Merge branch 'pending' of master.kernel.org:/pub/scm/linux/kernel/git/vxy/lksctp-dev
[sfrench/cifs-2.6.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61         int error = 0;
62
63         if (uptodate <= 0)
64                 error = uptodate ? uptodate : -EIO;
65
66         /*
67          * if failfast is set on a request, override number of sectors and
68          * complete the whole request right now
69          */
70         if (blk_noretry_request(rq) && error)
71                 nr_bytes = rq->hard_nr_sectors << 9;
72
73         if (!blk_fs_request(rq) && error && !rq->errors)
74                 rq->errors = -EIO;
75
76         /*
77          * decide whether to reenable DMA -- 3 is a random magic for now,
78          * if we DMA timeout more than 3 times, just stay in PIO
79          */
80         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
81                 drive->state = 0;
82                 ide_dma_on(drive);
83         }
84
85         if (!__blk_end_request(rq, error, nr_bytes)) {
86                 if (dequeue)
87                         HWGROUP(drive)->rq = NULL;
88                 ret = 0;
89         }
90
91         return ret;
92 }
93
94 /**
95  *      ide_end_request         -       complete an IDE I/O
96  *      @drive: IDE device for the I/O
97  *      @uptodate:
98  *      @nr_sectors: number of sectors completed
99  *
100  *      This is our end_request wrapper function. We complete the I/O
101  *      update random number input and dequeue the request, which if
102  *      it was tagged may be out of order.
103  */
104
105 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
106 {
107         unsigned int nr_bytes = nr_sectors << 9;
108         struct request *rq;
109         unsigned long flags;
110         int ret = 1;
111
112         /*
113          * room for locking improvements here, the calls below don't
114          * need the queue lock held at all
115          */
116         spin_lock_irqsave(&ide_lock, flags);
117         rq = HWGROUP(drive)->rq;
118
119         if (!nr_bytes) {
120                 if (blk_pc_request(rq))
121                         nr_bytes = rq->data_len;
122                 else
123                         nr_bytes = rq->hard_cur_sectors << 9;
124         }
125
126         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
127
128         spin_unlock_irqrestore(&ide_lock, flags);
129         return ret;
130 }
131 EXPORT_SYMBOL(ide_end_request);
132
133 /*
134  * Power Management state machine. This one is rather trivial for now,
135  * we should probably add more, like switching back to PIO on suspend
136  * to help some BIOSes, re-do the door locking on resume, etc...
137  */
138
139 enum {
140         ide_pm_flush_cache      = ide_pm_state_start_suspend,
141         idedisk_pm_standby,
142
143         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
144         idedisk_pm_idle,
145         ide_pm_restore_dma,
146 };
147
148 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
149 {
150         struct request_pm_state *pm = rq->data;
151
152         if (drive->media != ide_disk)
153                 return;
154
155         switch (pm->pm_step) {
156         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
157                 if (pm->pm_state == PM_EVENT_FREEZE)
158                         pm->pm_step = ide_pm_state_completed;
159                 else
160                         pm->pm_step = idedisk_pm_standby;
161                 break;
162         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
163                 pm->pm_step = ide_pm_state_completed;
164                 break;
165         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
166                 pm->pm_step = idedisk_pm_idle;
167                 break;
168         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
169                 pm->pm_step = ide_pm_restore_dma;
170                 break;
171         }
172 }
173
174 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
175 {
176         struct request_pm_state *pm = rq->data;
177         ide_task_t *args = rq->special;
178
179         memset(args, 0, sizeof(*args));
180
181         switch (pm->pm_step) {
182         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
183                 if (drive->media != ide_disk)
184                         break;
185                 /* Not supported? Switch to next step now. */
186                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
187                         ide_complete_power_step(drive, rq, 0, 0);
188                         return ide_stopped;
189                 }
190                 if (ide_id_has_flush_cache_ext(drive->id))
191                         args->tf.command = WIN_FLUSH_CACHE_EXT;
192                 else
193                         args->tf.command = WIN_FLUSH_CACHE;
194                 goto out_do_tf;
195
196         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
197                 args->tf.command = WIN_STANDBYNOW1;
198                 goto out_do_tf;
199
200         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
201                 ide_set_max_pio(drive);
202                 /*
203                  * skip idedisk_pm_idle for ATAPI devices
204                  */
205                 if (drive->media != ide_disk)
206                         pm->pm_step = ide_pm_restore_dma;
207                 else
208                         ide_complete_power_step(drive, rq, 0, 0);
209                 return ide_stopped;
210
211         case idedisk_pm_idle:           /* Resume step 2 (idle) */
212                 args->tf.command = WIN_IDLEIMMEDIATE;
213                 goto out_do_tf;
214
215         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
216                 /*
217                  * Right now, all we do is call ide_set_dma(drive),
218                  * we could be smarter and check for current xfer_speed
219                  * in struct drive etc...
220                  */
221                 if (drive->hwif->dma_host_set == NULL)
222                         break;
223                 /*
224                  * TODO: respect ->using_dma setting
225                  */
226                 ide_set_dma(drive);
227                 break;
228         }
229         pm->pm_step = ide_pm_state_completed;
230         return ide_stopped;
231
232 out_do_tf:
233         args->tf_flags   = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
234         args->data_phase = TASKFILE_NO_DATA;
235         return do_rw_taskfile(drive, args);
236 }
237
238 /**
239  *      ide_end_dequeued_request        -       complete an IDE I/O
240  *      @drive: IDE device for the I/O
241  *      @uptodate:
242  *      @nr_sectors: number of sectors completed
243  *
244  *      Complete an I/O that is no longer on the request queue. This
245  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
246  *      We must still finish the old request but we must not tamper with the
247  *      queue in the meantime.
248  *
249  *      NOTE: This path does not handle barrier, but barrier is not supported
250  *      on ide-cd anyway.
251  */
252
253 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
254                              int uptodate, int nr_sectors)
255 {
256         unsigned long flags;
257         int ret;
258
259         spin_lock_irqsave(&ide_lock, flags);
260         BUG_ON(!blk_rq_started(rq));
261         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
262         spin_unlock_irqrestore(&ide_lock, flags);
263
264         return ret;
265 }
266 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
267
268
269 /**
270  *      ide_complete_pm_request - end the current Power Management request
271  *      @drive: target drive
272  *      @rq: request
273  *
274  *      This function cleans up the current PM request and stops the queue
275  *      if necessary.
276  */
277 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
278 {
279         unsigned long flags;
280
281 #ifdef DEBUG_PM
282         printk("%s: completing PM request, %s\n", drive->name,
283                blk_pm_suspend_request(rq) ? "suspend" : "resume");
284 #endif
285         spin_lock_irqsave(&ide_lock, flags);
286         if (blk_pm_suspend_request(rq)) {
287                 blk_stop_queue(drive->queue);
288         } else {
289                 drive->blocked = 0;
290                 blk_start_queue(drive->queue);
291         }
292         HWGROUP(drive)->rq = NULL;
293         if (__blk_end_request(rq, 0, 0))
294                 BUG();
295         spin_unlock_irqrestore(&ide_lock, flags);
296 }
297
298 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
299 {
300         ide_hwif_t *hwif = drive->hwif;
301         struct ide_taskfile *tf = &task->tf;
302
303         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
304                 u16 data = hwif->INW(IDE_DATA_REG);
305
306                 tf->data = data & 0xff;
307                 tf->hob_data = (data >> 8) & 0xff;
308         }
309
310         /* be sure we're looking at the low order bits */
311         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
312
313         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
314                 tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
315         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
316                 tf->lbal   = hwif->INB(IDE_SECTOR_REG);
317         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
318                 tf->lbam   = hwif->INB(IDE_LCYL_REG);
319         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
320                 tf->lbah   = hwif->INB(IDE_HCYL_REG);
321         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
322                 tf->device = hwif->INB(IDE_SELECT_REG);
323
324         if (task->tf_flags & IDE_TFLAG_LBA48) {
325                 hwif->OUTB(drive->ctl | 0x80, IDE_CONTROL_REG);
326
327                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
328                         tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
329                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
330                         tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
331                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
332                         tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
333                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
334                         tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
335                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
336                         tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
337         }
338 }
339
340 /**
341  *      ide_end_drive_cmd       -       end an explicit drive command
342  *      @drive: command 
343  *      @stat: status bits
344  *      @err: error bits
345  *
346  *      Clean up after success/failure of an explicit drive command.
347  *      These get thrown onto the queue so they are synchronized with
348  *      real I/O operations on the drive.
349  *
350  *      In LBA48 mode we have to read the register set twice to get
351  *      all the extra information out.
352  */
353  
354 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
355 {
356         unsigned long flags;
357         struct request *rq;
358
359         spin_lock_irqsave(&ide_lock, flags);
360         rq = HWGROUP(drive)->rq;
361         spin_unlock_irqrestore(&ide_lock, flags);
362
363         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
364                 ide_task_t *args = (ide_task_t *) rq->special;
365                 if (rq->errors == 0)
366                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
367                         
368                 if (args) {
369                         struct ide_taskfile *tf = &args->tf;
370
371                         tf->error = err;
372                         tf->status = stat;
373
374                         ide_tf_read(drive, args);
375                 }
376         } else if (blk_pm_request(rq)) {
377                 struct request_pm_state *pm = rq->data;
378 #ifdef DEBUG_PM
379                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
380                         drive->name, rq->pm->pm_step, stat, err);
381 #endif
382                 ide_complete_power_step(drive, rq, stat, err);
383                 if (pm->pm_step == ide_pm_state_completed)
384                         ide_complete_pm_request(drive, rq);
385                 return;
386         }
387
388         spin_lock_irqsave(&ide_lock, flags);
389         HWGROUP(drive)->rq = NULL;
390         rq->errors = err;
391         if (__blk_end_request(rq, (rq->errors ? -EIO : 0), 0))
392                 BUG();
393         spin_unlock_irqrestore(&ide_lock, flags);
394 }
395
396 EXPORT_SYMBOL(ide_end_drive_cmd);
397
398 /**
399  *      try_to_flush_leftover_data      -       flush junk
400  *      @drive: drive to flush
401  *
402  *      try_to_flush_leftover_data() is invoked in response to a drive
403  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
404  *      resetting the drive, this routine tries to clear the condition
405  *      by read a sector's worth of data from the drive.  Of course,
406  *      this may not help if the drive is *waiting* for data from *us*.
407  */
408 static void try_to_flush_leftover_data (ide_drive_t *drive)
409 {
410         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
411
412         if (drive->media != ide_disk)
413                 return;
414         while (i > 0) {
415                 u32 buffer[16];
416                 u32 wcount = (i > 16) ? 16 : i;
417
418                 i -= wcount;
419                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
420         }
421 }
422
423 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
424 {
425         if (rq->rq_disk) {
426                 ide_driver_t *drv;
427
428                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
429                 drv->end_request(drive, 0, 0);
430         } else
431                 ide_end_request(drive, 0, 0);
432 }
433
434 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
435 {
436         ide_hwif_t *hwif = drive->hwif;
437
438         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
439                 /* other bits are useless when BUSY */
440                 rq->errors |= ERROR_RESET;
441         } else if (stat & ERR_STAT) {
442                 /* err has different meaning on cdrom and tape */
443                 if (err == ABRT_ERR) {
444                         if (drive->select.b.lba &&
445                             /* some newer drives don't support WIN_SPECIFY */
446                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
447                                 return ide_stopped;
448                 } else if ((err & BAD_CRC) == BAD_CRC) {
449                         /* UDMA crc error, just retry the operation */
450                         drive->crc_count++;
451                 } else if (err & (BBD_ERR | ECC_ERR)) {
452                         /* retries won't help these */
453                         rq->errors = ERROR_MAX;
454                 } else if (err & TRK0_ERR) {
455                         /* help it find track zero */
456                         rq->errors |= ERROR_RECAL;
457                 }
458         }
459
460         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
461             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
462                 try_to_flush_leftover_data(drive);
463
464         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
465                 ide_kill_rq(drive, rq);
466                 return ide_stopped;
467         }
468
469         if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
470                 rq->errors |= ERROR_RESET;
471
472         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
473                 ++rq->errors;
474                 return ide_do_reset(drive);
475         }
476
477         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
478                 drive->special.b.recalibrate = 1;
479
480         ++rq->errors;
481
482         return ide_stopped;
483 }
484
485 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
486 {
487         ide_hwif_t *hwif = drive->hwif;
488
489         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
490                 /* other bits are useless when BUSY */
491                 rq->errors |= ERROR_RESET;
492         } else {
493                 /* add decoding error stuff */
494         }
495
496         if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
497                 /* force an abort */
498                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
499
500         if (rq->errors >= ERROR_MAX) {
501                 ide_kill_rq(drive, rq);
502         } else {
503                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
504                         ++rq->errors;
505                         return ide_do_reset(drive);
506                 }
507                 ++rq->errors;
508         }
509
510         return ide_stopped;
511 }
512
513 ide_startstop_t
514 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
515 {
516         if (drive->media == ide_disk)
517                 return ide_ata_error(drive, rq, stat, err);
518         return ide_atapi_error(drive, rq, stat, err);
519 }
520
521 EXPORT_SYMBOL_GPL(__ide_error);
522
523 /**
524  *      ide_error       -       handle an error on the IDE
525  *      @drive: drive the error occurred on
526  *      @msg: message to report
527  *      @stat: status bits
528  *
529  *      ide_error() takes action based on the error returned by the drive.
530  *      For normal I/O that may well include retries. We deal with
531  *      both new-style (taskfile) and old style command handling here.
532  *      In the case of taskfile command handling there is work left to
533  *      do
534  */
535  
536 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
537 {
538         struct request *rq;
539         u8 err;
540
541         err = ide_dump_status(drive, msg, stat);
542
543         if ((rq = HWGROUP(drive)->rq) == NULL)
544                 return ide_stopped;
545
546         /* retry only "normal" I/O: */
547         if (!blk_fs_request(rq)) {
548                 rq->errors = 1;
549                 ide_end_drive_cmd(drive, stat, err);
550                 return ide_stopped;
551         }
552
553         if (rq->rq_disk) {
554                 ide_driver_t *drv;
555
556                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
557                 return drv->error(drive, rq, stat, err);
558         } else
559                 return __ide_error(drive, rq, stat, err);
560 }
561
562 EXPORT_SYMBOL_GPL(ide_error);
563
564 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
565 {
566         if (drive->media != ide_disk)
567                 rq->errors |= ERROR_RESET;
568
569         ide_kill_rq(drive, rq);
570
571         return ide_stopped;
572 }
573
574 EXPORT_SYMBOL_GPL(__ide_abort);
575
576 /**
577  *      ide_abort       -       abort pending IDE operations
578  *      @drive: drive the error occurred on
579  *      @msg: message to report
580  *
581  *      ide_abort kills and cleans up when we are about to do a 
582  *      host initiated reset on active commands. Longer term we
583  *      want handlers to have sensible abort handling themselves
584  *
585  *      This differs fundamentally from ide_error because in 
586  *      this case the command is doing just fine when we
587  *      blow it away.
588  */
589  
590 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
591 {
592         struct request *rq;
593
594         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
595                 return ide_stopped;
596
597         /* retry only "normal" I/O: */
598         if (!blk_fs_request(rq)) {
599                 rq->errors = 1;
600                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
601                 return ide_stopped;
602         }
603
604         if (rq->rq_disk) {
605                 ide_driver_t *drv;
606
607                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
608                 return drv->abort(drive, rq);
609         } else
610                 return __ide_abort(drive, rq);
611 }
612
613 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
614 {
615         tf->nsect   = drive->sect;
616         tf->lbal    = drive->sect;
617         tf->lbam    = drive->cyl;
618         tf->lbah    = drive->cyl >> 8;
619         tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
620         tf->command = WIN_SPECIFY;
621 }
622
623 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
624 {
625         tf->nsect   = drive->sect;
626         tf->command = WIN_RESTORE;
627 }
628
629 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
630 {
631         tf->nsect   = drive->mult_req;
632         tf->command = WIN_SETMULT;
633 }
634
635 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
636 {
637         special_t *s = &drive->special;
638         ide_task_t args;
639
640         memset(&args, 0, sizeof(ide_task_t));
641         args.data_phase = TASKFILE_NO_DATA;
642
643         if (s->b.set_geometry) {
644                 s->b.set_geometry = 0;
645                 ide_tf_set_specify_cmd(drive, &args.tf);
646         } else if (s->b.recalibrate) {
647                 s->b.recalibrate = 0;
648                 ide_tf_set_restore_cmd(drive, &args.tf);
649         } else if (s->b.set_multmode) {
650                 s->b.set_multmode = 0;
651                 if (drive->mult_req > drive->id->max_multsect)
652                         drive->mult_req = drive->id->max_multsect;
653                 ide_tf_set_setmult_cmd(drive, &args.tf);
654         } else if (s->all) {
655                 int special = s->all;
656                 s->all = 0;
657                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
658                 return ide_stopped;
659         }
660
661         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
662                         IDE_TFLAG_CUSTOM_HANDLER;
663
664         do_rw_taskfile(drive, &args);
665
666         return ide_started;
667 }
668
669 /*
670  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
671  */
672 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
673 {
674         switch (req_pio) {
675         case 202:
676         case 201:
677         case 200:
678         case 102:
679         case 101:
680         case 100:
681                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
682         case 9:
683         case 8:
684                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
685         case 7:
686         case 6:
687                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
688         default:
689                 return 0;
690         }
691 }
692
693 /**
694  *      do_special              -       issue some special commands
695  *      @drive: drive the command is for
696  *
697  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
698  *      commands to a drive.  It used to do much more, but has been scaled
699  *      back.
700  */
701
702 static ide_startstop_t do_special (ide_drive_t *drive)
703 {
704         special_t *s = &drive->special;
705
706 #ifdef DEBUG
707         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
708 #endif
709         if (s->b.set_tune) {
710                 ide_hwif_t *hwif = drive->hwif;
711                 u8 req_pio = drive->tune_req;
712
713                 s->b.set_tune = 0;
714
715                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
716
717                         if (hwif->set_pio_mode == NULL)
718                                 return ide_stopped;
719
720                         /*
721                          * take ide_lock for drive->[no_]unmask/[no_]io_32bit
722                          */
723                         if (req_pio == 8 || req_pio == 9) {
724                                 unsigned long flags;
725
726                                 spin_lock_irqsave(&ide_lock, flags);
727                                 hwif->set_pio_mode(drive, req_pio);
728                                 spin_unlock_irqrestore(&ide_lock, flags);
729                         } else
730                                 hwif->set_pio_mode(drive, req_pio);
731                 } else {
732                         int keep_dma = drive->using_dma;
733
734                         ide_set_pio(drive, req_pio);
735
736                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
737                                 if (keep_dma)
738                                         ide_dma_on(drive);
739                         }
740                 }
741
742                 return ide_stopped;
743         } else {
744                 if (drive->media == ide_disk)
745                         return ide_disk_special(drive);
746
747                 s->all = 0;
748                 drive->mult_req = 0;
749                 return ide_stopped;
750         }
751 }
752
753 void ide_map_sg(ide_drive_t *drive, struct request *rq)
754 {
755         ide_hwif_t *hwif = drive->hwif;
756         struct scatterlist *sg = hwif->sg_table;
757
758         if (hwif->sg_mapped)    /* needed by ide-scsi */
759                 return;
760
761         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
762                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
763         } else {
764                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
765                 hwif->sg_nents = 1;
766         }
767 }
768
769 EXPORT_SYMBOL_GPL(ide_map_sg);
770
771 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
772 {
773         ide_hwif_t *hwif = drive->hwif;
774
775         hwif->nsect = hwif->nleft = rq->nr_sectors;
776         hwif->cursg_ofs = 0;
777         hwif->cursg = NULL;
778 }
779
780 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
781
782 /**
783  *      execute_drive_command   -       issue special drive command
784  *      @drive: the drive to issue the command on
785  *      @rq: the request structure holding the command
786  *
787  *      execute_drive_cmd() issues a special drive command,  usually 
788  *      initiated by ioctl() from the external hdparm program. The
789  *      command can be a drive command, drive task or taskfile 
790  *      operation. Weirdly you can call it with NULL to wait for
791  *      all commands to finish. Don't do this as that is due to change
792  */
793
794 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
795                 struct request *rq)
796 {
797         ide_hwif_t *hwif = HWIF(drive);
798         ide_task_t *task = rq->special;
799
800         if (task) {
801                 hwif->data_phase = task->data_phase;
802
803                 switch (hwif->data_phase) {
804                 case TASKFILE_MULTI_OUT:
805                 case TASKFILE_OUT:
806                 case TASKFILE_MULTI_IN:
807                 case TASKFILE_IN:
808                         ide_init_sg_cmd(drive, rq);
809                         ide_map_sg(drive, rq);
810                 default:
811                         break;
812                 }
813
814                 return do_rw_taskfile(drive, task);
815         }
816
817         /*
818          * NULL is actually a valid way of waiting for
819          * all current requests to be flushed from the queue.
820          */
821 #ifdef DEBUG
822         printk("%s: DRIVE_CMD (null)\n", drive->name);
823 #endif
824         ide_end_drive_cmd(drive, ide_read_status(drive), ide_read_error(drive));
825
826         return ide_stopped;
827 }
828
829 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
830 {
831         struct request_pm_state *pm = rq->data;
832
833         if (blk_pm_suspend_request(rq) &&
834             pm->pm_step == ide_pm_state_start_suspend)
835                 /* Mark drive blocked when starting the suspend sequence. */
836                 drive->blocked = 1;
837         else if (blk_pm_resume_request(rq) &&
838                  pm->pm_step == ide_pm_state_start_resume) {
839                 /* 
840                  * The first thing we do on wakeup is to wait for BSY bit to
841                  * go away (with a looong timeout) as a drive on this hwif may
842                  * just be POSTing itself.
843                  * We do that before even selecting as the "other" device on
844                  * the bus may be broken enough to walk on our toes at this
845                  * point.
846                  */
847                 int rc;
848 #ifdef DEBUG_PM
849                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
850 #endif
851                 rc = ide_wait_not_busy(HWIF(drive), 35000);
852                 if (rc)
853                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
854                 SELECT_DRIVE(drive);
855                 ide_set_irq(drive, 1);
856                 rc = ide_wait_not_busy(HWIF(drive), 100000);
857                 if (rc)
858                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
859         }
860 }
861
862 /**
863  *      start_request   -       start of I/O and command issuing for IDE
864  *
865  *      start_request() initiates handling of a new I/O request. It
866  *      accepts commands and I/O (read/write) requests. It also does
867  *      the final remapping for weird stuff like EZDrive. Once 
868  *      device mapper can work sector level the EZDrive stuff can go away
869  *
870  *      FIXME: this function needs a rename
871  */
872  
873 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
874 {
875         ide_startstop_t startstop;
876         sector_t block;
877
878         BUG_ON(!blk_rq_started(rq));
879
880 #ifdef DEBUG
881         printk("%s: start_request: current=0x%08lx\n",
882                 HWIF(drive)->name, (unsigned long) rq);
883 #endif
884
885         /* bail early if we've exceeded max_failures */
886         if (drive->max_failures && (drive->failures > drive->max_failures)) {
887                 rq->cmd_flags |= REQ_FAILED;
888                 goto kill_rq;
889         }
890
891         block    = rq->sector;
892         if (blk_fs_request(rq) &&
893             (drive->media == ide_disk || drive->media == ide_floppy)) {
894                 block += drive->sect0;
895         }
896         /* Yecch - this will shift the entire interval,
897            possibly killing some innocent following sector */
898         if (block == 0 && drive->remap_0_to_1 == 1)
899                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
900
901         if (blk_pm_request(rq))
902                 ide_check_pm_state(drive, rq);
903
904         SELECT_DRIVE(drive);
905         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
906                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
907                 return startstop;
908         }
909         if (!drive->special.all) {
910                 ide_driver_t *drv;
911
912                 /*
913                  * We reset the drive so we need to issue a SETFEATURES.
914                  * Do it _after_ do_special() restored device parameters.
915                  */
916                 if (drive->current_speed == 0xff)
917                         ide_config_drive_speed(drive, drive->desired_speed);
918
919                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
920                         return execute_drive_cmd(drive, rq);
921                 else if (blk_pm_request(rq)) {
922                         struct request_pm_state *pm = rq->data;
923 #ifdef DEBUG_PM
924                         printk("%s: start_power_step(step: %d)\n",
925                                 drive->name, rq->pm->pm_step);
926 #endif
927                         startstop = ide_start_power_step(drive, rq);
928                         if (startstop == ide_stopped &&
929                             pm->pm_step == ide_pm_state_completed)
930                                 ide_complete_pm_request(drive, rq);
931                         return startstop;
932                 }
933
934                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
935                 return drv->do_request(drive, rq, block);
936         }
937         return do_special(drive);
938 kill_rq:
939         ide_kill_rq(drive, rq);
940         return ide_stopped;
941 }
942
943 /**
944  *      ide_stall_queue         -       pause an IDE device
945  *      @drive: drive to stall
946  *      @timeout: time to stall for (jiffies)
947  *
948  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
949  *      to the hwgroup by sleeping for timeout jiffies.
950  */
951  
952 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
953 {
954         if (timeout > WAIT_WORSTCASE)
955                 timeout = WAIT_WORSTCASE;
956         drive->sleep = timeout + jiffies;
957         drive->sleeping = 1;
958 }
959
960 EXPORT_SYMBOL(ide_stall_queue);
961
962 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
963
964 /**
965  *      choose_drive            -       select a drive to service
966  *      @hwgroup: hardware group to select on
967  *
968  *      choose_drive() selects the next drive which will be serviced.
969  *      This is necessary because the IDE layer can't issue commands
970  *      to both drives on the same cable, unlike SCSI.
971  */
972  
973 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
974 {
975         ide_drive_t *drive, *best;
976
977 repeat: 
978         best = NULL;
979         drive = hwgroup->drive;
980
981         /*
982          * drive is doing pre-flush, ordered write, post-flush sequence. even
983          * though that is 3 requests, it must be seen as a single transaction.
984          * we must not preempt this drive until that is complete
985          */
986         if (blk_queue_flushing(drive->queue)) {
987                 /*
988                  * small race where queue could get replugged during
989                  * the 3-request flush cycle, just yank the plug since
990                  * we want it to finish asap
991                  */
992                 blk_remove_plug(drive->queue);
993                 return drive;
994         }
995
996         do {
997                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
998                     && !elv_queue_empty(drive->queue)) {
999                         if (!best
1000                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1001                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1002                         {
1003                                 if (!blk_queue_plugged(drive->queue))
1004                                         best = drive;
1005                         }
1006                 }
1007         } while ((drive = drive->next) != hwgroup->drive);
1008         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1009                 long t = (signed long)(WAKEUP(best) - jiffies);
1010                 if (t >= WAIT_MIN_SLEEP) {
1011                 /*
1012                  * We *may* have some time to spare, but first let's see if
1013                  * someone can potentially benefit from our nice mood today..
1014                  */
1015                         drive = best->next;
1016                         do {
1017                                 if (!drive->sleeping
1018                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1019                                  && time_before(WAKEUP(drive), jiffies + t))
1020                                 {
1021                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1022                                         goto repeat;
1023                                 }
1024                         } while ((drive = drive->next) != best);
1025                 }
1026         }
1027         return best;
1028 }
1029
1030 /*
1031  * Issue a new request to a drive from hwgroup
1032  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1033  *
1034  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1035  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1036  * may have both interfaces in a single hwgroup to "serialize" access.
1037  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1038  * together into one hwgroup for serialized access.
1039  *
1040  * Note also that several hwgroups can end up sharing a single IRQ,
1041  * possibly along with many other devices.  This is especially common in
1042  * PCI-based systems with off-board IDE controller cards.
1043  *
1044  * The IDE driver uses the single global ide_lock spinlock to protect
1045  * access to the request queues, and to protect the hwgroup->busy flag.
1046  *
1047  * The first thread into the driver for a particular hwgroup sets the
1048  * hwgroup->busy flag to indicate that this hwgroup is now active,
1049  * and then initiates processing of the top request from the request queue.
1050  *
1051  * Other threads attempting entry notice the busy setting, and will simply
1052  * queue their new requests and exit immediately.  Note that hwgroup->busy
1053  * remains set even when the driver is merely awaiting the next interrupt.
1054  * Thus, the meaning is "this hwgroup is busy processing a request".
1055  *
1056  * When processing of a request completes, the completing thread or IRQ-handler
1057  * will start the next request from the queue.  If no more work remains,
1058  * the driver will clear the hwgroup->busy flag and exit.
1059  *
1060  * The ide_lock (spinlock) is used to protect all access to the
1061  * hwgroup->busy flag, but is otherwise not needed for most processing in
1062  * the driver.  This makes the driver much more friendlier to shared IRQs
1063  * than previous designs, while remaining 100% (?) SMP safe and capable.
1064  */
1065 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1066 {
1067         ide_drive_t     *drive;
1068         ide_hwif_t      *hwif;
1069         struct request  *rq;
1070         ide_startstop_t startstop;
1071         int             loops = 0;
1072
1073         /* for atari only: POSSIBLY BROKEN HERE(?) */
1074         ide_get_lock(ide_intr, hwgroup);
1075
1076         /* caller must own ide_lock */
1077         BUG_ON(!irqs_disabled());
1078
1079         while (!hwgroup->busy) {
1080                 hwgroup->busy = 1;
1081                 drive = choose_drive(hwgroup);
1082                 if (drive == NULL) {
1083                         int sleeping = 0;
1084                         unsigned long sleep = 0; /* shut up, gcc */
1085                         hwgroup->rq = NULL;
1086                         drive = hwgroup->drive;
1087                         do {
1088                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1089                                         sleeping = 1;
1090                                         sleep = drive->sleep;
1091                                 }
1092                         } while ((drive = drive->next) != hwgroup->drive);
1093                         if (sleeping) {
1094                 /*
1095                  * Take a short snooze, and then wake up this hwgroup again.
1096                  * This gives other hwgroups on the same a chance to
1097                  * play fairly with us, just in case there are big differences
1098                  * in relative throughputs.. don't want to hog the cpu too much.
1099                  */
1100                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1101                                         sleep = jiffies + WAIT_MIN_SLEEP;
1102 #if 1
1103                                 if (timer_pending(&hwgroup->timer))
1104                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1105 #endif
1106                                 /* so that ide_timer_expiry knows what to do */
1107                                 hwgroup->sleeping = 1;
1108                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1109                                 mod_timer(&hwgroup->timer, sleep);
1110                                 /* we purposely leave hwgroup->busy==1
1111                                  * while sleeping */
1112                         } else {
1113                                 /* Ugly, but how can we sleep for the lock
1114                                  * otherwise? perhaps from tq_disk?
1115                                  */
1116
1117                                 /* for atari only */
1118                                 ide_release_lock();
1119                                 hwgroup->busy = 0;
1120                         }
1121
1122                         /* no more work for this hwgroup (for now) */
1123                         return;
1124                 }
1125         again:
1126                 hwif = HWIF(drive);
1127                 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1128                         /*
1129                          * set nIEN for previous hwif, drives in the
1130                          * quirk_list may not like intr setups/cleanups
1131                          */
1132                         if (drive->quirk_list != 1)
1133                                 ide_set_irq(drive, 0);
1134                 }
1135                 hwgroup->hwif = hwif;
1136                 hwgroup->drive = drive;
1137                 drive->sleeping = 0;
1138                 drive->service_start = jiffies;
1139
1140                 if (blk_queue_plugged(drive->queue)) {
1141                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1142                         break;
1143                 }
1144
1145                 /*
1146                  * we know that the queue isn't empty, but this can happen
1147                  * if the q->prep_rq_fn() decides to kill a request
1148                  */
1149                 rq = elv_next_request(drive->queue);
1150                 if (!rq) {
1151                         hwgroup->busy = 0;
1152                         break;
1153                 }
1154
1155                 /*
1156                  * Sanity: don't accept a request that isn't a PM request
1157                  * if we are currently power managed. This is very important as
1158                  * blk_stop_queue() doesn't prevent the elv_next_request()
1159                  * above to return us whatever is in the queue. Since we call
1160                  * ide_do_request() ourselves, we end up taking requests while
1161                  * the queue is blocked...
1162                  * 
1163                  * We let requests forced at head of queue with ide-preempt
1164                  * though. I hope that doesn't happen too much, hopefully not
1165                  * unless the subdriver triggers such a thing in its own PM
1166                  * state machine.
1167                  *
1168                  * We count how many times we loop here to make sure we service
1169                  * all drives in the hwgroup without looping for ever
1170                  */
1171                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1172                         drive = drive->next ? drive->next : hwgroup->drive;
1173                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1174                                 goto again;
1175                         /* We clear busy, there should be no pending ATA command at this point. */
1176                         hwgroup->busy = 0;
1177                         break;
1178                 }
1179
1180                 hwgroup->rq = rq;
1181
1182                 /*
1183                  * Some systems have trouble with IDE IRQs arriving while
1184                  * the driver is still setting things up.  So, here we disable
1185                  * the IRQ used by this interface while the request is being started.
1186                  * This may look bad at first, but pretty much the same thing
1187                  * happens anyway when any interrupt comes in, IDE or otherwise
1188                  *  -- the kernel masks the IRQ while it is being handled.
1189                  */
1190                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1191                         disable_irq_nosync(hwif->irq);
1192                 spin_unlock(&ide_lock);
1193                 local_irq_enable_in_hardirq();
1194                         /* allow other IRQs while we start this request */
1195                 startstop = start_request(drive, rq);
1196                 spin_lock_irq(&ide_lock);
1197                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1198                         enable_irq(hwif->irq);
1199                 if (startstop == ide_stopped)
1200                         hwgroup->busy = 0;
1201         }
1202 }
1203
1204 /*
1205  * Passes the stuff to ide_do_request
1206  */
1207 void do_ide_request(struct request_queue *q)
1208 {
1209         ide_drive_t *drive = q->queuedata;
1210
1211         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1212 }
1213
1214 /*
1215  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1216  * retry the current request in pio mode instead of risking tossing it
1217  * all away
1218  */
1219 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1220 {
1221         ide_hwif_t *hwif = HWIF(drive);
1222         struct request *rq;
1223         ide_startstop_t ret = ide_stopped;
1224
1225         /*
1226          * end current dma transaction
1227          */
1228
1229         if (error < 0) {
1230                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1231                 (void)HWIF(drive)->ide_dma_end(drive);
1232                 ret = ide_error(drive, "dma timeout error",
1233                                 ide_read_status(drive));
1234         } else {
1235                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1236                 hwif->dma_timeout(drive);
1237         }
1238
1239         /*
1240          * disable dma for now, but remember that we did so because of
1241          * a timeout -- we'll reenable after we finish this next request
1242          * (or rather the first chunk of it) in pio.
1243          */
1244         drive->retry_pio++;
1245         drive->state = DMA_PIO_RETRY;
1246         ide_dma_off_quietly(drive);
1247
1248         /*
1249          * un-busy drive etc (hwgroup->busy is cleared on return) and
1250          * make sure request is sane
1251          */
1252         rq = HWGROUP(drive)->rq;
1253
1254         if (!rq)
1255                 goto out;
1256
1257         HWGROUP(drive)->rq = NULL;
1258
1259         rq->errors = 0;
1260
1261         if (!rq->bio)
1262                 goto out;
1263
1264         rq->sector = rq->bio->bi_sector;
1265         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1266         rq->hard_cur_sectors = rq->current_nr_sectors;
1267         rq->buffer = bio_data(rq->bio);
1268 out:
1269         return ret;
1270 }
1271
1272 /**
1273  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1274  *      @data: timer callback magic (hwgroup)
1275  *
1276  *      An IDE command has timed out before the expected drive return
1277  *      occurred. At this point we attempt to clean up the current
1278  *      mess. If the current handler includes an expiry handler then
1279  *      we invoke the expiry handler, and providing it is happy the
1280  *      work is done. If that fails we apply generic recovery rules
1281  *      invoking the handler and checking the drive DMA status. We
1282  *      have an excessively incestuous relationship with the DMA
1283  *      logic that wants cleaning up.
1284  */
1285  
1286 void ide_timer_expiry (unsigned long data)
1287 {
1288         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1289         ide_handler_t   *handler;
1290         ide_expiry_t    *expiry;
1291         unsigned long   flags;
1292         unsigned long   wait = -1;
1293
1294         spin_lock_irqsave(&ide_lock, flags);
1295
1296         if (((handler = hwgroup->handler) == NULL) ||
1297             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1298                 /*
1299                  * Either a marginal timeout occurred
1300                  * (got the interrupt just as timer expired),
1301                  * or we were "sleeping" to give other devices a chance.
1302                  * Either way, we don't really want to complain about anything.
1303                  */
1304                 if (hwgroup->sleeping) {
1305                         hwgroup->sleeping = 0;
1306                         hwgroup->busy = 0;
1307                 }
1308         } else {
1309                 ide_drive_t *drive = hwgroup->drive;
1310                 if (!drive) {
1311                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1312                         hwgroup->handler = NULL;
1313                 } else {
1314                         ide_hwif_t *hwif;
1315                         ide_startstop_t startstop = ide_stopped;
1316                         if (!hwgroup->busy) {
1317                                 hwgroup->busy = 1;      /* paranoia */
1318                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1319                         }
1320                         if ((expiry = hwgroup->expiry) != NULL) {
1321                                 /* continue */
1322                                 if ((wait = expiry(drive)) > 0) {
1323                                         /* reset timer */
1324                                         hwgroup->timer.expires  = jiffies + wait;
1325                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1326                                         add_timer(&hwgroup->timer);
1327                                         spin_unlock_irqrestore(&ide_lock, flags);
1328                                         return;
1329                                 }
1330                         }
1331                         hwgroup->handler = NULL;
1332                         /*
1333                          * We need to simulate a real interrupt when invoking
1334                          * the handler() function, which means we need to
1335                          * globally mask the specific IRQ:
1336                          */
1337                         spin_unlock(&ide_lock);
1338                         hwif  = HWIF(drive);
1339                         /* disable_irq_nosync ?? */
1340                         disable_irq(hwif->irq);
1341                         /* local CPU only,
1342                          * as if we were handling an interrupt */
1343                         local_irq_disable();
1344                         if (hwgroup->polling) {
1345                                 startstop = handler(drive);
1346                         } else if (drive_is_ready(drive)) {
1347                                 if (drive->waiting_for_dma)
1348                                         hwgroup->hwif->dma_lost_irq(drive);
1349                                 (void)ide_ack_intr(hwif);
1350                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1351                                 startstop = handler(drive);
1352                         } else {
1353                                 if (drive->waiting_for_dma) {
1354                                         startstop = ide_dma_timeout_retry(drive, wait);
1355                                 } else
1356                                         startstop =
1357                                         ide_error(drive, "irq timeout",
1358                                                   ide_read_status(drive));
1359                         }
1360                         drive->service_time = jiffies - drive->service_start;
1361                         spin_lock_irq(&ide_lock);
1362                         enable_irq(hwif->irq);
1363                         if (startstop == ide_stopped)
1364                                 hwgroup->busy = 0;
1365                 }
1366         }
1367         ide_do_request(hwgroup, IDE_NO_IRQ);
1368         spin_unlock_irqrestore(&ide_lock, flags);
1369 }
1370
1371 /**
1372  *      unexpected_intr         -       handle an unexpected IDE interrupt
1373  *      @irq: interrupt line
1374  *      @hwgroup: hwgroup being processed
1375  *
1376  *      There's nothing really useful we can do with an unexpected interrupt,
1377  *      other than reading the status register (to clear it), and logging it.
1378  *      There should be no way that an irq can happen before we're ready for it,
1379  *      so we needn't worry much about losing an "important" interrupt here.
1380  *
1381  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1382  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1383  *      looks "good", we just ignore the interrupt completely.
1384  *
1385  *      This routine assumes __cli() is in effect when called.
1386  *
1387  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1388  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1389  *      we could screw up by interfering with a new request being set up for 
1390  *      irq15.
1391  *
1392  *      In reality, this is a non-issue.  The new command is not sent unless 
1393  *      the drive is ready to accept one, in which case we know the drive is
1394  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1395  *      before completing the issuance of any new drive command, so we will not
1396  *      be accidentally invoked as a result of any valid command completion
1397  *      interrupt.
1398  *
1399  *      Note that we must walk the entire hwgroup here. We know which hwif
1400  *      is doing the current command, but we don't know which hwif burped
1401  *      mysteriously.
1402  */
1403  
1404 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1405 {
1406         u8 stat;
1407         ide_hwif_t *hwif = hwgroup->hwif;
1408
1409         /*
1410          * handle the unexpected interrupt
1411          */
1412         do {
1413                 if (hwif->irq == irq) {
1414                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1415                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1416                                 /* Try to not flood the console with msgs */
1417                                 static unsigned long last_msgtime, count;
1418                                 ++count;
1419                                 if (time_after(jiffies, last_msgtime + HZ)) {
1420                                         last_msgtime = jiffies;
1421                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1422                                                 "status=0x%02x, count=%ld\n",
1423                                                 hwif->name,
1424                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1425                                 }
1426                         }
1427                 }
1428         } while ((hwif = hwif->next) != hwgroup->hwif);
1429 }
1430
1431 /**
1432  *      ide_intr        -       default IDE interrupt handler
1433  *      @irq: interrupt number
1434  *      @dev_id: hwif group
1435  *      @regs: unused weirdness from the kernel irq layer
1436  *
1437  *      This is the default IRQ handler for the IDE layer. You should
1438  *      not need to override it. If you do be aware it is subtle in
1439  *      places
1440  *
1441  *      hwgroup->hwif is the interface in the group currently performing
1442  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1443  *      the IRQ handler to call. As we issue a command the handlers
1444  *      step through multiple states, reassigning the handler to the
1445  *      next step in the process. Unlike a smart SCSI controller IDE
1446  *      expects the main processor to sequence the various transfer
1447  *      stages. We also manage a poll timer to catch up with most
1448  *      timeout situations. There are still a few where the handlers
1449  *      don't ever decide to give up.
1450  *
1451  *      The handler eventually returns ide_stopped to indicate the
1452  *      request completed. At this point we issue the next request
1453  *      on the hwgroup and the process begins again.
1454  */
1455  
1456 irqreturn_t ide_intr (int irq, void *dev_id)
1457 {
1458         unsigned long flags;
1459         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1460         ide_hwif_t *hwif;
1461         ide_drive_t *drive;
1462         ide_handler_t *handler;
1463         ide_startstop_t startstop;
1464
1465         spin_lock_irqsave(&ide_lock, flags);
1466         hwif = hwgroup->hwif;
1467
1468         if (!ide_ack_intr(hwif)) {
1469                 spin_unlock_irqrestore(&ide_lock, flags);
1470                 return IRQ_NONE;
1471         }
1472
1473         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1474                 /*
1475                  * Not expecting an interrupt from this drive.
1476                  * That means this could be:
1477                  *      (1) an interrupt from another PCI device
1478                  *      sharing the same PCI INT# as us.
1479                  * or   (2) a drive just entered sleep or standby mode,
1480                  *      and is interrupting to let us know.
1481                  * or   (3) a spurious interrupt of unknown origin.
1482                  *
1483                  * For PCI, we cannot tell the difference,
1484                  * so in that case we just ignore it and hope it goes away.
1485                  *
1486                  * FIXME: unexpected_intr should be hwif-> then we can
1487                  * remove all the ifdef PCI crap
1488                  */
1489 #ifdef CONFIG_BLK_DEV_IDEPCI
1490                 if (hwif->chipset != ide_pci)
1491 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1492                 {
1493                         /*
1494                          * Probably not a shared PCI interrupt,
1495                          * so we can safely try to do something about it:
1496                          */
1497                         unexpected_intr(irq, hwgroup);
1498 #ifdef CONFIG_BLK_DEV_IDEPCI
1499                 } else {
1500                         /*
1501                          * Whack the status register, just in case
1502                          * we have a leftover pending IRQ.
1503                          */
1504                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1505 #endif /* CONFIG_BLK_DEV_IDEPCI */
1506                 }
1507                 spin_unlock_irqrestore(&ide_lock, flags);
1508                 return IRQ_NONE;
1509         }
1510         drive = hwgroup->drive;
1511         if (!drive) {
1512                 /*
1513                  * This should NEVER happen, and there isn't much
1514                  * we could do about it here.
1515                  *
1516                  * [Note - this can occur if the drive is hot unplugged]
1517                  */
1518                 spin_unlock_irqrestore(&ide_lock, flags);
1519                 return IRQ_HANDLED;
1520         }
1521         if (!drive_is_ready(drive)) {
1522                 /*
1523                  * This happens regularly when we share a PCI IRQ with
1524                  * another device.  Unfortunately, it can also happen
1525                  * with some buggy drives that trigger the IRQ before
1526                  * their status register is up to date.  Hopefully we have
1527                  * enough advance overhead that the latter isn't a problem.
1528                  */
1529                 spin_unlock_irqrestore(&ide_lock, flags);
1530                 return IRQ_NONE;
1531         }
1532         if (!hwgroup->busy) {
1533                 hwgroup->busy = 1;      /* paranoia */
1534                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1535         }
1536         hwgroup->handler = NULL;
1537         hwgroup->req_gen++;
1538         del_timer(&hwgroup->timer);
1539         spin_unlock(&ide_lock);
1540
1541         /* Some controllers might set DMA INTR no matter DMA or PIO;
1542          * bmdma status might need to be cleared even for
1543          * PIO interrupts to prevent spurious/lost irq.
1544          */
1545         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1546                 /* ide_dma_end() needs bmdma status for error checking.
1547                  * So, skip clearing bmdma status here and leave it
1548                  * to ide_dma_end() if this is dma interrupt.
1549                  */
1550                 hwif->ide_dma_clear_irq(drive);
1551
1552         if (drive->unmask)
1553                 local_irq_enable_in_hardirq();
1554         /* service this interrupt, may set handler for next interrupt */
1555         startstop = handler(drive);
1556         spin_lock_irq(&ide_lock);
1557
1558         /*
1559          * Note that handler() may have set things up for another
1560          * interrupt to occur soon, but it cannot happen until
1561          * we exit from this routine, because it will be the
1562          * same irq as is currently being serviced here, and Linux
1563          * won't allow another of the same (on any CPU) until we return.
1564          */
1565         drive->service_time = jiffies - drive->service_start;
1566         if (startstop == ide_stopped) {
1567                 if (hwgroup->handler == NULL) { /* paranoia */
1568                         hwgroup->busy = 0;
1569                         ide_do_request(hwgroup, hwif->irq);
1570                 } else {
1571                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1572                                 "on exit\n", drive->name);
1573                 }
1574         }
1575         spin_unlock_irqrestore(&ide_lock, flags);
1576         return IRQ_HANDLED;
1577 }
1578
1579 /**
1580  *      ide_init_drive_cmd      -       initialize a drive command request
1581  *      @rq: request object
1582  *
1583  *      Initialize a request before we fill it in and send it down to
1584  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1585  *      now it doesn't do a lot, but if that changes abusers will have a
1586  *      nasty surprise.
1587  */
1588
1589 void ide_init_drive_cmd (struct request *rq)
1590 {
1591         memset(rq, 0, sizeof(*rq));
1592         rq->ref_count = 1;
1593 }
1594
1595 EXPORT_SYMBOL(ide_init_drive_cmd);
1596
1597 /**
1598  *      ide_do_drive_cmd        -       issue IDE special command
1599  *      @drive: device to issue command
1600  *      @rq: request to issue
1601  *      @action: action for processing
1602  *
1603  *      This function issues a special IDE device request
1604  *      onto the request queue.
1605  *
1606  *      If action is ide_wait, then the rq is queued at the end of the
1607  *      request queue, and the function sleeps until it has been processed.
1608  *      This is for use when invoked from an ioctl handler.
1609  *
1610  *      If action is ide_preempt, then the rq is queued at the head of
1611  *      the request queue, displacing the currently-being-processed
1612  *      request and this function returns immediately without waiting
1613  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1614  *      intended for careful use by the ATAPI tape/cdrom driver code.
1615  *
1616  *      If action is ide_end, then the rq is queued at the end of the
1617  *      request queue, and the function returns immediately without waiting
1618  *      for the new rq to be completed. This is again intended for careful
1619  *      use by the ATAPI tape/cdrom driver code.
1620  */
1621  
1622 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1623 {
1624         unsigned long flags;
1625         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1626         DECLARE_COMPLETION_ONSTACK(wait);
1627         int where = ELEVATOR_INSERT_BACK, err;
1628         int must_wait = (action == ide_wait || action == ide_head_wait);
1629
1630         rq->errors = 0;
1631
1632         /*
1633          * we need to hold an extra reference to request for safe inspection
1634          * after completion
1635          */
1636         if (must_wait) {
1637                 rq->ref_count++;
1638                 rq->end_io_data = &wait;
1639                 rq->end_io = blk_end_sync_rq;
1640         }
1641
1642         spin_lock_irqsave(&ide_lock, flags);
1643         if (action == ide_preempt)
1644                 hwgroup->rq = NULL;
1645         if (action == ide_preempt || action == ide_head_wait) {
1646                 where = ELEVATOR_INSERT_FRONT;
1647                 rq->cmd_flags |= REQ_PREEMPT;
1648         }
1649         __elv_add_request(drive->queue, rq, where, 0);
1650         ide_do_request(hwgroup, IDE_NO_IRQ);
1651         spin_unlock_irqrestore(&ide_lock, flags);
1652
1653         err = 0;
1654         if (must_wait) {
1655                 wait_for_completion(&wait);
1656                 if (rq->errors)
1657                         err = -EIO;
1658
1659                 blk_put_request(rq);
1660         }
1661
1662         return err;
1663 }
1664
1665 EXPORT_SYMBOL(ide_do_drive_cmd);
1666
1667 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1668 {
1669         ide_task_t task;
1670
1671         memset(&task, 0, sizeof(task));
1672         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1673                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1674         task.tf.feature = dma;          /* Use PIO/DMA */
1675         task.tf.lbam    = bcount & 0xff;
1676         task.tf.lbah    = (bcount >> 8) & 0xff;
1677
1678         ide_tf_load(drive, &task);
1679 }
1680
1681 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);