Merge remote-tracking branches 'spi/topic/devprop', 'spi/topic/fsl', 'spi/topic/fsl...
[sfrench/cifs-2.6.git] / drivers / hv / vmbus_drv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38
39 #include <asm/hyperv.h>
40 #include <asm/hypervisor.h>
41 #include <asm/mshyperv.h>
42 #include <linux/notifier.h>
43 #include <linux/ptrace.h>
44 #include <linux/screen_info.h>
45 #include <linux/kdebug.h>
46 #include <linux/efi.h>
47 #include <linux/random.h>
48 #include "hyperv_vmbus.h"
49
50 struct vmbus_dynid {
51         struct list_head node;
52         struct hv_vmbus_device_id id;
53 };
54
55 static struct acpi_device  *hv_acpi_dev;
56
57 static struct completion probe_event;
58
59 static int hyperv_cpuhp_online;
60
61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62                               void *args)
63 {
64         struct pt_regs *regs;
65
66         regs = current_pt_regs();
67
68         hyperv_report_panic(regs);
69         return NOTIFY_DONE;
70 }
71
72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73                             void *args)
74 {
75         struct die_args *die = (struct die_args *)args;
76         struct pt_regs *regs = die->regs;
77
78         hyperv_report_panic(regs);
79         return NOTIFY_DONE;
80 }
81
82 static struct notifier_block hyperv_die_block = {
83         .notifier_call = hyperv_die_event,
84 };
85 static struct notifier_block hyperv_panic_block = {
86         .notifier_call = hyperv_panic_event,
87 };
88
89 static const char *fb_mmio_name = "fb_range";
90 static struct resource *fb_mmio;
91 static struct resource *hyperv_mmio;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93
94 static int vmbus_exists(void)
95 {
96         if (hv_acpi_dev == NULL)
97                 return -ENODEV;
98
99         return 0;
100 }
101
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104 {
105         int i;
106         for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107                 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108 }
109
110 static u8 channel_monitor_group(struct vmbus_channel *channel)
111 {
112         return (u8)channel->offermsg.monitorid / 32;
113 }
114
115 static u8 channel_monitor_offset(struct vmbus_channel *channel)
116 {
117         return (u8)channel->offermsg.monitorid % 32;
118 }
119
120 static u32 channel_pending(struct vmbus_channel *channel,
121                            struct hv_monitor_page *monitor_page)
122 {
123         u8 monitor_group = channel_monitor_group(channel);
124         return monitor_page->trigger_group[monitor_group].pending;
125 }
126
127 static u32 channel_latency(struct vmbus_channel *channel,
128                            struct hv_monitor_page *monitor_page)
129 {
130         u8 monitor_group = channel_monitor_group(channel);
131         u8 monitor_offset = channel_monitor_offset(channel);
132         return monitor_page->latency[monitor_group][monitor_offset];
133 }
134
135 static u32 channel_conn_id(struct vmbus_channel *channel,
136                            struct hv_monitor_page *monitor_page)
137 {
138         u8 monitor_group = channel_monitor_group(channel);
139         u8 monitor_offset = channel_monitor_offset(channel);
140         return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
141 }
142
143 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
144                        char *buf)
145 {
146         struct hv_device *hv_dev = device_to_hv_device(dev);
147
148         if (!hv_dev->channel)
149                 return -ENODEV;
150         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
151 }
152 static DEVICE_ATTR_RO(id);
153
154 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
155                           char *buf)
156 {
157         struct hv_device *hv_dev = device_to_hv_device(dev);
158
159         if (!hv_dev->channel)
160                 return -ENODEV;
161         return sprintf(buf, "%d\n", hv_dev->channel->state);
162 }
163 static DEVICE_ATTR_RO(state);
164
165 static ssize_t monitor_id_show(struct device *dev,
166                                struct device_attribute *dev_attr, char *buf)
167 {
168         struct hv_device *hv_dev = device_to_hv_device(dev);
169
170         if (!hv_dev->channel)
171                 return -ENODEV;
172         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
173 }
174 static DEVICE_ATTR_RO(monitor_id);
175
176 static ssize_t class_id_show(struct device *dev,
177                                struct device_attribute *dev_attr, char *buf)
178 {
179         struct hv_device *hv_dev = device_to_hv_device(dev);
180
181         if (!hv_dev->channel)
182                 return -ENODEV;
183         return sprintf(buf, "{%pUl}\n",
184                        hv_dev->channel->offermsg.offer.if_type.b);
185 }
186 static DEVICE_ATTR_RO(class_id);
187
188 static ssize_t device_id_show(struct device *dev,
189                               struct device_attribute *dev_attr, char *buf)
190 {
191         struct hv_device *hv_dev = device_to_hv_device(dev);
192
193         if (!hv_dev->channel)
194                 return -ENODEV;
195         return sprintf(buf, "{%pUl}\n",
196                        hv_dev->channel->offermsg.offer.if_instance.b);
197 }
198 static DEVICE_ATTR_RO(device_id);
199
200 static ssize_t modalias_show(struct device *dev,
201                              struct device_attribute *dev_attr, char *buf)
202 {
203         struct hv_device *hv_dev = device_to_hv_device(dev);
204         char alias_name[VMBUS_ALIAS_LEN + 1];
205
206         print_alias_name(hv_dev, alias_name);
207         return sprintf(buf, "vmbus:%s\n", alias_name);
208 }
209 static DEVICE_ATTR_RO(modalias);
210
211 static ssize_t server_monitor_pending_show(struct device *dev,
212                                            struct device_attribute *dev_attr,
213                                            char *buf)
214 {
215         struct hv_device *hv_dev = device_to_hv_device(dev);
216
217         if (!hv_dev->channel)
218                 return -ENODEV;
219         return sprintf(buf, "%d\n",
220                        channel_pending(hv_dev->channel,
221                                        vmbus_connection.monitor_pages[1]));
222 }
223 static DEVICE_ATTR_RO(server_monitor_pending);
224
225 static ssize_t client_monitor_pending_show(struct device *dev,
226                                            struct device_attribute *dev_attr,
227                                            char *buf)
228 {
229         struct hv_device *hv_dev = device_to_hv_device(dev);
230
231         if (!hv_dev->channel)
232                 return -ENODEV;
233         return sprintf(buf, "%d\n",
234                        channel_pending(hv_dev->channel,
235                                        vmbus_connection.monitor_pages[1]));
236 }
237 static DEVICE_ATTR_RO(client_monitor_pending);
238
239 static ssize_t server_monitor_latency_show(struct device *dev,
240                                            struct device_attribute *dev_attr,
241                                            char *buf)
242 {
243         struct hv_device *hv_dev = device_to_hv_device(dev);
244
245         if (!hv_dev->channel)
246                 return -ENODEV;
247         return sprintf(buf, "%d\n",
248                        channel_latency(hv_dev->channel,
249                                        vmbus_connection.monitor_pages[0]));
250 }
251 static DEVICE_ATTR_RO(server_monitor_latency);
252
253 static ssize_t client_monitor_latency_show(struct device *dev,
254                                            struct device_attribute *dev_attr,
255                                            char *buf)
256 {
257         struct hv_device *hv_dev = device_to_hv_device(dev);
258
259         if (!hv_dev->channel)
260                 return -ENODEV;
261         return sprintf(buf, "%d\n",
262                        channel_latency(hv_dev->channel,
263                                        vmbus_connection.monitor_pages[1]));
264 }
265 static DEVICE_ATTR_RO(client_monitor_latency);
266
267 static ssize_t server_monitor_conn_id_show(struct device *dev,
268                                            struct device_attribute *dev_attr,
269                                            char *buf)
270 {
271         struct hv_device *hv_dev = device_to_hv_device(dev);
272
273         if (!hv_dev->channel)
274                 return -ENODEV;
275         return sprintf(buf, "%d\n",
276                        channel_conn_id(hv_dev->channel,
277                                        vmbus_connection.monitor_pages[0]));
278 }
279 static DEVICE_ATTR_RO(server_monitor_conn_id);
280
281 static ssize_t client_monitor_conn_id_show(struct device *dev,
282                                            struct device_attribute *dev_attr,
283                                            char *buf)
284 {
285         struct hv_device *hv_dev = device_to_hv_device(dev);
286
287         if (!hv_dev->channel)
288                 return -ENODEV;
289         return sprintf(buf, "%d\n",
290                        channel_conn_id(hv_dev->channel,
291                                        vmbus_connection.monitor_pages[1]));
292 }
293 static DEVICE_ATTR_RO(client_monitor_conn_id);
294
295 static ssize_t out_intr_mask_show(struct device *dev,
296                                   struct device_attribute *dev_attr, char *buf)
297 {
298         struct hv_device *hv_dev = device_to_hv_device(dev);
299         struct hv_ring_buffer_debug_info outbound;
300
301         if (!hv_dev->channel)
302                 return -ENODEV;
303         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
304         return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
305 }
306 static DEVICE_ATTR_RO(out_intr_mask);
307
308 static ssize_t out_read_index_show(struct device *dev,
309                                    struct device_attribute *dev_attr, char *buf)
310 {
311         struct hv_device *hv_dev = device_to_hv_device(dev);
312         struct hv_ring_buffer_debug_info outbound;
313
314         if (!hv_dev->channel)
315                 return -ENODEV;
316         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
317         return sprintf(buf, "%d\n", outbound.current_read_index);
318 }
319 static DEVICE_ATTR_RO(out_read_index);
320
321 static ssize_t out_write_index_show(struct device *dev,
322                                     struct device_attribute *dev_attr,
323                                     char *buf)
324 {
325         struct hv_device *hv_dev = device_to_hv_device(dev);
326         struct hv_ring_buffer_debug_info outbound;
327
328         if (!hv_dev->channel)
329                 return -ENODEV;
330         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
331         return sprintf(buf, "%d\n", outbound.current_write_index);
332 }
333 static DEVICE_ATTR_RO(out_write_index);
334
335 static ssize_t out_read_bytes_avail_show(struct device *dev,
336                                          struct device_attribute *dev_attr,
337                                          char *buf)
338 {
339         struct hv_device *hv_dev = device_to_hv_device(dev);
340         struct hv_ring_buffer_debug_info outbound;
341
342         if (!hv_dev->channel)
343                 return -ENODEV;
344         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
345         return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
346 }
347 static DEVICE_ATTR_RO(out_read_bytes_avail);
348
349 static ssize_t out_write_bytes_avail_show(struct device *dev,
350                                           struct device_attribute *dev_attr,
351                                           char *buf)
352 {
353         struct hv_device *hv_dev = device_to_hv_device(dev);
354         struct hv_ring_buffer_debug_info outbound;
355
356         if (!hv_dev->channel)
357                 return -ENODEV;
358         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
359         return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
360 }
361 static DEVICE_ATTR_RO(out_write_bytes_avail);
362
363 static ssize_t in_intr_mask_show(struct device *dev,
364                                  struct device_attribute *dev_attr, char *buf)
365 {
366         struct hv_device *hv_dev = device_to_hv_device(dev);
367         struct hv_ring_buffer_debug_info inbound;
368
369         if (!hv_dev->channel)
370                 return -ENODEV;
371         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
372         return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
373 }
374 static DEVICE_ATTR_RO(in_intr_mask);
375
376 static ssize_t in_read_index_show(struct device *dev,
377                                   struct device_attribute *dev_attr, char *buf)
378 {
379         struct hv_device *hv_dev = device_to_hv_device(dev);
380         struct hv_ring_buffer_debug_info inbound;
381
382         if (!hv_dev->channel)
383                 return -ENODEV;
384         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
385         return sprintf(buf, "%d\n", inbound.current_read_index);
386 }
387 static DEVICE_ATTR_RO(in_read_index);
388
389 static ssize_t in_write_index_show(struct device *dev,
390                                    struct device_attribute *dev_attr, char *buf)
391 {
392         struct hv_device *hv_dev = device_to_hv_device(dev);
393         struct hv_ring_buffer_debug_info inbound;
394
395         if (!hv_dev->channel)
396                 return -ENODEV;
397         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
398         return sprintf(buf, "%d\n", inbound.current_write_index);
399 }
400 static DEVICE_ATTR_RO(in_write_index);
401
402 static ssize_t in_read_bytes_avail_show(struct device *dev,
403                                         struct device_attribute *dev_attr,
404                                         char *buf)
405 {
406         struct hv_device *hv_dev = device_to_hv_device(dev);
407         struct hv_ring_buffer_debug_info inbound;
408
409         if (!hv_dev->channel)
410                 return -ENODEV;
411         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
412         return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
413 }
414 static DEVICE_ATTR_RO(in_read_bytes_avail);
415
416 static ssize_t in_write_bytes_avail_show(struct device *dev,
417                                          struct device_attribute *dev_attr,
418                                          char *buf)
419 {
420         struct hv_device *hv_dev = device_to_hv_device(dev);
421         struct hv_ring_buffer_debug_info inbound;
422
423         if (!hv_dev->channel)
424                 return -ENODEV;
425         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
426         return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
427 }
428 static DEVICE_ATTR_RO(in_write_bytes_avail);
429
430 static ssize_t channel_vp_mapping_show(struct device *dev,
431                                        struct device_attribute *dev_attr,
432                                        char *buf)
433 {
434         struct hv_device *hv_dev = device_to_hv_device(dev);
435         struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
436         unsigned long flags;
437         int buf_size = PAGE_SIZE, n_written, tot_written;
438         struct list_head *cur;
439
440         if (!channel)
441                 return -ENODEV;
442
443         tot_written = snprintf(buf, buf_size, "%u:%u\n",
444                 channel->offermsg.child_relid, channel->target_cpu);
445
446         spin_lock_irqsave(&channel->lock, flags);
447
448         list_for_each(cur, &channel->sc_list) {
449                 if (tot_written >= buf_size - 1)
450                         break;
451
452                 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
453                 n_written = scnprintf(buf + tot_written,
454                                      buf_size - tot_written,
455                                      "%u:%u\n",
456                                      cur_sc->offermsg.child_relid,
457                                      cur_sc->target_cpu);
458                 tot_written += n_written;
459         }
460
461         spin_unlock_irqrestore(&channel->lock, flags);
462
463         return tot_written;
464 }
465 static DEVICE_ATTR_RO(channel_vp_mapping);
466
467 static ssize_t vendor_show(struct device *dev,
468                            struct device_attribute *dev_attr,
469                            char *buf)
470 {
471         struct hv_device *hv_dev = device_to_hv_device(dev);
472         return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
473 }
474 static DEVICE_ATTR_RO(vendor);
475
476 static ssize_t device_show(struct device *dev,
477                            struct device_attribute *dev_attr,
478                            char *buf)
479 {
480         struct hv_device *hv_dev = device_to_hv_device(dev);
481         return sprintf(buf, "0x%x\n", hv_dev->device_id);
482 }
483 static DEVICE_ATTR_RO(device);
484
485 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
486 static struct attribute *vmbus_dev_attrs[] = {
487         &dev_attr_id.attr,
488         &dev_attr_state.attr,
489         &dev_attr_monitor_id.attr,
490         &dev_attr_class_id.attr,
491         &dev_attr_device_id.attr,
492         &dev_attr_modalias.attr,
493         &dev_attr_server_monitor_pending.attr,
494         &dev_attr_client_monitor_pending.attr,
495         &dev_attr_server_monitor_latency.attr,
496         &dev_attr_client_monitor_latency.attr,
497         &dev_attr_server_monitor_conn_id.attr,
498         &dev_attr_client_monitor_conn_id.attr,
499         &dev_attr_out_intr_mask.attr,
500         &dev_attr_out_read_index.attr,
501         &dev_attr_out_write_index.attr,
502         &dev_attr_out_read_bytes_avail.attr,
503         &dev_attr_out_write_bytes_avail.attr,
504         &dev_attr_in_intr_mask.attr,
505         &dev_attr_in_read_index.attr,
506         &dev_attr_in_write_index.attr,
507         &dev_attr_in_read_bytes_avail.attr,
508         &dev_attr_in_write_bytes_avail.attr,
509         &dev_attr_channel_vp_mapping.attr,
510         &dev_attr_vendor.attr,
511         &dev_attr_device.attr,
512         NULL,
513 };
514 ATTRIBUTE_GROUPS(vmbus_dev);
515
516 /*
517  * vmbus_uevent - add uevent for our device
518  *
519  * This routine is invoked when a device is added or removed on the vmbus to
520  * generate a uevent to udev in the userspace. The udev will then look at its
521  * rule and the uevent generated here to load the appropriate driver
522  *
523  * The alias string will be of the form vmbus:guid where guid is the string
524  * representation of the device guid (each byte of the guid will be
525  * represented with two hex characters.
526  */
527 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
528 {
529         struct hv_device *dev = device_to_hv_device(device);
530         int ret;
531         char alias_name[VMBUS_ALIAS_LEN + 1];
532
533         print_alias_name(dev, alias_name);
534         ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
535         return ret;
536 }
537
538 static const uuid_le null_guid;
539
540 static inline bool is_null_guid(const uuid_le *guid)
541 {
542         if (uuid_le_cmp(*guid, null_guid))
543                 return false;
544         return true;
545 }
546
547 /*
548  * Return a matching hv_vmbus_device_id pointer.
549  * If there is no match, return NULL.
550  */
551 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
552                                         const uuid_le *guid)
553 {
554         const struct hv_vmbus_device_id *id = NULL;
555         struct vmbus_dynid *dynid;
556
557         /* Look at the dynamic ids first, before the static ones */
558         spin_lock(&drv->dynids.lock);
559         list_for_each_entry(dynid, &drv->dynids.list, node) {
560                 if (!uuid_le_cmp(dynid->id.guid, *guid)) {
561                         id = &dynid->id;
562                         break;
563                 }
564         }
565         spin_unlock(&drv->dynids.lock);
566
567         if (id)
568                 return id;
569
570         id = drv->id_table;
571         if (id == NULL)
572                 return NULL; /* empty device table */
573
574         for (; !is_null_guid(&id->guid); id++)
575                 if (!uuid_le_cmp(id->guid, *guid))
576                         return id;
577
578         return NULL;
579 }
580
581 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
582 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
583 {
584         struct vmbus_dynid *dynid;
585
586         dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
587         if (!dynid)
588                 return -ENOMEM;
589
590         dynid->id.guid = *guid;
591
592         spin_lock(&drv->dynids.lock);
593         list_add_tail(&dynid->node, &drv->dynids.list);
594         spin_unlock(&drv->dynids.lock);
595
596         return driver_attach(&drv->driver);
597 }
598
599 static void vmbus_free_dynids(struct hv_driver *drv)
600 {
601         struct vmbus_dynid *dynid, *n;
602
603         spin_lock(&drv->dynids.lock);
604         list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
605                 list_del(&dynid->node);
606                 kfree(dynid);
607         }
608         spin_unlock(&drv->dynids.lock);
609 }
610
611 /* Parse string of form: 1b4e28ba-2fa1-11d2-883f-b9a761bde3f */
612 static int get_uuid_le(const char *str, uuid_le *uu)
613 {
614         unsigned int b[16];
615         int i;
616
617         if (strlen(str) < 37)
618                 return -1;
619
620         for (i = 0; i < 36; i++) {
621                 switch (i) {
622                 case 8: case 13: case 18: case 23:
623                         if (str[i] != '-')
624                                 return -1;
625                         break;
626                 default:
627                         if (!isxdigit(str[i]))
628                                 return -1;
629                 }
630         }
631
632         /* unparse little endian output byte order */
633         if (sscanf(str,
634                    "%2x%2x%2x%2x-%2x%2x-%2x%2x-%2x%2x-%2x%2x%2x%2x%2x%2x",
635                    &b[3], &b[2], &b[1], &b[0],
636                    &b[5], &b[4], &b[7], &b[6], &b[8], &b[9],
637                    &b[10], &b[11], &b[12], &b[13], &b[14], &b[15]) != 16)
638                 return -1;
639
640         for (i = 0; i < 16; i++)
641                 uu->b[i] = b[i];
642         return 0;
643 }
644
645 /*
646  * store_new_id - sysfs frontend to vmbus_add_dynid()
647  *
648  * Allow GUIDs to be added to an existing driver via sysfs.
649  */
650 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
651                             size_t count)
652 {
653         struct hv_driver *drv = drv_to_hv_drv(driver);
654         uuid_le guid = NULL_UUID_LE;
655         ssize_t retval;
656
657         if (get_uuid_le(buf, &guid) != 0)
658                 return -EINVAL;
659
660         if (hv_vmbus_get_id(drv, &guid))
661                 return -EEXIST;
662
663         retval = vmbus_add_dynid(drv, &guid);
664         if (retval)
665                 return retval;
666         return count;
667 }
668 static DRIVER_ATTR_WO(new_id);
669
670 /*
671  * store_remove_id - remove a PCI device ID from this driver
672  *
673  * Removes a dynamic pci device ID to this driver.
674  */
675 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
676                                size_t count)
677 {
678         struct hv_driver *drv = drv_to_hv_drv(driver);
679         struct vmbus_dynid *dynid, *n;
680         uuid_le guid = NULL_UUID_LE;
681         size_t retval = -ENODEV;
682
683         if (get_uuid_le(buf, &guid))
684                 return -EINVAL;
685
686         spin_lock(&drv->dynids.lock);
687         list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
688                 struct hv_vmbus_device_id *id = &dynid->id;
689
690                 if (!uuid_le_cmp(id->guid, guid)) {
691                         list_del(&dynid->node);
692                         kfree(dynid);
693                         retval = count;
694                         break;
695                 }
696         }
697         spin_unlock(&drv->dynids.lock);
698
699         return retval;
700 }
701 static DRIVER_ATTR_WO(remove_id);
702
703 static struct attribute *vmbus_drv_attrs[] = {
704         &driver_attr_new_id.attr,
705         &driver_attr_remove_id.attr,
706         NULL,
707 };
708 ATTRIBUTE_GROUPS(vmbus_drv);
709
710
711 /*
712  * vmbus_match - Attempt to match the specified device to the specified driver
713  */
714 static int vmbus_match(struct device *device, struct device_driver *driver)
715 {
716         struct hv_driver *drv = drv_to_hv_drv(driver);
717         struct hv_device *hv_dev = device_to_hv_device(device);
718
719         /* The hv_sock driver handles all hv_sock offers. */
720         if (is_hvsock_channel(hv_dev->channel))
721                 return drv->hvsock;
722
723         if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
724                 return 1;
725
726         return 0;
727 }
728
729 /*
730  * vmbus_probe - Add the new vmbus's child device
731  */
732 static int vmbus_probe(struct device *child_device)
733 {
734         int ret = 0;
735         struct hv_driver *drv =
736                         drv_to_hv_drv(child_device->driver);
737         struct hv_device *dev = device_to_hv_device(child_device);
738         const struct hv_vmbus_device_id *dev_id;
739
740         dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
741         if (drv->probe) {
742                 ret = drv->probe(dev, dev_id);
743                 if (ret != 0)
744                         pr_err("probe failed for device %s (%d)\n",
745                                dev_name(child_device), ret);
746
747         } else {
748                 pr_err("probe not set for driver %s\n",
749                        dev_name(child_device));
750                 ret = -ENODEV;
751         }
752         return ret;
753 }
754
755 /*
756  * vmbus_remove - Remove a vmbus device
757  */
758 static int vmbus_remove(struct device *child_device)
759 {
760         struct hv_driver *drv;
761         struct hv_device *dev = device_to_hv_device(child_device);
762
763         if (child_device->driver) {
764                 drv = drv_to_hv_drv(child_device->driver);
765                 if (drv->remove)
766                         drv->remove(dev);
767         }
768
769         return 0;
770 }
771
772
773 /*
774  * vmbus_shutdown - Shutdown a vmbus device
775  */
776 static void vmbus_shutdown(struct device *child_device)
777 {
778         struct hv_driver *drv;
779         struct hv_device *dev = device_to_hv_device(child_device);
780
781
782         /* The device may not be attached yet */
783         if (!child_device->driver)
784                 return;
785
786         drv = drv_to_hv_drv(child_device->driver);
787
788         if (drv->shutdown)
789                 drv->shutdown(dev);
790
791         return;
792 }
793
794
795 /*
796  * vmbus_device_release - Final callback release of the vmbus child device
797  */
798 static void vmbus_device_release(struct device *device)
799 {
800         struct hv_device *hv_dev = device_to_hv_device(device);
801         struct vmbus_channel *channel = hv_dev->channel;
802
803         hv_process_channel_removal(channel,
804                                    channel->offermsg.child_relid);
805         kfree(hv_dev);
806
807 }
808
809 /* The one and only one */
810 static struct bus_type  hv_bus = {
811         .name =         "vmbus",
812         .match =                vmbus_match,
813         .shutdown =             vmbus_shutdown,
814         .remove =               vmbus_remove,
815         .probe =                vmbus_probe,
816         .uevent =               vmbus_uevent,
817         .dev_groups =           vmbus_dev_groups,
818         .drv_groups =           vmbus_drv_groups,
819 };
820
821 struct onmessage_work_context {
822         struct work_struct work;
823         struct hv_message msg;
824 };
825
826 static void vmbus_onmessage_work(struct work_struct *work)
827 {
828         struct onmessage_work_context *ctx;
829
830         /* Do not process messages if we're in DISCONNECTED state */
831         if (vmbus_connection.conn_state == DISCONNECTED)
832                 return;
833
834         ctx = container_of(work, struct onmessage_work_context,
835                            work);
836         vmbus_onmessage(&ctx->msg);
837         kfree(ctx);
838 }
839
840 static void hv_process_timer_expiration(struct hv_message *msg,
841                                         struct hv_per_cpu_context *hv_cpu)
842 {
843         struct clock_event_device *dev = hv_cpu->clk_evt;
844
845         if (dev->event_handler)
846                 dev->event_handler(dev);
847
848         vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
849 }
850
851 void vmbus_on_msg_dpc(unsigned long data)
852 {
853         struct hv_per_cpu_context *hv_cpu = (void *)data;
854         void *page_addr = hv_cpu->synic_message_page;
855         struct hv_message *msg = (struct hv_message *)page_addr +
856                                   VMBUS_MESSAGE_SINT;
857         struct vmbus_channel_message_header *hdr;
858         struct vmbus_channel_message_table_entry *entry;
859         struct onmessage_work_context *ctx;
860         u32 message_type = msg->header.message_type;
861
862         if (message_type == HVMSG_NONE)
863                 /* no msg */
864                 return;
865
866         hdr = (struct vmbus_channel_message_header *)msg->u.payload;
867
868         if (hdr->msgtype >= CHANNELMSG_COUNT) {
869                 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
870                 goto msg_handled;
871         }
872
873         entry = &channel_message_table[hdr->msgtype];
874         if (entry->handler_type == VMHT_BLOCKING) {
875                 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
876                 if (ctx == NULL)
877                         return;
878
879                 INIT_WORK(&ctx->work, vmbus_onmessage_work);
880                 memcpy(&ctx->msg, msg, sizeof(*msg));
881
882                 queue_work(vmbus_connection.work_queue, &ctx->work);
883         } else
884                 entry->message_handler(hdr);
885
886 msg_handled:
887         vmbus_signal_eom(msg, message_type);
888 }
889
890
891 /*
892  * Direct callback for channels using other deferred processing
893  */
894 static void vmbus_channel_isr(struct vmbus_channel *channel)
895 {
896         void (*callback_fn)(void *);
897
898         callback_fn = READ_ONCE(channel->onchannel_callback);
899         if (likely(callback_fn != NULL))
900                 (*callback_fn)(channel->channel_callback_context);
901 }
902
903 /*
904  * Schedule all channels with events pending
905  */
906 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
907 {
908         unsigned long *recv_int_page;
909         u32 maxbits, relid;
910
911         if (vmbus_proto_version < VERSION_WIN8) {
912                 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
913                 recv_int_page = vmbus_connection.recv_int_page;
914         } else {
915                 /*
916                  * When the host is win8 and beyond, the event page
917                  * can be directly checked to get the id of the channel
918                  * that has the interrupt pending.
919                  */
920                 void *page_addr = hv_cpu->synic_event_page;
921                 union hv_synic_event_flags *event
922                         = (union hv_synic_event_flags *)page_addr +
923                                                  VMBUS_MESSAGE_SINT;
924
925                 maxbits = HV_EVENT_FLAGS_COUNT;
926                 recv_int_page = event->flags;
927         }
928
929         if (unlikely(!recv_int_page))
930                 return;
931
932         for_each_set_bit(relid, recv_int_page, maxbits) {
933                 struct vmbus_channel *channel;
934
935                 if (!sync_test_and_clear_bit(relid, recv_int_page))
936                         continue;
937
938                 /* Special case - vmbus channel protocol msg */
939                 if (relid == 0)
940                         continue;
941
942                 rcu_read_lock();
943
944                 /* Find channel based on relid */
945                 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
946                         if (channel->offermsg.child_relid != relid)
947                                 continue;
948
949                         switch (channel->callback_mode) {
950                         case HV_CALL_ISR:
951                                 vmbus_channel_isr(channel);
952                                 break;
953
954                         case HV_CALL_BATCHED:
955                                 hv_begin_read(&channel->inbound);
956                                 /* fallthrough */
957                         case HV_CALL_DIRECT:
958                                 tasklet_schedule(&channel->callback_event);
959                         }
960                 }
961
962                 rcu_read_unlock();
963         }
964 }
965
966 static void vmbus_isr(void)
967 {
968         struct hv_per_cpu_context *hv_cpu
969                 = this_cpu_ptr(hv_context.cpu_context);
970         void *page_addr = hv_cpu->synic_event_page;
971         struct hv_message *msg;
972         union hv_synic_event_flags *event;
973         bool handled = false;
974
975         if (unlikely(page_addr == NULL))
976                 return;
977
978         event = (union hv_synic_event_flags *)page_addr +
979                                          VMBUS_MESSAGE_SINT;
980         /*
981          * Check for events before checking for messages. This is the order
982          * in which events and messages are checked in Windows guests on
983          * Hyper-V, and the Windows team suggested we do the same.
984          */
985
986         if ((vmbus_proto_version == VERSION_WS2008) ||
987                 (vmbus_proto_version == VERSION_WIN7)) {
988
989                 /* Since we are a child, we only need to check bit 0 */
990                 if (sync_test_and_clear_bit(0, event->flags))
991                         handled = true;
992         } else {
993                 /*
994                  * Our host is win8 or above. The signaling mechanism
995                  * has changed and we can directly look at the event page.
996                  * If bit n is set then we have an interrup on the channel
997                  * whose id is n.
998                  */
999                 handled = true;
1000         }
1001
1002         if (handled)
1003                 vmbus_chan_sched(hv_cpu);
1004
1005         page_addr = hv_cpu->synic_message_page;
1006         msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1007
1008         /* Check if there are actual msgs to be processed */
1009         if (msg->header.message_type != HVMSG_NONE) {
1010                 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1011                         hv_process_timer_expiration(msg, hv_cpu);
1012                 else
1013                         tasklet_schedule(&hv_cpu->msg_dpc);
1014         }
1015
1016         add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1017 }
1018
1019
1020 /*
1021  * vmbus_bus_init -Main vmbus driver initialization routine.
1022  *
1023  * Here, we
1024  *      - initialize the vmbus driver context
1025  *      - invoke the vmbus hv main init routine
1026  *      - retrieve the channel offers
1027  */
1028 static int vmbus_bus_init(void)
1029 {
1030         int ret;
1031
1032         /* Hypervisor initialization...setup hypercall page..etc */
1033         ret = hv_init();
1034         if (ret != 0) {
1035                 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1036                 return ret;
1037         }
1038
1039         ret = bus_register(&hv_bus);
1040         if (ret)
1041                 return ret;
1042
1043         hv_setup_vmbus_irq(vmbus_isr);
1044
1045         ret = hv_synic_alloc();
1046         if (ret)
1047                 goto err_alloc;
1048         /*
1049          * Initialize the per-cpu interrupt state and
1050          * connect to the host.
1051          */
1052         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv:online",
1053                                 hv_synic_init, hv_synic_cleanup);
1054         if (ret < 0)
1055                 goto err_alloc;
1056         hyperv_cpuhp_online = ret;
1057
1058         ret = vmbus_connect();
1059         if (ret)
1060                 goto err_connect;
1061
1062         /*
1063          * Only register if the crash MSRs are available
1064          */
1065         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1066                 register_die_notifier(&hyperv_die_block);
1067                 atomic_notifier_chain_register(&panic_notifier_list,
1068                                                &hyperv_panic_block);
1069         }
1070
1071         vmbus_request_offers();
1072
1073         return 0;
1074
1075 err_connect:
1076         cpuhp_remove_state(hyperv_cpuhp_online);
1077 err_alloc:
1078         hv_synic_free();
1079         hv_remove_vmbus_irq();
1080
1081         bus_unregister(&hv_bus);
1082
1083         return ret;
1084 }
1085
1086 /**
1087  * __vmbus_child_driver_register() - Register a vmbus's driver
1088  * @hv_driver: Pointer to driver structure you want to register
1089  * @owner: owner module of the drv
1090  * @mod_name: module name string
1091  *
1092  * Registers the given driver with Linux through the 'driver_register()' call
1093  * and sets up the hyper-v vmbus handling for this driver.
1094  * It will return the state of the 'driver_register()' call.
1095  *
1096  */
1097 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1098 {
1099         int ret;
1100
1101         pr_info("registering driver %s\n", hv_driver->name);
1102
1103         ret = vmbus_exists();
1104         if (ret < 0)
1105                 return ret;
1106
1107         hv_driver->driver.name = hv_driver->name;
1108         hv_driver->driver.owner = owner;
1109         hv_driver->driver.mod_name = mod_name;
1110         hv_driver->driver.bus = &hv_bus;
1111
1112         spin_lock_init(&hv_driver->dynids.lock);
1113         INIT_LIST_HEAD(&hv_driver->dynids.list);
1114
1115         ret = driver_register(&hv_driver->driver);
1116
1117         return ret;
1118 }
1119 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1120
1121 /**
1122  * vmbus_driver_unregister() - Unregister a vmbus's driver
1123  * @hv_driver: Pointer to driver structure you want to
1124  *             un-register
1125  *
1126  * Un-register the given driver that was previous registered with a call to
1127  * vmbus_driver_register()
1128  */
1129 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1130 {
1131         pr_info("unregistering driver %s\n", hv_driver->name);
1132
1133         if (!vmbus_exists()) {
1134                 driver_unregister(&hv_driver->driver);
1135                 vmbus_free_dynids(hv_driver);
1136         }
1137 }
1138 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1139
1140 /*
1141  * vmbus_device_create - Creates and registers a new child device
1142  * on the vmbus.
1143  */
1144 struct hv_device *vmbus_device_create(const uuid_le *type,
1145                                       const uuid_le *instance,
1146                                       struct vmbus_channel *channel)
1147 {
1148         struct hv_device *child_device_obj;
1149
1150         child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1151         if (!child_device_obj) {
1152                 pr_err("Unable to allocate device object for child device\n");
1153                 return NULL;
1154         }
1155
1156         child_device_obj->channel = channel;
1157         memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1158         memcpy(&child_device_obj->dev_instance, instance,
1159                sizeof(uuid_le));
1160         child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1161
1162
1163         return child_device_obj;
1164 }
1165
1166 /*
1167  * vmbus_device_register - Register the child device
1168  */
1169 int vmbus_device_register(struct hv_device *child_device_obj)
1170 {
1171         int ret = 0;
1172
1173         dev_set_name(&child_device_obj->device, "%pUl",
1174                      child_device_obj->channel->offermsg.offer.if_instance.b);
1175
1176         child_device_obj->device.bus = &hv_bus;
1177         child_device_obj->device.parent = &hv_acpi_dev->dev;
1178         child_device_obj->device.release = vmbus_device_release;
1179
1180         /*
1181          * Register with the LDM. This will kick off the driver/device
1182          * binding...which will eventually call vmbus_match() and vmbus_probe()
1183          */
1184         ret = device_register(&child_device_obj->device);
1185
1186         if (ret)
1187                 pr_err("Unable to register child device\n");
1188         else
1189                 pr_debug("child device %s registered\n",
1190                         dev_name(&child_device_obj->device));
1191
1192         return ret;
1193 }
1194
1195 /*
1196  * vmbus_device_unregister - Remove the specified child device
1197  * from the vmbus.
1198  */
1199 void vmbus_device_unregister(struct hv_device *device_obj)
1200 {
1201         pr_debug("child device %s unregistered\n",
1202                 dev_name(&device_obj->device));
1203
1204         /*
1205          * Kick off the process of unregistering the device.
1206          * This will call vmbus_remove() and eventually vmbus_device_release()
1207          */
1208         device_unregister(&device_obj->device);
1209 }
1210
1211
1212 /*
1213  * VMBUS is an acpi enumerated device. Get the information we
1214  * need from DSDT.
1215  */
1216 #define VTPM_BASE_ADDRESS 0xfed40000
1217 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1218 {
1219         resource_size_t start = 0;
1220         resource_size_t end = 0;
1221         struct resource *new_res;
1222         struct resource **old_res = &hyperv_mmio;
1223         struct resource **prev_res = NULL;
1224
1225         switch (res->type) {
1226
1227         /*
1228          * "Address" descriptors are for bus windows. Ignore
1229          * "memory" descriptors, which are for registers on
1230          * devices.
1231          */
1232         case ACPI_RESOURCE_TYPE_ADDRESS32:
1233                 start = res->data.address32.address.minimum;
1234                 end = res->data.address32.address.maximum;
1235                 break;
1236
1237         case ACPI_RESOURCE_TYPE_ADDRESS64:
1238                 start = res->data.address64.address.minimum;
1239                 end = res->data.address64.address.maximum;
1240                 break;
1241
1242         default:
1243                 /* Unused resource type */
1244                 return AE_OK;
1245
1246         }
1247         /*
1248          * Ignore ranges that are below 1MB, as they're not
1249          * necessary or useful here.
1250          */
1251         if (end < 0x100000)
1252                 return AE_OK;
1253
1254         new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1255         if (!new_res)
1256                 return AE_NO_MEMORY;
1257
1258         /* If this range overlaps the virtual TPM, truncate it. */
1259         if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1260                 end = VTPM_BASE_ADDRESS;
1261
1262         new_res->name = "hyperv mmio";
1263         new_res->flags = IORESOURCE_MEM;
1264         new_res->start = start;
1265         new_res->end = end;
1266
1267         /*
1268          * If two ranges are adjacent, merge them.
1269          */
1270         do {
1271                 if (!*old_res) {
1272                         *old_res = new_res;
1273                         break;
1274                 }
1275
1276                 if (((*old_res)->end + 1) == new_res->start) {
1277                         (*old_res)->end = new_res->end;
1278                         kfree(new_res);
1279                         break;
1280                 }
1281
1282                 if ((*old_res)->start == new_res->end + 1) {
1283                         (*old_res)->start = new_res->start;
1284                         kfree(new_res);
1285                         break;
1286                 }
1287
1288                 if ((*old_res)->start > new_res->end) {
1289                         new_res->sibling = *old_res;
1290                         if (prev_res)
1291                                 (*prev_res)->sibling = new_res;
1292                         *old_res = new_res;
1293                         break;
1294                 }
1295
1296                 prev_res = old_res;
1297                 old_res = &(*old_res)->sibling;
1298
1299         } while (1);
1300
1301         return AE_OK;
1302 }
1303
1304 static int vmbus_acpi_remove(struct acpi_device *device)
1305 {
1306         struct resource *cur_res;
1307         struct resource *next_res;
1308
1309         if (hyperv_mmio) {
1310                 if (fb_mmio) {
1311                         __release_region(hyperv_mmio, fb_mmio->start,
1312                                          resource_size(fb_mmio));
1313                         fb_mmio = NULL;
1314                 }
1315
1316                 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1317                         next_res = cur_res->sibling;
1318                         kfree(cur_res);
1319                 }
1320         }
1321
1322         return 0;
1323 }
1324
1325 static void vmbus_reserve_fb(void)
1326 {
1327         int size;
1328         /*
1329          * Make a claim for the frame buffer in the resource tree under the
1330          * first node, which will be the one below 4GB.  The length seems to
1331          * be underreported, particularly in a Generation 1 VM.  So start out
1332          * reserving a larger area and make it smaller until it succeeds.
1333          */
1334
1335         if (screen_info.lfb_base) {
1336                 if (efi_enabled(EFI_BOOT))
1337                         size = max_t(__u32, screen_info.lfb_size, 0x800000);
1338                 else
1339                         size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1340
1341                 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1342                         fb_mmio = __request_region(hyperv_mmio,
1343                                                    screen_info.lfb_base, size,
1344                                                    fb_mmio_name, 0);
1345                 }
1346         }
1347 }
1348
1349 /**
1350  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1351  * @new:                If successful, supplied a pointer to the
1352  *                      allocated MMIO space.
1353  * @device_obj:         Identifies the caller
1354  * @min:                Minimum guest physical address of the
1355  *                      allocation
1356  * @max:                Maximum guest physical address
1357  * @size:               Size of the range to be allocated
1358  * @align:              Alignment of the range to be allocated
1359  * @fb_overlap_ok:      Whether this allocation can be allowed
1360  *                      to overlap the video frame buffer.
1361  *
1362  * This function walks the resources granted to VMBus by the
1363  * _CRS object in the ACPI namespace underneath the parent
1364  * "bridge" whether that's a root PCI bus in the Generation 1
1365  * case or a Module Device in the Generation 2 case.  It then
1366  * attempts to allocate from the global MMIO pool in a way that
1367  * matches the constraints supplied in these parameters and by
1368  * that _CRS.
1369  *
1370  * Return: 0 on success, -errno on failure
1371  */
1372 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1373                         resource_size_t min, resource_size_t max,
1374                         resource_size_t size, resource_size_t align,
1375                         bool fb_overlap_ok)
1376 {
1377         struct resource *iter, *shadow;
1378         resource_size_t range_min, range_max, start;
1379         const char *dev_n = dev_name(&device_obj->device);
1380         int retval;
1381
1382         retval = -ENXIO;
1383         down(&hyperv_mmio_lock);
1384
1385         /*
1386          * If overlaps with frame buffers are allowed, then first attempt to
1387          * make the allocation from within the reserved region.  Because it
1388          * is already reserved, no shadow allocation is necessary.
1389          */
1390         if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1391             !(max < fb_mmio->start)) {
1392
1393                 range_min = fb_mmio->start;
1394                 range_max = fb_mmio->end;
1395                 start = (range_min + align - 1) & ~(align - 1);
1396                 for (; start + size - 1 <= range_max; start += align) {
1397                         *new = request_mem_region_exclusive(start, size, dev_n);
1398                         if (*new) {
1399                                 retval = 0;
1400                                 goto exit;
1401                         }
1402                 }
1403         }
1404
1405         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1406                 if ((iter->start >= max) || (iter->end <= min))
1407                         continue;
1408
1409                 range_min = iter->start;
1410                 range_max = iter->end;
1411                 start = (range_min + align - 1) & ~(align - 1);
1412                 for (; start + size - 1 <= range_max; start += align) {
1413                         shadow = __request_region(iter, start, size, NULL,
1414                                                   IORESOURCE_BUSY);
1415                         if (!shadow)
1416                                 continue;
1417
1418                         *new = request_mem_region_exclusive(start, size, dev_n);
1419                         if (*new) {
1420                                 shadow->name = (char *)*new;
1421                                 retval = 0;
1422                                 goto exit;
1423                         }
1424
1425                         __release_region(iter, start, size);
1426                 }
1427         }
1428
1429 exit:
1430         up(&hyperv_mmio_lock);
1431         return retval;
1432 }
1433 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1434
1435 /**
1436  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1437  * @start:              Base address of region to release.
1438  * @size:               Size of the range to be allocated
1439  *
1440  * This function releases anything requested by
1441  * vmbus_mmio_allocate().
1442  */
1443 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1444 {
1445         struct resource *iter;
1446
1447         down(&hyperv_mmio_lock);
1448         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1449                 if ((iter->start >= start + size) || (iter->end <= start))
1450                         continue;
1451
1452                 __release_region(iter, start, size);
1453         }
1454         release_mem_region(start, size);
1455         up(&hyperv_mmio_lock);
1456
1457 }
1458 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1459
1460 /**
1461  * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1462  * @cpu_number: CPU number in Linux terms
1463  *
1464  * This function returns the mapping between the Linux processor
1465  * number and the hypervisor's virtual processor number, useful
1466  * in making hypercalls and such that talk about specific
1467  * processors.
1468  *
1469  * Return: Virtual processor number in Hyper-V terms
1470  */
1471 int vmbus_cpu_number_to_vp_number(int cpu_number)
1472 {
1473         return hv_context.vp_index[cpu_number];
1474 }
1475 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1476
1477 static int vmbus_acpi_add(struct acpi_device *device)
1478 {
1479         acpi_status result;
1480         int ret_val = -ENODEV;
1481         struct acpi_device *ancestor;
1482
1483         hv_acpi_dev = device;
1484
1485         result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1486                                         vmbus_walk_resources, NULL);
1487
1488         if (ACPI_FAILURE(result))
1489                 goto acpi_walk_err;
1490         /*
1491          * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1492          * firmware) is the VMOD that has the mmio ranges. Get that.
1493          */
1494         for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1495                 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1496                                              vmbus_walk_resources, NULL);
1497
1498                 if (ACPI_FAILURE(result))
1499                         continue;
1500                 if (hyperv_mmio) {
1501                         vmbus_reserve_fb();
1502                         break;
1503                 }
1504         }
1505         ret_val = 0;
1506
1507 acpi_walk_err:
1508         complete(&probe_event);
1509         if (ret_val)
1510                 vmbus_acpi_remove(device);
1511         return ret_val;
1512 }
1513
1514 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1515         {"VMBUS", 0},
1516         {"VMBus", 0},
1517         {"", 0},
1518 };
1519 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1520
1521 static struct acpi_driver vmbus_acpi_driver = {
1522         .name = "vmbus",
1523         .ids = vmbus_acpi_device_ids,
1524         .ops = {
1525                 .add = vmbus_acpi_add,
1526                 .remove = vmbus_acpi_remove,
1527         },
1528 };
1529
1530 static void hv_kexec_handler(void)
1531 {
1532         hv_synic_clockevents_cleanup();
1533         vmbus_initiate_unload(false);
1534         vmbus_connection.conn_state = DISCONNECTED;
1535         /* Make sure conn_state is set as hv_synic_cleanup checks for it */
1536         mb();
1537         cpuhp_remove_state(hyperv_cpuhp_online);
1538         hyperv_cleanup();
1539 };
1540
1541 static void hv_crash_handler(struct pt_regs *regs)
1542 {
1543         vmbus_initiate_unload(true);
1544         /*
1545          * In crash handler we can't schedule synic cleanup for all CPUs,
1546          * doing the cleanup for current CPU only. This should be sufficient
1547          * for kdump.
1548          */
1549         vmbus_connection.conn_state = DISCONNECTED;
1550         hv_synic_cleanup(smp_processor_id());
1551         hyperv_cleanup();
1552 };
1553
1554 static int __init hv_acpi_init(void)
1555 {
1556         int ret, t;
1557
1558         if (x86_hyper != &x86_hyper_ms_hyperv)
1559                 return -ENODEV;
1560
1561         init_completion(&probe_event);
1562
1563         /*
1564          * Get ACPI resources first.
1565          */
1566         ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1567
1568         if (ret)
1569                 return ret;
1570
1571         t = wait_for_completion_timeout(&probe_event, 5*HZ);
1572         if (t == 0) {
1573                 ret = -ETIMEDOUT;
1574                 goto cleanup;
1575         }
1576
1577         ret = vmbus_bus_init();
1578         if (ret)
1579                 goto cleanup;
1580
1581         hv_setup_kexec_handler(hv_kexec_handler);
1582         hv_setup_crash_handler(hv_crash_handler);
1583
1584         return 0;
1585
1586 cleanup:
1587         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1588         hv_acpi_dev = NULL;
1589         return ret;
1590 }
1591
1592 static void __exit vmbus_exit(void)
1593 {
1594         int cpu;
1595
1596         hv_remove_kexec_handler();
1597         hv_remove_crash_handler();
1598         vmbus_connection.conn_state = DISCONNECTED;
1599         hv_synic_clockevents_cleanup();
1600         vmbus_disconnect();
1601         hv_remove_vmbus_irq();
1602         for_each_online_cpu(cpu) {
1603                 struct hv_per_cpu_context *hv_cpu
1604                         = per_cpu_ptr(hv_context.cpu_context, cpu);
1605
1606                 tasklet_kill(&hv_cpu->msg_dpc);
1607         }
1608         vmbus_free_channels();
1609
1610         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1611                 unregister_die_notifier(&hyperv_die_block);
1612                 atomic_notifier_chain_unregister(&panic_notifier_list,
1613                                                  &hyperv_panic_block);
1614         }
1615         bus_unregister(&hv_bus);
1616
1617         cpuhp_remove_state(hyperv_cpuhp_online);
1618         hv_synic_free();
1619         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1620 }
1621
1622
1623 MODULE_LICENSE("GPL");
1624
1625 subsys_initcall(hv_acpi_init);
1626 module_exit(vmbus_exit);