Merge branches 'clk-renesas', 'clk-qcom', 'clk-mtk', 'clk-milbeaut' and 'clk-imx...
[sfrench/cifs-2.6.git] / drivers / hwmon / occ / common.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright IBM Corp 2019
3
4 #include <linux/device.h>
5 #include <linux/hwmon.h>
6 #include <linux/hwmon-sysfs.h>
7 #include <linux/jiffies.h>
8 #include <linux/kernel.h>
9 #include <linux/math64.h>
10 #include <linux/mutex.h>
11 #include <linux/sysfs.h>
12 #include <asm/unaligned.h>
13
14 #include "common.h"
15
16 #define EXTN_FLAG_SENSOR_ID             BIT(7)
17
18 #define OCC_ERROR_COUNT_THRESHOLD       2       /* required by OCC spec */
19
20 #define OCC_STATE_SAFE                  4
21 #define OCC_SAFE_TIMEOUT                msecs_to_jiffies(60000) /* 1 min */
22
23 #define OCC_UPDATE_FREQUENCY            msecs_to_jiffies(1000)
24
25 #define OCC_TEMP_SENSOR_FAULT           0xFF
26
27 #define OCC_FRU_TYPE_VRM                3
28
29 /* OCC sensor type and version definitions */
30
31 struct temp_sensor_1 {
32         u16 sensor_id;
33         u16 value;
34 } __packed;
35
36 struct temp_sensor_2 {
37         u32 sensor_id;
38         u8 fru_type;
39         u8 value;
40 } __packed;
41
42 struct freq_sensor_1 {
43         u16 sensor_id;
44         u16 value;
45 } __packed;
46
47 struct freq_sensor_2 {
48         u32 sensor_id;
49         u16 value;
50 } __packed;
51
52 struct power_sensor_1 {
53         u16 sensor_id;
54         u32 update_tag;
55         u32 accumulator;
56         u16 value;
57 } __packed;
58
59 struct power_sensor_2 {
60         u32 sensor_id;
61         u8 function_id;
62         u8 apss_channel;
63         u16 reserved;
64         u32 update_tag;
65         u64 accumulator;
66         u16 value;
67 } __packed;
68
69 struct power_sensor_data {
70         u16 value;
71         u32 update_tag;
72         u64 accumulator;
73 } __packed;
74
75 struct power_sensor_data_and_time {
76         u16 update_time;
77         u16 value;
78         u32 update_tag;
79         u64 accumulator;
80 } __packed;
81
82 struct power_sensor_a0 {
83         u32 sensor_id;
84         struct power_sensor_data_and_time system;
85         u32 reserved;
86         struct power_sensor_data_and_time proc;
87         struct power_sensor_data vdd;
88         struct power_sensor_data vdn;
89 } __packed;
90
91 struct caps_sensor_2 {
92         u16 cap;
93         u16 system_power;
94         u16 n_cap;
95         u16 max;
96         u16 min;
97         u16 user;
98         u8 user_source;
99 } __packed;
100
101 struct caps_sensor_3 {
102         u16 cap;
103         u16 system_power;
104         u16 n_cap;
105         u16 max;
106         u16 hard_min;
107         u16 soft_min;
108         u16 user;
109         u8 user_source;
110 } __packed;
111
112 struct extended_sensor {
113         union {
114                 u8 name[4];
115                 u32 sensor_id;
116         };
117         u8 flags;
118         u8 reserved;
119         u8 data[6];
120 } __packed;
121
122 static int occ_poll(struct occ *occ)
123 {
124         int rc;
125         u16 checksum = occ->poll_cmd_data + 1;
126         u8 cmd[8];
127         struct occ_poll_response_header *header;
128
129         /* big endian */
130         cmd[0] = 0;                     /* sequence number */
131         cmd[1] = 0;                     /* cmd type */
132         cmd[2] = 0;                     /* data length msb */
133         cmd[3] = 1;                     /* data length lsb */
134         cmd[4] = occ->poll_cmd_data;    /* data */
135         cmd[5] = checksum >> 8;         /* checksum msb */
136         cmd[6] = checksum & 0xFF;       /* checksum lsb */
137         cmd[7] = 0;
138
139         /* mutex should already be locked if necessary */
140         rc = occ->send_cmd(occ, cmd);
141         if (rc) {
142                 if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
143                         occ->error = rc;
144
145                 goto done;
146         }
147
148         /* clear error since communication was successful */
149         occ->error_count = 0;
150         occ->error = 0;
151
152         /* check for safe state */
153         header = (struct occ_poll_response_header *)occ->resp.data;
154         if (header->occ_state == OCC_STATE_SAFE) {
155                 if (occ->last_safe) {
156                         if (time_after(jiffies,
157                                        occ->last_safe + OCC_SAFE_TIMEOUT))
158                                 occ->error = -EHOSTDOWN;
159                 } else {
160                         occ->last_safe = jiffies;
161                 }
162         } else {
163                 occ->last_safe = 0;
164         }
165
166 done:
167         occ_sysfs_poll_done(occ);
168         return rc;
169 }
170
171 static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
172 {
173         int rc;
174         u8 cmd[8];
175         u16 checksum = 0x24;
176         __be16 user_power_cap_be = cpu_to_be16(user_power_cap);
177
178         cmd[0] = 0;
179         cmd[1] = 0x22;
180         cmd[2] = 0;
181         cmd[3] = 2;
182
183         memcpy(&cmd[4], &user_power_cap_be, 2);
184
185         checksum += cmd[4] + cmd[5];
186         cmd[6] = checksum >> 8;
187         cmd[7] = checksum & 0xFF;
188
189         rc = mutex_lock_interruptible(&occ->lock);
190         if (rc)
191                 return rc;
192
193         rc = occ->send_cmd(occ, cmd);
194
195         mutex_unlock(&occ->lock);
196
197         return rc;
198 }
199
200 int occ_update_response(struct occ *occ)
201 {
202         int rc = mutex_lock_interruptible(&occ->lock);
203
204         if (rc)
205                 return rc;
206
207         /* limit the maximum rate of polling the OCC */
208         if (time_after(jiffies, occ->last_update + OCC_UPDATE_FREQUENCY)) {
209                 rc = occ_poll(occ);
210                 occ->last_update = jiffies;
211         }
212
213         mutex_unlock(&occ->lock);
214         return rc;
215 }
216
217 static ssize_t occ_show_temp_1(struct device *dev,
218                                struct device_attribute *attr, char *buf)
219 {
220         int rc;
221         u32 val = 0;
222         struct temp_sensor_1 *temp;
223         struct occ *occ = dev_get_drvdata(dev);
224         struct occ_sensors *sensors = &occ->sensors;
225         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
226
227         rc = occ_update_response(occ);
228         if (rc)
229                 return rc;
230
231         temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
232
233         switch (sattr->nr) {
234         case 0:
235                 val = get_unaligned_be16(&temp->sensor_id);
236                 break;
237         case 1:
238                 val = get_unaligned_be16(&temp->value) * 1000;
239                 break;
240         default:
241                 return -EINVAL;
242         }
243
244         return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
245 }
246
247 static ssize_t occ_show_temp_2(struct device *dev,
248                                struct device_attribute *attr, char *buf)
249 {
250         int rc;
251         u32 val = 0;
252         struct temp_sensor_2 *temp;
253         struct occ *occ = dev_get_drvdata(dev);
254         struct occ_sensors *sensors = &occ->sensors;
255         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
256
257         rc = occ_update_response(occ);
258         if (rc)
259                 return rc;
260
261         temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
262
263         switch (sattr->nr) {
264         case 0:
265                 val = get_unaligned_be32(&temp->sensor_id);
266                 break;
267         case 1:
268                 val = temp->value;
269                 if (val == OCC_TEMP_SENSOR_FAULT)
270                         return -EREMOTEIO;
271
272                 /*
273                  * VRM doesn't return temperature, only alarm bit. This
274                  * attribute maps to tempX_alarm instead of tempX_input for
275                  * VRM
276                  */
277                 if (temp->fru_type != OCC_FRU_TYPE_VRM) {
278                         /* sensor not ready */
279                         if (val == 0)
280                                 return -EAGAIN;
281
282                         val *= 1000;
283                 }
284                 break;
285         case 2:
286                 val = temp->fru_type;
287                 break;
288         case 3:
289                 val = temp->value == OCC_TEMP_SENSOR_FAULT;
290                 break;
291         default:
292                 return -EINVAL;
293         }
294
295         return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
296 }
297
298 static ssize_t occ_show_freq_1(struct device *dev,
299                                struct device_attribute *attr, char *buf)
300 {
301         int rc;
302         u16 val = 0;
303         struct freq_sensor_1 *freq;
304         struct occ *occ = dev_get_drvdata(dev);
305         struct occ_sensors *sensors = &occ->sensors;
306         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
307
308         rc = occ_update_response(occ);
309         if (rc)
310                 return rc;
311
312         freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
313
314         switch (sattr->nr) {
315         case 0:
316                 val = get_unaligned_be16(&freq->sensor_id);
317                 break;
318         case 1:
319                 val = get_unaligned_be16(&freq->value);
320                 break;
321         default:
322                 return -EINVAL;
323         }
324
325         return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
326 }
327
328 static ssize_t occ_show_freq_2(struct device *dev,
329                                struct device_attribute *attr, char *buf)
330 {
331         int rc;
332         u32 val = 0;
333         struct freq_sensor_2 *freq;
334         struct occ *occ = dev_get_drvdata(dev);
335         struct occ_sensors *sensors = &occ->sensors;
336         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
337
338         rc = occ_update_response(occ);
339         if (rc)
340                 return rc;
341
342         freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
343
344         switch (sattr->nr) {
345         case 0:
346                 val = get_unaligned_be32(&freq->sensor_id);
347                 break;
348         case 1:
349                 val = get_unaligned_be16(&freq->value);
350                 break;
351         default:
352                 return -EINVAL;
353         }
354
355         return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
356 }
357
358 static ssize_t occ_show_power_1(struct device *dev,
359                                 struct device_attribute *attr, char *buf)
360 {
361         int rc;
362         u64 val = 0;
363         struct power_sensor_1 *power;
364         struct occ *occ = dev_get_drvdata(dev);
365         struct occ_sensors *sensors = &occ->sensors;
366         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
367
368         rc = occ_update_response(occ);
369         if (rc)
370                 return rc;
371
372         power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
373
374         switch (sattr->nr) {
375         case 0:
376                 val = get_unaligned_be16(&power->sensor_id);
377                 break;
378         case 1:
379                 val = get_unaligned_be32(&power->accumulator) /
380                         get_unaligned_be32(&power->update_tag);
381                 val *= 1000000ULL;
382                 break;
383         case 2:
384                 val = (u64)get_unaligned_be32(&power->update_tag) *
385                            occ->powr_sample_time_us;
386                 break;
387         case 3:
388                 val = get_unaligned_be16(&power->value) * 1000000ULL;
389                 break;
390         default:
391                 return -EINVAL;
392         }
393
394         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
395 }
396
397 static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
398 {
399         return div64_u64(get_unaligned_be64(accum) * 1000000ULL,
400                          get_unaligned_be32(samples));
401 }
402
403 static ssize_t occ_show_power_2(struct device *dev,
404                                 struct device_attribute *attr, char *buf)
405 {
406         int rc;
407         u64 val = 0;
408         struct power_sensor_2 *power;
409         struct occ *occ = dev_get_drvdata(dev);
410         struct occ_sensors *sensors = &occ->sensors;
411         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
412
413         rc = occ_update_response(occ);
414         if (rc)
415                 return rc;
416
417         power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
418
419         switch (sattr->nr) {
420         case 0:
421                 return snprintf(buf, PAGE_SIZE - 1, "%u_%u_%u\n",
422                                 get_unaligned_be32(&power->sensor_id),
423                                 power->function_id, power->apss_channel);
424         case 1:
425                 val = occ_get_powr_avg(&power->accumulator,
426                                        &power->update_tag);
427                 break;
428         case 2:
429                 val = (u64)get_unaligned_be32(&power->update_tag) *
430                            occ->powr_sample_time_us;
431                 break;
432         case 3:
433                 val = get_unaligned_be16(&power->value) * 1000000ULL;
434                 break;
435         default:
436                 return -EINVAL;
437         }
438
439         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
440 }
441
442 static ssize_t occ_show_power_a0(struct device *dev,
443                                  struct device_attribute *attr, char *buf)
444 {
445         int rc;
446         u64 val = 0;
447         struct power_sensor_a0 *power;
448         struct occ *occ = dev_get_drvdata(dev);
449         struct occ_sensors *sensors = &occ->sensors;
450         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
451
452         rc = occ_update_response(occ);
453         if (rc)
454                 return rc;
455
456         power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
457
458         switch (sattr->nr) {
459         case 0:
460                 return snprintf(buf, PAGE_SIZE - 1, "%u_system\n",
461                                 get_unaligned_be32(&power->sensor_id));
462         case 1:
463                 val = occ_get_powr_avg(&power->system.accumulator,
464                                        &power->system.update_tag);
465                 break;
466         case 2:
467                 val = (u64)get_unaligned_be32(&power->system.update_tag) *
468                            occ->powr_sample_time_us;
469                 break;
470         case 3:
471                 val = get_unaligned_be16(&power->system.value) * 1000000ULL;
472                 break;
473         case 4:
474                 return snprintf(buf, PAGE_SIZE - 1, "%u_proc\n",
475                                 get_unaligned_be32(&power->sensor_id));
476         case 5:
477                 val = occ_get_powr_avg(&power->proc.accumulator,
478                                        &power->proc.update_tag);
479                 break;
480         case 6:
481                 val = (u64)get_unaligned_be32(&power->proc.update_tag) *
482                            occ->powr_sample_time_us;
483                 break;
484         case 7:
485                 val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
486                 break;
487         case 8:
488                 return snprintf(buf, PAGE_SIZE - 1, "%u_vdd\n",
489                                 get_unaligned_be32(&power->sensor_id));
490         case 9:
491                 val = occ_get_powr_avg(&power->vdd.accumulator,
492                                        &power->vdd.update_tag);
493                 break;
494         case 10:
495                 val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
496                            occ->powr_sample_time_us;
497                 break;
498         case 11:
499                 val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
500                 break;
501         case 12:
502                 return snprintf(buf, PAGE_SIZE - 1, "%u_vdn\n",
503                                 get_unaligned_be32(&power->sensor_id));
504         case 13:
505                 val = occ_get_powr_avg(&power->vdn.accumulator,
506                                        &power->vdn.update_tag);
507                 break;
508         case 14:
509                 val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
510                            occ->powr_sample_time_us;
511                 break;
512         case 15:
513                 val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
514                 break;
515         default:
516                 return -EINVAL;
517         }
518
519         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
520 }
521
522 static ssize_t occ_show_caps_1_2(struct device *dev,
523                                  struct device_attribute *attr, char *buf)
524 {
525         int rc;
526         u64 val = 0;
527         struct caps_sensor_2 *caps;
528         struct occ *occ = dev_get_drvdata(dev);
529         struct occ_sensors *sensors = &occ->sensors;
530         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
531
532         rc = occ_update_response(occ);
533         if (rc)
534                 return rc;
535
536         caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
537
538         switch (sattr->nr) {
539         case 0:
540                 return snprintf(buf, PAGE_SIZE - 1, "system\n");
541         case 1:
542                 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
543                 break;
544         case 2:
545                 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
546                 break;
547         case 3:
548                 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
549                 break;
550         case 4:
551                 val = get_unaligned_be16(&caps->max) * 1000000ULL;
552                 break;
553         case 5:
554                 val = get_unaligned_be16(&caps->min) * 1000000ULL;
555                 break;
556         case 6:
557                 val = get_unaligned_be16(&caps->user) * 1000000ULL;
558                 break;
559         case 7:
560                 if (occ->sensors.caps.version == 1)
561                         return -EINVAL;
562
563                 val = caps->user_source;
564                 break;
565         default:
566                 return -EINVAL;
567         }
568
569         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
570 }
571
572 static ssize_t occ_show_caps_3(struct device *dev,
573                                struct device_attribute *attr, char *buf)
574 {
575         int rc;
576         u64 val = 0;
577         struct caps_sensor_3 *caps;
578         struct occ *occ = dev_get_drvdata(dev);
579         struct occ_sensors *sensors = &occ->sensors;
580         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
581
582         rc = occ_update_response(occ);
583         if (rc)
584                 return rc;
585
586         caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
587
588         switch (sattr->nr) {
589         case 0:
590                 return snprintf(buf, PAGE_SIZE - 1, "system\n");
591         case 1:
592                 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
593                 break;
594         case 2:
595                 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
596                 break;
597         case 3:
598                 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
599                 break;
600         case 4:
601                 val = get_unaligned_be16(&caps->max) * 1000000ULL;
602                 break;
603         case 5:
604                 val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
605                 break;
606         case 6:
607                 val = get_unaligned_be16(&caps->user) * 1000000ULL;
608                 break;
609         case 7:
610                 val = caps->user_source;
611                 break;
612         default:
613                 return -EINVAL;
614         }
615
616         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
617 }
618
619 static ssize_t occ_store_caps_user(struct device *dev,
620                                    struct device_attribute *attr,
621                                    const char *buf, size_t count)
622 {
623         int rc;
624         u16 user_power_cap;
625         unsigned long long value;
626         struct occ *occ = dev_get_drvdata(dev);
627
628         rc = kstrtoull(buf, 0, &value);
629         if (rc)
630                 return rc;
631
632         user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
633
634         rc = occ_set_user_power_cap(occ, user_power_cap);
635         if (rc)
636                 return rc;
637
638         return count;
639 }
640
641 static ssize_t occ_show_extended(struct device *dev,
642                                  struct device_attribute *attr, char *buf)
643 {
644         int rc;
645         struct extended_sensor *extn;
646         struct occ *occ = dev_get_drvdata(dev);
647         struct occ_sensors *sensors = &occ->sensors;
648         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
649
650         rc = occ_update_response(occ);
651         if (rc)
652                 return rc;
653
654         extn = ((struct extended_sensor *)sensors->extended.data) +
655                 sattr->index;
656
657         switch (sattr->nr) {
658         case 0:
659                 if (extn->flags & EXTN_FLAG_SENSOR_ID)
660                         rc = snprintf(buf, PAGE_SIZE - 1, "%u",
661                                       get_unaligned_be32(&extn->sensor_id));
662                 else
663                         rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x\n",
664                                       extn->name[0], extn->name[1],
665                                       extn->name[2], extn->name[3]);
666                 break;
667         case 1:
668                 rc = snprintf(buf, PAGE_SIZE - 1, "%02x\n", extn->flags);
669                 break;
670         case 2:
671                 rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x%02x%02x\n",
672                               extn->data[0], extn->data[1], extn->data[2],
673                               extn->data[3], extn->data[4], extn->data[5]);
674                 break;
675         default:
676                 return -EINVAL;
677         }
678
679         return rc;
680 }
681
682 /*
683  * Some helper macros to make it easier to define an occ_attribute. Since these
684  * are dynamically allocated, we shouldn't use the existing kernel macros which
685  * stringify the name argument.
686  */
687 #define ATTR_OCC(_name, _mode, _show, _store) {                         \
688         .attr   = {                                                     \
689                 .name = _name,                                          \
690                 .mode = VERIFY_OCTAL_PERMISSIONS(_mode),                \
691         },                                                              \
692         .show   = _show,                                                \
693         .store  = _store,                                               \
694 }
695
696 #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) {     \
697         .dev_attr       = ATTR_OCC(_name, _mode, _show, _store),        \
698         .index          = _index,                                       \
699         .nr             = _nr,                                          \
700 }
701
702 #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index)         \
703         ((struct sensor_device_attribute_2)                             \
704                 SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
705
706 /*
707  * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
708  * use our own instead of the built-in hwmon attribute types.
709  */
710 static int occ_setup_sensor_attrs(struct occ *occ)
711 {
712         unsigned int i, s, num_attrs = 0;
713         struct device *dev = occ->bus_dev;
714         struct occ_sensors *sensors = &occ->sensors;
715         struct occ_attribute *attr;
716         struct temp_sensor_2 *temp;
717         ssize_t (*show_temp)(struct device *, struct device_attribute *,
718                              char *) = occ_show_temp_1;
719         ssize_t (*show_freq)(struct device *, struct device_attribute *,
720                              char *) = occ_show_freq_1;
721         ssize_t (*show_power)(struct device *, struct device_attribute *,
722                               char *) = occ_show_power_1;
723         ssize_t (*show_caps)(struct device *, struct device_attribute *,
724                              char *) = occ_show_caps_1_2;
725
726         switch (sensors->temp.version) {
727         case 1:
728                 num_attrs += (sensors->temp.num_sensors * 2);
729                 break;
730         case 2:
731                 num_attrs += (sensors->temp.num_sensors * 4);
732                 show_temp = occ_show_temp_2;
733                 break;
734         default:
735                 sensors->temp.num_sensors = 0;
736         }
737
738         switch (sensors->freq.version) {
739         case 2:
740                 show_freq = occ_show_freq_2;
741                 /* fall through */
742         case 1:
743                 num_attrs += (sensors->freq.num_sensors * 2);
744                 break;
745         default:
746                 sensors->freq.num_sensors = 0;
747         }
748
749         switch (sensors->power.version) {
750         case 2:
751                 show_power = occ_show_power_2;
752                 /* fall through */
753         case 1:
754                 num_attrs += (sensors->power.num_sensors * 4);
755                 break;
756         case 0xA0:
757                 num_attrs += (sensors->power.num_sensors * 16);
758                 show_power = occ_show_power_a0;
759                 break;
760         default:
761                 sensors->power.num_sensors = 0;
762         }
763
764         switch (sensors->caps.version) {
765         case 1:
766                 num_attrs += (sensors->caps.num_sensors * 7);
767                 break;
768         case 3:
769                 show_caps = occ_show_caps_3;
770                 /* fall through */
771         case 2:
772                 num_attrs += (sensors->caps.num_sensors * 8);
773                 break;
774         default:
775                 sensors->caps.num_sensors = 0;
776         }
777
778         switch (sensors->extended.version) {
779         case 1:
780                 num_attrs += (sensors->extended.num_sensors * 3);
781                 break;
782         default:
783                 sensors->extended.num_sensors = 0;
784         }
785
786         occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
787                                   GFP_KERNEL);
788         if (!occ->attrs)
789                 return -ENOMEM;
790
791         /* null-terminated list */
792         occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
793                                         num_attrs + 1, GFP_KERNEL);
794         if (!occ->group.attrs)
795                 return -ENOMEM;
796
797         attr = occ->attrs;
798
799         for (i = 0; i < sensors->temp.num_sensors; ++i) {
800                 s = i + 1;
801                 temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
802
803                 snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
804                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
805                                              0, i);
806                 attr++;
807
808                 if (sensors->temp.version > 1 &&
809                     temp->fru_type == OCC_FRU_TYPE_VRM) {
810                         snprintf(attr->name, sizeof(attr->name),
811                                  "temp%d_alarm", s);
812                 } else {
813                         snprintf(attr->name, sizeof(attr->name),
814                                  "temp%d_input", s);
815                 }
816
817                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
818                                              1, i);
819                 attr++;
820
821                 if (sensors->temp.version > 1) {
822                         snprintf(attr->name, sizeof(attr->name),
823                                  "temp%d_fru_type", s);
824                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
825                                                      show_temp, NULL, 2, i);
826                         attr++;
827
828                         snprintf(attr->name, sizeof(attr->name),
829                                  "temp%d_fault", s);
830                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
831                                                      show_temp, NULL, 3, i);
832                         attr++;
833                 }
834         }
835
836         for (i = 0; i < sensors->freq.num_sensors; ++i) {
837                 s = i + 1;
838
839                 snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
840                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
841                                              0, i);
842                 attr++;
843
844                 snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
845                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
846                                              1, i);
847                 attr++;
848         }
849
850         if (sensors->power.version == 0xA0) {
851                 /*
852                  * Special case for many-attribute power sensor. Split it into
853                  * a sensor number per power type, emulating several sensors.
854                  */
855                 for (i = 0; i < sensors->power.num_sensors; ++i) {
856                         unsigned int j;
857                         unsigned int nr = 0;
858
859                         s = (i * 4) + 1;
860
861                         for (j = 0; j < 4; ++j) {
862                                 snprintf(attr->name, sizeof(attr->name),
863                                          "power%d_label", s);
864                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
865                                                              show_power, NULL,
866                                                              nr++, i);
867                                 attr++;
868
869                                 snprintf(attr->name, sizeof(attr->name),
870                                          "power%d_average", s);
871                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
872                                                              show_power, NULL,
873                                                              nr++, i);
874                                 attr++;
875
876                                 snprintf(attr->name, sizeof(attr->name),
877                                          "power%d_average_interval", s);
878                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
879                                                              show_power, NULL,
880                                                              nr++, i);
881                                 attr++;
882
883                                 snprintf(attr->name, sizeof(attr->name),
884                                          "power%d_input", s);
885                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
886                                                              show_power, NULL,
887                                                              nr++, i);
888                                 attr++;
889
890                                 s++;
891                         }
892                 }
893
894                 s = (sensors->power.num_sensors * 4) + 1;
895         } else {
896                 for (i = 0; i < sensors->power.num_sensors; ++i) {
897                         s = i + 1;
898
899                         snprintf(attr->name, sizeof(attr->name),
900                                  "power%d_label", s);
901                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
902                                                      show_power, NULL, 0, i);
903                         attr++;
904
905                         snprintf(attr->name, sizeof(attr->name),
906                                  "power%d_average", s);
907                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
908                                                      show_power, NULL, 1, i);
909                         attr++;
910
911                         snprintf(attr->name, sizeof(attr->name),
912                                  "power%d_average_interval", s);
913                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
914                                                      show_power, NULL, 2, i);
915                         attr++;
916
917                         snprintf(attr->name, sizeof(attr->name),
918                                  "power%d_input", s);
919                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
920                                                      show_power, NULL, 3, i);
921                         attr++;
922                 }
923
924                 s = sensors->power.num_sensors + 1;
925         }
926
927         if (sensors->caps.num_sensors >= 1) {
928                 snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
929                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
930                                              0, 0);
931                 attr++;
932
933                 snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
934                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
935                                              1, 0);
936                 attr++;
937
938                 snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
939                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
940                                              2, 0);
941                 attr++;
942
943                 snprintf(attr->name, sizeof(attr->name),
944                          "power%d_cap_not_redundant", s);
945                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
946                                              3, 0);
947                 attr++;
948
949                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
950                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
951                                              4, 0);
952                 attr++;
953
954                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
955                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
956                                              5, 0);
957                 attr++;
958
959                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
960                          s);
961                 attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
962                                              occ_store_caps_user, 6, 0);
963                 attr++;
964
965                 if (sensors->caps.version > 1) {
966                         snprintf(attr->name, sizeof(attr->name),
967                                  "power%d_cap_user_source", s);
968                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
969                                                      show_caps, NULL, 7, 0);
970                         attr++;
971                 }
972         }
973
974         for (i = 0; i < sensors->extended.num_sensors; ++i) {
975                 s = i + 1;
976
977                 snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
978                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
979                                              occ_show_extended, NULL, 0, i);
980                 attr++;
981
982                 snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
983                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
984                                              occ_show_extended, NULL, 1, i);
985                 attr++;
986
987                 snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
988                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
989                                              occ_show_extended, NULL, 2, i);
990                 attr++;
991         }
992
993         /* put the sensors in the group */
994         for (i = 0; i < num_attrs; ++i) {
995                 sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
996                 occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
997         }
998
999         return 0;
1000 }
1001
1002 /* only need to do this once at startup, as OCC won't change sensors on us */
1003 static void occ_parse_poll_response(struct occ *occ)
1004 {
1005         unsigned int i, old_offset, offset = 0, size = 0;
1006         struct occ_sensor *sensor;
1007         struct occ_sensors *sensors = &occ->sensors;
1008         struct occ_response *resp = &occ->resp;
1009         struct occ_poll_response *poll =
1010                 (struct occ_poll_response *)&resp->data[0];
1011         struct occ_poll_response_header *header = &poll->header;
1012         struct occ_sensor_data_block *block = &poll->block;
1013
1014         dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1015                  header->occ_code_level);
1016
1017         for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1018                 block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1019                 old_offset = offset;
1020                 offset = (block->header.num_sensors *
1021                           block->header.sensor_length) + sizeof(block->header);
1022                 size += offset;
1023
1024                 /* validate all the length/size fields */
1025                 if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1026                         dev_warn(occ->bus_dev, "exceeded response buffer\n");
1027                         return;
1028                 }
1029
1030                 dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1031                         old_offset, offset - 1, block->header.eye_catcher,
1032                         block->header.num_sensors);
1033
1034                 /* match sensor block type */
1035                 if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1036                         sensor = &sensors->temp;
1037                 else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1038                         sensor = &sensors->freq;
1039                 else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1040                         sensor = &sensors->power;
1041                 else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1042                         sensor = &sensors->caps;
1043                 else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1044                         sensor = &sensors->extended;
1045                 else {
1046                         dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1047                                  block->header.eye_catcher);
1048                         continue;
1049                 }
1050
1051                 sensor->num_sensors = block->header.num_sensors;
1052                 sensor->version = block->header.sensor_format;
1053                 sensor->data = &block->data;
1054         }
1055
1056         dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1057                 sizeof(*header), size + sizeof(*header));
1058 }
1059
1060 int occ_setup(struct occ *occ, const char *name)
1061 {
1062         int rc;
1063
1064         mutex_init(&occ->lock);
1065         occ->groups[0] = &occ->group;
1066
1067         /* no need to lock */
1068         rc = occ_poll(occ);
1069         if (rc == -ESHUTDOWN) {
1070                 dev_info(occ->bus_dev, "host is not ready\n");
1071                 return rc;
1072         } else if (rc < 0) {
1073                 dev_err(occ->bus_dev, "failed to get OCC poll response: %d\n",
1074                         rc);
1075                 return rc;
1076         }
1077
1078         occ_parse_poll_response(occ);
1079
1080         rc = occ_setup_sensor_attrs(occ);
1081         if (rc) {
1082                 dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n",
1083                         rc);
1084                 return rc;
1085         }
1086
1087         occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name,
1088                                                             occ, occ->groups);
1089         if (IS_ERR(occ->hwmon)) {
1090                 rc = PTR_ERR(occ->hwmon);
1091                 dev_err(occ->bus_dev, "failed to register hwmon device: %d\n",
1092                         rc);
1093                 return rc;
1094         }
1095
1096         rc = occ_setup_sysfs(occ);
1097         if (rc)
1098                 dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1099
1100         return rc;
1101 }