */
9498                 set_qsfp_int_n(ppd, 1);
9499
9500                 start_link(ppd);
9501         }
9502
9503         if (qd->check_interrupt_flags) {
9504                 u8 qsfp_interrupt_status[16] = {0,};
9505
9506                 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9507                                   &qsfp_interrupt_status[0], 16) != 16) {
9508                         dd_dev_info(dd,
9509                                     "%s: Failed to read status of QSFP module\n",
9510                                     __func__);
9511                 } else {
9512                         unsigned long flags;
9513
9514                         handle_qsfp_error_conditions(
9515                                         ppd, qsfp_interrupt_status);
9516                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9517                         ppd->qsfp_info.check_interrupt_flags = 0;
9518                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9519                                                flags);
9520                 }
9521         }
9522 }
9523
9524 static void init_qsfp_int(struct hfi1_devdata *dd)
9525 {
9526         struct hfi1_pportdata *ppd = dd->pport;
9527         u64 qsfp_mask, cce_int_mask;
9528         const int qsfp1_int_smask = QSFP1_INT % 64;
9529         const int qsfp2_int_smask = QSFP2_INT % 64;
9530
9531         /*
9532          * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9533          * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9534          * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9535          * the index of the appropriate CSR in the CCEIntMask CSR array
9536          */
9537         cce_int_mask = read_csr(dd, CCE_INT_MASK +
9538                                 (8 * (QSFP1_INT / 64)));
9539         if (dd->hfi1_id) {
9540                 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9541                 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9542                           cce_int_mask);
9543         } else {
9544                 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9545                 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9546                           cce_int_mask);
9547         }
9548
9549         qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9550         /* Clear current status to avoid spurious interrupts */
9551         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9552                   qsfp_mask);
9553         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9554                   qsfp_mask);
9555
9556         set_qsfp_int_n(ppd, 0);
9557
9558         /* Handle active low nature of INT_N and MODPRST_N pins */
9559         if (qsfp_mod_present(ppd))
9560                 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9561         write_csr(dd,
9562                   dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9563                   qsfp_mask);
9564 }
9565
9566 /*
9567  * Do a one-time initialize of the LCB block.
9568  */
9569 static void init_lcb(struct hfi1_devdata *dd)
9570 {
9571         /* simulator does not correctly handle LCB cclk loopback, skip */
9572         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9573                 return;
9574
9575         /* the DC has been reset earlier in the driver load */
9576
9577         /* set LCB for cclk loopback on the port */
9578         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9579         write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9580         write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9581         write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9582         write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9583         write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9584         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9585 }
9586
9587 /*
9588  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9589  * on error.
9590  */
9591 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9592 {
9593         int ret;
9594         u8 status;
9595
9596         /*
9597          * Report success if not a QSFP or, if it is a QSFP, but the cable is
9598          * not present
9599          */
9600         if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9601                 return 0;
9602
9603         /* read byte 2, the status byte */
9604         ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9605         if (ret < 0)
9606                 return ret;
9607         if (ret != 1)
9608                 return -EIO;
9609
9610         return 0; /* success */
9611 }
9612
9613 /*
9614  * Values for QSFP retry.
9615  *
9616  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9617  * arrived at from experience on a large cluster.
9618  */
9619 #define MAX_QSFP_RETRIES 20
9620 #define QSFP_RETRY_WAIT 500 /* msec */
9621
9622 /*
9623  * Try a QSFP read.  If it fails, schedule a retry for later.
9624  * Called on first link activation after driver load.
9625  */
9626 static void try_start_link(struct hfi1_pportdata *ppd)
9627 {
9628         if (test_qsfp_read(ppd)) {
9629                 /* read failed */
9630                 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9631                         dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9632                         return;
9633                 }
9634                 dd_dev_info(ppd->dd,
9635                             "QSFP not responding, waiting and retrying %d\n",
9636                             (int)ppd->qsfp_retry_count);
9637                 ppd->qsfp_retry_count++;
9638                 queue_delayed_work(ppd->hfi1_wq, &ppd->start_link_work,
9639                                    msecs_to_jiffies(QSFP_RETRY_WAIT));
9640                 return;
9641         }
9642         ppd->qsfp_retry_count = 0;
9643
9644         start_link(ppd);
9645 }
9646
9647 /*
9648  * Workqueue function to start the link after a delay.
9649  */
9650 void handle_start_link(struct work_struct *work)
9651 {
9652         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9653                                                   start_link_work.work);
9654         try_start_link(ppd);
9655 }
9656
9657 int bringup_serdes(struct hfi1_pportdata *ppd)
9658 {
9659         struct hfi1_devdata *dd = ppd->dd;
9660         u64 guid;
9661         int ret;
9662
9663         if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9664                 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9665
9666         guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9667         if (!guid) {
9668                 if (dd->base_guid)
9669                         guid = dd->base_guid + ppd->port - 1;
9670                 ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9671         }
9672
9673         /* Set linkinit_reason on power up per OPA spec */
9674         ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9675
9676         /* one-time init of the LCB */
9677         init_lcb(dd);
9678
9679         if (loopback) {
9680                 ret = init_loopback(dd);
9681                 if (ret < 0)
9682                         return ret;
9683         }
9684
9685         get_port_type(ppd);
9686         if (ppd->port_type == PORT_TYPE_QSFP) {
9687                 set_qsfp_int_n(ppd, 0);
9688                 wait_for_qsfp_init(ppd);
9689                 set_qsfp_int_n(ppd, 1);
9690         }
9691
9692         try_start_link(ppd);
9693         return 0;
9694 }
9695
9696 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9697 {
9698         struct hfi1_devdata *dd = ppd->dd;
9699
9700         /*
9701          * Shut down the link and keep it down.   First turn off that the
9702          * driver wants to allow the link to be up (driver_link_ready).
9703          * Then make sure the link is not automatically restarted
9704          * (link_enabled).  Cancel any pending restart.  And finally
9705          * go offline.
9706          */
9707         ppd->driver_link_ready = 0;
9708         ppd->link_enabled = 0;
9709
9710         ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9711         flush_delayed_work(&ppd->start_link_work);
9712         cancel_delayed_work_sync(&ppd->start_link_work);
9713
9714         ppd->offline_disabled_reason =
9715                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9716         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9717                              OPA_LINKDOWN_REASON_SMA_DISABLED);
9718         set_link_state(ppd, HLS_DN_OFFLINE);
9719
9720         /* disable the port */
9721         clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9722 }
9723
9724 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9725 {
9726         struct hfi1_pportdata *ppd;
9727         int i;
9728
9729         ppd = (struct hfi1_pportdata *)(dd + 1);
9730         for (i = 0; i < dd->num_pports; i++, ppd++) {
9731                 ppd->ibport_data.rvp.rc_acks = NULL;
9732                 ppd->ibport_data.rvp.rc_qacks = NULL;
9733                 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9734                 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9735                 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9736                 if (!ppd->ibport_data.rvp.rc_acks ||
9737                     !ppd->ibport_data.rvp.rc_delayed_comp ||
9738                     !ppd->ibport_data.rvp.rc_qacks)
9739                         return -ENOMEM;
9740         }
9741
9742         return 0;
9743 }
9744
9745 static const char * const pt_names[] = {
9746         "expected",
9747         "eager",
9748         "invalid"
9749 };
9750
9751 static const char *pt_name(u32 type)
9752 {
9753         return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9754 }
9755
9756 /*
9757  * index is the index into the receive array
9758  */
9759 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9760                   u32 type, unsigned long pa, u16 order)
9761 {
9762         u64 reg;
9763         void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9764                               (dd->kregbase + RCV_ARRAY));
9765
9766         if (!(dd->flags & HFI1_PRESENT))
9767                 goto done;
9768
9769         if (type == PT_INVALID) {
9770                 pa = 0;
9771         } else if (type > PT_INVALID) {
9772                 dd_dev_err(dd,
9773                            "unexpected receive array type %u for index %u, not handled\n",
9774                            type, index);
9775                 goto done;
9776         }
9777
9778         hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9779                   pt_name(type), index, pa, (unsigned long)order);
9780
9781 #define RT_ADDR_SHIFT 12        /* 4KB kernel address boundary */
9782         reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9783                 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9784                 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9785                                         << RCV_ARRAY_RT_ADDR_SHIFT;
9786         writeq(reg, base + (index * 8));
9787
9788         if (type == PT_EAGER)
9789                 /*
9790                  * Eager entries are written one-by-one so we have to push them
9791                  * after we write the entry.
9792                  */
9793                 flush_wc();
9794 done:
9795         return;
9796 }
9797
9798 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9799 {
9800         struct hfi1_devdata *dd = rcd->dd;
9801         u32 i;
9802
9803         /* this could be optimized */
9804         for (i = rcd->eager_base; i < rcd->eager_base +
9805                      rcd->egrbufs.alloced; i++)
9806                 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9807
9808         for (i = rcd->expected_base;
9809                         i < rcd->expected_base + rcd->expected_count; i++)
9810                 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9811 }
9812
9813 struct ib_header *hfi1_get_msgheader(
9814         struct hfi1_devdata *dd, __le32 *rhf_addr)
9815 {
9816         u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
9817
9818         return (struct ib_header *)
9819                 (rhf_addr - dd->rhf_offset + offset);
9820 }
9821
9822 static const char * const ib_cfg_name_strings[] = {
9823         "HFI1_IB_CFG_LIDLMC",
9824         "HFI1_IB_CFG_LWID_DG_ENB",
9825         "HFI1_IB_CFG_LWID_ENB",
9826         "HFI1_IB_CFG_LWID",
9827         "HFI1_IB_CFG_SPD_ENB",
9828         "HFI1_IB_CFG_SPD",
9829         "HFI1_IB_CFG_RXPOL_ENB",
9830         "HFI1_IB_CFG_LREV_ENB",
9831         "HFI1_IB_CFG_LINKLATENCY",
9832         "HFI1_IB_CFG_HRTBT",
9833         "HFI1_IB_CFG_OP_VLS",
9834         "HFI1_IB_CFG_VL_HIGH_CAP",
9835         "HFI1_IB_CFG_VL_LOW_CAP",
9836         "HFI1_IB_CFG_OVERRUN_THRESH",
9837         "HFI1_IB_CFG_PHYERR_THRESH",
9838         "HFI1_IB_CFG_LINKDEFAULT",
9839         "HFI1_IB_CFG_PKEYS",
9840         "HFI1_IB_CFG_MTU",
9841         "HFI1_IB_CFG_LSTATE",
9842         "HFI1_IB_CFG_VL_HIGH_LIMIT",
9843         "HFI1_IB_CFG_PMA_TICKS",
9844         "HFI1_IB_CFG_PORT"
9845 };
9846
9847 static const char *ib_cfg_name(int which)
9848 {
9849         if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9850                 return "invalid";
9851         return ib_cfg_name_strings[which];
9852 }
9853
9854 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9855 {
9856         struct hfi1_devdata *dd = ppd->dd;
9857         int val = 0;
9858
9859         switch (which) {
9860         case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9861                 val = ppd->link_width_enabled;
9862                 break;
9863         case HFI1_IB_CFG_LWID: /* currently active Link-width */
9864                 val = ppd->link_width_active;
9865                 break;
9866         case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9867                 val = ppd->link_speed_enabled;
9868                 break;
9869         case HFI1_IB_CFG_SPD: /* current Link speed */
9870                 val = ppd->link_speed_active;
9871                 break;
9872
9873         case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9874         case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9875         case HFI1_IB_CFG_LINKLATENCY:
9876                 goto unimplemented;
9877
9878         case HFI1_IB_CFG_OP_VLS:
9879                 val = ppd->vls_operational;
9880                 break;
9881         case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9882                 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9883                 break;
9884         case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9885                 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9886                 break;
9887         case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9888                 val = ppd->overrun_threshold;
9889                 break;
9890         case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9891                 val = ppd->phy_error_threshold;
9892                 break;
9893         case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9894                 val = dd->link_default;
9895                 break;
9896
9897         case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9898         case HFI1_IB_CFG_PMA_TICKS:
9899         default:
9900 unimplemented:
9901                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9902                         dd_dev_info(
9903                                 dd,
9904                                 "%s: which %s: not implemented\n",
9905                                 __func__,
9906                                 ib_cfg_name(which));
9907                 break;
9908         }
9909
9910         return val;
9911 }
9912
9913 /*
9914  * The largest MAD packet size.
9915  */
9916 #define MAX_MAD_PACKET 2048
9917
9918 /*
9919  * Return the maximum header bytes that can go on the _wire_
9920  * for this device. This count includes the ICRC which is
9921  * not part of the packet held in memory but it is appended
9922  * by the HW.
9923  * This is dependent on the device's receive header entry size.
9924  * HFI allows this to be set per-receive context, but the
9925  * driver presently enforces a global value.
9926  */
9927 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9928 {
9929         /*
9930          * The maximum non-payload (MTU) bytes in LRH.PktLen are
9931          * the Receive Header Entry Size minus the PBC (or RHF) size
9932          * plus one DW for the ICRC appended by HW.
9933          *
9934          * dd->rcd[0].rcvhdrqentsize is in DW.
9935          * We use rcd[0] as all context will have the same value. Also,
9936          * the first kernel context would have been allocated by now so
9937          * we are guaranteed a valid value.
9938          */
9939         return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9940 }
9941
9942 /*
9943  * Set Send Length
9944  * @ppd - per port data
9945  *
9946  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
9947  * registers compare against LRH.PktLen, so use the max bytes included
9948  * in the LRH.
9949  *
9950  * This routine changes all VL values except VL15, which it maintains at
9951  * the same value.
9952  */
9953 static void set_send_length(struct hfi1_pportdata *ppd)
9954 {
9955         struct hfi1_devdata *dd = ppd->dd;
9956         u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9957         u32 maxvlmtu = dd->vld[15].mtu;
9958         u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9959                               & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9960                 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9961         int i, j;
9962         u32 thres;
9963
9964         for (i = 0; i < ppd->vls_supported; i++) {
9965                 if (dd->vld[i].mtu > maxvlmtu)
9966                         maxvlmtu = dd->vld[i].mtu;
9967                 if (i <= 3)
9968                         len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9969                                  & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9970                                 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9971                 else
9972                         len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9973                                  & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9974                                 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9975         }
9976         write_csr(dd, SEND_LEN_CHECK0, len1);
9977         write_csr(dd, SEND_LEN_CHECK1, len2);
9978         /* adjust kernel credit return thresholds based on new MTUs */
9979         /* all kernel receive contexts have the same hdrqentsize */
9980         for (i = 0; i < ppd->vls_supported; i++) {
9981                 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
9982                             sc_mtu_to_threshold(dd->vld[i].sc,
9983                                                 dd->vld[i].mtu,
9984                                                 dd->rcd[0]->rcvhdrqentsize));
9985                 for (j = 0; j < INIT_SC_PER_VL; j++)
9986                         sc_set_cr_threshold(
9987                                         pio_select_send_context_vl(dd, j, i),
9988                                             thres);
9989         }
9990         thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
9991                     sc_mtu_to_threshold(dd->vld[15].sc,
9992                                         dd->vld[15].mtu,
9993                                         dd->rcd[0]->rcvhdrqentsize));
9994         sc_set_cr_threshold(dd->vld[15].sc, thres);
9995
9996         /* Adjust maximum MTU for the port in DC */
9997         dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9998                 (ilog2(maxvlmtu >> 8) + 1);
9999         len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10000         len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10001         len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10002                 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10003         write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10004 }
10005
10006 static void set_lidlmc(struct hfi1_pportdata *ppd)
10007 {
10008         int i;
10009         u64 sreg = 0;
10010         struct hfi1_devdata *dd = ppd->dd;
10011         u32 mask = ~((1U << ppd->lmc) - 1);
10012         u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10013
10014         c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10015                 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10016         c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10017                         << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10018               ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10019                         << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10020         write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10021
10022         /*
10023          * Iterate over all the send contexts and set their SLID check
10024          */
10025         sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10026                         SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10027                (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10028                         SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10029
10030         for (i = 0; i < dd->chip_send_contexts; i++) {
10031                 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10032                           i, (u32)sreg);
10033                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10034         }
10035
10036         /* Now we have to do the same thing for the sdma engines */
10037         sdma_update_lmc(dd, mask, ppd->lid);
10038 }
10039
10040 static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
10041 {
10042         unsigned long timeout;
10043         u32 curr_state;
10044
10045         timeout = jiffies + msecs_to_jiffies(msecs);
10046         while (1) {
10047                 curr_state = read_physical_state(dd);
10048                 if (curr_state == state)
10049                         break;
10050                 if (time_after(jiffies, timeout)) {
10051                         dd_dev_err(dd,
10052                                    "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
10053                                    state, curr_state);
10054                         return -ETIMEDOUT;
10055                 }
10056                 usleep_range(1950, 2050); /* sleep 2ms-ish */
10057         }
10058
10059         return 0;
10060 }
10061
10062 static const char *state_completed_string(u32 completed)
10063 {
10064         static const char * const state_completed[] = {
10065                 "EstablishComm",
10066                 "OptimizeEQ",
10067                 "VerifyCap"
10068         };
10069
10070         if (completed < ARRAY_SIZE(state_completed))
10071                 return state_completed[completed];
10072
10073         return "unknown";
10074 }
10075
10076 static const char all_lanes_dead_timeout_expired[] =
10077         "All lanes were inactive â€“ was the interconnect media removed?";
10078 static const char tx_out_of_policy[] =
10079         "Passing lanes on local port do not meet the local link width policy";
10080 static const char no_state_complete[] =
10081         "State timeout occurred before link partner completed the state";
10082 static const char * const state_complete_reasons[] = {
10083         [0x00] = "Reason unknown",
10084         [0x01] = "Link was halted by driver, refer to LinkDownReason",
10085         [0x02] = "Link partner reported failure",
10086         [0x10] = "Unable to achieve frame sync on any lane",
10087         [0x11] =
10088           "Unable to find a common bit rate with the link partner",
10089         [0x12] =
10090           "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10091         [0x13] =
10092           "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10093         [0x14] = no_state_complete,
10094         [0x15] =
10095           "State timeout occurred before link partner identified equalization presets",
10096         [0x16] =
10097           "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10098         [0x17] = tx_out_of_policy,
10099         [0x20] = all_lanes_dead_timeout_expired,
10100         [0x21] =
10101           "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10102         [0x22] = no_state_complete,
10103         [0x23] =
10104           "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10105         [0x24] = tx_out_of_policy,
10106         [0x30] = all_lanes_dead_timeout_expired,
10107         [0x31] =
10108           "State timeout occurred waiting for host to process received frames",
10109         [0x32] = no_state_complete,
10110         [0x33] =
10111           "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10112         [0x34] = tx_out_of_policy,
10113 };
10114
10115 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10116                                                      u32 code)
10117 {
10118         const char *str = NULL;
10119
10120         if (code < ARRAY_SIZE(state_complete_reasons))
10121                 str = state_complete_reasons[code];
10122
10123         if (str)
10124                 return str;
10125         return "Reserved";
10126 }
10127
10128 /* describe the given last state complete frame */
10129 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10130                                   const char *prefix)
10131 {
10132         struct hfi1_devdata *dd = ppd->dd;
10133         u32 success;
10134         u32 state;
10135         u32 reason;
10136         u32 lanes;
10137
10138         /*
10139          * Decode frame:
10140          *  [ 0: 0] - success
10141          *  [ 3: 1] - state
10142          *  [ 7: 4] - next state timeout
10143          *  [15: 8] - reason code
10144          *  [31:16] - lanes
10145          */
10146         success = frame & 0x1;
10147         state = (frame >> 1) & 0x7;
10148         reason = (frame >> 8) & 0xff;
10149         lanes = (frame >> 16) & 0xffff;
10150
10151         dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10152                    prefix, frame);
10153         dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10154                    state_completed_string(state), state);
10155         dd_dev_err(dd, "    state successfully completed: %s\n",
10156                    success ? "yes" : "no");
10157         dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10158                    reason, state_complete_reason_code_string(ppd, reason));
10159         dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10160 }
10161
10162 /*
10163  * Read the last state complete frames and explain them.  This routine
10164  * expects to be called if the link went down during link negotiation
10165  * and initialization (LNI).  That is, anywhere between polling and link up.
10166  */
10167 static void check_lni_states(struct hfi1_pportdata *ppd)
10168 {
10169         u32 last_local_state;
10170         u32 last_remote_state;
10171
10172         read_last_local_state(ppd->dd, &last_local_state);
10173         read_last_remote_state(ppd->dd, &last_remote_state);
10174
10175         /*
10176          * Don't report anything if there is nothing to report.  A value of
10177          * 0 means the link was taken down while polling and there was no
10178          * training in-process.
10179          */
10180         if (last_local_state == 0 && last_remote_state == 0)
10181                 return;
10182
10183         decode_state_complete(ppd, last_local_state, "transmitted");
10184         decode_state_complete(ppd, last_remote_state, "received");
10185 }
10186
10187 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10188 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10189 {
10190         u64 reg;
10191         unsigned long timeout;
10192
10193         /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10194         timeout = jiffies + msecs_to_jiffies(wait_ms);
10195         while (1) {
10196                 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10197                 if (reg)
10198                         break;
10199                 if (time_after(jiffies, timeout)) {
10200                         dd_dev_err(dd,
10201                                    "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10202                         return -ETIMEDOUT;
10203                 }
10204                 udelay(2);
10205         }
10206         return 0;
10207 }
10208
10209 /* called when the logical link state is not down as it should be */
10210 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10211 {
10212         struct hfi1_devdata *dd = ppd->dd;
10213
10214         /*
10215          * Bring link up in LCB loopback
10216          */
10217         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10218         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10219                   DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10220
10221         write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10222         write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10223         write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10224         write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10225
10226         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10227         (void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10228         udelay(3);
10229         write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10230         write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10231
10232         wait_link_transfer_active(dd, 100);
10233
10234         /*
10235          * Bring the link down again.
10236          */
10237         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10238         write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10239         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10240
10241         /* call again to adjust ppd->statusp, if needed */
10242         get_logical_state(ppd);
10243 }
10244
10245 /*
10246  * Helper for set_link_state().  Do not call except from that routine.
10247  * Expects ppd->hls_mutex to be held.
10248  *
10249  * @rem_reason value to be sent to the neighbor
10250  *
10251  * LinkDownReasons only set if transition succeeds.
10252  */
10253 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10254 {
10255         struct hfi1_devdata *dd = ppd->dd;
10256         u32 pstate, previous_state;
10257         int ret;
10258         int do_transition;
10259         int do_wait;
10260
10261         update_lcb_cache(dd);
10262
10263         previous_state = ppd->host_link_state;
10264         ppd->host_link_state = HLS_GOING_OFFLINE;
10265         pstate = read_physical_state(dd);
10266         if (pstate == PLS_OFFLINE) {
10267                 do_transition = 0;      /* in right state */
10268                 do_wait = 0;            /* ...no need to wait */
10269         } else if ((pstate & 0xf0) == PLS_OFFLINE) {
10270                 do_transition = 0;      /* in an offline transient state */
10271                 do_wait = 1;            /* ...wait for it to settle */
10272         } else {
10273                 do_transition = 1;      /* need to move to offline */
10274                 do_wait = 1;            /* ...will need to wait */
10275         }
10276
10277         if (do_transition) {
10278                 ret = set_physical_link_state(dd,
10279                                               (rem_reason << 8) | PLS_OFFLINE);
10280
10281                 if (ret != HCMD_SUCCESS) {
10282                         dd_dev_err(dd,
10283                                    "Failed to transition to Offline link state, return %d\n",
10284                                    ret);
10285                         return -EINVAL;
10286                 }
10287                 if (ppd->offline_disabled_reason ==
10288                                 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10289                         ppd->offline_disabled_reason =
10290                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10291         }
10292
10293         if (do_wait) {
10294                 /* it can take a while for the link to go down */
10295                 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
10296                 if (ret < 0)
10297                         return ret;
10298         }
10299
10300         /*
10301          * Now in charge of LCB - must be after the physical state is
10302          * offline.quiet and before host_link_state is changed.
10303          */
10304         set_host_lcb_access(dd);
10305         write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10306
10307         /* make sure the logical state is also down */
10308         ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10309         if (ret)
10310                 force_logical_link_state_down(ppd);
10311
10312         ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10313
10314         if (ppd->port_type == PORT_TYPE_QSFP &&
10315             ppd->qsfp_info.limiting_active &&
10316             qsfp_mod_present(ppd)) {
10317                 int ret;
10318
10319                 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10320                 if (ret == 0) {
10321                         set_qsfp_tx(ppd, 0);
10322                         release_chip_resource(dd, qsfp_resource(dd));
10323                 } else {
10324                         /* not fatal, but should warn */
10325                         dd_dev_err(dd,
10326                                    "Unable to acquire lock to turn off QSFP TX\n");
10327                 }
10328         }
10329
10330         /*
10331          * The LNI has a mandatory wait time after the physical state
10332          * moves to Offline.Quiet.  The wait time may be different
10333          * depending on how the link went down.  The 8051 firmware
10334          * will observe the needed wait time and only move to ready
10335          * when that is completed.  The largest of the quiet timeouts
10336          * is 6s, so wait that long and then at least 0.5s more for
10337          * other transitions, and another 0.5s for a buffer.
10338          */
10339         ret = wait_fm_ready(dd, 7000);
10340         if (ret) {
10341                 dd_dev_err(dd,
10342                            "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10343                 /* state is really offline, so make it so */
10344                 ppd->host_link_state = HLS_DN_OFFLINE;
10345                 return ret;
10346         }
10347
10348         /*
10349          * The state is now offline and the 8051 is ready to accept host
10350          * requests.
10351          *      - change our state
10352          *      - notify others if we were previously in a linkup state
10353          */
10354         ppd->host_link_state = HLS_DN_OFFLINE;
10355         if (previous_state & HLS_UP) {
10356                 /* went down while link was up */
10357                 handle_linkup_change(dd, 0);
10358         } else if (previous_state
10359                         & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10360                 /* went down while attempting link up */
10361                 check_lni_states(ppd);
10362         }
10363
10364         /* the active link width (downgrade) is 0 on link down */
10365         ppd->link_width_active = 0;
10366         ppd->link_width_downgrade_tx_active = 0;
10367         ppd->link_width_downgrade_rx_active = 0;
10368         ppd->current_egress_rate = 0;
10369         return 0;
10370 }
10371
10372 /* return the link state name */
10373 static const char *link_state_name(u32 state)
10374 {
10375         const char *name;
10376         int n = ilog2(state);
10377         static const char * const names[] = {
10378                 [__HLS_UP_INIT_BP]       = "INIT",
10379                 [__HLS_UP_ARMED_BP]      = "ARMED",
10380                 [__HLS_UP_ACTIVE_BP]     = "ACTIVE",
10381                 [__HLS_DN_DOWNDEF_BP]    = "DOWNDEF",
10382                 [__HLS_DN_POLL_BP]       = "POLL",
10383                 [__HLS_DN_DISABLE_BP]    = "DISABLE",
10384                 [__HLS_DN_OFFLINE_BP]    = "OFFLINE",
10385                 [__HLS_VERIFY_CAP_BP]    = "VERIFY_CAP",
10386                 [__HLS_GOING_UP_BP]      = "GOING_UP",
10387                 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10388                 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10389         };
10390
10391         name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10392         return name ? name : "unknown";
10393 }
10394
10395 /* return the link state reason name */
10396 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10397 {
10398         if (state == HLS_UP_INIT) {
10399                 switch (ppd->linkinit_reason) {
10400                 case OPA_LINKINIT_REASON_LINKUP:
10401                         return "(LINKUP)";
10402                 case OPA_LINKINIT_REASON_FLAPPING:
10403                         return "(FLAPPING)";
10404                 case OPA_LINKINIT_OUTSIDE_POLICY:
10405                         return "(OUTSIDE_POLICY)";
10406                 case OPA_LINKINIT_QUARANTINED:
10407                         return "(QUARANTINED)";
10408                 case OPA_LINKINIT_INSUFIC_CAPABILITY:
10409                         return "(INSUFIC_CAPABILITY)";
10410                 default:
10411                         break;
10412                 }
10413         }
10414         return "";
10415 }
10416
10417 /*
10418  * driver_physical_state - convert the driver's notion of a port's
10419  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10420  * Return -1 (converted to a u32) to indicate error.
10421  */
10422 u32 driver_physical_state(struct hfi1_pportdata *ppd)
10423 {
10424         switch (ppd->host_link_state) {
10425         case HLS_UP_INIT:
10426         case HLS_UP_ARMED:
10427         case HLS_UP_ACTIVE:
10428                 return IB_PORTPHYSSTATE_LINKUP;
10429         case HLS_DN_POLL:
10430                 return IB_PORTPHYSSTATE_POLLING;
10431         case HLS_DN_DISABLE:
10432                 return IB_PORTPHYSSTATE_DISABLED;
10433         case HLS_DN_OFFLINE:
10434                 return OPA_PORTPHYSSTATE_OFFLINE;
10435         case HLS_VERIFY_CAP:
10436                 return IB_PORTPHYSSTATE_POLLING;
10437         case HLS_GOING_UP:
10438                 return IB_PORTPHYSSTATE_POLLING;
10439         case HLS_GOING_OFFLINE:
10440                 return OPA_PORTPHYSSTATE_OFFLINE;
10441         case HLS_LINK_COOLDOWN:
10442                 return OPA_PORTPHYSSTATE_OFFLINE;
10443         case HLS_DN_DOWNDEF:
10444         default:
10445                 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10446                            ppd->host_link_state);
10447                 return  -1;
10448         }
10449 }
10450
10451 /*
10452  * driver_logical_state - convert the driver's notion of a port's
10453  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10454  * (converted to a u32) to indicate error.
10455  */
10456 u32 driver_logical_state(struct hfi1_pportdata *ppd)
10457 {
10458         if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10459                 return IB_PORT_DOWN;
10460
10461         switch (ppd->host_link_state & HLS_UP) {
10462         case HLS_UP_INIT:
10463                 return IB_PORT_INIT;
10464         case HLS_UP_ARMED:
10465                 return IB_PORT_ARMED;
10466         case HLS_UP_ACTIVE:
10467                 return IB_PORT_ACTIVE;
10468         default:
10469                 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10470                            ppd->host_link_state);
10471         return -1;
10472         }
10473 }
10474
10475 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10476                           u8 neigh_reason, u8 rem_reason)
10477 {
10478         if (ppd->local_link_down_reason.latest == 0 &&
10479             ppd->neigh_link_down_reason.latest == 0) {
10480                 ppd->local_link_down_reason.latest = lcl_reason;
10481                 ppd->neigh_link_down_reason.latest = neigh_reason;
10482                 ppd->remote_link_down_reason = rem_reason;
10483         }
10484 }
10485
10486 /*
10487  * Change the physical and/or logical link state.
10488  *
10489  * Do not call this routine while inside an interrupt.  It contains
10490  * calls to routines that can take multiple seconds to finish.
10491  *
10492  * Returns 0 on success, -errno on failure.
10493  */
10494 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10495 {
10496         struct hfi1_devdata *dd = ppd->dd;
10497         struct ib_event event = {.device = NULL};
10498         int ret1, ret = 0;
10499         int orig_new_state, poll_bounce;
10500
10501         mutex_lock(&ppd->hls_lock);
10502
10503         orig_new_state = state;
10504         if (state == HLS_DN_DOWNDEF)
10505                 state = dd->link_default;
10506
10507         /* interpret poll -> poll as a link bounce */
10508         poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10509                       state == HLS_DN_POLL;
10510
10511         dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10512                     link_state_name(ppd->host_link_state),
10513                     link_state_name(orig_new_state),
10514                     poll_bounce ? "(bounce) " : "",
10515                     link_state_reason_name(ppd, state));
10516
10517         /*
10518          * If we're going to a (HLS_*) link state that implies the logical
10519          * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10520          * reset is_sm_config_started to 0.
10521          */
10522         if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10523                 ppd->is_sm_config_started = 0;
10524
10525         /*
10526          * Do nothing if the states match.  Let a poll to poll link bounce
10527          * go through.
10528          */
10529         if (ppd->host_link_state == state && !poll_bounce)
10530                 goto done;
10531
10532         switch (state) {
10533         case HLS_UP_INIT:
10534                 if (ppd->host_link_state == HLS_DN_POLL &&
10535                     (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10536                         /*
10537                          * Quick link up jumps from polling to here.
10538                          *
10539                          * Whether in normal or loopback mode, the
10540                          * simulator jumps from polling to link up.
10541                          * Accept that here.
10542                          */
10543                         /* OK */
10544                 } else if (ppd->host_link_state != HLS_GOING_UP) {
10545                         goto unexpected;
10546                 }
10547
10548                 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10549                 if (ret) {
10550                         dd_dev_err(dd,
10551                                    "%s: logical state did not change to INIT\n",
10552                                    __func__);
10553                 } else {
10554                         /* clear old transient LINKINIT_REASON code */
10555                         if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10556                                 ppd->linkinit_reason =
10557                                         OPA_LINKINIT_REASON_LINKUP;
10558
10559                         /* enable the port */
10560                         add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10561
10562                         handle_linkup_change(dd, 1);
10563                         ppd->host_link_state = HLS_UP_INIT;
10564                 }
10565                 break;
10566         case HLS_UP_ARMED:
10567                 if (ppd->host_link_state != HLS_UP_INIT)
10568                         goto unexpected;
10569
10570                 ppd->host_link_state = HLS_UP_ARMED;
10571                 set_logical_state(dd, LSTATE_ARMED);
10572                 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10573                 if (ret) {
10574                         /* logical state didn't change, stay at init */
10575                         ppd->host_link_state = HLS_UP_INIT;
10576                         dd_dev_err(dd,
10577                                    "%s: logical state did not change to ARMED\n",
10578                                    __func__);
10579                 }
10580                 /*
10581                  * The simulator does not currently implement SMA messages,
10582                  * so neighbor_normal is not set.  Set it here when we first
10583                  * move to Armed.
10584                  */
10585                 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10586                         ppd->neighbor_normal = 1;
10587                 break;
10588         case HLS_UP_ACTIVE:
10589                 if (ppd->host_link_state != HLS_UP_ARMED)
10590                         goto unexpected;
10591
10592                 ppd->host_link_state = HLS_UP_ACTIVE;
10593                 set_logical_state(dd, LSTATE_ACTIVE);
10594                 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10595                 if (ret) {
10596                         /* logical state didn't change, stay at armed */
10597                         ppd->host_link_state = HLS_UP_ARMED;
10598                         dd_dev_err(dd,
10599                                    "%s: logical state did not change to ACTIVE\n",
10600                                    __func__);
10601                 } else {
10602                         /* tell all engines to go running */
10603                         sdma_all_running(dd);
10604
10605                         /* Signal the IB layer that the port has went active */
10606                         event.device = &dd->verbs_dev.rdi.ibdev;
10607                         event.element.port_num = ppd->port;
10608                         event.event = IB_EVENT_PORT_ACTIVE;
10609                 }
10610                 break;
10611         case HLS_DN_POLL:
10612                 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10613                      ppd->host_link_state == HLS_DN_OFFLINE) &&
10614                     dd->dc_shutdown)
10615                         dc_start(dd);
10616                 /* Hand LED control to the DC */
10617                 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10618
10619                 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10620                         u8 tmp = ppd->link_enabled;
10621
10622                         ret = goto_offline(ppd, ppd->remote_link_down_reason);
10623                         if (ret) {
10624                                 ppd->link_enabled = tmp;
10625                                 break;
10626                         }
10627                         ppd->remote_link_down_reason = 0;
10628
10629                         if (ppd->driver_link_ready)
10630                                 ppd->link_enabled = 1;
10631                 }
10632
10633                 set_all_slowpath(ppd->dd);
10634                 ret = set_local_link_attributes(ppd);
10635                 if (ret)
10636                         break;
10637
10638                 ppd->port_error_action = 0;
10639                 ppd->host_link_state = HLS_DN_POLL;
10640
10641                 if (quick_linkup) {
10642                         /* quick linkup does not go into polling */
10643                         ret = do_quick_linkup(dd);
10644                 } else {
10645                         ret1 = set_physical_link_state(dd, PLS_POLLING);
10646                         if (ret1 != HCMD_SUCCESS) {
10647                                 dd_dev_err(dd,
10648                                            "Failed to transition to Polling link state, return 0x%x\n",
10649                                            ret1);
10650                                 ret = -EINVAL;
10651                         }
10652                 }
10653                 ppd->offline_disabled_reason =
10654                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10655                 /*
10656                  * If an error occurred above, go back to offline.  The
10657                  * caller may reschedule another attempt.
10658                  */
10659                 if (ret)
10660                         goto_offline(ppd, 0);
10661                 break;
10662         case HLS_DN_DISABLE:
10663                 /* link is disabled */
10664                 ppd->link_enabled = 0;
10665
10666                 /* allow any state to transition to disabled */
10667
10668                 /* must transition to offline first */
10669                 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10670                         ret = goto_offline(ppd, ppd->remote_link_down_reason);
10671                         if (ret)
10672                                 break;
10673                         ppd->remote_link_down_reason = 0;
10674                 }
10675
10676                 if (!dd->dc_shutdown) {
10677                         ret1 = set_physical_link_state(dd, PLS_DISABLED);
10678                         if (ret1 != HCMD_SUCCESS) {
10679                                 dd_dev_err(dd,
10680                                            "Failed to transition to Disabled link state, return 0x%x\n",
10681                                            ret1);
10682                                 ret = -EINVAL;
10683                                 break;
10684                         }
10685                         dc_shutdown(dd);
10686                 }
10687                 ppd->host_link_state = HLS_DN_DISABLE;
10688                 break;
10689         case HLS_DN_OFFLINE:
10690                 if (ppd->host_link_state == HLS_DN_DISABLE)
10691                         dc_start(dd);
10692
10693                 /* allow any state to transition to offline */
10694                 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10695                 if (!ret)
10696                         ppd->remote_link_down_reason = 0;
10697                 break;
10698         case HLS_VERIFY_CAP:
10699                 if (ppd->host_link_state != HLS_DN_POLL)
10700                         goto unexpected;
10701                 ppd->host_link_state = HLS_VERIFY_CAP;
10702                 break;
10703         case HLS_GOING_UP:
10704                 if (ppd->host_link_state != HLS_VERIFY_CAP)
10705                         goto unexpected;
10706
10707                 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10708                 if (ret1 != HCMD_SUCCESS) {
10709                         dd_dev_err(dd,
10710                                    "Failed to transition to link up state, return 0x%x\n",
10711                                    ret1);
10712                         ret = -EINVAL;
10713                         break;
10714                 }
10715                 ppd->host_link_state = HLS_GOING_UP;
10716                 break;
10717
10718         case HLS_GOING_OFFLINE:         /* transient within goto_offline() */
10719         case HLS_LINK_COOLDOWN:         /* transient within goto_offline() */
10720         default:
10721                 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10722                             __func__, state);
10723                 ret = -EINVAL;
10724                 break;
10725         }
10726
10727         goto done;
10728
10729 unexpected:
10730         dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10731                    __func__, link_state_name(ppd->host_link_state),
10732                    link_state_name(state));
10733         ret = -EINVAL;
10734
10735 done:
10736         mutex_unlock(&ppd->hls_lock);
10737
10738         if (event.device)
10739                 ib_dispatch_event(&event);
10740
10741         return ret;
10742 }
10743
10744 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10745 {
10746         u64 reg;
10747         int ret = 0;
10748
10749         switch (which) {
10750         case HFI1_IB_CFG_LIDLMC:
10751                 set_lidlmc(ppd);
10752                 break;
10753         case HFI1_IB_CFG_VL_HIGH_LIMIT:
10754                 /*
10755                  * The VL Arbitrator high limit is sent in units of 4k
10756                  * bytes, while HFI stores it in units of 64 bytes.
10757                  */
10758                 val *= 4096 / 64;
10759                 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10760                         << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10761                 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10762                 break;
10763         case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10764                 /* HFI only supports POLL as the default link down state */
10765                 if (val != HLS_DN_POLL)
10766                         ret = -EINVAL;
10767                 break;
10768         case HFI1_IB_CFG_OP_VLS:
10769                 if (ppd->vls_operational != val) {
10770                         ppd->vls_operational = val;
10771                         if (!ppd->port)
10772                                 ret = -EINVAL;
10773                 }
10774                 break;
10775         /*
10776          * For link width, link width downgrade, and speed enable, always AND
10777          * the setting with what is actually supported.  This has two benefits.
10778          * First, enabled can't have unsupported values, no matter what the
10779          * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10780          * "fill in with your supported value" have all the bits in the
10781          * field set, so simply ANDing with supported has the desired result.
10782          */
10783         case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10784                 ppd->link_width_enabled = val & ppd->link_width_supported;
10785                 break;
10786         case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10787                 ppd->link_width_downgrade_enabled =
10788                                 val & ppd->link_width_downgrade_supported;
10789                 break;
10790         case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10791                 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10792                 break;
10793         case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10794                 /*
10795                  * HFI does not follow IB specs, save this value
10796                  * so we can report it, if asked.
10797                  */
10798                 ppd->overrun_threshold = val;
10799                 break;
10800         case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10801                 /*
10802                  * HFI does not follow IB specs, save this value
10803                  * so we can report it, if asked.
10804                  */
10805                 ppd->phy_error_threshold = val;
10806                 break;
10807
10808         case HFI1_IB_CFG_MTU:
10809                 set_send_length(ppd);
10810                 break;
10811
10812         case HFI1_IB_CFG_PKEYS:
10813                 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10814                         set_partition_keys(ppd);
10815                 break;
10816
10817         default:
10818                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10819                         dd_dev_info(ppd->dd,
10820                                     "%s: which %s, val 0x%x: not implemented\n",
10821                                     __func__, ib_cfg_name(which), val);
10822                 break;
10823         }
10824         return ret;
10825 }
10826
10827 /* begin functions related to vl arbitration table caching */
10828 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10829 {
10830         int i;
10831
10832         BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10833                         VL_ARB_LOW_PRIO_TABLE_SIZE);
10834         BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10835                         VL_ARB_HIGH_PRIO_TABLE_SIZE);
10836
10837         /*
10838          * Note that we always return values directly from the
10839          * 'vl_arb_cache' (and do no CSR reads) in response to a
10840          * 'Get(VLArbTable)'. This is obviously correct after a
10841          * 'Set(VLArbTable)', since the cache will then be up to
10842          * date. But it's also correct prior to any 'Set(VLArbTable)'
10843          * since then both the cache, and the relevant h/w registers
10844          * will be zeroed.
10845          */
10846
10847         for (i = 0; i < MAX_PRIO_TABLE; i++)
10848                 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10849 }
10850
10851 /*
10852  * vl_arb_lock_cache
10853  *
10854  * All other vl_arb_* functions should be called only after locking
10855  * the cache.
10856  */
10857 static inline struct vl_arb_cache *
10858 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10859 {
10860         if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10861                 return NULL;
10862         spin_lock(&ppd->vl_arb_cache[idx].lock);
10863         return &ppd->vl_arb_cache[idx];
10864 }
10865
10866 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10867 {
10868         spin_unlock(&ppd->vl_arb_cache[idx].lock);
10869 }
10870
10871 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10872                              struct ib_vl_weight_elem *vl)
10873 {
10874         memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10875 }
10876
10877 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10878                              struct ib_vl_weight_elem *vl)
10879 {
10880         memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10881 }
10882
10883 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10884                               struct ib_vl_weight_elem *vl)
10885 {
10886         return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10887 }
10888
10889 /* end functions related to vl arbitration table caching */
10890
10891 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10892                           u32 size, struct ib_vl_weight_elem *vl)
10893 {
10894         struct hfi1_devdata *dd = ppd->dd;
10895         u64 reg;
10896         unsigned int i, is_up = 0;
10897         int drain, ret = 0;
10898
10899         mutex_lock(&ppd->hls_lock);
10900
10901         if (ppd->host_link_state & HLS_UP)
10902                 is_up = 1;
10903
10904         drain = !is_ax(dd) && is_up;
10905
10906         if (drain)
10907                 /*
10908                  * Before adjusting VL arbitration weights, empty per-VL
10909                  * FIFOs, otherwise a packet whose VL weight is being
10910                  * set to 0 could get stuck in a FIFO with no chance to
10911                  * egress.
10912                  */
10913                 ret = stop_drain_data_vls(dd);
10914
10915         if (ret) {
10916                 dd_dev_err(
10917                         dd,
10918                         "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10919                         __func__);
10920                 goto err;
10921         }
10922
10923         for (i = 0; i < size; i++, vl++) {
10924                 /*
10925                  * NOTE: The low priority shift and mask are used here, but
10926                  * they are the same for both the low and high registers.
10927                  */
10928                 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10929                                 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10930                       | (((u64)vl->weight
10931                                 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10932                                 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10933                 write_csr(dd, target + (i * 8), reg);
10934         }
10935         pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10936
10937         if (drain)
10938                 open_fill_data_vls(dd); /* reopen all VLs */
10939
10940 err:
10941         mutex_unlock(&ppd->hls_lock);
10942
10943         return ret;
10944 }
10945
10946 /*
10947  * Read one credit merge VL register.
10948  */
10949 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10950                            struct vl_limit *vll)
10951 {
10952         u64 reg = read_csr(dd, csr);
10953
10954         vll->dedicated = cpu_to_be16(
10955                 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10956                 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10957         vll->shared = cpu_to_be16(
10958                 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10959                 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10960 }
10961
10962 /*
10963  * Read the current credit merge limits.
10964  */
10965 static int get_buffer_control(struct hfi1_devdata *dd,
10966                               struct buffer_control *bc, u16 *overall_limit)
10967 {
10968         u64 reg;
10969         int i;
10970
10971         /* not all entries are filled in */
10972         memset(bc, 0, sizeof(*bc));
10973
10974         /* OPA and HFI have a 1-1 mapping */
10975         for (i = 0; i < TXE_NUM_DATA_VL; i++)
10976                 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
10977
10978         /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10979         read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10980
10981         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10982         bc->overall_shared_limit = cpu_to_be16(
10983                 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10984                 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10985         if (overall_limit)
10986                 *overall_limit = (reg
10987                         >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10988                         & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10989         return sizeof(struct buffer_control);
10990 }
10991
10992 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10993 {
10994         u64 reg;
10995         int i;
10996
10997         /* each register contains 16 SC->VLnt mappings, 4 bits each */
10998         reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10999         for (i = 0; i < sizeof(u64); i++) {
11000                 u8 byte = *(((u8 *)&reg) + i);
11001
11002                 dp->vlnt[2 * i] = byte & 0xf;
11003                 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11004         }
11005
11006         reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11007         for (i = 0; i < sizeof(u64); i++) {
11008                 u8 byte = *(((u8 *)&reg) + i);
11009
11010                 dp->vlnt[16 + (2 * i)] = byte & 0xf;
11011                 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11012         }
11013         return sizeof(struct sc2vlnt);
11014 }
11015
11016 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11017                               struct ib_vl_weight_elem *vl)
11018 {
11019         unsigned int i;
11020
11021         for (i = 0; i < nelems; i++, vl++) {
11022                 vl->vl = 0xf;
11023                 vl->weight = 0;
11024         }
11025 }
11026
11027 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11028 {
11029         write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11030                   DC_SC_VL_VAL(15_0,
11031                                0, dp->vlnt[0] & 0xf,
11032                                1, dp->vlnt[1] & 0xf,
11033                                2, dp->vlnt[2] & 0xf,
11034                                3, dp->vlnt[3] & 0xf,
11035                                4, dp->vlnt[4] & 0xf,
11036                                5, dp->vlnt[5] & 0xf,
11037                                6, dp->vlnt[6] & 0xf,
11038                                7, dp->vlnt[7] & 0xf,
11039                                8, dp->vlnt[8] & 0xf,
11040                                9, dp->vlnt[9] & 0xf,
11041                                10, dp->vlnt[10] & 0xf,
11042                                11, dp->vlnt[11] & 0xf,
11043                                12, dp->vlnt[12] & 0xf,
11044                                13, dp->vlnt[13] & 0xf,
11045                                14, dp->vlnt[14] & 0xf,
11046                                15, dp->vlnt[15] & 0xf));
11047         write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11048                   DC_SC_VL_VAL(31_16,
11049                                16, dp->vlnt[16] & 0xf,
11050                                17, dp->vlnt[17] & 0xf,
11051                                18, dp->vlnt[18] & 0xf,
11052                                19, dp->vlnt[19] & 0xf,
11053                                20, dp->vlnt[20] & 0xf,
11054                                21, dp->vlnt[21] & 0xf,
11055                                22, dp->vlnt[22] & 0xf,
11056                                23, dp->vlnt[23] & 0xf,
11057                                24, dp->vlnt[24] & 0xf,
11058                                25, dp->vlnt[25] & 0xf,
11059                                26, dp->vlnt[26] & 0xf,
11060                                27, dp->vlnt[27] & 0xf,
11061                                28, dp->vlnt[28] & 0xf,
11062                                29, dp->vlnt[29] & 0xf,
11063                                30, dp->vlnt[30] & 0xf,
11064                                31, dp->vlnt[31] & 0xf));
11065 }
11066
11067 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11068                         u16 limit)
11069 {
11070         if (limit != 0)
11071                 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11072                             what, (int)limit, idx);
11073 }
11074
11075 /* change only the shared limit portion of SendCmGLobalCredit */
11076 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11077 {
11078         u64 reg;
11079
11080         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11081         reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11082         reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11083         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11084 }
11085
11086 /* change only the total credit limit portion of SendCmGLobalCredit */
11087 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11088 {
11089         u64 reg;
11090
11091         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11092         reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11093         reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11094         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11095 }
11096
11097 /* set the given per-VL shared limit */
11098 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11099 {
11100         u64 reg;
11101         u32 addr;
11102
11103         if (vl < TXE_NUM_DATA_VL)
11104                 addr = SEND_CM_CREDIT_VL + (8 * vl);
11105         else
11106                 addr = SEND_CM_CREDIT_VL15;
11107
11108         reg = read_csr(dd, addr);
11109         reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11110         reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11111         write_csr(dd, addr, reg);
11112 }
11113
11114 /* set the given per-VL dedicated limit */
11115 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11116 {
11117         u64 reg;
11118         u32 addr;
11119
11120         if (vl < TXE_NUM_DATA_VL)
11121                 addr = SEND_CM_CREDIT_VL + (8 * vl);
11122         else
11123                 addr = SEND_CM_CREDIT_VL15;
11124
11125         reg = read_csr(dd, addr);
11126         reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11127         reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11128         write_csr(dd, addr, reg);
11129 }
11130
11131 /* spin until the given per-VL status mask bits clear */
11132 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11133                                      const char *which)
11134 {
11135         unsigned long timeout;
11136         u64 reg;
11137
11138         timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11139         while (1) {
11140                 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11141
11142                 if (reg == 0)
11143                         return; /* success */
11144                 if (time_after(jiffies, timeout))
11145                         break;          /* timed out */
11146                 udelay(1);
11147         }
11148
11149         dd_dev_err(dd,
11150                    "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11151                    which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11152         /*
11153          * If this occurs, it is likely there was a credit loss on the link.
11154          * The only recovery from that is a link bounce.
11155          */
11156         dd_dev_err(dd,
11157                    "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11158 }
11159
11160 /*
11161  * The number of credits on the VLs may be changed while everything
11162  * is "live", but the following algorithm must be followed due to
11163  * how the hardware is actually implemented.  In particular,
11164  * Return_Credit_Status[] is the only correct status check.
11165  *
11166  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11167  *     set Global_Shared_Credit_Limit = 0
11168  *     use_all_vl = 1
11169  * mask0 = all VLs that are changing either dedicated or shared limits
11170  * set Shared_Limit[mask0] = 0
11171  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11172  * if (changing any dedicated limit)
11173  *     mask1 = all VLs that are lowering dedicated limits
11174  *     lower Dedicated_Limit[mask1]
11175  *     spin until Return_Credit_Status[mask1] == 0
11176  *     raise Dedicated_Limits
11177  * raise Shared_Limits
11178  * raise Global_Shared_Credit_Limit
11179  *
11180  * lower = if the new limit is lower, set the limit to the new value
11181  * raise = if the new limit is higher than the current value (may be changed
11182  *      earlier in the algorithm), set the new limit to the new value
11183  */
11184 int set_buffer_control(struct hfi1_pportdata *ppd,
11185                        struct buffer_control *new_bc)
11186 {
11187         struct hfi1_devdata *dd = ppd->dd;
11188         u64 changing_mask, ld_mask, stat_mask;
11189         int change_count;
11190         int i, use_all_mask;
11191         int this_shared_changing;
11192         int vl_count = 0, ret;
11193         /*
11194          * A0: add the variable any_shared_limit_changing below and in the
11195          * algorithm above.  If removing A0 support, it can be removed.
11196          */
11197         int any_shared_limit_changing;
11198         struct buffer_control cur_bc;
11199         u8 changing[OPA_MAX_VLS];
11200         u8 lowering_dedicated[OPA_MAX_VLS];
11201         u16 cur_total;
11202         u32 new_total = 0;
11203         const u64 all_mask =
11204         SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11205          | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11206          | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11207          | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11208          | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11209          | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11210          | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11211          | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11212          | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11213
11214 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11215 #define NUM_USABLE_VLS 16       /* look at VL15 and less */
11216
11217         /* find the new total credits, do sanity check on unused VLs */
11218         for (i = 0; i < OPA_MAX_VLS; i++) {
11219                 if (valid_vl(i)) {
11220                         new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11221                         continue;
11222                 }
11223                 nonzero_msg(dd, i, "dedicated",
11224                             be16_to_cpu(new_bc->vl[i].dedicated));
11225                 nonzero_msg(dd, i, "shared",
11226                             be16_to_cpu(new_bc->vl[i].shared));
11227                 new_bc->vl[i].dedicated = 0;
11228                 new_bc->vl[i].shared = 0;
11229         }
11230         new_total += be16_to_cpu(new_bc->overall_shared_limit);
11231
11232         /* fetch the current values */
11233         get_buffer_control(dd, &cur_bc, &cur_total);
11234
11235         /*
11236          * Create the masks we will use.
11237          */
11238         memset(changing, 0, sizeof(changing));
11239         memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11240         /*
11241          * NOTE: Assumes that the individual VL bits are adjacent and in
11242          * increasing order
11243          */
11244         stat_mask =
11245                 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11246         changing_mask = 0;
11247         ld_mask = 0;
11248         change_count = 0;
11249         any_shared_limit_changing = 0;
11250         for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11251                 if (!valid_vl(i))
11252                         continue;
11253                 this_shared_changing = new_bc->vl[i].shared
11254                                                 != cur_bc.vl[i].shared;
11255                 if (this_shared_changing)
11256                         any_shared_limit_changing = 1;
11257                 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11258                     this_shared_changing) {
11259                         changing[i] = 1;
11260                         changing_mask |= stat_mask;
11261                         change_count++;
11262                 }
11263                 if (be16_to_cpu(new_bc->vl[i].dedicated) <
11264                                         be16_to_cpu(cur_bc.vl[i].dedicated)) {
11265                         lowering_dedicated[i] = 1;
11266                         ld_mask |= stat_mask;
11267                 }
11268         }
11269
11270         /* bracket the credit change with a total adjustment */
11271         if (new_total > cur_total)
11272                 set_global_limit(dd, new_total);
11273
11274         /*
11275          * Start the credit change algorithm.
11276          */
11277         use_all_mask = 0;
11278         if ((be16_to_cpu(new_bc->overall_shared_limit) <
11279              be16_to_cpu(cur_bc.overall_shared_limit)) ||
11280             (is_ax(dd) && any_shared_limit_changing)) {
11281                 set_global_shared(dd, 0);
11282                 cur_bc.overall_shared_limit = 0;
11283                 use_all_mask = 1;
11284         }
11285
11286         for (i = 0; i < NUM_USABLE_VLS; i++) {
11287                 if (!valid_vl(i))
11288                         continue;
11289
11290                 if (changing[i]) {
11291                         set_vl_shared(dd, i, 0);
11292                         cur_bc.vl[i].shared = 0;
11293                 }
11294         }
11295
11296         wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11297                                  "shared");
11298
11299         if (change_count > 0) {
11300                 for (i = 0; i < NUM_USABLE_VLS; i++) {
11301                         if (!valid_vl(i))
11302                                 continue;
11303
11304                         if (lowering_dedicated[i]) {
11305                                 set_vl_dedicated(dd, i,
11306                                                  be16_to_cpu(new_bc->
11307                                                              vl[i].dedicated));
11308                                 cur_bc.vl[i].dedicated =
11309                                                 new_bc->vl[i].dedicated;
11310                         }
11311                 }
11312
11313                 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11314
11315                 /* now raise all dedicated that are going up */
11316                 for (i = 0; i < NUM_USABLE_VLS; i++) {
11317                         if (!valid_vl(i))
11318                                 continue;
11319
11320                         if (be16_to_cpu(new_bc->vl[i].dedicated) >
11321                                         be16_to_cpu(cur_bc.vl[i].dedicated))
11322                                 set_vl_dedicated(dd, i,
11323                                                  be16_to_cpu(new_bc->
11324                                                              vl[i].dedicated));
11325                 }
11326         }
11327
11328         /* next raise all shared that are going up */
11329         for (i = 0; i < NUM_USABLE_VLS; i++) {
11330                 if (!valid_vl(i))
11331                         continue;
11332
11333                 if (be16_to_cpu(new_bc->vl[i].shared) >
11334                                 be16_to_cpu(cur_bc.vl[i].shared))
11335                         set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11336         }
11337
11338         /* finally raise the global shared */
11339         if (be16_to_cpu(new_bc->overall_shared_limit) >
11340             be16_to_cpu(cur_bc.overall_shared_limit))
11341                 set_global_shared(dd,
11342                                   be16_to_cpu(new_bc->overall_shared_limit));
11343
11344         /* bracket the credit change with a total adjustment */
11345         if (new_total < cur_total)
11346                 set_global_limit(dd, new_total);
11347
11348         /*
11349          * Determine the actual number of operational VLS using the number of
11350          * dedicated and shared credits for each VL.
11351          */
11352         if (change_count > 0) {
11353                 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11354                         if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11355                             be16_to_cpu(new_bc->vl[i].shared) > 0)
11356                                 vl_count++;
11357                 ppd->actual_vls_operational = vl_count;
11358                 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11359                                     ppd->actual_vls_operational :
11360                                     ppd->vls_operational,
11361                                     NULL);
11362                 if (ret == 0)
11363                         ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11364                                            ppd->actual_vls_operational :
11365                                            ppd->vls_operational, NULL);
11366                 if (ret)
11367                         return ret;
11368         }
11369         return 0;
11370 }
11371
11372 /*
11373  * Read the given fabric manager table. Return the size of the
11374  * table (in bytes) on success, and a negative error code on
11375  * failure.
11376  */
11377 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11378
11379 {
11380         int size;
11381         struct vl_arb_cache *vlc;
11382
11383         switch (which) {
11384         case FM_TBL_VL_HIGH_ARB:
11385                 size = 256;
11386                 /*
11387                  * OPA specifies 128 elements (of 2 bytes each), though
11388                  * HFI supports only 16 elements in h/w.
11389                  */
11390                 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11391                 vl_arb_get_cache(vlc, t);
11392                 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11393                 break;
11394         case FM_TBL_VL_LOW_ARB:
11395                 size = 256;
11396                 /*
11397                  * OPA specifies 128 elements (of 2 bytes each), though
11398                  * HFI supports only 16 elements in h/w.
11399                  */
11400                 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11401                 vl_arb_get_cache(vlc, t);
11402                 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11403                 break;
11404         case FM_TBL_BUFFER_CONTROL:
11405                 size = get_buffer_control(ppd->dd, t, NULL);
11406                 break;
11407         case FM_TBL_SC2VLNT:
11408                 size = get_sc2vlnt(ppd->dd, t);
11409                 break;
11410         case FM_TBL_VL_PREEMPT_ELEMS:
11411                 size = 256;
11412                 /* OPA specifies 128 elements, of 2 bytes each */
11413                 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11414                 break;
11415         case FM_TBL_VL_PREEMPT_MATRIX:
11416                 size = 256;
11417                 /*
11418                  * OPA specifies that this is the same size as the VL
11419                  * arbitration tables (i.e., 256 bytes).
11420                  */
11421                 break;
11422         default:
11423                 return -EINVAL;
11424         }
11425         return size;
11426 }
11427
11428 /*
11429  * Write the given fabric manager table.
11430  */
11431 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11432 {
11433         int ret = 0;
11434         struct vl_arb_cache *vlc;
11435
11436         switch (which) {
11437         case FM_TBL_VL_HIGH_ARB:
11438                 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11439                 if (vl_arb_match_cache(vlc, t)) {
11440                         vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11441                         break;
11442                 }
11443                 vl_arb_set_cache(vlc, t);
11444                 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11445                 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11446                                      VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11447                 break;
11448         case FM_TBL_VL_LOW_ARB:
11449                 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11450                 if (vl_arb_match_cache(vlc, t)) {
11451                         vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11452                         break;
11453                 }
11454                 vl_arb_set_cache(vlc, t);
11455                 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11456                 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11457                                      VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11458                 break;
11459         case FM_TBL_BUFFER_CONTROL:
11460                 ret = set_buffer_control(ppd, t);
11461                 break;
11462         case FM_TBL_SC2VLNT:
11463                 set_sc2vlnt(ppd->dd, t);
11464                 break;
11465         default:
11466                 ret = -EINVAL;
11467         }
11468         return ret;
11469 }
11470
11471 /*
11472  * Disable all data VLs.
11473  *
11474  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11475  */
11476 static int disable_data_vls(struct hfi1_devdata *dd)
11477 {
11478         if (is_ax(dd))
11479                 return 1;
11480
11481         pio_send_control(dd, PSC_DATA_VL_DISABLE);
11482
11483         return 0;
11484 }
11485
11486 /*
11487  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11488  * Just re-enables all data VLs (the "fill" part happens
11489  * automatically - the name was chosen for symmetry with
11490  * stop_drain_data_vls()).
11491  *
11492  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11493  */
11494 int open_fill_data_vls(struct hfi1_devdata *dd)
11495 {
11496         if (is_ax(dd))
11497                 return 1;
11498
11499         pio_send_control(dd, PSC_DATA_VL_ENABLE);
11500
11501         return 0;
11502 }
11503
11504 /*
11505  * drain_data_vls() - assumes that disable_data_vls() has been called,
11506  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11507  * engines to drop to 0.
11508  */
11509 static void drain_data_vls(struct hfi1_devdata *dd)
11510 {
11511         sc_wait(dd);
11512         sdma_wait(dd);
11513         pause_for_credit_return(dd);
11514 }
11515
11516 /*
11517  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11518  *
11519  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11520  * meant to be used like this:
11521  *
11522  * stop_drain_data_vls(dd);
11523  * // do things with per-VL resources
11524  * open_fill_data_vls(dd);
11525  */
11526 int stop_drain_data_vls(struct hfi1_devdata *dd)
11527 {
11528         int ret;
11529
11530         ret = disable_data_vls(dd);
11531         if (ret == 0)
11532                 drain_data_vls(dd);
11533
11534         return ret;
11535 }
11536
11537 /*
11538  * Convert a nanosecond time to a cclock count.  No matter how slow
11539  * the cclock, a non-zero ns will always have a non-zero result.
11540  */
11541 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11542 {
11543         u32 cclocks;
11544
11545         if (dd->icode == ICODE_FPGA_EMULATION)
11546                 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11547         else  /* simulation pretends to be ASIC */
11548                 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11549         if (ns && !cclocks)     /* if ns nonzero, must be at least 1 */
11550                 cclocks = 1;
11551         return cclocks;
11552 }
11553
11554 /*
11555  * Convert a cclock count to nanoseconds. Not matter how slow
11556  * the cclock, a non-zero cclocks will always have a non-zero result.
11557  */
11558 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11559 {
11560         u32 ns;
11561
11562         if (dd->icode == ICODE_FPGA_EMULATION)
11563                 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11564         else  /* simulation pretends to be ASIC */
11565                 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11566         if (cclocks && !ns)
11567                 ns = 1;
11568         return ns;
11569 }
11570
11571 /*
11572  * Dynamically adjust the receive interrupt timeout for a context based on
11573  * incoming packet rate.
11574  *
11575  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11576  */
11577 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11578 {
11579         struct hfi1_devdata *dd = rcd->dd;
11580         u32 timeout = rcd->rcvavail_timeout;
11581
11582         /*
11583          * This algorithm doubles or halves the timeout depending on whether
11584          * the number of packets received in this interrupt were less than or
11585          * greater equal the interrupt count.
11586          *
11587          * The calculations below do not allow a steady state to be achieved.
11588          * Only at the endpoints it is possible to have an unchanging
11589          * timeout.
11590          */
11591         if (npkts < rcv_intr_count) {
11592                 /*
11593                  * Not enough packets arrived before the timeout, adjust
11594                  * timeout downward.
11595                  */
11596                 if (timeout < 2) /* already at minimum? */
11597                         return;
11598                 timeout >>= 1;
11599         } else {
11600                 /*
11601                  * More than enough packets arrived before the timeout, adjust
11602                  * timeout upward.
11603                  */
11604                 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11605                         return;
11606                 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11607         }
11608
11609         rcd->rcvavail_timeout = timeout;
11610         /*
11611          * timeout cannot be larger than rcv_intr_timeout_csr which has already
11612          * been verified to be in range
11613          */
11614         write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11615                         (u64)timeout <<
11616                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11617 }
11618
11619 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11620                     u32 intr_adjust, u32 npkts)
11621 {
11622         struct hfi1_devdata *dd = rcd->dd;
11623         u64 reg;
11624         u32 ctxt = rcd->ctxt;
11625
11626         /*
11627          * Need to write timeout register before updating RcvHdrHead to ensure
11628          * that a new value is used when the HW decides to restart counting.
11629          */
11630         if (intr_adjust)
11631                 adjust_rcv_timeout(rcd, npkts);
11632         if (updegr) {
11633                 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11634                         << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11635                 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11636         }
11637         mmiowb();
11638         reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11639                 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11640                         << RCV_HDR_HEAD_HEAD_SHIFT);
11641         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11642         mmiowb();
11643 }
11644
11645 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11646 {
11647         u32 head, tail;
11648
11649         head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11650                 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11651
11652         if (rcd->rcvhdrtail_kvaddr)
11653                 tail = get_rcvhdrtail(rcd);
11654         else
11655                 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11656
11657         return head == tail;
11658 }
11659
11660 /*
11661  * Context Control and Receive Array encoding for buffer size:
11662  *      0x0 invalid
11663  *      0x1   4 KB
11664  *      0x2   8 KB
11665  *      0x3  16 KB
11666  *      0x4  32 KB
11667  *      0x5  64 KB
11668  *      0x6 128 KB
11669  *      0x7 256 KB
11670  *      0x8 512 KB (Receive Array only)
11671  *      0x9   1 MB (Receive Array only)
11672  *      0xa   2 MB (Receive Array only)
11673  *
11674  *      0xB-0xF - reserved (Receive Array only)
11675  *
11676  *
11677  * This routine assumes that the value has already been sanity checked.
11678  */
11679 static u32 encoded_size(u32 size)
11680 {
11681         switch (size) {
11682         case   4 * 1024: return 0x1;
11683         case   8 * 1024: return 0x2;
11684         case  16 * 1024: return 0x3;
11685         case  32 * 1024: return 0x4;
11686         case  64 * 1024: return 0x5;
11687         case 128 * 1024: return 0x6;
11688         case 256 * 1024: return 0x7;
11689         case 512 * 1024: return 0x8;
11690         case   1 * 1024 * 1024: return 0x9;
11691         case   2 * 1024 * 1024: return 0xa;
11692         }
11693         return 0x1;     /* if invalid, go with the minimum size */
11694 }
11695
11696 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
11697 {
11698         struct hfi1_ctxtdata *rcd;
11699         u64 rcvctrl, reg;
11700         int did_enable = 0;
11701
11702         rcd = dd->rcd[ctxt];
11703         if (!rcd)
11704                 return;
11705
11706         hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11707
11708         rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11709         /* if the context already enabled, don't do the extra steps */
11710         if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11711             !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11712                 /* reset the tail and hdr addresses, and sequence count */
11713                 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11714                                 rcd->rcvhdrq_dma);
11715                 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11716                         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11717                                         rcd->rcvhdrqtailaddr_dma);
11718                 rcd->seq_cnt = 1;
11719
11720                 /* reset the cached receive header queue head value */
11721                 rcd->head = 0;
11722
11723                 /*
11724                  * Zero the receive header queue so we don't get false
11725                  * positives when checking the sequence number.  The
11726                  * sequence numbers could land exactly on the same spot.
11727                  * E.g. a rcd restart before the receive header wrapped.
11728                  */
11729                 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11730
11731                 /* starting timeout */
11732                 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11733
11734                 /* enable the context */
11735                 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11736
11737                 /* clean the egr buffer size first */
11738                 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11739                 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11740                                 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11741                                         << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11742
11743                 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11744                 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11745                 did_enable = 1;
11746
11747                 /* zero RcvEgrIndexHead */
11748                 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11749
11750                 /* set eager count and base index */
11751                 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11752                         & RCV_EGR_CTRL_EGR_CNT_MASK)
11753                        << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11754                         (((rcd->eager_base >> RCV_SHIFT)
11755                           & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11756                          << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11757                 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11758
11759                 /*
11760                  * Set TID (expected) count and base index.
11761                  * rcd->expected_count is set to individual RcvArray entries,
11762                  * not pairs, and the CSR takes a pair-count in groups of
11763                  * four, so divide by 8.
11764                  */
11765                 reg = (((rcd->expected_count >> RCV_SHIFT)
11766                                         & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11767                                 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11768                       (((rcd->expected_base >> RCV_SHIFT)
11769                                         & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11770                                 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11771                 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11772                 if (ctxt == HFI1_CTRL_CTXT)
11773                         write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11774         }
11775         if (op & HFI1_RCVCTRL_CTXT_DIS) {
11776                 write_csr(dd, RCV_VL15, 0);
11777                 /*
11778                  * When receive context is being disabled turn on tail
11779                  * update with a dummy tail address and then disable
11780                  * receive context.
11781                  */
11782                 if (dd->rcvhdrtail_dummy_dma) {
11783                         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11784                                         dd->rcvhdrtail_dummy_dma);
11785                         /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11786                         rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11787                 }
11788
11789                 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11790         }
11791         if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11792                 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11793         if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11794                 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11795         if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma)
11796                 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11797         if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11798                 /* See comment on RcvCtxtCtrl.TailUpd above */
11799                 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11800                         rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11801         }
11802         if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11803                 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11804         if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11805                 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11806         if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11807                 /*
11808                  * In one-packet-per-eager mode, the size comes from
11809                  * the RcvArray entry.
11810                  */
11811                 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11812                 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11813         }
11814         if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11815                 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11816         if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11817                 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11818         if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11819                 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11820         if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11821                 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11822         if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11823                 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11824         rcd->rcvctrl = rcvctrl;
11825         hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11826         write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11827
11828         /* work around sticky RcvCtxtStatus.BlockedRHQFull */
11829         if (did_enable &&
11830             (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11831                 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11832                 if (reg != 0) {
11833                         dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11834                                     ctxt, reg);
11835                         read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11836                         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11837                         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11838                         read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11839                         reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11840                         dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11841                                     ctxt, reg, reg == 0 ? "not" : "still");
11842                 }
11843         }
11844
11845         if (did_enable) {
11846                 /*
11847                  * The interrupt timeout and count must be set after
11848                  * the context is enabled to take effect.
11849                  */
11850                 /* set interrupt timeout */
11851                 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11852                                 (u64)rcd->rcvavail_timeout <<
11853                                 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11854
11855                 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11856                 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11857                 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11858         }
11859
11860         if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11861                 /*
11862                  * If the context has been disabled and the Tail Update has
11863                  * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11864                  * so it doesn't contain an address that is invalid.
11865                  */
11866                 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11867                                 dd->rcvhdrtail_dummy_dma);
11868 }
11869
11870 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11871 {
11872         int ret;
11873         u64 val = 0;
11874
11875         if (namep) {
11876                 ret = dd->cntrnameslen;
11877                 *namep = dd->cntrnames;
11878         } else {
11879                 const struct cntr_entry *entry;
11880                 int i, j;
11881
11882                 ret = (dd->ndevcntrs) * sizeof(u64);
11883
11884                 /* Get the start of the block of counters */
11885                 *cntrp = dd->cntrs;
11886
11887                 /*
11888                  * Now go and fill in each counter in the block.
11889                  */
11890                 for (i = 0; i < DEV_CNTR_LAST; i++) {
11891                         entry = &dev_cntrs[i];
11892                         hfi1_cdbg(CNTR, "reading %s", entry->name);
11893                         if (entry->flags & CNTR_DISABLED) {
11894                                 /* Nothing */
11895                                 hfi1_cdbg(CNTR, "\tDisabled\n");
11896                         } else {
11897                                 if (entry->flags & CNTR_VL) {
11898                                         hfi1_cdbg(CNTR, "\tPer VL\n");
11899                                         for (j = 0; j < C_VL_COUNT; j++) {
11900                                                 val = entry->rw_cntr(entry,
11901                                                                   dd, j,
11902                                                                   CNTR_MODE_R,
11903                                                                   0);
11904                                                 hfi1_cdbg(
11905                                                    CNTR,
11906                                                    "\t\tRead 0x%llx for %d\n",
11907                                                    val, j);
11908                                                 dd->cntrs[entry->offset + j] =
11909                                                                             val;
11910                                         }
11911                                 } else if (entry->flags & CNTR_SDMA) {
11912                                         hfi1_cdbg(CNTR,
11913                                                   "\t Per SDMA Engine\n");
11914                                         for (j = 0; j < dd->chip_sdma_engines;
11915                                              j++) {
11916                                                 val =
11917                                                 entry->rw_cntr(entry, dd, j,
11918                                                                CNTR_MODE_R, 0);
11919                                                 hfi1_cdbg(CNTR,
11920                                                           "\t\tRead 0x%llx for %d\n",
11921                                                           val, j);
11922                                                 dd->cntrs[entry->offset + j] =
11923                                                                         val;
11924                                         }
11925                                 } else {
11926                                         val = entry->rw_cntr(entry, dd,
11927                                                         CNTR_INVALID_VL,
11928                                                         CNTR_MODE_R, 0);
11929                                         dd->cntrs[entry->offset] = val;
11930                                         hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11931                                 }
11932                         }
11933                 }
11934         }
11935         return ret;
11936 }
11937
11938 /*
11939  * Used by sysfs to create files for hfi stats to read
11940  */
11941 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
11942 {
11943         int ret;
11944         u64 val = 0;
11945
11946         if (namep) {
11947                 ret = ppd->dd->portcntrnameslen;
11948                 *namep = ppd->dd->portcntrnames;
11949         } else {
11950                 const struct cntr_entry *entry;
11951                 int i, j;
11952
11953                 ret = ppd->dd->nportcntrs * sizeof(u64);
11954                 *cntrp = ppd->cntrs;
11955
11956                 for (i = 0; i < PORT_CNTR_LAST; i++) {
11957                         entry = &port_cntrs[i];
11958                         hfi1_cdbg(CNTR, "reading %s", entry->name);
11959                         if (entry->flags & CNTR_DISABLED) {
11960                                 /* Nothing */
11961                                 hfi1_cdbg(CNTR, "\tDisabled\n");
11962                                 continue;
11963                         }
11964
11965                         if (entry->flags & CNTR_VL) {
11966                                 hfi1_cdbg(CNTR, "\tPer VL");
11967                                 for (j = 0; j < C_VL_COUNT; j++) {
11968                                         val = entry->rw_cntr(entry, ppd, j,
11969                                                                CNTR_MODE_R,
11970                                                                0);
11971                                         hfi1_cdbg(
11972                                            CNTR,
11973                                            "\t\tRead 0x%llx for %d",
11974                                            val, j);
11975                                         ppd->cntrs[entry->offset + j] = val;
11976                                 }
11977                         } else {
11978                                 val = entry->rw_cntr(entry, ppd,
11979                                                        CNTR_INVALID_VL,
11980                                                        CNTR_MODE_R,
11981                                                        0);
11982                                 ppd->cntrs[entry->offset] = val;
11983                                 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11984                         }
11985                 }
11986         }
11987         return ret;
11988 }
11989
11990 static void free_cntrs(struct hfi1_devdata *dd)
11991 {
11992         struct hfi1_pportdata *ppd;
11993         int i;
11994
11995         if (dd->synth_stats_timer.data)
11996                 del_timer_sync(&dd->synth_stats_timer);
11997         dd->synth_stats_timer.data = 0;
11998         ppd = (struct hfi1_pportdata *)(dd + 1);
11999         for (i = 0; i < dd->num_pports; i++, ppd++) {
12000                 kfree(ppd->cntrs);
12001                 kfree(ppd->scntrs);
12002                 free_percpu(ppd->ibport_data.rvp.rc_acks);
12003                 free_percpu(ppd->ibport_data.rvp.rc_qacks);
12004                 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12005                 ppd->cntrs = NULL;
12006                 ppd->scntrs = NULL;
12007                 ppd->ibport_data.rvp.rc_acks = NULL;
12008                 ppd->ibport_data.rvp.rc_qacks = NULL;
12009                 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12010         }
12011         kfree(dd->portcntrnames);
12012         dd->portcntrnames = NULL;
12013         kfree(dd->cntrs);
12014         dd->cntrs = NULL;
12015         kfree(dd->scntrs);
12016         dd->scntrs = NULL;
12017         kfree(dd->cntrnames);
12018         dd->cntrnames = NULL;
12019         if (dd->update_cntr_wq) {
12020                 destroy_workqueue(dd->update_cntr_wq);
12021                 dd->update_cntr_wq = NULL;
12022         }
12023 }
12024
12025 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12026                               u64 *psval, void *context, int vl)
12027 {
12028         u64 val;
12029         u64 sval = *psval;
12030
12031         if (entry->flags & CNTR_DISABLED) {
12032                 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12033                 return 0;
12034         }
12035
12036         hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12037
12038         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12039
12040         /* If its a synthetic counter there is more work we need to do */
12041         if (entry->flags & CNTR_SYNTH) {
12042                 if (sval == CNTR_MAX) {
12043                         /* No need to read already saturated */
12044                         return CNTR_MAX;
12045                 }
12046
12047                 if (entry->flags & CNTR_32BIT) {
12048                         /* 32bit counters can wrap multiple times */
12049                         u64 upper = sval >> 32;
12050                         u64 lower = (sval << 32) >> 32;
12051
12052                         if (lower > val) { /* hw wrapped */
12053                                 if (upper == CNTR_32BIT_MAX)
12054                                         val = CNTR_MAX;
12055                                 else
12056                                         upper++;
12057                         }
12058
12059                         if (val != CNTR_MAX)
12060                                 val = (upper << 32) | val;
12061
12062                 } else {
12063                         /* If we rolled we are saturated */
12064                         if ((val < sval) || (val > CNTR_MAX))
12065                                 val = CNTR_MAX;
12066                 }
12067         }
12068
12069         *psval = val;
12070
12071         hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12072
12073         return val;
12074 }
12075
12076 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12077                                struct cntr_entry *entry,
12078                                u64 *psval, void *context, int vl, u64 data)
12079 {
12080         u64 val;
12081
12082         if (entry->flags & CNTR_DISABLED) {
12083                 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12084                 return 0;
12085         }
12086
12087         hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12088
12089         if (entry->flags & CNTR_SYNTH) {
12090                 *psval = data;
12091                 if (entry->flags & CNTR_32BIT) {
12092                         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12093                                              (data << 32) >> 32);
12094                         val = data; /* return the full 64bit value */
12095                 } else {
12096                         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12097                                              data);
12098                 }
12099         } else {
12100                 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12101         }
12102
12103         *psval = val;
12104
12105         hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12106
12107         return val;
12108 }
12109
12110 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12111 {
12112         struct cntr_entry *entry;
12113         u64 *sval;
12114
12115         entry = &dev_cntrs[index];
12116         sval = dd->scntrs + entry->offset;
12117
12118         if (vl != CNTR_INVALID_VL)
12119                 sval += vl;
12120
12121         return read_dev_port_cntr(dd, entry, sval, dd, vl);
12122 }
12123
12124 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12125 {
12126         struct cntr_entry *entry;
12127         u64 *sval;
12128
12129         entry = &dev_cntrs[index];
12130         sval = dd->scntrs + entry->offset;
12131
12132         if (vl != CNTR_INVALID_VL)
12133                 sval += vl;
12134
12135         return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12136 }
12137
12138 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12139 {
12140         struct cntr_entry *entry;
12141         u64 *sval;
12142
12143         entry = &port_cntrs[index];
12144         sval = ppd->scntrs + entry->offset;
12145
12146         if (vl != CNTR_INVALID_VL)
12147                 sval += vl;
12148
12149         if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12150             (index <= C_RCV_HDR_OVF_LAST)) {
12151                 /* We do not want to bother for disabled contexts */
12152                 return 0;
12153         }
12154
12155         return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12156 }
12157
12158 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12159 {
12160         struct cntr_entry *entry;
12161         u64 *sval;
12162
12163         entry = &port_cntrs[index];
12164         sval = ppd->scntrs + entry->offset;
12165
12166         if (vl != CNTR_INVALID_VL)
12167                 sval += vl;
12168
12169         if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12170             (index <= C_RCV_HDR_OVF_LAST)) {
12171                 /* We do not want to bother for disabled contexts */
12172                 return 0;
12173         }
12174
12175         return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12176 }
12177
12178 static void do_update_synth_timer(struct work_struct *work)
12179 {
12180         u64 cur_tx;
12181         u64 cur_rx;
12182         u64 total_flits;
12183         u8 update = 0;
12184         int i, j, vl;
12185         struct hfi1_pportdata *ppd;
12186         struct cntr_entry *entry;
12187         struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12188                                                update_cntr_work);
12189
12190         /*
12191          * Rather than keep beating on the CSRs pick a minimal set that we can
12192          * check to watch for potential roll over. We can do this by looking at
12193          * the number of flits sent/recv. If the total flits exceeds 32bits then
12194          * we have to iterate all the counters and update.
12195          */
12196         entry = &dev_cntrs[C_DC_RCV_FLITS];
12197         cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12198
12199         entry = &dev_cntrs[C_DC_XMIT_FLITS];
12200         cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12201
12202         hfi1_cdbg(
12203             CNTR,
12204             "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12205             dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12206
12207         if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12208                 /*
12209                  * May not be strictly necessary to update but it won't hurt and
12210                  * simplifies the logic here.
12211                  */
12212                 update = 1;
12213                 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12214                           dd->unit);
12215         } else {
12216                 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12217                 hfi1_cdbg(CNTR,
12218                           "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12219                           total_flits, (u64)CNTR_32BIT_MAX);
12220                 if (total_flits >= CNTR_32BIT_MAX) {
12221                         hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12222                                   dd->unit);
12223                         update = 1;
12224                 }
12225         }
12226
12227         if (update) {
12228                 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12229                 for (i = 0; i < DEV_CNTR_LAST; i++) {
12230                         entry = &dev_cntrs[i];
12231                         if (entry->flags & CNTR_VL) {
12232                                 for (vl = 0; vl < C_VL_COUNT; vl++)
12233                                         read_dev_cntr(dd, i, vl);
12234                         } else {
12235                                 read_dev_cntr(dd, i, CNTR_INVALID_VL);
12236                         }
12237                 }
12238                 ppd = (struct hfi1_pportdata *)(dd + 1);
12239                 for (i = 0; i < dd->num_pports; i++, ppd++) {
12240                         for (j = 0; j < PORT_CNTR_LAST; j++) {
12241                                 entry = &port_cntrs[j];
12242                                 if (entry->flags & CNTR_VL) {
12243                                         for (vl = 0; vl < C_VL_COUNT; vl++)
12244                                                 read_port_cntr(ppd, j, vl);
12245                                 } else {
12246                                         read_port_cntr(ppd, j, CNTR_INVALID_VL);
12247                                 }
12248                         }
12249                 }
12250
12251                 /*
12252                  * We want the value in the register. The goal is to keep track
12253                  * of the number of "ticks" not the counter value. In other
12254                  * words if the register rolls we want to notice it and go ahead
12255                  * and force an update.
12256                  */
12257                 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12258                 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12259                                                 CNTR_MODE_R, 0);
12260
12261                 entry = &dev_cntrs[C_DC_RCV_FLITS];
12262                 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12263                                                 CNTR_MODE_R, 0);
12264
12265                 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12266                           dd->unit, dd->last_tx, dd->last_rx);
12267
12268         } else {
12269                 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12270         }
12271 }
12272
12273 static void update_synth_timer(unsigned long opaque)
12274 {
12275         struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
12276
12277         queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12278         mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12279 }
12280
12281 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12282 static int init_cntrs(struct hfi1_devdata *dd)
12283 {
12284         int i, rcv_ctxts, j;
12285         size_t sz;
12286         char *p;
12287         char name[C_MAX_NAME];
12288         struct hfi1_pportdata *ppd;
12289         const char *bit_type_32 = ",32";
12290         const int bit_type_32_sz = strlen(bit_type_32);
12291
12292         /* set up the stats timer; the add_timer is done at the end */
12293         setup_timer(&dd->synth_stats_timer, update_synth_timer,
12294                     (unsigned long)dd);
12295
12296         /***********************/
12297         /* per device counters */
12298         /***********************/
12299
12300         /* size names and determine how many we have*/
12301         dd->ndevcntrs = 0;
12302         sz = 0;
12303
12304         for (i = 0; i < DEV_CNTR_LAST; i++) {
12305                 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12306                         hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12307                         continue;
12308                 }
12309
12310                 if (dev_cntrs[i].flags & CNTR_VL) {
12311                         dev_cntrs[i].offset = dd->ndevcntrs;
12312                         for (j = 0; j < C_VL_COUNT; j++) {
12313                                 snprintf(name, C_MAX_NAME, "%s%d",
12314                                          dev_cntrs[i].name, vl_from_idx(j));
12315                                 sz += strlen(name);
12316                                 /* Add ",32" for 32-bit counters */
12317                                 if (dev_cntrs[i].flags & CNTR_32BIT)
12318                                         sz += bit_type_32_sz;
12319                                 sz++;
12320                                 dd->ndevcntrs++;
12321                         }
12322                 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12323                         dev_cntrs[i].offset = dd->ndevcntrs;
12324                         for (j = 0; j < dd->chip_sdma_engines; j++) {
12325                                 snprintf(name, C_MAX_NAME, "%s%d",
12326                                          dev_cntrs[i].name, j);
12327                                 sz += strlen(name);
12328                                 /* Add ",32" for 32-bit counters */
12329                                 if (dev_cntrs[i].flags & CNTR_32BIT)
12330                                         sz += bit_type_32_sz;
12331                                 sz++;
12332                                 dd->ndevcntrs++;
12333                         }
12334                 } else {
12335                         /* +1 for newline. */
12336                         sz += strlen(dev_cntrs[i].name) + 1;
12337                         /* Add ",32" for 32-bit counters */
12338                         if (dev_cntrs[i].flags & CNTR_32BIT)
12339                                 sz += bit_type_32_sz;
12340                         dev_cntrs[i].offset = dd->ndevcntrs;
12341                         dd->ndevcntrs++;
12342                 }
12343         }
12344
12345         /* allocate space for the counter values */
12346         dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12347         if (!dd->cntrs)
12348                 goto bail;
12349
12350         dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12351         if (!dd->scntrs)
12352                 goto bail;
12353
12354         /* allocate space for the counter names */
12355         dd->cntrnameslen = sz;
12356         dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12357         if (!dd->cntrnames)
12358                 goto bail;
12359
12360         /* fill in the names */
12361         for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12362                 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12363                         /* Nothing */
12364                 } else if (dev_cntrs[i].flags & CNTR_VL) {
12365                         for (j = 0; j < C_VL_COUNT; j++) {
12366                                 snprintf(name, C_MAX_NAME, "%s%d",
12367                                          dev_cntrs[i].name,
12368                                          vl_from_idx(j));
12369                                 memcpy(p, name, strlen(name));
12370                                 p += strlen(name);
12371
12372                                 /* Counter is 32 bits */
12373                                 if (dev_cntrs[i].flags & CNTR_32BIT) {
12374                                         memcpy(p, bit_type_32, bit_type_32_sz);
12375                                         p += bit_type_32_sz;
12376                                 }
12377
12378                                 *p++ = '\n';
12379                         }
12380                 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12381                         for (j = 0; j < dd->chip_sdma_engines; j++) {
12382                                 snprintf(name, C_MAX_NAME, "%s%d",
12383                                          dev_cntrs[i].name, j);
12384                                 memcpy(p, name, strlen(name));
12385                                 p += strlen(name);
12386
12387                                 /* Counter is 32 bits */
12388                                 if (dev_cntrs[i].flags & CNTR_32BIT) {
12389                                         memcpy(p, bit_type_32, bit_type_32_sz);
12390                                         p += bit_type_32_sz;
12391                                 }
12392
12393                                 *p++ = '\n';
12394                         }
12395                 } else {
12396                         memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12397                         p += strlen(dev_cntrs[i].name);
12398
12399                         /* Counter is 32 bits */
12400                         if (dev_cntrs[i].flags & CNTR_32BIT) {
12401                                 memcpy(p, bit_type_32, bit_type_32_sz);
12402                                 p += bit_type_32_sz;
12403                         }
12404
12405                         *p++ = '\n';
12406                 }
12407         }
12408
12409         /*********************/
12410         /* per port counters */
12411         /*********************/
12412
12413         /*
12414          * Go through the counters for the overflows and disable the ones we
12415          * don't need. This varies based on platform so we need to do it
12416          * dynamically here.
12417          */
12418         rcv_ctxts = dd->num_rcv_contexts;
12419         for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12420              i <= C_RCV_HDR_OVF_LAST; i++) {
12421                 port_cntrs[i].flags |= CNTR_DISABLED;
12422         }
12423
12424         /* size port counter names and determine how many we have*/
12425         sz = 0;
12426         dd->nportcntrs = 0;
12427         for (i = 0; i < PORT_CNTR_LAST; i++) {
12428                 if (port_cntrs[i].flags & CNTR_DISABLED) {
12429                         hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12430                         continue;
12431                 }
12432
12433                 if (port_cntrs[i].flags & CNTR_VL) {
12434                         port_cntrs[i].offset = dd->nportcntrs;
12435                         for (j = 0; j < C_VL_COUNT; j++) {
12436                                 snprintf(name, C_MAX_NAME, "%s%d",
12437                                          port_cntrs[i].name, vl_from_idx(j));
12438                                 sz += strlen(name);
12439                                 /* Add ",32" for 32-bit counters */
12440                                 if (port_cntrs[i].flags & CNTR_32BIT)
12441                                         sz += bit_type_32_sz;
12442                                 sz++;
12443                                 dd->nportcntrs++;
12444                         }
12445                 } else {
12446                         /* +1 for newline */
12447                         sz += strlen(port_cntrs[i].name) + 1;
12448                         /* Add ",32" for 32-bit counters */
12449                         if (port_cntrs[i].flags & CNTR_32BIT)
12450                                 sz += bit_type_32_sz;
12451                         port_cntrs[i].offset = dd->nportcntrs;
12452                         dd->nportcntrs++;
12453                 }
12454         }
12455
12456         /* allocate space for the counter names */
12457         dd->portcntrnameslen = sz;
12458         dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12459         if (!dd->portcntrnames)
12460                 goto bail;
12461
12462         /* fill in port cntr names */
12463         for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12464                 if (port_cntrs[i].flags & CNTR_DISABLED)
12465                         continue;
12466
12467                 if (port_cntrs[i].flags & CNTR_VL) {
12468                         for (j = 0; j < C_VL_COUNT; j++) {
12469                                 snprintf(name, C_MAX_NAME, "%s%d",
12470                                          port_cntrs[i].name, vl_from_idx(j));
12471                                 memcpy(p, name, strlen(name));
12472                                 p += strlen(name);
12473
12474                                 /* Counter is 32 bits */
12475                                 if (port_cntrs[i].flags & CNTR_32BIT) {
12476                                         memcpy(p, bit_type_32, bit_type_32_sz);
12477                                         p += bit_type_32_sz;
12478                                 }
12479
12480                                 *p++ = '\n';
12481                         }
12482                 } else {
12483                         memcpy(p, port_cntrs[i].name,
12484                                strlen(port_cntrs[i].name));
12485                         p += strlen(port_cntrs[i].name);
12486
12487                         /* Counter is 32 bits */
12488                         if (port_cntrs[i].flags & CNTR_32BIT) {
12489                                 memcpy(p, bit_type_32, bit_type_32_sz);
12490                                 p += bit_type_32_sz;
12491                         }
12492
12493                         *p++ = '\n';
12494                 }
12495         }
12496
12497         /* allocate per port storage for counter values */
12498         ppd = (struct hfi1_pportdata *)(dd + 1);
12499         for (i = 0; i < dd->num_pports; i++, ppd++) {
12500                 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12501                 if (!ppd->cntrs)
12502                         goto bail;
12503
12504                 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12505                 if (!ppd->scntrs)
12506                         goto bail;
12507         }
12508
12509         /* CPU counters need to be allocated and zeroed */
12510         if (init_cpu_counters(dd))
12511                 goto bail;
12512
12513         dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12514                                                      WQ_MEM_RECLAIM, dd->unit);
12515         if (!dd->update_cntr_wq)
12516                 goto bail;
12517
12518         INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12519
12520         mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12521         return 0;
12522 bail:
12523         free_cntrs(dd);
12524         return -ENOMEM;
12525 }
12526
12527 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12528 {
12529         switch (chip_lstate) {
12530         default:
12531                 dd_dev_err(dd,
12532                            "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12533                            chip_lstate);
12534                 /* fall through */
12535         case LSTATE_DOWN:
12536                 return IB_PORT_DOWN;
12537         case LSTATE_INIT:
12538                 return IB_PORT_INIT;
12539         case LSTATE_ARMED:
12540                 return IB_PORT_ARMED;
12541         case LSTATE_ACTIVE:
12542                 return IB_PORT_ACTIVE;
12543         }
12544 }
12545
12546 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12547 {
12548         /* look at the HFI meta-states only */
12549         switch (chip_pstate & 0xf0) {
12550         default:
12551                 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12552                            chip_pstate);
12553                 /* fall through */
12554         case PLS_DISABLED:
12555                 return IB_PORTPHYSSTATE_DISABLED;
12556         case PLS_OFFLINE:
12557                 return OPA_PORTPHYSSTATE_OFFLINE;
12558         case PLS_POLLING:
12559                 return IB_PORTPHYSSTATE_POLLING;
12560         case PLS_CONFIGPHY:
12561                 return IB_PORTPHYSSTATE_TRAINING;
12562         case PLS_LINKUP:
12563                 return IB_PORTPHYSSTATE_LINKUP;
12564         case PLS_PHYTEST:
12565                 return IB_PORTPHYSSTATE_PHY_TEST;
12566         }
12567 }
12568
12569 /* return the OPA port logical state name */
12570 const char *opa_lstate_name(u32 lstate)
12571 {
12572         static const char * const port_logical_names[] = {
12573                 "PORT_NOP",
12574                 "PORT_DOWN",
12575                 "PORT_INIT",
12576                 "PORT_ARMED",
12577                 "PORT_ACTIVE",
12578                 "PORT_ACTIVE_DEFER",
12579         };
12580         if (lstate < ARRAY_SIZE(port_logical_names))
12581                 return port_logical_names[lstate];
12582         return "unknown";
12583 }
12584
12585 /* return the OPA port physical state name */
12586 const char *opa_pstate_name(u32 pstate)
12587 {
12588         static const char * const port_physical_names[] = {
12589                 "PHYS_NOP",
12590                 "reserved1",
12591                 "PHYS_POLL",
12592                 "PHYS_DISABLED",
12593                 "PHYS_TRAINING",
12594                 "PHYS_LINKUP",
12595                 "PHYS_LINK_ERR_RECOVER",
12596                 "PHYS_PHY_TEST",
12597                 "reserved8",
12598                 "PHYS_OFFLINE",
12599                 "PHYS_GANGED",
12600                 "PHYS_TEST",
12601         };
12602         if (pstate < ARRAY_SIZE(port_physical_names))
12603                 return port_physical_names[pstate];
12604         return "unknown";
12605 }
12606
12607 /*
12608  * Read the hardware link state and set the driver's cached value of it.
12609  * Return the (new) current value.
12610  */
12611 u32 get_logical_state(struct hfi1_pportdata *ppd)
12612 {
12613         u32 new_state;
12614
12615         new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
12616         if (new_state != ppd->lstate) {
12617                 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12618                             opa_lstate_name(new_state), new_state);
12619                 ppd->lstate = new_state;
12620         }
12621         /*
12622          * Set port status flags in the page mapped into userspace
12623          * memory. Do it here to ensure a reliable state - this is
12624          * the only function called by all state handling code.
12625          * Always set the flags due to the fact that the cache value
12626          * might have been changed explicitly outside of this
12627          * function.
12628          */
12629         if (ppd->statusp) {
12630                 switch (ppd->lstate) {
12631                 case IB_PORT_DOWN:
12632                 case IB_PORT_INIT:
12633                         *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12634                                            HFI1_STATUS_IB_READY);
12635                         break;
12636                 case IB_PORT_ARMED:
12637                         *ppd->statusp |= HFI1_STATUS_IB_CONF;
12638                         break;
12639                 case IB_PORT_ACTIVE:
12640                         *ppd->statusp |= HFI1_STATUS_IB_READY;
12641                         break;
12642                 }
12643         }
12644         return ppd->lstate;
12645 }
12646
12647 /**
12648  * wait_logical_linkstate - wait for an IB link state change to occur
12649  * @ppd: port device
12650  * @state: the state to wait for
12651  * @msecs: the number of milliseconds to wait
12652  *
12653  * Wait up to msecs milliseconds for IB link state change to occur.
12654  * For now, take the easy polling route.
12655  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12656  */
12657 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12658                                   int msecs)
12659 {
12660         unsigned long timeout;
12661
12662         timeout = jiffies + msecs_to_jiffies(msecs);
12663         while (1) {
12664                 if (get_logical_state(ppd) == state)
12665                         return 0;
12666                 if (time_after(jiffies, timeout))
12667                         break;
12668                 msleep(20);
12669         }
12670         dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
12671
12672         return -ETIMEDOUT;
12673 }
12674
12675 u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
12676 {
12677         u32 pstate;
12678         u32 ib_pstate;
12679
12680         pstate = read_physical_state(ppd->dd);
12681         ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
12682         if (ppd->last_pstate != ib_pstate) {
12683                 dd_dev_info(ppd->dd,
12684                             "%s: physical state changed to %s (0x%x), phy 0x%x\n",
12685                             __func__, opa_pstate_name(ib_pstate), ib_pstate,
12686                             pstate);
12687                 ppd->last_pstate = ib_pstate;
12688         }
12689         return ib_pstate;
12690 }
12691
12692 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12693 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12694
12695 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12696 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12697
12698 void hfi1_init_ctxt(struct send_context *sc)
12699 {
12700         if (sc) {
12701                 struct hfi1_devdata *dd = sc->dd;
12702                 u64 reg;
12703                 u8 set = (sc->type == SC_USER ?
12704                           HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12705                           HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12706                 reg = read_kctxt_csr(dd, sc->hw_context,
12707                                      SEND_CTXT_CHECK_ENABLE);
12708                 if (set)
12709                         CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12710                 else
12711                         SET_STATIC_RATE_CONTROL_SMASK(reg);
12712                 write_kctxt_csr(dd, sc->hw_context,
12713                                 SEND_CTXT_CHECK_ENABLE, reg);
12714         }
12715 }
12716
12717 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12718 {
12719         int ret = 0;
12720         u64 reg;
12721
12722         if (dd->icode != ICODE_RTL_SILICON) {
12723                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12724                         dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12725                                     __func__);
12726                 return -EINVAL;
12727         }
12728         reg = read_csr(dd, ASIC_STS_THERM);
12729         temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12730                       ASIC_STS_THERM_CURR_TEMP_MASK);
12731         temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12732                         ASIC_STS_THERM_LO_TEMP_MASK);
12733         temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12734                         ASIC_STS_THERM_HI_TEMP_MASK);
12735         temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12736                           ASIC_STS_THERM_CRIT_TEMP_MASK);
12737         /* triggers is a 3-bit value - 1 bit per trigger. */
12738         temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12739
12740         return ret;
12741 }
12742
12743 /* ========================================================================= */
12744
12745 /*
12746  * Enable/disable chip from delivering interrupts.
12747  */
12748 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12749 {
12750         int i;
12751
12752         /*
12753          * In HFI, the mask needs to be 1 to allow interrupts.
12754          */
12755         if (enable) {
12756                 /* enable all interrupts */
12757                 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12758                         write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
12759
12760                 init_qsfp_int(dd);
12761         } else {
12762                 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12763                         write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12764         }
12765 }
12766
12767 /*
12768  * Clear all interrupt sources on the chip.
12769  */
12770 static void clear_all_interrupts(struct hfi1_devdata *dd)
12771 {
12772         int i;
12773
12774         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12775                 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12776
12777         write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12778         write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12779         write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12780         write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12781         write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12782         write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12783         write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12784         for (i = 0; i < dd->chip_send_contexts; i++)
12785                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12786         for (i = 0; i < dd->chip_sdma_engines; i++)
12787                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12788
12789         write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12790         write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12791         write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12792 }
12793
12794 /* Move to pcie.c? */
12795 static void disable_intx(struct pci_dev *pdev)
12796 {
12797         pci_intx(pdev, 0);
12798 }
12799
12800 static void clean_up_interrupts(struct hfi1_devdata *dd)
12801 {
12802         int i;
12803
12804         /* remove irqs - must happen before disabling/turning off */
12805         if (dd->num_msix_entries) {
12806                 /* MSI-X */
12807                 struct hfi1_msix_entry *me = dd->msix_entries;
12808
12809                 for (i = 0; i < dd->num_msix_entries; i++, me++) {
12810                         if (!me->arg) /* => no irq, no affinity */
12811                                 continue;
12812                         hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
12813                         free_irq(me->msix.vector, me->arg);
12814                 }
12815         } else {
12816                 /* INTx */
12817                 if (dd->requested_intx_irq) {
12818                         free_irq(dd->pcidev->irq, dd);
12819                         dd->requested_intx_irq = 0;
12820                 }
12821         }
12822
12823         /* turn off interrupts */
12824         if (dd->num_msix_entries) {
12825                 /* MSI-X */
12826                 pci_disable_msix(dd->pcidev);
12827         } else {
12828                 /* INTx */
12829                 disable_intx(dd->pcidev);
12830         }
12831
12832         /* clean structures */
12833         kfree(dd->msix_entries);
12834         dd->msix_entries = NULL;
12835         dd->num_msix_entries = 0;
12836 }
12837
12838 /*
12839  * Remap the interrupt source from the general handler to the given MSI-X
12840  * interrupt.
12841  */
12842 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12843 {
12844         u64 reg;
12845         int m, n;
12846
12847         /* clear from the handled mask of the general interrupt */
12848         m = isrc / 64;
12849         n = isrc % 64;
12850         if (likely(m < CCE_NUM_INT_CSRS)) {
12851                 dd->gi_mask[m] &= ~((u64)1 << n);
12852         } else {
12853                 dd_dev_err(dd, "remap interrupt err\n");
12854                 return;
12855         }
12856
12857         /* direct the chip source to the given MSI-X interrupt */
12858         m = isrc / 8;
12859         n = isrc % 8;
12860         reg = read_csr(dd, CCE_INT_MAP + (8 * m));
12861         reg &= ~((u64)0xff << (8 * n));
12862         reg |= ((u64)msix_intr & 0xff) << (8 * n);
12863         write_csr(dd, CCE_INT_MAP + (8 * m), reg);
12864 }
12865
12866 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12867                                   int engine, int msix_intr)
12868 {
12869         /*
12870          * SDMA engine interrupt sources grouped by type, rather than
12871          * engine.  Per-engine interrupts are as follows:
12872          *      SDMA
12873          *      SDMAProgress
12874          *      SDMAIdle
12875          */
12876         remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
12877                    msix_intr);
12878         remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
12879                    msix_intr);
12880         remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
12881                    msix_intr);
12882 }
12883
12884 static int request_intx_irq(struct hfi1_devdata *dd)
12885 {
12886         int ret;
12887
12888         snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12889                  dd->unit);
12890         ret = request_irq(dd->pcidev->irq, general_interrupt,
12891                           IRQF_SHARED, dd->intx_name, dd);
12892         if (ret)
12893                 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
12894                            ret);
12895         else
12896                 dd->requested_intx_irq = 1;
12897         return ret;
12898 }
12899
12900 static int request_msix_irqs(struct hfi1_devdata *dd)
12901 {
12902         int first_general, last_general;
12903         int first_sdma, last_sdma;
12904         int first_rx, last_rx;
12905         int i, ret = 0;
12906
12907         /* calculate the ranges we are going to use */
12908         first_general = 0;
12909         last_general = first_general + 1;
12910         first_sdma = last_general;
12911         last_sdma = first_sdma + dd->num_sdma;
12912         first_rx = last_sdma;
12913         last_rx = first_rx + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
12914
12915         /* VNIC MSIx interrupts get mapped when VNIC contexts are created */
12916         dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
12917
12918         /*
12919          * Sanity check - the code expects all SDMA chip source
12920          * interrupts to be in the same CSR, starting at bit 0.  Verify
12921          * that this is true by checking the bit location of the start.
12922          */
12923         BUILD_BUG_ON(IS_SDMA_START % 64);
12924
12925         for (i = 0; i < dd->num_msix_entries; i++) {
12926                 struct hfi1_msix_entry *me = &dd->msix_entries[i];
12927                 const char *err_info;
12928                 irq_handler_t handler;
12929                 irq_handler_t thread = NULL;
12930                 void *arg = NULL;
12931                 int idx;
12932                 struct hfi1_ctxtdata *rcd = NULL;
12933                 struct sdma_engine *sde = NULL;
12934
12935                 /* obtain the arguments to request_irq */
12936                 if (first_general <= i && i < last_general) {
12937                         idx = i - first_general;
12938                         handler = general_interrupt;
12939                         arg = dd;
12940                         snprintf(me->name, sizeof(me->name),
12941                                  DRIVER_NAME "_%d", dd->unit);
12942                         err_info = "general";
12943                         me->type = IRQ_GENERAL;
12944                 } else if (first_sdma <= i && i < last_sdma) {
12945                         idx = i - first_sdma;
12946                         sde = &dd->per_sdma[idx];
12947                         handler = sdma_interrupt;
12948                         arg = sde;
12949                         snprintf(me->name, sizeof(me->name),
12950                                  DRIVER_NAME "_%d sdma%d", dd->unit, idx);
12951                         err_info = "sdma";
12952                         remap_sdma_interrupts(dd, idx, i);
12953                         me->type = IRQ_SDMA;
12954                 } else if (first_rx <= i && i < last_rx) {
12955                         idx = i - first_rx;
12956                         rcd = dd->rcd[idx];
12957                         if (rcd) {
12958                                 /*
12959                                  * Set the interrupt register and mask for this
12960                                  * context's interrupt.
12961                                  */
12962                                 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
12963                                 rcd->imask = ((u64)1) <<
12964                                           ((IS_RCVAVAIL_START + idx) % 64);
12965                                 handler = receive_context_interrupt;
12966                                 thread = receive_context_thread;
12967                                 arg = rcd;
12968                                 snprintf(me->name, sizeof(me->name),
12969                                          DRIVER_NAME "_%d kctxt%d",
12970                                          dd->unit, idx);
12971                                 err_info = "receive context";
12972                                 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
12973                                 me->type = IRQ_RCVCTXT;
12974                                 rcd->msix_intr = i;
12975                         }
12976                 } else {
12977                         /* not in our expected range - complain, then
12978                          * ignore it
12979                          */
12980                         dd_dev_err(dd,
12981                                    "Unexpected extra MSI-X interrupt %d\n", i);
12982                         continue;
12983                 }
12984                 /* no argument, no interrupt */
12985                 if (!arg)
12986                         continue;
12987                 /* make sure the name is terminated */
12988                 me->name[sizeof(me->name) - 1] = 0;
12989
12990                 ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
12991                                            me->name, arg);
12992                 if (ret) {
12993                         dd_dev_err(dd,
12994                                    "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
12995                                    err_info, me->msix.vector, idx, ret);
12996                         return ret;
12997                 }
12998                 /*
12999                  * assign arg after request_irq call, so it will be
13000                  * cleaned up
13001                  */
13002                 me->arg = arg;
13003
13004                 ret = hfi1_get_irq_affinity(dd, me);
13005                 if (ret)
13006                         dd_dev_err(dd,
13007                                    "unable to pin IRQ %d\n", ret);
13008         }
13009
13010         return ret;
13011 }
13012
13013 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
13014 {
13015         int i;
13016
13017         if (!dd->num_msix_entries) {
13018                 synchronize_irq(dd->pcidev->irq);
13019                 return;
13020         }
13021
13022         for (i = 0; i < dd->vnic.num_ctxt; i++) {
13023                 struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
13024                 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13025
13026                 synchronize_irq(me->msix.vector);
13027         }
13028 }
13029
13030 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13031 {
13032         struct hfi1_devdata *dd = rcd->dd;
13033         struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13034
13035         if (!me->arg) /* => no irq, no affinity */
13036                 return;
13037
13038         hfi1_put_irq_affinity(dd, me);
13039         free_irq(me->msix.vector, me->arg);
13040
13041         me->arg = NULL;
13042 }
13043
13044 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13045 {
13046         struct hfi1_devdata *dd = rcd->dd;
13047         struct hfi1_msix_entry *me;
13048         int idx = rcd->ctxt;
13049         void *arg = rcd;
13050         int ret;
13051
13052         rcd->msix_intr = dd->vnic.msix_idx++;
13053         me = &dd->msix_entries[rcd->msix_intr];
13054
13055         /*
13056          * Set the interrupt register and mask for this
13057          * context's interrupt.
13058          */
13059         rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13060         rcd->imask = ((u64)1) <<
13061                   ((IS_RCVAVAIL_START + idx) % 64);
13062
13063         snprintf(me->name, sizeof(me->name),
13064                  DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13065         me->name[sizeof(me->name) - 1] = 0;
13066         me->type = IRQ_RCVCTXT;
13067
13068         remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13069
13070         ret = request_threaded_irq(me->msix.vector, receive_context_interrupt,
13071                                    receive_context_thread, 0, me->name, arg);
13072         if (ret) {
13073                 dd_dev_err(dd, "vnic irq request (vector %d, idx %d) fail %d\n",
13074                            me->msix.vector, idx, ret);
13075                 return;
13076         }
13077         /*
13078          * assign arg after request_irq call, so it will be
13079          * cleaned up
13080          */
13081         me->arg = arg;
13082
13083         ret = hfi1_get_irq_affinity(dd, me);
13084         if (ret) {
13085                 dd_dev_err(dd,
13086                            "unable to pin IRQ %d\n", ret);
13087                 free_irq(me->msix.vector, me->arg);
13088         }
13089 }
13090
13091 /*
13092  * Set the general handler to accept all interrupts, remap all
13093  * chip interrupts back to MSI-X 0.
13094  */
13095 static void reset_interrupts(struct hfi1_devdata *dd)
13096 {
13097         int i;
13098
13099         /* all interrupts handled by the general handler */
13100         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13101                 dd->gi_mask[i] = ~(u64)0;
13102
13103         /* all chip interrupts map to MSI-X 0 */
13104         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13105                 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13106 }
13107
13108 static int set_up_interrupts(struct hfi1_devdata *dd)
13109 {
13110         struct hfi1_msix_entry *entries;
13111         u32 total, request;
13112         int i, ret;
13113         int single_interrupt = 0; /* we expect to have all the interrupts */
13114
13115         /*
13116          * Interrupt count:
13117          *      1 general, "slow path" interrupt (includes the SDMA engines
13118          *              slow source, SDMACleanupDone)
13119          *      N interrupts - one per used SDMA engine
13120          *      M interrupt - one per kernel receive context
13121          */
13122         total = 1 + dd->num_sdma + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
13123
13124         entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
13125         if (!entries) {
13126                 ret = -ENOMEM;
13127                 goto fail;
13128         }
13129         /* 1-1 MSI-X entry assignment */
13130         for (i = 0; i < total; i++)
13131                 entries[i].msix.entry = i;
13132
13133         /* ask for MSI-X interrupts */
13134         request = total;
13135         request_msix(dd, &request, entries);
13136
13137         if (request == 0) {
13138                 /* using INTx */
13139                 /* dd->num_msix_entries already zero */
13140                 kfree(entries);
13141                 single_interrupt = 1;
13142                 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
13143         } else {
13144                 /* using MSI-X */
13145                 dd->num_msix_entries = request;
13146                 dd->msix_entries = entries;
13147
13148                 if (request != total) {
13149                         /* using MSI-X, with reduced interrupts */
13150                         dd_dev_err(
13151                                 dd,
13152                                 "cannot handle reduced interrupt case, want %u, got %u\n",
13153                                 total, request);
13154                         ret = -EINVAL;
13155                         goto fail;
13156                 }
13157                 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13158         }
13159
13160         /* mask all interrupts */
13161         set_intr_state(dd, 0);
13162         /* clear all pending interrupts */
13163         clear_all_interrupts(dd);
13164
13165         /* reset general handler mask, chip MSI-X mappings */
13166         reset_interrupts(dd);
13167
13168         if (single_interrupt)
13169                 ret = request_intx_irq(dd);
13170         else
13171                 ret = request_msix_irqs(dd);
13172         if (ret)
13173                 goto fail;
13174
13175         return 0;
13176
13177 fail:
13178         clean_up_interrupts(dd);
13179         return ret;
13180 }
13181
13182 /*
13183  * Set up context values in dd.  Sets:
13184  *
13185  *      num_rcv_contexts - number of contexts being used
13186  *      n_krcv_queues - number of kernel contexts
13187  *      first_dyn_alloc_ctxt - first dynamically allocated context
13188  *                             in array of contexts
13189  *      freectxts  - number of free user contexts
13190  *      num_send_contexts - number of PIO send contexts being used
13191  */
13192 static int set_up_context_variables(struct hfi1_devdata *dd)
13193 {
13194         unsigned long num_kernel_contexts;
13195         int total_contexts;
13196         int ret;
13197         unsigned ngroups;
13198         int qos_rmt_count;
13199         int user_rmt_reduced;
13200
13201         /*
13202          * Kernel receive contexts:
13203          * - Context 0 - control context (VL15/multicast/error)
13204          * - Context 1 - first kernel context
13205          * - Context 2 - second kernel context
13206          * ...
13207          */
13208         if (n_krcvqs)
13209                 /*
13210                  * n_krcvqs is the sum of module parameter kernel receive
13211                  * contexts, krcvqs[].  It does not include the control
13212                  * context, so add that.
13213                  */
13214                 num_kernel_contexts = n_krcvqs + 1;
13215         else
13216                 num_kernel_contexts = DEFAULT_KRCVQS + 1;
13217         /*
13218          * Every kernel receive context needs an ACK send context.
13219          * one send context is allocated for each VL{0-7} and VL15
13220          */
13221         if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
13222                 dd_dev_err(dd,
13223                            "Reducing # kernel rcv contexts to: %d, from %lu\n",
13224                            (int)(dd->chip_send_contexts - num_vls - 1),
13225                            num_kernel_contexts);
13226                 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
13227         }
13228         /*
13229          * User contexts:
13230          *      - default to 1 user context per real (non-HT) CPU core if
13231          *        num_user_contexts is negative
13232          */
13233         if (num_user_contexts < 0)
13234                 num_user_contexts =
13235                         cpumask_weight(&node_affinity.real_cpu_mask);
13236
13237         total_contexts = num_kernel_contexts + num_user_contexts;
13238
13239         /*
13240          * Adjust the counts given a global max.
13241          */
13242         if (total_contexts > dd->chip_rcv_contexts) {
13243                 dd_dev_err(dd,
13244                            "Reducing # user receive contexts to: %d, from %d\n",
13245                            (int)(dd->chip_rcv_contexts - num_kernel_contexts),
13246                            (int)num_user_contexts);
13247                 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
13248                 /* recalculate */
13249                 total_contexts = num_kernel_contexts + num_user_contexts;
13250         }
13251
13252         /* each user context requires an entry in the RMT */
13253         qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13254         if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
13255                 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13256                 dd_dev_err(dd,
13257                            "RMT size is reducing the number of user receive contexts from %d to %d\n",
13258                            (int)num_user_contexts,
13259                            user_rmt_reduced);
13260                 /* recalculate */
13261                 num_user_contexts = user_rmt_reduced;
13262                 total_contexts = num_kernel_contexts + num_user_contexts;
13263         }
13264
13265         /* Accommodate VNIC contexts */
13266         if ((total_contexts + HFI1_NUM_VNIC_CTXT) <= dd->chip_rcv_contexts)
13267                 total_contexts += HFI1_NUM_VNIC_CTXT;
13268
13269         /* the first N are kernel contexts, the rest are user/vnic contexts */
13270         dd->num_rcv_contexts = total_contexts;
13271         dd->n_krcv_queues = num_kernel_contexts;
13272         dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13273         dd->num_user_contexts = num_user_contexts;
13274         dd->freectxts = num_user_contexts;
13275         dd_dev_info(dd,
13276                     "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
13277                     (int)dd->chip_rcv_contexts,
13278                     (int)dd->num_rcv_contexts,
13279                     (int)dd->n_krcv_queues,
13280                     (int)dd->num_rcv_contexts - dd->n_krcv_queues);
13281
13282         /*
13283          * Receive array allocation:
13284          *   All RcvArray entries are divided into groups of 8. This
13285          *   is required by the hardware and will speed up writes to
13286          *   consecutive entries by using write-combining of the entire
13287          *   cacheline.
13288          *
13289          *   The number of groups are evenly divided among all contexts.
13290          *   any left over groups will be given to the first N user
13291          *   contexts.
13292          */
13293         dd->rcv_entries.group_size = RCV_INCREMENT;
13294         ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13295         dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13296         dd->rcv_entries.nctxt_extra = ngroups -
13297                 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13298         dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13299                     dd->rcv_entries.ngroups,
13300                     dd->rcv_entries.nctxt_extra);
13301         if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13302             MAX_EAGER_ENTRIES * 2) {
13303                 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13304                         dd->rcv_entries.group_size;
13305                 dd_dev_info(dd,
13306                             "RcvArray group count too high, change to %u\n",
13307                             dd->rcv_entries.ngroups);
13308                 dd->rcv_entries.nctxt_extra = 0;
13309         }
13310         /*
13311          * PIO send contexts
13312          */
13313         ret = init_sc_pools_and_sizes(dd);
13314         if (ret >= 0) { /* success */
13315                 dd->num_send_contexts = ret;
13316                 dd_dev_info(
13317                         dd,
13318                         "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13319                         dd->chip_send_contexts,
13320                         dd->num_send_contexts,
13321                         dd->sc_sizes[SC_KERNEL].count,
13322                         dd->sc_sizes[SC_ACK].count,
13323                         dd->sc_sizes[SC_USER].count,
13324                         dd->sc_sizes[SC_VL15].count);
13325                 ret = 0;        /* success */
13326         }
13327
13328         return ret;
13329 }
13330
13331 /*
13332  * Set the device/port partition key table. The MAD code
13333  * will ensure that, at least, the partial management
13334  * partition key is present in the table.
13335  */
13336 static void set_partition_keys(struct hfi1_pportdata *ppd)
13337 {
13338         struct hfi1_devdata *dd = ppd->dd;
13339         u64 reg = 0;
13340         int i;
13341
13342         dd_dev_info(dd, "Setting partition keys\n");
13343         for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13344                 reg |= (ppd->pkeys[i] &
13345                         RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13346                         ((i % 4) *
13347                          RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13348                 /* Each register holds 4 PKey values. */
13349                 if ((i % 4) == 3) {
13350                         write_csr(dd, RCV_PARTITION_KEY +
13351                                   ((i - 3) * 2), reg);
13352                         reg = 0;
13353                 }
13354         }
13355
13356         /* Always enable HW pkeys check when pkeys table is set */
13357         add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13358 }
13359
13360 /*
13361  * These CSRs and memories are uninitialized on reset and must be
13362  * written before reading to set the ECC/parity bits.
13363  *
13364  * NOTE: All user context CSRs that are not mmaped write-only
13365  * (e.g. the TID flows) must be initialized even if the driver never
13366  * reads them.
13367  */
13368 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13369 {
13370         int i, j;
13371
13372         /* CceIntMap */
13373         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13374                 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13375
13376         /* SendCtxtCreditReturnAddr */
13377         for (i = 0; i < dd->chip_send_contexts; i++)
13378                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13379
13380         /* PIO Send buffers */
13381         /* SDMA Send buffers */
13382         /*
13383          * These are not normally read, and (presently) have no method
13384          * to be read, so are not pre-initialized
13385          */
13386
13387         /* RcvHdrAddr */
13388         /* RcvHdrTailAddr */
13389         /* RcvTidFlowTable */
13390         for (i = 0; i < dd->chip_rcv_contexts; i++) {
13391                 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13392                 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13393                 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13394                         write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13395         }
13396
13397         /* RcvArray */
13398         for (i = 0; i < dd->chip_rcv_array_count; i++)
13399                 write_csr(dd, RCV_ARRAY + (8 * i),
13400                           RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
13401
13402         /* RcvQPMapTable */
13403         for (i = 0; i < 32; i++)
13404                 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13405 }
13406
13407 /*
13408  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13409  */
13410 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13411                              u64 ctrl_bits)
13412 {
13413         unsigned long timeout;
13414         u64 reg;
13415
13416         /* is the condition present? */
13417         reg = read_csr(dd, CCE_STATUS);
13418         if ((reg & status_bits) == 0)
13419                 return;
13420
13421         /* clear the condition */
13422         write_csr(dd, CCE_CTRL, ctrl_bits);
13423
13424         /* wait for the condition to clear */
13425         timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13426         while (1) {
13427                 reg = read_csr(dd, CCE_STATUS);
13428                 if ((reg & status_bits) == 0)
13429                         return;
13430                 if (time_after(jiffies, timeout)) {
13431                         dd_dev_err(dd,
13432                                    "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13433                                    status_bits, reg & status_bits);
13434                         return;
13435                 }
13436                 udelay(1);
13437         }
13438 }
13439
13440 /* set CCE CSRs to chip reset defaults */
13441 static void reset_cce_csrs(struct hfi1_devdata *dd)
13442 {
13443         int i;
13444
13445         /* CCE_REVISION read-only */
13446         /* CCE_REVISION2 read-only */
13447         /* CCE_CTRL - bits clear automatically */
13448         /* CCE_STATUS read-only, use CceCtrl to clear */
13449         clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13450         clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13451         clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13452         for (i = 0; i < CCE_NUM_SCRATCH; i++)
13453                 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13454         /* CCE_ERR_STATUS read-only */
13455         write_csr(dd, CCE_ERR_MASK, 0);
13456         write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13457         /* CCE_ERR_FORCE leave alone */
13458         for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13459                 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13460         write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13461         /* CCE_PCIE_CTRL leave alone */
13462         for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13463                 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13464                 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13465                           CCE_MSIX_TABLE_UPPER_RESETCSR);
13466         }
13467         for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13468                 /* CCE_MSIX_PBA read-only */
13469                 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13470                 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13471         }
13472         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13473                 write_csr(dd, CCE_INT_MAP, 0);
13474         for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13475                 /* CCE_INT_STATUS read-only */
13476                 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13477                 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13478                 /* CCE_INT_FORCE leave alone */
13479                 /* CCE_INT_BLOCKED read-only */
13480         }
13481         for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13482                 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13483 }
13484
13485 /* set MISC CSRs to chip reset defaults */
13486 static void reset_misc_csrs(struct hfi1_devdata *dd)
13487 {
13488         int i;
13489
13490         for (i = 0; i < 32; i++) {
13491                 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13492                 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13493                 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13494         }
13495         /*
13496          * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13497          * only be written 128-byte chunks
13498          */
13499         /* init RSA engine to clear lingering errors */
13500         write_csr(dd, MISC_CFG_RSA_CMD, 1);
13501         write_csr(dd, MISC_CFG_RSA_MU, 0);
13502         write_csr(dd, MISC_CFG_FW_CTRL, 0);
13503         /* MISC_STS_8051_DIGEST read-only */
13504         /* MISC_STS_SBM_DIGEST read-only */
13505         /* MISC_STS_PCIE_DIGEST read-only */
13506         /* MISC_STS_FAB_DIGEST read-only */
13507         /* MISC_ERR_STATUS read-only */
13508         write_csr(dd, MISC_ERR_MASK, 0);
13509         write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13510         /* MISC_ERR_FORCE leave alone */
13511 }
13512
13513 /* set TXE CSRs to chip reset defaults */
13514 static void reset_txe_csrs(struct hfi1_devdata *dd)
13515 {
13516         int i;
13517
13518         /*
13519          * TXE Kernel CSRs
13520          */
13521         write_csr(dd, SEND_CTRL, 0);
13522         __cm_reset(dd, 0);      /* reset CM internal state */
13523         /* SEND_CONTEXTS read-only */
13524         /* SEND_DMA_ENGINES read-only */
13525         /* SEND_PIO_MEM_SIZE read-only */
13526         /* SEND_DMA_MEM_SIZE read-only */
13527         write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13528         pio_reset_all(dd);      /* SEND_PIO_INIT_CTXT */
13529         /* SEND_PIO_ERR_STATUS read-only */
13530         write_csr(dd, SEND_PIO_ERR_MASK, 0);
13531         write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13532         /* SEND_PIO_ERR_FORCE leave alone */
13533         /* SEND_DMA_ERR_STATUS read-only */
13534         write_csr(dd, SEND_DMA_ERR_MASK, 0);
13535         write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13536         /* SEND_DMA_ERR_FORCE leave alone */
13537         /* SEND_EGRESS_ERR_STATUS read-only */
13538         write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13539         write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13540         /* SEND_EGRESS_ERR_FORCE leave alone */
13541         write_csr(dd, SEND_BTH_QP, 0);
13542         write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13543         write_csr(dd, SEND_SC2VLT0, 0);
13544         write_csr(dd, SEND_SC2VLT1, 0);
13545         write_csr(dd, SEND_SC2VLT2, 0);
13546         write_csr(dd, SEND_SC2VLT3, 0);
13547         write_csr(dd, SEND_LEN_CHECK0, 0);
13548         write_csr(dd, SEND_LEN_CHECK1, 0);
13549         /* SEND_ERR_STATUS read-only */
13550         write_csr(dd, SEND_ERR_MASK, 0);
13551         write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13552         /* SEND_ERR_FORCE read-only */
13553         for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13554                 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13555         for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13556                 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13557         for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13558                 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13559         for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13560                 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13561         for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13562                 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13563         write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13564         write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13565         /* SEND_CM_CREDIT_USED_STATUS read-only */
13566         write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13567         write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13568         write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13569         write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13570         write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13571         for (i = 0; i < TXE_NUM_DATA_VL; i++)
13572                 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13573         write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13574         /* SEND_CM_CREDIT_USED_VL read-only */
13575         /* SEND_CM_CREDIT_USED_VL15 read-only */
13576         /* SEND_EGRESS_CTXT_STATUS read-only */
13577         /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13578         write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13579         /* SEND_EGRESS_ERR_INFO read-only */
13580         /* SEND_EGRESS_ERR_SOURCE read-only */
13581
13582         /*
13583          * TXE Per-Context CSRs
13584          */
13585         for (i = 0; i < dd->chip_send_contexts; i++) {
13586                 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13587                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13588                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13589                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13590                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13591                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13592                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13593                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13594                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13595                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13596                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13597                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13598         }
13599
13600         /*
13601          * TXE Per-SDMA CSRs
13602          */
13603         for (i = 0; i < dd->chip_sdma_engines; i++) {
13604                 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13605                 /* SEND_DMA_STATUS read-only */
13606                 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13607                 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13608                 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13609                 /* SEND_DMA_HEAD read-only */
13610                 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13611                 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13612                 /* SEND_DMA_IDLE_CNT read-only */
13613                 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13614                 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13615                 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13616                 /* SEND_DMA_ENG_ERR_STATUS read-only */
13617                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13618                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13619                 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13620                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13621                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13622                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13623                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13624                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13625                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13626                 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13627         }
13628 }
13629
13630 /*
13631  * Expect on entry:
13632  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13633  */
13634 static void init_rbufs(struct hfi1_devdata *dd)
13635 {
13636         u64 reg;
13637         int count;
13638
13639         /*
13640          * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13641          * clear.
13642          */
13643         count = 0;
13644         while (1) {
13645                 reg = read_csr(dd, RCV_STATUS);
13646                 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13647                             | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13648                         break;
13649                 /*
13650                  * Give up after 1ms - maximum wait time.
13651                  *
13652                  * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13653                  * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13654                  *      136 KB / (66% * 250MB/s) = 844us
13655                  */
13656                 if (count++ > 500) {
13657                         dd_dev_err(dd,
13658                                    "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13659                                    __func__, reg);
13660                         break;
13661                 }
13662                 udelay(2); /* do not busy-wait the CSR */
13663         }
13664
13665         /* start the init - expect RcvCtrl to be 0 */
13666         write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13667
13668         /*
13669          * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13670          * period after the write before RcvStatus.RxRbufInitDone is valid.
13671          * The delay in the first run through the loop below is sufficient and
13672          * required before the first read of RcvStatus.RxRbufInintDone.
13673          */
13674         read_csr(dd, RCV_CTRL);
13675
13676         /* wait for the init to finish */
13677         count = 0;
13678         while (1) {
13679                 /* delay is required first time through - see above */
13680                 udelay(2); /* do not busy-wait the CSR */
13681                 reg = read_csr(dd, RCV_STATUS);
13682                 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13683                         break;
13684
13685                 /* give up after 100us - slowest possible at 33MHz is 73us */
13686                 if (count++ > 50) {
13687                         dd_dev_err(dd,
13688                                    "%s: RcvStatus.RxRbufInit not set, continuing\n",
13689                                    __func__);
13690                         break;
13691                 }
13692         }
13693 }
13694
13695 /* set RXE CSRs to chip reset defaults */
13696 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13697 {
13698         int i, j;
13699
13700         /*
13701          * RXE Kernel CSRs
13702          */
13703         write_csr(dd, RCV_CTRL, 0);
13704         init_rbufs(dd);
13705         /* RCV_STATUS read-only */
13706         /* RCV_CONTEXTS read-only */
13707         /* RCV_ARRAY_CNT read-only */
13708         /* RCV_BUF_SIZE read-only */
13709         write_csr(dd, RCV_BTH_QP, 0);
13710         write_csr(dd, RCV_MULTICAST, 0);
13711         write_csr(dd, RCV_BYPASS, 0);
13712         write_csr(dd, RCV_VL15, 0);
13713         /* this is a clear-down */
13714         write_csr(dd, RCV_ERR_INFO,
13715                   RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13716         /* RCV_ERR_STATUS read-only */
13717         write_csr(dd, RCV_ERR_MASK, 0);
13718         write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13719         /* RCV_ERR_FORCE leave alone */
13720         for (i = 0; i < 32; i++)
13721                 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13722         for (i = 0; i < 4; i++)
13723                 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13724         for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13725                 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13726         for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13727                 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13728         for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13729                 clear_rsm_rule(dd, i);
13730         for (i = 0; i < 32; i++)
13731                 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13732
13733         /*
13734          * RXE Kernel and User Per-Context CSRs
13735          */
13736         for (i = 0; i < dd->chip_rcv_contexts; i++) {
13737                 /* kernel */
13738                 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13739                 /* RCV_CTXT_STATUS read-only */
13740                 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13741                 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13742                 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13743                 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13744                 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13745                 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13746                 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13747                 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13748                 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13749                 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13750
13751                 /* user */
13752                 /* RCV_HDR_TAIL read-only */
13753                 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13754                 /* RCV_EGR_INDEX_TAIL read-only */
13755                 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13756                 /* RCV_EGR_OFFSET_TAIL read-only */
13757                 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13758                         write_uctxt_csr(dd, i,
13759                                         RCV_TID_FLOW_TABLE + (8 * j), 0);
13760                 }
13761         }
13762 }
13763
13764 /*
13765  * Set sc2vl tables.
13766  *
13767  * They power on to zeros, so to avoid send context errors
13768  * they need to be set:
13769  *
13770  * SC 0-7 -> VL 0-7 (respectively)
13771  * SC 15  -> VL 15
13772  * otherwise
13773  *        -> VL 0
13774  */
13775 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13776 {
13777         int i;
13778         /* init per architecture spec, constrained by hardware capability */
13779
13780         /* HFI maps sent packets */
13781         write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13782                 0,
13783                 0, 0, 1, 1,
13784                 2, 2, 3, 3,
13785                 4, 4, 5, 5,
13786                 6, 6, 7, 7));
13787         write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13788                 1,
13789                 8, 0, 9, 0,
13790                 10, 0, 11, 0,
13791                 12, 0, 13, 0,
13792                 14, 0, 15, 15));
13793         write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13794                 2,
13795                 16, 0, 17, 0,
13796                 18, 0, 19, 0,
13797                 20, 0, 21, 0,
13798                 22, 0, 23, 0));
13799         write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13800                 3,
13801                 24, 0, 25, 0,
13802                 26, 0, 27, 0,
13803                 28, 0, 29, 0,
13804                 30, 0, 31, 0));
13805
13806         /* DC maps received packets */
13807         write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13808                 15_0,
13809                 0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13810                 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13811         write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13812                 31_16,
13813                 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13814                 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13815
13816         /* initialize the cached sc2vl values consistently with h/w */
13817         for (i = 0; i < 32; i++) {
13818                 if (i < 8 || i == 15)
13819                         *((u8 *)(dd->sc2vl) + i) = (u8)i;
13820                 else
13821                         *((u8 *)(dd->sc2vl) + i) = 0;
13822         }
13823 }
13824
13825 /*
13826  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
13827  * depend on the chip going through a power-on reset - a driver may be loaded
13828  * and unloaded many times.
13829  *
13830  * Do not write any CSR values to the chip in this routine - there may be
13831  * a reset following the (possible) FLR in this routine.
13832  *
13833  */
13834 static void init_chip(struct hfi1_devdata *dd)
13835 {
13836         int i;
13837
13838         /*
13839          * Put the HFI CSRs in a known state.
13840          * Combine this with a DC reset.
13841          *
13842          * Stop the device from doing anything while we do a
13843          * reset.  We know there are no other active users of
13844          * the device since we are now in charge.  Turn off
13845          * off all outbound and inbound traffic and make sure
13846          * the device does not generate any interrupts.
13847          */
13848
13849         /* disable send contexts and SDMA engines */
13850         write_csr(dd, SEND_CTRL, 0);
13851         for (i = 0; i < dd->chip_send_contexts; i++)
13852                 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13853         for (i = 0; i < dd->chip_sdma_engines; i++)
13854                 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13855         /* disable port (turn off RXE inbound traffic) and contexts */
13856         write_csr(dd, RCV_CTRL, 0);
13857         for (i = 0; i < dd->chip_rcv_contexts; i++)
13858                 write_csr(dd, RCV_CTXT_CTRL, 0);
13859         /* mask all interrupt sources */
13860         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13861                 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13862
13863         /*
13864          * DC Reset: do a full DC reset before the register clear.
13865          * A recommended length of time to hold is one CSR read,
13866          * so reread the CceDcCtrl.  Then, hold the DC in reset
13867          * across the clear.
13868          */
13869         write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13870         (void)read_csr(dd, CCE_DC_CTRL);
13871
13872         if (use_flr) {
13873                 /*
13874                  * A FLR will reset the SPC core and part of the PCIe.
13875                  * The parts that need to be restored have already been
13876                  * saved.
13877                  */
13878                 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13879
13880                 /* do the FLR, the DC reset will remain */
13881                 pcie_flr(dd->pcidev);
13882
13883                 /* restore command and BARs */
13884                 restore_pci_variables(dd);
13885
13886                 if (is_ax(dd)) {
13887                         dd_dev_info(dd, "Resetting CSRs with FLR\n");
13888                         pcie_flr(dd->pcidev);
13889                         restore_pci_variables(dd);
13890                 }
13891         } else {
13892                 dd_dev_info(dd, "Resetting CSRs with writes\n");
13893                 reset_cce_csrs(dd);
13894                 reset_txe_csrs(dd);
13895                 reset_rxe_csrs(dd);
13896                 reset_misc_csrs(dd);
13897         }
13898         /* clear the DC reset */
13899         write_csr(dd, CCE_DC_CTRL, 0);
13900
13901         /* Set the LED off */
13902         setextled(dd, 0);
13903
13904         /*
13905          * Clear the QSFP reset.
13906          * An FLR enforces a 0 on all out pins. The driver does not touch
13907          * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
13908          * anything plugged constantly in reset, if it pays attention
13909          * to RESET_N.
13910          * Prime examples of this are optical cables. Set all pins high.
13911          * I2CCLK and I2CDAT will change per direction, and INT_N and
13912          * MODPRS_N are input only and their value is ignored.
13913          */
13914         write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13915         write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13916         init_chip_resources(dd);
13917 }
13918
13919 static void init_early_variables(struct hfi1_devdata *dd)
13920 {
13921         int i;
13922
13923         /* assign link credit variables */
13924         dd->vau = CM_VAU;
13925         dd->link_credits = CM_GLOBAL_CREDITS;
13926         if (is_ax(dd))
13927                 dd->link_credits--;
13928         dd->vcu = cu_to_vcu(hfi1_cu);
13929         /* enough room for 8 MAD packets plus header - 17K */
13930         dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13931         if (dd->vl15_init > dd->link_credits)
13932                 dd->vl15_init = dd->link_credits;
13933
13934         write_uninitialized_csrs_and_memories(dd);
13935
13936         if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13937                 for (i = 0; i < dd->num_pports; i++) {
13938                         struct hfi1_pportdata *ppd = &dd->pport[i];
13939
13940                         set_partition_keys(ppd);
13941                 }
13942         init_sc2vl_tables(dd);
13943 }
13944
13945 static void init_kdeth_qp(struct hfi1_devdata *dd)
13946 {
13947         /* user changed the KDETH_QP */
13948         if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13949                 /* out of range or illegal value */
13950                 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13951                 kdeth_qp = 0;
13952         }
13953         if (kdeth_qp == 0)      /* not set, or failed range check */
13954                 kdeth_qp = DEFAULT_KDETH_QP;
13955
13956         write_csr(dd, SEND_BTH_QP,
13957                   (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
13958                   SEND_BTH_QP_KDETH_QP_SHIFT);
13959
13960         write_csr(dd, RCV_BTH_QP,
13961                   (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
13962                   RCV_BTH_QP_KDETH_QP_SHIFT);
13963 }
13964
13965 /**
13966  * init_qpmap_table
13967  * @dd - device data
13968  * @first_ctxt - first context
13969  * @last_ctxt - first context
13970  *
13971  * This return sets the qpn mapping table that
13972  * is indexed by qpn[8:1].
13973  *
13974  * The routine will round robin the 256 settings
13975  * from first_ctxt to last_ctxt.
13976  *
13977  * The first/last looks ahead to having specialized
13978  * receive contexts for mgmt and bypass.  Normal
13979  * verbs traffic will assumed to be on a range
13980  * of receive contexts.
13981  */
13982 static void init_qpmap_table(struct hfi1_devdata *dd,
13983                              u32 first_ctxt,
13984                              u32 last_ctxt)
13985 {
13986         u64 reg = 0;
13987         u64 regno = RCV_QP_MAP_TABLE;
13988         int i;
13989         u64 ctxt = first_ctxt;
13990
13991         for (i = 0; i < 256; i++) {
13992                 reg |= ctxt << (8 * (i % 8));
13993                 ctxt++;
13994                 if (ctxt > last_ctxt)
13995                         ctxt = first_ctxt;
13996                 if (i % 8 == 7) {
13997                         write_csr(dd, regno, reg);
13998                         reg = 0;
13999                         regno += 8;
14000                 }
14001         }
14002
14003         add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14004                         | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14005 }
14006
14007 struct rsm_map_table {
14008         u64 map[NUM_MAP_REGS];
14009         unsigned int used;
14010 };
14011
14012 struct rsm_rule_data {
14013         u8 offset;
14014         u8 pkt_type;
14015         u32 field1_off;
14016         u32 field2_off;
14017         u32 index1_off;
14018         u32 index1_width;
14019         u32 index2_off;
14020         u32 index2_width;
14021         u32 mask1;
14022         u32 value1;
14023         u32 mask2;
14024         u32 value2;
14025 };
14026
14027 /*
14028  * Return an initialized RMT map table for users to fill in.  OK if it
14029  * returns NULL, indicating no table.
14030  */
14031 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14032 {
14033         struct rsm_map_table *rmt;
14034         u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14035
14036         rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14037         if (rmt) {
14038                 memset(rmt->map, rxcontext, sizeof(rmt->map));
14039                 rmt->used = 0;
14040         }
14041
14042         return rmt;
14043 }
14044
14045 /*
14046  * Write the final RMT map table to the chip and free the table.  OK if
14047  * table is NULL.
14048  */
14049 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14050                                    struct rsm_map_table *rmt)
14051 {
14052         int i;
14053
14054         if (rmt) {
14055                 /* write table to chip */
14056                 for (i = 0; i < NUM_MAP_REGS; i++)
14057                         write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14058
14059                 /* enable RSM */
14060                 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14061         }
14062 }
14063
14064 /*
14065  * Add a receive side mapping rule.
14066  */
14067 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14068                          struct rsm_rule_data *rrd)
14069 {
14070         write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14071                   (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14072                   1ull << rule_index | /* enable bit */
14073                   (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14074         write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14075                   (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14076                   (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14077                   (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14078                   (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14079                   (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14080                   (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14081         write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14082                   (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14083                   (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14084                   (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14085                   (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14086 }
14087
14088 /*
14089  * Clear a receive side mapping rule.
14090  */
14091 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14092 {
14093         write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14094         write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14095         write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14096 }
14097
14098 /* return the number of RSM map table entries that will be used for QOS */
14099 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14100                            unsigned int *np)
14101 {
14102         int i;
14103         unsigned int m, n;
14104         u8 max_by_vl = 0;
14105
14106         /* is QOS active at all? */
14107         if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14108             num_vls == 1 ||
14109             krcvqsset <= 1)
14110                 goto no_qos;
14111
14112         /* determine bits for qpn */
14113         for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14114                 if (krcvqs[i] > max_by_vl)
14115                         max_by_vl = krcvqs[i];
14116         if (max_by_vl > 32)
14117                 goto no_qos;
14118         m = ilog2(__roundup_pow_of_two(max_by_vl));
14119
14120         /* determine bits for vl */
14121         n = ilog2(__roundup_pow_of_two(num_vls));
14122
14123         /* reject if too much is used */
14124         if ((m + n) > 7)
14125                 goto no_qos;
14126
14127         if (mp)
14128                 *mp = m;
14129         if (np)
14130                 *np = n;
14131
14132         return 1 << (m + n);
14133
14134 no_qos:
14135         if (mp)
14136                 *mp = 0;
14137         if (np)
14138                 *np = 0;
14139         return 0;
14140 }
14141
14142 /**
14143  * init_qos - init RX qos
14144  * @dd - device data
14145  * @rmt - RSM map table
14146  *
14147  * This routine initializes Rule 0 and the RSM map table to implement
14148  * quality of service (qos).
14149  *
14150  * If all of the limit tests succeed, qos is applied based on the array
14151  * interpretation of krcvqs where entry 0 is VL0.
14152  *
14153  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14154  * feed both the RSM map table and the single rule.
14155  */
14156 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14157 {
14158         struct rsm_rule_data rrd;
14159         unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14160         unsigned int rmt_entries;
14161         u64 reg;
14162
14163         if (!rmt)
14164                 goto bail;
14165         rmt_entries = qos_rmt_entries(dd, &m, &n);
14166         if (rmt_entries == 0)
14167                 goto bail;
14168         qpns_per_vl = 1 << m;
14169
14170         /* enough room in the map table? */
14171         rmt_entries = 1 << (m + n);
14172         if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14173                 goto bail;
14174
14175         /* add qos entries to the the RSM map table */
14176         for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14177                 unsigned tctxt;
14178
14179                 for (qpn = 0, tctxt = ctxt;
14180                      krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14181                         unsigned idx, regoff, regidx;
14182
14183                         /* generate the index the hardware will produce */
14184                         idx = rmt->used + ((qpn << n) ^ i);
14185                         regoff = (idx % 8) * 8;
14186                         regidx = idx / 8;
14187                         /* replace default with context number */
14188                         reg = rmt->map[regidx];
14189                         reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14190                                 << regoff);
14191                         reg |= (u64)(tctxt++) << regoff;
14192                         rmt->map[regidx] = reg;
14193                         if (tctxt == ctxt + krcvqs[i])
14194                                 tctxt = ctxt;
14195                 }
14196                 ctxt += krcvqs[i];
14197         }
14198
14199         rrd.offset = rmt->used;
14200         rrd.pkt_type = 2;
14201         rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14202         rrd.field2_off = LRH_SC_MATCH_OFFSET;
14203         rrd.index1_off = LRH_SC_SELECT_OFFSET;
14204         rrd.index1_width = n;
14205         rrd.index2_off = QPN_SELECT_OFFSET;
14206         rrd.index2_width = m + n;
14207         rrd.mask1 = LRH_BTH_MASK;
14208         rrd.value1 = LRH_BTH_VALUE;
14209         rrd.mask2 = LRH_SC_MASK;
14210         rrd.value2 = LRH_SC_VALUE;
14211
14212         /* add rule 0 */
14213         add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14214
14215         /* mark RSM map entries as used */
14216         rmt->used += rmt_entries;
14217         /* map everything else to the mcast/err/vl15 context */
14218         init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14219         dd->qos_shift = n + 1;
14220         return;
14221 bail:
14222         dd->qos_shift = 1;
14223         init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14224 }
14225
14226 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14227                                     struct rsm_map_table *rmt)
14228 {
14229         struct rsm_rule_data rrd;
14230         u64 reg;
14231         int i, idx, regoff, regidx;
14232         u8 offset;
14233
14234         /* there needs to be enough room in the map table */
14235         if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14236                 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14237                 return;
14238         }
14239
14240         /*
14241          * RSM will extract the destination context as an index into the
14242          * map table.  The destination contexts are a sequential block
14243          * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14244          * Map entries are accessed as offset + extracted value.  Adjust
14245          * the added offset so this sequence can be placed anywhere in
14246          * the table - as long as the entries themselves do not wrap.
14247          * There are only enough bits in offset for the table size, so
14248          * start with that to allow for a "negative" offset.
14249          */
14250         offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14251                                                 (int)dd->first_dyn_alloc_ctxt);
14252
14253         for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14254                                 i < dd->num_rcv_contexts; i++, idx++) {
14255                 /* replace with identity mapping */
14256                 regoff = (idx % 8) * 8;
14257                 regidx = idx / 8;
14258                 reg = rmt->map[regidx];
14259                 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14260                 reg |= (u64)i << regoff;
14261                 rmt->map[regidx] = reg;
14262         }
14263
14264         /*
14265          * For RSM intercept of Expected FECN packets:
14266          * o packet type 0 - expected
14267          * o match on F (bit 95), using select/match 1, and
14268          * o match on SH (bit 133), using select/match 2.
14269          *
14270          * Use index 1 to extract the 8-bit receive context from DestQP
14271          * (start at bit 64).  Use that as the RSM map table index.
14272          */
14273         rrd.offset = offset;
14274         rrd.pkt_type = 0;
14275         rrd.field1_off = 95;
14276         rrd.field2_off = 133;
14277         rrd.index1_off = 64;
14278         rrd.index1_width = 8;
14279         rrd.index2_off = 0;
14280         rrd.index2_width = 0;
14281         rrd.mask1 = 1;
14282         rrd.value1 = 1;
14283         rrd.mask2 = 1;
14284         rrd.value2 = 1;
14285
14286         /* add rule 1 */
14287         add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14288
14289         rmt->used += dd->num_user_contexts;
14290 }
14291
14292 /* Initialize RSM for VNIC */
14293 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14294 {
14295         u8 i, j;
14296         u8 ctx_id = 0;
14297         u64 reg;
14298         u32 regoff;
14299         struct rsm_rule_data rrd;
14300
14301         if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14302                 dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14303                            dd->vnic.rmt_start);
14304                 return;
14305         }
14306
14307         dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14308                 dd->vnic.rmt_start,
14309                 dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14310
14311         /* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14312         regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14313         reg = read_csr(dd, regoff);
14314         for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14315                 /* Update map register with vnic context */
14316                 j = (dd->vnic.rmt_start + i) % 8;
14317                 reg &= ~(0xffllu << (j * 8));
14318                 reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14319                 /* Wrap up vnic ctx index */
14320                 ctx_id %= dd->vnic.num_ctxt;
14321                 /* Write back map register */
14322                 if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14323                         dev_dbg(&(dd)->pcidev->dev,
14324                                 "Vnic rsm map reg[%d] =0x%llx\n",
14325                                 regoff - RCV_RSM_MAP_TABLE, reg);
14326
14327                         write_csr(dd, regoff, reg);
14328                         regoff += 8;
14329                         if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14330                                 reg = read_csr(dd, regoff);
14331                 }
14332         }
14333
14334         /* Add rule for vnic */
14335         rrd.offset = dd->vnic.rmt_start;
14336         rrd.pkt_type = 4;
14337         /* Match 16B packets */
14338         rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14339         rrd.mask1 = L2_TYPE_MASK;
14340         rrd.value1 = L2_16B_VALUE;
14341         /* Match ETH L4 packets */
14342         rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14343         rrd.mask2 = L4_16B_TYPE_MASK;
14344         rrd.value2 = L4_16B_ETH_VALUE;
14345         /* Calc context from veswid and entropy */
14346         rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14347         rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14348         rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14349         rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14350         add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14351
14352         /* Enable RSM if not already enabled */
14353         add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14354 }
14355
14356 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14357 {
14358         clear_rsm_rule(dd, RSM_INS_VNIC);
14359
14360         /* Disable RSM if used only by vnic */
14361         if (dd->vnic.rmt_start == 0)
14362                 clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14363 }
14364
14365 static void init_rxe(struct hfi1_devdata *dd)
14366 {
14367         struct rsm_map_table *rmt;
14368
14369         /* enable all receive errors */
14370         write_csr(dd, RCV_ERR_MASK, ~0ull);
14371
14372         rmt = alloc_rsm_map_table(dd);
14373         /* set up QOS, including the QPN map table */
14374         init_qos(dd, rmt);
14375         init_user_fecn_handling(dd, rmt);
14376         complete_rsm_map_table(dd, rmt);
14377         /* record number of used rsm map entries for vnic */
14378         dd->vnic.rmt_start = rmt->used;
14379         kfree(rmt);
14380
14381         /*
14382          * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14383          * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14384          * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14385          * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14386          * Max_PayLoad_Size set to its minimum of 128.
14387          *
14388          * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14389          * (64 bytes).  Max_Payload_Size is possibly modified upward in
14390          * tune_pcie_caps() which is called after this routine.
14391          */
14392 }
14393
14394 static void init_other(struct hfi1_devdata *dd)
14395 {
14396         /* enable all CCE errors */
14397         write_csr(dd, CCE_ERR_MASK, ~0ull);
14398         /* enable *some* Misc errors */
14399         write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14400         /* enable all DC errors, except LCB */
14401         write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14402         write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14403 }
14404
14405 /*
14406  * Fill out the given AU table using the given CU.  A CU is defined in terms
14407  * AUs.  The table is a an encoding: given the index, how many AUs does that
14408  * represent?
14409  *
14410  * NOTE: Assumes that the register layout is the same for the
14411  * local and remote tables.
14412  */
14413 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14414                                u32 csr0to3, u32 csr4to7)
14415 {
14416         write_csr(dd, csr0to3,
14417                   0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14418                   1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14419                   2ull * cu <<
14420                   SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14421                   4ull * cu <<
14422                   SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14423         write_csr(dd, csr4to7,
14424                   8ull * cu <<
14425                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14426                   16ull * cu <<
14427                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14428                   32ull * cu <<
14429                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14430                   64ull * cu <<
14431                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14432 }
14433
14434 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14435 {
14436         assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14437                            SEND_CM_LOCAL_AU_TABLE4_TO7);
14438 }
14439
14440 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14441 {
14442         assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14443                            SEND_CM_REMOTE_AU_TABLE4_TO7);
14444 }
14445
14446 static void init_txe(struct hfi1_devdata *dd)
14447 {
14448         int i;
14449
14450         /* enable all PIO, SDMA, general, and Egress errors */
14451         write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14452         write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14453         write_csr(dd, SEND_ERR_MASK, ~0ull);
14454         write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14455
14456         /* enable all per-context and per-SDMA engine errors */
14457         for (i = 0; i < dd->chip_send_contexts; i++)
14458                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14459         for (i = 0; i < dd->chip_sdma_engines; i++)
14460                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14461
14462         /* set the local CU to AU mapping */
14463         assign_local_cm_au_table(dd, dd->vcu);
14464
14465         /*
14466          * Set reasonable default for Credit Return Timer
14467          * Don't set on Simulator - causes it to choke.
14468          */
14469         if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14470                 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14471 }
14472
14473 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
14474 {
14475         struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14476         unsigned sctxt;
14477         int ret = 0;
14478         u64 reg;
14479
14480         if (!rcd || !rcd->sc) {
14481                 ret = -EINVAL;
14482                 goto done;
14483         }
14484         sctxt = rcd->sc->hw_context;
14485         reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14486                 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14487                  SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14488         /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14489         if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14490                 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14491         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14492         /*
14493          * Enable send-side J_KEY integrity check, unless this is A0 h/w
14494          */
14495         if (!is_ax(dd)) {
14496                 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14497                 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14498                 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14499         }
14500
14501         /* Enable J_KEY check on receive context. */
14502         reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14503                 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14504                  RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14505         write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
14506 done:
14507         return ret;
14508 }
14509
14510 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
14511 {
14512         struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14513         unsigned sctxt;
14514         int ret = 0;
14515         u64 reg;
14516
14517         if (!rcd || !rcd->sc) {
14518                 ret = -EINVAL;
14519                 goto done;
14520         }
14521         sctxt = rcd->sc->hw_context;
14522         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14523         /*
14524          * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14525          * This check would not have been enabled for A0 h/w, see
14526          * set_ctxt_jkey().
14527          */
14528         if (!is_ax(dd)) {
14529                 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14530                 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14531                 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14532         }
14533         /* Turn off the J_KEY on the receive side */
14534         write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
14535 done:
14536         return ret;
14537 }
14538
14539 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
14540 {
14541         struct hfi1_ctxtdata *rcd;
14542         unsigned sctxt;
14543         int ret = 0;
14544         u64 reg;
14545
14546         if (ctxt < dd->num_rcv_contexts) {
14547                 rcd = dd->rcd[ctxt];
14548         } else {
14549                 ret = -EINVAL;
14550                 goto done;
14551         }
14552         if (!rcd || !rcd->sc) {
14553                 ret = -EINVAL;
14554                 goto done;
14555         }
14556         sctxt = rcd->sc->hw_context;
14557         reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14558                 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14559         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14560         reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14561         reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14562         reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14563         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14564 done:
14565         return ret;
14566 }
14567
14568 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14569 {
14570         u8 hw_ctxt;
14571         u64 reg;
14572
14573         if (!ctxt || !ctxt->sc)
14574                 return -EINVAL;
14575
14576         if (ctxt->ctxt >= dd->num_rcv_contexts)
14577                 return -EINVAL;
14578
14579         hw_ctxt = ctxt->sc->hw_context;
14580         reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14581         reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14582         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14583         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14584
14585         return 0;
14586 }
14587
14588 /*
14589  * Start doing the clean up the the chip. Our clean up happens in multiple
14590  * stages and this is just the first.
14591  */
14592 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14593 {
14594         aspm_exit(dd);
14595         free_cntrs(dd);
14596         free_rcverr(dd);
14597         clean_up_interrupts(dd);
14598         finish_chip_resources(dd);
14599 }
14600
14601 #define HFI_BASE_GUID(dev) \
14602         ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14603
14604 /*
14605  * Information can be shared between the two HFIs on the same ASIC
14606  * in the same OS.  This function finds the peer device and sets
14607  * up a shared structure.
14608  */
14609 static int init_asic_data(struct hfi1_devdata *dd)
14610 {
14611         unsigned long flags;
14612         struct hfi1_devdata *tmp, *peer = NULL;
14613         struct hfi1_asic_data *asic_data;
14614         int ret = 0;
14615
14616         /* pre-allocate the asic structure in case we are the first device */
14617         asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14618         if (!asic_data)
14619                 return -ENOMEM;
14620
14621         spin_lock_irqsave(&hfi1_devs_lock, flags);
14622         /* Find our peer device */
14623         list_for_each_entry(tmp, &hfi1_dev_list, list) {
14624                 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14625                     dd->unit != tmp->unit) {
14626                         peer = tmp;
14627                         break;
14628                 }
14629         }
14630
14631         if (peer) {
14632                 /* use already allocated structure */
14633                 dd->asic_data = peer->asic_data;
14634                 kfree(asic_data);
14635         } else {
14636                 dd->asic_data = asic_data;
14637                 mutex_init(&dd->asic_data->asic_resource_mutex);
14638         }
14639         dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14640         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14641
14642         /* first one through - set up i2c devices */
14643         if (!peer)
14644                 ret = set_up_i2c(dd, dd->asic_data);
14645
14646         return ret;
14647 }
14648
14649 /*
14650  * Set dd->boardname.  Use a generic name if a name is not returned from
14651  * EFI variable space.
14652  *
14653  * Return 0 on success, -ENOMEM if space could not be allocated.
14654  */
14655 static int obtain_boardname(struct hfi1_devdata *dd)
14656 {
14657         /* generic board description */
14658         const char generic[] =
14659                 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14660         unsigned long size;
14661         int ret;
14662
14663         ret = read_hfi1_efi_var(dd, "description", &size,
14664                                 (void **)&dd->boardname);
14665         if (ret) {
14666                 dd_dev_info(dd, "Board description not found\n");
14667                 /* use generic description */
14668                 dd->boardname = kstrdup(generic, GFP_KERNEL);
14669                 if (!dd->boardname)
14670                         return -ENOMEM;
14671         }
14672         return 0;
14673 }
14674
14675 /*
14676  * Check the interrupt registers to make sure that they are mapped correctly.
14677  * It is intended to help user identify any mismapping by VMM when the driver
14678  * is running in a VM. This function should only be called before interrupt
14679  * is set up properly.
14680  *
14681  * Return 0 on success, -EINVAL on failure.
14682  */
14683 static int check_int_registers(struct hfi1_devdata *dd)
14684 {
14685         u64 reg;
14686         u64 all_bits = ~(u64)0;
14687         u64 mask;
14688
14689         /* Clear CceIntMask[0] to avoid raising any interrupts */
14690         mask = read_csr(dd, CCE_INT_MASK);
14691         write_csr(dd, CCE_INT_MASK, 0ull);
14692         reg = read_csr(dd, CCE_INT_MASK);
14693         if (reg)
14694                 goto err_exit;
14695
14696         /* Clear all interrupt status bits */
14697         write_csr(dd, CCE_INT_CLEAR, all_bits);
14698         reg = read_csr(dd, CCE_INT_STATUS);
14699         if (reg)
14700                 goto err_exit;
14701
14702         /* Set all interrupt status bits */
14703         write_csr(dd, CCE_INT_FORCE, all_bits);
14704         reg = read_csr(dd, CCE_INT_STATUS);
14705         if (reg != all_bits)
14706                 goto err_exit;
14707
14708         /* Restore the interrupt mask */
14709         write_csr(dd, CCE_INT_CLEAR, all_bits);
14710         write_csr(dd, CCE_INT_MASK, mask);
14711
14712         return 0;
14713 err_exit:
14714         write_csr(dd, CCE_INT_MASK, mask);
14715         dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14716         return -EINVAL;
14717 }
14718
14719 /**
14720  * Allocate and initialize the device structure for the hfi.
14721  * @dev: the pci_dev for hfi1_ib device
14722  * @ent: pci_device_id struct for this dev
14723  *
14724  * Also allocates, initializes, and returns the devdata struct for this
14725  * device instance
14726  *
14727  * This is global, and is called directly at init to set up the
14728  * chip-specific function pointers for later use.
14729  */
14730 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14731                                   const struct pci_device_id *ent)
14732 {
14733         struct hfi1_devdata *dd;
14734         struct hfi1_pportdata *ppd;
14735         u64 reg;
14736         int i, ret;
14737         static const char * const inames[] = { /* implementation names */
14738                 "RTL silicon",
14739                 "RTL VCS simulation",
14740                 "RTL FPGA emulation",
14741                 "Functional simulator"
14742         };
14743         struct pci_dev *parent = pdev->bus->self;
14744
14745         dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14746                                 sizeof(struct hfi1_pportdata));
14747         if (IS_ERR(dd))
14748                 goto bail;
14749         ppd = dd->pport;
14750         for (i = 0; i < dd->num_pports; i++, ppd++) {
14751                 int vl;
14752                 /* init common fields */
14753                 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14754                 /* DC supports 4 link widths */
14755                 ppd->link_width_supported =
14756                         OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14757                         OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14758                 ppd->link_width_downgrade_supported =
14759                         ppd->link_width_supported;
14760                 /* start out enabling only 4X */
14761                 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14762                 ppd->link_width_downgrade_enabled =
14763                                         ppd->link_width_downgrade_supported;
14764                 /* link width active is 0 when link is down */
14765                 /* link width downgrade active is 0 when link is down */
14766
14767                 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14768                     num_vls > HFI1_MAX_VLS_SUPPORTED) {
14769                         hfi1_early_err(&pdev->dev,
14770                                        "Invalid num_vls %u, using %u VLs\n",
14771                                     num_vls, HFI1_MAX_VLS_SUPPORTED);
14772                         num_vls = HFI1_MAX_VLS_SUPPORTED;
14773                 }
14774                 ppd->vls_supported = num_vls;
14775                 ppd->vls_operational = ppd->vls_supported;
14776                 ppd->actual_vls_operational = ppd->vls_supported;
14777                 /* Set the default MTU. */
14778                 for (vl = 0; vl < num_vls; vl++)
14779                         dd->vld[vl].mtu = hfi1_max_mtu;
14780                 dd->vld[15].mtu = MAX_MAD_PACKET;
14781                 /*
14782                  * Set the initial values to reasonable default, will be set
14783                  * for real when link is up.
14784                  */
14785                 ppd->lstate = IB_PORT_DOWN;
14786                 ppd->overrun_threshold = 0x4;
14787                 ppd->phy_error_threshold = 0xf;
14788                 ppd->port_crc_mode_enabled = link_crc_mask;
14789                 /* initialize supported LTP CRC mode */
14790                 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14791                 /* initialize enabled LTP CRC mode */
14792                 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14793                 /* start in offline */
14794                 ppd->host_link_state = HLS_DN_OFFLINE;
14795                 init_vl_arb_caches(ppd);
14796                 ppd->last_pstate = 0xff; /* invalid value */
14797         }
14798
14799         dd->link_default = HLS_DN_POLL;
14800
14801         /*
14802          * Do remaining PCIe setup and save PCIe values in dd.
14803          * Any error printing is already done by the init code.
14804          * On return, we have the chip mapped.
14805          */
14806         ret = hfi1_pcie_ddinit(dd, pdev);
14807         if (ret < 0)
14808                 goto bail_free;
14809
14810         /* verify that reads actually work, save revision for reset check */
14811         dd->revision = read_csr(dd, CCE_REVISION);
14812         if (dd->revision == ~(u64)0) {
14813                 dd_dev_err(dd, "cannot read chip CSRs\n");
14814                 ret = -EINVAL;
14815                 goto bail_cleanup;
14816         }
14817         dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14818                         & CCE_REVISION_CHIP_REV_MAJOR_MASK;
14819         dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14820                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
14821
14822         /*
14823          * Check interrupt registers mapping if the driver has no access to
14824          * the upstream component. In this case, it is likely that the driver
14825          * is running in a VM.
14826          */
14827         if (!parent) {
14828                 ret = check_int_registers(dd);
14829                 if (ret)
14830                         goto bail_cleanup;
14831         }
14832
14833         /*
14834          * obtain the hardware ID - NOT related to unit, which is a
14835          * software enumeration
14836          */
14837         reg = read_csr(dd, CCE_REVISION2);
14838         dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14839                                         & CCE_REVISION2_HFI_ID_MASK;
14840         /* the variable size will remove unwanted bits */
14841         dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14842         dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14843         dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14844                     dd->icode < ARRAY_SIZE(inames) ?
14845                     inames[dd->icode] : "unknown", (int)dd->irev);
14846
14847         /* speeds the hardware can support */
14848         dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14849         /* speeds allowed to run at */
14850         dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14851         /* give a reasonable active value, will be set on link up */
14852         dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14853
14854         dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14855         dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14856         dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14857         dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14858         dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14859         /* fix up link widths for emulation _p */
14860         ppd = dd->pport;
14861         if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14862                 ppd->link_width_supported =
14863                         ppd->link_width_enabled =
14864                         ppd->link_width_downgrade_supported =
14865                         ppd->link_width_downgrade_enabled =
14866                                 OPA_LINK_WIDTH_1X;
14867         }
14868         /* insure num_vls isn't larger than number of sdma engines */
14869         if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14870                 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14871                            num_vls, dd->chip_sdma_engines);
14872                 num_vls = dd->chip_sdma_engines;
14873                 ppd->vls_supported = dd->chip_sdma_engines;
14874                 ppd->vls_operational = ppd->vls_supported;
14875         }
14876
14877         /*
14878          * Convert the ns parameter to the 64 * cclocks used in the CSR.
14879          * Limit the max if larger than the field holds.  If timeout is
14880          * non-zero, then the calculated field will be at least 1.
14881          *
14882          * Must be after icode is set up - the cclock rate depends
14883          * on knowing the hardware being used.
14884          */
14885         dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14886         if (dd->rcv_intr_timeout_csr >
14887                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14888                 dd->rcv_intr_timeout_csr =
14889                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14890         else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14891                 dd->rcv_intr_timeout_csr = 1;
14892
14893         /* needs to be done before we look for the peer device */
14894         read_guid(dd);
14895
14896         /* set up shared ASIC data with peer device */
14897         ret = init_asic_data(dd);
14898         if (ret)
14899                 goto bail_cleanup;
14900
14901         /* obtain chip sizes, reset chip CSRs */
14902         init_chip(dd);
14903
14904         /* read in the PCIe link speed information */
14905         ret = pcie_speeds(dd);
14906         if (ret)
14907                 goto bail_cleanup;
14908
14909         /* call before get_platform_config(), after init_chip_resources() */
14910         ret = eprom_init(dd);
14911         if (ret)
14912                 goto bail_free_rcverr;
14913
14914         /* Needs to be called before hfi1_firmware_init */
14915         get_platform_config(dd);
14916
14917         /* read in firmware */
14918         ret = hfi1_firmware_init(dd);
14919         if (ret)
14920                 goto bail_cleanup;
14921
14922         /*
14923          * In general, the PCIe Gen3 transition must occur after the
14924          * chip has been idled (so it won't initiate any PCIe transactions
14925          * e.g. an interrupt) and before the driver changes any registers
14926          * (the transition will reset the registers).
14927          *
14928          * In particular, place this call after:
14929          * - init_chip()     - the chip will not initiate any PCIe transactions
14930          * - pcie_speeds()   - reads the current link speed
14931          * - hfi1_firmware_init() - the needed firmware is ready to be
14932          *                          downloaded
14933          */
14934         ret = do_pcie_gen3_transition(dd);
14935         if (ret)
14936                 goto bail_cleanup;
14937
14938         /* start setting dd values and adjusting CSRs */
14939         init_early_variables(dd);
14940
14941         parse_platform_config(dd);
14942
14943         ret = obtain_boardname(dd);
14944         if (ret)
14945                 goto bail_cleanup;
14946
14947         snprintf(dd->boardversion, BOARD_VERS_MAX,
14948                  "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
14949                  HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
14950                  (u32)dd->majrev,
14951                  (u32)dd->minrev,
14952                  (dd->revision >> CCE_REVISION_SW_SHIFT)
14953                     & CCE_REVISION_SW_MASK);
14954
14955         ret = set_up_context_variables(dd);
14956         if (ret)
14957                 goto bail_cleanup;
14958
14959         /* set initial RXE CSRs */
14960         init_rxe(dd);
14961         /* set initial TXE CSRs */
14962         init_txe(dd);
14963         /* set initial non-RXE, non-TXE CSRs */
14964         init_other(dd);
14965         /* set up KDETH QP prefix in both RX and TX CSRs */
14966         init_kdeth_qp(dd);
14967
14968         ret = hfi1_dev_affinity_init(dd);
14969         if (ret)
14970                 goto bail_cleanup;
14971
14972         /* send contexts must be set up before receive contexts */
14973         ret = init_send_contexts(dd);
14974         if (ret)
14975                 goto bail_cleanup;
14976
14977         ret = hfi1_create_ctxts(dd);
14978         if (ret)
14979                 goto bail_cleanup;
14980
14981         dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
14982         /*
14983          * rcd[0] is guaranteed to be valid by this point. Also, all
14984          * context are using the same value, as per the module parameter.
14985          */
14986         dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
14987
14988         ret = init_pervl_scs(dd);
14989         if (ret)
14990                 goto bail_cleanup;
14991
14992         /* sdma init */
14993         for (i = 0; i < dd->num_pports; ++i) {
14994                 ret = sdma_init(dd, i);
14995                 if (ret)
14996                         goto bail_cleanup;
14997         }
14998
14999         /* use contexts created by hfi1_create_ctxts */
15000         ret = set_up_interrupts(dd);
15001         if (ret)
15002                 goto bail_cleanup;
15003
15004         /* set up LCB access - must be after set_up_interrupts() */
15005         init_lcb_access(dd);
15006
15007         /*
15008          * Serial number is created from the base guid:
15009          * [27:24] = base guid [38:35]
15010          * [23: 0] = base guid [23: 0]
15011          */
15012         snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15013                  (dd->base_guid & 0xFFFFFF) |
15014                      ((dd->base_guid >> 11) & 0xF000000));
15015
15016         dd->oui1 = dd->base_guid >> 56 & 0xFF;
15017         dd->oui2 = dd->base_guid >> 48 & 0xFF;
15018         dd->oui3 = dd->base_guid >> 40 & 0xFF;
15019
15020         ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15021         if (ret)
15022                 goto bail_clear_intr;
15023
15024         thermal_init(dd);
15025
15026         ret = init_cntrs(dd);
15027         if (ret)
15028                 goto bail_clear_intr;
15029
15030         ret = init_rcverr(dd);
15031         if (ret)
15032                 goto bail_free_cntrs;
15033
15034         init_completion(&dd->user_comp);
15035
15036         /* The user refcount starts with one to inidicate an active device */
15037         atomic_set(&dd->user_refcount, 1);
15038
15039         goto bail;
15040
15041 bail_free_rcverr:
15042         free_rcverr(dd);
15043 bail_free_cntrs:
15044         free_cntrs(dd);
15045 bail_clear_intr:
15046         clean_up_interrupts(dd);
15047 bail_cleanup:
15048         hfi1_pcie_ddcleanup(dd);
15049 bail_free:
15050         hfi1_free_devdata(dd);
15051         dd = ERR_PTR(ret);
15052 bail:
15053         return dd;
15054 }
15055
15056 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15057                         u32 dw_len)
15058 {
15059         u32 delta_cycles;
15060         u32 current_egress_rate = ppd->current_egress_rate;
15061         /* rates here are in units of 10^6 bits/sec */
15062
15063         if (desired_egress_rate == -1)
15064                 return 0; /* shouldn't happen */
15065
15066         if (desired_egress_rate >= current_egress_rate)
15067                 return 0; /* we can't help go faster, only slower */
15068
15069         delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15070                         egress_cycles(dw_len * 4, current_egress_rate);
15071
15072         return (u16)delta_cycles;
15073 }
15074
15075 /**
15076  * create_pbc - build a pbc for transmission
15077  * @flags: special case flags or-ed in built pbc
15078  * @srate: static rate
15079  * @vl: vl
15080  * @dwlen: dword length (header words + data words + pbc words)
15081  *
15082  * Create a PBC with the given flags, rate, VL, and length.
15083  *
15084  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15085  * for verbs, which does not use this PSM feature.  The lone other caller
15086  * is for the diagnostic interface which calls this if the user does not
15087  * supply their own PBC.
15088  */
15089 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15090                u32 dw_len)
15091 {
15092         u64 pbc, delay = 0;
15093
15094         if (unlikely(srate_mbs))
15095                 delay = delay_cycles(ppd, srate_mbs, dw_len);
15096
15097         pbc = flags
15098                 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15099                 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15100                 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15101                 | (dw_len & PBC_LENGTH_DWS_MASK)
15102                         << PBC_LENGTH_DWS_SHIFT;
15103
15104         return pbc;
15105 }
15106
15107 #define SBUS_THERMAL    0x4f
15108 #define SBUS_THERM_MONITOR_MODE 0x1
15109
15110 #define THERM_FAILURE(dev, ret, reason) \
15111         dd_dev_err((dd),                                                \
15112                    "Thermal sensor initialization failed: %s (%d)\n",   \
15113                    (reason), (ret))
15114
15115 /*
15116  * Initialize the thermal sensor.
15117  *
15118  * After initialization, enable polling of thermal sensor through
15119  * SBus interface. In order for this to work, the SBus Master
15120  * firmware has to be loaded due to the fact that the HW polling
15121  * logic uses SBus interrupts, which are not supported with
15122  * default firmware. Otherwise, no data will be returned through
15123  * the ASIC_STS_THERM CSR.
15124  */
15125 static int thermal_init(struct hfi1_devdata *dd)
15126 {
15127         int ret = 0;
15128
15129         if (dd->icode != ICODE_RTL_SILICON ||
15130             check_chip_resource(dd, CR_THERM_INIT, NULL))
15131                 return ret;
15132
15133         ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15134         if (ret) {
15135                 THERM_FAILURE(dd, ret, "Acquire SBus");
15136                 return ret;
15137         }
15138
15139         dd_dev_info(dd, "Initializing thermal sensor\n");
15140         /* Disable polling of thermal readings */
15141         write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15142         msleep(100);
15143         /* Thermal Sensor Initialization */
15144         /*    Step 1: Reset the Thermal SBus Receiver */
15145         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15146                                 RESET_SBUS_RECEIVER, 0);
15147         if (ret) {
15148                 THERM_FAILURE(dd, ret, "Bus Reset");
15149                 goto done;
15150         }
15151         /*    Step 2: Set Reset bit in Thermal block */
15152         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15153                                 WRITE_SBUS_RECEIVER, 0x1);
15154         if (ret) {
15155                 THERM_FAILURE(dd, ret, "Therm Block Reset");
15156                 goto done;
15157         }
15158         /*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15159         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15160                                 WRITE_SBUS_RECEIVER, 0x32);
15161         if (ret) {
15162                 THERM_FAILURE(dd, ret, "Write Clock Div");
15163                 goto done;
15164         }
15165         /*    Step 4: Select temperature mode */
15166         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15167                                 WRITE_SBUS_RECEIVER,
15168                                 SBUS_THERM_MONITOR_MODE);
15169         if (ret) {
15170                 THERM_FAILURE(dd, ret, "Write Mode Sel");
15171                 goto done;
15172         }
15173         /*    Step 5: De-assert block reset and start conversion */
15174         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15175                                 WRITE_SBUS_RECEIVER, 0x2);
15176         if (ret) {
15177                 THERM_FAILURE(dd, ret, "Write Reset Deassert");
15178                 goto done;
15179         }
15180         /*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15181         msleep(22);
15182
15183         /* Enable polling of thermal readings */
15184         write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15185
15186         /* Set initialized flag */
15187         ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15188         if (ret)
15189                 THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15190
15191 done:
15192         release_chip_resource(dd, CR_SBUS);
15193         return ret;
15194 }
15195
15196 static void handle_temp_err(struct hfi1_devdata *dd)
15197 {
15198         struct hfi1_pportdata *ppd = &dd->pport[0];
15199         /*
15200          * Thermal Critical Interrupt
15201          * Put the device into forced freeze mode, take link down to
15202          * offline, and put DC into reset.
15203          */
15204         dd_dev_emerg(dd,
15205                      "Critical temperature reached! Forcing device into freeze mode!\n");
15206         dd->flags |= HFI1_FORCED_FREEZE;
15207         start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15208         /*
15209          * Shut DC down as much and as quickly as possible.
15210          *
15211          * Step 1: Take the link down to OFFLINE. This will cause the
15212          *         8051 to put the Serdes in reset. However, we don't want to
15213          *         go through the entire link state machine since we want to
15214          *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15215          *         but rather an attempt to save the chip.
15216          *         Code below is almost the same as quiet_serdes() but avoids
15217          *         all the extra work and the sleeps.
15218          */
15219         ppd->driver_link_ready = 0;
15220         ppd->link_enabled = 0;
15221         set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15222                                 PLS_OFFLINE);
15223         /*
15224          * Step 2: Shutdown LCB and 8051
15225          *         After shutdown, do not restore DC_CFG_RESET value.
15226          */
15227         dc_shutdown(dd);
15228 }