Merge remote-tracking branches 'spi/topic/sh-msiof', 'spi/topic/stm32', 'spi/topic...
[sfrench/cifs-2.6.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53
54 #include "core_priv.h"
55
56 static const char * const ib_events[] = {
57         [IB_EVENT_CQ_ERR]               = "CQ error",
58         [IB_EVENT_QP_FATAL]             = "QP fatal error",
59         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
60         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
61         [IB_EVENT_COMM_EST]             = "communication established",
62         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
63         [IB_EVENT_PATH_MIG]             = "path migration successful",
64         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
65         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
66         [IB_EVENT_PORT_ACTIVE]          = "port active",
67         [IB_EVENT_PORT_ERR]             = "port error",
68         [IB_EVENT_LID_CHANGE]           = "LID change",
69         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
70         [IB_EVENT_SM_CHANGE]            = "SM change",
71         [IB_EVENT_SRQ_ERR]              = "SRQ error",
72         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
73         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
74         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
75         [IB_EVENT_GID_CHANGE]           = "GID changed",
76 };
77
78 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
79 {
80         size_t index = event;
81
82         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
83                         ib_events[index] : "unrecognized event";
84 }
85 EXPORT_SYMBOL(ib_event_msg);
86
87 static const char * const wc_statuses[] = {
88         [IB_WC_SUCCESS]                 = "success",
89         [IB_WC_LOC_LEN_ERR]             = "local length error",
90         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
91         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
92         [IB_WC_LOC_PROT_ERR]            = "local protection error",
93         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
94         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
95         [IB_WC_BAD_RESP_ERR]            = "bad response error",
96         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
97         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
98         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
99         [IB_WC_REM_OP_ERR]              = "remote operation error",
100         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
101         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
102         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
103         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
104         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
105         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
106         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
107         [IB_WC_FATAL_ERR]               = "fatal error",
108         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
109         [IB_WC_GENERAL_ERR]             = "general error",
110 };
111
112 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
113 {
114         size_t index = status;
115
116         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
117                         wc_statuses[index] : "unrecognized status";
118 }
119 EXPORT_SYMBOL(ib_wc_status_msg);
120
121 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
122 {
123         switch (rate) {
124         case IB_RATE_2_5_GBPS: return  1;
125         case IB_RATE_5_GBPS:   return  2;
126         case IB_RATE_10_GBPS:  return  4;
127         case IB_RATE_20_GBPS:  return  8;
128         case IB_RATE_30_GBPS:  return 12;
129         case IB_RATE_40_GBPS:  return 16;
130         case IB_RATE_60_GBPS:  return 24;
131         case IB_RATE_80_GBPS:  return 32;
132         case IB_RATE_120_GBPS: return 48;
133         default:               return -1;
134         }
135 }
136 EXPORT_SYMBOL(ib_rate_to_mult);
137
138 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
139 {
140         switch (mult) {
141         case 1:  return IB_RATE_2_5_GBPS;
142         case 2:  return IB_RATE_5_GBPS;
143         case 4:  return IB_RATE_10_GBPS;
144         case 8:  return IB_RATE_20_GBPS;
145         case 12: return IB_RATE_30_GBPS;
146         case 16: return IB_RATE_40_GBPS;
147         case 24: return IB_RATE_60_GBPS;
148         case 32: return IB_RATE_80_GBPS;
149         case 48: return IB_RATE_120_GBPS;
150         default: return IB_RATE_PORT_CURRENT;
151         }
152 }
153 EXPORT_SYMBOL(mult_to_ib_rate);
154
155 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
156 {
157         switch (rate) {
158         case IB_RATE_2_5_GBPS: return 2500;
159         case IB_RATE_5_GBPS:   return 5000;
160         case IB_RATE_10_GBPS:  return 10000;
161         case IB_RATE_20_GBPS:  return 20000;
162         case IB_RATE_30_GBPS:  return 30000;
163         case IB_RATE_40_GBPS:  return 40000;
164         case IB_RATE_60_GBPS:  return 60000;
165         case IB_RATE_80_GBPS:  return 80000;
166         case IB_RATE_120_GBPS: return 120000;
167         case IB_RATE_14_GBPS:  return 14062;
168         case IB_RATE_56_GBPS:  return 56250;
169         case IB_RATE_112_GBPS: return 112500;
170         case IB_RATE_168_GBPS: return 168750;
171         case IB_RATE_25_GBPS:  return 25781;
172         case IB_RATE_100_GBPS: return 103125;
173         case IB_RATE_200_GBPS: return 206250;
174         case IB_RATE_300_GBPS: return 309375;
175         default:               return -1;
176         }
177 }
178 EXPORT_SYMBOL(ib_rate_to_mbps);
179
180 __attribute_const__ enum rdma_transport_type
181 rdma_node_get_transport(enum rdma_node_type node_type)
182 {
183         switch (node_type) {
184         case RDMA_NODE_IB_CA:
185         case RDMA_NODE_IB_SWITCH:
186         case RDMA_NODE_IB_ROUTER:
187                 return RDMA_TRANSPORT_IB;
188         case RDMA_NODE_RNIC:
189                 return RDMA_TRANSPORT_IWARP;
190         case RDMA_NODE_USNIC:
191                 return RDMA_TRANSPORT_USNIC;
192         case RDMA_NODE_USNIC_UDP:
193                 return RDMA_TRANSPORT_USNIC_UDP;
194         default:
195                 BUG();
196                 return 0;
197         }
198 }
199 EXPORT_SYMBOL(rdma_node_get_transport);
200
201 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
202 {
203         if (device->get_link_layer)
204                 return device->get_link_layer(device, port_num);
205
206         switch (rdma_node_get_transport(device->node_type)) {
207         case RDMA_TRANSPORT_IB:
208                 return IB_LINK_LAYER_INFINIBAND;
209         case RDMA_TRANSPORT_IWARP:
210         case RDMA_TRANSPORT_USNIC:
211         case RDMA_TRANSPORT_USNIC_UDP:
212                 return IB_LINK_LAYER_ETHERNET;
213         default:
214                 return IB_LINK_LAYER_UNSPECIFIED;
215         }
216 }
217 EXPORT_SYMBOL(rdma_port_get_link_layer);
218
219 /* Protection domains */
220
221 /**
222  * ib_alloc_pd - Allocates an unused protection domain.
223  * @device: The device on which to allocate the protection domain.
224  *
225  * A protection domain object provides an association between QPs, shared
226  * receive queues, address handles, memory regions, and memory windows.
227  *
228  * Every PD has a local_dma_lkey which can be used as the lkey value for local
229  * memory operations.
230  */
231 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
232                 const char *caller)
233 {
234         struct ib_pd *pd;
235         int mr_access_flags = 0;
236
237         pd = device->alloc_pd(device, NULL, NULL);
238         if (IS_ERR(pd))
239                 return pd;
240
241         pd->device = device;
242         pd->uobject = NULL;
243         pd->__internal_mr = NULL;
244         atomic_set(&pd->usecnt, 0);
245         pd->flags = flags;
246
247         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
248                 pd->local_dma_lkey = device->local_dma_lkey;
249         else
250                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
251
252         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
253                 pr_warn("%s: enabling unsafe global rkey\n", caller);
254                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
255         }
256
257         if (mr_access_flags) {
258                 struct ib_mr *mr;
259
260                 mr = pd->device->get_dma_mr(pd, mr_access_flags);
261                 if (IS_ERR(mr)) {
262                         ib_dealloc_pd(pd);
263                         return ERR_CAST(mr);
264                 }
265
266                 mr->device      = pd->device;
267                 mr->pd          = pd;
268                 mr->uobject     = NULL;
269                 mr->need_inval  = false;
270
271                 pd->__internal_mr = mr;
272
273                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
274                         pd->local_dma_lkey = pd->__internal_mr->lkey;
275
276                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
277                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
278         }
279
280         return pd;
281 }
282 EXPORT_SYMBOL(__ib_alloc_pd);
283
284 /**
285  * ib_dealloc_pd - Deallocates a protection domain.
286  * @pd: The protection domain to deallocate.
287  *
288  * It is an error to call this function while any resources in the pd still
289  * exist.  The caller is responsible to synchronously destroy them and
290  * guarantee no new allocations will happen.
291  */
292 void ib_dealloc_pd(struct ib_pd *pd)
293 {
294         int ret;
295
296         if (pd->__internal_mr) {
297                 ret = pd->device->dereg_mr(pd->__internal_mr);
298                 WARN_ON(ret);
299                 pd->__internal_mr = NULL;
300         }
301
302         /* uverbs manipulates usecnt with proper locking, while the kabi
303            requires the caller to guarantee we can't race here. */
304         WARN_ON(atomic_read(&pd->usecnt));
305
306         /* Making delalloc_pd a void return is a WIP, no driver should return
307            an error here. */
308         ret = pd->device->dealloc_pd(pd);
309         WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
310 }
311 EXPORT_SYMBOL(ib_dealloc_pd);
312
313 /* Address handles */
314
315 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
316 {
317         struct ib_ah *ah;
318
319         ah = pd->device->create_ah(pd, ah_attr, NULL);
320
321         if (!IS_ERR(ah)) {
322                 ah->device  = pd->device;
323                 ah->pd      = pd;
324                 ah->uobject = NULL;
325                 ah->type    = ah_attr->type;
326                 atomic_inc(&pd->usecnt);
327         }
328
329         return ah;
330 }
331 EXPORT_SYMBOL(rdma_create_ah);
332
333 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
334 {
335         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
336         struct iphdr ip4h_checked;
337         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
338
339         /* If it's IPv6, the version must be 6, otherwise, the first
340          * 20 bytes (before the IPv4 header) are garbled.
341          */
342         if (ip6h->version != 6)
343                 return (ip4h->version == 4) ? 4 : 0;
344         /* version may be 6 or 4 because the first 20 bytes could be garbled */
345
346         /* RoCE v2 requires no options, thus header length
347          * must be 5 words
348          */
349         if (ip4h->ihl != 5)
350                 return 6;
351
352         /* Verify checksum.
353          * We can't write on scattered buffers so we need to copy to
354          * temp buffer.
355          */
356         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
357         ip4h_checked.check = 0;
358         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
359         /* if IPv4 header checksum is OK, believe it */
360         if (ip4h->check == ip4h_checked.check)
361                 return 4;
362         return 6;
363 }
364 EXPORT_SYMBOL(ib_get_rdma_header_version);
365
366 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
367                                                      u8 port_num,
368                                                      const struct ib_grh *grh)
369 {
370         int grh_version;
371
372         if (rdma_protocol_ib(device, port_num))
373                 return RDMA_NETWORK_IB;
374
375         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
376
377         if (grh_version == 4)
378                 return RDMA_NETWORK_IPV4;
379
380         if (grh->next_hdr == IPPROTO_UDP)
381                 return RDMA_NETWORK_IPV6;
382
383         return RDMA_NETWORK_ROCE_V1;
384 }
385
386 struct find_gid_index_context {
387         u16 vlan_id;
388         enum ib_gid_type gid_type;
389 };
390
391 static bool find_gid_index(const union ib_gid *gid,
392                            const struct ib_gid_attr *gid_attr,
393                            void *context)
394 {
395         struct find_gid_index_context *ctx =
396                 (struct find_gid_index_context *)context;
397
398         if (ctx->gid_type != gid_attr->gid_type)
399                 return false;
400
401         if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
402             (is_vlan_dev(gid_attr->ndev) &&
403              vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
404                 return false;
405
406         return true;
407 }
408
409 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
410                                    u16 vlan_id, const union ib_gid *sgid,
411                                    enum ib_gid_type gid_type,
412                                    u16 *gid_index)
413 {
414         struct find_gid_index_context context = {.vlan_id = vlan_id,
415                                                  .gid_type = gid_type};
416
417         return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
418                                      &context, gid_index);
419 }
420
421 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
422                               enum rdma_network_type net_type,
423                               union ib_gid *sgid, union ib_gid *dgid)
424 {
425         struct sockaddr_in  src_in;
426         struct sockaddr_in  dst_in;
427         __be32 src_saddr, dst_saddr;
428
429         if (!sgid || !dgid)
430                 return -EINVAL;
431
432         if (net_type == RDMA_NETWORK_IPV4) {
433                 memcpy(&src_in.sin_addr.s_addr,
434                        &hdr->roce4grh.saddr, 4);
435                 memcpy(&dst_in.sin_addr.s_addr,
436                        &hdr->roce4grh.daddr, 4);
437                 src_saddr = src_in.sin_addr.s_addr;
438                 dst_saddr = dst_in.sin_addr.s_addr;
439                 ipv6_addr_set_v4mapped(src_saddr,
440                                        (struct in6_addr *)sgid);
441                 ipv6_addr_set_v4mapped(dst_saddr,
442                                        (struct in6_addr *)dgid);
443                 return 0;
444         } else if (net_type == RDMA_NETWORK_IPV6 ||
445                    net_type == RDMA_NETWORK_IB) {
446                 *dgid = hdr->ibgrh.dgid;
447                 *sgid = hdr->ibgrh.sgid;
448                 return 0;
449         } else {
450                 return -EINVAL;
451         }
452 }
453 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
454
455 /*
456  * This function creates ah from the incoming packet.
457  * Incoming packet has dgid of the receiver node on which this code is
458  * getting executed and, sgid contains the GID of the sender.
459  *
460  * When resolving mac address of destination, the arrived dgid is used
461  * as sgid and, sgid is used as dgid because sgid contains destinations
462  * GID whom to respond to.
463  *
464  * This is why when calling rdma_addr_find_l2_eth_by_grh() function, the
465  * position of arguments dgid and sgid do not match the order of the
466  * parameters.
467  */
468 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
469                        const struct ib_wc *wc, const struct ib_grh *grh,
470                        struct rdma_ah_attr *ah_attr)
471 {
472         u32 flow_class;
473         u16 gid_index;
474         int ret;
475         enum rdma_network_type net_type = RDMA_NETWORK_IB;
476         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
477         int hoplimit = 0xff;
478         union ib_gid dgid;
479         union ib_gid sgid;
480
481         memset(ah_attr, 0, sizeof *ah_attr);
482         ah_attr->type = rdma_ah_find_type(device, port_num);
483         if (rdma_cap_eth_ah(device, port_num)) {
484                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
485                         net_type = wc->network_hdr_type;
486                 else
487                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
488                 gid_type = ib_network_to_gid_type(net_type);
489         }
490         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
491                                         &sgid, &dgid);
492         if (ret)
493                 return ret;
494
495         if (rdma_protocol_roce(device, port_num)) {
496                 int if_index = 0;
497                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
498                                 wc->vlan_id : 0xffff;
499                 struct net_device *idev;
500                 struct net_device *resolved_dev;
501
502                 if (!(wc->wc_flags & IB_WC_GRH))
503                         return -EPROTOTYPE;
504
505                 if (!device->get_netdev)
506                         return -EOPNOTSUPP;
507
508                 idev = device->get_netdev(device, port_num);
509                 if (!idev)
510                         return -ENODEV;
511
512                 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
513                                                    ah_attr->roce.dmac,
514                                                    wc->wc_flags & IB_WC_WITH_VLAN ?
515                                                    NULL : &vlan_id,
516                                                    &if_index, &hoplimit);
517                 if (ret) {
518                         dev_put(idev);
519                         return ret;
520                 }
521
522                 resolved_dev = dev_get_by_index(&init_net, if_index);
523                 rcu_read_lock();
524                 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
525                                                                    resolved_dev))
526                         ret = -EHOSTUNREACH;
527                 rcu_read_unlock();
528                 dev_put(idev);
529                 dev_put(resolved_dev);
530                 if (ret)
531                         return ret;
532
533                 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
534                                               &dgid, gid_type, &gid_index);
535                 if (ret)
536                         return ret;
537         }
538
539         rdma_ah_set_dlid(ah_attr, wc->slid);
540         rdma_ah_set_sl(ah_attr, wc->sl);
541         rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
542         rdma_ah_set_port_num(ah_attr, port_num);
543
544         if (wc->wc_flags & IB_WC_GRH) {
545                 if (!rdma_cap_eth_ah(device, port_num)) {
546                         if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
547                                 ret = ib_find_cached_gid_by_port(device, &dgid,
548                                                                  IB_GID_TYPE_IB,
549                                                                  port_num, NULL,
550                                                                  &gid_index);
551                                 if (ret)
552                                         return ret;
553                         } else {
554                                 gid_index = 0;
555                         }
556                 }
557
558                 flow_class = be32_to_cpu(grh->version_tclass_flow);
559                 rdma_ah_set_grh(ah_attr, &sgid,
560                                 flow_class & 0xFFFFF,
561                                 (u8)gid_index, hoplimit,
562                                 (flow_class >> 20) & 0xFF);
563
564         }
565         return 0;
566 }
567 EXPORT_SYMBOL(ib_init_ah_from_wc);
568
569 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
570                                    const struct ib_grh *grh, u8 port_num)
571 {
572         struct rdma_ah_attr ah_attr;
573         int ret;
574
575         ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
576         if (ret)
577                 return ERR_PTR(ret);
578
579         return rdma_create_ah(pd, &ah_attr);
580 }
581 EXPORT_SYMBOL(ib_create_ah_from_wc);
582
583 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
584 {
585         if (ah->type != ah_attr->type)
586                 return -EINVAL;
587
588         return ah->device->modify_ah ?
589                 ah->device->modify_ah(ah, ah_attr) :
590                 -ENOSYS;
591 }
592 EXPORT_SYMBOL(rdma_modify_ah);
593
594 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
595 {
596         return ah->device->query_ah ?
597                 ah->device->query_ah(ah, ah_attr) :
598                 -ENOSYS;
599 }
600 EXPORT_SYMBOL(rdma_query_ah);
601
602 int rdma_destroy_ah(struct ib_ah *ah)
603 {
604         struct ib_pd *pd;
605         int ret;
606
607         pd = ah->pd;
608         ret = ah->device->destroy_ah(ah);
609         if (!ret)
610                 atomic_dec(&pd->usecnt);
611
612         return ret;
613 }
614 EXPORT_SYMBOL(rdma_destroy_ah);
615
616 /* Shared receive queues */
617
618 struct ib_srq *ib_create_srq(struct ib_pd *pd,
619                              struct ib_srq_init_attr *srq_init_attr)
620 {
621         struct ib_srq *srq;
622
623         if (!pd->device->create_srq)
624                 return ERR_PTR(-ENOSYS);
625
626         srq = pd->device->create_srq(pd, srq_init_attr, NULL);
627
628         if (!IS_ERR(srq)) {
629                 srq->device        = pd->device;
630                 srq->pd            = pd;
631                 srq->uobject       = NULL;
632                 srq->event_handler = srq_init_attr->event_handler;
633                 srq->srq_context   = srq_init_attr->srq_context;
634                 srq->srq_type      = srq_init_attr->srq_type;
635                 if (srq->srq_type == IB_SRQT_XRC) {
636                         srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
637                         srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
638                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
639                         atomic_inc(&srq->ext.xrc.cq->usecnt);
640                 }
641                 atomic_inc(&pd->usecnt);
642                 atomic_set(&srq->usecnt, 0);
643         }
644
645         return srq;
646 }
647 EXPORT_SYMBOL(ib_create_srq);
648
649 int ib_modify_srq(struct ib_srq *srq,
650                   struct ib_srq_attr *srq_attr,
651                   enum ib_srq_attr_mask srq_attr_mask)
652 {
653         return srq->device->modify_srq ?
654                 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
655                 -ENOSYS;
656 }
657 EXPORT_SYMBOL(ib_modify_srq);
658
659 int ib_query_srq(struct ib_srq *srq,
660                  struct ib_srq_attr *srq_attr)
661 {
662         return srq->device->query_srq ?
663                 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
664 }
665 EXPORT_SYMBOL(ib_query_srq);
666
667 int ib_destroy_srq(struct ib_srq *srq)
668 {
669         struct ib_pd *pd;
670         enum ib_srq_type srq_type;
671         struct ib_xrcd *uninitialized_var(xrcd);
672         struct ib_cq *uninitialized_var(cq);
673         int ret;
674
675         if (atomic_read(&srq->usecnt))
676                 return -EBUSY;
677
678         pd = srq->pd;
679         srq_type = srq->srq_type;
680         if (srq_type == IB_SRQT_XRC) {
681                 xrcd = srq->ext.xrc.xrcd;
682                 cq = srq->ext.xrc.cq;
683         }
684
685         ret = srq->device->destroy_srq(srq);
686         if (!ret) {
687                 atomic_dec(&pd->usecnt);
688                 if (srq_type == IB_SRQT_XRC) {
689                         atomic_dec(&xrcd->usecnt);
690                         atomic_dec(&cq->usecnt);
691                 }
692         }
693
694         return ret;
695 }
696 EXPORT_SYMBOL(ib_destroy_srq);
697
698 /* Queue pairs */
699
700 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
701 {
702         struct ib_qp *qp = context;
703         unsigned long flags;
704
705         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
706         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
707                 if (event->element.qp->event_handler)
708                         event->element.qp->event_handler(event, event->element.qp->qp_context);
709         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
710 }
711
712 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
713 {
714         mutex_lock(&xrcd->tgt_qp_mutex);
715         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
716         mutex_unlock(&xrcd->tgt_qp_mutex);
717 }
718
719 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
720                                   void (*event_handler)(struct ib_event *, void *),
721                                   void *qp_context)
722 {
723         struct ib_qp *qp;
724         unsigned long flags;
725         int err;
726
727         qp = kzalloc(sizeof *qp, GFP_KERNEL);
728         if (!qp)
729                 return ERR_PTR(-ENOMEM);
730
731         qp->real_qp = real_qp;
732         err = ib_open_shared_qp_security(qp, real_qp->device);
733         if (err) {
734                 kfree(qp);
735                 return ERR_PTR(err);
736         }
737
738         qp->real_qp = real_qp;
739         atomic_inc(&real_qp->usecnt);
740         qp->device = real_qp->device;
741         qp->event_handler = event_handler;
742         qp->qp_context = qp_context;
743         qp->qp_num = real_qp->qp_num;
744         qp->qp_type = real_qp->qp_type;
745
746         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
747         list_add(&qp->open_list, &real_qp->open_list);
748         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
749
750         return qp;
751 }
752
753 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
754                          struct ib_qp_open_attr *qp_open_attr)
755 {
756         struct ib_qp *qp, *real_qp;
757
758         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
759                 return ERR_PTR(-EINVAL);
760
761         qp = ERR_PTR(-EINVAL);
762         mutex_lock(&xrcd->tgt_qp_mutex);
763         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
764                 if (real_qp->qp_num == qp_open_attr->qp_num) {
765                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
766                                           qp_open_attr->qp_context);
767                         break;
768                 }
769         }
770         mutex_unlock(&xrcd->tgt_qp_mutex);
771         return qp;
772 }
773 EXPORT_SYMBOL(ib_open_qp);
774
775 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
776                 struct ib_qp_init_attr *qp_init_attr)
777 {
778         struct ib_qp *real_qp = qp;
779
780         qp->event_handler = __ib_shared_qp_event_handler;
781         qp->qp_context = qp;
782         qp->pd = NULL;
783         qp->send_cq = qp->recv_cq = NULL;
784         qp->srq = NULL;
785         qp->xrcd = qp_init_attr->xrcd;
786         atomic_inc(&qp_init_attr->xrcd->usecnt);
787         INIT_LIST_HEAD(&qp->open_list);
788
789         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
790                           qp_init_attr->qp_context);
791         if (!IS_ERR(qp))
792                 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
793         else
794                 real_qp->device->destroy_qp(real_qp);
795         return qp;
796 }
797
798 struct ib_qp *ib_create_qp(struct ib_pd *pd,
799                            struct ib_qp_init_attr *qp_init_attr)
800 {
801         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
802         struct ib_qp *qp;
803         int ret;
804
805         if (qp_init_attr->rwq_ind_tbl &&
806             (qp_init_attr->recv_cq ||
807             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
808             qp_init_attr->cap.max_recv_sge))
809                 return ERR_PTR(-EINVAL);
810
811         /*
812          * If the callers is using the RDMA API calculate the resources
813          * needed for the RDMA READ/WRITE operations.
814          *
815          * Note that these callers need to pass in a port number.
816          */
817         if (qp_init_attr->cap.max_rdma_ctxs)
818                 rdma_rw_init_qp(device, qp_init_attr);
819
820         qp = device->create_qp(pd, qp_init_attr, NULL);
821         if (IS_ERR(qp))
822                 return qp;
823
824         ret = ib_create_qp_security(qp, device);
825         if (ret) {
826                 ib_destroy_qp(qp);
827                 return ERR_PTR(ret);
828         }
829
830         qp->device     = device;
831         qp->real_qp    = qp;
832         qp->uobject    = NULL;
833         qp->qp_type    = qp_init_attr->qp_type;
834         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
835
836         atomic_set(&qp->usecnt, 0);
837         qp->mrs_used = 0;
838         spin_lock_init(&qp->mr_lock);
839         INIT_LIST_HEAD(&qp->rdma_mrs);
840         INIT_LIST_HEAD(&qp->sig_mrs);
841         qp->port = 0;
842
843         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
844                 return ib_create_xrc_qp(qp, qp_init_attr);
845
846         qp->event_handler = qp_init_attr->event_handler;
847         qp->qp_context = qp_init_attr->qp_context;
848         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
849                 qp->recv_cq = NULL;
850                 qp->srq = NULL;
851         } else {
852                 qp->recv_cq = qp_init_attr->recv_cq;
853                 if (qp_init_attr->recv_cq)
854                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
855                 qp->srq = qp_init_attr->srq;
856                 if (qp->srq)
857                         atomic_inc(&qp_init_attr->srq->usecnt);
858         }
859
860         qp->pd      = pd;
861         qp->send_cq = qp_init_attr->send_cq;
862         qp->xrcd    = NULL;
863
864         atomic_inc(&pd->usecnt);
865         if (qp_init_attr->send_cq)
866                 atomic_inc(&qp_init_attr->send_cq->usecnt);
867         if (qp_init_attr->rwq_ind_tbl)
868                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
869
870         if (qp_init_attr->cap.max_rdma_ctxs) {
871                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
872                 if (ret) {
873                         pr_err("failed to init MR pool ret= %d\n", ret);
874                         ib_destroy_qp(qp);
875                         return ERR_PTR(ret);
876                 }
877         }
878
879         /*
880          * Note: all hw drivers guarantee that max_send_sge is lower than
881          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
882          * max_send_sge <= max_sge_rd.
883          */
884         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
885         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
886                                  device->attrs.max_sge_rd);
887
888         return qp;
889 }
890 EXPORT_SYMBOL(ib_create_qp);
891
892 static const struct {
893         int                     valid;
894         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
895         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
896 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
897         [IB_QPS_RESET] = {
898                 [IB_QPS_RESET] = { .valid = 1 },
899                 [IB_QPS_INIT]  = {
900                         .valid = 1,
901                         .req_param = {
902                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
903                                                 IB_QP_PORT                      |
904                                                 IB_QP_QKEY),
905                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
906                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
907                                                 IB_QP_PORT                      |
908                                                 IB_QP_ACCESS_FLAGS),
909                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
910                                                 IB_QP_PORT                      |
911                                                 IB_QP_ACCESS_FLAGS),
912                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
913                                                 IB_QP_PORT                      |
914                                                 IB_QP_ACCESS_FLAGS),
915                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
916                                                 IB_QP_PORT                      |
917                                                 IB_QP_ACCESS_FLAGS),
918                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
919                                                 IB_QP_QKEY),
920                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
921                                                 IB_QP_QKEY),
922                         }
923                 },
924         },
925         [IB_QPS_INIT]  = {
926                 [IB_QPS_RESET] = { .valid = 1 },
927                 [IB_QPS_ERR] =   { .valid = 1 },
928                 [IB_QPS_INIT]  = {
929                         .valid = 1,
930                         .opt_param = {
931                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
932                                                 IB_QP_PORT                      |
933                                                 IB_QP_QKEY),
934                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
935                                                 IB_QP_PORT                      |
936                                                 IB_QP_ACCESS_FLAGS),
937                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
938                                                 IB_QP_PORT                      |
939                                                 IB_QP_ACCESS_FLAGS),
940                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
941                                                 IB_QP_PORT                      |
942                                                 IB_QP_ACCESS_FLAGS),
943                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
944                                                 IB_QP_PORT                      |
945                                                 IB_QP_ACCESS_FLAGS),
946                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
947                                                 IB_QP_QKEY),
948                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
949                                                 IB_QP_QKEY),
950                         }
951                 },
952                 [IB_QPS_RTR]   = {
953                         .valid = 1,
954                         .req_param = {
955                                 [IB_QPT_UC]  = (IB_QP_AV                        |
956                                                 IB_QP_PATH_MTU                  |
957                                                 IB_QP_DEST_QPN                  |
958                                                 IB_QP_RQ_PSN),
959                                 [IB_QPT_RC]  = (IB_QP_AV                        |
960                                                 IB_QP_PATH_MTU                  |
961                                                 IB_QP_DEST_QPN                  |
962                                                 IB_QP_RQ_PSN                    |
963                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
964                                                 IB_QP_MIN_RNR_TIMER),
965                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
966                                                 IB_QP_PATH_MTU                  |
967                                                 IB_QP_DEST_QPN                  |
968                                                 IB_QP_RQ_PSN),
969                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
970                                                 IB_QP_PATH_MTU                  |
971                                                 IB_QP_DEST_QPN                  |
972                                                 IB_QP_RQ_PSN                    |
973                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
974                                                 IB_QP_MIN_RNR_TIMER),
975                         },
976                         .opt_param = {
977                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
978                                                  IB_QP_QKEY),
979                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
980                                                  IB_QP_ACCESS_FLAGS             |
981                                                  IB_QP_PKEY_INDEX),
982                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
983                                                  IB_QP_ACCESS_FLAGS             |
984                                                  IB_QP_PKEY_INDEX),
985                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
986                                                  IB_QP_ACCESS_FLAGS             |
987                                                  IB_QP_PKEY_INDEX),
988                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
989                                                  IB_QP_ACCESS_FLAGS             |
990                                                  IB_QP_PKEY_INDEX),
991                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
992                                                  IB_QP_QKEY),
993                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
994                                                  IB_QP_QKEY),
995                          },
996                 },
997         },
998         [IB_QPS_RTR]   = {
999                 [IB_QPS_RESET] = { .valid = 1 },
1000                 [IB_QPS_ERR] =   { .valid = 1 },
1001                 [IB_QPS_RTS]   = {
1002                         .valid = 1,
1003                         .req_param = {
1004                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
1005                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
1006                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1007                                                 IB_QP_RETRY_CNT                 |
1008                                                 IB_QP_RNR_RETRY                 |
1009                                                 IB_QP_SQ_PSN                    |
1010                                                 IB_QP_MAX_QP_RD_ATOMIC),
1011                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1012                                                 IB_QP_RETRY_CNT                 |
1013                                                 IB_QP_RNR_RETRY                 |
1014                                                 IB_QP_SQ_PSN                    |
1015                                                 IB_QP_MAX_QP_RD_ATOMIC),
1016                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1017                                                 IB_QP_SQ_PSN),
1018                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1019                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1020                         },
1021                         .opt_param = {
1022                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1023                                                  IB_QP_QKEY),
1024                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1025                                                  IB_QP_ALT_PATH                 |
1026                                                  IB_QP_ACCESS_FLAGS             |
1027                                                  IB_QP_PATH_MIG_STATE),
1028                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1029                                                  IB_QP_ALT_PATH                 |
1030                                                  IB_QP_ACCESS_FLAGS             |
1031                                                  IB_QP_MIN_RNR_TIMER            |
1032                                                  IB_QP_PATH_MIG_STATE),
1033                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1034                                                  IB_QP_ALT_PATH                 |
1035                                                  IB_QP_ACCESS_FLAGS             |
1036                                                  IB_QP_PATH_MIG_STATE),
1037                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1038                                                  IB_QP_ALT_PATH                 |
1039                                                  IB_QP_ACCESS_FLAGS             |
1040                                                  IB_QP_MIN_RNR_TIMER            |
1041                                                  IB_QP_PATH_MIG_STATE),
1042                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1043                                                  IB_QP_QKEY),
1044                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1045                                                  IB_QP_QKEY),
1046                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1047                          }
1048                 }
1049         },
1050         [IB_QPS_RTS]   = {
1051                 [IB_QPS_RESET] = { .valid = 1 },
1052                 [IB_QPS_ERR] =   { .valid = 1 },
1053                 [IB_QPS_RTS]   = {
1054                         .valid = 1,
1055                         .opt_param = {
1056                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1057                                                 IB_QP_QKEY),
1058                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1059                                                 IB_QP_ACCESS_FLAGS              |
1060                                                 IB_QP_ALT_PATH                  |
1061                                                 IB_QP_PATH_MIG_STATE),
1062                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1063                                                 IB_QP_ACCESS_FLAGS              |
1064                                                 IB_QP_ALT_PATH                  |
1065                                                 IB_QP_PATH_MIG_STATE            |
1066                                                 IB_QP_MIN_RNR_TIMER),
1067                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1068                                                 IB_QP_ACCESS_FLAGS              |
1069                                                 IB_QP_ALT_PATH                  |
1070                                                 IB_QP_PATH_MIG_STATE),
1071                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1072                                                 IB_QP_ACCESS_FLAGS              |
1073                                                 IB_QP_ALT_PATH                  |
1074                                                 IB_QP_PATH_MIG_STATE            |
1075                                                 IB_QP_MIN_RNR_TIMER),
1076                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1077                                                 IB_QP_QKEY),
1078                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1079                                                 IB_QP_QKEY),
1080                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1081                         }
1082                 },
1083                 [IB_QPS_SQD]   = {
1084                         .valid = 1,
1085                         .opt_param = {
1086                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1087                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1088                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1089                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1090                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1091                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1092                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1093                         }
1094                 },
1095         },
1096         [IB_QPS_SQD]   = {
1097                 [IB_QPS_RESET] = { .valid = 1 },
1098                 [IB_QPS_ERR] =   { .valid = 1 },
1099                 [IB_QPS_RTS]   = {
1100                         .valid = 1,
1101                         .opt_param = {
1102                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1103                                                 IB_QP_QKEY),
1104                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1105                                                 IB_QP_ALT_PATH                  |
1106                                                 IB_QP_ACCESS_FLAGS              |
1107                                                 IB_QP_PATH_MIG_STATE),
1108                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1109                                                 IB_QP_ALT_PATH                  |
1110                                                 IB_QP_ACCESS_FLAGS              |
1111                                                 IB_QP_MIN_RNR_TIMER             |
1112                                                 IB_QP_PATH_MIG_STATE),
1113                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1114                                                 IB_QP_ALT_PATH                  |
1115                                                 IB_QP_ACCESS_FLAGS              |
1116                                                 IB_QP_PATH_MIG_STATE),
1117                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1118                                                 IB_QP_ALT_PATH                  |
1119                                                 IB_QP_ACCESS_FLAGS              |
1120                                                 IB_QP_MIN_RNR_TIMER             |
1121                                                 IB_QP_PATH_MIG_STATE),
1122                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1123                                                 IB_QP_QKEY),
1124                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1125                                                 IB_QP_QKEY),
1126                         }
1127                 },
1128                 [IB_QPS_SQD]   = {
1129                         .valid = 1,
1130                         .opt_param = {
1131                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1132                                                 IB_QP_QKEY),
1133                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1134                                                 IB_QP_ALT_PATH                  |
1135                                                 IB_QP_ACCESS_FLAGS              |
1136                                                 IB_QP_PKEY_INDEX                |
1137                                                 IB_QP_PATH_MIG_STATE),
1138                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1139                                                 IB_QP_AV                        |
1140                                                 IB_QP_TIMEOUT                   |
1141                                                 IB_QP_RETRY_CNT                 |
1142                                                 IB_QP_RNR_RETRY                 |
1143                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1144                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1145                                                 IB_QP_ALT_PATH                  |
1146                                                 IB_QP_ACCESS_FLAGS              |
1147                                                 IB_QP_PKEY_INDEX                |
1148                                                 IB_QP_MIN_RNR_TIMER             |
1149                                                 IB_QP_PATH_MIG_STATE),
1150                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1151                                                 IB_QP_AV                        |
1152                                                 IB_QP_TIMEOUT                   |
1153                                                 IB_QP_RETRY_CNT                 |
1154                                                 IB_QP_RNR_RETRY                 |
1155                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1156                                                 IB_QP_ALT_PATH                  |
1157                                                 IB_QP_ACCESS_FLAGS              |
1158                                                 IB_QP_PKEY_INDEX                |
1159                                                 IB_QP_PATH_MIG_STATE),
1160                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1161                                                 IB_QP_AV                        |
1162                                                 IB_QP_TIMEOUT                   |
1163                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1164                                                 IB_QP_ALT_PATH                  |
1165                                                 IB_QP_ACCESS_FLAGS              |
1166                                                 IB_QP_PKEY_INDEX                |
1167                                                 IB_QP_MIN_RNR_TIMER             |
1168                                                 IB_QP_PATH_MIG_STATE),
1169                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1170                                                 IB_QP_QKEY),
1171                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1172                                                 IB_QP_QKEY),
1173                         }
1174                 }
1175         },
1176         [IB_QPS_SQE]   = {
1177                 [IB_QPS_RESET] = { .valid = 1 },
1178                 [IB_QPS_ERR] =   { .valid = 1 },
1179                 [IB_QPS_RTS]   = {
1180                         .valid = 1,
1181                         .opt_param = {
1182                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1183                                                 IB_QP_QKEY),
1184                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1185                                                 IB_QP_ACCESS_FLAGS),
1186                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1187                                                 IB_QP_QKEY),
1188                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1189                                                 IB_QP_QKEY),
1190                         }
1191                 }
1192         },
1193         [IB_QPS_ERR] = {
1194                 [IB_QPS_RESET] = { .valid = 1 },
1195                 [IB_QPS_ERR] =   { .valid = 1 }
1196         }
1197 };
1198
1199 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1200                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
1201                        enum rdma_link_layer ll)
1202 {
1203         enum ib_qp_attr_mask req_param, opt_param;
1204
1205         if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1206             next_state < 0 || next_state > IB_QPS_ERR)
1207                 return 0;
1208
1209         if (mask & IB_QP_CUR_STATE  &&
1210             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1211             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1212                 return 0;
1213
1214         if (!qp_state_table[cur_state][next_state].valid)
1215                 return 0;
1216
1217         req_param = qp_state_table[cur_state][next_state].req_param[type];
1218         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1219
1220         if ((mask & req_param) != req_param)
1221                 return 0;
1222
1223         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1224                 return 0;
1225
1226         return 1;
1227 }
1228 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1229
1230 int ib_resolve_eth_dmac(struct ib_device *device,
1231                         struct rdma_ah_attr *ah_attr)
1232 {
1233         int           ret = 0;
1234         struct ib_global_route *grh;
1235
1236         if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr)))
1237                 return -EINVAL;
1238
1239         if (ah_attr->type != RDMA_AH_ATTR_TYPE_ROCE)
1240                 return 0;
1241
1242         grh = rdma_ah_retrieve_grh(ah_attr);
1243
1244         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw)) {
1245                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
1246                                 ah_attr->roce.dmac);
1247         } else {
1248                 union ib_gid            sgid;
1249                 struct ib_gid_attr      sgid_attr;
1250                 int                     ifindex;
1251                 int                     hop_limit;
1252
1253                 ret = ib_query_gid(device,
1254                                    rdma_ah_get_port_num(ah_attr),
1255                                    grh->sgid_index,
1256                                    &sgid, &sgid_attr);
1257
1258                 if (ret || !sgid_attr.ndev) {
1259                         if (!ret)
1260                                 ret = -ENXIO;
1261                         goto out;
1262                 }
1263
1264                 ifindex = sgid_attr.ndev->ifindex;
1265
1266                 ret =
1267                 rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid,
1268                                              ah_attr->roce.dmac,
1269                                              NULL, &ifindex, &hop_limit);
1270
1271                 dev_put(sgid_attr.ndev);
1272
1273                 grh->hop_limit = hop_limit;
1274         }
1275 out:
1276         return ret;
1277 }
1278 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1279
1280 /**
1281  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1282  * @qp: The QP to modify.
1283  * @attr: On input, specifies the QP attributes to modify.  On output,
1284  *   the current values of selected QP attributes are returned.
1285  * @attr_mask: A bit-mask used to specify which attributes of the QP
1286  *   are being modified.
1287  * @udata: pointer to user's input output buffer information
1288  *   are being modified.
1289  * It returns 0 on success and returns appropriate error code on error.
1290  */
1291 int ib_modify_qp_with_udata(struct ib_qp *qp, struct ib_qp_attr *attr,
1292                             int attr_mask, struct ib_udata *udata)
1293 {
1294         int ret;
1295
1296         if (attr_mask & IB_QP_AV) {
1297                 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1298                 if (ret)
1299                         return ret;
1300         }
1301         ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1302         if (!ret && (attr_mask & IB_QP_PORT))
1303                 qp->port = attr->port_num;
1304
1305         return ret;
1306 }
1307 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1308
1309 int ib_modify_qp(struct ib_qp *qp,
1310                  struct ib_qp_attr *qp_attr,
1311                  int qp_attr_mask)
1312 {
1313         return ib_modify_qp_with_udata(qp, qp_attr, qp_attr_mask, NULL);
1314 }
1315 EXPORT_SYMBOL(ib_modify_qp);
1316
1317 int ib_query_qp(struct ib_qp *qp,
1318                 struct ib_qp_attr *qp_attr,
1319                 int qp_attr_mask,
1320                 struct ib_qp_init_attr *qp_init_attr)
1321 {
1322         return qp->device->query_qp ?
1323                 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1324                 -ENOSYS;
1325 }
1326 EXPORT_SYMBOL(ib_query_qp);
1327
1328 int ib_close_qp(struct ib_qp *qp)
1329 {
1330         struct ib_qp *real_qp;
1331         unsigned long flags;
1332
1333         real_qp = qp->real_qp;
1334         if (real_qp == qp)
1335                 return -EINVAL;
1336
1337         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1338         list_del(&qp->open_list);
1339         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1340
1341         atomic_dec(&real_qp->usecnt);
1342         ib_close_shared_qp_security(qp->qp_sec);
1343         kfree(qp);
1344
1345         return 0;
1346 }
1347 EXPORT_SYMBOL(ib_close_qp);
1348
1349 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1350 {
1351         struct ib_xrcd *xrcd;
1352         struct ib_qp *real_qp;
1353         int ret;
1354
1355         real_qp = qp->real_qp;
1356         xrcd = real_qp->xrcd;
1357
1358         mutex_lock(&xrcd->tgt_qp_mutex);
1359         ib_close_qp(qp);
1360         if (atomic_read(&real_qp->usecnt) == 0)
1361                 list_del(&real_qp->xrcd_list);
1362         else
1363                 real_qp = NULL;
1364         mutex_unlock(&xrcd->tgt_qp_mutex);
1365
1366         if (real_qp) {
1367                 ret = ib_destroy_qp(real_qp);
1368                 if (!ret)
1369                         atomic_dec(&xrcd->usecnt);
1370                 else
1371                         __ib_insert_xrcd_qp(xrcd, real_qp);
1372         }
1373
1374         return 0;
1375 }
1376
1377 int ib_destroy_qp(struct ib_qp *qp)
1378 {
1379         struct ib_pd *pd;
1380         struct ib_cq *scq, *rcq;
1381         struct ib_srq *srq;
1382         struct ib_rwq_ind_table *ind_tbl;
1383         struct ib_qp_security *sec;
1384         int ret;
1385
1386         WARN_ON_ONCE(qp->mrs_used > 0);
1387
1388         if (atomic_read(&qp->usecnt))
1389                 return -EBUSY;
1390
1391         if (qp->real_qp != qp)
1392                 return __ib_destroy_shared_qp(qp);
1393
1394         pd   = qp->pd;
1395         scq  = qp->send_cq;
1396         rcq  = qp->recv_cq;
1397         srq  = qp->srq;
1398         ind_tbl = qp->rwq_ind_tbl;
1399         sec  = qp->qp_sec;
1400         if (sec)
1401                 ib_destroy_qp_security_begin(sec);
1402
1403         if (!qp->uobject)
1404                 rdma_rw_cleanup_mrs(qp);
1405
1406         ret = qp->device->destroy_qp(qp);
1407         if (!ret) {
1408                 if (pd)
1409                         atomic_dec(&pd->usecnt);
1410                 if (scq)
1411                         atomic_dec(&scq->usecnt);
1412                 if (rcq)
1413                         atomic_dec(&rcq->usecnt);
1414                 if (srq)
1415                         atomic_dec(&srq->usecnt);
1416                 if (ind_tbl)
1417                         atomic_dec(&ind_tbl->usecnt);
1418                 if (sec)
1419                         ib_destroy_qp_security_end(sec);
1420         } else {
1421                 if (sec)
1422                         ib_destroy_qp_security_abort(sec);
1423         }
1424
1425         return ret;
1426 }
1427 EXPORT_SYMBOL(ib_destroy_qp);
1428
1429 /* Completion queues */
1430
1431 struct ib_cq *ib_create_cq(struct ib_device *device,
1432                            ib_comp_handler comp_handler,
1433                            void (*event_handler)(struct ib_event *, void *),
1434                            void *cq_context,
1435                            const struct ib_cq_init_attr *cq_attr)
1436 {
1437         struct ib_cq *cq;
1438
1439         cq = device->create_cq(device, cq_attr, NULL, NULL);
1440
1441         if (!IS_ERR(cq)) {
1442                 cq->device        = device;
1443                 cq->uobject       = NULL;
1444                 cq->comp_handler  = comp_handler;
1445                 cq->event_handler = event_handler;
1446                 cq->cq_context    = cq_context;
1447                 atomic_set(&cq->usecnt, 0);
1448         }
1449
1450         return cq;
1451 }
1452 EXPORT_SYMBOL(ib_create_cq);
1453
1454 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1455 {
1456         return cq->device->modify_cq ?
1457                 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1458 }
1459 EXPORT_SYMBOL(ib_modify_cq);
1460
1461 int ib_destroy_cq(struct ib_cq *cq)
1462 {
1463         if (atomic_read(&cq->usecnt))
1464                 return -EBUSY;
1465
1466         return cq->device->destroy_cq(cq);
1467 }
1468 EXPORT_SYMBOL(ib_destroy_cq);
1469
1470 int ib_resize_cq(struct ib_cq *cq, int cqe)
1471 {
1472         return cq->device->resize_cq ?
1473                 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1474 }
1475 EXPORT_SYMBOL(ib_resize_cq);
1476
1477 /* Memory regions */
1478
1479 int ib_dereg_mr(struct ib_mr *mr)
1480 {
1481         struct ib_pd *pd = mr->pd;
1482         int ret;
1483
1484         ret = mr->device->dereg_mr(mr);
1485         if (!ret)
1486                 atomic_dec(&pd->usecnt);
1487
1488         return ret;
1489 }
1490 EXPORT_SYMBOL(ib_dereg_mr);
1491
1492 /**
1493  * ib_alloc_mr() - Allocates a memory region
1494  * @pd:            protection domain associated with the region
1495  * @mr_type:       memory region type
1496  * @max_num_sg:    maximum sg entries available for registration.
1497  *
1498  * Notes:
1499  * Memory registeration page/sg lists must not exceed max_num_sg.
1500  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1501  * max_num_sg * used_page_size.
1502  *
1503  */
1504 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1505                           enum ib_mr_type mr_type,
1506                           u32 max_num_sg)
1507 {
1508         struct ib_mr *mr;
1509
1510         if (!pd->device->alloc_mr)
1511                 return ERR_PTR(-ENOSYS);
1512
1513         mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1514         if (!IS_ERR(mr)) {
1515                 mr->device  = pd->device;
1516                 mr->pd      = pd;
1517                 mr->uobject = NULL;
1518                 atomic_inc(&pd->usecnt);
1519                 mr->need_inval = false;
1520         }
1521
1522         return mr;
1523 }
1524 EXPORT_SYMBOL(ib_alloc_mr);
1525
1526 /* "Fast" memory regions */
1527
1528 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1529                             int mr_access_flags,
1530                             struct ib_fmr_attr *fmr_attr)
1531 {
1532         struct ib_fmr *fmr;
1533
1534         if (!pd->device->alloc_fmr)
1535                 return ERR_PTR(-ENOSYS);
1536
1537         fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1538         if (!IS_ERR(fmr)) {
1539                 fmr->device = pd->device;
1540                 fmr->pd     = pd;
1541                 atomic_inc(&pd->usecnt);
1542         }
1543
1544         return fmr;
1545 }
1546 EXPORT_SYMBOL(ib_alloc_fmr);
1547
1548 int ib_unmap_fmr(struct list_head *fmr_list)
1549 {
1550         struct ib_fmr *fmr;
1551
1552         if (list_empty(fmr_list))
1553                 return 0;
1554
1555         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1556         return fmr->device->unmap_fmr(fmr_list);
1557 }
1558 EXPORT_SYMBOL(ib_unmap_fmr);
1559
1560 int ib_dealloc_fmr(struct ib_fmr *fmr)
1561 {
1562         struct ib_pd *pd;
1563         int ret;
1564
1565         pd = fmr->pd;
1566         ret = fmr->device->dealloc_fmr(fmr);
1567         if (!ret)
1568                 atomic_dec(&pd->usecnt);
1569
1570         return ret;
1571 }
1572 EXPORT_SYMBOL(ib_dealloc_fmr);
1573
1574 /* Multicast groups */
1575
1576 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1577 {
1578         int ret;
1579
1580         if (!qp->device->attach_mcast)
1581                 return -ENOSYS;
1582         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
1583             lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1584             lid == be16_to_cpu(IB_LID_PERMISSIVE))
1585                 return -EINVAL;
1586
1587         ret = qp->device->attach_mcast(qp, gid, lid);
1588         if (!ret)
1589                 atomic_inc(&qp->usecnt);
1590         return ret;
1591 }
1592 EXPORT_SYMBOL(ib_attach_mcast);
1593
1594 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1595 {
1596         int ret;
1597
1598         if (!qp->device->detach_mcast)
1599                 return -ENOSYS;
1600         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
1601             lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1602             lid == be16_to_cpu(IB_LID_PERMISSIVE))
1603                 return -EINVAL;
1604
1605         ret = qp->device->detach_mcast(qp, gid, lid);
1606         if (!ret)
1607                 atomic_dec(&qp->usecnt);
1608         return ret;
1609 }
1610 EXPORT_SYMBOL(ib_detach_mcast);
1611
1612 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1613 {
1614         struct ib_xrcd *xrcd;
1615
1616         if (!device->alloc_xrcd)
1617                 return ERR_PTR(-ENOSYS);
1618
1619         xrcd = device->alloc_xrcd(device, NULL, NULL);
1620         if (!IS_ERR(xrcd)) {
1621                 xrcd->device = device;
1622                 xrcd->inode = NULL;
1623                 atomic_set(&xrcd->usecnt, 0);
1624                 mutex_init(&xrcd->tgt_qp_mutex);
1625                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1626         }
1627
1628         return xrcd;
1629 }
1630 EXPORT_SYMBOL(ib_alloc_xrcd);
1631
1632 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1633 {
1634         struct ib_qp *qp;
1635         int ret;
1636
1637         if (atomic_read(&xrcd->usecnt))
1638                 return -EBUSY;
1639
1640         while (!list_empty(&xrcd->tgt_qp_list)) {
1641                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1642                 ret = ib_destroy_qp(qp);
1643                 if (ret)
1644                         return ret;
1645         }
1646
1647         return xrcd->device->dealloc_xrcd(xrcd);
1648 }
1649 EXPORT_SYMBOL(ib_dealloc_xrcd);
1650
1651 /**
1652  * ib_create_wq - Creates a WQ associated with the specified protection
1653  * domain.
1654  * @pd: The protection domain associated with the WQ.
1655  * @wq_init_attr: A list of initial attributes required to create the
1656  * WQ. If WQ creation succeeds, then the attributes are updated to
1657  * the actual capabilities of the created WQ.
1658  *
1659  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1660  * the requested size of the WQ, and set to the actual values allocated
1661  * on return.
1662  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1663  * at least as large as the requested values.
1664  */
1665 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1666                            struct ib_wq_init_attr *wq_attr)
1667 {
1668         struct ib_wq *wq;
1669
1670         if (!pd->device->create_wq)
1671                 return ERR_PTR(-ENOSYS);
1672
1673         wq = pd->device->create_wq(pd, wq_attr, NULL);
1674         if (!IS_ERR(wq)) {
1675                 wq->event_handler = wq_attr->event_handler;
1676                 wq->wq_context = wq_attr->wq_context;
1677                 wq->wq_type = wq_attr->wq_type;
1678                 wq->cq = wq_attr->cq;
1679                 wq->device = pd->device;
1680                 wq->pd = pd;
1681                 wq->uobject = NULL;
1682                 atomic_inc(&pd->usecnt);
1683                 atomic_inc(&wq_attr->cq->usecnt);
1684                 atomic_set(&wq->usecnt, 0);
1685         }
1686         return wq;
1687 }
1688 EXPORT_SYMBOL(ib_create_wq);
1689
1690 /**
1691  * ib_destroy_wq - Destroys the specified WQ.
1692  * @wq: The WQ to destroy.
1693  */
1694 int ib_destroy_wq(struct ib_wq *wq)
1695 {
1696         int err;
1697         struct ib_cq *cq = wq->cq;
1698         struct ib_pd *pd = wq->pd;
1699
1700         if (atomic_read(&wq->usecnt))
1701                 return -EBUSY;
1702
1703         err = wq->device->destroy_wq(wq);
1704         if (!err) {
1705                 atomic_dec(&pd->usecnt);
1706                 atomic_dec(&cq->usecnt);
1707         }
1708         return err;
1709 }
1710 EXPORT_SYMBOL(ib_destroy_wq);
1711
1712 /**
1713  * ib_modify_wq - Modifies the specified WQ.
1714  * @wq: The WQ to modify.
1715  * @wq_attr: On input, specifies the WQ attributes to modify.
1716  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1717  *   are being modified.
1718  * On output, the current values of selected WQ attributes are returned.
1719  */
1720 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1721                  u32 wq_attr_mask)
1722 {
1723         int err;
1724
1725         if (!wq->device->modify_wq)
1726                 return -ENOSYS;
1727
1728         err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1729         return err;
1730 }
1731 EXPORT_SYMBOL(ib_modify_wq);
1732
1733 /*
1734  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1735  * @device: The device on which to create the rwq indirection table.
1736  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1737  * create the Indirection Table.
1738  *
1739  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1740  *      than the created ib_rwq_ind_table object and the caller is responsible
1741  *      for its memory allocation/free.
1742  */
1743 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1744                                                  struct ib_rwq_ind_table_init_attr *init_attr)
1745 {
1746         struct ib_rwq_ind_table *rwq_ind_table;
1747         int i;
1748         u32 table_size;
1749
1750         if (!device->create_rwq_ind_table)
1751                 return ERR_PTR(-ENOSYS);
1752
1753         table_size = (1 << init_attr->log_ind_tbl_size);
1754         rwq_ind_table = device->create_rwq_ind_table(device,
1755                                 init_attr, NULL);
1756         if (IS_ERR(rwq_ind_table))
1757                 return rwq_ind_table;
1758
1759         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1760         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1761         rwq_ind_table->device = device;
1762         rwq_ind_table->uobject = NULL;
1763         atomic_set(&rwq_ind_table->usecnt, 0);
1764
1765         for (i = 0; i < table_size; i++)
1766                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1767
1768         return rwq_ind_table;
1769 }
1770 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1771
1772 /*
1773  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1774  * @wq_ind_table: The Indirection Table to destroy.
1775 */
1776 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1777 {
1778         int err, i;
1779         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1780         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1781
1782         if (atomic_read(&rwq_ind_table->usecnt))
1783                 return -EBUSY;
1784
1785         err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1786         if (!err) {
1787                 for (i = 0; i < table_size; i++)
1788                         atomic_dec(&ind_tbl[i]->usecnt);
1789         }
1790
1791         return err;
1792 }
1793 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1794
1795 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1796                                struct ib_flow_attr *flow_attr,
1797                                int domain)
1798 {
1799         struct ib_flow *flow_id;
1800         if (!qp->device->create_flow)
1801                 return ERR_PTR(-ENOSYS);
1802
1803         flow_id = qp->device->create_flow(qp, flow_attr, domain);
1804         if (!IS_ERR(flow_id)) {
1805                 atomic_inc(&qp->usecnt);
1806                 flow_id->qp = qp;
1807         }
1808         return flow_id;
1809 }
1810 EXPORT_SYMBOL(ib_create_flow);
1811
1812 int ib_destroy_flow(struct ib_flow *flow_id)
1813 {
1814         int err;
1815         struct ib_qp *qp = flow_id->qp;
1816
1817         err = qp->device->destroy_flow(flow_id);
1818         if (!err)
1819                 atomic_dec(&qp->usecnt);
1820         return err;
1821 }
1822 EXPORT_SYMBOL(ib_destroy_flow);
1823
1824 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1825                        struct ib_mr_status *mr_status)
1826 {
1827         return mr->device->check_mr_status ?
1828                 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1829 }
1830 EXPORT_SYMBOL(ib_check_mr_status);
1831
1832 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1833                          int state)
1834 {
1835         if (!device->set_vf_link_state)
1836                 return -ENOSYS;
1837
1838         return device->set_vf_link_state(device, vf, port, state);
1839 }
1840 EXPORT_SYMBOL(ib_set_vf_link_state);
1841
1842 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1843                      struct ifla_vf_info *info)
1844 {
1845         if (!device->get_vf_config)
1846                 return -ENOSYS;
1847
1848         return device->get_vf_config(device, vf, port, info);
1849 }
1850 EXPORT_SYMBOL(ib_get_vf_config);
1851
1852 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1853                     struct ifla_vf_stats *stats)
1854 {
1855         if (!device->get_vf_stats)
1856                 return -ENOSYS;
1857
1858         return device->get_vf_stats(device, vf, port, stats);
1859 }
1860 EXPORT_SYMBOL(ib_get_vf_stats);
1861
1862 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1863                    int type)
1864 {
1865         if (!device->set_vf_guid)
1866                 return -ENOSYS;
1867
1868         return device->set_vf_guid(device, vf, port, guid, type);
1869 }
1870 EXPORT_SYMBOL(ib_set_vf_guid);
1871
1872 /**
1873  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1874  *     and set it the memory region.
1875  * @mr:            memory region
1876  * @sg:            dma mapped scatterlist
1877  * @sg_nents:      number of entries in sg
1878  * @sg_offset:     offset in bytes into sg
1879  * @page_size:     page vector desired page size
1880  *
1881  * Constraints:
1882  * - The first sg element is allowed to have an offset.
1883  * - Each sg element must either be aligned to page_size or virtually
1884  *   contiguous to the previous element. In case an sg element has a
1885  *   non-contiguous offset, the mapping prefix will not include it.
1886  * - The last sg element is allowed to have length less than page_size.
1887  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1888  *   then only max_num_sg entries will be mapped.
1889  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1890  *   constraints holds and the page_size argument is ignored.
1891  *
1892  * Returns the number of sg elements that were mapped to the memory region.
1893  *
1894  * After this completes successfully, the  memory region
1895  * is ready for registration.
1896  */
1897 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1898                  unsigned int *sg_offset, unsigned int page_size)
1899 {
1900         if (unlikely(!mr->device->map_mr_sg))
1901                 return -ENOSYS;
1902
1903         mr->page_size = page_size;
1904
1905         return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1906 }
1907 EXPORT_SYMBOL(ib_map_mr_sg);
1908
1909 /**
1910  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1911  *     to a page vector
1912  * @mr:            memory region
1913  * @sgl:           dma mapped scatterlist
1914  * @sg_nents:      number of entries in sg
1915  * @sg_offset_p:   IN:  start offset in bytes into sg
1916  *                 OUT: offset in bytes for element n of the sg of the first
1917  *                      byte that has not been processed where n is the return
1918  *                      value of this function.
1919  * @set_page:      driver page assignment function pointer
1920  *
1921  * Core service helper for drivers to convert the largest
1922  * prefix of given sg list to a page vector. The sg list
1923  * prefix converted is the prefix that meet the requirements
1924  * of ib_map_mr_sg.
1925  *
1926  * Returns the number of sg elements that were assigned to
1927  * a page vector.
1928  */
1929 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1930                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1931 {
1932         struct scatterlist *sg;
1933         u64 last_end_dma_addr = 0;
1934         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1935         unsigned int last_page_off = 0;
1936         u64 page_mask = ~((u64)mr->page_size - 1);
1937         int i, ret;
1938
1939         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1940                 return -EINVAL;
1941
1942         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1943         mr->length = 0;
1944
1945         for_each_sg(sgl, sg, sg_nents, i) {
1946                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1947                 u64 prev_addr = dma_addr;
1948                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1949                 u64 end_dma_addr = dma_addr + dma_len;
1950                 u64 page_addr = dma_addr & page_mask;
1951
1952                 /*
1953                  * For the second and later elements, check whether either the
1954                  * end of element i-1 or the start of element i is not aligned
1955                  * on a page boundary.
1956                  */
1957                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1958                         /* Stop mapping if there is a gap. */
1959                         if (last_end_dma_addr != dma_addr)
1960                                 break;
1961
1962                         /*
1963                          * Coalesce this element with the last. If it is small
1964                          * enough just update mr->length. Otherwise start
1965                          * mapping from the next page.
1966                          */
1967                         goto next_page;
1968                 }
1969
1970                 do {
1971                         ret = set_page(mr, page_addr);
1972                         if (unlikely(ret < 0)) {
1973                                 sg_offset = prev_addr - sg_dma_address(sg);
1974                                 mr->length += prev_addr - dma_addr;
1975                                 if (sg_offset_p)
1976                                         *sg_offset_p = sg_offset;
1977                                 return i || sg_offset ? i : ret;
1978                         }
1979                         prev_addr = page_addr;
1980 next_page:
1981                         page_addr += mr->page_size;
1982                 } while (page_addr < end_dma_addr);
1983
1984                 mr->length += dma_len;
1985                 last_end_dma_addr = end_dma_addr;
1986                 last_page_off = end_dma_addr & ~page_mask;
1987
1988                 sg_offset = 0;
1989         }
1990
1991         if (sg_offset_p)
1992                 *sg_offset_p = 0;
1993         return i;
1994 }
1995 EXPORT_SYMBOL(ib_sg_to_pages);
1996
1997 struct ib_drain_cqe {
1998         struct ib_cqe cqe;
1999         struct completion done;
2000 };
2001
2002 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2003 {
2004         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2005                                                 cqe);
2006
2007         complete(&cqe->done);
2008 }
2009
2010 /*
2011  * Post a WR and block until its completion is reaped for the SQ.
2012  */
2013 static void __ib_drain_sq(struct ib_qp *qp)
2014 {
2015         struct ib_cq *cq = qp->send_cq;
2016         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2017         struct ib_drain_cqe sdrain;
2018         struct ib_send_wr swr = {}, *bad_swr;
2019         int ret;
2020
2021         swr.wr_cqe = &sdrain.cqe;
2022         sdrain.cqe.done = ib_drain_qp_done;
2023         init_completion(&sdrain.done);
2024
2025         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2026         if (ret) {
2027                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2028                 return;
2029         }
2030
2031         ret = ib_post_send(qp, &swr, &bad_swr);
2032         if (ret) {
2033                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2034                 return;
2035         }
2036
2037         if (cq->poll_ctx == IB_POLL_DIRECT)
2038                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2039                         ib_process_cq_direct(cq, -1);
2040         else
2041                 wait_for_completion(&sdrain.done);
2042 }
2043
2044 /*
2045  * Post a WR and block until its completion is reaped for the RQ.
2046  */
2047 static void __ib_drain_rq(struct ib_qp *qp)
2048 {
2049         struct ib_cq *cq = qp->recv_cq;
2050         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2051         struct ib_drain_cqe rdrain;
2052         struct ib_recv_wr rwr = {}, *bad_rwr;
2053         int ret;
2054
2055         rwr.wr_cqe = &rdrain.cqe;
2056         rdrain.cqe.done = ib_drain_qp_done;
2057         init_completion(&rdrain.done);
2058
2059         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2060         if (ret) {
2061                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2062                 return;
2063         }
2064
2065         ret = ib_post_recv(qp, &rwr, &bad_rwr);
2066         if (ret) {
2067                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2068                 return;
2069         }
2070
2071         if (cq->poll_ctx == IB_POLL_DIRECT)
2072                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2073                         ib_process_cq_direct(cq, -1);
2074         else
2075                 wait_for_completion(&rdrain.done);
2076 }
2077
2078 /**
2079  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2080  *                 application.
2081  * @qp:            queue pair to drain
2082  *
2083  * If the device has a provider-specific drain function, then
2084  * call that.  Otherwise call the generic drain function
2085  * __ib_drain_sq().
2086  *
2087  * The caller must:
2088  *
2089  * ensure there is room in the CQ and SQ for the drain work request and
2090  * completion.
2091  *
2092  * allocate the CQ using ib_alloc_cq().
2093  *
2094  * ensure that there are no other contexts that are posting WRs concurrently.
2095  * Otherwise the drain is not guaranteed.
2096  */
2097 void ib_drain_sq(struct ib_qp *qp)
2098 {
2099         if (qp->device->drain_sq)
2100                 qp->device->drain_sq(qp);
2101         else
2102                 __ib_drain_sq(qp);
2103 }
2104 EXPORT_SYMBOL(ib_drain_sq);
2105
2106 /**
2107  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2108  *                 application.
2109  * @qp:            queue pair to drain
2110  *
2111  * If the device has a provider-specific drain function, then
2112  * call that.  Otherwise call the generic drain function
2113  * __ib_drain_rq().
2114  *
2115  * The caller must:
2116  *
2117  * ensure there is room in the CQ and RQ for the drain work request and
2118  * completion.
2119  *
2120  * allocate the CQ using ib_alloc_cq().
2121  *
2122  * ensure that there are no other contexts that are posting WRs concurrently.
2123  * Otherwise the drain is not guaranteed.
2124  */
2125 void ib_drain_rq(struct ib_qp *qp)
2126 {
2127         if (qp->device->drain_rq)
2128                 qp->device->drain_rq(qp);
2129         else
2130                 __ib_drain_rq(qp);
2131 }
2132 EXPORT_SYMBOL(ib_drain_rq);
2133
2134 /**
2135  * ib_drain_qp() - Block until all CQEs have been consumed by the
2136  *                 application on both the RQ and SQ.
2137  * @qp:            queue pair to drain
2138  *
2139  * The caller must:
2140  *
2141  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2142  * and completions.
2143  *
2144  * allocate the CQs using ib_alloc_cq().
2145  *
2146  * ensure that there are no other contexts that are posting WRs concurrently.
2147  * Otherwise the drain is not guaranteed.
2148  */
2149 void ib_drain_qp(struct ib_qp *qp)
2150 {
2151         ib_drain_sq(qp);
2152         if (!qp->srq)
2153                 ib_drain_rq(qp);
2154 }
2155 EXPORT_SYMBOL(ib_drain_qp);