ide: add ide_read_[alt]status() inline helpers
[sfrench/cifs-2.6.git] / drivers / ide / ide-iops.c
1 /*
2  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
3  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
4  *
5  */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
25
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30
31 /*
32  *      Conventional PIO operations for ATA devices
33  */
34
35 static u8 ide_inb (unsigned long port)
36 {
37         return (u8) inb(port);
38 }
39
40 static u16 ide_inw (unsigned long port)
41 {
42         return (u16) inw(port);
43 }
44
45 static void ide_insw (unsigned long port, void *addr, u32 count)
46 {
47         insw(port, addr, count);
48 }
49
50 static void ide_insl (unsigned long port, void *addr, u32 count)
51 {
52         insl(port, addr, count);
53 }
54
55 static void ide_outb (u8 val, unsigned long port)
56 {
57         outb(val, port);
58 }
59
60 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
61 {
62         outb(addr, port);
63 }
64
65 static void ide_outw (u16 val, unsigned long port)
66 {
67         outw(val, port);
68 }
69
70 static void ide_outsw (unsigned long port, void *addr, u32 count)
71 {
72         outsw(port, addr, count);
73 }
74
75 static void ide_outsl (unsigned long port, void *addr, u32 count)
76 {
77         outsl(port, addr, count);
78 }
79
80 void default_hwif_iops (ide_hwif_t *hwif)
81 {
82         hwif->OUTB      = ide_outb;
83         hwif->OUTBSYNC  = ide_outbsync;
84         hwif->OUTW      = ide_outw;
85         hwif->OUTSW     = ide_outsw;
86         hwif->OUTSL     = ide_outsl;
87         hwif->INB       = ide_inb;
88         hwif->INW       = ide_inw;
89         hwif->INSW      = ide_insw;
90         hwif->INSL      = ide_insl;
91 }
92
93 /*
94  *      MMIO operations, typically used for SATA controllers
95  */
96
97 static u8 ide_mm_inb (unsigned long port)
98 {
99         return (u8) readb((void __iomem *) port);
100 }
101
102 static u16 ide_mm_inw (unsigned long port)
103 {
104         return (u16) readw((void __iomem *) port);
105 }
106
107 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
108 {
109         __ide_mm_insw((void __iomem *) port, addr, count);
110 }
111
112 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
113 {
114         __ide_mm_insl((void __iomem *) port, addr, count);
115 }
116
117 static void ide_mm_outb (u8 value, unsigned long port)
118 {
119         writeb(value, (void __iomem *) port);
120 }
121
122 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
123 {
124         writeb(value, (void __iomem *) port);
125 }
126
127 static void ide_mm_outw (u16 value, unsigned long port)
128 {
129         writew(value, (void __iomem *) port);
130 }
131
132 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
133 {
134         __ide_mm_outsw((void __iomem *) port, addr, count);
135 }
136
137 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
138 {
139         __ide_mm_outsl((void __iomem *) port, addr, count);
140 }
141
142 void default_hwif_mmiops (ide_hwif_t *hwif)
143 {
144         hwif->OUTB      = ide_mm_outb;
145         /* Most systems will need to override OUTBSYNC, alas however
146            this one is controller specific! */
147         hwif->OUTBSYNC  = ide_mm_outbsync;
148         hwif->OUTW      = ide_mm_outw;
149         hwif->OUTSW     = ide_mm_outsw;
150         hwif->OUTSL     = ide_mm_outsl;
151         hwif->INB       = ide_mm_inb;
152         hwif->INW       = ide_mm_inw;
153         hwif->INSW      = ide_mm_insw;
154         hwif->INSL      = ide_mm_insl;
155 }
156
157 EXPORT_SYMBOL(default_hwif_mmiops);
158
159 void SELECT_DRIVE (ide_drive_t *drive)
160 {
161         if (HWIF(drive)->selectproc)
162                 HWIF(drive)->selectproc(drive);
163         HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
164 }
165
166 void SELECT_MASK (ide_drive_t *drive, int mask)
167 {
168         if (HWIF(drive)->maskproc)
169                 HWIF(drive)->maskproc(drive, mask);
170 }
171
172 /*
173  * Some localbus EIDE interfaces require a special access sequence
174  * when using 32-bit I/O instructions to transfer data.  We call this
175  * the "vlb_sync" sequence, which consists of three successive reads
176  * of the sector count register location, with interrupts disabled
177  * to ensure that the reads all happen together.
178  */
179 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
180 {
181         (void) HWIF(drive)->INB(port);
182         (void) HWIF(drive)->INB(port);
183         (void) HWIF(drive)->INB(port);
184 }
185
186 /*
187  * This is used for most PIO data transfers *from* the IDE interface
188  */
189 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
190 {
191         ide_hwif_t *hwif        = HWIF(drive);
192         u8 io_32bit             = drive->io_32bit;
193
194         if (io_32bit) {
195                 if (io_32bit & 2) {
196                         unsigned long flags;
197                         local_irq_save(flags);
198                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
199                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
200                         local_irq_restore(flags);
201                 } else
202                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
203         } else {
204                 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
205         }
206 }
207
208 /*
209  * This is used for most PIO data transfers *to* the IDE interface
210  */
211 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
212 {
213         ide_hwif_t *hwif        = HWIF(drive);
214         u8 io_32bit             = drive->io_32bit;
215
216         if (io_32bit) {
217                 if (io_32bit & 2) {
218                         unsigned long flags;
219                         local_irq_save(flags);
220                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
221                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
222                         local_irq_restore(flags);
223                 } else
224                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
225         } else {
226                 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
227         }
228 }
229
230 /*
231  * The following routines are mainly used by the ATAPI drivers.
232  *
233  * These routines will round up any request for an odd number of bytes,
234  * so if an odd bytecount is specified, be sure that there's at least one
235  * extra byte allocated for the buffer.
236  */
237
238 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
239 {
240         ide_hwif_t *hwif = HWIF(drive);
241
242         ++bytecount;
243 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
244         if (MACH_IS_ATARI || MACH_IS_Q40) {
245                 /* Atari has a byte-swapped IDE interface */
246                 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
247                 return;
248         }
249 #endif /* CONFIG_ATARI || CONFIG_Q40 */
250         hwif->ata_input_data(drive, buffer, bytecount / 4);
251         if ((bytecount & 0x03) >= 2)
252                 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
253 }
254
255 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
256 {
257         ide_hwif_t *hwif = HWIF(drive);
258
259         ++bytecount;
260 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
261         if (MACH_IS_ATARI || MACH_IS_Q40) {
262                 /* Atari has a byte-swapped IDE interface */
263                 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
264                 return;
265         }
266 #endif /* CONFIG_ATARI || CONFIG_Q40 */
267         hwif->ata_output_data(drive, buffer, bytecount / 4);
268         if ((bytecount & 0x03) >= 2)
269                 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
270 }
271
272 void default_hwif_transport(ide_hwif_t *hwif)
273 {
274         hwif->ata_input_data            = ata_input_data;
275         hwif->ata_output_data           = ata_output_data;
276         hwif->atapi_input_bytes         = atapi_input_bytes;
277         hwif->atapi_output_bytes        = atapi_output_bytes;
278 }
279
280 void ide_fix_driveid (struct hd_driveid *id)
281 {
282 #ifndef __LITTLE_ENDIAN
283 # ifdef __BIG_ENDIAN
284         int i;
285         u16 *stringcast;
286
287         id->config         = __le16_to_cpu(id->config);
288         id->cyls           = __le16_to_cpu(id->cyls);
289         id->reserved2      = __le16_to_cpu(id->reserved2);
290         id->heads          = __le16_to_cpu(id->heads);
291         id->track_bytes    = __le16_to_cpu(id->track_bytes);
292         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
293         id->sectors        = __le16_to_cpu(id->sectors);
294         id->vendor0        = __le16_to_cpu(id->vendor0);
295         id->vendor1        = __le16_to_cpu(id->vendor1);
296         id->vendor2        = __le16_to_cpu(id->vendor2);
297         stringcast = (u16 *)&id->serial_no[0];
298         for (i = 0; i < (20/2); i++)
299                 stringcast[i] = __le16_to_cpu(stringcast[i]);
300         id->buf_type       = __le16_to_cpu(id->buf_type);
301         id->buf_size       = __le16_to_cpu(id->buf_size);
302         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
303         stringcast = (u16 *)&id->fw_rev[0];
304         for (i = 0; i < (8/2); i++)
305                 stringcast[i] = __le16_to_cpu(stringcast[i]);
306         stringcast = (u16 *)&id->model[0];
307         for (i = 0; i < (40/2); i++)
308                 stringcast[i] = __le16_to_cpu(stringcast[i]);
309         id->dword_io       = __le16_to_cpu(id->dword_io);
310         id->reserved50     = __le16_to_cpu(id->reserved50);
311         id->field_valid    = __le16_to_cpu(id->field_valid);
312         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
313         id->cur_heads      = __le16_to_cpu(id->cur_heads);
314         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
315         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
316         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
317         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
318         id->dma_1word      = __le16_to_cpu(id->dma_1word);
319         id->dma_mword      = __le16_to_cpu(id->dma_mword);
320         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
321         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
322         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
323         id->eide_pio       = __le16_to_cpu(id->eide_pio);
324         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
325         for (i = 0; i < 2; ++i)
326                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
327         for (i = 0; i < 4; ++i)
328                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
329         id->queue_depth    = __le16_to_cpu(id->queue_depth);
330         for (i = 0; i < 4; ++i)
331                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
332         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
333         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
334         id->command_set_1  = __le16_to_cpu(id->command_set_1);
335         id->command_set_2  = __le16_to_cpu(id->command_set_2);
336         id->cfsse          = __le16_to_cpu(id->cfsse);
337         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
338         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
339         id->csf_default    = __le16_to_cpu(id->csf_default);
340         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
341         id->trseuc         = __le16_to_cpu(id->trseuc);
342         id->trsEuc         = __le16_to_cpu(id->trsEuc);
343         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
344         id->mprc           = __le16_to_cpu(id->mprc);
345         id->hw_config      = __le16_to_cpu(id->hw_config);
346         id->acoustic       = __le16_to_cpu(id->acoustic);
347         id->msrqs          = __le16_to_cpu(id->msrqs);
348         id->sxfert         = __le16_to_cpu(id->sxfert);
349         id->sal            = __le16_to_cpu(id->sal);
350         id->spg            = __le32_to_cpu(id->spg);
351         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
352         for (i = 0; i < 22; i++)
353                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
354         id->last_lun       = __le16_to_cpu(id->last_lun);
355         id->word127        = __le16_to_cpu(id->word127);
356         id->dlf            = __le16_to_cpu(id->dlf);
357         id->csfo           = __le16_to_cpu(id->csfo);
358         for (i = 0; i < 26; i++)
359                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
360         id->word156        = __le16_to_cpu(id->word156);
361         for (i = 0; i < 3; i++)
362                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
363         id->cfa_power      = __le16_to_cpu(id->cfa_power);
364         for (i = 0; i < 14; i++)
365                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
366         for (i = 0; i < 31; i++)
367                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
368         for (i = 0; i < 48; i++)
369                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
370         id->integrity_word  = __le16_to_cpu(id->integrity_word);
371 # else
372 #  error "Please fix <asm/byteorder.h>"
373 # endif
374 #endif
375 }
376
377 /*
378  * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
379  * removing leading/trailing blanks and compressing internal blanks.
380  * It is primarily used to tidy up the model name/number fields as
381  * returned by the WIN_[P]IDENTIFY commands.
382  */
383
384 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
385 {
386         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
387
388         if (byteswap) {
389                 /* convert from big-endian to host byte order */
390                 for (p = end ; p != s;) {
391                         unsigned short *pp = (unsigned short *) (p -= 2);
392                         *pp = ntohs(*pp);
393                 }
394         }
395         /* strip leading blanks */
396         while (s != end && *s == ' ')
397                 ++s;
398         /* compress internal blanks and strip trailing blanks */
399         while (s != end && *s) {
400                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
401                         *p++ = *(s-1);
402         }
403         /* wipe out trailing garbage */
404         while (p != end)
405                 *p++ = '\0';
406 }
407
408 EXPORT_SYMBOL(ide_fixstring);
409
410 /*
411  * Needed for PCI irq sharing
412  */
413 int drive_is_ready (ide_drive_t *drive)
414 {
415         ide_hwif_t *hwif        = HWIF(drive);
416         u8 stat                 = 0;
417
418         if (drive->waiting_for_dma)
419                 return hwif->ide_dma_test_irq(drive);
420
421 #if 0
422         /* need to guarantee 400ns since last command was issued */
423         udelay(1);
424 #endif
425
426         /*
427          * We do a passive status test under shared PCI interrupts on
428          * cards that truly share the ATA side interrupt, but may also share
429          * an interrupt with another pci card/device.  We make no assumptions
430          * about possible isa-pnp and pci-pnp issues yet.
431          */
432         if (IDE_CONTROL_REG)
433                 stat = ide_read_altstatus(drive);
434         else
435                 /* Note: this may clear a pending IRQ!! */
436                 stat = ide_read_status(drive);
437
438         if (stat & BUSY_STAT)
439                 /* drive busy:  definitely not interrupting */
440                 return 0;
441
442         /* drive ready: *might* be interrupting */
443         return 1;
444 }
445
446 EXPORT_SYMBOL(drive_is_ready);
447
448 /*
449  * This routine busy-waits for the drive status to be not "busy".
450  * It then checks the status for all of the "good" bits and none
451  * of the "bad" bits, and if all is okay it returns 0.  All other
452  * cases return error -- caller may then invoke ide_error().
453  *
454  * This routine should get fixed to not hog the cpu during extra long waits..
455  * That could be done by busy-waiting for the first jiffy or two, and then
456  * setting a timer to wake up at half second intervals thereafter,
457  * until timeout is achieved, before timing out.
458  */
459 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
460 {
461         unsigned long flags;
462         int i;
463         u8 stat;
464
465         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
466         stat = ide_read_status(drive);
467
468         if (stat & BUSY_STAT) {
469                 local_irq_set(flags);
470                 timeout += jiffies;
471                 while ((stat = ide_read_status(drive)) & BUSY_STAT) {
472                         if (time_after(jiffies, timeout)) {
473                                 /*
474                                  * One last read after the timeout in case
475                                  * heavy interrupt load made us not make any
476                                  * progress during the timeout..
477                                  */
478                                 stat = ide_read_status(drive);
479                                 if (!(stat & BUSY_STAT))
480                                         break;
481
482                                 local_irq_restore(flags);
483                                 *rstat = stat;
484                                 return -EBUSY;
485                         }
486                 }
487                 local_irq_restore(flags);
488         }
489         /*
490          * Allow status to settle, then read it again.
491          * A few rare drives vastly violate the 400ns spec here,
492          * so we'll wait up to 10usec for a "good" status
493          * rather than expensively fail things immediately.
494          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
495          */
496         for (i = 0; i < 10; i++) {
497                 udelay(1);
498                 stat = ide_read_status(drive);
499
500                 if (OK_STAT(stat, good, bad)) {
501                         *rstat = stat;
502                         return 0;
503                 }
504         }
505         *rstat = stat;
506         return -EFAULT;
507 }
508
509 /*
510  * In case of error returns error value after doing "*startstop = ide_error()".
511  * The caller should return the updated value of "startstop" in this case,
512  * "startstop" is unchanged when the function returns 0.
513  */
514 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
515 {
516         int err;
517         u8 stat;
518
519         /* bail early if we've exceeded max_failures */
520         if (drive->max_failures && (drive->failures > drive->max_failures)) {
521                 *startstop = ide_stopped;
522                 return 1;
523         }
524
525         err = __ide_wait_stat(drive, good, bad, timeout, &stat);
526
527         if (err) {
528                 char *s = (err == -EBUSY) ? "status timeout" : "status error";
529                 *startstop = ide_error(drive, s, stat);
530         }
531
532         return err;
533 }
534
535 EXPORT_SYMBOL(ide_wait_stat);
536
537 /**
538  *      ide_in_drive_list       -       look for drive in black/white list
539  *      @id: drive identifier
540  *      @drive_table: list to inspect
541  *
542  *      Look for a drive in the blacklist and the whitelist tables
543  *      Returns 1 if the drive is found in the table.
544  */
545
546 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
547 {
548         for ( ; drive_table->id_model; drive_table++)
549                 if ((!strcmp(drive_table->id_model, id->model)) &&
550                     (!drive_table->id_firmware ||
551                      strstr(id->fw_rev, drive_table->id_firmware)))
552                         return 1;
553         return 0;
554 }
555
556 EXPORT_SYMBOL_GPL(ide_in_drive_list);
557
558 /*
559  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
560  * We list them here and depend on the device side cable detection for them.
561  *
562  * Some optical devices with the buggy firmwares have the same problem.
563  */
564 static const struct drive_list_entry ivb_list[] = {
565         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
566         { "TSSTcorp CDDVDW SH-S202J"    , "SB00"        },
567         { "TSSTcorp CDDVDW SH-S202J"    , "SB01"        },
568         { "TSSTcorp CDDVDW SH-S202N"    , "SB00"        },
569         { "TSSTcorp CDDVDW SH-S202N"    , "SB01"        },
570         { NULL                          , NULL          }
571 };
572
573 /*
574  *  All hosts that use the 80c ribbon must use!
575  *  The name is derived from upper byte of word 93 and the 80c ribbon.
576  */
577 u8 eighty_ninty_three (ide_drive_t *drive)
578 {
579         ide_hwif_t *hwif = drive->hwif;
580         struct hd_driveid *id = drive->id;
581         int ivb = ide_in_drive_list(id, ivb_list);
582
583         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
584                 return 1;
585
586         if (ivb)
587                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
588                                   drive->name);
589
590         if (ide_dev_is_sata(id) && !ivb)
591                 return 1;
592
593         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
594                 goto no_80w;
595
596         /*
597          * FIXME:
598          * - force bit13 (80c cable present) check also for !ivb devices
599          *   (unless the slave device is pre-ATA3)
600          */
601         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
602                 return 1;
603
604 no_80w:
605         if (drive->udma33_warned == 1)
606                 return 0;
607
608         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
609                             "limiting max speed to UDMA33\n",
610                             drive->name,
611                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
612
613         drive->udma33_warned = 1;
614
615         return 0;
616 }
617
618 int ide_driveid_update(ide_drive_t *drive)
619 {
620         ide_hwif_t *hwif = drive->hwif;
621         struct hd_driveid *id;
622         unsigned long timeout, flags;
623         u8 stat;
624
625         /*
626          * Re-read drive->id for possible DMA mode
627          * change (copied from ide-probe.c)
628          */
629
630         SELECT_MASK(drive, 1);
631         ide_set_irq(drive, 1);
632         msleep(50);
633         hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
634         timeout = jiffies + WAIT_WORSTCASE;
635         do {
636                 if (time_after(jiffies, timeout)) {
637                         SELECT_MASK(drive, 0);
638                         return 0;       /* drive timed-out */
639                 }
640
641                 msleep(50);     /* give drive a breather */
642                 stat = ide_read_altstatus(drive);
643         } while (stat & BUSY_STAT);
644
645         msleep(50);     /* wait for IRQ and DRQ_STAT */
646         stat = ide_read_status(drive);
647
648         if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
649                 SELECT_MASK(drive, 0);
650                 printk("%s: CHECK for good STATUS\n", drive->name);
651                 return 0;
652         }
653         local_irq_save(flags);
654         SELECT_MASK(drive, 0);
655         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
656         if (!id) {
657                 local_irq_restore(flags);
658                 return 0;
659         }
660         ata_input_data(drive, id, SECTOR_WORDS);
661         (void)ide_read_status(drive);   /* clear drive IRQ */
662         local_irq_enable();
663         local_irq_restore(flags);
664         ide_fix_driveid(id);
665         if (id) {
666                 drive->id->dma_ultra = id->dma_ultra;
667                 drive->id->dma_mword = id->dma_mword;
668                 drive->id->dma_1word = id->dma_1word;
669                 /* anything more ? */
670                 kfree(id);
671
672                 if (drive->using_dma && ide_id_dma_bug(drive))
673                         ide_dma_off(drive);
674         }
675
676         return 1;
677 }
678
679 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
680 {
681         ide_hwif_t *hwif = drive->hwif;
682         int error = 0;
683         u8 stat;
684
685 //      while (HWGROUP(drive)->busy)
686 //              msleep(50);
687
688 #ifdef CONFIG_BLK_DEV_IDEDMA
689         if (hwif->dma_host_set) /* check if host supports DMA */
690                 hwif->dma_host_set(drive, 0);
691 #endif
692
693         /* Skip setting PIO flow-control modes on pre-EIDE drives */
694         if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
695                 goto skip;
696
697         /*
698          * Don't use ide_wait_cmd here - it will
699          * attempt to set_geometry and recalibrate,
700          * but for some reason these don't work at
701          * this point (lost interrupt).
702          */
703         /*
704          * Select the drive, and issue the SETFEATURES command
705          */
706         disable_irq_nosync(hwif->irq);
707         
708         /*
709          *      FIXME: we race against the running IRQ here if
710          *      this is called from non IRQ context. If we use
711          *      disable_irq() we hang on the error path. Work
712          *      is needed.
713          */
714          
715         udelay(1);
716         SELECT_DRIVE(drive);
717         SELECT_MASK(drive, 0);
718         udelay(1);
719         ide_set_irq(drive, 0);
720         hwif->OUTB(speed, IDE_NSECTOR_REG);
721         hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
722         hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
723         if (drive->quirk_list == 2)
724                 ide_set_irq(drive, 1);
725
726         error = __ide_wait_stat(drive, drive->ready_stat,
727                                 BUSY_STAT|DRQ_STAT|ERR_STAT,
728                                 WAIT_CMD, &stat);
729
730         SELECT_MASK(drive, 0);
731
732         enable_irq(hwif->irq);
733
734         if (error) {
735                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
736                 return error;
737         }
738
739         drive->id->dma_ultra &= ~0xFF00;
740         drive->id->dma_mword &= ~0x0F00;
741         drive->id->dma_1word &= ~0x0F00;
742
743  skip:
744 #ifdef CONFIG_BLK_DEV_IDEDMA
745         if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
746             drive->using_dma)
747                 hwif->dma_host_set(drive, 1);
748         else if (hwif->dma_host_set)    /* check if host supports DMA */
749                 ide_dma_off_quietly(drive);
750 #endif
751
752         switch(speed) {
753                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
754                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
755                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
756                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
757                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
758                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
759                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
760                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
761                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
762                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
763                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
764                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
765                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
766                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
767                 default: break;
768         }
769         if (!drive->init_speed)
770                 drive->init_speed = speed;
771         drive->current_speed = speed;
772         return error;
773 }
774
775 /*
776  * This should get invoked any time we exit the driver to
777  * wait for an interrupt response from a drive.  handler() points
778  * at the appropriate code to handle the next interrupt, and a
779  * timer is started to prevent us from waiting forever in case
780  * something goes wrong (see the ide_timer_expiry() handler later on).
781  *
782  * See also ide_execute_command
783  */
784 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
785                       unsigned int timeout, ide_expiry_t *expiry)
786 {
787         ide_hwgroup_t *hwgroup = HWGROUP(drive);
788
789         if (hwgroup->handler != NULL) {
790                 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
791                         "old=%p, new=%p\n",
792                         drive->name, hwgroup->handler, handler);
793         }
794         hwgroup->handler        = handler;
795         hwgroup->expiry         = expiry;
796         hwgroup->timer.expires  = jiffies + timeout;
797         hwgroup->req_gen_timer = hwgroup->req_gen;
798         add_timer(&hwgroup->timer);
799 }
800
801 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
802                       unsigned int timeout, ide_expiry_t *expiry)
803 {
804         unsigned long flags;
805         spin_lock_irqsave(&ide_lock, flags);
806         __ide_set_handler(drive, handler, timeout, expiry);
807         spin_unlock_irqrestore(&ide_lock, flags);
808 }
809
810 EXPORT_SYMBOL(ide_set_handler);
811  
812 /**
813  *      ide_execute_command     -       execute an IDE command
814  *      @drive: IDE drive to issue the command against
815  *      @command: command byte to write
816  *      @handler: handler for next phase
817  *      @timeout: timeout for command
818  *      @expiry:  handler to run on timeout
819  *
820  *      Helper function to issue an IDE command. This handles the
821  *      atomicity requirements, command timing and ensures that the 
822  *      handler and IRQ setup do not race. All IDE command kick off
823  *      should go via this function or do equivalent locking.
824  */
825
826 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
827                          unsigned timeout, ide_expiry_t *expiry)
828 {
829         unsigned long flags;
830         ide_hwgroup_t *hwgroup = HWGROUP(drive);
831         ide_hwif_t *hwif = HWIF(drive);
832
833         spin_lock_irqsave(&ide_lock, flags);
834         BUG_ON(hwgroup->handler);
835         __ide_set_handler(drive, handler, timeout, expiry);
836         hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
837         /*
838          * Drive takes 400nS to respond, we must avoid the IRQ being
839          * serviced before that.
840          *
841          * FIXME: we could skip this delay with care on non shared devices
842          */
843         ndelay(400);
844         spin_unlock_irqrestore(&ide_lock, flags);
845 }
846
847 EXPORT_SYMBOL(ide_execute_command);
848
849
850 /* needed below */
851 static ide_startstop_t do_reset1 (ide_drive_t *, int);
852
853 /*
854  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
855  * during an atapi drive reset operation. If the drive has not yet responded,
856  * and we have not yet hit our maximum waiting time, then the timer is restarted
857  * for another 50ms.
858  */
859 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
860 {
861         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
862         u8 stat;
863
864         SELECT_DRIVE(drive);
865         udelay (10);
866         stat = ide_read_status(drive);
867
868         if (OK_STAT(stat, 0, BUSY_STAT))
869                 printk("%s: ATAPI reset complete\n", drive->name);
870         else {
871                 if (time_before(jiffies, hwgroup->poll_timeout)) {
872                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
873                         /* continue polling */
874                         return ide_started;
875                 }
876                 /* end of polling */
877                 hwgroup->polling = 0;
878                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
879                                 drive->name, stat);
880                 /* do it the old fashioned way */
881                 return do_reset1(drive, 1);
882         }
883         /* done polling */
884         hwgroup->polling = 0;
885         hwgroup->resetting = 0;
886         return ide_stopped;
887 }
888
889 /*
890  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
891  * during an ide reset operation. If the drives have not yet responded,
892  * and we have not yet hit our maximum waiting time, then the timer is restarted
893  * for another 50ms.
894  */
895 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
896 {
897         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
898         ide_hwif_t *hwif        = HWIF(drive);
899         u8 tmp;
900
901         if (hwif->reset_poll != NULL) {
902                 if (hwif->reset_poll(drive)) {
903                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
904                                 hwif->name, drive->name);
905                         return ide_stopped;
906                 }
907         }
908
909         tmp = ide_read_status(drive);
910
911         if (!OK_STAT(tmp, 0, BUSY_STAT)) {
912                 if (time_before(jiffies, hwgroup->poll_timeout)) {
913                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
914                         /* continue polling */
915                         return ide_started;
916                 }
917                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
918                 drive->failures++;
919         } else  {
920                 printk("%s: reset: ", hwif->name);
921                 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
922                         printk("success\n");
923                         drive->failures = 0;
924                 } else {
925                         drive->failures++;
926                         printk("master: ");
927                         switch (tmp & 0x7f) {
928                                 case 1: printk("passed");
929                                         break;
930                                 case 2: printk("formatter device error");
931                                         break;
932                                 case 3: printk("sector buffer error");
933                                         break;
934                                 case 4: printk("ECC circuitry error");
935                                         break;
936                                 case 5: printk("controlling MPU error");
937                                         break;
938                                 default:printk("error (0x%02x?)", tmp);
939                         }
940                         if (tmp & 0x80)
941                                 printk("; slave: failed");
942                         printk("\n");
943                 }
944         }
945         hwgroup->polling = 0;   /* done polling */
946         hwgroup->resetting = 0; /* done reset attempt */
947         return ide_stopped;
948 }
949
950 static void ide_disk_pre_reset(ide_drive_t *drive)
951 {
952         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
953
954         drive->special.all = 0;
955         drive->special.b.set_geometry = legacy;
956         drive->special.b.recalibrate  = legacy;
957         drive->mult_count = 0;
958         if (!drive->keep_settings && !drive->using_dma)
959                 drive->mult_req = 0;
960         if (drive->mult_req != drive->mult_count)
961                 drive->special.b.set_multmode = 1;
962 }
963
964 static void pre_reset(ide_drive_t *drive)
965 {
966         if (drive->media == ide_disk)
967                 ide_disk_pre_reset(drive);
968         else
969                 drive->post_reset = 1;
970
971         if (drive->using_dma) {
972                 if (drive->crc_count)
973                         ide_check_dma_crc(drive);
974                 else
975                         ide_dma_off(drive);
976         }
977
978         if (!drive->keep_settings) {
979                 if (!drive->using_dma) {
980                         drive->unmask = 0;
981                         drive->io_32bit = 0;
982                 }
983                 return;
984         }
985
986         if (HWIF(drive)->pre_reset != NULL)
987                 HWIF(drive)->pre_reset(drive);
988
989         if (drive->current_speed != 0xff)
990                 drive->desired_speed = drive->current_speed;
991         drive->current_speed = 0xff;
992 }
993
994 /*
995  * do_reset1() attempts to recover a confused drive by resetting it.
996  * Unfortunately, resetting a disk drive actually resets all devices on
997  * the same interface, so it can really be thought of as resetting the
998  * interface rather than resetting the drive.
999  *
1000  * ATAPI devices have their own reset mechanism which allows them to be
1001  * individually reset without clobbering other devices on the same interface.
1002  *
1003  * Unfortunately, the IDE interface does not generate an interrupt to let
1004  * us know when the reset operation has finished, so we must poll for this.
1005  * Equally poor, though, is the fact that this may a very long time to complete,
1006  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1007  * we set a timer to poll at 50ms intervals.
1008  */
1009 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1010 {
1011         unsigned int unit;
1012         unsigned long flags;
1013         ide_hwif_t *hwif;
1014         ide_hwgroup_t *hwgroup;
1015         
1016         spin_lock_irqsave(&ide_lock, flags);
1017         hwif = HWIF(drive);
1018         hwgroup = HWGROUP(drive);
1019
1020         /* We must not reset with running handlers */
1021         BUG_ON(hwgroup->handler != NULL);
1022
1023         /* For an ATAPI device, first try an ATAPI SRST. */
1024         if (drive->media != ide_disk && !do_not_try_atapi) {
1025                 hwgroup->resetting = 1;
1026                 pre_reset(drive);
1027                 SELECT_DRIVE(drive);
1028                 udelay (20);
1029                 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1030                 ndelay(400);
1031                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1032                 hwgroup->polling = 1;
1033                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1034                 spin_unlock_irqrestore(&ide_lock, flags);
1035                 return ide_started;
1036         }
1037
1038         /*
1039          * First, reset any device state data we were maintaining
1040          * for any of the drives on this interface.
1041          */
1042         for (unit = 0; unit < MAX_DRIVES; ++unit)
1043                 pre_reset(&hwif->drives[unit]);
1044
1045         if (!IDE_CONTROL_REG) {
1046                 spin_unlock_irqrestore(&ide_lock, flags);
1047                 return ide_stopped;
1048         }
1049
1050         hwgroup->resetting = 1;
1051         /*
1052          * Note that we also set nIEN while resetting the device,
1053          * to mask unwanted interrupts from the interface during the reset.
1054          * However, due to the design of PC hardware, this will cause an
1055          * immediate interrupt due to the edge transition it produces.
1056          * This single interrupt gives us a "fast poll" for drives that
1057          * recover from reset very quickly, saving us the first 50ms wait time.
1058          */
1059         /* set SRST and nIEN */
1060         hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1061         /* more than enough time */
1062         udelay(10);
1063         if (drive->quirk_list == 2) {
1064                 /* clear SRST and nIEN */
1065                 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1066         } else {
1067                 /* clear SRST, leave nIEN */
1068                 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1069         }
1070         /* more than enough time */
1071         udelay(10);
1072         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1073         hwgroup->polling = 1;
1074         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1075
1076         /*
1077          * Some weird controller like resetting themselves to a strange
1078          * state when the disks are reset this way. At least, the Winbond
1079          * 553 documentation says that
1080          */
1081         if (hwif->resetproc)
1082                 hwif->resetproc(drive);
1083
1084         spin_unlock_irqrestore(&ide_lock, flags);
1085         return ide_started;
1086 }
1087
1088 /*
1089  * ide_do_reset() is the entry point to the drive/interface reset code.
1090  */
1091
1092 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1093 {
1094         return do_reset1(drive, 0);
1095 }
1096
1097 EXPORT_SYMBOL(ide_do_reset);
1098
1099 /*
1100  * ide_wait_not_busy() waits for the currently selected device on the hwif
1101  * to report a non-busy status, see comments in ide_probe_port().
1102  */
1103 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1104 {
1105         u8 stat = 0;
1106
1107         while(timeout--) {
1108                 /*
1109                  * Turn this into a schedule() sleep once I'm sure
1110                  * about locking issues (2.5 work ?).
1111                  */
1112                 mdelay(1);
1113                 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1114                 if ((stat & BUSY_STAT) == 0)
1115                         return 0;
1116                 /*
1117                  * Assume a value of 0xff means nothing is connected to
1118                  * the interface and it doesn't implement the pull-down
1119                  * resistor on D7.
1120                  */
1121                 if (stat == 0xff)
1122                         return -ENODEV;
1123                 touch_softlockup_watchdog();
1124                 touch_nmi_watchdog();
1125         }
1126         return -EBUSY;
1127 }
1128
1129 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1130