Merge branch 'for-4.15/asus' into for-linus
[sfrench/cifs-2.6.git] / drivers / hv / vmbus_drv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38
39 #include <asm/hyperv.h>
40 #include <asm/hypervisor.h>
41 #include <asm/mshyperv.h>
42 #include <linux/notifier.h>
43 #include <linux/ptrace.h>
44 #include <linux/screen_info.h>
45 #include <linux/kdebug.h>
46 #include <linux/efi.h>
47 #include <linux/random.h>
48 #include "hyperv_vmbus.h"
49
50 struct vmbus_dynid {
51         struct list_head node;
52         struct hv_vmbus_device_id id;
53 };
54
55 static struct acpi_device  *hv_acpi_dev;
56
57 static struct completion probe_event;
58
59 static int hyperv_cpuhp_online;
60
61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62                               void *args)
63 {
64         struct pt_regs *regs;
65
66         regs = current_pt_regs();
67
68         hyperv_report_panic(regs);
69         return NOTIFY_DONE;
70 }
71
72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73                             void *args)
74 {
75         struct die_args *die = (struct die_args *)args;
76         struct pt_regs *regs = die->regs;
77
78         hyperv_report_panic(regs);
79         return NOTIFY_DONE;
80 }
81
82 static struct notifier_block hyperv_die_block = {
83         .notifier_call = hyperv_die_event,
84 };
85 static struct notifier_block hyperv_panic_block = {
86         .notifier_call = hyperv_panic_event,
87 };
88
89 static const char *fb_mmio_name = "fb_range";
90 static struct resource *fb_mmio;
91 static struct resource *hyperv_mmio;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93
94 static int vmbus_exists(void)
95 {
96         if (hv_acpi_dev == NULL)
97                 return -ENODEV;
98
99         return 0;
100 }
101
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104 {
105         int i;
106         for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107                 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108 }
109
110 static u8 channel_monitor_group(struct vmbus_channel *channel)
111 {
112         return (u8)channel->offermsg.monitorid / 32;
113 }
114
115 static u8 channel_monitor_offset(struct vmbus_channel *channel)
116 {
117         return (u8)channel->offermsg.monitorid % 32;
118 }
119
120 static u32 channel_pending(struct vmbus_channel *channel,
121                            struct hv_monitor_page *monitor_page)
122 {
123         u8 monitor_group = channel_monitor_group(channel);
124         return monitor_page->trigger_group[monitor_group].pending;
125 }
126
127 static u32 channel_latency(struct vmbus_channel *channel,
128                            struct hv_monitor_page *monitor_page)
129 {
130         u8 monitor_group = channel_monitor_group(channel);
131         u8 monitor_offset = channel_monitor_offset(channel);
132         return monitor_page->latency[monitor_group][monitor_offset];
133 }
134
135 static u32 channel_conn_id(struct vmbus_channel *channel,
136                            struct hv_monitor_page *monitor_page)
137 {
138         u8 monitor_group = channel_monitor_group(channel);
139         u8 monitor_offset = channel_monitor_offset(channel);
140         return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
141 }
142
143 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
144                        char *buf)
145 {
146         struct hv_device *hv_dev = device_to_hv_device(dev);
147
148         if (!hv_dev->channel)
149                 return -ENODEV;
150         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
151 }
152 static DEVICE_ATTR_RO(id);
153
154 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
155                           char *buf)
156 {
157         struct hv_device *hv_dev = device_to_hv_device(dev);
158
159         if (!hv_dev->channel)
160                 return -ENODEV;
161         return sprintf(buf, "%d\n", hv_dev->channel->state);
162 }
163 static DEVICE_ATTR_RO(state);
164
165 static ssize_t monitor_id_show(struct device *dev,
166                                struct device_attribute *dev_attr, char *buf)
167 {
168         struct hv_device *hv_dev = device_to_hv_device(dev);
169
170         if (!hv_dev->channel)
171                 return -ENODEV;
172         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
173 }
174 static DEVICE_ATTR_RO(monitor_id);
175
176 static ssize_t class_id_show(struct device *dev,
177                                struct device_attribute *dev_attr, char *buf)
178 {
179         struct hv_device *hv_dev = device_to_hv_device(dev);
180
181         if (!hv_dev->channel)
182                 return -ENODEV;
183         return sprintf(buf, "{%pUl}\n",
184                        hv_dev->channel->offermsg.offer.if_type.b);
185 }
186 static DEVICE_ATTR_RO(class_id);
187
188 static ssize_t device_id_show(struct device *dev,
189                               struct device_attribute *dev_attr, char *buf)
190 {
191         struct hv_device *hv_dev = device_to_hv_device(dev);
192
193         if (!hv_dev->channel)
194                 return -ENODEV;
195         return sprintf(buf, "{%pUl}\n",
196                        hv_dev->channel->offermsg.offer.if_instance.b);
197 }
198 static DEVICE_ATTR_RO(device_id);
199
200 static ssize_t modalias_show(struct device *dev,
201                              struct device_attribute *dev_attr, char *buf)
202 {
203         struct hv_device *hv_dev = device_to_hv_device(dev);
204         char alias_name[VMBUS_ALIAS_LEN + 1];
205
206         print_alias_name(hv_dev, alias_name);
207         return sprintf(buf, "vmbus:%s\n", alias_name);
208 }
209 static DEVICE_ATTR_RO(modalias);
210
211 static ssize_t server_monitor_pending_show(struct device *dev,
212                                            struct device_attribute *dev_attr,
213                                            char *buf)
214 {
215         struct hv_device *hv_dev = device_to_hv_device(dev);
216
217         if (!hv_dev->channel)
218                 return -ENODEV;
219         return sprintf(buf, "%d\n",
220                        channel_pending(hv_dev->channel,
221                                        vmbus_connection.monitor_pages[1]));
222 }
223 static DEVICE_ATTR_RO(server_monitor_pending);
224
225 static ssize_t client_monitor_pending_show(struct device *dev,
226                                            struct device_attribute *dev_attr,
227                                            char *buf)
228 {
229         struct hv_device *hv_dev = device_to_hv_device(dev);
230
231         if (!hv_dev->channel)
232                 return -ENODEV;
233         return sprintf(buf, "%d\n",
234                        channel_pending(hv_dev->channel,
235                                        vmbus_connection.monitor_pages[1]));
236 }
237 static DEVICE_ATTR_RO(client_monitor_pending);
238
239 static ssize_t server_monitor_latency_show(struct device *dev,
240                                            struct device_attribute *dev_attr,
241                                            char *buf)
242 {
243         struct hv_device *hv_dev = device_to_hv_device(dev);
244
245         if (!hv_dev->channel)
246                 return -ENODEV;
247         return sprintf(buf, "%d\n",
248                        channel_latency(hv_dev->channel,
249                                        vmbus_connection.monitor_pages[0]));
250 }
251 static DEVICE_ATTR_RO(server_monitor_latency);
252
253 static ssize_t client_monitor_latency_show(struct device *dev,
254                                            struct device_attribute *dev_attr,
255                                            char *buf)
256 {
257         struct hv_device *hv_dev = device_to_hv_device(dev);
258
259         if (!hv_dev->channel)
260                 return -ENODEV;
261         return sprintf(buf, "%d\n",
262                        channel_latency(hv_dev->channel,
263                                        vmbus_connection.monitor_pages[1]));
264 }
265 static DEVICE_ATTR_RO(client_monitor_latency);
266
267 static ssize_t server_monitor_conn_id_show(struct device *dev,
268                                            struct device_attribute *dev_attr,
269                                            char *buf)
270 {
271         struct hv_device *hv_dev = device_to_hv_device(dev);
272
273         if (!hv_dev->channel)
274                 return -ENODEV;
275         return sprintf(buf, "%d\n",
276                        channel_conn_id(hv_dev->channel,
277                                        vmbus_connection.monitor_pages[0]));
278 }
279 static DEVICE_ATTR_RO(server_monitor_conn_id);
280
281 static ssize_t client_monitor_conn_id_show(struct device *dev,
282                                            struct device_attribute *dev_attr,
283                                            char *buf)
284 {
285         struct hv_device *hv_dev = device_to_hv_device(dev);
286
287         if (!hv_dev->channel)
288                 return -ENODEV;
289         return sprintf(buf, "%d\n",
290                        channel_conn_id(hv_dev->channel,
291                                        vmbus_connection.monitor_pages[1]));
292 }
293 static DEVICE_ATTR_RO(client_monitor_conn_id);
294
295 static ssize_t out_intr_mask_show(struct device *dev,
296                                   struct device_attribute *dev_attr, char *buf)
297 {
298         struct hv_device *hv_dev = device_to_hv_device(dev);
299         struct hv_ring_buffer_debug_info outbound;
300
301         if (!hv_dev->channel)
302                 return -ENODEV;
303         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
304         return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
305 }
306 static DEVICE_ATTR_RO(out_intr_mask);
307
308 static ssize_t out_read_index_show(struct device *dev,
309                                    struct device_attribute *dev_attr, char *buf)
310 {
311         struct hv_device *hv_dev = device_to_hv_device(dev);
312         struct hv_ring_buffer_debug_info outbound;
313
314         if (!hv_dev->channel)
315                 return -ENODEV;
316         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
317         return sprintf(buf, "%d\n", outbound.current_read_index);
318 }
319 static DEVICE_ATTR_RO(out_read_index);
320
321 static ssize_t out_write_index_show(struct device *dev,
322                                     struct device_attribute *dev_attr,
323                                     char *buf)
324 {
325         struct hv_device *hv_dev = device_to_hv_device(dev);
326         struct hv_ring_buffer_debug_info outbound;
327
328         if (!hv_dev->channel)
329                 return -ENODEV;
330         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
331         return sprintf(buf, "%d\n", outbound.current_write_index);
332 }
333 static DEVICE_ATTR_RO(out_write_index);
334
335 static ssize_t out_read_bytes_avail_show(struct device *dev,
336                                          struct device_attribute *dev_attr,
337                                          char *buf)
338 {
339         struct hv_device *hv_dev = device_to_hv_device(dev);
340         struct hv_ring_buffer_debug_info outbound;
341
342         if (!hv_dev->channel)
343                 return -ENODEV;
344         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
345         return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
346 }
347 static DEVICE_ATTR_RO(out_read_bytes_avail);
348
349 static ssize_t out_write_bytes_avail_show(struct device *dev,
350                                           struct device_attribute *dev_attr,
351                                           char *buf)
352 {
353         struct hv_device *hv_dev = device_to_hv_device(dev);
354         struct hv_ring_buffer_debug_info outbound;
355
356         if (!hv_dev->channel)
357                 return -ENODEV;
358         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
359         return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
360 }
361 static DEVICE_ATTR_RO(out_write_bytes_avail);
362
363 static ssize_t in_intr_mask_show(struct device *dev,
364                                  struct device_attribute *dev_attr, char *buf)
365 {
366         struct hv_device *hv_dev = device_to_hv_device(dev);
367         struct hv_ring_buffer_debug_info inbound;
368
369         if (!hv_dev->channel)
370                 return -ENODEV;
371         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
372         return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
373 }
374 static DEVICE_ATTR_RO(in_intr_mask);
375
376 static ssize_t in_read_index_show(struct device *dev,
377                                   struct device_attribute *dev_attr, char *buf)
378 {
379         struct hv_device *hv_dev = device_to_hv_device(dev);
380         struct hv_ring_buffer_debug_info inbound;
381
382         if (!hv_dev->channel)
383                 return -ENODEV;
384         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
385         return sprintf(buf, "%d\n", inbound.current_read_index);
386 }
387 static DEVICE_ATTR_RO(in_read_index);
388
389 static ssize_t in_write_index_show(struct device *dev,
390                                    struct device_attribute *dev_attr, char *buf)
391 {
392         struct hv_device *hv_dev = device_to_hv_device(dev);
393         struct hv_ring_buffer_debug_info inbound;
394
395         if (!hv_dev->channel)
396                 return -ENODEV;
397         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
398         return sprintf(buf, "%d\n", inbound.current_write_index);
399 }
400 static DEVICE_ATTR_RO(in_write_index);
401
402 static ssize_t in_read_bytes_avail_show(struct device *dev,
403                                         struct device_attribute *dev_attr,
404                                         char *buf)
405 {
406         struct hv_device *hv_dev = device_to_hv_device(dev);
407         struct hv_ring_buffer_debug_info inbound;
408
409         if (!hv_dev->channel)
410                 return -ENODEV;
411         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
412         return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
413 }
414 static DEVICE_ATTR_RO(in_read_bytes_avail);
415
416 static ssize_t in_write_bytes_avail_show(struct device *dev,
417                                          struct device_attribute *dev_attr,
418                                          char *buf)
419 {
420         struct hv_device *hv_dev = device_to_hv_device(dev);
421         struct hv_ring_buffer_debug_info inbound;
422
423         if (!hv_dev->channel)
424                 return -ENODEV;
425         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
426         return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
427 }
428 static DEVICE_ATTR_RO(in_write_bytes_avail);
429
430 static ssize_t channel_vp_mapping_show(struct device *dev,
431                                        struct device_attribute *dev_attr,
432                                        char *buf)
433 {
434         struct hv_device *hv_dev = device_to_hv_device(dev);
435         struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
436         unsigned long flags;
437         int buf_size = PAGE_SIZE, n_written, tot_written;
438         struct list_head *cur;
439
440         if (!channel)
441                 return -ENODEV;
442
443         tot_written = snprintf(buf, buf_size, "%u:%u\n",
444                 channel->offermsg.child_relid, channel->target_cpu);
445
446         spin_lock_irqsave(&channel->lock, flags);
447
448         list_for_each(cur, &channel->sc_list) {
449                 if (tot_written >= buf_size - 1)
450                         break;
451
452                 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
453                 n_written = scnprintf(buf + tot_written,
454                                      buf_size - tot_written,
455                                      "%u:%u\n",
456                                      cur_sc->offermsg.child_relid,
457                                      cur_sc->target_cpu);
458                 tot_written += n_written;
459         }
460
461         spin_unlock_irqrestore(&channel->lock, flags);
462
463         return tot_written;
464 }
465 static DEVICE_ATTR_RO(channel_vp_mapping);
466
467 static ssize_t vendor_show(struct device *dev,
468                            struct device_attribute *dev_attr,
469                            char *buf)
470 {
471         struct hv_device *hv_dev = device_to_hv_device(dev);
472         return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
473 }
474 static DEVICE_ATTR_RO(vendor);
475
476 static ssize_t device_show(struct device *dev,
477                            struct device_attribute *dev_attr,
478                            char *buf)
479 {
480         struct hv_device *hv_dev = device_to_hv_device(dev);
481         return sprintf(buf, "0x%x\n", hv_dev->device_id);
482 }
483 static DEVICE_ATTR_RO(device);
484
485 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
486 static struct attribute *vmbus_dev_attrs[] = {
487         &dev_attr_id.attr,
488         &dev_attr_state.attr,
489         &dev_attr_monitor_id.attr,
490         &dev_attr_class_id.attr,
491         &dev_attr_device_id.attr,
492         &dev_attr_modalias.attr,
493         &dev_attr_server_monitor_pending.attr,
494         &dev_attr_client_monitor_pending.attr,
495         &dev_attr_server_monitor_latency.attr,
496         &dev_attr_client_monitor_latency.attr,
497         &dev_attr_server_monitor_conn_id.attr,
498         &dev_attr_client_monitor_conn_id.attr,
499         &dev_attr_out_intr_mask.attr,
500         &dev_attr_out_read_index.attr,
501         &dev_attr_out_write_index.attr,
502         &dev_attr_out_read_bytes_avail.attr,
503         &dev_attr_out_write_bytes_avail.attr,
504         &dev_attr_in_intr_mask.attr,
505         &dev_attr_in_read_index.attr,
506         &dev_attr_in_write_index.attr,
507         &dev_attr_in_read_bytes_avail.attr,
508         &dev_attr_in_write_bytes_avail.attr,
509         &dev_attr_channel_vp_mapping.attr,
510         &dev_attr_vendor.attr,
511         &dev_attr_device.attr,
512         NULL,
513 };
514 ATTRIBUTE_GROUPS(vmbus_dev);
515
516 /*
517  * vmbus_uevent - add uevent for our device
518  *
519  * This routine is invoked when a device is added or removed on the vmbus to
520  * generate a uevent to udev in the userspace. The udev will then look at its
521  * rule and the uevent generated here to load the appropriate driver
522  *
523  * The alias string will be of the form vmbus:guid where guid is the string
524  * representation of the device guid (each byte of the guid will be
525  * represented with two hex characters.
526  */
527 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
528 {
529         struct hv_device *dev = device_to_hv_device(device);
530         int ret;
531         char alias_name[VMBUS_ALIAS_LEN + 1];
532
533         print_alias_name(dev, alias_name);
534         ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
535         return ret;
536 }
537
538 static const uuid_le null_guid;
539
540 static inline bool is_null_guid(const uuid_le *guid)
541 {
542         if (uuid_le_cmp(*guid, null_guid))
543                 return false;
544         return true;
545 }
546
547 /*
548  * Return a matching hv_vmbus_device_id pointer.
549  * If there is no match, return NULL.
550  */
551 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
552                                         const uuid_le *guid)
553 {
554         const struct hv_vmbus_device_id *id = NULL;
555         struct vmbus_dynid *dynid;
556
557         /* Look at the dynamic ids first, before the static ones */
558         spin_lock(&drv->dynids.lock);
559         list_for_each_entry(dynid, &drv->dynids.list, node) {
560                 if (!uuid_le_cmp(dynid->id.guid, *guid)) {
561                         id = &dynid->id;
562                         break;
563                 }
564         }
565         spin_unlock(&drv->dynids.lock);
566
567         if (id)
568                 return id;
569
570         id = drv->id_table;
571         if (id == NULL)
572                 return NULL; /* empty device table */
573
574         for (; !is_null_guid(&id->guid); id++)
575                 if (!uuid_le_cmp(id->guid, *guid))
576                         return id;
577
578         return NULL;
579 }
580
581 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
582 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
583 {
584         struct vmbus_dynid *dynid;
585
586         dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
587         if (!dynid)
588                 return -ENOMEM;
589
590         dynid->id.guid = *guid;
591
592         spin_lock(&drv->dynids.lock);
593         list_add_tail(&dynid->node, &drv->dynids.list);
594         spin_unlock(&drv->dynids.lock);
595
596         return driver_attach(&drv->driver);
597 }
598
599 static void vmbus_free_dynids(struct hv_driver *drv)
600 {
601         struct vmbus_dynid *dynid, *n;
602
603         spin_lock(&drv->dynids.lock);
604         list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
605                 list_del(&dynid->node);
606                 kfree(dynid);
607         }
608         spin_unlock(&drv->dynids.lock);
609 }
610
611 /*
612  * store_new_id - sysfs frontend to vmbus_add_dynid()
613  *
614  * Allow GUIDs to be added to an existing driver via sysfs.
615  */
616 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
617                             size_t count)
618 {
619         struct hv_driver *drv = drv_to_hv_drv(driver);
620         uuid_le guid;
621         ssize_t retval;
622
623         retval = uuid_le_to_bin(buf, &guid);
624         if (retval)
625                 return retval;
626
627         if (hv_vmbus_get_id(drv, &guid))
628                 return -EEXIST;
629
630         retval = vmbus_add_dynid(drv, &guid);
631         if (retval)
632                 return retval;
633         return count;
634 }
635 static DRIVER_ATTR_WO(new_id);
636
637 /*
638  * store_remove_id - remove a PCI device ID from this driver
639  *
640  * Removes a dynamic pci device ID to this driver.
641  */
642 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
643                                size_t count)
644 {
645         struct hv_driver *drv = drv_to_hv_drv(driver);
646         struct vmbus_dynid *dynid, *n;
647         uuid_le guid;
648         ssize_t retval;
649
650         retval = uuid_le_to_bin(buf, &guid);
651         if (retval)
652                 return retval;
653
654         retval = -ENODEV;
655         spin_lock(&drv->dynids.lock);
656         list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
657                 struct hv_vmbus_device_id *id = &dynid->id;
658
659                 if (!uuid_le_cmp(id->guid, guid)) {
660                         list_del(&dynid->node);
661                         kfree(dynid);
662                         retval = count;
663                         break;
664                 }
665         }
666         spin_unlock(&drv->dynids.lock);
667
668         return retval;
669 }
670 static DRIVER_ATTR_WO(remove_id);
671
672 static struct attribute *vmbus_drv_attrs[] = {
673         &driver_attr_new_id.attr,
674         &driver_attr_remove_id.attr,
675         NULL,
676 };
677 ATTRIBUTE_GROUPS(vmbus_drv);
678
679
680 /*
681  * vmbus_match - Attempt to match the specified device to the specified driver
682  */
683 static int vmbus_match(struct device *device, struct device_driver *driver)
684 {
685         struct hv_driver *drv = drv_to_hv_drv(driver);
686         struct hv_device *hv_dev = device_to_hv_device(device);
687
688         /* The hv_sock driver handles all hv_sock offers. */
689         if (is_hvsock_channel(hv_dev->channel))
690                 return drv->hvsock;
691
692         if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
693                 return 1;
694
695         return 0;
696 }
697
698 /*
699  * vmbus_probe - Add the new vmbus's child device
700  */
701 static int vmbus_probe(struct device *child_device)
702 {
703         int ret = 0;
704         struct hv_driver *drv =
705                         drv_to_hv_drv(child_device->driver);
706         struct hv_device *dev = device_to_hv_device(child_device);
707         const struct hv_vmbus_device_id *dev_id;
708
709         dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
710         if (drv->probe) {
711                 ret = drv->probe(dev, dev_id);
712                 if (ret != 0)
713                         pr_err("probe failed for device %s (%d)\n",
714                                dev_name(child_device), ret);
715
716         } else {
717                 pr_err("probe not set for driver %s\n",
718                        dev_name(child_device));
719                 ret = -ENODEV;
720         }
721         return ret;
722 }
723
724 /*
725  * vmbus_remove - Remove a vmbus device
726  */
727 static int vmbus_remove(struct device *child_device)
728 {
729         struct hv_driver *drv;
730         struct hv_device *dev = device_to_hv_device(child_device);
731
732         if (child_device->driver) {
733                 drv = drv_to_hv_drv(child_device->driver);
734                 if (drv->remove)
735                         drv->remove(dev);
736         }
737
738         return 0;
739 }
740
741
742 /*
743  * vmbus_shutdown - Shutdown a vmbus device
744  */
745 static void vmbus_shutdown(struct device *child_device)
746 {
747         struct hv_driver *drv;
748         struct hv_device *dev = device_to_hv_device(child_device);
749
750
751         /* The device may not be attached yet */
752         if (!child_device->driver)
753                 return;
754
755         drv = drv_to_hv_drv(child_device->driver);
756
757         if (drv->shutdown)
758                 drv->shutdown(dev);
759 }
760
761
762 /*
763  * vmbus_device_release - Final callback release of the vmbus child device
764  */
765 static void vmbus_device_release(struct device *device)
766 {
767         struct hv_device *hv_dev = device_to_hv_device(device);
768         struct vmbus_channel *channel = hv_dev->channel;
769
770         mutex_lock(&vmbus_connection.channel_mutex);
771         hv_process_channel_removal(channel,
772                                    channel->offermsg.child_relid);
773         mutex_unlock(&vmbus_connection.channel_mutex);
774         kfree(hv_dev);
775
776 }
777
778 /* The one and only one */
779 static struct bus_type  hv_bus = {
780         .name =         "vmbus",
781         .match =                vmbus_match,
782         .shutdown =             vmbus_shutdown,
783         .remove =               vmbus_remove,
784         .probe =                vmbus_probe,
785         .uevent =               vmbus_uevent,
786         .dev_groups =           vmbus_dev_groups,
787         .drv_groups =           vmbus_drv_groups,
788 };
789
790 struct onmessage_work_context {
791         struct work_struct work;
792         struct hv_message msg;
793 };
794
795 static void vmbus_onmessage_work(struct work_struct *work)
796 {
797         struct onmessage_work_context *ctx;
798
799         /* Do not process messages if we're in DISCONNECTED state */
800         if (vmbus_connection.conn_state == DISCONNECTED)
801                 return;
802
803         ctx = container_of(work, struct onmessage_work_context,
804                            work);
805         vmbus_onmessage(&ctx->msg);
806         kfree(ctx);
807 }
808
809 static void hv_process_timer_expiration(struct hv_message *msg,
810                                         struct hv_per_cpu_context *hv_cpu)
811 {
812         struct clock_event_device *dev = hv_cpu->clk_evt;
813
814         if (dev->event_handler)
815                 dev->event_handler(dev);
816
817         vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
818 }
819
820 void vmbus_on_msg_dpc(unsigned long data)
821 {
822         struct hv_per_cpu_context *hv_cpu = (void *)data;
823         void *page_addr = hv_cpu->synic_message_page;
824         struct hv_message *msg = (struct hv_message *)page_addr +
825                                   VMBUS_MESSAGE_SINT;
826         struct vmbus_channel_message_header *hdr;
827         const struct vmbus_channel_message_table_entry *entry;
828         struct onmessage_work_context *ctx;
829         u32 message_type = msg->header.message_type;
830
831         if (message_type == HVMSG_NONE)
832                 /* no msg */
833                 return;
834
835         hdr = (struct vmbus_channel_message_header *)msg->u.payload;
836
837         if (hdr->msgtype >= CHANNELMSG_COUNT) {
838                 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
839                 goto msg_handled;
840         }
841
842         entry = &channel_message_table[hdr->msgtype];
843         if (entry->handler_type == VMHT_BLOCKING) {
844                 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
845                 if (ctx == NULL)
846                         return;
847
848                 INIT_WORK(&ctx->work, vmbus_onmessage_work);
849                 memcpy(&ctx->msg, msg, sizeof(*msg));
850
851                 /*
852                  * The host can generate a rescind message while we
853                  * may still be handling the original offer. We deal with
854                  * this condition by ensuring the processing is done on the
855                  * same CPU.
856                  */
857                 switch (hdr->msgtype) {
858                 case CHANNELMSG_RESCIND_CHANNELOFFER:
859                         /*
860                          * If we are handling the rescind message;
861                          * schedule the work on the global work queue.
862                          */
863                         schedule_work_on(vmbus_connection.connect_cpu,
864                                          &ctx->work);
865                         break;
866
867                 case CHANNELMSG_OFFERCHANNEL:
868                         atomic_inc(&vmbus_connection.offer_in_progress);
869                         queue_work_on(vmbus_connection.connect_cpu,
870                                       vmbus_connection.work_queue,
871                                       &ctx->work);
872                         break;
873
874                 default:
875                         queue_work(vmbus_connection.work_queue, &ctx->work);
876                 }
877         } else
878                 entry->message_handler(hdr);
879
880 msg_handled:
881         vmbus_signal_eom(msg, message_type);
882 }
883
884
885 /*
886  * Direct callback for channels using other deferred processing
887  */
888 static void vmbus_channel_isr(struct vmbus_channel *channel)
889 {
890         void (*callback_fn)(void *);
891
892         callback_fn = READ_ONCE(channel->onchannel_callback);
893         if (likely(callback_fn != NULL))
894                 (*callback_fn)(channel->channel_callback_context);
895 }
896
897 /*
898  * Schedule all channels with events pending
899  */
900 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
901 {
902         unsigned long *recv_int_page;
903         u32 maxbits, relid;
904
905         if (vmbus_proto_version < VERSION_WIN8) {
906                 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
907                 recv_int_page = vmbus_connection.recv_int_page;
908         } else {
909                 /*
910                  * When the host is win8 and beyond, the event page
911                  * can be directly checked to get the id of the channel
912                  * that has the interrupt pending.
913                  */
914                 void *page_addr = hv_cpu->synic_event_page;
915                 union hv_synic_event_flags *event
916                         = (union hv_synic_event_flags *)page_addr +
917                                                  VMBUS_MESSAGE_SINT;
918
919                 maxbits = HV_EVENT_FLAGS_COUNT;
920                 recv_int_page = event->flags;
921         }
922
923         if (unlikely(!recv_int_page))
924                 return;
925
926         for_each_set_bit(relid, recv_int_page, maxbits) {
927                 struct vmbus_channel *channel;
928
929                 if (!sync_test_and_clear_bit(relid, recv_int_page))
930                         continue;
931
932                 /* Special case - vmbus channel protocol msg */
933                 if (relid == 0)
934                         continue;
935
936                 rcu_read_lock();
937
938                 /* Find channel based on relid */
939                 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
940                         if (channel->offermsg.child_relid != relid)
941                                 continue;
942
943                         if (channel->rescind)
944                                 continue;
945
946                         switch (channel->callback_mode) {
947                         case HV_CALL_ISR:
948                                 vmbus_channel_isr(channel);
949                                 break;
950
951                         case HV_CALL_BATCHED:
952                                 hv_begin_read(&channel->inbound);
953                                 /* fallthrough */
954                         case HV_CALL_DIRECT:
955                                 tasklet_schedule(&channel->callback_event);
956                         }
957                 }
958
959                 rcu_read_unlock();
960         }
961 }
962
963 static void vmbus_isr(void)
964 {
965         struct hv_per_cpu_context *hv_cpu
966                 = this_cpu_ptr(hv_context.cpu_context);
967         void *page_addr = hv_cpu->synic_event_page;
968         struct hv_message *msg;
969         union hv_synic_event_flags *event;
970         bool handled = false;
971
972         if (unlikely(page_addr == NULL))
973                 return;
974
975         event = (union hv_synic_event_flags *)page_addr +
976                                          VMBUS_MESSAGE_SINT;
977         /*
978          * Check for events before checking for messages. This is the order
979          * in which events and messages are checked in Windows guests on
980          * Hyper-V, and the Windows team suggested we do the same.
981          */
982
983         if ((vmbus_proto_version == VERSION_WS2008) ||
984                 (vmbus_proto_version == VERSION_WIN7)) {
985
986                 /* Since we are a child, we only need to check bit 0 */
987                 if (sync_test_and_clear_bit(0, event->flags))
988                         handled = true;
989         } else {
990                 /*
991                  * Our host is win8 or above. The signaling mechanism
992                  * has changed and we can directly look at the event page.
993                  * If bit n is set then we have an interrup on the channel
994                  * whose id is n.
995                  */
996                 handled = true;
997         }
998
999         if (handled)
1000                 vmbus_chan_sched(hv_cpu);
1001
1002         page_addr = hv_cpu->synic_message_page;
1003         msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1004
1005         /* Check if there are actual msgs to be processed */
1006         if (msg->header.message_type != HVMSG_NONE) {
1007                 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1008                         hv_process_timer_expiration(msg, hv_cpu);
1009                 else
1010                         tasklet_schedule(&hv_cpu->msg_dpc);
1011         }
1012
1013         add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1014 }
1015
1016
1017 /*
1018  * vmbus_bus_init -Main vmbus driver initialization routine.
1019  *
1020  * Here, we
1021  *      - initialize the vmbus driver context
1022  *      - invoke the vmbus hv main init routine
1023  *      - retrieve the channel offers
1024  */
1025 static int vmbus_bus_init(void)
1026 {
1027         int ret;
1028
1029         /* Hypervisor initialization...setup hypercall page..etc */
1030         ret = hv_init();
1031         if (ret != 0) {
1032                 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1033                 return ret;
1034         }
1035
1036         ret = bus_register(&hv_bus);
1037         if (ret)
1038                 return ret;
1039
1040         hv_setup_vmbus_irq(vmbus_isr);
1041
1042         ret = hv_synic_alloc();
1043         if (ret)
1044                 goto err_alloc;
1045         /*
1046          * Initialize the per-cpu interrupt state and
1047          * connect to the host.
1048          */
1049         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv:online",
1050                                 hv_synic_init, hv_synic_cleanup);
1051         if (ret < 0)
1052                 goto err_alloc;
1053         hyperv_cpuhp_online = ret;
1054
1055         ret = vmbus_connect();
1056         if (ret)
1057                 goto err_connect;
1058
1059         /*
1060          * Only register if the crash MSRs are available
1061          */
1062         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1063                 register_die_notifier(&hyperv_die_block);
1064                 atomic_notifier_chain_register(&panic_notifier_list,
1065                                                &hyperv_panic_block);
1066         }
1067
1068         vmbus_request_offers();
1069
1070         return 0;
1071
1072 err_connect:
1073         cpuhp_remove_state(hyperv_cpuhp_online);
1074 err_alloc:
1075         hv_synic_free();
1076         hv_remove_vmbus_irq();
1077
1078         bus_unregister(&hv_bus);
1079
1080         return ret;
1081 }
1082
1083 /**
1084  * __vmbus_child_driver_register() - Register a vmbus's driver
1085  * @hv_driver: Pointer to driver structure you want to register
1086  * @owner: owner module of the drv
1087  * @mod_name: module name string
1088  *
1089  * Registers the given driver with Linux through the 'driver_register()' call
1090  * and sets up the hyper-v vmbus handling for this driver.
1091  * It will return the state of the 'driver_register()' call.
1092  *
1093  */
1094 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1095 {
1096         int ret;
1097
1098         pr_info("registering driver %s\n", hv_driver->name);
1099
1100         ret = vmbus_exists();
1101         if (ret < 0)
1102                 return ret;
1103
1104         hv_driver->driver.name = hv_driver->name;
1105         hv_driver->driver.owner = owner;
1106         hv_driver->driver.mod_name = mod_name;
1107         hv_driver->driver.bus = &hv_bus;
1108
1109         spin_lock_init(&hv_driver->dynids.lock);
1110         INIT_LIST_HEAD(&hv_driver->dynids.list);
1111
1112         ret = driver_register(&hv_driver->driver);
1113
1114         return ret;
1115 }
1116 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1117
1118 /**
1119  * vmbus_driver_unregister() - Unregister a vmbus's driver
1120  * @hv_driver: Pointer to driver structure you want to
1121  *             un-register
1122  *
1123  * Un-register the given driver that was previous registered with a call to
1124  * vmbus_driver_register()
1125  */
1126 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1127 {
1128         pr_info("unregistering driver %s\n", hv_driver->name);
1129
1130         if (!vmbus_exists()) {
1131                 driver_unregister(&hv_driver->driver);
1132                 vmbus_free_dynids(hv_driver);
1133         }
1134 }
1135 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1136
1137 /*
1138  * vmbus_device_create - Creates and registers a new child device
1139  * on the vmbus.
1140  */
1141 struct hv_device *vmbus_device_create(const uuid_le *type,
1142                                       const uuid_le *instance,
1143                                       struct vmbus_channel *channel)
1144 {
1145         struct hv_device *child_device_obj;
1146
1147         child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1148         if (!child_device_obj) {
1149                 pr_err("Unable to allocate device object for child device\n");
1150                 return NULL;
1151         }
1152
1153         child_device_obj->channel = channel;
1154         memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1155         memcpy(&child_device_obj->dev_instance, instance,
1156                sizeof(uuid_le));
1157         child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1158
1159
1160         return child_device_obj;
1161 }
1162
1163 /*
1164  * vmbus_device_register - Register the child device
1165  */
1166 int vmbus_device_register(struct hv_device *child_device_obj)
1167 {
1168         int ret = 0;
1169
1170         dev_set_name(&child_device_obj->device, "%pUl",
1171                      child_device_obj->channel->offermsg.offer.if_instance.b);
1172
1173         child_device_obj->device.bus = &hv_bus;
1174         child_device_obj->device.parent = &hv_acpi_dev->dev;
1175         child_device_obj->device.release = vmbus_device_release;
1176
1177         /*
1178          * Register with the LDM. This will kick off the driver/device
1179          * binding...which will eventually call vmbus_match() and vmbus_probe()
1180          */
1181         ret = device_register(&child_device_obj->device);
1182
1183         if (ret)
1184                 pr_err("Unable to register child device\n");
1185         else
1186                 pr_debug("child device %s registered\n",
1187                         dev_name(&child_device_obj->device));
1188
1189         return ret;
1190 }
1191
1192 /*
1193  * vmbus_device_unregister - Remove the specified child device
1194  * from the vmbus.
1195  */
1196 void vmbus_device_unregister(struct hv_device *device_obj)
1197 {
1198         pr_debug("child device %s unregistered\n",
1199                 dev_name(&device_obj->device));
1200
1201         /*
1202          * Kick off the process of unregistering the device.
1203          * This will call vmbus_remove() and eventually vmbus_device_release()
1204          */
1205         device_unregister(&device_obj->device);
1206 }
1207
1208
1209 /*
1210  * VMBUS is an acpi enumerated device. Get the information we
1211  * need from DSDT.
1212  */
1213 #define VTPM_BASE_ADDRESS 0xfed40000
1214 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1215 {
1216         resource_size_t start = 0;
1217         resource_size_t end = 0;
1218         struct resource *new_res;
1219         struct resource **old_res = &hyperv_mmio;
1220         struct resource **prev_res = NULL;
1221
1222         switch (res->type) {
1223
1224         /*
1225          * "Address" descriptors are for bus windows. Ignore
1226          * "memory" descriptors, which are for registers on
1227          * devices.
1228          */
1229         case ACPI_RESOURCE_TYPE_ADDRESS32:
1230                 start = res->data.address32.address.minimum;
1231                 end = res->data.address32.address.maximum;
1232                 break;
1233
1234         case ACPI_RESOURCE_TYPE_ADDRESS64:
1235                 start = res->data.address64.address.minimum;
1236                 end = res->data.address64.address.maximum;
1237                 break;
1238
1239         default:
1240                 /* Unused resource type */
1241                 return AE_OK;
1242
1243         }
1244         /*
1245          * Ignore ranges that are below 1MB, as they're not
1246          * necessary or useful here.
1247          */
1248         if (end < 0x100000)
1249                 return AE_OK;
1250
1251         new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1252         if (!new_res)
1253                 return AE_NO_MEMORY;
1254
1255         /* If this range overlaps the virtual TPM, truncate it. */
1256         if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1257                 end = VTPM_BASE_ADDRESS;
1258
1259         new_res->name = "hyperv mmio";
1260         new_res->flags = IORESOURCE_MEM;
1261         new_res->start = start;
1262         new_res->end = end;
1263
1264         /*
1265          * If two ranges are adjacent, merge them.
1266          */
1267         do {
1268                 if (!*old_res) {
1269                         *old_res = new_res;
1270                         break;
1271                 }
1272
1273                 if (((*old_res)->end + 1) == new_res->start) {
1274                         (*old_res)->end = new_res->end;
1275                         kfree(new_res);
1276                         break;
1277                 }
1278
1279                 if ((*old_res)->start == new_res->end + 1) {
1280                         (*old_res)->start = new_res->start;
1281                         kfree(new_res);
1282                         break;
1283                 }
1284
1285                 if ((*old_res)->start > new_res->end) {
1286                         new_res->sibling = *old_res;
1287                         if (prev_res)
1288                                 (*prev_res)->sibling = new_res;
1289                         *old_res = new_res;
1290                         break;
1291                 }
1292
1293                 prev_res = old_res;
1294                 old_res = &(*old_res)->sibling;
1295
1296         } while (1);
1297
1298         return AE_OK;
1299 }
1300
1301 static int vmbus_acpi_remove(struct acpi_device *device)
1302 {
1303         struct resource *cur_res;
1304         struct resource *next_res;
1305
1306         if (hyperv_mmio) {
1307                 if (fb_mmio) {
1308                         __release_region(hyperv_mmio, fb_mmio->start,
1309                                          resource_size(fb_mmio));
1310                         fb_mmio = NULL;
1311                 }
1312
1313                 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1314                         next_res = cur_res->sibling;
1315                         kfree(cur_res);
1316                 }
1317         }
1318
1319         return 0;
1320 }
1321
1322 static void vmbus_reserve_fb(void)
1323 {
1324         int size;
1325         /*
1326          * Make a claim for the frame buffer in the resource tree under the
1327          * first node, which will be the one below 4GB.  The length seems to
1328          * be underreported, particularly in a Generation 1 VM.  So start out
1329          * reserving a larger area and make it smaller until it succeeds.
1330          */
1331
1332         if (screen_info.lfb_base) {
1333                 if (efi_enabled(EFI_BOOT))
1334                         size = max_t(__u32, screen_info.lfb_size, 0x800000);
1335                 else
1336                         size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1337
1338                 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1339                         fb_mmio = __request_region(hyperv_mmio,
1340                                                    screen_info.lfb_base, size,
1341                                                    fb_mmio_name, 0);
1342                 }
1343         }
1344 }
1345
1346 /**
1347  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1348  * @new:                If successful, supplied a pointer to the
1349  *                      allocated MMIO space.
1350  * @device_obj:         Identifies the caller
1351  * @min:                Minimum guest physical address of the
1352  *                      allocation
1353  * @max:                Maximum guest physical address
1354  * @size:               Size of the range to be allocated
1355  * @align:              Alignment of the range to be allocated
1356  * @fb_overlap_ok:      Whether this allocation can be allowed
1357  *                      to overlap the video frame buffer.
1358  *
1359  * This function walks the resources granted to VMBus by the
1360  * _CRS object in the ACPI namespace underneath the parent
1361  * "bridge" whether that's a root PCI bus in the Generation 1
1362  * case or a Module Device in the Generation 2 case.  It then
1363  * attempts to allocate from the global MMIO pool in a way that
1364  * matches the constraints supplied in these parameters and by
1365  * that _CRS.
1366  *
1367  * Return: 0 on success, -errno on failure
1368  */
1369 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1370                         resource_size_t min, resource_size_t max,
1371                         resource_size_t size, resource_size_t align,
1372                         bool fb_overlap_ok)
1373 {
1374         struct resource *iter, *shadow;
1375         resource_size_t range_min, range_max, start;
1376         const char *dev_n = dev_name(&device_obj->device);
1377         int retval;
1378
1379         retval = -ENXIO;
1380         down(&hyperv_mmio_lock);
1381
1382         /*
1383          * If overlaps with frame buffers are allowed, then first attempt to
1384          * make the allocation from within the reserved region.  Because it
1385          * is already reserved, no shadow allocation is necessary.
1386          */
1387         if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1388             !(max < fb_mmio->start)) {
1389
1390                 range_min = fb_mmio->start;
1391                 range_max = fb_mmio->end;
1392                 start = (range_min + align - 1) & ~(align - 1);
1393                 for (; start + size - 1 <= range_max; start += align) {
1394                         *new = request_mem_region_exclusive(start, size, dev_n);
1395                         if (*new) {
1396                                 retval = 0;
1397                                 goto exit;
1398                         }
1399                 }
1400         }
1401
1402         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1403                 if ((iter->start >= max) || (iter->end <= min))
1404                         continue;
1405
1406                 range_min = iter->start;
1407                 range_max = iter->end;
1408                 start = (range_min + align - 1) & ~(align - 1);
1409                 for (; start + size - 1 <= range_max; start += align) {
1410                         shadow = __request_region(iter, start, size, NULL,
1411                                                   IORESOURCE_BUSY);
1412                         if (!shadow)
1413                                 continue;
1414
1415                         *new = request_mem_region_exclusive(start, size, dev_n);
1416                         if (*new) {
1417                                 shadow->name = (char *)*new;
1418                                 retval = 0;
1419                                 goto exit;
1420                         }
1421
1422                         __release_region(iter, start, size);
1423                 }
1424         }
1425
1426 exit:
1427         up(&hyperv_mmio_lock);
1428         return retval;
1429 }
1430 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1431
1432 /**
1433  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1434  * @start:              Base address of region to release.
1435  * @size:               Size of the range to be allocated
1436  *
1437  * This function releases anything requested by
1438  * vmbus_mmio_allocate().
1439  */
1440 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1441 {
1442         struct resource *iter;
1443
1444         down(&hyperv_mmio_lock);
1445         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1446                 if ((iter->start >= start + size) || (iter->end <= start))
1447                         continue;
1448
1449                 __release_region(iter, start, size);
1450         }
1451         release_mem_region(start, size);
1452         up(&hyperv_mmio_lock);
1453
1454 }
1455 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1456
1457 static int vmbus_acpi_add(struct acpi_device *device)
1458 {
1459         acpi_status result;
1460         int ret_val = -ENODEV;
1461         struct acpi_device *ancestor;
1462
1463         hv_acpi_dev = device;
1464
1465         result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1466                                         vmbus_walk_resources, NULL);
1467
1468         if (ACPI_FAILURE(result))
1469                 goto acpi_walk_err;
1470         /*
1471          * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1472          * firmware) is the VMOD that has the mmio ranges. Get that.
1473          */
1474         for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1475                 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1476                                              vmbus_walk_resources, NULL);
1477
1478                 if (ACPI_FAILURE(result))
1479                         continue;
1480                 if (hyperv_mmio) {
1481                         vmbus_reserve_fb();
1482                         break;
1483                 }
1484         }
1485         ret_val = 0;
1486
1487 acpi_walk_err:
1488         complete(&probe_event);
1489         if (ret_val)
1490                 vmbus_acpi_remove(device);
1491         return ret_val;
1492 }
1493
1494 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1495         {"VMBUS", 0},
1496         {"VMBus", 0},
1497         {"", 0},
1498 };
1499 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1500
1501 static struct acpi_driver vmbus_acpi_driver = {
1502         .name = "vmbus",
1503         .ids = vmbus_acpi_device_ids,
1504         .ops = {
1505                 .add = vmbus_acpi_add,
1506                 .remove = vmbus_acpi_remove,
1507         },
1508 };
1509
1510 static void hv_kexec_handler(void)
1511 {
1512         hv_synic_clockevents_cleanup();
1513         vmbus_initiate_unload(false);
1514         vmbus_connection.conn_state = DISCONNECTED;
1515         /* Make sure conn_state is set as hv_synic_cleanup checks for it */
1516         mb();
1517         cpuhp_remove_state(hyperv_cpuhp_online);
1518         hyperv_cleanup();
1519 };
1520
1521 static void hv_crash_handler(struct pt_regs *regs)
1522 {
1523         vmbus_initiate_unload(true);
1524         /*
1525          * In crash handler we can't schedule synic cleanup for all CPUs,
1526          * doing the cleanup for current CPU only. This should be sufficient
1527          * for kdump.
1528          */
1529         vmbus_connection.conn_state = DISCONNECTED;
1530         hv_synic_cleanup(smp_processor_id());
1531         hyperv_cleanup();
1532 };
1533
1534 static int __init hv_acpi_init(void)
1535 {
1536         int ret, t;
1537
1538         if (x86_hyper != &x86_hyper_ms_hyperv)
1539                 return -ENODEV;
1540
1541         init_completion(&probe_event);
1542
1543         /*
1544          * Get ACPI resources first.
1545          */
1546         ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1547
1548         if (ret)
1549                 return ret;
1550
1551         t = wait_for_completion_timeout(&probe_event, 5*HZ);
1552         if (t == 0) {
1553                 ret = -ETIMEDOUT;
1554                 goto cleanup;
1555         }
1556
1557         ret = vmbus_bus_init();
1558         if (ret)
1559                 goto cleanup;
1560
1561         hv_setup_kexec_handler(hv_kexec_handler);
1562         hv_setup_crash_handler(hv_crash_handler);
1563
1564         return 0;
1565
1566 cleanup:
1567         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1568         hv_acpi_dev = NULL;
1569         return ret;
1570 }
1571
1572 static void __exit vmbus_exit(void)
1573 {
1574         int cpu;
1575
1576         hv_remove_kexec_handler();
1577         hv_remove_crash_handler();
1578         vmbus_connection.conn_state = DISCONNECTED;
1579         hv_synic_clockevents_cleanup();
1580         vmbus_disconnect();
1581         hv_remove_vmbus_irq();
1582         for_each_online_cpu(cpu) {
1583                 struct hv_per_cpu_context *hv_cpu
1584                         = per_cpu_ptr(hv_context.cpu_context, cpu);
1585
1586                 tasklet_kill(&hv_cpu->msg_dpc);
1587         }
1588         vmbus_free_channels();
1589
1590         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1591                 unregister_die_notifier(&hyperv_die_block);
1592                 atomic_notifier_chain_unregister(&panic_notifier_list,
1593                                                  &hyperv_panic_block);
1594         }
1595         bus_unregister(&hv_bus);
1596
1597         cpuhp_remove_state(hyperv_cpuhp_online);
1598         hv_synic_free();
1599         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1600 }
1601
1602
1603 MODULE_LICENSE("GPL");
1604
1605 subsys_initcall(hv_acpi_init);
1606 module_exit(vmbus_exit);