Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/hskinnemoen...
[sfrench/cifs-2.6.git] / drivers / ieee1394 / ieee1394_core.c
1 /*
2  * IEEE 1394 for Linux
3  *
4  * Core support: hpsb_packet management, packet handling and forwarding to
5  *               highlevel or lowlevel code
6  *
7  * Copyright (C) 1999, 2000 Andreas E. Bombe
8  *                     2002 Manfred Weihs <weihs@ict.tuwien.ac.at>
9  *
10  * This code is licensed under the GPL.  See the file COPYING in the root
11  * directory of the kernel sources for details.
12  *
13  *
14  * Contributions:
15  *
16  * Manfred Weihs <weihs@ict.tuwien.ac.at>
17  *        loopback functionality in hpsb_send_packet
18  *        allow highlevel drivers to disable automatic response generation
19  *              and to generate responses themselves (deferred)
20  *
21  */
22
23 #include <linux/kernel.h>
24 #include <linux/list.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/bitops.h>
32 #include <linux/kdev_t.h>
33 #include <linux/freezer.h>
34 #include <linux/suspend.h>
35 #include <linux/kthread.h>
36 #include <linux/preempt.h>
37 #include <linux/time.h>
38
39 #include <asm/system.h>
40 #include <asm/byteorder.h>
41
42 #include "ieee1394_types.h"
43 #include "ieee1394.h"
44 #include "hosts.h"
45 #include "ieee1394_core.h"
46 #include "highlevel.h"
47 #include "ieee1394_transactions.h"
48 #include "csr.h"
49 #include "nodemgr.h"
50 #include "dma.h"
51 #include "iso.h"
52 #include "config_roms.h"
53
54 /*
55  * Disable the nodemgr detection and config rom reading functionality.
56  */
57 static int disable_nodemgr;
58 module_param(disable_nodemgr, int, 0444);
59 MODULE_PARM_DESC(disable_nodemgr, "Disable nodemgr functionality.");
60
61 /* Disable Isochronous Resource Manager functionality */
62 int hpsb_disable_irm = 0;
63 module_param_named(disable_irm, hpsb_disable_irm, bool, 0444);
64 MODULE_PARM_DESC(disable_irm,
65                  "Disable Isochronous Resource Manager functionality.");
66
67 /* We are GPL, so treat us special */
68 MODULE_LICENSE("GPL");
69
70 /* Some globals used */
71 const char *hpsb_speedto_str[] = { "S100", "S200", "S400", "S800", "S1600", "S3200" };
72 struct class *hpsb_protocol_class;
73
74 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
75 static void dump_packet(const char *text, quadlet_t *data, int size, int speed)
76 {
77         int i;
78
79         size /= 4;
80         size = (size > 4 ? 4 : size);
81
82         printk(KERN_DEBUG "ieee1394: %s", text);
83         if (speed > -1 && speed < 6)
84                 printk(" at %s", hpsb_speedto_str[speed]);
85         printk(":");
86         for (i = 0; i < size; i++)
87                 printk(" %08x", data[i]);
88         printk("\n");
89 }
90 #else
91 #define dump_packet(a,b,c,d) do {} while (0)
92 #endif
93
94 static void abort_requests(struct hpsb_host *host);
95 static void queue_packet_complete(struct hpsb_packet *packet);
96
97
98 /**
99  * hpsb_set_packet_complete_task - set task that runs when a packet completes
100  * @packet: the packet whose completion we want the task added to
101  * @routine: function to call
102  * @data: data (if any) to pass to the above function
103  *
104  * Set the task that runs when a packet completes. You cannot call this more
105  * than once on a single packet before it is sent.
106  *
107  * Typically, the complete @routine is responsible to call hpsb_free_packet().
108  */
109 void hpsb_set_packet_complete_task(struct hpsb_packet *packet,
110                                    void (*routine)(void *), void *data)
111 {
112         WARN_ON(packet->complete_routine != NULL);
113         packet->complete_routine = routine;
114         packet->complete_data = data;
115         return;
116 }
117
118 /**
119  * hpsb_alloc_packet - allocate new packet structure
120  * @data_size: size of the data block to be allocated, in bytes
121  *
122  * This function allocates, initializes and returns a new &struct hpsb_packet.
123  * It can be used in interrupt context.  A header block is always included and
124  * initialized with zeros.  Its size is big enough to contain all possible 1394
125  * headers.  The data block is only allocated if @data_size is not zero.
126  *
127  * For packets for which responses will be received the @data_size has to be big
128  * enough to contain the response's data block since no further allocation
129  * occurs at response matching time.
130  *
131  * The packet's generation value will be set to the current generation number
132  * for ease of use.  Remember to overwrite it with your own recorded generation
133  * number if you can not be sure that your code will not race with a bus reset.
134  *
135  * Return value: A pointer to a &struct hpsb_packet or NULL on allocation
136  * failure.
137  */
138 struct hpsb_packet *hpsb_alloc_packet(size_t data_size)
139 {
140         struct hpsb_packet *packet;
141
142         data_size = ((data_size + 3) & ~3);
143
144         packet = kzalloc(sizeof(*packet) + data_size, GFP_ATOMIC);
145         if (!packet)
146                 return NULL;
147
148         packet->state = hpsb_unused;
149         packet->generation = -1;
150         INIT_LIST_HEAD(&packet->driver_list);
151         INIT_LIST_HEAD(&packet->queue);
152         atomic_set(&packet->refcnt, 1);
153
154         if (data_size) {
155                 packet->data = packet->embedded_data;
156                 packet->allocated_data_size = data_size;
157         }
158         return packet;
159 }
160
161 /**
162  * hpsb_free_packet - free packet and data associated with it
163  * @packet: packet to free (is NULL safe)
164  *
165  * Frees @packet->data only if it was allocated through hpsb_alloc_packet().
166  */
167 void hpsb_free_packet(struct hpsb_packet *packet)
168 {
169         if (packet && atomic_dec_and_test(&packet->refcnt)) {
170                 BUG_ON(!list_empty(&packet->driver_list) ||
171                        !list_empty(&packet->queue));
172                 kfree(packet);
173         }
174 }
175
176 /**
177  * hpsb_reset_bus - initiate bus reset on the given host
178  * @host: host controller whose bus to reset
179  * @type: one of enum reset_types
180  *
181  * Returns 1 if bus reset already in progress, 0 otherwise.
182  */
183 int hpsb_reset_bus(struct hpsb_host *host, int type)
184 {
185         if (!host->in_bus_reset) {
186                 host->driver->devctl(host, RESET_BUS, type);
187                 return 0;
188         } else {
189                 return 1;
190         }
191 }
192
193 /**
194  * hpsb_read_cycle_timer - read cycle timer register and system time
195  * @host: host whose isochronous cycle timer register is read
196  * @cycle_timer: address of bitfield to return the register contents
197  * @local_time: address to return the system time
198  *
199  * The format of * @cycle_timer, is described in OHCI 1.1 clause 5.13. This
200  * format is also read from non-OHCI controllers. * @local_time contains the
201  * system time in microseconds since the Epoch, read at the moment when the
202  * cycle timer was read.
203  *
204  * Return value: 0 for success or error number otherwise.
205  */
206 int hpsb_read_cycle_timer(struct hpsb_host *host, u32 *cycle_timer,
207                           u64 *local_time)
208 {
209         int ctr;
210         struct timeval tv;
211         unsigned long flags;
212
213         if (!host || !cycle_timer || !local_time)
214                 return -EINVAL;
215
216         preempt_disable();
217         local_irq_save(flags);
218
219         ctr = host->driver->devctl(host, GET_CYCLE_COUNTER, 0);
220         if (ctr)
221                 do_gettimeofday(&tv);
222
223         local_irq_restore(flags);
224         preempt_enable();
225
226         if (!ctr)
227                 return -EIO;
228         *cycle_timer = ctr;
229         *local_time = tv.tv_sec * 1000000ULL + tv.tv_usec;
230         return 0;
231 }
232
233 /**
234  * hpsb_bus_reset - notify a bus reset to the core
235  *
236  * For host driver module usage.  Safe to use in interrupt context, although
237  * quite complex; so you may want to run it in the bottom rather than top half.
238  *
239  * Returns 1 if bus reset already in progress, 0 otherwise.
240  */
241 int hpsb_bus_reset(struct hpsb_host *host)
242 {
243         if (host->in_bus_reset) {
244                 HPSB_NOTICE("%s called while bus reset already in progress",
245                             __func__);
246                 return 1;
247         }
248
249         abort_requests(host);
250         host->in_bus_reset = 1;
251         host->irm_id = -1;
252         host->is_irm = 0;
253         host->busmgr_id = -1;
254         host->is_busmgr = 0;
255         host->is_cycmst = 0;
256         host->node_count = 0;
257         host->selfid_count = 0;
258
259         return 0;
260 }
261
262
263 /*
264  * Verify num_of_selfids SelfIDs and return number of nodes.  Return zero in
265  * case verification failed.
266  */
267 static int check_selfids(struct hpsb_host *host)
268 {
269         int nodeid = -1;
270         int rest_of_selfids = host->selfid_count;
271         struct selfid *sid = (struct selfid *)host->topology_map;
272         struct ext_selfid *esid;
273         int esid_seq = 23;
274
275         host->nodes_active = 0;
276
277         while (rest_of_selfids--) {
278                 if (!sid->extended) {
279                         nodeid++;
280                         esid_seq = 0;
281
282                         if (sid->phy_id != nodeid) {
283                                 HPSB_INFO("SelfIDs failed monotony check with "
284                                           "%d", sid->phy_id);
285                                 return 0;
286                         }
287
288                         if (sid->link_active) {
289                                 host->nodes_active++;
290                                 if (sid->contender)
291                                         host->irm_id = LOCAL_BUS | sid->phy_id;
292                         }
293                 } else {
294                         esid = (struct ext_selfid *)sid;
295
296                         if ((esid->phy_id != nodeid)
297                             || (esid->seq_nr != esid_seq)) {
298                                 HPSB_INFO("SelfIDs failed monotony check with "
299                                           "%d/%d", esid->phy_id, esid->seq_nr);
300                                 return 0;
301                         }
302                         esid_seq++;
303                 }
304                 sid++;
305         }
306
307         esid = (struct ext_selfid *)(sid - 1);
308         while (esid->extended) {
309                 if ((esid->porta == SELFID_PORT_PARENT) ||
310                     (esid->portb == SELFID_PORT_PARENT) ||
311                     (esid->portc == SELFID_PORT_PARENT) ||
312                     (esid->portd == SELFID_PORT_PARENT) ||
313                     (esid->porte == SELFID_PORT_PARENT) ||
314                     (esid->portf == SELFID_PORT_PARENT) ||
315                     (esid->portg == SELFID_PORT_PARENT) ||
316                     (esid->porth == SELFID_PORT_PARENT)) {
317                         HPSB_INFO("SelfIDs failed root check on "
318                                   "extended SelfID");
319                         return 0;
320                 }
321                 esid--;
322         }
323
324         sid = (struct selfid *)esid;
325         if ((sid->port0 == SELFID_PORT_PARENT) ||
326             (sid->port1 == SELFID_PORT_PARENT) ||
327             (sid->port2 == SELFID_PORT_PARENT)) {
328                 HPSB_INFO("SelfIDs failed root check");
329                 return 0;
330         }
331
332         host->node_count = nodeid + 1;
333         return 1;
334 }
335
336 static void build_speed_map(struct hpsb_host *host, int nodecount)
337 {
338         u8 cldcnt[nodecount];
339         u8 *map = host->speed_map;
340         u8 *speedcap = host->speed;
341         struct selfid *sid;
342         struct ext_selfid *esid;
343         int i, j, n;
344
345         for (i = 0; i < (nodecount * 64); i += 64) {
346                 for (j = 0; j < nodecount; j++) {
347                         map[i+j] = IEEE1394_SPEED_MAX;
348                 }
349         }
350
351         for (i = 0; i < nodecount; i++) {
352                 cldcnt[i] = 0;
353         }
354
355         /* find direct children count and speed */
356         for (sid = (struct selfid *)&host->topology_map[host->selfid_count-1],
357                      n = nodecount - 1;
358              (void *)sid >= (void *)host->topology_map; sid--) {
359                 if (sid->extended) {
360                         esid = (struct ext_selfid *)sid;
361
362                         if (esid->porta == SELFID_PORT_CHILD) cldcnt[n]++;
363                         if (esid->portb == SELFID_PORT_CHILD) cldcnt[n]++;
364                         if (esid->portc == SELFID_PORT_CHILD) cldcnt[n]++;
365                         if (esid->portd == SELFID_PORT_CHILD) cldcnt[n]++;
366                         if (esid->porte == SELFID_PORT_CHILD) cldcnt[n]++;
367                         if (esid->portf == SELFID_PORT_CHILD) cldcnt[n]++;
368                         if (esid->portg == SELFID_PORT_CHILD) cldcnt[n]++;
369                         if (esid->porth == SELFID_PORT_CHILD) cldcnt[n]++;
370                 } else {
371                         if (sid->port0 == SELFID_PORT_CHILD) cldcnt[n]++;
372                         if (sid->port1 == SELFID_PORT_CHILD) cldcnt[n]++;
373                         if (sid->port2 == SELFID_PORT_CHILD) cldcnt[n]++;
374
375                         speedcap[n] = sid->speed;
376                         if (speedcap[n] > host->csr.lnk_spd)
377                                 speedcap[n] = host->csr.lnk_spd;
378                         n--;
379                 }
380         }
381
382         /* set self mapping */
383         for (i = 0; i < nodecount; i++) {
384                 map[64*i + i] = speedcap[i];
385         }
386
387         /* fix up direct children count to total children count;
388          * also fix up speedcaps for sibling and parent communication */
389         for (i = 1; i < nodecount; i++) {
390                 for (j = cldcnt[i], n = i - 1; j > 0; j--) {
391                         cldcnt[i] += cldcnt[n];
392                         speedcap[n] = min(speedcap[n], speedcap[i]);
393                         n -= cldcnt[n] + 1;
394                 }
395         }
396
397         for (n = 0; n < nodecount; n++) {
398                 for (i = n - cldcnt[n]; i <= n; i++) {
399                         for (j = 0; j < (n - cldcnt[n]); j++) {
400                                 map[j*64 + i] = map[i*64 + j] =
401                                         min(map[i*64 + j], speedcap[n]);
402                         }
403                         for (j = n + 1; j < nodecount; j++) {
404                                 map[j*64 + i] = map[i*64 + j] =
405                                         min(map[i*64 + j], speedcap[n]);
406                         }
407                 }
408         }
409
410 #if SELFID_SPEED_UNKNOWN != IEEE1394_SPEED_MAX
411         /* assume maximum speed for 1394b PHYs, nodemgr will correct it */
412         for (n = 0; n < nodecount; n++)
413                 if (speedcap[n] == SELFID_SPEED_UNKNOWN)
414                         speedcap[n] = IEEE1394_SPEED_MAX;
415 #endif
416 }
417
418
419 /**
420  * hpsb_selfid_received - hand over received selfid packet to the core
421  *
422  * For host driver module usage.  Safe to use in interrupt context.
423  *
424  * The host driver should have done a successful complement check (second
425  * quadlet is complement of first) beforehand.
426  */
427 void hpsb_selfid_received(struct hpsb_host *host, quadlet_t sid)
428 {
429         if (host->in_bus_reset) {
430                 HPSB_VERBOSE("Including SelfID 0x%x", sid);
431                 host->topology_map[host->selfid_count++] = sid;
432         } else {
433                 HPSB_NOTICE("Spurious SelfID packet (0x%08x) received from bus %d",
434                             sid, NODEID_TO_BUS(host->node_id));
435         }
436 }
437
438 /**
439  * hpsb_selfid_complete - notify completion of SelfID stage to the core
440  *
441  * For host driver module usage.  Safe to use in interrupt context, although
442  * quite complex; so you may want to run it in the bottom rather than top half.
443  *
444  * Notify completion of SelfID stage to the core and report new physical ID
445  * and whether host is root now.
446  */
447 void hpsb_selfid_complete(struct hpsb_host *host, int phyid, int isroot)
448 {
449         if (!host->in_bus_reset)
450                 HPSB_NOTICE("SelfID completion called outside of bus reset!");
451
452         host->node_id = LOCAL_BUS | phyid;
453         host->is_root = isroot;
454
455         if (!check_selfids(host)) {
456                 if (host->reset_retries++ < 20) {
457                         /* selfid stage did not complete without error */
458                         HPSB_NOTICE("Error in SelfID stage, resetting");
459                         host->in_bus_reset = 0;
460                         /* this should work from ohci1394 now... */
461                         hpsb_reset_bus(host, LONG_RESET);
462                         return;
463                 } else {
464                         HPSB_NOTICE("Stopping out-of-control reset loop");
465                         HPSB_NOTICE("Warning - topology map and speed map will not be valid");
466                         host->reset_retries = 0;
467                 }
468         } else {
469                 host->reset_retries = 0;
470                 build_speed_map(host, host->node_count);
471         }
472
473         HPSB_VERBOSE("selfid_complete called with successful SelfID stage "
474                      "... irm_id: 0x%X node_id: 0x%X",host->irm_id,host->node_id);
475
476         /* irm_id is kept up to date by check_selfids() */
477         if (host->irm_id == host->node_id) {
478                 host->is_irm = 1;
479         } else {
480                 host->is_busmgr = 0;
481                 host->is_irm = 0;
482         }
483
484         if (isroot) {
485                 host->driver->devctl(host, ACT_CYCLE_MASTER, 1);
486                 host->is_cycmst = 1;
487         }
488         atomic_inc(&host->generation);
489         host->in_bus_reset = 0;
490         highlevel_host_reset(host);
491 }
492
493 static DEFINE_SPINLOCK(pending_packets_lock);
494
495 /**
496  * hpsb_packet_sent - notify core of sending a packet
497  *
498  * For host driver module usage.  Safe to call from within a transmit packet
499  * routine.
500  *
501  * Notify core of sending a packet.  Ackcode is the ack code returned for async
502  * transmits or ACKX_SEND_ERROR if the transmission failed completely; ACKX_NONE
503  * for other cases (internal errors that don't justify a panic).
504  */
505 void hpsb_packet_sent(struct hpsb_host *host, struct hpsb_packet *packet,
506                       int ackcode)
507 {
508         unsigned long flags;
509
510         spin_lock_irqsave(&pending_packets_lock, flags);
511
512         packet->ack_code = ackcode;
513
514         if (packet->no_waiter || packet->state == hpsb_complete) {
515                 /* if packet->no_waiter, must not have a tlabel allocated */
516                 spin_unlock_irqrestore(&pending_packets_lock, flags);
517                 hpsb_free_packet(packet);
518                 return;
519         }
520
521         atomic_dec(&packet->refcnt);    /* drop HC's reference */
522         /* here the packet must be on the host->pending_packets queue */
523
524         if (ackcode != ACK_PENDING || !packet->expect_response) {
525                 packet->state = hpsb_complete;
526                 list_del_init(&packet->queue);
527                 spin_unlock_irqrestore(&pending_packets_lock, flags);
528                 queue_packet_complete(packet);
529                 return;
530         }
531
532         packet->state = hpsb_pending;
533         packet->sendtime = jiffies;
534
535         spin_unlock_irqrestore(&pending_packets_lock, flags);
536
537         mod_timer(&host->timeout, jiffies + host->timeout_interval);
538 }
539
540 /**
541  * hpsb_send_phy_config - transmit a PHY configuration packet on the bus
542  * @host: host that PHY config packet gets sent through
543  * @rootid: root whose force_root bit should get set (-1 = don't set force_root)
544  * @gapcnt: gap count value to set (-1 = don't set gap count)
545  *
546  * This function sends a PHY config packet on the bus through the specified
547  * host.
548  *
549  * Return value: 0 for success or negative error number otherwise.
550  */
551 int hpsb_send_phy_config(struct hpsb_host *host, int rootid, int gapcnt)
552 {
553         struct hpsb_packet *packet;
554         quadlet_t d = 0;
555         int retval = 0;
556
557         if (rootid >= ALL_NODES || rootid < -1 || gapcnt > 0x3f || gapcnt < -1 ||
558            (rootid == -1 && gapcnt == -1)) {
559                 HPSB_DEBUG("Invalid Parameter: rootid = %d   gapcnt = %d",
560                            rootid, gapcnt);
561                 return -EINVAL;
562         }
563
564         if (rootid != -1)
565                 d |= PHYPACKET_PHYCONFIG_R | rootid << PHYPACKET_PORT_SHIFT;
566         if (gapcnt != -1)
567                 d |= PHYPACKET_PHYCONFIG_T | gapcnt << PHYPACKET_GAPCOUNT_SHIFT;
568
569         packet = hpsb_make_phypacket(host, d);
570         if (!packet)
571                 return -ENOMEM;
572
573         packet->generation = get_hpsb_generation(host);
574         retval = hpsb_send_packet_and_wait(packet);
575         hpsb_free_packet(packet);
576
577         return retval;
578 }
579
580 /**
581  * hpsb_send_packet - transmit a packet on the bus
582  * @packet: packet to send
583  *
584  * The packet is sent through the host specified in the packet->host field.
585  * Before sending, the packet's transmit speed is automatically determined
586  * using the local speed map when it is an async, non-broadcast packet.
587  *
588  * Possibilities for failure are that host is either not initialized, in bus
589  * reset, the packet's generation number doesn't match the current generation
590  * number or the host reports a transmit error.
591  *
592  * Return value: 0 on success, negative errno on failure.
593  */
594 int hpsb_send_packet(struct hpsb_packet *packet)
595 {
596         struct hpsb_host *host = packet->host;
597
598         if (host->is_shutdown)
599                 return -EINVAL;
600         if (host->in_bus_reset ||
601             (packet->generation != get_hpsb_generation(host)))
602                 return -EAGAIN;
603
604         packet->state = hpsb_queued;
605
606         /* This just seems silly to me */
607         WARN_ON(packet->no_waiter && packet->expect_response);
608
609         if (!packet->no_waiter || packet->expect_response) {
610                 unsigned long flags;
611
612                 atomic_inc(&packet->refcnt);
613                 /* Set the initial "sendtime" to 10 seconds from now, to
614                    prevent premature expiry.  If a packet takes more than
615                    10 seconds to hit the wire, we have bigger problems :) */
616                 packet->sendtime = jiffies + 10 * HZ;
617                 spin_lock_irqsave(&pending_packets_lock, flags);
618                 list_add_tail(&packet->queue, &host->pending_packets);
619                 spin_unlock_irqrestore(&pending_packets_lock, flags);
620         }
621
622         if (packet->node_id == host->node_id) {
623                 /* it is a local request, so handle it locally */
624
625                 quadlet_t *data;
626                 size_t size = packet->data_size + packet->header_size;
627
628                 data = kmalloc(size, GFP_ATOMIC);
629                 if (!data) {
630                         HPSB_ERR("unable to allocate memory for concatenating header and data");
631                         return -ENOMEM;
632                 }
633
634                 memcpy(data, packet->header, packet->header_size);
635
636                 if (packet->data_size)
637                         memcpy(((u8*)data) + packet->header_size, packet->data, packet->data_size);
638
639                 dump_packet("send packet local", packet->header, packet->header_size, -1);
640
641                 hpsb_packet_sent(host, packet, packet->expect_response ? ACK_PENDING : ACK_COMPLETE);
642                 hpsb_packet_received(host, data, size, 0);
643
644                 kfree(data);
645
646                 return 0;
647         }
648
649         if (packet->type == hpsb_async &&
650             NODEID_TO_NODE(packet->node_id) != ALL_NODES)
651                 packet->speed_code =
652                         host->speed[NODEID_TO_NODE(packet->node_id)];
653
654         dump_packet("send packet", packet->header, packet->header_size, packet->speed_code);
655
656         return host->driver->transmit_packet(host, packet);
657 }
658
659 /* We could just use complete() directly as the packet complete
660  * callback, but this is more typesafe, in the sense that we get a
661  * compiler error if the prototype for complete() changes. */
662
663 static void complete_packet(void *data)
664 {
665         complete((struct completion *) data);
666 }
667
668 /**
669  * hpsb_send_packet_and_wait - enqueue packet, block until transaction completes
670  * @packet: packet to send
671  *
672  * Return value: 0 on success, negative errno on failure.
673  */
674 int hpsb_send_packet_and_wait(struct hpsb_packet *packet)
675 {
676         struct completion done;
677         int retval;
678
679         init_completion(&done);
680         hpsb_set_packet_complete_task(packet, complete_packet, &done);
681         retval = hpsb_send_packet(packet);
682         if (retval == 0)
683                 wait_for_completion(&done);
684
685         return retval;
686 }
687
688 static void send_packet_nocare(struct hpsb_packet *packet)
689 {
690         if (hpsb_send_packet(packet) < 0) {
691                 hpsb_free_packet(packet);
692         }
693 }
694
695 static size_t packet_size_to_data_size(size_t packet_size, size_t header_size,
696                                        size_t buffer_size, int tcode)
697 {
698         size_t ret = packet_size <= header_size ? 0 : packet_size - header_size;
699
700         if (unlikely(ret > buffer_size))
701                 ret = buffer_size;
702
703         if (unlikely(ret + header_size != packet_size))
704                 HPSB_ERR("unexpected packet size %zd (tcode %d), bug?",
705                          packet_size, tcode);
706         return ret;
707 }
708
709 static void handle_packet_response(struct hpsb_host *host, int tcode,
710                                    quadlet_t *data, size_t size)
711 {
712         struct hpsb_packet *packet;
713         int tlabel = (data[0] >> 10) & 0x3f;
714         size_t header_size;
715         unsigned long flags;
716
717         spin_lock_irqsave(&pending_packets_lock, flags);
718
719         list_for_each_entry(packet, &host->pending_packets, queue)
720                 if (packet->tlabel == tlabel &&
721                     packet->node_id == (data[1] >> 16))
722                         goto found;
723
724         spin_unlock_irqrestore(&pending_packets_lock, flags);
725         HPSB_DEBUG("unsolicited response packet received - %s",
726                    "no tlabel match");
727         dump_packet("contents", data, 16, -1);
728         return;
729
730 found:
731         switch (packet->tcode) {
732         case TCODE_WRITEQ:
733         case TCODE_WRITEB:
734                 if (unlikely(tcode != TCODE_WRITE_RESPONSE))
735                         break;
736                 header_size = 12;
737                 size = 0;
738                 goto dequeue;
739
740         case TCODE_READQ:
741                 if (unlikely(tcode != TCODE_READQ_RESPONSE))
742                         break;
743                 header_size = 16;
744                 size = 0;
745                 goto dequeue;
746
747         case TCODE_READB:
748                 if (unlikely(tcode != TCODE_READB_RESPONSE))
749                         break;
750                 header_size = 16;
751                 size = packet_size_to_data_size(size, header_size,
752                                                 packet->allocated_data_size,
753                                                 tcode);
754                 goto dequeue;
755
756         case TCODE_LOCK_REQUEST:
757                 if (unlikely(tcode != TCODE_LOCK_RESPONSE))
758                         break;
759                 header_size = 16;
760                 size = packet_size_to_data_size(min(size, (size_t)(16 + 8)),
761                                                 header_size,
762                                                 packet->allocated_data_size,
763                                                 tcode);
764                 goto dequeue;
765         }
766
767         spin_unlock_irqrestore(&pending_packets_lock, flags);
768         HPSB_DEBUG("unsolicited response packet received - %s",
769                    "tcode mismatch");
770         dump_packet("contents", data, 16, -1);
771         return;
772
773 dequeue:
774         list_del_init(&packet->queue);
775         spin_unlock_irqrestore(&pending_packets_lock, flags);
776
777         if (packet->state == hpsb_queued) {
778                 packet->sendtime = jiffies;
779                 packet->ack_code = ACK_PENDING;
780         }
781         packet->state = hpsb_complete;
782
783         memcpy(packet->header, data, header_size);
784         if (size)
785                 memcpy(packet->data, data + 4, size);
786
787         queue_packet_complete(packet);
788 }
789
790
791 static struct hpsb_packet *create_reply_packet(struct hpsb_host *host,
792                                                quadlet_t *data, size_t dsize)
793 {
794         struct hpsb_packet *p;
795
796         p = hpsb_alloc_packet(dsize);
797         if (unlikely(p == NULL)) {
798                 /* FIXME - send data_error response */
799                 HPSB_ERR("out of memory, cannot send response packet");
800                 return NULL;
801         }
802
803         p->type = hpsb_async;
804         p->state = hpsb_unused;
805         p->host = host;
806         p->node_id = data[1] >> 16;
807         p->tlabel = (data[0] >> 10) & 0x3f;
808         p->no_waiter = 1;
809
810         p->generation = get_hpsb_generation(host);
811
812         if (dsize % 4)
813                 p->data[dsize / 4] = 0;
814
815         return p;
816 }
817
818 #define PREP_ASYNC_HEAD_RCODE(tc) \
819         packet->tcode = tc; \
820         packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
821                 | (1 << 8) | (tc << 4); \
822         packet->header[1] = (packet->host->node_id << 16) | (rcode << 12); \
823         packet->header[2] = 0
824
825 static void fill_async_readquad_resp(struct hpsb_packet *packet, int rcode,
826                               quadlet_t data)
827 {
828         PREP_ASYNC_HEAD_RCODE(TCODE_READQ_RESPONSE);
829         packet->header[3] = data;
830         packet->header_size = 16;
831         packet->data_size = 0;
832 }
833
834 static void fill_async_readblock_resp(struct hpsb_packet *packet, int rcode,
835                                int length)
836 {
837         if (rcode != RCODE_COMPLETE)
838                 length = 0;
839
840         PREP_ASYNC_HEAD_RCODE(TCODE_READB_RESPONSE);
841         packet->header[3] = length << 16;
842         packet->header_size = 16;
843         packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
844 }
845
846 static void fill_async_write_resp(struct hpsb_packet *packet, int rcode)
847 {
848         PREP_ASYNC_HEAD_RCODE(TCODE_WRITE_RESPONSE);
849         packet->header_size = 12;
850         packet->data_size = 0;
851 }
852
853 static void fill_async_lock_resp(struct hpsb_packet *packet, int rcode, int extcode,
854                           int length)
855 {
856         if (rcode != RCODE_COMPLETE)
857                 length = 0;
858
859         PREP_ASYNC_HEAD_RCODE(TCODE_LOCK_RESPONSE);
860         packet->header[3] = (length << 16) | extcode;
861         packet->header_size = 16;
862         packet->data_size = length;
863 }
864
865 static void handle_incoming_packet(struct hpsb_host *host, int tcode,
866                                    quadlet_t *data, size_t size,
867                                    int write_acked)
868 {
869         struct hpsb_packet *packet;
870         int length, rcode, extcode;
871         quadlet_t buffer;
872         nodeid_t source = data[1] >> 16;
873         nodeid_t dest = data[0] >> 16;
874         u16 flags = (u16) data[0];
875         u64 addr;
876
877         /* FIXME?
878          * Out-of-bounds lengths are left for highlevel_read|write to cap. */
879
880         switch (tcode) {
881         case TCODE_WRITEQ:
882                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
883                 rcode = highlevel_write(host, source, dest, data + 3,
884                                         addr, 4, flags);
885                 goto handle_write_request;
886
887         case TCODE_WRITEB:
888                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
889                 rcode = highlevel_write(host, source, dest, data + 4,
890                                         addr, data[3] >> 16, flags);
891 handle_write_request:
892                 if (rcode < 0 || write_acked ||
893                     NODEID_TO_NODE(data[0] >> 16) == NODE_MASK)
894                         return;
895                 /* not a broadcast write, reply */
896                 packet = create_reply_packet(host, data, 0);
897                 if (packet) {
898                         fill_async_write_resp(packet, rcode);
899                         send_packet_nocare(packet);
900                 }
901                 return;
902
903         case TCODE_READQ:
904                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
905                 rcode = highlevel_read(host, source, &buffer, addr, 4, flags);
906                 if (rcode < 0)
907                         return;
908
909                 packet = create_reply_packet(host, data, 0);
910                 if (packet) {
911                         fill_async_readquad_resp(packet, rcode, buffer);
912                         send_packet_nocare(packet);
913                 }
914                 return;
915
916         case TCODE_READB:
917                 length = data[3] >> 16;
918                 packet = create_reply_packet(host, data, length);
919                 if (!packet)
920                         return;
921
922                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
923                 rcode = highlevel_read(host, source, packet->data, addr,
924                                        length, flags);
925                 if (rcode < 0) {
926                         hpsb_free_packet(packet);
927                         return;
928                 }
929                 fill_async_readblock_resp(packet, rcode, length);
930                 send_packet_nocare(packet);
931                 return;
932
933         case TCODE_LOCK_REQUEST:
934                 length = data[3] >> 16;
935                 extcode = data[3] & 0xffff;
936                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
937
938                 packet = create_reply_packet(host, data, 8);
939                 if (!packet)
940                         return;
941
942                 if (extcode == 0 || extcode >= 7) {
943                         /* let switch default handle error */
944                         length = 0;
945                 }
946
947                 switch (length) {
948                 case 4:
949                         rcode = highlevel_lock(host, source, packet->data, addr,
950                                                data[4], 0, extcode, flags);
951                         fill_async_lock_resp(packet, rcode, extcode, 4);
952                         break;
953                 case 8:
954                         if (extcode != EXTCODE_FETCH_ADD &&
955                             extcode != EXTCODE_LITTLE_ADD) {
956                                 rcode = highlevel_lock(host, source,
957                                                        packet->data, addr,
958                                                        data[5], data[4],
959                                                        extcode, flags);
960                                 fill_async_lock_resp(packet, rcode, extcode, 4);
961                         } else {
962                                 rcode = highlevel_lock64(host, source,
963                                              (octlet_t *)packet->data, addr,
964                                              *(octlet_t *)(data + 4), 0ULL,
965                                              extcode, flags);
966                                 fill_async_lock_resp(packet, rcode, extcode, 8);
967                         }
968                         break;
969                 case 16:
970                         rcode = highlevel_lock64(host, source,
971                                                  (octlet_t *)packet->data, addr,
972                                                  *(octlet_t *)(data + 6),
973                                                  *(octlet_t *)(data + 4),
974                                                  extcode, flags);
975                         fill_async_lock_resp(packet, rcode, extcode, 8);
976                         break;
977                 default:
978                         rcode = RCODE_TYPE_ERROR;
979                         fill_async_lock_resp(packet, rcode, extcode, 0);
980                 }
981
982                 if (rcode < 0)
983                         hpsb_free_packet(packet);
984                 else
985                         send_packet_nocare(packet);
986                 return;
987         }
988 }
989
990 /**
991  * hpsb_packet_received - hand over received packet to the core
992  *
993  * For host driver module usage.
994  *
995  * The contents of data are expected to be the full packet but with the CRCs
996  * left out (data block follows header immediately), with the header (i.e. the
997  * first four quadlets) in machine byte order and the data block in big endian.
998  * *@data can be safely overwritten after this call.
999  *
1000  * If the packet is a write request, @write_acked is to be set to true if it was
1001  * ack_complete'd already, false otherwise.  This argument is ignored for any
1002  * other packet type.
1003  */
1004 void hpsb_packet_received(struct hpsb_host *host, quadlet_t *data, size_t size,
1005                           int write_acked)
1006 {
1007         int tcode;
1008
1009         if (unlikely(host->in_bus_reset)) {
1010                 HPSB_DEBUG("received packet during reset; ignoring");
1011                 return;
1012         }
1013
1014         dump_packet("received packet", data, size, -1);
1015
1016         tcode = (data[0] >> 4) & 0xf;
1017
1018         switch (tcode) {
1019         case TCODE_WRITE_RESPONSE:
1020         case TCODE_READQ_RESPONSE:
1021         case TCODE_READB_RESPONSE:
1022         case TCODE_LOCK_RESPONSE:
1023                 handle_packet_response(host, tcode, data, size);
1024                 break;
1025
1026         case TCODE_WRITEQ:
1027         case TCODE_WRITEB:
1028         case TCODE_READQ:
1029         case TCODE_READB:
1030         case TCODE_LOCK_REQUEST:
1031                 handle_incoming_packet(host, tcode, data, size, write_acked);
1032                 break;
1033
1034         case TCODE_CYCLE_START:
1035                 /* simply ignore this packet if it is passed on */
1036                 break;
1037
1038         default:
1039                 HPSB_DEBUG("received packet with bogus transaction code %d",
1040                            tcode);
1041                 break;
1042         }
1043 }
1044
1045 static void abort_requests(struct hpsb_host *host)
1046 {
1047         struct hpsb_packet *packet, *p;
1048         struct list_head tmp;
1049         unsigned long flags;
1050
1051         host->driver->devctl(host, CANCEL_REQUESTS, 0);
1052
1053         INIT_LIST_HEAD(&tmp);
1054         spin_lock_irqsave(&pending_packets_lock, flags);
1055         list_splice_init(&host->pending_packets, &tmp);
1056         spin_unlock_irqrestore(&pending_packets_lock, flags);
1057
1058         list_for_each_entry_safe(packet, p, &tmp, queue) {
1059                 list_del_init(&packet->queue);
1060                 packet->state = hpsb_complete;
1061                 packet->ack_code = ACKX_ABORTED;
1062                 queue_packet_complete(packet);
1063         }
1064 }
1065
1066 void abort_timedouts(unsigned long __opaque)
1067 {
1068         struct hpsb_host *host = (struct hpsb_host *)__opaque;
1069         struct hpsb_packet *packet, *p;
1070         struct list_head tmp;
1071         unsigned long flags, expire, j;
1072
1073         spin_lock_irqsave(&host->csr.lock, flags);
1074         expire = host->csr.expire;
1075         spin_unlock_irqrestore(&host->csr.lock, flags);
1076
1077         j = jiffies;
1078         INIT_LIST_HEAD(&tmp);
1079         spin_lock_irqsave(&pending_packets_lock, flags);
1080
1081         list_for_each_entry_safe(packet, p, &host->pending_packets, queue) {
1082                 if (time_before(packet->sendtime + expire, j))
1083                         list_move_tail(&packet->queue, &tmp);
1084                 else
1085                         /* Since packets are added to the tail, the oldest
1086                          * ones are first, always. When we get to one that
1087                          * isn't timed out, the rest aren't either. */
1088                         break;
1089         }
1090         if (!list_empty(&host->pending_packets))
1091                 mod_timer(&host->timeout, j + host->timeout_interval);
1092
1093         spin_unlock_irqrestore(&pending_packets_lock, flags);
1094
1095         list_for_each_entry_safe(packet, p, &tmp, queue) {
1096                 list_del_init(&packet->queue);
1097                 packet->state = hpsb_complete;
1098                 packet->ack_code = ACKX_TIMEOUT;
1099                 queue_packet_complete(packet);
1100         }
1101 }
1102
1103 static struct task_struct *khpsbpkt_thread;
1104 static LIST_HEAD(hpsbpkt_queue);
1105
1106 static void queue_packet_complete(struct hpsb_packet *packet)
1107 {
1108         unsigned long flags;
1109
1110         if (packet->no_waiter) {
1111                 hpsb_free_packet(packet);
1112                 return;
1113         }
1114         if (packet->complete_routine != NULL) {
1115                 spin_lock_irqsave(&pending_packets_lock, flags);
1116                 list_add_tail(&packet->queue, &hpsbpkt_queue);
1117                 spin_unlock_irqrestore(&pending_packets_lock, flags);
1118                 wake_up_process(khpsbpkt_thread);
1119         }
1120         return;
1121 }
1122
1123 /*
1124  * Kernel thread which handles packets that are completed.  This way the
1125  * packet's "complete" function is asynchronously run in process context.
1126  * Only packets which have a "complete" function may be sent here.
1127  */
1128 static int hpsbpkt_thread(void *__hi)
1129 {
1130         struct hpsb_packet *packet, *p;
1131         struct list_head tmp;
1132         int may_schedule;
1133
1134         while (!kthread_should_stop()) {
1135
1136                 INIT_LIST_HEAD(&tmp);
1137                 spin_lock_irq(&pending_packets_lock);
1138                 list_splice_init(&hpsbpkt_queue, &tmp);
1139                 spin_unlock_irq(&pending_packets_lock);
1140
1141                 list_for_each_entry_safe(packet, p, &tmp, queue) {
1142                         list_del_init(&packet->queue);
1143                         packet->complete_routine(packet->complete_data);
1144                 }
1145
1146                 set_current_state(TASK_INTERRUPTIBLE);
1147                 spin_lock_irq(&pending_packets_lock);
1148                 may_schedule = list_empty(&hpsbpkt_queue);
1149                 spin_unlock_irq(&pending_packets_lock);
1150                 if (may_schedule)
1151                         schedule();
1152                 __set_current_state(TASK_RUNNING);
1153         }
1154         return 0;
1155 }
1156
1157 static int __init ieee1394_init(void)
1158 {
1159         int i, ret;
1160
1161         /* non-fatal error */
1162         if (hpsb_init_config_roms()) {
1163                 HPSB_ERR("Failed to initialize some config rom entries.\n");
1164                 HPSB_ERR("Some features may not be available\n");
1165         }
1166
1167         khpsbpkt_thread = kthread_run(hpsbpkt_thread, NULL, "khpsbpkt");
1168         if (IS_ERR(khpsbpkt_thread)) {
1169                 HPSB_ERR("Failed to start hpsbpkt thread!\n");
1170                 ret = PTR_ERR(khpsbpkt_thread);
1171                 goto exit_cleanup_config_roms;
1172         }
1173
1174         if (register_chrdev_region(IEEE1394_CORE_DEV, 256, "ieee1394")) {
1175                 HPSB_ERR("unable to register character device major %d!\n", IEEE1394_MAJOR);
1176                 ret = -ENODEV;
1177                 goto exit_release_kernel_thread;
1178         }
1179
1180         ret = bus_register(&ieee1394_bus_type);
1181         if (ret < 0) {
1182                 HPSB_INFO("bus register failed");
1183                 goto release_chrdev;
1184         }
1185
1186         for (i = 0; fw_bus_attrs[i]; i++) {
1187                 ret = bus_create_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1188                 if (ret < 0) {
1189                         while (i >= 0) {
1190                                 bus_remove_file(&ieee1394_bus_type,
1191                                                 fw_bus_attrs[i--]);
1192                         }
1193                         bus_unregister(&ieee1394_bus_type);
1194                         goto release_chrdev;
1195                 }
1196         }
1197
1198         ret = class_register(&hpsb_host_class);
1199         if (ret < 0)
1200                 goto release_all_bus;
1201
1202         hpsb_protocol_class = class_create(THIS_MODULE, "ieee1394_protocol");
1203         if (IS_ERR(hpsb_protocol_class)) {
1204                 ret = PTR_ERR(hpsb_protocol_class);
1205                 goto release_class_host;
1206         }
1207
1208         ret = init_csr();
1209         if (ret) {
1210                 HPSB_INFO("init csr failed");
1211                 ret = -ENOMEM;
1212                 goto release_class_protocol;
1213         }
1214
1215         if (disable_nodemgr) {
1216                 HPSB_INFO("nodemgr and IRM functionality disabled");
1217                 /* We shouldn't contend for IRM with nodemgr disabled, since
1218                    nodemgr implements functionality required of ieee1394a-2000
1219                    IRMs */
1220                 hpsb_disable_irm = 1;
1221
1222                 return 0;
1223         }
1224
1225         if (hpsb_disable_irm) {
1226                 HPSB_INFO("IRM functionality disabled");
1227         }
1228
1229         ret = init_ieee1394_nodemgr();
1230         if (ret < 0) {
1231                 HPSB_INFO("init nodemgr failed");
1232                 goto cleanup_csr;
1233         }
1234
1235         return 0;
1236
1237 cleanup_csr:
1238         cleanup_csr();
1239 release_class_protocol:
1240         class_destroy(hpsb_protocol_class);
1241 release_class_host:
1242         class_unregister(&hpsb_host_class);
1243 release_all_bus:
1244         for (i = 0; fw_bus_attrs[i]; i++)
1245                 bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1246         bus_unregister(&ieee1394_bus_type);
1247 release_chrdev:
1248         unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
1249 exit_release_kernel_thread:
1250         kthread_stop(khpsbpkt_thread);
1251 exit_cleanup_config_roms:
1252         hpsb_cleanup_config_roms();
1253         return ret;
1254 }
1255
1256 static void __exit ieee1394_cleanup(void)
1257 {
1258         int i;
1259
1260         if (!disable_nodemgr)
1261                 cleanup_ieee1394_nodemgr();
1262
1263         cleanup_csr();
1264
1265         class_destroy(hpsb_protocol_class);
1266         class_unregister(&hpsb_host_class);
1267         for (i = 0; fw_bus_attrs[i]; i++)
1268                 bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1269         bus_unregister(&ieee1394_bus_type);
1270
1271         kthread_stop(khpsbpkt_thread);
1272
1273         hpsb_cleanup_config_roms();
1274
1275         unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
1276 }
1277
1278 module_init(ieee1394_init);
1279 module_exit(ieee1394_cleanup);
1280
1281 /* Exported symbols */
1282
1283 /** hosts.c **/
1284 EXPORT_SYMBOL(hpsb_alloc_host);
1285 EXPORT_SYMBOL(hpsb_add_host);
1286 EXPORT_SYMBOL(hpsb_resume_host);
1287 EXPORT_SYMBOL(hpsb_remove_host);
1288 EXPORT_SYMBOL(hpsb_update_config_rom_image);
1289
1290 /** ieee1394_core.c **/
1291 EXPORT_SYMBOL(hpsb_speedto_str);
1292 EXPORT_SYMBOL(hpsb_protocol_class);
1293 EXPORT_SYMBOL(hpsb_set_packet_complete_task);
1294 EXPORT_SYMBOL(hpsb_alloc_packet);
1295 EXPORT_SYMBOL(hpsb_free_packet);
1296 EXPORT_SYMBOL(hpsb_send_packet);
1297 EXPORT_SYMBOL(hpsb_reset_bus);
1298 EXPORT_SYMBOL(hpsb_read_cycle_timer);
1299 EXPORT_SYMBOL(hpsb_bus_reset);
1300 EXPORT_SYMBOL(hpsb_selfid_received);
1301 EXPORT_SYMBOL(hpsb_selfid_complete);
1302 EXPORT_SYMBOL(hpsb_packet_sent);
1303 EXPORT_SYMBOL(hpsb_packet_received);
1304 EXPORT_SYMBOL_GPL(hpsb_disable_irm);
1305
1306 /** ieee1394_transactions.c **/
1307 EXPORT_SYMBOL(hpsb_get_tlabel);
1308 EXPORT_SYMBOL(hpsb_free_tlabel);
1309 EXPORT_SYMBOL(hpsb_make_readpacket);
1310 EXPORT_SYMBOL(hpsb_make_writepacket);
1311 EXPORT_SYMBOL(hpsb_make_streampacket);
1312 EXPORT_SYMBOL(hpsb_make_lockpacket);
1313 EXPORT_SYMBOL(hpsb_make_lock64packet);
1314 EXPORT_SYMBOL(hpsb_make_phypacket);
1315 EXPORT_SYMBOL(hpsb_read);
1316 EXPORT_SYMBOL(hpsb_write);
1317 EXPORT_SYMBOL(hpsb_packet_success);
1318
1319 /** highlevel.c **/
1320 EXPORT_SYMBOL(hpsb_register_highlevel);
1321 EXPORT_SYMBOL(hpsb_unregister_highlevel);
1322 EXPORT_SYMBOL(hpsb_register_addrspace);
1323 EXPORT_SYMBOL(hpsb_unregister_addrspace);
1324 EXPORT_SYMBOL(hpsb_allocate_and_register_addrspace);
1325 EXPORT_SYMBOL(hpsb_get_hostinfo);
1326 EXPORT_SYMBOL(hpsb_create_hostinfo);
1327 EXPORT_SYMBOL(hpsb_destroy_hostinfo);
1328 EXPORT_SYMBOL(hpsb_set_hostinfo_key);
1329 EXPORT_SYMBOL(hpsb_get_hostinfo_bykey);
1330 EXPORT_SYMBOL(hpsb_set_hostinfo);
1331
1332 /** nodemgr.c **/
1333 EXPORT_SYMBOL(hpsb_node_fill_packet);
1334 EXPORT_SYMBOL(hpsb_node_write);
1335 EXPORT_SYMBOL(__hpsb_register_protocol);
1336 EXPORT_SYMBOL(hpsb_unregister_protocol);
1337
1338 /** csr.c **/
1339 EXPORT_SYMBOL(hpsb_update_config_rom);
1340
1341 /** dma.c **/
1342 EXPORT_SYMBOL(dma_prog_region_init);
1343 EXPORT_SYMBOL(dma_prog_region_alloc);
1344 EXPORT_SYMBOL(dma_prog_region_free);
1345 EXPORT_SYMBOL(dma_region_init);
1346 EXPORT_SYMBOL(dma_region_alloc);
1347 EXPORT_SYMBOL(dma_region_free);
1348 EXPORT_SYMBOL(dma_region_sync_for_cpu);
1349 EXPORT_SYMBOL(dma_region_sync_for_device);
1350 EXPORT_SYMBOL(dma_region_mmap);
1351 EXPORT_SYMBOL(dma_region_offset_to_bus);
1352
1353 /** iso.c **/
1354 EXPORT_SYMBOL(hpsb_iso_xmit_init);
1355 EXPORT_SYMBOL(hpsb_iso_recv_init);
1356 EXPORT_SYMBOL(hpsb_iso_xmit_start);
1357 EXPORT_SYMBOL(hpsb_iso_recv_start);
1358 EXPORT_SYMBOL(hpsb_iso_recv_listen_channel);
1359 EXPORT_SYMBOL(hpsb_iso_recv_unlisten_channel);
1360 EXPORT_SYMBOL(hpsb_iso_recv_set_channel_mask);
1361 EXPORT_SYMBOL(hpsb_iso_stop);
1362 EXPORT_SYMBOL(hpsb_iso_shutdown);
1363 EXPORT_SYMBOL(hpsb_iso_xmit_queue_packet);
1364 EXPORT_SYMBOL(hpsb_iso_xmit_sync);
1365 EXPORT_SYMBOL(hpsb_iso_recv_release_packets);
1366 EXPORT_SYMBOL(hpsb_iso_n_ready);
1367 EXPORT_SYMBOL(hpsb_iso_packet_sent);
1368 EXPORT_SYMBOL(hpsb_iso_packet_received);
1369 EXPORT_SYMBOL(hpsb_iso_wake);
1370 EXPORT_SYMBOL(hpsb_iso_recv_flush);
1371
1372 /** csr1212.c **/
1373 EXPORT_SYMBOL(csr1212_attach_keyval_to_directory);
1374 EXPORT_SYMBOL(csr1212_detach_keyval_from_directory);
1375 EXPORT_SYMBOL(csr1212_get_keyval);
1376 EXPORT_SYMBOL(csr1212_new_directory);
1377 EXPORT_SYMBOL(csr1212_parse_keyval);
1378 EXPORT_SYMBOL(csr1212_read);
1379 EXPORT_SYMBOL(csr1212_release_keyval);