Merge tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[sfrench/cifs-2.6.git] / drivers / hv / vmbus_drv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
47
48 static struct acpi_device  *hv_acpi_dev;
49
50 static struct completion probe_event;
51
52
53 static void hyperv_report_panic(struct pt_regs *regs)
54 {
55         static bool panic_reported;
56
57         /*
58          * We prefer to report panic on 'die' chain as we have proper
59          * registers to report, but if we miss it (e.g. on BUG()) we need
60          * to report it on 'panic'.
61          */
62         if (panic_reported)
63                 return;
64         panic_reported = true;
65
66         wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
67         wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
68         wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
69         wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
70         wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);
71
72         /*
73          * Let Hyper-V know there is crash data available
74          */
75         wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
76 }
77
78 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
79                               void *args)
80 {
81         struct pt_regs *regs;
82
83         regs = current_pt_regs();
84
85         hyperv_report_panic(regs);
86         return NOTIFY_DONE;
87 }
88
89 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
90                             void *args)
91 {
92         struct die_args *die = (struct die_args *)args;
93         struct pt_regs *regs = die->regs;
94
95         hyperv_report_panic(regs);
96         return NOTIFY_DONE;
97 }
98
99 static struct notifier_block hyperv_die_block = {
100         .notifier_call = hyperv_die_event,
101 };
102 static struct notifier_block hyperv_panic_block = {
103         .notifier_call = hyperv_panic_event,
104 };
105
106 static const char *fb_mmio_name = "fb_range";
107 static struct resource *fb_mmio;
108 struct resource *hyperv_mmio;
109 DEFINE_SEMAPHORE(hyperv_mmio_lock);
110
111 static int vmbus_exists(void)
112 {
113         if (hv_acpi_dev == NULL)
114                 return -ENODEV;
115
116         return 0;
117 }
118
119 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
120 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
121 {
122         int i;
123         for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
124                 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
125 }
126
127 static u8 channel_monitor_group(struct vmbus_channel *channel)
128 {
129         return (u8)channel->offermsg.monitorid / 32;
130 }
131
132 static u8 channel_monitor_offset(struct vmbus_channel *channel)
133 {
134         return (u8)channel->offermsg.monitorid % 32;
135 }
136
137 static u32 channel_pending(struct vmbus_channel *channel,
138                            struct hv_monitor_page *monitor_page)
139 {
140         u8 monitor_group = channel_monitor_group(channel);
141         return monitor_page->trigger_group[monitor_group].pending;
142 }
143
144 static u32 channel_latency(struct vmbus_channel *channel,
145                            struct hv_monitor_page *monitor_page)
146 {
147         u8 monitor_group = channel_monitor_group(channel);
148         u8 monitor_offset = channel_monitor_offset(channel);
149         return monitor_page->latency[monitor_group][monitor_offset];
150 }
151
152 static u32 channel_conn_id(struct vmbus_channel *channel,
153                            struct hv_monitor_page *monitor_page)
154 {
155         u8 monitor_group = channel_monitor_group(channel);
156         u8 monitor_offset = channel_monitor_offset(channel);
157         return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
158 }
159
160 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
161                        char *buf)
162 {
163         struct hv_device *hv_dev = device_to_hv_device(dev);
164
165         if (!hv_dev->channel)
166                 return -ENODEV;
167         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
168 }
169 static DEVICE_ATTR_RO(id);
170
171 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
172                           char *buf)
173 {
174         struct hv_device *hv_dev = device_to_hv_device(dev);
175
176         if (!hv_dev->channel)
177                 return -ENODEV;
178         return sprintf(buf, "%d\n", hv_dev->channel->state);
179 }
180 static DEVICE_ATTR_RO(state);
181
182 static ssize_t monitor_id_show(struct device *dev,
183                                struct device_attribute *dev_attr, char *buf)
184 {
185         struct hv_device *hv_dev = device_to_hv_device(dev);
186
187         if (!hv_dev->channel)
188                 return -ENODEV;
189         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
190 }
191 static DEVICE_ATTR_RO(monitor_id);
192
193 static ssize_t class_id_show(struct device *dev,
194                                struct device_attribute *dev_attr, char *buf)
195 {
196         struct hv_device *hv_dev = device_to_hv_device(dev);
197
198         if (!hv_dev->channel)
199                 return -ENODEV;
200         return sprintf(buf, "{%pUl}\n",
201                        hv_dev->channel->offermsg.offer.if_type.b);
202 }
203 static DEVICE_ATTR_RO(class_id);
204
205 static ssize_t device_id_show(struct device *dev,
206                               struct device_attribute *dev_attr, char *buf)
207 {
208         struct hv_device *hv_dev = device_to_hv_device(dev);
209
210         if (!hv_dev->channel)
211                 return -ENODEV;
212         return sprintf(buf, "{%pUl}\n",
213                        hv_dev->channel->offermsg.offer.if_instance.b);
214 }
215 static DEVICE_ATTR_RO(device_id);
216
217 static ssize_t modalias_show(struct device *dev,
218                              struct device_attribute *dev_attr, char *buf)
219 {
220         struct hv_device *hv_dev = device_to_hv_device(dev);
221         char alias_name[VMBUS_ALIAS_LEN + 1];
222
223         print_alias_name(hv_dev, alias_name);
224         return sprintf(buf, "vmbus:%s\n", alias_name);
225 }
226 static DEVICE_ATTR_RO(modalias);
227
228 static ssize_t server_monitor_pending_show(struct device *dev,
229                                            struct device_attribute *dev_attr,
230                                            char *buf)
231 {
232         struct hv_device *hv_dev = device_to_hv_device(dev);
233
234         if (!hv_dev->channel)
235                 return -ENODEV;
236         return sprintf(buf, "%d\n",
237                        channel_pending(hv_dev->channel,
238                                        vmbus_connection.monitor_pages[1]));
239 }
240 static DEVICE_ATTR_RO(server_monitor_pending);
241
242 static ssize_t client_monitor_pending_show(struct device *dev,
243                                            struct device_attribute *dev_attr,
244                                            char *buf)
245 {
246         struct hv_device *hv_dev = device_to_hv_device(dev);
247
248         if (!hv_dev->channel)
249                 return -ENODEV;
250         return sprintf(buf, "%d\n",
251                        channel_pending(hv_dev->channel,
252                                        vmbus_connection.monitor_pages[1]));
253 }
254 static DEVICE_ATTR_RO(client_monitor_pending);
255
256 static ssize_t server_monitor_latency_show(struct device *dev,
257                                            struct device_attribute *dev_attr,
258                                            char *buf)
259 {
260         struct hv_device *hv_dev = device_to_hv_device(dev);
261
262         if (!hv_dev->channel)
263                 return -ENODEV;
264         return sprintf(buf, "%d\n",
265                        channel_latency(hv_dev->channel,
266                                        vmbus_connection.monitor_pages[0]));
267 }
268 static DEVICE_ATTR_RO(server_monitor_latency);
269
270 static ssize_t client_monitor_latency_show(struct device *dev,
271                                            struct device_attribute *dev_attr,
272                                            char *buf)
273 {
274         struct hv_device *hv_dev = device_to_hv_device(dev);
275
276         if (!hv_dev->channel)
277                 return -ENODEV;
278         return sprintf(buf, "%d\n",
279                        channel_latency(hv_dev->channel,
280                                        vmbus_connection.monitor_pages[1]));
281 }
282 static DEVICE_ATTR_RO(client_monitor_latency);
283
284 static ssize_t server_monitor_conn_id_show(struct device *dev,
285                                            struct device_attribute *dev_attr,
286                                            char *buf)
287 {
288         struct hv_device *hv_dev = device_to_hv_device(dev);
289
290         if (!hv_dev->channel)
291                 return -ENODEV;
292         return sprintf(buf, "%d\n",
293                        channel_conn_id(hv_dev->channel,
294                                        vmbus_connection.monitor_pages[0]));
295 }
296 static DEVICE_ATTR_RO(server_monitor_conn_id);
297
298 static ssize_t client_monitor_conn_id_show(struct device *dev,
299                                            struct device_attribute *dev_attr,
300                                            char *buf)
301 {
302         struct hv_device *hv_dev = device_to_hv_device(dev);
303
304         if (!hv_dev->channel)
305                 return -ENODEV;
306         return sprintf(buf, "%d\n",
307                        channel_conn_id(hv_dev->channel,
308                                        vmbus_connection.monitor_pages[1]));
309 }
310 static DEVICE_ATTR_RO(client_monitor_conn_id);
311
312 static ssize_t out_intr_mask_show(struct device *dev,
313                                   struct device_attribute *dev_attr, char *buf)
314 {
315         struct hv_device *hv_dev = device_to_hv_device(dev);
316         struct hv_ring_buffer_debug_info outbound;
317
318         if (!hv_dev->channel)
319                 return -ENODEV;
320         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
321         return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
322 }
323 static DEVICE_ATTR_RO(out_intr_mask);
324
325 static ssize_t out_read_index_show(struct device *dev,
326                                    struct device_attribute *dev_attr, char *buf)
327 {
328         struct hv_device *hv_dev = device_to_hv_device(dev);
329         struct hv_ring_buffer_debug_info outbound;
330
331         if (!hv_dev->channel)
332                 return -ENODEV;
333         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
334         return sprintf(buf, "%d\n", outbound.current_read_index);
335 }
336 static DEVICE_ATTR_RO(out_read_index);
337
338 static ssize_t out_write_index_show(struct device *dev,
339                                     struct device_attribute *dev_attr,
340                                     char *buf)
341 {
342         struct hv_device *hv_dev = device_to_hv_device(dev);
343         struct hv_ring_buffer_debug_info outbound;
344
345         if (!hv_dev->channel)
346                 return -ENODEV;
347         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
348         return sprintf(buf, "%d\n", outbound.current_write_index);
349 }
350 static DEVICE_ATTR_RO(out_write_index);
351
352 static ssize_t out_read_bytes_avail_show(struct device *dev,
353                                          struct device_attribute *dev_attr,
354                                          char *buf)
355 {
356         struct hv_device *hv_dev = device_to_hv_device(dev);
357         struct hv_ring_buffer_debug_info outbound;
358
359         if (!hv_dev->channel)
360                 return -ENODEV;
361         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
362         return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
363 }
364 static DEVICE_ATTR_RO(out_read_bytes_avail);
365
366 static ssize_t out_write_bytes_avail_show(struct device *dev,
367                                           struct device_attribute *dev_attr,
368                                           char *buf)
369 {
370         struct hv_device *hv_dev = device_to_hv_device(dev);
371         struct hv_ring_buffer_debug_info outbound;
372
373         if (!hv_dev->channel)
374                 return -ENODEV;
375         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
376         return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
377 }
378 static DEVICE_ATTR_RO(out_write_bytes_avail);
379
380 static ssize_t in_intr_mask_show(struct device *dev,
381                                  struct device_attribute *dev_attr, char *buf)
382 {
383         struct hv_device *hv_dev = device_to_hv_device(dev);
384         struct hv_ring_buffer_debug_info inbound;
385
386         if (!hv_dev->channel)
387                 return -ENODEV;
388         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
389         return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
390 }
391 static DEVICE_ATTR_RO(in_intr_mask);
392
393 static ssize_t in_read_index_show(struct device *dev,
394                                   struct device_attribute *dev_attr, char *buf)
395 {
396         struct hv_device *hv_dev = device_to_hv_device(dev);
397         struct hv_ring_buffer_debug_info inbound;
398
399         if (!hv_dev->channel)
400                 return -ENODEV;
401         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
402         return sprintf(buf, "%d\n", inbound.current_read_index);
403 }
404 static DEVICE_ATTR_RO(in_read_index);
405
406 static ssize_t in_write_index_show(struct device *dev,
407                                    struct device_attribute *dev_attr, char *buf)
408 {
409         struct hv_device *hv_dev = device_to_hv_device(dev);
410         struct hv_ring_buffer_debug_info inbound;
411
412         if (!hv_dev->channel)
413                 return -ENODEV;
414         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
415         return sprintf(buf, "%d\n", inbound.current_write_index);
416 }
417 static DEVICE_ATTR_RO(in_write_index);
418
419 static ssize_t in_read_bytes_avail_show(struct device *dev,
420                                         struct device_attribute *dev_attr,
421                                         char *buf)
422 {
423         struct hv_device *hv_dev = device_to_hv_device(dev);
424         struct hv_ring_buffer_debug_info inbound;
425
426         if (!hv_dev->channel)
427                 return -ENODEV;
428         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
429         return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
430 }
431 static DEVICE_ATTR_RO(in_read_bytes_avail);
432
433 static ssize_t in_write_bytes_avail_show(struct device *dev,
434                                          struct device_attribute *dev_attr,
435                                          char *buf)
436 {
437         struct hv_device *hv_dev = device_to_hv_device(dev);
438         struct hv_ring_buffer_debug_info inbound;
439
440         if (!hv_dev->channel)
441                 return -ENODEV;
442         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
443         return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
444 }
445 static DEVICE_ATTR_RO(in_write_bytes_avail);
446
447 static ssize_t channel_vp_mapping_show(struct device *dev,
448                                        struct device_attribute *dev_attr,
449                                        char *buf)
450 {
451         struct hv_device *hv_dev = device_to_hv_device(dev);
452         struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
453         unsigned long flags;
454         int buf_size = PAGE_SIZE, n_written, tot_written;
455         struct list_head *cur;
456
457         if (!channel)
458                 return -ENODEV;
459
460         tot_written = snprintf(buf, buf_size, "%u:%u\n",
461                 channel->offermsg.child_relid, channel->target_cpu);
462
463         spin_lock_irqsave(&channel->lock, flags);
464
465         list_for_each(cur, &channel->sc_list) {
466                 if (tot_written >= buf_size - 1)
467                         break;
468
469                 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
470                 n_written = scnprintf(buf + tot_written,
471                                      buf_size - tot_written,
472                                      "%u:%u\n",
473                                      cur_sc->offermsg.child_relid,
474                                      cur_sc->target_cpu);
475                 tot_written += n_written;
476         }
477
478         spin_unlock_irqrestore(&channel->lock, flags);
479
480         return tot_written;
481 }
482 static DEVICE_ATTR_RO(channel_vp_mapping);
483
484 static ssize_t vendor_show(struct device *dev,
485                            struct device_attribute *dev_attr,
486                            char *buf)
487 {
488         struct hv_device *hv_dev = device_to_hv_device(dev);
489         return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
490 }
491 static DEVICE_ATTR_RO(vendor);
492
493 static ssize_t device_show(struct device *dev,
494                            struct device_attribute *dev_attr,
495                            char *buf)
496 {
497         struct hv_device *hv_dev = device_to_hv_device(dev);
498         return sprintf(buf, "0x%x\n", hv_dev->device_id);
499 }
500 static DEVICE_ATTR_RO(device);
501
502 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
503 static struct attribute *vmbus_attrs[] = {
504         &dev_attr_id.attr,
505         &dev_attr_state.attr,
506         &dev_attr_monitor_id.attr,
507         &dev_attr_class_id.attr,
508         &dev_attr_device_id.attr,
509         &dev_attr_modalias.attr,
510         &dev_attr_server_monitor_pending.attr,
511         &dev_attr_client_monitor_pending.attr,
512         &dev_attr_server_monitor_latency.attr,
513         &dev_attr_client_monitor_latency.attr,
514         &dev_attr_server_monitor_conn_id.attr,
515         &dev_attr_client_monitor_conn_id.attr,
516         &dev_attr_out_intr_mask.attr,
517         &dev_attr_out_read_index.attr,
518         &dev_attr_out_write_index.attr,
519         &dev_attr_out_read_bytes_avail.attr,
520         &dev_attr_out_write_bytes_avail.attr,
521         &dev_attr_in_intr_mask.attr,
522         &dev_attr_in_read_index.attr,
523         &dev_attr_in_write_index.attr,
524         &dev_attr_in_read_bytes_avail.attr,
525         &dev_attr_in_write_bytes_avail.attr,
526         &dev_attr_channel_vp_mapping.attr,
527         &dev_attr_vendor.attr,
528         &dev_attr_device.attr,
529         NULL,
530 };
531 ATTRIBUTE_GROUPS(vmbus);
532
533 /*
534  * vmbus_uevent - add uevent for our device
535  *
536  * This routine is invoked when a device is added or removed on the vmbus to
537  * generate a uevent to udev in the userspace. The udev will then look at its
538  * rule and the uevent generated here to load the appropriate driver
539  *
540  * The alias string will be of the form vmbus:guid where guid is the string
541  * representation of the device guid (each byte of the guid will be
542  * represented with two hex characters.
543  */
544 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
545 {
546         struct hv_device *dev = device_to_hv_device(device);
547         int ret;
548         char alias_name[VMBUS_ALIAS_LEN + 1];
549
550         print_alias_name(dev, alias_name);
551         ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
552         return ret;
553 }
554
555 static const uuid_le null_guid;
556
557 static inline bool is_null_guid(const uuid_le *guid)
558 {
559         if (uuid_le_cmp(*guid, null_guid))
560                 return false;
561         return true;
562 }
563
564 /*
565  * Return a matching hv_vmbus_device_id pointer.
566  * If there is no match, return NULL.
567  */
568 static const struct hv_vmbus_device_id *hv_vmbus_get_id(
569                                         const struct hv_vmbus_device_id *id,
570                                         const uuid_le *guid)
571 {
572         for (; !is_null_guid(&id->guid); id++)
573                 if (!uuid_le_cmp(id->guid, *guid))
574                         return id;
575
576         return NULL;
577 }
578
579
580
581 /*
582  * vmbus_match - Attempt to match the specified device to the specified driver
583  */
584 static int vmbus_match(struct device *device, struct device_driver *driver)
585 {
586         struct hv_driver *drv = drv_to_hv_drv(driver);
587         struct hv_device *hv_dev = device_to_hv_device(device);
588
589         /* The hv_sock driver handles all hv_sock offers. */
590         if (is_hvsock_channel(hv_dev->channel))
591                 return drv->hvsock;
592
593         if (hv_vmbus_get_id(drv->id_table, &hv_dev->dev_type))
594                 return 1;
595
596         return 0;
597 }
598
599 /*
600  * vmbus_probe - Add the new vmbus's child device
601  */
602 static int vmbus_probe(struct device *child_device)
603 {
604         int ret = 0;
605         struct hv_driver *drv =
606                         drv_to_hv_drv(child_device->driver);
607         struct hv_device *dev = device_to_hv_device(child_device);
608         const struct hv_vmbus_device_id *dev_id;
609
610         dev_id = hv_vmbus_get_id(drv->id_table, &dev->dev_type);
611         if (drv->probe) {
612                 ret = drv->probe(dev, dev_id);
613                 if (ret != 0)
614                         pr_err("probe failed for device %s (%d)\n",
615                                dev_name(child_device), ret);
616
617         } else {
618                 pr_err("probe not set for driver %s\n",
619                        dev_name(child_device));
620                 ret = -ENODEV;
621         }
622         return ret;
623 }
624
625 /*
626  * vmbus_remove - Remove a vmbus device
627  */
628 static int vmbus_remove(struct device *child_device)
629 {
630         struct hv_driver *drv;
631         struct hv_device *dev = device_to_hv_device(child_device);
632
633         if (child_device->driver) {
634                 drv = drv_to_hv_drv(child_device->driver);
635                 if (drv->remove)
636                         drv->remove(dev);
637         }
638
639         return 0;
640 }
641
642
643 /*
644  * vmbus_shutdown - Shutdown a vmbus device
645  */
646 static void vmbus_shutdown(struct device *child_device)
647 {
648         struct hv_driver *drv;
649         struct hv_device *dev = device_to_hv_device(child_device);
650
651
652         /* The device may not be attached yet */
653         if (!child_device->driver)
654                 return;
655
656         drv = drv_to_hv_drv(child_device->driver);
657
658         if (drv->shutdown)
659                 drv->shutdown(dev);
660
661         return;
662 }
663
664
665 /*
666  * vmbus_device_release - Final callback release of the vmbus child device
667  */
668 static void vmbus_device_release(struct device *device)
669 {
670         struct hv_device *hv_dev = device_to_hv_device(device);
671         struct vmbus_channel *channel = hv_dev->channel;
672
673         hv_process_channel_removal(channel,
674                                    channel->offermsg.child_relid);
675         kfree(hv_dev);
676
677 }
678
679 /* The one and only one */
680 static struct bus_type  hv_bus = {
681         .name =         "vmbus",
682         .match =                vmbus_match,
683         .shutdown =             vmbus_shutdown,
684         .remove =               vmbus_remove,
685         .probe =                vmbus_probe,
686         .uevent =               vmbus_uevent,
687         .dev_groups =           vmbus_groups,
688 };
689
690 struct onmessage_work_context {
691         struct work_struct work;
692         struct hv_message msg;
693 };
694
695 static void vmbus_onmessage_work(struct work_struct *work)
696 {
697         struct onmessage_work_context *ctx;
698
699         /* Do not process messages if we're in DISCONNECTED state */
700         if (vmbus_connection.conn_state == DISCONNECTED)
701                 return;
702
703         ctx = container_of(work, struct onmessage_work_context,
704                            work);
705         vmbus_onmessage(&ctx->msg);
706         kfree(ctx);
707 }
708
709 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
710 {
711         struct clock_event_device *dev = hv_context.clk_evt[cpu];
712
713         if (dev->event_handler)
714                 dev->event_handler(dev);
715
716         vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
717 }
718
719 void vmbus_on_msg_dpc(unsigned long data)
720 {
721         int cpu = smp_processor_id();
722         void *page_addr = hv_context.synic_message_page[cpu];
723         struct hv_message *msg = (struct hv_message *)page_addr +
724                                   VMBUS_MESSAGE_SINT;
725         struct vmbus_channel_message_header *hdr;
726         struct vmbus_channel_message_table_entry *entry;
727         struct onmessage_work_context *ctx;
728         u32 message_type = msg->header.message_type;
729
730         if (message_type == HVMSG_NONE)
731                 /* no msg */
732                 return;
733
734         hdr = (struct vmbus_channel_message_header *)msg->u.payload;
735
736         if (hdr->msgtype >= CHANNELMSG_COUNT) {
737                 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
738                 goto msg_handled;
739         }
740
741         entry = &channel_message_table[hdr->msgtype];
742         if (entry->handler_type == VMHT_BLOCKING) {
743                 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
744                 if (ctx == NULL)
745                         return;
746
747                 INIT_WORK(&ctx->work, vmbus_onmessage_work);
748                 memcpy(&ctx->msg, msg, sizeof(*msg));
749
750                 queue_work(vmbus_connection.work_queue, &ctx->work);
751         } else
752                 entry->message_handler(hdr);
753
754 msg_handled:
755         vmbus_signal_eom(msg, message_type);
756 }
757
758 static void vmbus_isr(void)
759 {
760         int cpu = smp_processor_id();
761         void *page_addr;
762         struct hv_message *msg;
763         union hv_synic_event_flags *event;
764         bool handled = false;
765
766         page_addr = hv_context.synic_event_page[cpu];
767         if (page_addr == NULL)
768                 return;
769
770         event = (union hv_synic_event_flags *)page_addr +
771                                          VMBUS_MESSAGE_SINT;
772         /*
773          * Check for events before checking for messages. This is the order
774          * in which events and messages are checked in Windows guests on
775          * Hyper-V, and the Windows team suggested we do the same.
776          */
777
778         if ((vmbus_proto_version == VERSION_WS2008) ||
779                 (vmbus_proto_version == VERSION_WIN7)) {
780
781                 /* Since we are a child, we only need to check bit 0 */
782                 if (sync_test_and_clear_bit(0,
783                         (unsigned long *) &event->flags32[0])) {
784                         handled = true;
785                 }
786         } else {
787                 /*
788                  * Our host is win8 or above. The signaling mechanism
789                  * has changed and we can directly look at the event page.
790                  * If bit n is set then we have an interrup on the channel
791                  * whose id is n.
792                  */
793                 handled = true;
794         }
795
796         if (handled)
797                 tasklet_schedule(hv_context.event_dpc[cpu]);
798
799
800         page_addr = hv_context.synic_message_page[cpu];
801         msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
802
803         /* Check if there are actual msgs to be processed */
804         if (msg->header.message_type != HVMSG_NONE) {
805                 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
806                         hv_process_timer_expiration(msg, cpu);
807                 else
808                         tasklet_schedule(hv_context.msg_dpc[cpu]);
809         }
810
811         add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
812 }
813
814
815 /*
816  * vmbus_bus_init -Main vmbus driver initialization routine.
817  *
818  * Here, we
819  *      - initialize the vmbus driver context
820  *      - invoke the vmbus hv main init routine
821  *      - retrieve the channel offers
822  */
823 static int vmbus_bus_init(void)
824 {
825         int ret;
826
827         /* Hypervisor initialization...setup hypercall page..etc */
828         ret = hv_init();
829         if (ret != 0) {
830                 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
831                 return ret;
832         }
833
834         ret = bus_register(&hv_bus);
835         if (ret)
836                 goto err_cleanup;
837
838         hv_setup_vmbus_irq(vmbus_isr);
839
840         ret = hv_synic_alloc();
841         if (ret)
842                 goto err_alloc;
843         /*
844          * Initialize the per-cpu interrupt state and
845          * connect to the host.
846          */
847         on_each_cpu(hv_synic_init, NULL, 1);
848         ret = vmbus_connect();
849         if (ret)
850                 goto err_connect;
851
852         if (vmbus_proto_version > VERSION_WIN7)
853                 cpu_hotplug_disable();
854
855         /*
856          * Only register if the crash MSRs are available
857          */
858         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
859                 register_die_notifier(&hyperv_die_block);
860                 atomic_notifier_chain_register(&panic_notifier_list,
861                                                &hyperv_panic_block);
862         }
863
864         vmbus_request_offers();
865
866         return 0;
867
868 err_connect:
869         on_each_cpu(hv_synic_cleanup, NULL, 1);
870 err_alloc:
871         hv_synic_free();
872         hv_remove_vmbus_irq();
873
874         bus_unregister(&hv_bus);
875
876 err_cleanup:
877         hv_cleanup();
878
879         return ret;
880 }
881
882 /**
883  * __vmbus_child_driver_register() - Register a vmbus's driver
884  * @hv_driver: Pointer to driver structure you want to register
885  * @owner: owner module of the drv
886  * @mod_name: module name string
887  *
888  * Registers the given driver with Linux through the 'driver_register()' call
889  * and sets up the hyper-v vmbus handling for this driver.
890  * It will return the state of the 'driver_register()' call.
891  *
892  */
893 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
894 {
895         int ret;
896
897         pr_info("registering driver %s\n", hv_driver->name);
898
899         ret = vmbus_exists();
900         if (ret < 0)
901                 return ret;
902
903         hv_driver->driver.name = hv_driver->name;
904         hv_driver->driver.owner = owner;
905         hv_driver->driver.mod_name = mod_name;
906         hv_driver->driver.bus = &hv_bus;
907
908         ret = driver_register(&hv_driver->driver);
909
910         return ret;
911 }
912 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
913
914 /**
915  * vmbus_driver_unregister() - Unregister a vmbus's driver
916  * @hv_driver: Pointer to driver structure you want to
917  *             un-register
918  *
919  * Un-register the given driver that was previous registered with a call to
920  * vmbus_driver_register()
921  */
922 void vmbus_driver_unregister(struct hv_driver *hv_driver)
923 {
924         pr_info("unregistering driver %s\n", hv_driver->name);
925
926         if (!vmbus_exists())
927                 driver_unregister(&hv_driver->driver);
928 }
929 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
930
931 /*
932  * vmbus_device_create - Creates and registers a new child device
933  * on the vmbus.
934  */
935 struct hv_device *vmbus_device_create(const uuid_le *type,
936                                       const uuid_le *instance,
937                                       struct vmbus_channel *channel)
938 {
939         struct hv_device *child_device_obj;
940
941         child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
942         if (!child_device_obj) {
943                 pr_err("Unable to allocate device object for child device\n");
944                 return NULL;
945         }
946
947         child_device_obj->channel = channel;
948         memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
949         memcpy(&child_device_obj->dev_instance, instance,
950                sizeof(uuid_le));
951         child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
952
953
954         return child_device_obj;
955 }
956
957 /*
958  * vmbus_device_register - Register the child device
959  */
960 int vmbus_device_register(struct hv_device *child_device_obj)
961 {
962         int ret = 0;
963
964         dev_set_name(&child_device_obj->device, "vmbus_%d",
965                      child_device_obj->channel->id);
966
967         child_device_obj->device.bus = &hv_bus;
968         child_device_obj->device.parent = &hv_acpi_dev->dev;
969         child_device_obj->device.release = vmbus_device_release;
970
971         /*
972          * Register with the LDM. This will kick off the driver/device
973          * binding...which will eventually call vmbus_match() and vmbus_probe()
974          */
975         ret = device_register(&child_device_obj->device);
976
977         if (ret)
978                 pr_err("Unable to register child device\n");
979         else
980                 pr_debug("child device %s registered\n",
981                         dev_name(&child_device_obj->device));
982
983         return ret;
984 }
985
986 /*
987  * vmbus_device_unregister - Remove the specified child device
988  * from the vmbus.
989  */
990 void vmbus_device_unregister(struct hv_device *device_obj)
991 {
992         pr_debug("child device %s unregistered\n",
993                 dev_name(&device_obj->device));
994
995         /*
996          * Kick off the process of unregistering the device.
997          * This will call vmbus_remove() and eventually vmbus_device_release()
998          */
999         device_unregister(&device_obj->device);
1000 }
1001
1002
1003 /*
1004  * VMBUS is an acpi enumerated device. Get the information we
1005  * need from DSDT.
1006  */
1007 #define VTPM_BASE_ADDRESS 0xfed40000
1008 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1009 {
1010         resource_size_t start = 0;
1011         resource_size_t end = 0;
1012         struct resource *new_res;
1013         struct resource **old_res = &hyperv_mmio;
1014         struct resource **prev_res = NULL;
1015
1016         switch (res->type) {
1017
1018         /*
1019          * "Address" descriptors are for bus windows. Ignore
1020          * "memory" descriptors, which are for registers on
1021          * devices.
1022          */
1023         case ACPI_RESOURCE_TYPE_ADDRESS32:
1024                 start = res->data.address32.address.minimum;
1025                 end = res->data.address32.address.maximum;
1026                 break;
1027
1028         case ACPI_RESOURCE_TYPE_ADDRESS64:
1029                 start = res->data.address64.address.minimum;
1030                 end = res->data.address64.address.maximum;
1031                 break;
1032
1033         default:
1034                 /* Unused resource type */
1035                 return AE_OK;
1036
1037         }
1038         /*
1039          * Ignore ranges that are below 1MB, as they're not
1040          * necessary or useful here.
1041          */
1042         if (end < 0x100000)
1043                 return AE_OK;
1044
1045         new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1046         if (!new_res)
1047                 return AE_NO_MEMORY;
1048
1049         /* If this range overlaps the virtual TPM, truncate it. */
1050         if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1051                 end = VTPM_BASE_ADDRESS;
1052
1053         new_res->name = "hyperv mmio";
1054         new_res->flags = IORESOURCE_MEM;
1055         new_res->start = start;
1056         new_res->end = end;
1057
1058         /*
1059          * If two ranges are adjacent, merge them.
1060          */
1061         do {
1062                 if (!*old_res) {
1063                         *old_res = new_res;
1064                         break;
1065                 }
1066
1067                 if (((*old_res)->end + 1) == new_res->start) {
1068                         (*old_res)->end = new_res->end;
1069                         kfree(new_res);
1070                         break;
1071                 }
1072
1073                 if ((*old_res)->start == new_res->end + 1) {
1074                         (*old_res)->start = new_res->start;
1075                         kfree(new_res);
1076                         break;
1077                 }
1078
1079                 if ((*old_res)->start > new_res->end) {
1080                         new_res->sibling = *old_res;
1081                         if (prev_res)
1082                                 (*prev_res)->sibling = new_res;
1083                         *old_res = new_res;
1084                         break;
1085                 }
1086
1087                 prev_res = old_res;
1088                 old_res = &(*old_res)->sibling;
1089
1090         } while (1);
1091
1092         return AE_OK;
1093 }
1094
1095 static int vmbus_acpi_remove(struct acpi_device *device)
1096 {
1097         struct resource *cur_res;
1098         struct resource *next_res;
1099
1100         if (hyperv_mmio) {
1101                 if (fb_mmio) {
1102                         __release_region(hyperv_mmio, fb_mmio->start,
1103                                          resource_size(fb_mmio));
1104                         fb_mmio = NULL;
1105                 }
1106
1107                 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1108                         next_res = cur_res->sibling;
1109                         kfree(cur_res);
1110                 }
1111         }
1112
1113         return 0;
1114 }
1115
1116 static void vmbus_reserve_fb(void)
1117 {
1118         int size;
1119         /*
1120          * Make a claim for the frame buffer in the resource tree under the
1121          * first node, which will be the one below 4GB.  The length seems to
1122          * be underreported, particularly in a Generation 1 VM.  So start out
1123          * reserving a larger area and make it smaller until it succeeds.
1124          */
1125
1126         if (screen_info.lfb_base) {
1127                 if (efi_enabled(EFI_BOOT))
1128                         size = max_t(__u32, screen_info.lfb_size, 0x800000);
1129                 else
1130                         size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1131
1132                 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1133                         fb_mmio = __request_region(hyperv_mmio,
1134                                                    screen_info.lfb_base, size,
1135                                                    fb_mmio_name, 0);
1136                 }
1137         }
1138 }
1139
1140 /**
1141  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1142  * @new:                If successful, supplied a pointer to the
1143  *                      allocated MMIO space.
1144  * @device_obj:         Identifies the caller
1145  * @min:                Minimum guest physical address of the
1146  *                      allocation
1147  * @max:                Maximum guest physical address
1148  * @size:               Size of the range to be allocated
1149  * @align:              Alignment of the range to be allocated
1150  * @fb_overlap_ok:      Whether this allocation can be allowed
1151  *                      to overlap the video frame buffer.
1152  *
1153  * This function walks the resources granted to VMBus by the
1154  * _CRS object in the ACPI namespace underneath the parent
1155  * "bridge" whether that's a root PCI bus in the Generation 1
1156  * case or a Module Device in the Generation 2 case.  It then
1157  * attempts to allocate from the global MMIO pool in a way that
1158  * matches the constraints supplied in these parameters and by
1159  * that _CRS.
1160  *
1161  * Return: 0 on success, -errno on failure
1162  */
1163 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1164                         resource_size_t min, resource_size_t max,
1165                         resource_size_t size, resource_size_t align,
1166                         bool fb_overlap_ok)
1167 {
1168         struct resource *iter, *shadow;
1169         resource_size_t range_min, range_max, start;
1170         const char *dev_n = dev_name(&device_obj->device);
1171         int retval;
1172
1173         retval = -ENXIO;
1174         down(&hyperv_mmio_lock);
1175
1176         /*
1177          * If overlaps with frame buffers are allowed, then first attempt to
1178          * make the allocation from within the reserved region.  Because it
1179          * is already reserved, no shadow allocation is necessary.
1180          */
1181         if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1182             !(max < fb_mmio->start)) {
1183
1184                 range_min = fb_mmio->start;
1185                 range_max = fb_mmio->end;
1186                 start = (range_min + align - 1) & ~(align - 1);
1187                 for (; start + size - 1 <= range_max; start += align) {
1188                         *new = request_mem_region_exclusive(start, size, dev_n);
1189                         if (*new) {
1190                                 retval = 0;
1191                                 goto exit;
1192                         }
1193                 }
1194         }
1195
1196         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1197                 if ((iter->start >= max) || (iter->end <= min))
1198                         continue;
1199
1200                 range_min = iter->start;
1201                 range_max = iter->end;
1202                 start = (range_min + align - 1) & ~(align - 1);
1203                 for (; start + size - 1 <= range_max; start += align) {
1204                         shadow = __request_region(iter, start, size, NULL,
1205                                                   IORESOURCE_BUSY);
1206                         if (!shadow)
1207                                 continue;
1208
1209                         *new = request_mem_region_exclusive(start, size, dev_n);
1210                         if (*new) {
1211                                 shadow->name = (char *)*new;
1212                                 retval = 0;
1213                                 goto exit;
1214                         }
1215
1216                         __release_region(iter, start, size);
1217                 }
1218         }
1219
1220 exit:
1221         up(&hyperv_mmio_lock);
1222         return retval;
1223 }
1224 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1225
1226 /**
1227  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1228  * @start:              Base address of region to release.
1229  * @size:               Size of the range to be allocated
1230  *
1231  * This function releases anything requested by
1232  * vmbus_mmio_allocate().
1233  */
1234 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1235 {
1236         struct resource *iter;
1237
1238         down(&hyperv_mmio_lock);
1239         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1240                 if ((iter->start >= start + size) || (iter->end <= start))
1241                         continue;
1242
1243                 __release_region(iter, start, size);
1244         }
1245         release_mem_region(start, size);
1246         up(&hyperv_mmio_lock);
1247
1248 }
1249 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1250
1251 /**
1252  * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1253  * @cpu_number: CPU number in Linux terms
1254  *
1255  * This function returns the mapping between the Linux processor
1256  * number and the hypervisor's virtual processor number, useful
1257  * in making hypercalls and such that talk about specific
1258  * processors.
1259  *
1260  * Return: Virtual processor number in Hyper-V terms
1261  */
1262 int vmbus_cpu_number_to_vp_number(int cpu_number)
1263 {
1264         return hv_context.vp_index[cpu_number];
1265 }
1266 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1267
1268 static int vmbus_acpi_add(struct acpi_device *device)
1269 {
1270         acpi_status result;
1271         int ret_val = -ENODEV;
1272         struct acpi_device *ancestor;
1273
1274         hv_acpi_dev = device;
1275
1276         result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1277                                         vmbus_walk_resources, NULL);
1278
1279         if (ACPI_FAILURE(result))
1280                 goto acpi_walk_err;
1281         /*
1282          * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1283          * firmware) is the VMOD that has the mmio ranges. Get that.
1284          */
1285         for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1286                 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1287                                              vmbus_walk_resources, NULL);
1288
1289                 if (ACPI_FAILURE(result))
1290                         continue;
1291                 if (hyperv_mmio) {
1292                         vmbus_reserve_fb();
1293                         break;
1294                 }
1295         }
1296         ret_val = 0;
1297
1298 acpi_walk_err:
1299         complete(&probe_event);
1300         if (ret_val)
1301                 vmbus_acpi_remove(device);
1302         return ret_val;
1303 }
1304
1305 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1306         {"VMBUS", 0},
1307         {"VMBus", 0},
1308         {"", 0},
1309 };
1310 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1311
1312 static struct acpi_driver vmbus_acpi_driver = {
1313         .name = "vmbus",
1314         .ids = vmbus_acpi_device_ids,
1315         .ops = {
1316                 .add = vmbus_acpi_add,
1317                 .remove = vmbus_acpi_remove,
1318         },
1319 };
1320
1321 static void hv_kexec_handler(void)
1322 {
1323         int cpu;
1324
1325         hv_synic_clockevents_cleanup();
1326         vmbus_initiate_unload(false);
1327         for_each_online_cpu(cpu)
1328                 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1329         hv_cleanup();
1330 };
1331
1332 static void hv_crash_handler(struct pt_regs *regs)
1333 {
1334         vmbus_initiate_unload(true);
1335         /*
1336          * In crash handler we can't schedule synic cleanup for all CPUs,
1337          * doing the cleanup for current CPU only. This should be sufficient
1338          * for kdump.
1339          */
1340         hv_synic_cleanup(NULL);
1341         hv_cleanup();
1342 };
1343
1344 static int __init hv_acpi_init(void)
1345 {
1346         int ret, t;
1347
1348         if (x86_hyper != &x86_hyper_ms_hyperv)
1349                 return -ENODEV;
1350
1351         init_completion(&probe_event);
1352
1353         /*
1354          * Get ACPI resources first.
1355          */
1356         ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1357
1358         if (ret)
1359                 return ret;
1360
1361         t = wait_for_completion_timeout(&probe_event, 5*HZ);
1362         if (t == 0) {
1363                 ret = -ETIMEDOUT;
1364                 goto cleanup;
1365         }
1366
1367         ret = vmbus_bus_init();
1368         if (ret)
1369                 goto cleanup;
1370
1371         hv_setup_kexec_handler(hv_kexec_handler);
1372         hv_setup_crash_handler(hv_crash_handler);
1373
1374         return 0;
1375
1376 cleanup:
1377         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1378         hv_acpi_dev = NULL;
1379         return ret;
1380 }
1381
1382 static void __exit vmbus_exit(void)
1383 {
1384         int cpu;
1385
1386         hv_remove_kexec_handler();
1387         hv_remove_crash_handler();
1388         vmbus_connection.conn_state = DISCONNECTED;
1389         hv_synic_clockevents_cleanup();
1390         vmbus_disconnect();
1391         hv_remove_vmbus_irq();
1392         for_each_online_cpu(cpu)
1393                 tasklet_kill(hv_context.msg_dpc[cpu]);
1394         vmbus_free_channels();
1395         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1396                 unregister_die_notifier(&hyperv_die_block);
1397                 atomic_notifier_chain_unregister(&panic_notifier_list,
1398                                                  &hyperv_panic_block);
1399         }
1400         bus_unregister(&hv_bus);
1401         hv_cleanup();
1402         for_each_online_cpu(cpu) {
1403                 tasklet_kill(hv_context.event_dpc[cpu]);
1404                 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1405         }
1406         hv_synic_free();
1407         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1408         if (vmbus_proto_version > VERSION_WIN7)
1409                 cpu_hotplug_enable();
1410 }
1411
1412
1413 MODULE_LICENSE("GPL");
1414
1415 subsys_initcall(hv_acpi_init);
1416 module_exit(vmbus_exit);