Revert "ide: change master/slave IDENTIFY order"
[sfrench/cifs-2.6.git] / drivers / ide / ide-iops.c
1 /*
2  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
3  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
4  *
5  */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
25
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30
31 /*
32  *      Conventional PIO operations for ATA devices
33  */
34
35 static u8 ide_inb (unsigned long port)
36 {
37         return (u8) inb(port);
38 }
39
40 static u16 ide_inw (unsigned long port)
41 {
42         return (u16) inw(port);
43 }
44
45 static void ide_insw (unsigned long port, void *addr, u32 count)
46 {
47         insw(port, addr, count);
48 }
49
50 static void ide_insl (unsigned long port, void *addr, u32 count)
51 {
52         insl(port, addr, count);
53 }
54
55 static void ide_outb (u8 val, unsigned long port)
56 {
57         outb(val, port);
58 }
59
60 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
61 {
62         outb(addr, port);
63 }
64
65 static void ide_outw (u16 val, unsigned long port)
66 {
67         outw(val, port);
68 }
69
70 static void ide_outsw (unsigned long port, void *addr, u32 count)
71 {
72         outsw(port, addr, count);
73 }
74
75 static void ide_outsl (unsigned long port, void *addr, u32 count)
76 {
77         outsl(port, addr, count);
78 }
79
80 void default_hwif_iops (ide_hwif_t *hwif)
81 {
82         hwif->OUTB      = ide_outb;
83         hwif->OUTBSYNC  = ide_outbsync;
84         hwif->OUTW      = ide_outw;
85         hwif->OUTSW     = ide_outsw;
86         hwif->OUTSL     = ide_outsl;
87         hwif->INB       = ide_inb;
88         hwif->INW       = ide_inw;
89         hwif->INSW      = ide_insw;
90         hwif->INSL      = ide_insl;
91 }
92
93 /*
94  *      MMIO operations, typically used for SATA controllers
95  */
96
97 static u8 ide_mm_inb (unsigned long port)
98 {
99         return (u8) readb((void __iomem *) port);
100 }
101
102 static u16 ide_mm_inw (unsigned long port)
103 {
104         return (u16) readw((void __iomem *) port);
105 }
106
107 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
108 {
109         __ide_mm_insw((void __iomem *) port, addr, count);
110 }
111
112 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
113 {
114         __ide_mm_insl((void __iomem *) port, addr, count);
115 }
116
117 static void ide_mm_outb (u8 value, unsigned long port)
118 {
119         writeb(value, (void __iomem *) port);
120 }
121
122 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
123 {
124         writeb(value, (void __iomem *) port);
125 }
126
127 static void ide_mm_outw (u16 value, unsigned long port)
128 {
129         writew(value, (void __iomem *) port);
130 }
131
132 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
133 {
134         __ide_mm_outsw((void __iomem *) port, addr, count);
135 }
136
137 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
138 {
139         __ide_mm_outsl((void __iomem *) port, addr, count);
140 }
141
142 void default_hwif_mmiops (ide_hwif_t *hwif)
143 {
144         hwif->OUTB      = ide_mm_outb;
145         /* Most systems will need to override OUTBSYNC, alas however
146            this one is controller specific! */
147         hwif->OUTBSYNC  = ide_mm_outbsync;
148         hwif->OUTW      = ide_mm_outw;
149         hwif->OUTSW     = ide_mm_outsw;
150         hwif->OUTSL     = ide_mm_outsl;
151         hwif->INB       = ide_mm_inb;
152         hwif->INW       = ide_mm_inw;
153         hwif->INSW      = ide_mm_insw;
154         hwif->INSL      = ide_mm_insl;
155 }
156
157 EXPORT_SYMBOL(default_hwif_mmiops);
158
159 void SELECT_DRIVE (ide_drive_t *drive)
160 {
161         if (HWIF(drive)->selectproc)
162                 HWIF(drive)->selectproc(drive);
163         HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
164 }
165
166 void SELECT_MASK (ide_drive_t *drive, int mask)
167 {
168         if (HWIF(drive)->maskproc)
169                 HWIF(drive)->maskproc(drive, mask);
170 }
171
172 /*
173  * Some localbus EIDE interfaces require a special access sequence
174  * when using 32-bit I/O instructions to transfer data.  We call this
175  * the "vlb_sync" sequence, which consists of three successive reads
176  * of the sector count register location, with interrupts disabled
177  * to ensure that the reads all happen together.
178  */
179 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
180 {
181         (void) HWIF(drive)->INB(port);
182         (void) HWIF(drive)->INB(port);
183         (void) HWIF(drive)->INB(port);
184 }
185
186 /*
187  * This is used for most PIO data transfers *from* the IDE interface
188  */
189 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
190 {
191         ide_hwif_t *hwif        = HWIF(drive);
192         u8 io_32bit             = drive->io_32bit;
193
194         if (io_32bit) {
195                 if (io_32bit & 2) {
196                         unsigned long flags;
197                         local_irq_save(flags);
198                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
199                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
200                         local_irq_restore(flags);
201                 } else
202                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
203         } else {
204                 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
205         }
206 }
207
208 /*
209  * This is used for most PIO data transfers *to* the IDE interface
210  */
211 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
212 {
213         ide_hwif_t *hwif        = HWIF(drive);
214         u8 io_32bit             = drive->io_32bit;
215
216         if (io_32bit) {
217                 if (io_32bit & 2) {
218                         unsigned long flags;
219                         local_irq_save(flags);
220                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
221                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
222                         local_irq_restore(flags);
223                 } else
224                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
225         } else {
226                 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
227         }
228 }
229
230 /*
231  * The following routines are mainly used by the ATAPI drivers.
232  *
233  * These routines will round up any request for an odd number of bytes,
234  * so if an odd bytecount is specified, be sure that there's at least one
235  * extra byte allocated for the buffer.
236  */
237
238 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
239 {
240         ide_hwif_t *hwif = HWIF(drive);
241
242         ++bytecount;
243 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
244         if (MACH_IS_ATARI || MACH_IS_Q40) {
245                 /* Atari has a byte-swapped IDE interface */
246                 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
247                 return;
248         }
249 #endif /* CONFIG_ATARI || CONFIG_Q40 */
250         hwif->ata_input_data(drive, buffer, bytecount / 4);
251         if ((bytecount & 0x03) >= 2)
252                 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
253 }
254
255 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
256 {
257         ide_hwif_t *hwif = HWIF(drive);
258
259         ++bytecount;
260 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
261         if (MACH_IS_ATARI || MACH_IS_Q40) {
262                 /* Atari has a byte-swapped IDE interface */
263                 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
264                 return;
265         }
266 #endif /* CONFIG_ATARI || CONFIG_Q40 */
267         hwif->ata_output_data(drive, buffer, bytecount / 4);
268         if ((bytecount & 0x03) >= 2)
269                 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
270 }
271
272 void default_hwif_transport(ide_hwif_t *hwif)
273 {
274         hwif->ata_input_data            = ata_input_data;
275         hwif->ata_output_data           = ata_output_data;
276         hwif->atapi_input_bytes         = atapi_input_bytes;
277         hwif->atapi_output_bytes        = atapi_output_bytes;
278 }
279
280 void ide_fix_driveid (struct hd_driveid *id)
281 {
282 #ifndef __LITTLE_ENDIAN
283 # ifdef __BIG_ENDIAN
284         int i;
285         u16 *stringcast;
286
287         id->config         = __le16_to_cpu(id->config);
288         id->cyls           = __le16_to_cpu(id->cyls);
289         id->reserved2      = __le16_to_cpu(id->reserved2);
290         id->heads          = __le16_to_cpu(id->heads);
291         id->track_bytes    = __le16_to_cpu(id->track_bytes);
292         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
293         id->sectors        = __le16_to_cpu(id->sectors);
294         id->vendor0        = __le16_to_cpu(id->vendor0);
295         id->vendor1        = __le16_to_cpu(id->vendor1);
296         id->vendor2        = __le16_to_cpu(id->vendor2);
297         stringcast = (u16 *)&id->serial_no[0];
298         for (i = 0; i < (20/2); i++)
299                 stringcast[i] = __le16_to_cpu(stringcast[i]);
300         id->buf_type       = __le16_to_cpu(id->buf_type);
301         id->buf_size       = __le16_to_cpu(id->buf_size);
302         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
303         stringcast = (u16 *)&id->fw_rev[0];
304         for (i = 0; i < (8/2); i++)
305                 stringcast[i] = __le16_to_cpu(stringcast[i]);
306         stringcast = (u16 *)&id->model[0];
307         for (i = 0; i < (40/2); i++)
308                 stringcast[i] = __le16_to_cpu(stringcast[i]);
309         id->dword_io       = __le16_to_cpu(id->dword_io);
310         id->reserved50     = __le16_to_cpu(id->reserved50);
311         id->field_valid    = __le16_to_cpu(id->field_valid);
312         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
313         id->cur_heads      = __le16_to_cpu(id->cur_heads);
314         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
315         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
316         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
317         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
318         id->dma_1word      = __le16_to_cpu(id->dma_1word);
319         id->dma_mword      = __le16_to_cpu(id->dma_mword);
320         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
321         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
322         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
323         id->eide_pio       = __le16_to_cpu(id->eide_pio);
324         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
325         for (i = 0; i < 2; ++i)
326                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
327         for (i = 0; i < 4; ++i)
328                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
329         id->queue_depth    = __le16_to_cpu(id->queue_depth);
330         for (i = 0; i < 4; ++i)
331                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
332         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
333         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
334         id->command_set_1  = __le16_to_cpu(id->command_set_1);
335         id->command_set_2  = __le16_to_cpu(id->command_set_2);
336         id->cfsse          = __le16_to_cpu(id->cfsse);
337         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
338         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
339         id->csf_default    = __le16_to_cpu(id->csf_default);
340         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
341         id->trseuc         = __le16_to_cpu(id->trseuc);
342         id->trsEuc         = __le16_to_cpu(id->trsEuc);
343         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
344         id->mprc           = __le16_to_cpu(id->mprc);
345         id->hw_config      = __le16_to_cpu(id->hw_config);
346         id->acoustic       = __le16_to_cpu(id->acoustic);
347         id->msrqs          = __le16_to_cpu(id->msrqs);
348         id->sxfert         = __le16_to_cpu(id->sxfert);
349         id->sal            = __le16_to_cpu(id->sal);
350         id->spg            = __le32_to_cpu(id->spg);
351         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
352         for (i = 0; i < 22; i++)
353                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
354         id->last_lun       = __le16_to_cpu(id->last_lun);
355         id->word127        = __le16_to_cpu(id->word127);
356         id->dlf            = __le16_to_cpu(id->dlf);
357         id->csfo           = __le16_to_cpu(id->csfo);
358         for (i = 0; i < 26; i++)
359                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
360         id->word156        = __le16_to_cpu(id->word156);
361         for (i = 0; i < 3; i++)
362                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
363         id->cfa_power      = __le16_to_cpu(id->cfa_power);
364         for (i = 0; i < 14; i++)
365                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
366         for (i = 0; i < 31; i++)
367                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
368         for (i = 0; i < 48; i++)
369                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
370         id->integrity_word  = __le16_to_cpu(id->integrity_word);
371 # else
372 #  error "Please fix <asm/byteorder.h>"
373 # endif
374 #endif
375 }
376
377 /*
378  * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
379  * removing leading/trailing blanks and compressing internal blanks.
380  * It is primarily used to tidy up the model name/number fields as
381  * returned by the WIN_[P]IDENTIFY commands.
382  */
383
384 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
385 {
386         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
387
388         if (byteswap) {
389                 /* convert from big-endian to host byte order */
390                 for (p = end ; p != s;) {
391                         unsigned short *pp = (unsigned short *) (p -= 2);
392                         *pp = ntohs(*pp);
393                 }
394         }
395         /* strip leading blanks */
396         while (s != end && *s == ' ')
397                 ++s;
398         /* compress internal blanks and strip trailing blanks */
399         while (s != end && *s) {
400                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
401                         *p++ = *(s-1);
402         }
403         /* wipe out trailing garbage */
404         while (p != end)
405                 *p++ = '\0';
406 }
407
408 EXPORT_SYMBOL(ide_fixstring);
409
410 /*
411  * Needed for PCI irq sharing
412  */
413 int drive_is_ready (ide_drive_t *drive)
414 {
415         ide_hwif_t *hwif        = HWIF(drive);
416         u8 stat                 = 0;
417
418         if (drive->waiting_for_dma)
419                 return hwif->ide_dma_test_irq(drive);
420
421 #if 0
422         /* need to guarantee 400ns since last command was issued */
423         udelay(1);
424 #endif
425
426         /*
427          * We do a passive status test under shared PCI interrupts on
428          * cards that truly share the ATA side interrupt, but may also share
429          * an interrupt with another pci card/device.  We make no assumptions
430          * about possible isa-pnp and pci-pnp issues yet.
431          */
432         if (IDE_CONTROL_REG)
433                 stat = ide_read_altstatus(drive);
434         else
435                 /* Note: this may clear a pending IRQ!! */
436                 stat = ide_read_status(drive);
437
438         if (stat & BUSY_STAT)
439                 /* drive busy:  definitely not interrupting */
440                 return 0;
441
442         /* drive ready: *might* be interrupting */
443         return 1;
444 }
445
446 EXPORT_SYMBOL(drive_is_ready);
447
448 /*
449  * This routine busy-waits for the drive status to be not "busy".
450  * It then checks the status for all of the "good" bits and none
451  * of the "bad" bits, and if all is okay it returns 0.  All other
452  * cases return error -- caller may then invoke ide_error().
453  *
454  * This routine should get fixed to not hog the cpu during extra long waits..
455  * That could be done by busy-waiting for the first jiffy or two, and then
456  * setting a timer to wake up at half second intervals thereafter,
457  * until timeout is achieved, before timing out.
458  */
459 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
460 {
461         unsigned long flags;
462         int i;
463         u8 stat;
464
465         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
466         stat = ide_read_status(drive);
467
468         if (stat & BUSY_STAT) {
469                 local_irq_set(flags);
470                 timeout += jiffies;
471                 while ((stat = ide_read_status(drive)) & BUSY_STAT) {
472                         if (time_after(jiffies, timeout)) {
473                                 /*
474                                  * One last read after the timeout in case
475                                  * heavy interrupt load made us not make any
476                                  * progress during the timeout..
477                                  */
478                                 stat = ide_read_status(drive);
479                                 if (!(stat & BUSY_STAT))
480                                         break;
481
482                                 local_irq_restore(flags);
483                                 *rstat = stat;
484                                 return -EBUSY;
485                         }
486                 }
487                 local_irq_restore(flags);
488         }
489         /*
490          * Allow status to settle, then read it again.
491          * A few rare drives vastly violate the 400ns spec here,
492          * so we'll wait up to 10usec for a "good" status
493          * rather than expensively fail things immediately.
494          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
495          */
496         for (i = 0; i < 10; i++) {
497                 udelay(1);
498                 stat = ide_read_status(drive);
499
500                 if (OK_STAT(stat, good, bad)) {
501                         *rstat = stat;
502                         return 0;
503                 }
504         }
505         *rstat = stat;
506         return -EFAULT;
507 }
508
509 /*
510  * In case of error returns error value after doing "*startstop = ide_error()".
511  * The caller should return the updated value of "startstop" in this case,
512  * "startstop" is unchanged when the function returns 0.
513  */
514 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
515 {
516         int err;
517         u8 stat;
518
519         /* bail early if we've exceeded max_failures */
520         if (drive->max_failures && (drive->failures > drive->max_failures)) {
521                 *startstop = ide_stopped;
522                 return 1;
523         }
524
525         err = __ide_wait_stat(drive, good, bad, timeout, &stat);
526
527         if (err) {
528                 char *s = (err == -EBUSY) ? "status timeout" : "status error";
529                 *startstop = ide_error(drive, s, stat);
530         }
531
532         return err;
533 }
534
535 EXPORT_SYMBOL(ide_wait_stat);
536
537 /**
538  *      ide_in_drive_list       -       look for drive in black/white list
539  *      @id: drive identifier
540  *      @drive_table: list to inspect
541  *
542  *      Look for a drive in the blacklist and the whitelist tables
543  *      Returns 1 if the drive is found in the table.
544  */
545
546 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
547 {
548         for ( ; drive_table->id_model; drive_table++)
549                 if ((!strcmp(drive_table->id_model, id->model)) &&
550                     (!drive_table->id_firmware ||
551                      strstr(id->fw_rev, drive_table->id_firmware)))
552                         return 1;
553         return 0;
554 }
555
556 EXPORT_SYMBOL_GPL(ide_in_drive_list);
557
558 /*
559  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
560  * We list them here and depend on the device side cable detection for them.
561  *
562  * Some optical devices with the buggy firmwares have the same problem.
563  */
564 static const struct drive_list_entry ivb_list[] = {
565         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
566         { "TSSTcorp CDDVDW SH-S202J"    , "SB00"        },
567         { "TSSTcorp CDDVDW SH-S202J"    , "SB01"        },
568         { "TSSTcorp CDDVDW SH-S202N"    , "SB00"        },
569         { "TSSTcorp CDDVDW SH-S202N"    , "SB01"        },
570         { NULL                          , NULL          }
571 };
572
573 /*
574  *  All hosts that use the 80c ribbon must use!
575  *  The name is derived from upper byte of word 93 and the 80c ribbon.
576  */
577 u8 eighty_ninty_three (ide_drive_t *drive)
578 {
579         ide_hwif_t *hwif = drive->hwif;
580         struct hd_driveid *id = drive->id;
581         int ivb = ide_in_drive_list(id, ivb_list);
582
583         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
584                 return 1;
585
586         if (ivb)
587                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
588                                   drive->name);
589
590         if (ide_dev_is_sata(id) && !ivb)
591                 return 1;
592
593         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
594                 goto no_80w;
595
596         /*
597          * FIXME:
598          * - change master/slave IDENTIFY order
599          * - force bit13 (80c cable present) check also for !ivb devices
600          *   (unless the slave device is pre-ATA3)
601          */
602         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
603                 return 1;
604
605 no_80w:
606         if (drive->udma33_warned == 1)
607                 return 0;
608
609         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
610                             "limiting max speed to UDMA33\n",
611                             drive->name,
612                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
613
614         drive->udma33_warned = 1;
615
616         return 0;
617 }
618
619 int ide_driveid_update(ide_drive_t *drive)
620 {
621         ide_hwif_t *hwif = drive->hwif;
622         struct hd_driveid *id;
623         unsigned long timeout, flags;
624         u8 stat;
625
626         /*
627          * Re-read drive->id for possible DMA mode
628          * change (copied from ide-probe.c)
629          */
630
631         SELECT_MASK(drive, 1);
632         ide_set_irq(drive, 1);
633         msleep(50);
634         hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
635         timeout = jiffies + WAIT_WORSTCASE;
636         do {
637                 if (time_after(jiffies, timeout)) {
638                         SELECT_MASK(drive, 0);
639                         return 0;       /* drive timed-out */
640                 }
641
642                 msleep(50);     /* give drive a breather */
643                 stat = ide_read_altstatus(drive);
644         } while (stat & BUSY_STAT);
645
646         msleep(50);     /* wait for IRQ and DRQ_STAT */
647         stat = ide_read_status(drive);
648
649         if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
650                 SELECT_MASK(drive, 0);
651                 printk("%s: CHECK for good STATUS\n", drive->name);
652                 return 0;
653         }
654         local_irq_save(flags);
655         SELECT_MASK(drive, 0);
656         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
657         if (!id) {
658                 local_irq_restore(flags);
659                 return 0;
660         }
661         ata_input_data(drive, id, SECTOR_WORDS);
662         (void)ide_read_status(drive);   /* clear drive IRQ */
663         local_irq_enable();
664         local_irq_restore(flags);
665         ide_fix_driveid(id);
666         if (id) {
667                 drive->id->dma_ultra = id->dma_ultra;
668                 drive->id->dma_mword = id->dma_mword;
669                 drive->id->dma_1word = id->dma_1word;
670                 /* anything more ? */
671                 kfree(id);
672
673                 if (drive->using_dma && ide_id_dma_bug(drive))
674                         ide_dma_off(drive);
675         }
676
677         return 1;
678 }
679
680 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
681 {
682         ide_hwif_t *hwif = drive->hwif;
683         int error = 0;
684         u8 stat;
685
686 //      while (HWGROUP(drive)->busy)
687 //              msleep(50);
688
689 #ifdef CONFIG_BLK_DEV_IDEDMA
690         if (hwif->dma_host_set) /* check if host supports DMA */
691                 hwif->dma_host_set(drive, 0);
692 #endif
693
694         /* Skip setting PIO flow-control modes on pre-EIDE drives */
695         if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
696                 goto skip;
697
698         /*
699          * Don't use ide_wait_cmd here - it will
700          * attempt to set_geometry and recalibrate,
701          * but for some reason these don't work at
702          * this point (lost interrupt).
703          */
704         /*
705          * Select the drive, and issue the SETFEATURES command
706          */
707         disable_irq_nosync(hwif->irq);
708         
709         /*
710          *      FIXME: we race against the running IRQ here if
711          *      this is called from non IRQ context. If we use
712          *      disable_irq() we hang on the error path. Work
713          *      is needed.
714          */
715          
716         udelay(1);
717         SELECT_DRIVE(drive);
718         SELECT_MASK(drive, 0);
719         udelay(1);
720         ide_set_irq(drive, 0);
721         hwif->OUTB(speed, IDE_NSECTOR_REG);
722         hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
723         hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
724         if (drive->quirk_list == 2)
725                 ide_set_irq(drive, 1);
726
727         error = __ide_wait_stat(drive, drive->ready_stat,
728                                 BUSY_STAT|DRQ_STAT|ERR_STAT,
729                                 WAIT_CMD, &stat);
730
731         SELECT_MASK(drive, 0);
732
733         enable_irq(hwif->irq);
734
735         if (error) {
736                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
737                 return error;
738         }
739
740         drive->id->dma_ultra &= ~0xFF00;
741         drive->id->dma_mword &= ~0x0F00;
742         drive->id->dma_1word &= ~0x0F00;
743
744  skip:
745 #ifdef CONFIG_BLK_DEV_IDEDMA
746         if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
747             drive->using_dma)
748                 hwif->dma_host_set(drive, 1);
749         else if (hwif->dma_host_set)    /* check if host supports DMA */
750                 ide_dma_off_quietly(drive);
751 #endif
752
753         switch(speed) {
754                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
755                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
756                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
757                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
758                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
759                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
760                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
761                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
762                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
763                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
764                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
765                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
766                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
767                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
768                 default: break;
769         }
770         if (!drive->init_speed)
771                 drive->init_speed = speed;
772         drive->current_speed = speed;
773         return error;
774 }
775
776 /*
777  * This should get invoked any time we exit the driver to
778  * wait for an interrupt response from a drive.  handler() points
779  * at the appropriate code to handle the next interrupt, and a
780  * timer is started to prevent us from waiting forever in case
781  * something goes wrong (see the ide_timer_expiry() handler later on).
782  *
783  * See also ide_execute_command
784  */
785 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
786                       unsigned int timeout, ide_expiry_t *expiry)
787 {
788         ide_hwgroup_t *hwgroup = HWGROUP(drive);
789
790         BUG_ON(hwgroup->handler);
791         hwgroup->handler        = handler;
792         hwgroup->expiry         = expiry;
793         hwgroup->timer.expires  = jiffies + timeout;
794         hwgroup->req_gen_timer  = hwgroup->req_gen;
795         add_timer(&hwgroup->timer);
796 }
797
798 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
799                       unsigned int timeout, ide_expiry_t *expiry)
800 {
801         unsigned long flags;
802         spin_lock_irqsave(&ide_lock, flags);
803         __ide_set_handler(drive, handler, timeout, expiry);
804         spin_unlock_irqrestore(&ide_lock, flags);
805 }
806
807 EXPORT_SYMBOL(ide_set_handler);
808  
809 /**
810  *      ide_execute_command     -       execute an IDE command
811  *      @drive: IDE drive to issue the command against
812  *      @command: command byte to write
813  *      @handler: handler for next phase
814  *      @timeout: timeout for command
815  *      @expiry:  handler to run on timeout
816  *
817  *      Helper function to issue an IDE command. This handles the
818  *      atomicity requirements, command timing and ensures that the 
819  *      handler and IRQ setup do not race. All IDE command kick off
820  *      should go via this function or do equivalent locking.
821  */
822
823 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
824                          unsigned timeout, ide_expiry_t *expiry)
825 {
826         unsigned long flags;
827         ide_hwif_t *hwif = HWIF(drive);
828
829         spin_lock_irqsave(&ide_lock, flags);
830         __ide_set_handler(drive, handler, timeout, expiry);
831         hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
832         /*
833          * Drive takes 400nS to respond, we must avoid the IRQ being
834          * serviced before that.
835          *
836          * FIXME: we could skip this delay with care on non shared devices
837          */
838         ndelay(400);
839         spin_unlock_irqrestore(&ide_lock, flags);
840 }
841
842 EXPORT_SYMBOL(ide_execute_command);
843
844
845 /* needed below */
846 static ide_startstop_t do_reset1 (ide_drive_t *, int);
847
848 /*
849  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
850  * during an atapi drive reset operation. If the drive has not yet responded,
851  * and we have not yet hit our maximum waiting time, then the timer is restarted
852  * for another 50ms.
853  */
854 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
855 {
856         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
857         u8 stat;
858
859         SELECT_DRIVE(drive);
860         udelay (10);
861         stat = ide_read_status(drive);
862
863         if (OK_STAT(stat, 0, BUSY_STAT))
864                 printk("%s: ATAPI reset complete\n", drive->name);
865         else {
866                 if (time_before(jiffies, hwgroup->poll_timeout)) {
867                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
868                         /* continue polling */
869                         return ide_started;
870                 }
871                 /* end of polling */
872                 hwgroup->polling = 0;
873                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
874                                 drive->name, stat);
875                 /* do it the old fashioned way */
876                 return do_reset1(drive, 1);
877         }
878         /* done polling */
879         hwgroup->polling = 0;
880         hwgroup->resetting = 0;
881         return ide_stopped;
882 }
883
884 /*
885  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
886  * during an ide reset operation. If the drives have not yet responded,
887  * and we have not yet hit our maximum waiting time, then the timer is restarted
888  * for another 50ms.
889  */
890 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
891 {
892         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
893         ide_hwif_t *hwif        = HWIF(drive);
894         u8 tmp;
895
896         if (hwif->reset_poll != NULL) {
897                 if (hwif->reset_poll(drive)) {
898                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
899                                 hwif->name, drive->name);
900                         return ide_stopped;
901                 }
902         }
903
904         tmp = ide_read_status(drive);
905
906         if (!OK_STAT(tmp, 0, BUSY_STAT)) {
907                 if (time_before(jiffies, hwgroup->poll_timeout)) {
908                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
909                         /* continue polling */
910                         return ide_started;
911                 }
912                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
913                 drive->failures++;
914         } else  {
915                 printk("%s: reset: ", hwif->name);
916                 tmp = ide_read_error(drive);
917
918                 if (tmp == 1) {
919                         printk("success\n");
920                         drive->failures = 0;
921                 } else {
922                         drive->failures++;
923                         printk("master: ");
924                         switch (tmp & 0x7f) {
925                                 case 1: printk("passed");
926                                         break;
927                                 case 2: printk("formatter device error");
928                                         break;
929                                 case 3: printk("sector buffer error");
930                                         break;
931                                 case 4: printk("ECC circuitry error");
932                                         break;
933                                 case 5: printk("controlling MPU error");
934                                         break;
935                                 default:printk("error (0x%02x?)", tmp);
936                         }
937                         if (tmp & 0x80)
938                                 printk("; slave: failed");
939                         printk("\n");
940                 }
941         }
942         hwgroup->polling = 0;   /* done polling */
943         hwgroup->resetting = 0; /* done reset attempt */
944         return ide_stopped;
945 }
946
947 static void ide_disk_pre_reset(ide_drive_t *drive)
948 {
949         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
950
951         drive->special.all = 0;
952         drive->special.b.set_geometry = legacy;
953         drive->special.b.recalibrate  = legacy;
954         drive->mult_count = 0;
955         if (!drive->keep_settings && !drive->using_dma)
956                 drive->mult_req = 0;
957         if (drive->mult_req != drive->mult_count)
958                 drive->special.b.set_multmode = 1;
959 }
960
961 static void pre_reset(ide_drive_t *drive)
962 {
963         if (drive->media == ide_disk)
964                 ide_disk_pre_reset(drive);
965         else
966                 drive->post_reset = 1;
967
968         if (drive->using_dma) {
969                 if (drive->crc_count)
970                         ide_check_dma_crc(drive);
971                 else
972                         ide_dma_off(drive);
973         }
974
975         if (!drive->keep_settings) {
976                 if (!drive->using_dma) {
977                         drive->unmask = 0;
978                         drive->io_32bit = 0;
979                 }
980                 return;
981         }
982
983         if (HWIF(drive)->pre_reset != NULL)
984                 HWIF(drive)->pre_reset(drive);
985
986         if (drive->current_speed != 0xff)
987                 drive->desired_speed = drive->current_speed;
988         drive->current_speed = 0xff;
989 }
990
991 /*
992  * do_reset1() attempts to recover a confused drive by resetting it.
993  * Unfortunately, resetting a disk drive actually resets all devices on
994  * the same interface, so it can really be thought of as resetting the
995  * interface rather than resetting the drive.
996  *
997  * ATAPI devices have their own reset mechanism which allows them to be
998  * individually reset without clobbering other devices on the same interface.
999  *
1000  * Unfortunately, the IDE interface does not generate an interrupt to let
1001  * us know when the reset operation has finished, so we must poll for this.
1002  * Equally poor, though, is the fact that this may a very long time to complete,
1003  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1004  * we set a timer to poll at 50ms intervals.
1005  */
1006 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1007 {
1008         unsigned int unit;
1009         unsigned long flags;
1010         ide_hwif_t *hwif;
1011         ide_hwgroup_t *hwgroup;
1012         
1013         spin_lock_irqsave(&ide_lock, flags);
1014         hwif = HWIF(drive);
1015         hwgroup = HWGROUP(drive);
1016
1017         /* We must not reset with running handlers */
1018         BUG_ON(hwgroup->handler != NULL);
1019
1020         /* For an ATAPI device, first try an ATAPI SRST. */
1021         if (drive->media != ide_disk && !do_not_try_atapi) {
1022                 hwgroup->resetting = 1;
1023                 pre_reset(drive);
1024                 SELECT_DRIVE(drive);
1025                 udelay (20);
1026                 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1027                 ndelay(400);
1028                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1029                 hwgroup->polling = 1;
1030                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1031                 spin_unlock_irqrestore(&ide_lock, flags);
1032                 return ide_started;
1033         }
1034
1035         /*
1036          * First, reset any device state data we were maintaining
1037          * for any of the drives on this interface.
1038          */
1039         for (unit = 0; unit < MAX_DRIVES; ++unit)
1040                 pre_reset(&hwif->drives[unit]);
1041
1042         if (!IDE_CONTROL_REG) {
1043                 spin_unlock_irqrestore(&ide_lock, flags);
1044                 return ide_stopped;
1045         }
1046
1047         hwgroup->resetting = 1;
1048         /*
1049          * Note that we also set nIEN while resetting the device,
1050          * to mask unwanted interrupts from the interface during the reset.
1051          * However, due to the design of PC hardware, this will cause an
1052          * immediate interrupt due to the edge transition it produces.
1053          * This single interrupt gives us a "fast poll" for drives that
1054          * recover from reset very quickly, saving us the first 50ms wait time.
1055          */
1056         /* set SRST and nIEN */
1057         hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1058         /* more than enough time */
1059         udelay(10);
1060         if (drive->quirk_list == 2) {
1061                 /* clear SRST and nIEN */
1062                 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1063         } else {
1064                 /* clear SRST, leave nIEN */
1065                 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1066         }
1067         /* more than enough time */
1068         udelay(10);
1069         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1070         hwgroup->polling = 1;
1071         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1072
1073         /*
1074          * Some weird controller like resetting themselves to a strange
1075          * state when the disks are reset this way. At least, the Winbond
1076          * 553 documentation says that
1077          */
1078         if (hwif->resetproc)
1079                 hwif->resetproc(drive);
1080
1081         spin_unlock_irqrestore(&ide_lock, flags);
1082         return ide_started;
1083 }
1084
1085 /*
1086  * ide_do_reset() is the entry point to the drive/interface reset code.
1087  */
1088
1089 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1090 {
1091         return do_reset1(drive, 0);
1092 }
1093
1094 EXPORT_SYMBOL(ide_do_reset);
1095
1096 /*
1097  * ide_wait_not_busy() waits for the currently selected device on the hwif
1098  * to report a non-busy status, see comments in ide_probe_port().
1099  */
1100 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1101 {
1102         u8 stat = 0;
1103
1104         while(timeout--) {
1105                 /*
1106                  * Turn this into a schedule() sleep once I'm sure
1107                  * about locking issues (2.5 work ?).
1108                  */
1109                 mdelay(1);
1110                 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1111                 if ((stat & BUSY_STAT) == 0)
1112                         return 0;
1113                 /*
1114                  * Assume a value of 0xff means nothing is connected to
1115                  * the interface and it doesn't implement the pull-down
1116                  * resistor on D7.
1117                  */
1118                 if (stat == 0xff)
1119                         return -ENODEV;
1120                 touch_softlockup_watchdog();
1121                 touch_nmi_watchdog();
1122         }
1123         return -EBUSY;
1124 }
1125
1126 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1127