ide: fix registers loading order in ide_dump_ata_status()
[sfrench/cifs-2.6.git] / drivers / ide / ide-iops.c
1 /*
2  * linux/drivers/ide/ide-iops.c Version 0.37    Mar 05, 2003
3  *
4  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
5  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
6  *
7  */
8
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/major.h>
17 #include <linux/errno.h>
18 #include <linux/genhd.h>
19 #include <linux/blkpg.h>
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/hdreg.h>
24 #include <linux/ide.h>
25 #include <linux/bitops.h>
26 #include <linux/nmi.h>
27
28 #include <asm/byteorder.h>
29 #include <asm/irq.h>
30 #include <asm/uaccess.h>
31 #include <asm/io.h>
32
33 /*
34  *      Conventional PIO operations for ATA devices
35  */
36
37 static u8 ide_inb (unsigned long port)
38 {
39         return (u8) inb(port);
40 }
41
42 static u16 ide_inw (unsigned long port)
43 {
44         return (u16) inw(port);
45 }
46
47 static void ide_insw (unsigned long port, void *addr, u32 count)
48 {
49         insw(port, addr, count);
50 }
51
52 static void ide_insl (unsigned long port, void *addr, u32 count)
53 {
54         insl(port, addr, count);
55 }
56
57 static void ide_outb (u8 val, unsigned long port)
58 {
59         outb(val, port);
60 }
61
62 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
63 {
64         outb(addr, port);
65 }
66
67 static void ide_outw (u16 val, unsigned long port)
68 {
69         outw(val, port);
70 }
71
72 static void ide_outsw (unsigned long port, void *addr, u32 count)
73 {
74         outsw(port, addr, count);
75 }
76
77 static void ide_outsl (unsigned long port, void *addr, u32 count)
78 {
79         outsl(port, addr, count);
80 }
81
82 void default_hwif_iops (ide_hwif_t *hwif)
83 {
84         hwif->OUTB      = ide_outb;
85         hwif->OUTBSYNC  = ide_outbsync;
86         hwif->OUTW      = ide_outw;
87         hwif->OUTSW     = ide_outsw;
88         hwif->OUTSL     = ide_outsl;
89         hwif->INB       = ide_inb;
90         hwif->INW       = ide_inw;
91         hwif->INSW      = ide_insw;
92         hwif->INSL      = ide_insl;
93 }
94
95 /*
96  *      MMIO operations, typically used for SATA controllers
97  */
98
99 static u8 ide_mm_inb (unsigned long port)
100 {
101         return (u8) readb((void __iomem *) port);
102 }
103
104 static u16 ide_mm_inw (unsigned long port)
105 {
106         return (u16) readw((void __iomem *) port);
107 }
108
109 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
110 {
111         __ide_mm_insw((void __iomem *) port, addr, count);
112 }
113
114 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
115 {
116         __ide_mm_insl((void __iomem *) port, addr, count);
117 }
118
119 static void ide_mm_outb (u8 value, unsigned long port)
120 {
121         writeb(value, (void __iomem *) port);
122 }
123
124 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
125 {
126         writeb(value, (void __iomem *) port);
127 }
128
129 static void ide_mm_outw (u16 value, unsigned long port)
130 {
131         writew(value, (void __iomem *) port);
132 }
133
134 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
135 {
136         __ide_mm_outsw((void __iomem *) port, addr, count);
137 }
138
139 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
140 {
141         __ide_mm_outsl((void __iomem *) port, addr, count);
142 }
143
144 void default_hwif_mmiops (ide_hwif_t *hwif)
145 {
146         hwif->OUTB      = ide_mm_outb;
147         /* Most systems will need to override OUTBSYNC, alas however
148            this one is controller specific! */
149         hwif->OUTBSYNC  = ide_mm_outbsync;
150         hwif->OUTW      = ide_mm_outw;
151         hwif->OUTSW     = ide_mm_outsw;
152         hwif->OUTSL     = ide_mm_outsl;
153         hwif->INB       = ide_mm_inb;
154         hwif->INW       = ide_mm_inw;
155         hwif->INSW      = ide_mm_insw;
156         hwif->INSL      = ide_mm_insl;
157 }
158
159 EXPORT_SYMBOL(default_hwif_mmiops);
160
161 u32 ide_read_24 (ide_drive_t *drive)
162 {
163         u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
164         u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
165         u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
166         return (hcyl<<16)|(lcyl<<8)|sect;
167 }
168
169 void SELECT_DRIVE (ide_drive_t *drive)
170 {
171         if (HWIF(drive)->selectproc)
172                 HWIF(drive)->selectproc(drive);
173         HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
174 }
175
176 EXPORT_SYMBOL(SELECT_DRIVE);
177
178 void SELECT_MASK (ide_drive_t *drive, int mask)
179 {
180         if (HWIF(drive)->maskproc)
181                 HWIF(drive)->maskproc(drive, mask);
182 }
183
184 /*
185  * Some localbus EIDE interfaces require a special access sequence
186  * when using 32-bit I/O instructions to transfer data.  We call this
187  * the "vlb_sync" sequence, which consists of three successive reads
188  * of the sector count register location, with interrupts disabled
189  * to ensure that the reads all happen together.
190  */
191 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
192 {
193         (void) HWIF(drive)->INB(port);
194         (void) HWIF(drive)->INB(port);
195         (void) HWIF(drive)->INB(port);
196 }
197
198 /*
199  * This is used for most PIO data transfers *from* the IDE interface
200  */
201 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
202 {
203         ide_hwif_t *hwif        = HWIF(drive);
204         u8 io_32bit             = drive->io_32bit;
205
206         if (io_32bit) {
207                 if (io_32bit & 2) {
208                         unsigned long flags;
209                         local_irq_save(flags);
210                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
211                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
212                         local_irq_restore(flags);
213                 } else
214                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
215         } else {
216                 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
217         }
218 }
219
220 /*
221  * This is used for most PIO data transfers *to* the IDE interface
222  */
223 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
224 {
225         ide_hwif_t *hwif        = HWIF(drive);
226         u8 io_32bit             = drive->io_32bit;
227
228         if (io_32bit) {
229                 if (io_32bit & 2) {
230                         unsigned long flags;
231                         local_irq_save(flags);
232                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
233                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
234                         local_irq_restore(flags);
235                 } else
236                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
237         } else {
238                 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
239         }
240 }
241
242 /*
243  * The following routines are mainly used by the ATAPI drivers.
244  *
245  * These routines will round up any request for an odd number of bytes,
246  * so if an odd bytecount is specified, be sure that there's at least one
247  * extra byte allocated for the buffer.
248  */
249
250 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
251 {
252         ide_hwif_t *hwif = HWIF(drive);
253
254         ++bytecount;
255 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
256         if (MACH_IS_ATARI || MACH_IS_Q40) {
257                 /* Atari has a byte-swapped IDE interface */
258                 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
259                 return;
260         }
261 #endif /* CONFIG_ATARI || CONFIG_Q40 */
262         hwif->ata_input_data(drive, buffer, bytecount / 4);
263         if ((bytecount & 0x03) >= 2)
264                 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
265 }
266
267 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
268 {
269         ide_hwif_t *hwif = HWIF(drive);
270
271         ++bytecount;
272 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
273         if (MACH_IS_ATARI || MACH_IS_Q40) {
274                 /* Atari has a byte-swapped IDE interface */
275                 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
276                 return;
277         }
278 #endif /* CONFIG_ATARI || CONFIG_Q40 */
279         hwif->ata_output_data(drive, buffer, bytecount / 4);
280         if ((bytecount & 0x03) >= 2)
281                 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
282 }
283
284 void default_hwif_transport(ide_hwif_t *hwif)
285 {
286         hwif->ata_input_data            = ata_input_data;
287         hwif->ata_output_data           = ata_output_data;
288         hwif->atapi_input_bytes         = atapi_input_bytes;
289         hwif->atapi_output_bytes        = atapi_output_bytes;
290 }
291
292 void ide_fix_driveid (struct hd_driveid *id)
293 {
294 #ifndef __LITTLE_ENDIAN
295 # ifdef __BIG_ENDIAN
296         int i;
297         u16 *stringcast;
298
299         id->config         = __le16_to_cpu(id->config);
300         id->cyls           = __le16_to_cpu(id->cyls);
301         id->reserved2      = __le16_to_cpu(id->reserved2);
302         id->heads          = __le16_to_cpu(id->heads);
303         id->track_bytes    = __le16_to_cpu(id->track_bytes);
304         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
305         id->sectors        = __le16_to_cpu(id->sectors);
306         id->vendor0        = __le16_to_cpu(id->vendor0);
307         id->vendor1        = __le16_to_cpu(id->vendor1);
308         id->vendor2        = __le16_to_cpu(id->vendor2);
309         stringcast = (u16 *)&id->serial_no[0];
310         for (i = 0; i < (20/2); i++)
311                 stringcast[i] = __le16_to_cpu(stringcast[i]);
312         id->buf_type       = __le16_to_cpu(id->buf_type);
313         id->buf_size       = __le16_to_cpu(id->buf_size);
314         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
315         stringcast = (u16 *)&id->fw_rev[0];
316         for (i = 0; i < (8/2); i++)
317                 stringcast[i] = __le16_to_cpu(stringcast[i]);
318         stringcast = (u16 *)&id->model[0];
319         for (i = 0; i < (40/2); i++)
320                 stringcast[i] = __le16_to_cpu(stringcast[i]);
321         id->dword_io       = __le16_to_cpu(id->dword_io);
322         id->reserved50     = __le16_to_cpu(id->reserved50);
323         id->field_valid    = __le16_to_cpu(id->field_valid);
324         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
325         id->cur_heads      = __le16_to_cpu(id->cur_heads);
326         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
327         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
328         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
329         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
330         id->dma_1word      = __le16_to_cpu(id->dma_1word);
331         id->dma_mword      = __le16_to_cpu(id->dma_mword);
332         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
333         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
334         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
335         id->eide_pio       = __le16_to_cpu(id->eide_pio);
336         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
337         for (i = 0; i < 2; ++i)
338                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
339         for (i = 0; i < 4; ++i)
340                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
341         id->queue_depth    = __le16_to_cpu(id->queue_depth);
342         for (i = 0; i < 4; ++i)
343                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
344         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
345         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
346         id->command_set_1  = __le16_to_cpu(id->command_set_1);
347         id->command_set_2  = __le16_to_cpu(id->command_set_2);
348         id->cfsse          = __le16_to_cpu(id->cfsse);
349         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
350         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
351         id->csf_default    = __le16_to_cpu(id->csf_default);
352         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
353         id->trseuc         = __le16_to_cpu(id->trseuc);
354         id->trsEuc         = __le16_to_cpu(id->trsEuc);
355         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
356         id->mprc           = __le16_to_cpu(id->mprc);
357         id->hw_config      = __le16_to_cpu(id->hw_config);
358         id->acoustic       = __le16_to_cpu(id->acoustic);
359         id->msrqs          = __le16_to_cpu(id->msrqs);
360         id->sxfert         = __le16_to_cpu(id->sxfert);
361         id->sal            = __le16_to_cpu(id->sal);
362         id->spg            = __le32_to_cpu(id->spg);
363         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
364         for (i = 0; i < 22; i++)
365                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
366         id->last_lun       = __le16_to_cpu(id->last_lun);
367         id->word127        = __le16_to_cpu(id->word127);
368         id->dlf            = __le16_to_cpu(id->dlf);
369         id->csfo           = __le16_to_cpu(id->csfo);
370         for (i = 0; i < 26; i++)
371                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
372         id->word156        = __le16_to_cpu(id->word156);
373         for (i = 0; i < 3; i++)
374                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
375         id->cfa_power      = __le16_to_cpu(id->cfa_power);
376         for (i = 0; i < 14; i++)
377                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
378         for (i = 0; i < 31; i++)
379                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
380         for (i = 0; i < 48; i++)
381                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
382         id->integrity_word  = __le16_to_cpu(id->integrity_word);
383 # else
384 #  error "Please fix <asm/byteorder.h>"
385 # endif
386 #endif
387 }
388
389 /*
390  * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
391  * removing leading/trailing blanks and compressing internal blanks.
392  * It is primarily used to tidy up the model name/number fields as
393  * returned by the WIN_[P]IDENTIFY commands.
394  */
395
396 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
397 {
398         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
399
400         if (byteswap) {
401                 /* convert from big-endian to host byte order */
402                 for (p = end ; p != s;) {
403                         unsigned short *pp = (unsigned short *) (p -= 2);
404                         *pp = ntohs(*pp);
405                 }
406         }
407         /* strip leading blanks */
408         while (s != end && *s == ' ')
409                 ++s;
410         /* compress internal blanks and strip trailing blanks */
411         while (s != end && *s) {
412                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
413                         *p++ = *(s-1);
414         }
415         /* wipe out trailing garbage */
416         while (p != end)
417                 *p++ = '\0';
418 }
419
420 EXPORT_SYMBOL(ide_fixstring);
421
422 /*
423  * Needed for PCI irq sharing
424  */
425 int drive_is_ready (ide_drive_t *drive)
426 {
427         ide_hwif_t *hwif        = HWIF(drive);
428         u8 stat                 = 0;
429
430         if (drive->waiting_for_dma)
431                 return hwif->ide_dma_test_irq(drive);
432
433 #if 0
434         /* need to guarantee 400ns since last command was issued */
435         udelay(1);
436 #endif
437
438         /*
439          * We do a passive status test under shared PCI interrupts on
440          * cards that truly share the ATA side interrupt, but may also share
441          * an interrupt with another pci card/device.  We make no assumptions
442          * about possible isa-pnp and pci-pnp issues yet.
443          */
444         if (IDE_CONTROL_REG)
445                 stat = hwif->INB(IDE_ALTSTATUS_REG);
446         else
447                 /* Note: this may clear a pending IRQ!! */
448                 stat = hwif->INB(IDE_STATUS_REG);
449
450         if (stat & BUSY_STAT)
451                 /* drive busy:  definitely not interrupting */
452                 return 0;
453
454         /* drive ready: *might* be interrupting */
455         return 1;
456 }
457
458 EXPORT_SYMBOL(drive_is_ready);
459
460 /*
461  * This routine busy-waits for the drive status to be not "busy".
462  * It then checks the status for all of the "good" bits and none
463  * of the "bad" bits, and if all is okay it returns 0.  All other
464  * cases return error -- caller may then invoke ide_error().
465  *
466  * This routine should get fixed to not hog the cpu during extra long waits..
467  * That could be done by busy-waiting for the first jiffy or two, and then
468  * setting a timer to wake up at half second intervals thereafter,
469  * until timeout is achieved, before timing out.
470  */
471 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
472 {
473         ide_hwif_t *hwif = drive->hwif;
474         unsigned long flags;
475         int i;
476         u8 stat;
477
478         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
479         if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
480                 local_irq_set(flags);
481                 timeout += jiffies;
482                 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
483                         if (time_after(jiffies, timeout)) {
484                                 /*
485                                  * One last read after the timeout in case
486                                  * heavy interrupt load made us not make any
487                                  * progress during the timeout..
488                                  */
489                                 stat = hwif->INB(IDE_STATUS_REG);
490                                 if (!(stat & BUSY_STAT))
491                                         break;
492
493                                 local_irq_restore(flags);
494                                 *rstat = stat;
495                                 return -EBUSY;
496                         }
497                 }
498                 local_irq_restore(flags);
499         }
500         /*
501          * Allow status to settle, then read it again.
502          * A few rare drives vastly violate the 400ns spec here,
503          * so we'll wait up to 10usec for a "good" status
504          * rather than expensively fail things immediately.
505          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
506          */
507         for (i = 0; i < 10; i++) {
508                 udelay(1);
509                 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) {
510                         *rstat = stat;
511                         return 0;
512                 }
513         }
514         *rstat = stat;
515         return -EFAULT;
516 }
517
518 /*
519  * In case of error returns error value after doing "*startstop = ide_error()".
520  * The caller should return the updated value of "startstop" in this case,
521  * "startstop" is unchanged when the function returns 0.
522  */
523 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
524 {
525         int err;
526         u8 stat;
527
528         /* bail early if we've exceeded max_failures */
529         if (drive->max_failures && (drive->failures > drive->max_failures)) {
530                 *startstop = ide_stopped;
531                 return 1;
532         }
533
534         err = __ide_wait_stat(drive, good, bad, timeout, &stat);
535
536         if (err) {
537                 char *s = (err == -EBUSY) ? "status timeout" : "status error";
538                 *startstop = ide_error(drive, s, stat);
539         }
540
541         return err;
542 }
543
544 EXPORT_SYMBOL(ide_wait_stat);
545
546 /**
547  *      ide_in_drive_list       -       look for drive in black/white list
548  *      @id: drive identifier
549  *      @drive_table: list to inspect
550  *
551  *      Look for a drive in the blacklist and the whitelist tables
552  *      Returns 1 if the drive is found in the table.
553  */
554
555 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
556 {
557         for ( ; drive_table->id_model; drive_table++)
558                 if ((!strcmp(drive_table->id_model, id->model)) &&
559                     (!drive_table->id_firmware ||
560                      strstr(id->fw_rev, drive_table->id_firmware)))
561                         return 1;
562         return 0;
563 }
564
565 EXPORT_SYMBOL_GPL(ide_in_drive_list);
566
567 /*
568  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
569  * We list them here and depend on the device side cable detection for them.
570  *
571  * Some optical devices with the buggy firmwares have the same problem.
572  */
573 static const struct drive_list_entry ivb_list[] = {
574         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
575         { "TSSTcorp CDDVDW SH-S202J"    , "SB00"        },
576         { "TSSTcorp CDDVDW SH-S202J"    , "SB01"        },
577         { "TSSTcorp CDDVDW SH-S202N"    , "SB00"        },
578         { "TSSTcorp CDDVDW SH-S202N"    , "SB01"        },
579         { NULL                          , NULL          }
580 };
581
582 /*
583  *  All hosts that use the 80c ribbon must use!
584  *  The name is derived from upper byte of word 93 and the 80c ribbon.
585  */
586 u8 eighty_ninty_three (ide_drive_t *drive)
587 {
588         ide_hwif_t *hwif = drive->hwif;
589         struct hd_driveid *id = drive->id;
590         int ivb = ide_in_drive_list(id, ivb_list);
591
592         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
593                 return 1;
594
595         if (ivb)
596                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
597                                   drive->name);
598
599         if (ide_dev_is_sata(id) && !ivb)
600                 return 1;
601
602         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
603                 goto no_80w;
604
605         /*
606          * FIXME:
607          * - force bit13 (80c cable present) check also for !ivb devices
608          *   (unless the slave device is pre-ATA3)
609          */
610         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
611                 return 1;
612
613 no_80w:
614         if (drive->udma33_warned == 1)
615                 return 0;
616
617         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
618                             "limiting max speed to UDMA33\n",
619                             drive->name,
620                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
621
622         drive->udma33_warned = 1;
623
624         return 0;
625 }
626
627 int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
628 {
629         if (args->tf.command == WIN_SETFEATURES &&
630             args->tf.lbal > XFER_UDMA_2 &&
631             args->tf.feature == SETFEATURES_XFER) {
632                 if (eighty_ninty_three(drive) == 0) {
633                         printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
634                                             "be set\n", drive->name);
635                         return 1;
636                 }
637         }
638
639         return 0;
640 }
641
642 /*
643  * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
644  * 1 : Safe to update drive->id DMA registers.
645  * 0 : OOPs not allowed.
646  */
647 int set_transfer (ide_drive_t *drive, ide_task_t *args)
648 {
649         if (args->tf.command == WIN_SETFEATURES &&
650             args->tf.lbal >= XFER_SW_DMA_0 &&
651             args->tf.feature == SETFEATURES_XFER &&
652             (drive->id->dma_ultra ||
653              drive->id->dma_mword ||
654              drive->id->dma_1word))
655                 return 1;
656
657         return 0;
658 }
659
660 #ifdef CONFIG_BLK_DEV_IDEDMA
661 static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
662 {
663         if (!drive->crc_count)
664                 return drive->current_speed;
665         drive->crc_count = 0;
666
667         switch(drive->current_speed) {
668                 case XFER_UDMA_7:       return XFER_UDMA_6;
669                 case XFER_UDMA_6:       return XFER_UDMA_5;
670                 case XFER_UDMA_5:       return XFER_UDMA_4;
671                 case XFER_UDMA_4:       return XFER_UDMA_3;
672                 case XFER_UDMA_3:       return XFER_UDMA_2;
673                 case XFER_UDMA_2:       return XFER_UDMA_1;
674                 case XFER_UDMA_1:       return XFER_UDMA_0;
675                         /*
676                          * OOPS we do not goto non Ultra DMA modes
677                          * without iCRC's available we force
678                          * the system to PIO and make the user
679                          * invoke the ATA-1 ATA-2 DMA modes.
680                          */
681                 case XFER_UDMA_0:
682                 default:                return XFER_PIO_4;
683         }
684 }
685 #endif /* CONFIG_BLK_DEV_IDEDMA */
686
687 int ide_driveid_update(ide_drive_t *drive)
688 {
689         ide_hwif_t *hwif = drive->hwif;
690         struct hd_driveid *id;
691         unsigned long timeout, flags;
692
693         /*
694          * Re-read drive->id for possible DMA mode
695          * change (copied from ide-probe.c)
696          */
697
698         SELECT_MASK(drive, 1);
699         if (IDE_CONTROL_REG)
700                 hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
701         msleep(50);
702         hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
703         timeout = jiffies + WAIT_WORSTCASE;
704         do {
705                 if (time_after(jiffies, timeout)) {
706                         SELECT_MASK(drive, 0);
707                         return 0;       /* drive timed-out */
708                 }
709                 msleep(50);     /* give drive a breather */
710         } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
711         msleep(50);     /* wait for IRQ and DRQ_STAT */
712         if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
713                 SELECT_MASK(drive, 0);
714                 printk("%s: CHECK for good STATUS\n", drive->name);
715                 return 0;
716         }
717         local_irq_save(flags);
718         SELECT_MASK(drive, 0);
719         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
720         if (!id) {
721                 local_irq_restore(flags);
722                 return 0;
723         }
724         ata_input_data(drive, id, SECTOR_WORDS);
725         (void) hwif->INB(IDE_STATUS_REG);       /* clear drive IRQ */
726         local_irq_enable();
727         local_irq_restore(flags);
728         ide_fix_driveid(id);
729         if (id) {
730                 drive->id->dma_ultra = id->dma_ultra;
731                 drive->id->dma_mword = id->dma_mword;
732                 drive->id->dma_1word = id->dma_1word;
733                 /* anything more ? */
734                 kfree(id);
735
736                 if (drive->using_dma && ide_id_dma_bug(drive))
737                         ide_dma_off(drive);
738         }
739
740         return 1;
741 }
742
743 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
744 {
745         ide_hwif_t *hwif = drive->hwif;
746         int error = 0;
747         u8 stat;
748
749 //      while (HWGROUP(drive)->busy)
750 //              msleep(50);
751
752 #ifdef CONFIG_BLK_DEV_IDEDMA
753         if (hwif->ide_dma_on)   /* check if host supports DMA */
754                 hwif->dma_host_off(drive);
755 #endif
756
757         /* Skip setting PIO flow-control modes on pre-EIDE drives */
758         if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
759                 goto skip;
760
761         /*
762          * Don't use ide_wait_cmd here - it will
763          * attempt to set_geometry and recalibrate,
764          * but for some reason these don't work at
765          * this point (lost interrupt).
766          */
767         /*
768          * Select the drive, and issue the SETFEATURES command
769          */
770         disable_irq_nosync(hwif->irq);
771         
772         /*
773          *      FIXME: we race against the running IRQ here if
774          *      this is called from non IRQ context. If we use
775          *      disable_irq() we hang on the error path. Work
776          *      is needed.
777          */
778          
779         udelay(1);
780         SELECT_DRIVE(drive);
781         SELECT_MASK(drive, 0);
782         udelay(1);
783         if (IDE_CONTROL_REG)
784                 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
785         hwif->OUTB(speed, IDE_NSECTOR_REG);
786         hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
787         hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
788         if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
789                 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
790
791         error = __ide_wait_stat(drive, drive->ready_stat,
792                                 BUSY_STAT|DRQ_STAT|ERR_STAT,
793                                 WAIT_CMD, &stat);
794
795         SELECT_MASK(drive, 0);
796
797         enable_irq(hwif->irq);
798
799         if (error) {
800                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
801                 return error;
802         }
803
804         drive->id->dma_ultra &= ~0xFF00;
805         drive->id->dma_mword &= ~0x0F00;
806         drive->id->dma_1word &= ~0x0F00;
807
808  skip:
809 #ifdef CONFIG_BLK_DEV_IDEDMA
810         if (speed >= XFER_SW_DMA_0)
811                 hwif->dma_host_on(drive);
812         else if (hwif->ide_dma_on)      /* check if host supports DMA */
813                 hwif->dma_off_quietly(drive);
814 #endif
815
816         switch(speed) {
817                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
818                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
819                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
820                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
821                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
822                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
823                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
824                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
825                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
826                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
827                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
828                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
829                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
830                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
831                 default: break;
832         }
833         if (!drive->init_speed)
834                 drive->init_speed = speed;
835         drive->current_speed = speed;
836         return error;
837 }
838
839 /*
840  * This should get invoked any time we exit the driver to
841  * wait for an interrupt response from a drive.  handler() points
842  * at the appropriate code to handle the next interrupt, and a
843  * timer is started to prevent us from waiting forever in case
844  * something goes wrong (see the ide_timer_expiry() handler later on).
845  *
846  * See also ide_execute_command
847  */
848 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
849                       unsigned int timeout, ide_expiry_t *expiry)
850 {
851         ide_hwgroup_t *hwgroup = HWGROUP(drive);
852
853         if (hwgroup->handler != NULL) {
854                 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
855                         "old=%p, new=%p\n",
856                         drive->name, hwgroup->handler, handler);
857         }
858         hwgroup->handler        = handler;
859         hwgroup->expiry         = expiry;
860         hwgroup->timer.expires  = jiffies + timeout;
861         hwgroup->req_gen_timer = hwgroup->req_gen;
862         add_timer(&hwgroup->timer);
863 }
864
865 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
866                       unsigned int timeout, ide_expiry_t *expiry)
867 {
868         unsigned long flags;
869         spin_lock_irqsave(&ide_lock, flags);
870         __ide_set_handler(drive, handler, timeout, expiry);
871         spin_unlock_irqrestore(&ide_lock, flags);
872 }
873
874 EXPORT_SYMBOL(ide_set_handler);
875  
876 /**
877  *      ide_execute_command     -       execute an IDE command
878  *      @drive: IDE drive to issue the command against
879  *      @command: command byte to write
880  *      @handler: handler for next phase
881  *      @timeout: timeout for command
882  *      @expiry:  handler to run on timeout
883  *
884  *      Helper function to issue an IDE command. This handles the
885  *      atomicity requirements, command timing and ensures that the 
886  *      handler and IRQ setup do not race. All IDE command kick off
887  *      should go via this function or do equivalent locking.
888  */
889
890 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
891                          unsigned timeout, ide_expiry_t *expiry)
892 {
893         unsigned long flags;
894         ide_hwgroup_t *hwgroup = HWGROUP(drive);
895         ide_hwif_t *hwif = HWIF(drive);
896         
897         spin_lock_irqsave(&ide_lock, flags);
898         
899         BUG_ON(hwgroup->handler);
900         hwgroup->handler        = handler;
901         hwgroup->expiry         = expiry;
902         hwgroup->timer.expires  = jiffies + timeout;
903         hwgroup->req_gen_timer = hwgroup->req_gen;
904         add_timer(&hwgroup->timer);
905         hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
906         /* Drive takes 400nS to respond, we must avoid the IRQ being
907            serviced before that. 
908            
909            FIXME: we could skip this delay with care on non shared
910            devices 
911         */
912         ndelay(400);
913         spin_unlock_irqrestore(&ide_lock, flags);
914 }
915
916 EXPORT_SYMBOL(ide_execute_command);
917
918
919 /* needed below */
920 static ide_startstop_t do_reset1 (ide_drive_t *, int);
921
922 /*
923  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
924  * during an atapi drive reset operation. If the drive has not yet responded,
925  * and we have not yet hit our maximum waiting time, then the timer is restarted
926  * for another 50ms.
927  */
928 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
929 {
930         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
931         ide_hwif_t *hwif        = HWIF(drive);
932         u8 stat;
933
934         SELECT_DRIVE(drive);
935         udelay (10);
936
937         if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
938                 printk("%s: ATAPI reset complete\n", drive->name);
939         } else {
940                 if (time_before(jiffies, hwgroup->poll_timeout)) {
941                         BUG_ON(HWGROUP(drive)->handler != NULL);
942                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
943                         /* continue polling */
944                         return ide_started;
945                 }
946                 /* end of polling */
947                 hwgroup->polling = 0;
948                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
949                                 drive->name, stat);
950                 /* do it the old fashioned way */
951                 return do_reset1(drive, 1);
952         }
953         /* done polling */
954         hwgroup->polling = 0;
955         hwgroup->resetting = 0;
956         return ide_stopped;
957 }
958
959 /*
960  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
961  * during an ide reset operation. If the drives have not yet responded,
962  * and we have not yet hit our maximum waiting time, then the timer is restarted
963  * for another 50ms.
964  */
965 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
966 {
967         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
968         ide_hwif_t *hwif        = HWIF(drive);
969         u8 tmp;
970
971         if (hwif->reset_poll != NULL) {
972                 if (hwif->reset_poll(drive)) {
973                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
974                                 hwif->name, drive->name);
975                         return ide_stopped;
976                 }
977         }
978
979         if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
980                 if (time_before(jiffies, hwgroup->poll_timeout)) {
981                         BUG_ON(HWGROUP(drive)->handler != NULL);
982                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
983                         /* continue polling */
984                         return ide_started;
985                 }
986                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
987                 drive->failures++;
988         } else  {
989                 printk("%s: reset: ", hwif->name);
990                 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
991                         printk("success\n");
992                         drive->failures = 0;
993                 } else {
994                         drive->failures++;
995                         printk("master: ");
996                         switch (tmp & 0x7f) {
997                                 case 1: printk("passed");
998                                         break;
999                                 case 2: printk("formatter device error");
1000                                         break;
1001                                 case 3: printk("sector buffer error");
1002                                         break;
1003                                 case 4: printk("ECC circuitry error");
1004                                         break;
1005                                 case 5: printk("controlling MPU error");
1006                                         break;
1007                                 default:printk("error (0x%02x?)", tmp);
1008                         }
1009                         if (tmp & 0x80)
1010                                 printk("; slave: failed");
1011                         printk("\n");
1012                 }
1013         }
1014         hwgroup->polling = 0;   /* done polling */
1015         hwgroup->resetting = 0; /* done reset attempt */
1016         return ide_stopped;
1017 }
1018
1019 static void check_dma_crc(ide_drive_t *drive)
1020 {
1021 #ifdef CONFIG_BLK_DEV_IDEDMA
1022         if (drive->crc_count) {
1023                 drive->hwif->dma_off_quietly(drive);
1024                 ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1025                 if (drive->current_speed >= XFER_SW_DMA_0)
1026                         (void) HWIF(drive)->ide_dma_on(drive);
1027         } else
1028                 ide_dma_off(drive);
1029 #endif
1030 }
1031
1032 static void ide_disk_pre_reset(ide_drive_t *drive)
1033 {
1034         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1035
1036         drive->special.all = 0;
1037         drive->special.b.set_geometry = legacy;
1038         drive->special.b.recalibrate  = legacy;
1039         drive->mult_count = 0;
1040         if (!drive->keep_settings && !drive->using_dma)
1041                 drive->mult_req = 0;
1042         if (drive->mult_req != drive->mult_count)
1043                 drive->special.b.set_multmode = 1;
1044 }
1045
1046 static void pre_reset(ide_drive_t *drive)
1047 {
1048         if (drive->media == ide_disk)
1049                 ide_disk_pre_reset(drive);
1050         else
1051                 drive->post_reset = 1;
1052
1053         if (!drive->keep_settings) {
1054                 if (drive->using_dma) {
1055                         check_dma_crc(drive);
1056                 } else {
1057                         drive->unmask = 0;
1058                         drive->io_32bit = 0;
1059                 }
1060                 return;
1061         }
1062         if (drive->using_dma)
1063                 check_dma_crc(drive);
1064
1065         if (HWIF(drive)->pre_reset != NULL)
1066                 HWIF(drive)->pre_reset(drive);
1067
1068         if (drive->current_speed != 0xff)
1069                 drive->desired_speed = drive->current_speed;
1070         drive->current_speed = 0xff;
1071 }
1072
1073 /*
1074  * do_reset1() attempts to recover a confused drive by resetting it.
1075  * Unfortunately, resetting a disk drive actually resets all devices on
1076  * the same interface, so it can really be thought of as resetting the
1077  * interface rather than resetting the drive.
1078  *
1079  * ATAPI devices have their own reset mechanism which allows them to be
1080  * individually reset without clobbering other devices on the same interface.
1081  *
1082  * Unfortunately, the IDE interface does not generate an interrupt to let
1083  * us know when the reset operation has finished, so we must poll for this.
1084  * Equally poor, though, is the fact that this may a very long time to complete,
1085  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1086  * we set a timer to poll at 50ms intervals.
1087  */
1088 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1089 {
1090         unsigned int unit;
1091         unsigned long flags;
1092         ide_hwif_t *hwif;
1093         ide_hwgroup_t *hwgroup;
1094         
1095         spin_lock_irqsave(&ide_lock, flags);
1096         hwif = HWIF(drive);
1097         hwgroup = HWGROUP(drive);
1098
1099         /* We must not reset with running handlers */
1100         BUG_ON(hwgroup->handler != NULL);
1101
1102         /* For an ATAPI device, first try an ATAPI SRST. */
1103         if (drive->media != ide_disk && !do_not_try_atapi) {
1104                 hwgroup->resetting = 1;
1105                 pre_reset(drive);
1106                 SELECT_DRIVE(drive);
1107                 udelay (20);
1108                 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1109                 ndelay(400);
1110                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1111                 hwgroup->polling = 1;
1112                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1113                 spin_unlock_irqrestore(&ide_lock, flags);
1114                 return ide_started;
1115         }
1116
1117         /*
1118          * First, reset any device state data we were maintaining
1119          * for any of the drives on this interface.
1120          */
1121         for (unit = 0; unit < MAX_DRIVES; ++unit)
1122                 pre_reset(&hwif->drives[unit]);
1123
1124         if (!IDE_CONTROL_REG) {
1125                 spin_unlock_irqrestore(&ide_lock, flags);
1126                 return ide_stopped;
1127         }
1128
1129         hwgroup->resetting = 1;
1130         /*
1131          * Note that we also set nIEN while resetting the device,
1132          * to mask unwanted interrupts from the interface during the reset.
1133          * However, due to the design of PC hardware, this will cause an
1134          * immediate interrupt due to the edge transition it produces.
1135          * This single interrupt gives us a "fast poll" for drives that
1136          * recover from reset very quickly, saving us the first 50ms wait time.
1137          */
1138         /* set SRST and nIEN */
1139         hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1140         /* more than enough time */
1141         udelay(10);
1142         if (drive->quirk_list == 2) {
1143                 /* clear SRST and nIEN */
1144                 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1145         } else {
1146                 /* clear SRST, leave nIEN */
1147                 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1148         }
1149         /* more than enough time */
1150         udelay(10);
1151         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1152         hwgroup->polling = 1;
1153         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1154
1155         /*
1156          * Some weird controller like resetting themselves to a strange
1157          * state when the disks are reset this way. At least, the Winbond
1158          * 553 documentation says that
1159          */
1160         if (hwif->resetproc)
1161                 hwif->resetproc(drive);
1162
1163         spin_unlock_irqrestore(&ide_lock, flags);
1164         return ide_started;
1165 }
1166
1167 /*
1168  * ide_do_reset() is the entry point to the drive/interface reset code.
1169  */
1170
1171 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1172 {
1173         return do_reset1(drive, 0);
1174 }
1175
1176 EXPORT_SYMBOL(ide_do_reset);
1177
1178 /*
1179  * ide_wait_not_busy() waits for the currently selected device on the hwif
1180  * to report a non-busy status, see comments in probe_hwif().
1181  */
1182 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1183 {
1184         u8 stat = 0;
1185
1186         while(timeout--) {
1187                 /*
1188                  * Turn this into a schedule() sleep once I'm sure
1189                  * about locking issues (2.5 work ?).
1190                  */
1191                 mdelay(1);
1192                 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1193                 if ((stat & BUSY_STAT) == 0)
1194                         return 0;
1195                 /*
1196                  * Assume a value of 0xff means nothing is connected to
1197                  * the interface and it doesn't implement the pull-down
1198                  * resistor on D7.
1199                  */
1200                 if (stat == 0xff)
1201                         return -ENODEV;
1202                 touch_softlockup_watchdog();
1203                 touch_nmi_watchdog();
1204         }
1205         return -EBUSY;
1206 }
1207
1208 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1209