Merge tag 'iommu-fixes-v5.0-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / hwmon / occ / common.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/device.h>
4 #include <linux/hwmon.h>
5 #include <linux/hwmon-sysfs.h>
6 #include <linux/jiffies.h>
7 #include <linux/kernel.h>
8 #include <linux/math64.h>
9 #include <linux/mutex.h>
10 #include <linux/sysfs.h>
11 #include <asm/unaligned.h>
12
13 #include "common.h"
14
15 #define EXTN_FLAG_SENSOR_ID             BIT(7)
16
17 #define OCC_ERROR_COUNT_THRESHOLD       2       /* required by OCC spec */
18
19 #define OCC_STATE_SAFE                  4
20 #define OCC_SAFE_TIMEOUT                msecs_to_jiffies(60000) /* 1 min */
21
22 #define OCC_UPDATE_FREQUENCY            msecs_to_jiffies(1000)
23
24 #define OCC_TEMP_SENSOR_FAULT           0xFF
25
26 #define OCC_FRU_TYPE_VRM                3
27
28 /* OCC sensor type and version definitions */
29
30 struct temp_sensor_1 {
31         u16 sensor_id;
32         u16 value;
33 } __packed;
34
35 struct temp_sensor_2 {
36         u32 sensor_id;
37         u8 fru_type;
38         u8 value;
39 } __packed;
40
41 struct freq_sensor_1 {
42         u16 sensor_id;
43         u16 value;
44 } __packed;
45
46 struct freq_sensor_2 {
47         u32 sensor_id;
48         u16 value;
49 } __packed;
50
51 struct power_sensor_1 {
52         u16 sensor_id;
53         u32 update_tag;
54         u32 accumulator;
55         u16 value;
56 } __packed;
57
58 struct power_sensor_2 {
59         u32 sensor_id;
60         u8 function_id;
61         u8 apss_channel;
62         u16 reserved;
63         u32 update_tag;
64         u64 accumulator;
65         u16 value;
66 } __packed;
67
68 struct power_sensor_data {
69         u16 value;
70         u32 update_tag;
71         u64 accumulator;
72 } __packed;
73
74 struct power_sensor_data_and_time {
75         u16 update_time;
76         u16 value;
77         u32 update_tag;
78         u64 accumulator;
79 } __packed;
80
81 struct power_sensor_a0 {
82         u32 sensor_id;
83         struct power_sensor_data_and_time system;
84         u32 reserved;
85         struct power_sensor_data_and_time proc;
86         struct power_sensor_data vdd;
87         struct power_sensor_data vdn;
88 } __packed;
89
90 struct caps_sensor_2 {
91         u16 cap;
92         u16 system_power;
93         u16 n_cap;
94         u16 max;
95         u16 min;
96         u16 user;
97         u8 user_source;
98 } __packed;
99
100 struct caps_sensor_3 {
101         u16 cap;
102         u16 system_power;
103         u16 n_cap;
104         u16 max;
105         u16 hard_min;
106         u16 soft_min;
107         u16 user;
108         u8 user_source;
109 } __packed;
110
111 struct extended_sensor {
112         union {
113                 u8 name[4];
114                 u32 sensor_id;
115         };
116         u8 flags;
117         u8 reserved;
118         u8 data[6];
119 } __packed;
120
121 static int occ_poll(struct occ *occ)
122 {
123         int rc;
124         u16 checksum = occ->poll_cmd_data + 1;
125         u8 cmd[8];
126         struct occ_poll_response_header *header;
127
128         /* big endian */
129         cmd[0] = 0;                     /* sequence number */
130         cmd[1] = 0;                     /* cmd type */
131         cmd[2] = 0;                     /* data length msb */
132         cmd[3] = 1;                     /* data length lsb */
133         cmd[4] = occ->poll_cmd_data;    /* data */
134         cmd[5] = checksum >> 8;         /* checksum msb */
135         cmd[6] = checksum & 0xFF;       /* checksum lsb */
136         cmd[7] = 0;
137
138         /* mutex should already be locked if necessary */
139         rc = occ->send_cmd(occ, cmd);
140         if (rc) {
141                 if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
142                         occ->error = rc;
143
144                 goto done;
145         }
146
147         /* clear error since communication was successful */
148         occ->error_count = 0;
149         occ->error = 0;
150
151         /* check for safe state */
152         header = (struct occ_poll_response_header *)occ->resp.data;
153         if (header->occ_state == OCC_STATE_SAFE) {
154                 if (occ->last_safe) {
155                         if (time_after(jiffies,
156                                        occ->last_safe + OCC_SAFE_TIMEOUT))
157                                 occ->error = -EHOSTDOWN;
158                 } else {
159                         occ->last_safe = jiffies;
160                 }
161         } else {
162                 occ->last_safe = 0;
163         }
164
165 done:
166         occ_sysfs_poll_done(occ);
167         return rc;
168 }
169
170 static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
171 {
172         int rc;
173         u8 cmd[8];
174         u16 checksum = 0x24;
175         __be16 user_power_cap_be = cpu_to_be16(user_power_cap);
176
177         cmd[0] = 0;
178         cmd[1] = 0x22;
179         cmd[2] = 0;
180         cmd[3] = 2;
181
182         memcpy(&cmd[4], &user_power_cap_be, 2);
183
184         checksum += cmd[4] + cmd[5];
185         cmd[6] = checksum >> 8;
186         cmd[7] = checksum & 0xFF;
187
188         rc = mutex_lock_interruptible(&occ->lock);
189         if (rc)
190                 return rc;
191
192         rc = occ->send_cmd(occ, cmd);
193
194         mutex_unlock(&occ->lock);
195
196         return rc;
197 }
198
199 int occ_update_response(struct occ *occ)
200 {
201         int rc = mutex_lock_interruptible(&occ->lock);
202
203         if (rc)
204                 return rc;
205
206         /* limit the maximum rate of polling the OCC */
207         if (time_after(jiffies, occ->last_update + OCC_UPDATE_FREQUENCY)) {
208                 rc = occ_poll(occ);
209                 occ->last_update = jiffies;
210         }
211
212         mutex_unlock(&occ->lock);
213         return rc;
214 }
215
216 static ssize_t occ_show_temp_1(struct device *dev,
217                                struct device_attribute *attr, char *buf)
218 {
219         int rc;
220         u32 val = 0;
221         struct temp_sensor_1 *temp;
222         struct occ *occ = dev_get_drvdata(dev);
223         struct occ_sensors *sensors = &occ->sensors;
224         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
225
226         rc = occ_update_response(occ);
227         if (rc)
228                 return rc;
229
230         temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
231
232         switch (sattr->nr) {
233         case 0:
234                 val = get_unaligned_be16(&temp->sensor_id);
235                 break;
236         case 1:
237                 val = get_unaligned_be16(&temp->value) * 1000;
238                 break;
239         default:
240                 return -EINVAL;
241         }
242
243         return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
244 }
245
246 static ssize_t occ_show_temp_2(struct device *dev,
247                                struct device_attribute *attr, char *buf)
248 {
249         int rc;
250         u32 val = 0;
251         struct temp_sensor_2 *temp;
252         struct occ *occ = dev_get_drvdata(dev);
253         struct occ_sensors *sensors = &occ->sensors;
254         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
255
256         rc = occ_update_response(occ);
257         if (rc)
258                 return rc;
259
260         temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
261
262         switch (sattr->nr) {
263         case 0:
264                 val = get_unaligned_be32(&temp->sensor_id);
265                 break;
266         case 1:
267                 val = temp->value;
268                 if (val == OCC_TEMP_SENSOR_FAULT)
269                         return -EREMOTEIO;
270
271                 /*
272                  * VRM doesn't return temperature, only alarm bit. This
273                  * attribute maps to tempX_alarm instead of tempX_input for
274                  * VRM
275                  */
276                 if (temp->fru_type != OCC_FRU_TYPE_VRM) {
277                         /* sensor not ready */
278                         if (val == 0)
279                                 return -EAGAIN;
280
281                         val *= 1000;
282                 }
283                 break;
284         case 2:
285                 val = temp->fru_type;
286                 break;
287         case 3:
288                 val = temp->value == OCC_TEMP_SENSOR_FAULT;
289                 break;
290         default:
291                 return -EINVAL;
292         }
293
294         return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
295 }
296
297 static ssize_t occ_show_freq_1(struct device *dev,
298                                struct device_attribute *attr, char *buf)
299 {
300         int rc;
301         u16 val = 0;
302         struct freq_sensor_1 *freq;
303         struct occ *occ = dev_get_drvdata(dev);
304         struct occ_sensors *sensors = &occ->sensors;
305         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
306
307         rc = occ_update_response(occ);
308         if (rc)
309                 return rc;
310
311         freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
312
313         switch (sattr->nr) {
314         case 0:
315                 val = get_unaligned_be16(&freq->sensor_id);
316                 break;
317         case 1:
318                 val = get_unaligned_be16(&freq->value);
319                 break;
320         default:
321                 return -EINVAL;
322         }
323
324         return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
325 }
326
327 static ssize_t occ_show_freq_2(struct device *dev,
328                                struct device_attribute *attr, char *buf)
329 {
330         int rc;
331         u32 val = 0;
332         struct freq_sensor_2 *freq;
333         struct occ *occ = dev_get_drvdata(dev);
334         struct occ_sensors *sensors = &occ->sensors;
335         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
336
337         rc = occ_update_response(occ);
338         if (rc)
339                 return rc;
340
341         freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
342
343         switch (sattr->nr) {
344         case 0:
345                 val = get_unaligned_be32(&freq->sensor_id);
346                 break;
347         case 1:
348                 val = get_unaligned_be16(&freq->value);
349                 break;
350         default:
351                 return -EINVAL;
352         }
353
354         return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
355 }
356
357 static ssize_t occ_show_power_1(struct device *dev,
358                                 struct device_attribute *attr, char *buf)
359 {
360         int rc;
361         u64 val = 0;
362         struct power_sensor_1 *power;
363         struct occ *occ = dev_get_drvdata(dev);
364         struct occ_sensors *sensors = &occ->sensors;
365         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
366
367         rc = occ_update_response(occ);
368         if (rc)
369                 return rc;
370
371         power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
372
373         switch (sattr->nr) {
374         case 0:
375                 val = get_unaligned_be16(&power->sensor_id);
376                 break;
377         case 1:
378                 val = get_unaligned_be32(&power->accumulator) /
379                         get_unaligned_be32(&power->update_tag);
380                 val *= 1000000ULL;
381                 break;
382         case 2:
383                 val = (u64)get_unaligned_be32(&power->update_tag) *
384                            occ->powr_sample_time_us;
385                 break;
386         case 3:
387                 val = get_unaligned_be16(&power->value) * 1000000ULL;
388                 break;
389         default:
390                 return -EINVAL;
391         }
392
393         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
394 }
395
396 static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
397 {
398         return div64_u64(get_unaligned_be64(accum) * 1000000ULL,
399                          get_unaligned_be32(samples));
400 }
401
402 static ssize_t occ_show_power_2(struct device *dev,
403                                 struct device_attribute *attr, char *buf)
404 {
405         int rc;
406         u64 val = 0;
407         struct power_sensor_2 *power;
408         struct occ *occ = dev_get_drvdata(dev);
409         struct occ_sensors *sensors = &occ->sensors;
410         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
411
412         rc = occ_update_response(occ);
413         if (rc)
414                 return rc;
415
416         power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
417
418         switch (sattr->nr) {
419         case 0:
420                 return snprintf(buf, PAGE_SIZE - 1, "%u_%u_%u\n",
421                                 get_unaligned_be32(&power->sensor_id),
422                                 power->function_id, power->apss_channel);
423         case 1:
424                 val = occ_get_powr_avg(&power->accumulator,
425                                        &power->update_tag);
426                 break;
427         case 2:
428                 val = (u64)get_unaligned_be32(&power->update_tag) *
429                            occ->powr_sample_time_us;
430                 break;
431         case 3:
432                 val = get_unaligned_be16(&power->value) * 1000000ULL;
433                 break;
434         default:
435                 return -EINVAL;
436         }
437
438         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
439 }
440
441 static ssize_t occ_show_power_a0(struct device *dev,
442                                  struct device_attribute *attr, char *buf)
443 {
444         int rc;
445         u64 val = 0;
446         struct power_sensor_a0 *power;
447         struct occ *occ = dev_get_drvdata(dev);
448         struct occ_sensors *sensors = &occ->sensors;
449         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
450
451         rc = occ_update_response(occ);
452         if (rc)
453                 return rc;
454
455         power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
456
457         switch (sattr->nr) {
458         case 0:
459                 return snprintf(buf, PAGE_SIZE - 1, "%u_system\n",
460                                 get_unaligned_be32(&power->sensor_id));
461         case 1:
462                 val = occ_get_powr_avg(&power->system.accumulator,
463                                        &power->system.update_tag);
464                 break;
465         case 2:
466                 val = (u64)get_unaligned_be32(&power->system.update_tag) *
467                            occ->powr_sample_time_us;
468                 break;
469         case 3:
470                 val = get_unaligned_be16(&power->system.value) * 1000000ULL;
471                 break;
472         case 4:
473                 return snprintf(buf, PAGE_SIZE - 1, "%u_proc\n",
474                                 get_unaligned_be32(&power->sensor_id));
475         case 5:
476                 val = occ_get_powr_avg(&power->proc.accumulator,
477                                        &power->proc.update_tag);
478                 break;
479         case 6:
480                 val = (u64)get_unaligned_be32(&power->proc.update_tag) *
481                            occ->powr_sample_time_us;
482                 break;
483         case 7:
484                 val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
485                 break;
486         case 8:
487                 return snprintf(buf, PAGE_SIZE - 1, "%u_vdd\n",
488                                 get_unaligned_be32(&power->sensor_id));
489         case 9:
490                 val = occ_get_powr_avg(&power->vdd.accumulator,
491                                        &power->vdd.update_tag);
492                 break;
493         case 10:
494                 val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
495                            occ->powr_sample_time_us;
496                 break;
497         case 11:
498                 val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
499                 break;
500         case 12:
501                 return snprintf(buf, PAGE_SIZE - 1, "%u_vdn\n",
502                                 get_unaligned_be32(&power->sensor_id));
503         case 13:
504                 val = occ_get_powr_avg(&power->vdn.accumulator,
505                                        &power->vdn.update_tag);
506                 break;
507         case 14:
508                 val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
509                            occ->powr_sample_time_us;
510                 break;
511         case 15:
512                 val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
513                 break;
514         default:
515                 return -EINVAL;
516         }
517
518         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
519 }
520
521 static ssize_t occ_show_caps_1_2(struct device *dev,
522                                  struct device_attribute *attr, char *buf)
523 {
524         int rc;
525         u64 val = 0;
526         struct caps_sensor_2 *caps;
527         struct occ *occ = dev_get_drvdata(dev);
528         struct occ_sensors *sensors = &occ->sensors;
529         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
530
531         rc = occ_update_response(occ);
532         if (rc)
533                 return rc;
534
535         caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
536
537         switch (sattr->nr) {
538         case 0:
539                 return snprintf(buf, PAGE_SIZE - 1, "system\n");
540         case 1:
541                 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
542                 break;
543         case 2:
544                 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
545                 break;
546         case 3:
547                 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
548                 break;
549         case 4:
550                 val = get_unaligned_be16(&caps->max) * 1000000ULL;
551                 break;
552         case 5:
553                 val = get_unaligned_be16(&caps->min) * 1000000ULL;
554                 break;
555         case 6:
556                 val = get_unaligned_be16(&caps->user) * 1000000ULL;
557                 break;
558         case 7:
559                 if (occ->sensors.caps.version == 1)
560                         return -EINVAL;
561
562                 val = caps->user_source;
563                 break;
564         default:
565                 return -EINVAL;
566         }
567
568         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
569 }
570
571 static ssize_t occ_show_caps_3(struct device *dev,
572                                struct device_attribute *attr, char *buf)
573 {
574         int rc;
575         u64 val = 0;
576         struct caps_sensor_3 *caps;
577         struct occ *occ = dev_get_drvdata(dev);
578         struct occ_sensors *sensors = &occ->sensors;
579         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
580
581         rc = occ_update_response(occ);
582         if (rc)
583                 return rc;
584
585         caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
586
587         switch (sattr->nr) {
588         case 0:
589                 return snprintf(buf, PAGE_SIZE - 1, "system\n");
590         case 1:
591                 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
592                 break;
593         case 2:
594                 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
595                 break;
596         case 3:
597                 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
598                 break;
599         case 4:
600                 val = get_unaligned_be16(&caps->max) * 1000000ULL;
601                 break;
602         case 5:
603                 val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
604                 break;
605         case 6:
606                 val = get_unaligned_be16(&caps->user) * 1000000ULL;
607                 break;
608         case 7:
609                 val = caps->user_source;
610                 break;
611         default:
612                 return -EINVAL;
613         }
614
615         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
616 }
617
618 static ssize_t occ_store_caps_user(struct device *dev,
619                                    struct device_attribute *attr,
620                                    const char *buf, size_t count)
621 {
622         int rc;
623         u16 user_power_cap;
624         unsigned long long value;
625         struct occ *occ = dev_get_drvdata(dev);
626
627         rc = kstrtoull(buf, 0, &value);
628         if (rc)
629                 return rc;
630
631         user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
632
633         rc = occ_set_user_power_cap(occ, user_power_cap);
634         if (rc)
635                 return rc;
636
637         return count;
638 }
639
640 static ssize_t occ_show_extended(struct device *dev,
641                                  struct device_attribute *attr, char *buf)
642 {
643         int rc;
644         struct extended_sensor *extn;
645         struct occ *occ = dev_get_drvdata(dev);
646         struct occ_sensors *sensors = &occ->sensors;
647         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
648
649         rc = occ_update_response(occ);
650         if (rc)
651                 return rc;
652
653         extn = ((struct extended_sensor *)sensors->extended.data) +
654                 sattr->index;
655
656         switch (sattr->nr) {
657         case 0:
658                 if (extn->flags & EXTN_FLAG_SENSOR_ID)
659                         rc = snprintf(buf, PAGE_SIZE - 1, "%u",
660                                       get_unaligned_be32(&extn->sensor_id));
661                 else
662                         rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x\n",
663                                       extn->name[0], extn->name[1],
664                                       extn->name[2], extn->name[3]);
665                 break;
666         case 1:
667                 rc = snprintf(buf, PAGE_SIZE - 1, "%02x\n", extn->flags);
668                 break;
669         case 2:
670                 rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x%02x%02x\n",
671                               extn->data[0], extn->data[1], extn->data[2],
672                               extn->data[3], extn->data[4], extn->data[5]);
673                 break;
674         default:
675                 return -EINVAL;
676         }
677
678         return rc;
679 }
680
681 /*
682  * Some helper macros to make it easier to define an occ_attribute. Since these
683  * are dynamically allocated, we shouldn't use the existing kernel macros which
684  * stringify the name argument.
685  */
686 #define ATTR_OCC(_name, _mode, _show, _store) {                         \
687         .attr   = {                                                     \
688                 .name = _name,                                          \
689                 .mode = VERIFY_OCTAL_PERMISSIONS(_mode),                \
690         },                                                              \
691         .show   = _show,                                                \
692         .store  = _store,                                               \
693 }
694
695 #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) {     \
696         .dev_attr       = ATTR_OCC(_name, _mode, _show, _store),        \
697         .index          = _index,                                       \
698         .nr             = _nr,                                          \
699 }
700
701 #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index)         \
702         ((struct sensor_device_attribute_2)                             \
703                 SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
704
705 /*
706  * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
707  * use our own instead of the built-in hwmon attribute types.
708  */
709 static int occ_setup_sensor_attrs(struct occ *occ)
710 {
711         unsigned int i, s, num_attrs = 0;
712         struct device *dev = occ->bus_dev;
713         struct occ_sensors *sensors = &occ->sensors;
714         struct occ_attribute *attr;
715         struct temp_sensor_2 *temp;
716         ssize_t (*show_temp)(struct device *, struct device_attribute *,
717                              char *) = occ_show_temp_1;
718         ssize_t (*show_freq)(struct device *, struct device_attribute *,
719                              char *) = occ_show_freq_1;
720         ssize_t (*show_power)(struct device *, struct device_attribute *,
721                               char *) = occ_show_power_1;
722         ssize_t (*show_caps)(struct device *, struct device_attribute *,
723                              char *) = occ_show_caps_1_2;
724
725         switch (sensors->temp.version) {
726         case 1:
727                 num_attrs += (sensors->temp.num_sensors * 2);
728                 break;
729         case 2:
730                 num_attrs += (sensors->temp.num_sensors * 4);
731                 show_temp = occ_show_temp_2;
732                 break;
733         default:
734                 sensors->temp.num_sensors = 0;
735         }
736
737         switch (sensors->freq.version) {
738         case 2:
739                 show_freq = occ_show_freq_2;
740                 /* fall through */
741         case 1:
742                 num_attrs += (sensors->freq.num_sensors * 2);
743                 break;
744         default:
745                 sensors->freq.num_sensors = 0;
746         }
747
748         switch (sensors->power.version) {
749         case 2:
750                 show_power = occ_show_power_2;
751                 /* fall through */
752         case 1:
753                 num_attrs += (sensors->power.num_sensors * 4);
754                 break;
755         case 0xA0:
756                 num_attrs += (sensors->power.num_sensors * 16);
757                 show_power = occ_show_power_a0;
758                 break;
759         default:
760                 sensors->power.num_sensors = 0;
761         }
762
763         switch (sensors->caps.version) {
764         case 1:
765                 num_attrs += (sensors->caps.num_sensors * 7);
766                 break;
767         case 3:
768                 show_caps = occ_show_caps_3;
769                 /* fall through */
770         case 2:
771                 num_attrs += (sensors->caps.num_sensors * 8);
772                 break;
773         default:
774                 sensors->caps.num_sensors = 0;
775         }
776
777         switch (sensors->extended.version) {
778         case 1:
779                 num_attrs += (sensors->extended.num_sensors * 3);
780                 break;
781         default:
782                 sensors->extended.num_sensors = 0;
783         }
784
785         occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
786                                   GFP_KERNEL);
787         if (!occ->attrs)
788                 return -ENOMEM;
789
790         /* null-terminated list */
791         occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
792                                         num_attrs + 1, GFP_KERNEL);
793         if (!occ->group.attrs)
794                 return -ENOMEM;
795
796         attr = occ->attrs;
797
798         for (i = 0; i < sensors->temp.num_sensors; ++i) {
799                 s = i + 1;
800                 temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
801
802                 snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
803                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
804                                              0, i);
805                 attr++;
806
807                 if (sensors->temp.version > 1 &&
808                     temp->fru_type == OCC_FRU_TYPE_VRM) {
809                         snprintf(attr->name, sizeof(attr->name),
810                                  "temp%d_alarm", s);
811                 } else {
812                         snprintf(attr->name, sizeof(attr->name),
813                                  "temp%d_input", s);
814                 }
815
816                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
817                                              1, i);
818                 attr++;
819
820                 if (sensors->temp.version > 1) {
821                         snprintf(attr->name, sizeof(attr->name),
822                                  "temp%d_fru_type", s);
823                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
824                                                      show_temp, NULL, 2, i);
825                         attr++;
826
827                         snprintf(attr->name, sizeof(attr->name),
828                                  "temp%d_fault", s);
829                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
830                                                      show_temp, NULL, 3, i);
831                         attr++;
832                 }
833         }
834
835         for (i = 0; i < sensors->freq.num_sensors; ++i) {
836                 s = i + 1;
837
838                 snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
839                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
840                                              0, i);
841                 attr++;
842
843                 snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
844                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
845                                              1, i);
846                 attr++;
847         }
848
849         if (sensors->power.version == 0xA0) {
850                 /*
851                  * Special case for many-attribute power sensor. Split it into
852                  * a sensor number per power type, emulating several sensors.
853                  */
854                 for (i = 0; i < sensors->power.num_sensors; ++i) {
855                         unsigned int j;
856                         unsigned int nr = 0;
857
858                         s = (i * 4) + 1;
859
860                         for (j = 0; j < 4; ++j) {
861                                 snprintf(attr->name, sizeof(attr->name),
862                                          "power%d_label", s);
863                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
864                                                              show_power, NULL,
865                                                              nr++, i);
866                                 attr++;
867
868                                 snprintf(attr->name, sizeof(attr->name),
869                                          "power%d_average", s);
870                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
871                                                              show_power, NULL,
872                                                              nr++, i);
873                                 attr++;
874
875                                 snprintf(attr->name, sizeof(attr->name),
876                                          "power%d_average_interval", s);
877                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
878                                                              show_power, NULL,
879                                                              nr++, i);
880                                 attr++;
881
882                                 snprintf(attr->name, sizeof(attr->name),
883                                          "power%d_input", s);
884                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
885                                                              show_power, NULL,
886                                                              nr++, i);
887                                 attr++;
888
889                                 s++;
890                         }
891                 }
892         } else {
893                 for (i = 0; i < sensors->power.num_sensors; ++i) {
894                         s = i + 1;
895
896                         snprintf(attr->name, sizeof(attr->name),
897                                  "power%d_label", s);
898                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
899                                                      show_power, NULL, 0, i);
900                         attr++;
901
902                         snprintf(attr->name, sizeof(attr->name),
903                                  "power%d_average", s);
904                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
905                                                      show_power, NULL, 1, i);
906                         attr++;
907
908                         snprintf(attr->name, sizeof(attr->name),
909                                  "power%d_average_interval", s);
910                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
911                                                      show_power, NULL, 2, i);
912                         attr++;
913
914                         snprintf(attr->name, sizeof(attr->name),
915                                  "power%d_input", s);
916                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
917                                                      show_power, NULL, 3, i);
918                         attr++;
919                 }
920         }
921
922         if (sensors->caps.num_sensors >= 1) {
923                 s = sensors->power.num_sensors + 1;
924
925                 snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
926                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
927                                              0, 0);
928                 attr++;
929
930                 snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
931                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
932                                              1, 0);
933                 attr++;
934
935                 snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
936                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
937                                              2, 0);
938                 attr++;
939
940                 snprintf(attr->name, sizeof(attr->name),
941                          "power%d_cap_not_redundant", s);
942                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
943                                              3, 0);
944                 attr++;
945
946                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
947                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
948                                              4, 0);
949                 attr++;
950
951                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
952                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
953                                              5, 0);
954                 attr++;
955
956                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
957                          s);
958                 attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
959                                              occ_store_caps_user, 6, 0);
960                 attr++;
961
962                 if (sensors->caps.version > 1) {
963                         snprintf(attr->name, sizeof(attr->name),
964                                  "power%d_cap_user_source", s);
965                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
966                                                      show_caps, NULL, 7, 0);
967                         attr++;
968                 }
969         }
970
971         for (i = 0; i < sensors->extended.num_sensors; ++i) {
972                 s = i + 1;
973
974                 snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
975                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
976                                              occ_show_extended, NULL, 0, i);
977                 attr++;
978
979                 snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
980                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
981                                              occ_show_extended, NULL, 1, i);
982                 attr++;
983
984                 snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
985                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
986                                              occ_show_extended, NULL, 2, i);
987                 attr++;
988         }
989
990         /* put the sensors in the group */
991         for (i = 0; i < num_attrs; ++i) {
992                 sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
993                 occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
994         }
995
996         return 0;
997 }
998
999 /* only need to do this once at startup, as OCC won't change sensors on us */
1000 static void occ_parse_poll_response(struct occ *occ)
1001 {
1002         unsigned int i, old_offset, offset = 0, size = 0;
1003         struct occ_sensor *sensor;
1004         struct occ_sensors *sensors = &occ->sensors;
1005         struct occ_response *resp = &occ->resp;
1006         struct occ_poll_response *poll =
1007                 (struct occ_poll_response *)&resp->data[0];
1008         struct occ_poll_response_header *header = &poll->header;
1009         struct occ_sensor_data_block *block = &poll->block;
1010
1011         dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1012                  header->occ_code_level);
1013
1014         for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1015                 block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1016                 old_offset = offset;
1017                 offset = (block->header.num_sensors *
1018                           block->header.sensor_length) + sizeof(block->header);
1019                 size += offset;
1020
1021                 /* validate all the length/size fields */
1022                 if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1023                         dev_warn(occ->bus_dev, "exceeded response buffer\n");
1024                         return;
1025                 }
1026
1027                 dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1028                         old_offset, offset - 1, block->header.eye_catcher,
1029                         block->header.num_sensors);
1030
1031                 /* match sensor block type */
1032                 if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1033                         sensor = &sensors->temp;
1034                 else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1035                         sensor = &sensors->freq;
1036                 else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1037                         sensor = &sensors->power;
1038                 else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1039                         sensor = &sensors->caps;
1040                 else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1041                         sensor = &sensors->extended;
1042                 else {
1043                         dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1044                                  block->header.eye_catcher);
1045                         continue;
1046                 }
1047
1048                 sensor->num_sensors = block->header.num_sensors;
1049                 sensor->version = block->header.sensor_format;
1050                 sensor->data = &block->data;
1051         }
1052
1053         dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1054                 sizeof(*header), size + sizeof(*header));
1055 }
1056
1057 int occ_setup(struct occ *occ, const char *name)
1058 {
1059         int rc;
1060
1061         mutex_init(&occ->lock);
1062         occ->groups[0] = &occ->group;
1063
1064         /* no need to lock */
1065         rc = occ_poll(occ);
1066         if (rc == -ESHUTDOWN) {
1067                 dev_info(occ->bus_dev, "host is not ready\n");
1068                 return rc;
1069         } else if (rc < 0) {
1070                 dev_err(occ->bus_dev, "failed to get OCC poll response: %d\n",
1071                         rc);
1072                 return rc;
1073         }
1074
1075         occ_parse_poll_response(occ);
1076
1077         rc = occ_setup_sensor_attrs(occ);
1078         if (rc) {
1079                 dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n",
1080                         rc);
1081                 return rc;
1082         }
1083
1084         occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name,
1085                                                             occ, occ->groups);
1086         if (IS_ERR(occ->hwmon)) {
1087                 rc = PTR_ERR(occ->hwmon);
1088                 dev_err(occ->bus_dev, "failed to register hwmon device: %d\n",
1089                         rc);
1090                 return rc;
1091         }
1092
1093         rc = occ_setup_sysfs(occ);
1094         if (rc)
1095                 dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1096
1097         return rc;
1098 }