f01280898b24bd7fea8770417137586823578550
[sfrench/cifs-2.6.git] / drivers / hid / hid-logitech-hidpp.c
1 /*
2  *  HIDPP protocol for Logitech Unifying receivers
3  *
4  *  Copyright (c) 2011 Logitech (c)
5  *  Copyright (c) 2012-2013 Google (c)
6  *  Copyright (c) 2013-2014 Red Hat Inc.
7  */
8
9 /*
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the Free
12  * Software Foundation; version 2 of the License.
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/device.h>
18 #include <linux/input.h>
19 #include <linux/usb.h>
20 #include <linux/hid.h>
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/sched.h>
24 #include <linux/kfifo.h>
25 #include <linux/input/mt.h>
26 #include <linux/workqueue.h>
27 #include <linux/atomic.h>
28 #include <linux/fixp-arith.h>
29 #include <asm/unaligned.h>
30 #include "usbhid/usbhid.h"
31 #include "hid-ids.h"
32
33 MODULE_LICENSE("GPL");
34 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
35 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
36
37 static bool disable_raw_mode;
38 module_param(disable_raw_mode, bool, 0644);
39 MODULE_PARM_DESC(disable_raw_mode,
40         "Disable Raw mode reporting for touchpads and keep firmware gestures.");
41
42 static bool disable_tap_to_click;
43 module_param(disable_tap_to_click, bool, 0644);
44 MODULE_PARM_DESC(disable_tap_to_click,
45         "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
46
47 #define REPORT_ID_HIDPP_SHORT                   0x10
48 #define REPORT_ID_HIDPP_LONG                    0x11
49 #define REPORT_ID_HIDPP_VERY_LONG               0x12
50
51 #define HIDPP_REPORT_SHORT_LENGTH               7
52 #define HIDPP_REPORT_LONG_LENGTH                20
53 #define HIDPP_REPORT_VERY_LONG_LENGTH           64
54
55 #define HIDPP_QUIRK_CLASS_WTP                   BIT(0)
56 #define HIDPP_QUIRK_CLASS_M560                  BIT(1)
57 #define HIDPP_QUIRK_CLASS_K400                  BIT(2)
58 #define HIDPP_QUIRK_CLASS_G920                  BIT(3)
59 #define HIDPP_QUIRK_CLASS_K750                  BIT(4)
60
61 /* bits 2..20 are reserved for classes */
62 /* #define HIDPP_QUIRK_CONNECT_EVENTS           BIT(21) disabled */
63 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS        BIT(22)
64 #define HIDPP_QUIRK_NO_HIDINPUT                 BIT(23)
65 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS        BIT(24)
66 #define HIDPP_QUIRK_UNIFYING                    BIT(25)
67 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0           BIT(26)
68 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120         BIT(27)
69 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121         BIT(28)
70
71 /* Convenience constant to check for any high-res support. */
72 #define HIDPP_QUIRK_HI_RES_SCROLL       (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \
73                                          HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \
74                                          HIDPP_QUIRK_HI_RES_SCROLL_X2121)
75
76 #define HIDPP_QUIRK_DELAYED_INIT                HIDPP_QUIRK_NO_HIDINPUT
77
78 #define HIDPP_CAPABILITY_HIDPP10_BATTERY        BIT(0)
79 #define HIDPP_CAPABILITY_HIDPP20_BATTERY        BIT(1)
80 #define HIDPP_CAPABILITY_BATTERY_MILEAGE        BIT(2)
81 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS   BIT(3)
82
83 /*
84  * There are two hidpp protocols in use, the first version hidpp10 is known
85  * as register access protocol or RAP, the second version hidpp20 is known as
86  * feature access protocol or FAP
87  *
88  * Most older devices (including the Unifying usb receiver) use the RAP protocol
89  * where as most newer devices use the FAP protocol. Both protocols are
90  * compatible with the underlying transport, which could be usb, Unifiying, or
91  * bluetooth. The message lengths are defined by the hid vendor specific report
92  * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
93  * the HIDPP_LONG report type (total message length 20 bytes)
94  *
95  * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
96  * messages. The Unifying receiver itself responds to RAP messages (device index
97  * is 0xFF for the receiver), and all messages (short or long) with a device
98  * index between 1 and 6 are passed untouched to the corresponding paired
99  * Unifying device.
100  *
101  * The paired device can be RAP or FAP, it will receive the message untouched
102  * from the Unifiying receiver.
103  */
104
105 struct fap {
106         u8 feature_index;
107         u8 funcindex_clientid;
108         u8 params[HIDPP_REPORT_VERY_LONG_LENGTH - 4U];
109 };
110
111 struct rap {
112         u8 sub_id;
113         u8 reg_address;
114         u8 params[HIDPP_REPORT_VERY_LONG_LENGTH - 4U];
115 };
116
117 struct hidpp_report {
118         u8 report_id;
119         u8 device_index;
120         union {
121                 struct fap fap;
122                 struct rap rap;
123                 u8 rawbytes[sizeof(struct fap)];
124         };
125 } __packed;
126
127 struct hidpp_battery {
128         u8 feature_index;
129         u8 solar_feature_index;
130         struct power_supply_desc desc;
131         struct power_supply *ps;
132         char name[64];
133         int status;
134         int capacity;
135         int level;
136         bool online;
137 };
138
139 struct hidpp_device {
140         struct hid_device *hid_dev;
141         struct mutex send_mutex;
142         void *send_receive_buf;
143         char *name;             /* will never be NULL and should not be freed */
144         wait_queue_head_t wait;
145         bool answer_available;
146         u8 protocol_major;
147         u8 protocol_minor;
148
149         void *private_data;
150
151         struct work_struct work;
152         struct kfifo delayed_work_fifo;
153         atomic_t connected;
154         struct input_dev *delayed_input;
155
156         unsigned long quirks;
157         unsigned long capabilities;
158
159         struct hidpp_battery battery;
160         struct hid_scroll_counter vertical_wheel_counter;
161 };
162
163 /* HID++ 1.0 error codes */
164 #define HIDPP_ERROR                             0x8f
165 #define HIDPP_ERROR_SUCCESS                     0x00
166 #define HIDPP_ERROR_INVALID_SUBID               0x01
167 #define HIDPP_ERROR_INVALID_ADRESS              0x02
168 #define HIDPP_ERROR_INVALID_VALUE               0x03
169 #define HIDPP_ERROR_CONNECT_FAIL                0x04
170 #define HIDPP_ERROR_TOO_MANY_DEVICES            0x05
171 #define HIDPP_ERROR_ALREADY_EXISTS              0x06
172 #define HIDPP_ERROR_BUSY                        0x07
173 #define HIDPP_ERROR_UNKNOWN_DEVICE              0x08
174 #define HIDPP_ERROR_RESOURCE_ERROR              0x09
175 #define HIDPP_ERROR_REQUEST_UNAVAILABLE         0x0a
176 #define HIDPP_ERROR_INVALID_PARAM_VALUE         0x0b
177 #define HIDPP_ERROR_WRONG_PIN_CODE              0x0c
178 /* HID++ 2.0 error codes */
179 #define HIDPP20_ERROR                           0xff
180
181 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
182
183 static int __hidpp_send_report(struct hid_device *hdev,
184                                 struct hidpp_report *hidpp_report)
185 {
186         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
187         int fields_count, ret;
188
189         hidpp = hid_get_drvdata(hdev);
190
191         switch (hidpp_report->report_id) {
192         case REPORT_ID_HIDPP_SHORT:
193                 fields_count = HIDPP_REPORT_SHORT_LENGTH;
194                 break;
195         case REPORT_ID_HIDPP_LONG:
196                 fields_count = HIDPP_REPORT_LONG_LENGTH;
197                 break;
198         case REPORT_ID_HIDPP_VERY_LONG:
199                 fields_count = HIDPP_REPORT_VERY_LONG_LENGTH;
200                 break;
201         default:
202                 return -ENODEV;
203         }
204
205         /*
206          * set the device_index as the receiver, it will be overwritten by
207          * hid_hw_request if needed
208          */
209         hidpp_report->device_index = 0xff;
210
211         if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
212                 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
213         } else {
214                 ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
215                         (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
216                         HID_REQ_SET_REPORT);
217         }
218
219         return ret == fields_count ? 0 : -1;
220 }
221
222 /**
223  * hidpp_send_message_sync() returns 0 in case of success, and something else
224  * in case of a failure.
225  * - If ' something else' is positive, that means that an error has been raised
226  *   by the protocol itself.
227  * - If ' something else' is negative, that means that we had a classic error
228  *   (-ENOMEM, -EPIPE, etc...)
229  */
230 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
231         struct hidpp_report *message,
232         struct hidpp_report *response)
233 {
234         int ret;
235
236         mutex_lock(&hidpp->send_mutex);
237
238         hidpp->send_receive_buf = response;
239         hidpp->answer_available = false;
240
241         /*
242          * So that we can later validate the answer when it arrives
243          * in hidpp_raw_event
244          */
245         *response = *message;
246
247         ret = __hidpp_send_report(hidpp->hid_dev, message);
248
249         if (ret) {
250                 dbg_hid("__hidpp_send_report returned err: %d\n", ret);
251                 memset(response, 0, sizeof(struct hidpp_report));
252                 goto exit;
253         }
254
255         if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
256                                 5*HZ)) {
257                 dbg_hid("%s:timeout waiting for response\n", __func__);
258                 memset(response, 0, sizeof(struct hidpp_report));
259                 ret = -ETIMEDOUT;
260         }
261
262         if (response->report_id == REPORT_ID_HIDPP_SHORT &&
263             response->rap.sub_id == HIDPP_ERROR) {
264                 ret = response->rap.params[1];
265                 dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
266                 goto exit;
267         }
268
269         if ((response->report_id == REPORT_ID_HIDPP_LONG ||
270                         response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
271                         response->fap.feature_index == HIDPP20_ERROR) {
272                 ret = response->fap.params[1];
273                 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
274                 goto exit;
275         }
276
277 exit:
278         mutex_unlock(&hidpp->send_mutex);
279         return ret;
280
281 }
282
283 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
284         u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
285         struct hidpp_report *response)
286 {
287         struct hidpp_report *message;
288         int ret;
289
290         if (param_count > sizeof(message->fap.params))
291                 return -EINVAL;
292
293         message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
294         if (!message)
295                 return -ENOMEM;
296
297         if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
298                 message->report_id = REPORT_ID_HIDPP_VERY_LONG;
299         else
300                 message->report_id = REPORT_ID_HIDPP_LONG;
301         message->fap.feature_index = feat_index;
302         message->fap.funcindex_clientid = funcindex_clientid;
303         memcpy(&message->fap.params, params, param_count);
304
305         ret = hidpp_send_message_sync(hidpp, message, response);
306         kfree(message);
307         return ret;
308 }
309
310 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
311         u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
312         struct hidpp_report *response)
313 {
314         struct hidpp_report *message;
315         int ret, max_count;
316
317         switch (report_id) {
318         case REPORT_ID_HIDPP_SHORT:
319                 max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
320                 break;
321         case REPORT_ID_HIDPP_LONG:
322                 max_count = HIDPP_REPORT_LONG_LENGTH - 4;
323                 break;
324         case REPORT_ID_HIDPP_VERY_LONG:
325                 max_count = HIDPP_REPORT_VERY_LONG_LENGTH - 4;
326                 break;
327         default:
328                 return -EINVAL;
329         }
330
331         if (param_count > max_count)
332                 return -EINVAL;
333
334         message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
335         if (!message)
336                 return -ENOMEM;
337         message->report_id = report_id;
338         message->rap.sub_id = sub_id;
339         message->rap.reg_address = reg_address;
340         memcpy(&message->rap.params, params, param_count);
341
342         ret = hidpp_send_message_sync(hidpp_dev, message, response);
343         kfree(message);
344         return ret;
345 }
346
347 static void delayed_work_cb(struct work_struct *work)
348 {
349         struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
350                                                         work);
351         hidpp_connect_event(hidpp);
352 }
353
354 static inline bool hidpp_match_answer(struct hidpp_report *question,
355                 struct hidpp_report *answer)
356 {
357         return (answer->fap.feature_index == question->fap.feature_index) &&
358            (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
359 }
360
361 static inline bool hidpp_match_error(struct hidpp_report *question,
362                 struct hidpp_report *answer)
363 {
364         return ((answer->rap.sub_id == HIDPP_ERROR) ||
365             (answer->fap.feature_index == HIDPP20_ERROR)) &&
366             (answer->fap.funcindex_clientid == question->fap.feature_index) &&
367             (answer->fap.params[0] == question->fap.funcindex_clientid);
368 }
369
370 static inline bool hidpp_report_is_connect_event(struct hidpp_report *report)
371 {
372         return (report->report_id == REPORT_ID_HIDPP_SHORT) &&
373                 (report->rap.sub_id == 0x41);
374 }
375
376 /**
377  * hidpp_prefix_name() prefixes the current given name with "Logitech ".
378  */
379 static void hidpp_prefix_name(char **name, int name_length)
380 {
381 #define PREFIX_LENGTH 9 /* "Logitech " */
382
383         int new_length;
384         char *new_name;
385
386         if (name_length > PREFIX_LENGTH &&
387             strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
388                 /* The prefix has is already in the name */
389                 return;
390
391         new_length = PREFIX_LENGTH + name_length;
392         new_name = kzalloc(new_length, GFP_KERNEL);
393         if (!new_name)
394                 return;
395
396         snprintf(new_name, new_length, "Logitech %s", *name);
397
398         kfree(*name);
399
400         *name = new_name;
401 }
402
403 /* -------------------------------------------------------------------------- */
404 /* HIDP++ 1.0 commands                                                        */
405 /* -------------------------------------------------------------------------- */
406
407 #define HIDPP_SET_REGISTER                              0x80
408 #define HIDPP_GET_REGISTER                              0x81
409 #define HIDPP_SET_LONG_REGISTER                         0x82
410 #define HIDPP_GET_LONG_REGISTER                         0x83
411
412 /**
413  * hidpp10_set_register_bit() - Sets a single bit in a HID++ 1.0 register.
414  * @hidpp_dev: the device to set the register on.
415  * @register_address: the address of the register to modify.
416  * @byte: the byte of the register to modify. Should be less than 3.
417  * Return: 0 if successful, otherwise a negative error code.
418  */
419 static int hidpp10_set_register_bit(struct hidpp_device *hidpp_dev,
420         u8 register_address, u8 byte, u8 bit)
421 {
422         struct hidpp_report response;
423         int ret;
424         u8 params[3] = { 0 };
425
426         ret = hidpp_send_rap_command_sync(hidpp_dev,
427                                           REPORT_ID_HIDPP_SHORT,
428                                           HIDPP_GET_REGISTER,
429                                           register_address,
430                                           NULL, 0, &response);
431         if (ret)
432                 return ret;
433
434         memcpy(params, response.rap.params, 3);
435
436         params[byte] |= BIT(bit);
437
438         return hidpp_send_rap_command_sync(hidpp_dev,
439                                            REPORT_ID_HIDPP_SHORT,
440                                            HIDPP_SET_REGISTER,
441                                            register_address,
442                                            params, 3, &response);
443 }
444
445
446 #define HIDPP_REG_GENERAL                               0x00
447
448 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
449 {
450         return hidpp10_set_register_bit(hidpp_dev, HIDPP_REG_GENERAL, 0, 4);
451 }
452
453 #define HIDPP_REG_FEATURES                              0x01
454
455 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */
456 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev)
457 {
458         return hidpp10_set_register_bit(hidpp_dev, HIDPP_REG_FEATURES, 0, 6);
459 }
460
461 #define HIDPP_REG_BATTERY_STATUS                        0x07
462
463 static int hidpp10_battery_status_map_level(u8 param)
464 {
465         int level;
466
467         switch (param) {
468         case 1 ... 2:
469                 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
470                 break;
471         case 3 ... 4:
472                 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
473                 break;
474         case 5 ... 6:
475                 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
476                 break;
477         case 7:
478                 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
479                 break;
480         default:
481                 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
482         }
483
484         return level;
485 }
486
487 static int hidpp10_battery_status_map_status(u8 param)
488 {
489         int status;
490
491         switch (param) {
492         case 0x00:
493                 /* discharging (in use) */
494                 status = POWER_SUPPLY_STATUS_DISCHARGING;
495                 break;
496         case 0x21: /* (standard) charging */
497         case 0x24: /* fast charging */
498         case 0x25: /* slow charging */
499                 status = POWER_SUPPLY_STATUS_CHARGING;
500                 break;
501         case 0x26: /* topping charge */
502         case 0x22: /* charge complete */
503                 status = POWER_SUPPLY_STATUS_FULL;
504                 break;
505         case 0x20: /* unknown */
506                 status = POWER_SUPPLY_STATUS_UNKNOWN;
507                 break;
508         /*
509          * 0x01...0x1F = reserved (not charging)
510          * 0x23 = charging error
511          * 0x27..0xff = reserved
512          */
513         default:
514                 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
515                 break;
516         }
517
518         return status;
519 }
520
521 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
522 {
523         struct hidpp_report response;
524         int ret, status;
525
526         ret = hidpp_send_rap_command_sync(hidpp,
527                                         REPORT_ID_HIDPP_SHORT,
528                                         HIDPP_GET_REGISTER,
529                                         HIDPP_REG_BATTERY_STATUS,
530                                         NULL, 0, &response);
531         if (ret)
532                 return ret;
533
534         hidpp->battery.level =
535                 hidpp10_battery_status_map_level(response.rap.params[0]);
536         status = hidpp10_battery_status_map_status(response.rap.params[1]);
537         hidpp->battery.status = status;
538         /* the capacity is only available when discharging or full */
539         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
540                                 status == POWER_SUPPLY_STATUS_FULL;
541
542         return 0;
543 }
544
545 #define HIDPP_REG_BATTERY_MILEAGE                       0x0D
546
547 static int hidpp10_battery_mileage_map_status(u8 param)
548 {
549         int status;
550
551         switch (param >> 6) {
552         case 0x00:
553                 /* discharging (in use) */
554                 status = POWER_SUPPLY_STATUS_DISCHARGING;
555                 break;
556         case 0x01: /* charging */
557                 status = POWER_SUPPLY_STATUS_CHARGING;
558                 break;
559         case 0x02: /* charge complete */
560                 status = POWER_SUPPLY_STATUS_FULL;
561                 break;
562         /*
563          * 0x03 = charging error
564          */
565         default:
566                 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
567                 break;
568         }
569
570         return status;
571 }
572
573 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
574 {
575         struct hidpp_report response;
576         int ret, status;
577
578         ret = hidpp_send_rap_command_sync(hidpp,
579                                         REPORT_ID_HIDPP_SHORT,
580                                         HIDPP_GET_REGISTER,
581                                         HIDPP_REG_BATTERY_MILEAGE,
582                                         NULL, 0, &response);
583         if (ret)
584                 return ret;
585
586         hidpp->battery.capacity = response.rap.params[0];
587         status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
588         hidpp->battery.status = status;
589         /* the capacity is only available when discharging or full */
590         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
591                                 status == POWER_SUPPLY_STATUS_FULL;
592
593         return 0;
594 }
595
596 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
597 {
598         struct hidpp_report *report = (struct hidpp_report *)data;
599         int status, capacity, level;
600         bool changed;
601
602         if (report->report_id != REPORT_ID_HIDPP_SHORT)
603                 return 0;
604
605         switch (report->rap.sub_id) {
606         case HIDPP_REG_BATTERY_STATUS:
607                 capacity = hidpp->battery.capacity;
608                 level = hidpp10_battery_status_map_level(report->rawbytes[1]);
609                 status = hidpp10_battery_status_map_status(report->rawbytes[2]);
610                 break;
611         case HIDPP_REG_BATTERY_MILEAGE:
612                 capacity = report->rap.params[0];
613                 level = hidpp->battery.level;
614                 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
615                 break;
616         default:
617                 return 0;
618         }
619
620         changed = capacity != hidpp->battery.capacity ||
621                   level != hidpp->battery.level ||
622                   status != hidpp->battery.status;
623
624         /* the capacity is only available when discharging or full */
625         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
626                                 status == POWER_SUPPLY_STATUS_FULL;
627
628         if (changed) {
629                 hidpp->battery.level = level;
630                 hidpp->battery.status = status;
631                 if (hidpp->battery.ps)
632                         power_supply_changed(hidpp->battery.ps);
633         }
634
635         return 0;
636 }
637
638 #define HIDPP_REG_PAIRING_INFORMATION                   0xB5
639 #define HIDPP_EXTENDED_PAIRING                          0x30
640 #define HIDPP_DEVICE_NAME                               0x40
641
642 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
643 {
644         struct hidpp_report response;
645         int ret;
646         u8 params[1] = { HIDPP_DEVICE_NAME };
647         char *name;
648         int len;
649
650         ret = hidpp_send_rap_command_sync(hidpp_dev,
651                                         REPORT_ID_HIDPP_SHORT,
652                                         HIDPP_GET_LONG_REGISTER,
653                                         HIDPP_REG_PAIRING_INFORMATION,
654                                         params, 1, &response);
655         if (ret)
656                 return NULL;
657
658         len = response.rap.params[1];
659
660         if (2 + len > sizeof(response.rap.params))
661                 return NULL;
662
663         name = kzalloc(len + 1, GFP_KERNEL);
664         if (!name)
665                 return NULL;
666
667         memcpy(name, &response.rap.params[2], len);
668
669         /* include the terminating '\0' */
670         hidpp_prefix_name(&name, len + 1);
671
672         return name;
673 }
674
675 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
676 {
677         struct hidpp_report response;
678         int ret;
679         u8 params[1] = { HIDPP_EXTENDED_PAIRING };
680
681         ret = hidpp_send_rap_command_sync(hidpp,
682                                         REPORT_ID_HIDPP_SHORT,
683                                         HIDPP_GET_LONG_REGISTER,
684                                         HIDPP_REG_PAIRING_INFORMATION,
685                                         params, 1, &response);
686         if (ret)
687                 return ret;
688
689         /*
690          * We don't care about LE or BE, we will output it as a string
691          * with %4phD, so we need to keep the order.
692          */
693         *serial = *((u32 *)&response.rap.params[1]);
694         return 0;
695 }
696
697 static int hidpp_unifying_init(struct hidpp_device *hidpp)
698 {
699         struct hid_device *hdev = hidpp->hid_dev;
700         const char *name;
701         u32 serial;
702         int ret;
703
704         ret = hidpp_unifying_get_serial(hidpp, &serial);
705         if (ret)
706                 return ret;
707
708         snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
709                  hdev->product, &serial);
710         dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
711
712         name = hidpp_unifying_get_name(hidpp);
713         if (!name)
714                 return -EIO;
715
716         snprintf(hdev->name, sizeof(hdev->name), "%s", name);
717         dbg_hid("HID++ Unifying: Got name: %s\n", name);
718
719         kfree(name);
720         return 0;
721 }
722
723 /* -------------------------------------------------------------------------- */
724 /* 0x0000: Root                                                               */
725 /* -------------------------------------------------------------------------- */
726
727 #define HIDPP_PAGE_ROOT                                 0x0000
728 #define HIDPP_PAGE_ROOT_IDX                             0x00
729
730 #define CMD_ROOT_GET_FEATURE                            0x01
731 #define CMD_ROOT_GET_PROTOCOL_VERSION                   0x11
732
733 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
734         u8 *feature_index, u8 *feature_type)
735 {
736         struct hidpp_report response;
737         int ret;
738         u8 params[2] = { feature >> 8, feature & 0x00FF };
739
740         ret = hidpp_send_fap_command_sync(hidpp,
741                         HIDPP_PAGE_ROOT_IDX,
742                         CMD_ROOT_GET_FEATURE,
743                         params, 2, &response);
744         if (ret)
745                 return ret;
746
747         if (response.fap.params[0] == 0)
748                 return -ENOENT;
749
750         *feature_index = response.fap.params[0];
751         *feature_type = response.fap.params[1];
752
753         return ret;
754 }
755
756 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
757 {
758         struct hidpp_report response;
759         int ret;
760
761         ret = hidpp_send_fap_command_sync(hidpp,
762                         HIDPP_PAGE_ROOT_IDX,
763                         CMD_ROOT_GET_PROTOCOL_VERSION,
764                         NULL, 0, &response);
765
766         if (ret == HIDPP_ERROR_INVALID_SUBID) {
767                 hidpp->protocol_major = 1;
768                 hidpp->protocol_minor = 0;
769                 return 0;
770         }
771
772         /* the device might not be connected */
773         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
774                 return -EIO;
775
776         if (ret > 0) {
777                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
778                         __func__, ret);
779                 return -EPROTO;
780         }
781         if (ret)
782                 return ret;
783
784         hidpp->protocol_major = response.fap.params[0];
785         hidpp->protocol_minor = response.fap.params[1];
786
787         return ret;
788 }
789
790 static bool hidpp_is_connected(struct hidpp_device *hidpp)
791 {
792         int ret;
793
794         ret = hidpp_root_get_protocol_version(hidpp);
795         if (!ret)
796                 hid_dbg(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
797                         hidpp->protocol_major, hidpp->protocol_minor);
798         return ret == 0;
799 }
800
801 /* -------------------------------------------------------------------------- */
802 /* 0x0005: GetDeviceNameType                                                  */
803 /* -------------------------------------------------------------------------- */
804
805 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE                 0x0005
806
807 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT              0x01
808 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME        0x11
809 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE               0x21
810
811 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
812         u8 feature_index, u8 *nameLength)
813 {
814         struct hidpp_report response;
815         int ret;
816
817         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
818                 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
819
820         if (ret > 0) {
821                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
822                         __func__, ret);
823                 return -EPROTO;
824         }
825         if (ret)
826                 return ret;
827
828         *nameLength = response.fap.params[0];
829
830         return ret;
831 }
832
833 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
834         u8 feature_index, u8 char_index, char *device_name, int len_buf)
835 {
836         struct hidpp_report response;
837         int ret, i;
838         int count;
839
840         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
841                 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
842                 &response);
843
844         if (ret > 0) {
845                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
846                         __func__, ret);
847                 return -EPROTO;
848         }
849         if (ret)
850                 return ret;
851
852         switch (response.report_id) {
853         case REPORT_ID_HIDPP_VERY_LONG:
854                 count = HIDPP_REPORT_VERY_LONG_LENGTH - 4;
855                 break;
856         case REPORT_ID_HIDPP_LONG:
857                 count = HIDPP_REPORT_LONG_LENGTH - 4;
858                 break;
859         case REPORT_ID_HIDPP_SHORT:
860                 count = HIDPP_REPORT_SHORT_LENGTH - 4;
861                 break;
862         default:
863                 return -EPROTO;
864         }
865
866         if (len_buf < count)
867                 count = len_buf;
868
869         for (i = 0; i < count; i++)
870                 device_name[i] = response.fap.params[i];
871
872         return count;
873 }
874
875 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
876 {
877         u8 feature_type;
878         u8 feature_index;
879         u8 __name_length;
880         char *name;
881         unsigned index = 0;
882         int ret;
883
884         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
885                 &feature_index, &feature_type);
886         if (ret)
887                 return NULL;
888
889         ret = hidpp_devicenametype_get_count(hidpp, feature_index,
890                 &__name_length);
891         if (ret)
892                 return NULL;
893
894         name = kzalloc(__name_length + 1, GFP_KERNEL);
895         if (!name)
896                 return NULL;
897
898         while (index < __name_length) {
899                 ret = hidpp_devicenametype_get_device_name(hidpp,
900                         feature_index, index, name + index,
901                         __name_length - index);
902                 if (ret <= 0) {
903                         kfree(name);
904                         return NULL;
905                 }
906                 index += ret;
907         }
908
909         /* include the terminating '\0' */
910         hidpp_prefix_name(&name, __name_length + 1);
911
912         return name;
913 }
914
915 /* -------------------------------------------------------------------------- */
916 /* 0x1000: Battery level status                                               */
917 /* -------------------------------------------------------------------------- */
918
919 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS                         0x1000
920
921 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS       0x00
922 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY         0x10
923
924 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST                    0x00
925
926 #define FLAG_BATTERY_LEVEL_DISABLE_OSD                          BIT(0)
927 #define FLAG_BATTERY_LEVEL_MILEAGE                              BIT(1)
928 #define FLAG_BATTERY_LEVEL_RECHARGEABLE                         BIT(2)
929
930 static int hidpp_map_battery_level(int capacity)
931 {
932         if (capacity < 11)
933                 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
934         else if (capacity < 31)
935                 return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
936         else if (capacity < 81)
937                 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
938         return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
939 }
940
941 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
942                                                     int *next_capacity,
943                                                     int *level)
944 {
945         int status;
946
947         *capacity = data[0];
948         *next_capacity = data[1];
949         *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
950
951         /* When discharging, we can rely on the device reported capacity.
952          * For all other states the device reports 0 (unknown).
953          */
954         switch (data[2]) {
955                 case 0: /* discharging (in use) */
956                         status = POWER_SUPPLY_STATUS_DISCHARGING;
957                         *level = hidpp_map_battery_level(*capacity);
958                         break;
959                 case 1: /* recharging */
960                         status = POWER_SUPPLY_STATUS_CHARGING;
961                         break;
962                 case 2: /* charge in final stage */
963                         status = POWER_SUPPLY_STATUS_CHARGING;
964                         break;
965                 case 3: /* charge complete */
966                         status = POWER_SUPPLY_STATUS_FULL;
967                         *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
968                         *capacity = 100;
969                         break;
970                 case 4: /* recharging below optimal speed */
971                         status = POWER_SUPPLY_STATUS_CHARGING;
972                         break;
973                 /* 5 = invalid battery type
974                    6 = thermal error
975                    7 = other charging error */
976                 default:
977                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
978                         break;
979         }
980
981         return status;
982 }
983
984 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
985                                                      u8 feature_index,
986                                                      int *status,
987                                                      int *capacity,
988                                                      int *next_capacity,
989                                                      int *level)
990 {
991         struct hidpp_report response;
992         int ret;
993         u8 *params = (u8 *)response.fap.params;
994
995         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
996                                           CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
997                                           NULL, 0, &response);
998         if (ret > 0) {
999                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1000                         __func__, ret);
1001                 return -EPROTO;
1002         }
1003         if (ret)
1004                 return ret;
1005
1006         *status = hidpp20_batterylevel_map_status_capacity(params, capacity,
1007                                                            next_capacity,
1008                                                            level);
1009
1010         return 0;
1011 }
1012
1013 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
1014                                                   u8 feature_index)
1015 {
1016         struct hidpp_report response;
1017         int ret;
1018         u8 *params = (u8 *)response.fap.params;
1019         unsigned int level_count, flags;
1020
1021         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1022                                           CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
1023                                           NULL, 0, &response);
1024         if (ret > 0) {
1025                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1026                         __func__, ret);
1027                 return -EPROTO;
1028         }
1029         if (ret)
1030                 return ret;
1031
1032         level_count = params[0];
1033         flags = params[1];
1034
1035         if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1036                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1037         else
1038                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1039
1040         return 0;
1041 }
1042
1043 static int hidpp20_query_battery_info(struct hidpp_device *hidpp)
1044 {
1045         u8 feature_type;
1046         int ret;
1047         int status, capacity, next_capacity, level;
1048
1049         if (hidpp->battery.feature_index == 0xff) {
1050                 ret = hidpp_root_get_feature(hidpp,
1051                                              HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1052                                              &hidpp->battery.feature_index,
1053                                              &feature_type);
1054                 if (ret)
1055                         return ret;
1056         }
1057
1058         ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1059                                                 hidpp->battery.feature_index,
1060                                                 &status, &capacity,
1061                                                 &next_capacity, &level);
1062         if (ret)
1063                 return ret;
1064
1065         ret = hidpp20_batterylevel_get_battery_info(hidpp,
1066                                                 hidpp->battery.feature_index);
1067         if (ret)
1068                 return ret;
1069
1070         hidpp->battery.status = status;
1071         hidpp->battery.capacity = capacity;
1072         hidpp->battery.level = level;
1073         /* the capacity is only available when discharging or full */
1074         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1075                                 status == POWER_SUPPLY_STATUS_FULL;
1076
1077         return 0;
1078 }
1079
1080 static int hidpp20_battery_event(struct hidpp_device *hidpp,
1081                                  u8 *data, int size)
1082 {
1083         struct hidpp_report *report = (struct hidpp_report *)data;
1084         int status, capacity, next_capacity, level;
1085         bool changed;
1086
1087         if (report->fap.feature_index != hidpp->battery.feature_index ||
1088             report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1089                 return 0;
1090
1091         status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1092                                                           &capacity,
1093                                                           &next_capacity,
1094                                                           &level);
1095
1096         /* the capacity is only available when discharging or full */
1097         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1098                                 status == POWER_SUPPLY_STATUS_FULL;
1099
1100         changed = capacity != hidpp->battery.capacity ||
1101                   level != hidpp->battery.level ||
1102                   status != hidpp->battery.status;
1103
1104         if (changed) {
1105                 hidpp->battery.level = level;
1106                 hidpp->battery.capacity = capacity;
1107                 hidpp->battery.status = status;
1108                 if (hidpp->battery.ps)
1109                         power_supply_changed(hidpp->battery.ps);
1110         }
1111
1112         return 0;
1113 }
1114
1115 static enum power_supply_property hidpp_battery_props[] = {
1116         POWER_SUPPLY_PROP_ONLINE,
1117         POWER_SUPPLY_PROP_STATUS,
1118         POWER_SUPPLY_PROP_SCOPE,
1119         POWER_SUPPLY_PROP_MODEL_NAME,
1120         POWER_SUPPLY_PROP_MANUFACTURER,
1121         POWER_SUPPLY_PROP_SERIAL_NUMBER,
1122         0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1123         0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1124 };
1125
1126 static int hidpp_battery_get_property(struct power_supply *psy,
1127                                       enum power_supply_property psp,
1128                                       union power_supply_propval *val)
1129 {
1130         struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1131         int ret = 0;
1132
1133         switch(psp) {
1134                 case POWER_SUPPLY_PROP_STATUS:
1135                         val->intval = hidpp->battery.status;
1136                         break;
1137                 case POWER_SUPPLY_PROP_CAPACITY:
1138                         val->intval = hidpp->battery.capacity;
1139                         break;
1140                 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1141                         val->intval = hidpp->battery.level;
1142                         break;
1143                 case POWER_SUPPLY_PROP_SCOPE:
1144                         val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1145                         break;
1146                 case POWER_SUPPLY_PROP_ONLINE:
1147                         val->intval = hidpp->battery.online;
1148                         break;
1149                 case POWER_SUPPLY_PROP_MODEL_NAME:
1150                         if (!strncmp(hidpp->name, "Logitech ", 9))
1151                                 val->strval = hidpp->name + 9;
1152                         else
1153                                 val->strval = hidpp->name;
1154                         break;
1155                 case POWER_SUPPLY_PROP_MANUFACTURER:
1156                         val->strval = "Logitech";
1157                         break;
1158                 case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1159                         val->strval = hidpp->hid_dev->uniq;
1160                         break;
1161                 default:
1162                         ret = -EINVAL;
1163                         break;
1164         }
1165
1166         return ret;
1167 }
1168
1169 /* -------------------------------------------------------------------------- */
1170 /* 0x2120: Hi-resolution scrolling                                            */
1171 /* -------------------------------------------------------------------------- */
1172
1173 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING                      0x2120
1174
1175 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE  0x10
1176
1177 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp,
1178         bool enabled, u8 *multiplier)
1179 {
1180         u8 feature_index;
1181         u8 feature_type;
1182         int ret;
1183         u8 params[1];
1184         struct hidpp_report response;
1185
1186         ret = hidpp_root_get_feature(hidpp,
1187                                      HIDPP_PAGE_HI_RESOLUTION_SCROLLING,
1188                                      &feature_index,
1189                                      &feature_type);
1190         if (ret)
1191                 return ret;
1192
1193         params[0] = enabled ? BIT(0) : 0;
1194         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1195                                           CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE,
1196                                           params, sizeof(params), &response);
1197         if (ret)
1198                 return ret;
1199         *multiplier = response.fap.params[1];
1200         return 0;
1201 }
1202
1203 /* -------------------------------------------------------------------------- */
1204 /* 0x2121: HiRes Wheel                                                        */
1205 /* -------------------------------------------------------------------------- */
1206
1207 #define HIDPP_PAGE_HIRES_WHEEL          0x2121
1208
1209 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY    0x00
1210 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE          0x20
1211
1212 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp,
1213         u8 *multiplier)
1214 {
1215         u8 feature_index;
1216         u8 feature_type;
1217         int ret;
1218         struct hidpp_report response;
1219
1220         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1221                                      &feature_index, &feature_type);
1222         if (ret)
1223                 goto return_default;
1224
1225         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1226                                           CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY,
1227                                           NULL, 0, &response);
1228         if (ret)
1229                 goto return_default;
1230
1231         *multiplier = response.fap.params[0];
1232         return 0;
1233 return_default:
1234         hid_warn(hidpp->hid_dev,
1235                  "Couldn't get wheel multiplier (error %d), assuming %d.\n",
1236                  ret, *multiplier);
1237         return ret;
1238 }
1239
1240 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert,
1241         bool high_resolution, bool use_hidpp)
1242 {
1243         u8 feature_index;
1244         u8 feature_type;
1245         int ret;
1246         u8 params[1];
1247         struct hidpp_report response;
1248
1249         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1250                                      &feature_index, &feature_type);
1251         if (ret)
1252                 return ret;
1253
1254         params[0] = (invert          ? BIT(2) : 0) |
1255                     (high_resolution ? BIT(1) : 0) |
1256                     (use_hidpp       ? BIT(0) : 0);
1257
1258         return hidpp_send_fap_command_sync(hidpp, feature_index,
1259                                            CMD_HIRES_WHEEL_SET_WHEEL_MODE,
1260                                            params, sizeof(params), &response);
1261 }
1262
1263 /* -------------------------------------------------------------------------- */
1264 /* 0x4301: Solar Keyboard                                                     */
1265 /* -------------------------------------------------------------------------- */
1266
1267 #define HIDPP_PAGE_SOLAR_KEYBOARD                       0x4301
1268
1269 #define CMD_SOLAR_SET_LIGHT_MEASURE                     0x00
1270
1271 #define EVENT_SOLAR_BATTERY_BROADCAST                   0x00
1272 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE               0x10
1273 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON                  0x20
1274
1275 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1276 {
1277         struct hidpp_report response;
1278         u8 params[2] = { 1, 1 };
1279         u8 feature_type;
1280         int ret;
1281
1282         if (hidpp->battery.feature_index == 0xff) {
1283                 ret = hidpp_root_get_feature(hidpp,
1284                                              HIDPP_PAGE_SOLAR_KEYBOARD,
1285                                              &hidpp->battery.solar_feature_index,
1286                                              &feature_type);
1287                 if (ret)
1288                         return ret;
1289         }
1290
1291         ret = hidpp_send_fap_command_sync(hidpp,
1292                                           hidpp->battery.solar_feature_index,
1293                                           CMD_SOLAR_SET_LIGHT_MEASURE,
1294                                           params, 2, &response);
1295         if (ret > 0) {
1296                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1297                         __func__, ret);
1298                 return -EPROTO;
1299         }
1300         if (ret)
1301                 return ret;
1302
1303         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1304
1305         return 0;
1306 }
1307
1308 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1309                                      u8 *data, int size)
1310 {
1311         struct hidpp_report *report = (struct hidpp_report *)data;
1312         int capacity, lux, status;
1313         u8 function;
1314
1315         function = report->fap.funcindex_clientid;
1316
1317
1318         if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1319             !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1320               function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1321               function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1322                 return 0;
1323
1324         capacity = report->fap.params[0];
1325
1326         switch (function) {
1327         case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1328                 lux = (report->fap.params[1] << 8) | report->fap.params[2];
1329                 if (lux > 200)
1330                         status = POWER_SUPPLY_STATUS_CHARGING;
1331                 else
1332                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1333                 break;
1334         case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1335         default:
1336                 if (capacity < hidpp->battery.capacity)
1337                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1338                 else
1339                         status = POWER_SUPPLY_STATUS_CHARGING;
1340
1341         }
1342
1343         if (capacity == 100)
1344                 status = POWER_SUPPLY_STATUS_FULL;
1345
1346         hidpp->battery.online = true;
1347         if (capacity != hidpp->battery.capacity ||
1348             status != hidpp->battery.status) {
1349                 hidpp->battery.capacity = capacity;
1350                 hidpp->battery.status = status;
1351                 if (hidpp->battery.ps)
1352                         power_supply_changed(hidpp->battery.ps);
1353         }
1354
1355         return 0;
1356 }
1357
1358 /* -------------------------------------------------------------------------- */
1359 /* 0x6010: Touchpad FW items                                                  */
1360 /* -------------------------------------------------------------------------- */
1361
1362 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS                    0x6010
1363
1364 #define CMD_TOUCHPAD_FW_ITEMS_SET                       0x10
1365
1366 struct hidpp_touchpad_fw_items {
1367         uint8_t presence;
1368         uint8_t desired_state;
1369         uint8_t state;
1370         uint8_t persistent;
1371 };
1372
1373 /**
1374  * send a set state command to the device by reading the current items->state
1375  * field. items is then filled with the current state.
1376  */
1377 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1378                                        u8 feature_index,
1379                                        struct hidpp_touchpad_fw_items *items)
1380 {
1381         struct hidpp_report response;
1382         int ret;
1383         u8 *params = (u8 *)response.fap.params;
1384
1385         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1386                 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1387
1388         if (ret > 0) {
1389                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1390                         __func__, ret);
1391                 return -EPROTO;
1392         }
1393         if (ret)
1394                 return ret;
1395
1396         items->presence = params[0];
1397         items->desired_state = params[1];
1398         items->state = params[2];
1399         items->persistent = params[3];
1400
1401         return 0;
1402 }
1403
1404 /* -------------------------------------------------------------------------- */
1405 /* 0x6100: TouchPadRawXY                                                      */
1406 /* -------------------------------------------------------------------------- */
1407
1408 #define HIDPP_PAGE_TOUCHPAD_RAW_XY                      0x6100
1409
1410 #define CMD_TOUCHPAD_GET_RAW_INFO                       0x01
1411 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE               0x21
1412
1413 #define EVENT_TOUCHPAD_RAW_XY                           0x00
1414
1415 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT               0x01
1416 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT               0x03
1417
1418 struct hidpp_touchpad_raw_info {
1419         u16 x_size;
1420         u16 y_size;
1421         u8 z_range;
1422         u8 area_range;
1423         u8 timestamp_unit;
1424         u8 maxcontacts;
1425         u8 origin;
1426         u16 res;
1427 };
1428
1429 struct hidpp_touchpad_raw_xy_finger {
1430         u8 contact_type;
1431         u8 contact_status;
1432         u16 x;
1433         u16 y;
1434         u8 z;
1435         u8 area;
1436         u8 finger_id;
1437 };
1438
1439 struct hidpp_touchpad_raw_xy {
1440         u16 timestamp;
1441         struct hidpp_touchpad_raw_xy_finger fingers[2];
1442         u8 spurious_flag;
1443         u8 end_of_frame;
1444         u8 finger_count;
1445         u8 button;
1446 };
1447
1448 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1449         u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1450 {
1451         struct hidpp_report response;
1452         int ret;
1453         u8 *params = (u8 *)response.fap.params;
1454
1455         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1456                 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1457
1458         if (ret > 0) {
1459                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1460                         __func__, ret);
1461                 return -EPROTO;
1462         }
1463         if (ret)
1464                 return ret;
1465
1466         raw_info->x_size = get_unaligned_be16(&params[0]);
1467         raw_info->y_size = get_unaligned_be16(&params[2]);
1468         raw_info->z_range = params[4];
1469         raw_info->area_range = params[5];
1470         raw_info->maxcontacts = params[7];
1471         raw_info->origin = params[8];
1472         /* res is given in unit per inch */
1473         raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1474
1475         return ret;
1476 }
1477
1478 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1479                 u8 feature_index, bool send_raw_reports,
1480                 bool sensor_enhanced_settings)
1481 {
1482         struct hidpp_report response;
1483
1484         /*
1485          * Params:
1486          *   bit 0 - enable raw
1487          *   bit 1 - 16bit Z, no area
1488          *   bit 2 - enhanced sensitivity
1489          *   bit 3 - width, height (4 bits each) instead of area
1490          *   bit 4 - send raw + gestures (degrades smoothness)
1491          *   remaining bits - reserved
1492          */
1493         u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
1494
1495         return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
1496                 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
1497 }
1498
1499 static void hidpp_touchpad_touch_event(u8 *data,
1500         struct hidpp_touchpad_raw_xy_finger *finger)
1501 {
1502         u8 x_m = data[0] << 2;
1503         u8 y_m = data[2] << 2;
1504
1505         finger->x = x_m << 6 | data[1];
1506         finger->y = y_m << 6 | data[3];
1507
1508         finger->contact_type = data[0] >> 6;
1509         finger->contact_status = data[2] >> 6;
1510
1511         finger->z = data[4];
1512         finger->area = data[5];
1513         finger->finger_id = data[6] >> 4;
1514 }
1515
1516 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
1517                 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
1518 {
1519         memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
1520         raw_xy->end_of_frame = data[8] & 0x01;
1521         raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
1522         raw_xy->finger_count = data[15] & 0x0f;
1523         raw_xy->button = (data[8] >> 2) & 0x01;
1524
1525         if (raw_xy->finger_count) {
1526                 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
1527                 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
1528         }
1529 }
1530
1531 /* -------------------------------------------------------------------------- */
1532 /* 0x8123: Force feedback support                                             */
1533 /* -------------------------------------------------------------------------- */
1534
1535 #define HIDPP_FF_GET_INFO               0x01
1536 #define HIDPP_FF_RESET_ALL              0x11
1537 #define HIDPP_FF_DOWNLOAD_EFFECT        0x21
1538 #define HIDPP_FF_SET_EFFECT_STATE       0x31
1539 #define HIDPP_FF_DESTROY_EFFECT         0x41
1540 #define HIDPP_FF_GET_APERTURE           0x51
1541 #define HIDPP_FF_SET_APERTURE           0x61
1542 #define HIDPP_FF_GET_GLOBAL_GAINS       0x71
1543 #define HIDPP_FF_SET_GLOBAL_GAINS       0x81
1544
1545 #define HIDPP_FF_EFFECT_STATE_GET       0x00
1546 #define HIDPP_FF_EFFECT_STATE_STOP      0x01
1547 #define HIDPP_FF_EFFECT_STATE_PLAY      0x02
1548 #define HIDPP_FF_EFFECT_STATE_PAUSE     0x03
1549
1550 #define HIDPP_FF_EFFECT_CONSTANT        0x00
1551 #define HIDPP_FF_EFFECT_PERIODIC_SINE           0x01
1552 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE         0x02
1553 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE       0x03
1554 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP     0x04
1555 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN   0x05
1556 #define HIDPP_FF_EFFECT_SPRING          0x06
1557 #define HIDPP_FF_EFFECT_DAMPER          0x07
1558 #define HIDPP_FF_EFFECT_FRICTION        0x08
1559 #define HIDPP_FF_EFFECT_INERTIA         0x09
1560 #define HIDPP_FF_EFFECT_RAMP            0x0A
1561
1562 #define HIDPP_FF_EFFECT_AUTOSTART       0x80
1563
1564 #define HIDPP_FF_EFFECTID_NONE          -1
1565 #define HIDPP_FF_EFFECTID_AUTOCENTER    -2
1566
1567 #define HIDPP_FF_MAX_PARAMS     20
1568 #define HIDPP_FF_RESERVED_SLOTS 1
1569
1570 struct hidpp_ff_private_data {
1571         struct hidpp_device *hidpp;
1572         u8 feature_index;
1573         u8 version;
1574         u16 gain;
1575         s16 range;
1576         u8 slot_autocenter;
1577         u8 num_effects;
1578         int *effect_ids;
1579         struct workqueue_struct *wq;
1580         atomic_t workqueue_size;
1581 };
1582
1583 struct hidpp_ff_work_data {
1584         struct work_struct work;
1585         struct hidpp_ff_private_data *data;
1586         int effect_id;
1587         u8 command;
1588         u8 params[HIDPP_FF_MAX_PARAMS];
1589         u8 size;
1590 };
1591
1592 static const signed short hiddpp_ff_effects[] = {
1593         FF_CONSTANT,
1594         FF_PERIODIC,
1595         FF_SINE,
1596         FF_SQUARE,
1597         FF_SAW_UP,
1598         FF_SAW_DOWN,
1599         FF_TRIANGLE,
1600         FF_SPRING,
1601         FF_DAMPER,
1602         FF_AUTOCENTER,
1603         FF_GAIN,
1604         -1
1605 };
1606
1607 static const signed short hiddpp_ff_effects_v2[] = {
1608         FF_RAMP,
1609         FF_FRICTION,
1610         FF_INERTIA,
1611         -1
1612 };
1613
1614 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
1615         HIDPP_FF_EFFECT_SPRING,
1616         HIDPP_FF_EFFECT_FRICTION,
1617         HIDPP_FF_EFFECT_DAMPER,
1618         HIDPP_FF_EFFECT_INERTIA
1619 };
1620
1621 static const char *HIDPP_FF_CONDITION_NAMES[] = {
1622         "spring",
1623         "friction",
1624         "damper",
1625         "inertia"
1626 };
1627
1628
1629 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
1630 {
1631         int i;
1632
1633         for (i = 0; i < data->num_effects; i++)
1634                 if (data->effect_ids[i] == effect_id)
1635                         return i+1;
1636
1637         return 0;
1638 }
1639
1640 static void hidpp_ff_work_handler(struct work_struct *w)
1641 {
1642         struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
1643         struct hidpp_ff_private_data *data = wd->data;
1644         struct hidpp_report response;
1645         u8 slot;
1646         int ret;
1647
1648         /* add slot number if needed */
1649         switch (wd->effect_id) {
1650         case HIDPP_FF_EFFECTID_AUTOCENTER:
1651                 wd->params[0] = data->slot_autocenter;
1652                 break;
1653         case HIDPP_FF_EFFECTID_NONE:
1654                 /* leave slot as zero */
1655                 break;
1656         default:
1657                 /* find current slot for effect */
1658                 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
1659                 break;
1660         }
1661
1662         /* send command and wait for reply */
1663         ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
1664                 wd->command, wd->params, wd->size, &response);
1665
1666         if (ret) {
1667                 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
1668                 goto out;
1669         }
1670
1671         /* parse return data */
1672         switch (wd->command) {
1673         case HIDPP_FF_DOWNLOAD_EFFECT:
1674                 slot = response.fap.params[0];
1675                 if (slot > 0 && slot <= data->num_effects) {
1676                         if (wd->effect_id >= 0)
1677                                 /* regular effect uploaded */
1678                                 data->effect_ids[slot-1] = wd->effect_id;
1679                         else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1680                                 /* autocenter spring uploaded */
1681                                 data->slot_autocenter = slot;
1682                 }
1683                 break;
1684         case HIDPP_FF_DESTROY_EFFECT:
1685                 if (wd->effect_id >= 0)
1686                         /* regular effect destroyed */
1687                         data->effect_ids[wd->params[0]-1] = -1;
1688                 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1689                         /* autocenter spring destoyed */
1690                         data->slot_autocenter = 0;
1691                 break;
1692         case HIDPP_FF_SET_GLOBAL_GAINS:
1693                 data->gain = (wd->params[0] << 8) + wd->params[1];
1694                 break;
1695         case HIDPP_FF_SET_APERTURE:
1696                 data->range = (wd->params[0] << 8) + wd->params[1];
1697                 break;
1698         default:
1699                 /* no action needed */
1700                 break;
1701         }
1702
1703 out:
1704         atomic_dec(&data->workqueue_size);
1705         kfree(wd);
1706 }
1707
1708 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
1709 {
1710         struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
1711         int s;
1712
1713         if (!wd)
1714                 return -ENOMEM;
1715
1716         INIT_WORK(&wd->work, hidpp_ff_work_handler);
1717
1718         wd->data = data;
1719         wd->effect_id = effect_id;
1720         wd->command = command;
1721         wd->size = size;
1722         memcpy(wd->params, params, size);
1723
1724         atomic_inc(&data->workqueue_size);
1725         queue_work(data->wq, &wd->work);
1726
1727         /* warn about excessive queue size */
1728         s = atomic_read(&data->workqueue_size);
1729         if (s >= 20 && s % 20 == 0)
1730                 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
1731
1732         return 0;
1733 }
1734
1735 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
1736 {
1737         struct hidpp_ff_private_data *data = dev->ff->private;
1738         u8 params[20];
1739         u8 size;
1740         int force;
1741
1742         /* set common parameters */
1743         params[2] = effect->replay.length >> 8;
1744         params[3] = effect->replay.length & 255;
1745         params[4] = effect->replay.delay >> 8;
1746         params[5] = effect->replay.delay & 255;
1747
1748         switch (effect->type) {
1749         case FF_CONSTANT:
1750                 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1751                 params[1] = HIDPP_FF_EFFECT_CONSTANT;
1752                 params[6] = force >> 8;
1753                 params[7] = force & 255;
1754                 params[8] = effect->u.constant.envelope.attack_level >> 7;
1755                 params[9] = effect->u.constant.envelope.attack_length >> 8;
1756                 params[10] = effect->u.constant.envelope.attack_length & 255;
1757                 params[11] = effect->u.constant.envelope.fade_level >> 7;
1758                 params[12] = effect->u.constant.envelope.fade_length >> 8;
1759                 params[13] = effect->u.constant.envelope.fade_length & 255;
1760                 size = 14;
1761                 dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
1762                                 effect->u.constant.level,
1763                                 effect->direction, force);
1764                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1765                                 effect->u.constant.envelope.attack_level,
1766                                 effect->u.constant.envelope.attack_length,
1767                                 effect->u.constant.envelope.fade_level,
1768                                 effect->u.constant.envelope.fade_length);
1769                 break;
1770         case FF_PERIODIC:
1771         {
1772                 switch (effect->u.periodic.waveform) {
1773                 case FF_SINE:
1774                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
1775                         break;
1776                 case FF_SQUARE:
1777                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
1778                         break;
1779                 case FF_SAW_UP:
1780                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
1781                         break;
1782                 case FF_SAW_DOWN:
1783                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
1784                         break;
1785                 case FF_TRIANGLE:
1786                         params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
1787                         break;
1788                 default:
1789                         hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
1790                         return -EINVAL;
1791                 }
1792                 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1793                 params[6] = effect->u.periodic.magnitude >> 8;
1794                 params[7] = effect->u.periodic.magnitude & 255;
1795                 params[8] = effect->u.periodic.offset >> 8;
1796                 params[9] = effect->u.periodic.offset & 255;
1797                 params[10] = effect->u.periodic.period >> 8;
1798                 params[11] = effect->u.periodic.period & 255;
1799                 params[12] = effect->u.periodic.phase >> 8;
1800                 params[13] = effect->u.periodic.phase & 255;
1801                 params[14] = effect->u.periodic.envelope.attack_level >> 7;
1802                 params[15] = effect->u.periodic.envelope.attack_length >> 8;
1803                 params[16] = effect->u.periodic.envelope.attack_length & 255;
1804                 params[17] = effect->u.periodic.envelope.fade_level >> 7;
1805                 params[18] = effect->u.periodic.envelope.fade_length >> 8;
1806                 params[19] = effect->u.periodic.envelope.fade_length & 255;
1807                 size = 20;
1808                 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
1809                                 effect->u.periodic.magnitude, effect->direction,
1810                                 effect->u.periodic.offset,
1811                                 effect->u.periodic.period,
1812                                 effect->u.periodic.phase);
1813                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1814                                 effect->u.periodic.envelope.attack_level,
1815                                 effect->u.periodic.envelope.attack_length,
1816                                 effect->u.periodic.envelope.fade_level,
1817                                 effect->u.periodic.envelope.fade_length);
1818                 break;
1819         }
1820         case FF_RAMP:
1821                 params[1] = HIDPP_FF_EFFECT_RAMP;
1822                 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1823                 params[6] = force >> 8;
1824                 params[7] = force & 255;
1825                 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1826                 params[8] = force >> 8;
1827                 params[9] = force & 255;
1828                 params[10] = effect->u.ramp.envelope.attack_level >> 7;
1829                 params[11] = effect->u.ramp.envelope.attack_length >> 8;
1830                 params[12] = effect->u.ramp.envelope.attack_length & 255;
1831                 params[13] = effect->u.ramp.envelope.fade_level >> 7;
1832                 params[14] = effect->u.ramp.envelope.fade_length >> 8;
1833                 params[15] = effect->u.ramp.envelope.fade_length & 255;
1834                 size = 16;
1835                 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
1836                                 effect->u.ramp.start_level,
1837                                 effect->u.ramp.end_level,
1838                                 effect->direction, force);
1839                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1840                                 effect->u.ramp.envelope.attack_level,
1841                                 effect->u.ramp.envelope.attack_length,
1842                                 effect->u.ramp.envelope.fade_level,
1843                                 effect->u.ramp.envelope.fade_length);
1844                 break;
1845         case FF_FRICTION:
1846         case FF_INERTIA:
1847         case FF_SPRING:
1848         case FF_DAMPER:
1849                 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
1850                 params[6] = effect->u.condition[0].left_saturation >> 9;
1851                 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
1852                 params[8] = effect->u.condition[0].left_coeff >> 8;
1853                 params[9] = effect->u.condition[0].left_coeff & 255;
1854                 params[10] = effect->u.condition[0].deadband >> 9;
1855                 params[11] = (effect->u.condition[0].deadband >> 1) & 255;
1856                 params[12] = effect->u.condition[0].center >> 8;
1857                 params[13] = effect->u.condition[0].center & 255;
1858                 params[14] = effect->u.condition[0].right_coeff >> 8;
1859                 params[15] = effect->u.condition[0].right_coeff & 255;
1860                 params[16] = effect->u.condition[0].right_saturation >> 9;
1861                 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
1862                 size = 18;
1863                 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
1864                                 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
1865                                 effect->u.condition[0].left_coeff,
1866                                 effect->u.condition[0].left_saturation,
1867                                 effect->u.condition[0].right_coeff,
1868                                 effect->u.condition[0].right_saturation);
1869                 dbg_hid("          deadband=%d, center=%d\n",
1870                                 effect->u.condition[0].deadband,
1871                                 effect->u.condition[0].center);
1872                 break;
1873         default:
1874                 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
1875                 return -EINVAL;
1876         }
1877
1878         return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
1879 }
1880
1881 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
1882 {
1883         struct hidpp_ff_private_data *data = dev->ff->private;
1884         u8 params[2];
1885
1886         params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
1887
1888         dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
1889
1890         return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
1891 }
1892
1893 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
1894 {
1895         struct hidpp_ff_private_data *data = dev->ff->private;
1896         u8 slot = 0;
1897
1898         dbg_hid("Erasing effect %d.\n", effect_id);
1899
1900         return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
1901 }
1902
1903 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
1904 {
1905         struct hidpp_ff_private_data *data = dev->ff->private;
1906         u8 params[18];
1907
1908         dbg_hid("Setting autocenter to %d.\n", magnitude);
1909
1910         /* start a standard spring effect */
1911         params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
1912         /* zero delay and duration */
1913         params[2] = params[3] = params[4] = params[5] = 0;
1914         /* set coeff to 25% of saturation */
1915         params[8] = params[14] = magnitude >> 11;
1916         params[9] = params[15] = (magnitude >> 3) & 255;
1917         params[6] = params[16] = magnitude >> 9;
1918         params[7] = params[17] = (magnitude >> 1) & 255;
1919         /* zero deadband and center */
1920         params[10] = params[11] = params[12] = params[13] = 0;
1921
1922         hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
1923 }
1924
1925 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
1926 {
1927         struct hidpp_ff_private_data *data = dev->ff->private;
1928         u8 params[4];
1929
1930         dbg_hid("Setting gain to %d.\n", gain);
1931
1932         params[0] = gain >> 8;
1933         params[1] = gain & 255;
1934         params[2] = 0; /* no boost */
1935         params[3] = 0;
1936
1937         hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
1938 }
1939
1940 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
1941 {
1942         struct hid_device *hid = to_hid_device(dev);
1943         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
1944         struct input_dev *idev = hidinput->input;
1945         struct hidpp_ff_private_data *data = idev->ff->private;
1946
1947         return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
1948 }
1949
1950 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
1951 {
1952         struct hid_device *hid = to_hid_device(dev);
1953         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
1954         struct input_dev *idev = hidinput->input;
1955         struct hidpp_ff_private_data *data = idev->ff->private;
1956         u8 params[2];
1957         int range = simple_strtoul(buf, NULL, 10);
1958
1959         range = clamp(range, 180, 900);
1960
1961         params[0] = range >> 8;
1962         params[1] = range & 0x00FF;
1963
1964         hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
1965
1966         return count;
1967 }
1968
1969 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
1970
1971 static void hidpp_ff_destroy(struct ff_device *ff)
1972 {
1973         struct hidpp_ff_private_data *data = ff->private;
1974
1975         kfree(data->effect_ids);
1976 }
1977
1978 static int hidpp_ff_init(struct hidpp_device *hidpp, u8 feature_index)
1979 {
1980         struct hid_device *hid = hidpp->hid_dev;
1981         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
1982         struct input_dev *dev = hidinput->input;
1983         const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
1984         const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
1985         struct ff_device *ff;
1986         struct hidpp_report response;
1987         struct hidpp_ff_private_data *data;
1988         int error, j, num_slots;
1989         u8 version;
1990
1991         if (!dev) {
1992                 hid_err(hid, "Struct input_dev not set!\n");
1993                 return -EINVAL;
1994         }
1995
1996         /* Get firmware release */
1997         version = bcdDevice & 255;
1998
1999         /* Set supported force feedback capabilities */
2000         for (j = 0; hiddpp_ff_effects[j] >= 0; j++)
2001                 set_bit(hiddpp_ff_effects[j], dev->ffbit);
2002         if (version > 1)
2003                 for (j = 0; hiddpp_ff_effects_v2[j] >= 0; j++)
2004                         set_bit(hiddpp_ff_effects_v2[j], dev->ffbit);
2005
2006         /* Read number of slots available in device */
2007         error = hidpp_send_fap_command_sync(hidpp, feature_index,
2008                 HIDPP_FF_GET_INFO, NULL, 0, &response);
2009         if (error) {
2010                 if (error < 0)
2011                         return error;
2012                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
2013                         __func__, error);
2014                 return -EPROTO;
2015         }
2016
2017         num_slots = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
2018
2019         error = input_ff_create(dev, num_slots);
2020
2021         if (error) {
2022                 hid_err(dev, "Failed to create FF device!\n");
2023                 return error;
2024         }
2025
2026         data = kzalloc(sizeof(*data), GFP_KERNEL);
2027         if (!data)
2028                 return -ENOMEM;
2029         data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
2030         if (!data->effect_ids) {
2031                 kfree(data);
2032                 return -ENOMEM;
2033         }
2034         data->hidpp = hidpp;
2035         data->feature_index = feature_index;
2036         data->version = version;
2037         data->slot_autocenter = 0;
2038         data->num_effects = num_slots;
2039         for (j = 0; j < num_slots; j++)
2040                 data->effect_ids[j] = -1;
2041
2042         ff = dev->ff;
2043         ff->private = data;
2044
2045         ff->upload = hidpp_ff_upload_effect;
2046         ff->erase = hidpp_ff_erase_effect;
2047         ff->playback = hidpp_ff_playback;
2048         ff->set_gain = hidpp_ff_set_gain;
2049         ff->set_autocenter = hidpp_ff_set_autocenter;
2050         ff->destroy = hidpp_ff_destroy;
2051
2052
2053         /* reset all forces */
2054         error = hidpp_send_fap_command_sync(hidpp, feature_index,
2055                 HIDPP_FF_RESET_ALL, NULL, 0, &response);
2056
2057         /* Read current Range */
2058         error = hidpp_send_fap_command_sync(hidpp, feature_index,
2059                 HIDPP_FF_GET_APERTURE, NULL, 0, &response);
2060         if (error)
2061                 hid_warn(hidpp->hid_dev, "Failed to read range from device!\n");
2062         data->range = error ? 900 : get_unaligned_be16(&response.fap.params[0]);
2063
2064         /* Create sysfs interface */
2065         error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
2066         if (error)
2067                 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
2068
2069         /* Read the current gain values */
2070         error = hidpp_send_fap_command_sync(hidpp, feature_index,
2071                 HIDPP_FF_GET_GLOBAL_GAINS, NULL, 0, &response);
2072         if (error)
2073                 hid_warn(hidpp->hid_dev, "Failed to read gain values from device!\n");
2074         data->gain = error ? 0xffff : get_unaligned_be16(&response.fap.params[0]);
2075         /* ignore boost value at response.fap.params[2] */
2076
2077         /* init the hardware command queue */
2078         data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
2079         atomic_set(&data->workqueue_size, 0);
2080
2081         /* initialize with zero autocenter to get wheel in usable state */
2082         hidpp_ff_set_autocenter(dev, 0);
2083
2084         hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
2085                  version);
2086
2087         return 0;
2088 }
2089
2090 static int hidpp_ff_deinit(struct hid_device *hid)
2091 {
2092         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2093         struct input_dev *dev = hidinput->input;
2094         struct hidpp_ff_private_data *data;
2095
2096         if (!dev) {
2097                 hid_err(hid, "Struct input_dev not found!\n");
2098                 return -EINVAL;
2099         }
2100
2101         hid_info(hid, "Unloading HID++ force feedback.\n");
2102         data = dev->ff->private;
2103         if (!data) {
2104                 hid_err(hid, "Private data not found!\n");
2105                 return -EINVAL;
2106         }
2107
2108         destroy_workqueue(data->wq);
2109         device_remove_file(&hid->dev, &dev_attr_range);
2110
2111         return 0;
2112 }
2113
2114
2115 /* ************************************************************************** */
2116 /*                                                                            */
2117 /* Device Support                                                             */
2118 /*                                                                            */
2119 /* ************************************************************************** */
2120
2121 /* -------------------------------------------------------------------------- */
2122 /* Touchpad HID++ devices                                                     */
2123 /* -------------------------------------------------------------------------- */
2124
2125 #define WTP_MANUAL_RESOLUTION                           39
2126
2127 struct wtp_data {
2128         struct input_dev *input;
2129         u16 x_size, y_size;
2130         u8 finger_count;
2131         u8 mt_feature_index;
2132         u8 button_feature_index;
2133         u8 maxcontacts;
2134         bool flip_y;
2135         unsigned int resolution;
2136 };
2137
2138 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2139                 struct hid_field *field, struct hid_usage *usage,
2140                 unsigned long **bit, int *max)
2141 {
2142         return -1;
2143 }
2144
2145 static void wtp_populate_input(struct hidpp_device *hidpp,
2146                 struct input_dev *input_dev, bool origin_is_hid_core)
2147 {
2148         struct wtp_data *wd = hidpp->private_data;
2149
2150         __set_bit(EV_ABS, input_dev->evbit);
2151         __set_bit(EV_KEY, input_dev->evbit);
2152         __clear_bit(EV_REL, input_dev->evbit);
2153         __clear_bit(EV_LED, input_dev->evbit);
2154
2155         input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2156         input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2157         input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2158         input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2159
2160         /* Max pressure is not given by the devices, pick one */
2161         input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2162
2163         input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2164
2165         if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2166                 input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2167         else
2168                 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2169
2170         input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2171                 INPUT_MT_DROP_UNUSED);
2172
2173         wd->input = input_dev;
2174 }
2175
2176 static void wtp_touch_event(struct wtp_data *wd,
2177         struct hidpp_touchpad_raw_xy_finger *touch_report)
2178 {
2179         int slot;
2180
2181         if (!touch_report->finger_id || touch_report->contact_type)
2182                 /* no actual data */
2183                 return;
2184
2185         slot = input_mt_get_slot_by_key(wd->input, touch_report->finger_id);
2186
2187         input_mt_slot(wd->input, slot);
2188         input_mt_report_slot_state(wd->input, MT_TOOL_FINGER,
2189                                         touch_report->contact_status);
2190         if (touch_report->contact_status) {
2191                 input_event(wd->input, EV_ABS, ABS_MT_POSITION_X,
2192                                 touch_report->x);
2193                 input_event(wd->input, EV_ABS, ABS_MT_POSITION_Y,
2194                                 wd->flip_y ? wd->y_size - touch_report->y :
2195                                              touch_report->y);
2196                 input_event(wd->input, EV_ABS, ABS_MT_PRESSURE,
2197                                 touch_report->area);
2198         }
2199 }
2200
2201 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2202                 struct hidpp_touchpad_raw_xy *raw)
2203 {
2204         struct wtp_data *wd = hidpp->private_data;
2205         int i;
2206
2207         for (i = 0; i < 2; i++)
2208                 wtp_touch_event(wd, &(raw->fingers[i]));
2209
2210         if (raw->end_of_frame &&
2211             !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2212                 input_event(wd->input, EV_KEY, BTN_LEFT, raw->button);
2213
2214         if (raw->end_of_frame || raw->finger_count <= 2) {
2215                 input_mt_sync_frame(wd->input);
2216                 input_sync(wd->input);
2217         }
2218 }
2219
2220 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2221 {
2222         struct wtp_data *wd = hidpp->private_data;
2223         u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2224                       (data[7] >> 4) * (data[7] >> 4)) / 2;
2225         u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2226                       (data[13] >> 4) * (data[13] >> 4)) / 2;
2227         struct hidpp_touchpad_raw_xy raw = {
2228                 .timestamp = data[1],
2229                 .fingers = {
2230                         {
2231                                 .contact_type = 0,
2232                                 .contact_status = !!data[7],
2233                                 .x = get_unaligned_le16(&data[3]),
2234                                 .y = get_unaligned_le16(&data[5]),
2235                                 .z = c1_area,
2236                                 .area = c1_area,
2237                                 .finger_id = data[2],
2238                         }, {
2239                                 .contact_type = 0,
2240                                 .contact_status = !!data[13],
2241                                 .x = get_unaligned_le16(&data[9]),
2242                                 .y = get_unaligned_le16(&data[11]),
2243                                 .z = c2_area,
2244                                 .area = c2_area,
2245                                 .finger_id = data[8],
2246                         }
2247                 },
2248                 .finger_count = wd->maxcontacts,
2249                 .spurious_flag = 0,
2250                 .end_of_frame = (data[0] >> 7) == 0,
2251                 .button = data[0] & 0x01,
2252         };
2253
2254         wtp_send_raw_xy_event(hidpp, &raw);
2255
2256         return 1;
2257 }
2258
2259 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2260 {
2261         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2262         struct wtp_data *wd = hidpp->private_data;
2263         struct hidpp_report *report = (struct hidpp_report *)data;
2264         struct hidpp_touchpad_raw_xy raw;
2265
2266         if (!wd || !wd->input)
2267                 return 1;
2268
2269         switch (data[0]) {
2270         case 0x02:
2271                 if (size < 2) {
2272                         hid_err(hdev, "Received HID report of bad size (%d)",
2273                                 size);
2274                         return 1;
2275                 }
2276                 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2277                         input_event(wd->input, EV_KEY, BTN_LEFT,
2278                                         !!(data[1] & 0x01));
2279                         input_event(wd->input, EV_KEY, BTN_RIGHT,
2280                                         !!(data[1] & 0x02));
2281                         input_sync(wd->input);
2282                         return 0;
2283                 } else {
2284                         if (size < 21)
2285                                 return 1;
2286                         return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2287                 }
2288         case REPORT_ID_HIDPP_LONG:
2289                 /* size is already checked in hidpp_raw_event. */
2290                 if ((report->fap.feature_index != wd->mt_feature_index) ||
2291                     (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2292                         return 1;
2293                 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2294
2295                 wtp_send_raw_xy_event(hidpp, &raw);
2296                 return 0;
2297         }
2298
2299         return 0;
2300 }
2301
2302 static int wtp_get_config(struct hidpp_device *hidpp)
2303 {
2304         struct wtp_data *wd = hidpp->private_data;
2305         struct hidpp_touchpad_raw_info raw_info = {0};
2306         u8 feature_type;
2307         int ret;
2308
2309         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2310                 &wd->mt_feature_index, &feature_type);
2311         if (ret)
2312                 /* means that the device is not powered up */
2313                 return ret;
2314
2315         ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2316                 &raw_info);
2317         if (ret)
2318                 return ret;
2319
2320         wd->x_size = raw_info.x_size;
2321         wd->y_size = raw_info.y_size;
2322         wd->maxcontacts = raw_info.maxcontacts;
2323         wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2324         wd->resolution = raw_info.res;
2325         if (!wd->resolution)
2326                 wd->resolution = WTP_MANUAL_RESOLUTION;
2327
2328         return 0;
2329 }
2330
2331 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2332 {
2333         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2334         struct wtp_data *wd;
2335
2336         wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2337                         GFP_KERNEL);
2338         if (!wd)
2339                 return -ENOMEM;
2340
2341         hidpp->private_data = wd;
2342
2343         return 0;
2344 };
2345
2346 static int wtp_connect(struct hid_device *hdev, bool connected)
2347 {
2348         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2349         struct wtp_data *wd = hidpp->private_data;
2350         int ret;
2351
2352         if (!wd->x_size) {
2353                 ret = wtp_get_config(hidpp);
2354                 if (ret) {
2355                         hid_err(hdev, "Can not get wtp config: %d\n", ret);
2356                         return ret;
2357                 }
2358         }
2359
2360         return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2361                         true, true);
2362 }
2363
2364 /* ------------------------------------------------------------------------- */
2365 /* Logitech M560 devices                                                     */
2366 /* ------------------------------------------------------------------------- */
2367
2368 /*
2369  * Logitech M560 protocol overview
2370  *
2371  * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2372  * the sides buttons are pressed, it sends some keyboard keys events
2373  * instead of buttons ones.
2374  * To complicate things further, the middle button keys sequence
2375  * is different from the odd press and the even press.
2376  *
2377  * forward button -> Super_R
2378  * backward button -> Super_L+'d' (press only)
2379  * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2380  *                  2nd time: left-click (press only)
2381  * NB: press-only means that when the button is pressed, the
2382  * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2383  * together sequentially; instead when the button is released, no event is
2384  * generated !
2385  *
2386  * With the command
2387  *      10<xx>0a 3500af03 (where <xx> is the mouse id),
2388  * the mouse reacts differently:
2389  * - it never sends a keyboard key event
2390  * - for the three mouse button it sends:
2391  *      middle button               press   11<xx>0a 3500af00...
2392  *      side 1 button (forward)     press   11<xx>0a 3500b000...
2393  *      side 2 button (backward)    press   11<xx>0a 3500ae00...
2394  *      middle/side1/side2 button   release 11<xx>0a 35000000...
2395  */
2396
2397 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2398
2399 struct m560_private_data {
2400         struct input_dev *input;
2401 };
2402
2403 /* how buttons are mapped in the report */
2404 #define M560_MOUSE_BTN_LEFT             0x01
2405 #define M560_MOUSE_BTN_RIGHT            0x02
2406 #define M560_MOUSE_BTN_WHEEL_LEFT       0x08
2407 #define M560_MOUSE_BTN_WHEEL_RIGHT      0x10
2408
2409 #define M560_SUB_ID                     0x0a
2410 #define M560_BUTTON_MODE_REGISTER       0x35
2411
2412 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2413 {
2414         struct hidpp_report response;
2415         struct hidpp_device *hidpp_dev;
2416
2417         hidpp_dev = hid_get_drvdata(hdev);
2418
2419         return hidpp_send_rap_command_sync(
2420                 hidpp_dev,
2421                 REPORT_ID_HIDPP_SHORT,
2422                 M560_SUB_ID,
2423                 M560_BUTTON_MODE_REGISTER,
2424                 (u8 *)m560_config_parameter,
2425                 sizeof(m560_config_parameter),
2426                 &response
2427         );
2428 }
2429
2430 static int m560_allocate(struct hid_device *hdev)
2431 {
2432         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2433         struct m560_private_data *d;
2434
2435         d = devm_kzalloc(&hdev->dev, sizeof(struct m560_private_data),
2436                         GFP_KERNEL);
2437         if (!d)
2438                 return -ENOMEM;
2439
2440         hidpp->private_data = d;
2441
2442         return 0;
2443 };
2444
2445 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2446 {
2447         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2448         struct m560_private_data *mydata = hidpp->private_data;
2449
2450         /* sanity check */
2451         if (!mydata || !mydata->input) {
2452                 hid_err(hdev, "error in parameter\n");
2453                 return -EINVAL;
2454         }
2455
2456         if (size < 7) {
2457                 hid_err(hdev, "error in report\n");
2458                 return 0;
2459         }
2460
2461         if (data[0] == REPORT_ID_HIDPP_LONG &&
2462             data[2] == M560_SUB_ID && data[6] == 0x00) {
2463                 /*
2464                  * m560 mouse report for middle, forward and backward button
2465                  *
2466                  * data[0] = 0x11
2467                  * data[1] = device-id
2468                  * data[2] = 0x0a
2469                  * data[5] = 0xaf -> middle
2470                  *           0xb0 -> forward
2471                  *           0xae -> backward
2472                  *           0x00 -> release all
2473                  * data[6] = 0x00
2474                  */
2475
2476                 switch (data[5]) {
2477                 case 0xaf:
2478                         input_report_key(mydata->input, BTN_MIDDLE, 1);
2479                         break;
2480                 case 0xb0:
2481                         input_report_key(mydata->input, BTN_FORWARD, 1);
2482                         break;
2483                 case 0xae:
2484                         input_report_key(mydata->input, BTN_BACK, 1);
2485                         break;
2486                 case 0x00:
2487                         input_report_key(mydata->input, BTN_BACK, 0);
2488                         input_report_key(mydata->input, BTN_FORWARD, 0);
2489                         input_report_key(mydata->input, BTN_MIDDLE, 0);
2490                         break;
2491                 default:
2492                         hid_err(hdev, "error in report\n");
2493                         return 0;
2494                 }
2495                 input_sync(mydata->input);
2496
2497         } else if (data[0] == 0x02) {
2498                 /*
2499                  * Logitech M560 mouse report
2500                  *
2501                  * data[0] = type (0x02)
2502                  * data[1..2] = buttons
2503                  * data[3..5] = xy
2504                  * data[6] = wheel
2505                  */
2506
2507                 int v;
2508
2509                 input_report_key(mydata->input, BTN_LEFT,
2510                         !!(data[1] & M560_MOUSE_BTN_LEFT));
2511                 input_report_key(mydata->input, BTN_RIGHT,
2512                         !!(data[1] & M560_MOUSE_BTN_RIGHT));
2513
2514                 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT)
2515                         input_report_rel(mydata->input, REL_HWHEEL, -1);
2516                 else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT)
2517                         input_report_rel(mydata->input, REL_HWHEEL, 1);
2518
2519                 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2520                 input_report_rel(mydata->input, REL_X, v);
2521
2522                 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2523                 input_report_rel(mydata->input, REL_Y, v);
2524
2525                 v = hid_snto32(data[6], 8);
2526                 hid_scroll_counter_handle_scroll(
2527                                 &hidpp->vertical_wheel_counter, v);
2528
2529                 input_sync(mydata->input);
2530         }
2531
2532         return 1;
2533 }
2534
2535 static void m560_populate_input(struct hidpp_device *hidpp,
2536                 struct input_dev *input_dev, bool origin_is_hid_core)
2537 {
2538         struct m560_private_data *mydata = hidpp->private_data;
2539
2540         mydata->input = input_dev;
2541
2542         __set_bit(EV_KEY, mydata->input->evbit);
2543         __set_bit(BTN_MIDDLE, mydata->input->keybit);
2544         __set_bit(BTN_RIGHT, mydata->input->keybit);
2545         __set_bit(BTN_LEFT, mydata->input->keybit);
2546         __set_bit(BTN_BACK, mydata->input->keybit);
2547         __set_bit(BTN_FORWARD, mydata->input->keybit);
2548
2549         __set_bit(EV_REL, mydata->input->evbit);
2550         __set_bit(REL_X, mydata->input->relbit);
2551         __set_bit(REL_Y, mydata->input->relbit);
2552         __set_bit(REL_WHEEL, mydata->input->relbit);
2553         __set_bit(REL_HWHEEL, mydata->input->relbit);
2554 }
2555
2556 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2557                 struct hid_field *field, struct hid_usage *usage,
2558                 unsigned long **bit, int *max)
2559 {
2560         return -1;
2561 }
2562
2563 /* ------------------------------------------------------------------------- */
2564 /* Logitech K400 devices                                                     */
2565 /* ------------------------------------------------------------------------- */
2566
2567 /*
2568  * The Logitech K400 keyboard has an embedded touchpad which is seen
2569  * as a mouse from the OS point of view. There is a hardware shortcut to disable
2570  * tap-to-click but the setting is not remembered accross reset, annoying some
2571  * users.
2572  *
2573  * We can toggle this feature from the host by using the feature 0x6010:
2574  * Touchpad FW items
2575  */
2576
2577 struct k400_private_data {
2578         u8 feature_index;
2579 };
2580
2581 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
2582 {
2583         struct k400_private_data *k400 = hidpp->private_data;
2584         struct hidpp_touchpad_fw_items items = {};
2585         int ret;
2586         u8 feature_type;
2587
2588         if (!k400->feature_index) {
2589                 ret = hidpp_root_get_feature(hidpp,
2590                         HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
2591                         &k400->feature_index, &feature_type);
2592                 if (ret)
2593                         /* means that the device is not powered up */
2594                         return ret;
2595         }
2596
2597         ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
2598         if (ret)
2599                 return ret;
2600
2601         return 0;
2602 }
2603
2604 static int k400_allocate(struct hid_device *hdev)
2605 {
2606         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2607         struct k400_private_data *k400;
2608
2609         k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
2610                             GFP_KERNEL);
2611         if (!k400)
2612                 return -ENOMEM;
2613
2614         hidpp->private_data = k400;
2615
2616         return 0;
2617 };
2618
2619 static int k400_connect(struct hid_device *hdev, bool connected)
2620 {
2621         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2622
2623         if (!disable_tap_to_click)
2624                 return 0;
2625
2626         return k400_disable_tap_to_click(hidpp);
2627 }
2628
2629 /* ------------------------------------------------------------------------- */
2630 /* Logitech G920 Driving Force Racing Wheel for Xbox One                     */
2631 /* ------------------------------------------------------------------------- */
2632
2633 #define HIDPP_PAGE_G920_FORCE_FEEDBACK                  0x8123
2634
2635 static int g920_get_config(struct hidpp_device *hidpp)
2636 {
2637         u8 feature_type;
2638         u8 feature_index;
2639         int ret;
2640
2641         /* Find feature and store for later use */
2642         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
2643                 &feature_index, &feature_type);
2644         if (ret)
2645                 return ret;
2646
2647         ret = hidpp_ff_init(hidpp, feature_index);
2648         if (ret)
2649                 hid_warn(hidpp->hid_dev, "Unable to initialize force feedback support, errno %d\n",
2650                                 ret);
2651
2652         return 0;
2653 }
2654
2655 /* -------------------------------------------------------------------------- */
2656 /* High-resolution scroll wheels                                              */
2657 /* -------------------------------------------------------------------------- */
2658
2659 /**
2660  * struct hi_res_scroll_info - Stores info on a device's high-res scroll wheel.
2661  * @product_id: the HID product ID of the device being described.
2662  * @microns_per_hi_res_unit: the distance moved by the user's finger for each
2663  *                         high-resolution unit reported by the device, in
2664  *                         256ths of a millimetre.
2665  */
2666 struct hi_res_scroll_info {
2667         __u32 product_id;
2668         int microns_per_hi_res_unit;
2669 };
2670
2671 static struct hi_res_scroll_info hi_res_scroll_devices[] = {
2672         { /* Anywhere MX */
2673           .product_id = 0x1017, .microns_per_hi_res_unit = 445 },
2674         { /* Performance MX */
2675           .product_id = 0x101a, .microns_per_hi_res_unit = 406 },
2676         { /* M560 */
2677           .product_id = 0x402d, .microns_per_hi_res_unit = 435 },
2678         { /* MX Master 2S */
2679           .product_id = 0x4069, .microns_per_hi_res_unit = 406 },
2680 };
2681
2682 static int hi_res_scroll_look_up_microns(__u32 product_id)
2683 {
2684         int i;
2685         int num_devices = sizeof(hi_res_scroll_devices)
2686                           / sizeof(hi_res_scroll_devices[0]);
2687         for (i = 0; i < num_devices; i++) {
2688                 if (hi_res_scroll_devices[i].product_id == product_id)
2689                         return hi_res_scroll_devices[i].microns_per_hi_res_unit;
2690         }
2691         /* We don't have a value for this device, so use a sensible default. */
2692         return 406;
2693 }
2694
2695 static int hi_res_scroll_enable(struct hidpp_device *hidpp)
2696 {
2697         int ret;
2698         u8 multiplier = 8;
2699
2700         if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) {
2701                 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false);
2702                 hidpp_hrw_get_wheel_capability(hidpp, &multiplier);
2703         } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) {
2704                 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true,
2705                                                            &multiplier);
2706         } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */
2707                 ret = hidpp10_enable_scrolling_acceleration(hidpp);
2708
2709         if (ret)
2710                 return ret;
2711
2712         hidpp->vertical_wheel_counter.resolution_multiplier = multiplier;
2713         hidpp->vertical_wheel_counter.microns_per_hi_res_unit =
2714                 hi_res_scroll_look_up_microns(hidpp->hid_dev->product);
2715         hid_info(hidpp->hid_dev, "multiplier = %d, microns = %d\n",
2716                  multiplier,
2717                  hidpp->vertical_wheel_counter.microns_per_hi_res_unit);
2718         return 0;
2719 }
2720
2721 /* -------------------------------------------------------------------------- */
2722 /* Generic HID++ devices                                                      */
2723 /* -------------------------------------------------------------------------- */
2724
2725 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2726                 struct hid_field *field, struct hid_usage *usage,
2727                 unsigned long **bit, int *max)
2728 {
2729         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2730
2731         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2732                 return wtp_input_mapping(hdev, hi, field, usage, bit, max);
2733         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
2734                         field->application != HID_GD_MOUSE)
2735                 return m560_input_mapping(hdev, hi, field, usage, bit, max);
2736
2737         return 0;
2738 }
2739
2740 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
2741                 struct hid_field *field, struct hid_usage *usage,
2742                 unsigned long **bit, int *max)
2743 {
2744         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2745
2746         /* Ensure that Logitech G920 is not given a default fuzz/flat value */
2747         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
2748                 if (usage->type == EV_ABS && (usage->code == ABS_X ||
2749                                 usage->code == ABS_Y || usage->code == ABS_Z ||
2750                                 usage->code == ABS_RZ)) {
2751                         field->application = HID_GD_MULTIAXIS;
2752                 }
2753         }
2754
2755         return 0;
2756 }
2757
2758
2759 static void hidpp_populate_input(struct hidpp_device *hidpp,
2760                 struct input_dev *input, bool origin_is_hid_core)
2761 {
2762         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2763                 wtp_populate_input(hidpp, input, origin_is_hid_core);
2764         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
2765                 m560_populate_input(hidpp, input, origin_is_hid_core);
2766
2767         if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) {
2768                 input_set_capability(input, EV_REL, REL_WHEEL_HI_RES);
2769                 hidpp->vertical_wheel_counter.dev = input;
2770         }
2771 }
2772
2773 static int hidpp_input_configured(struct hid_device *hdev,
2774                                 struct hid_input *hidinput)
2775 {
2776         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2777         struct input_dev *input = hidinput->input;
2778
2779         hidpp_populate_input(hidpp, input, true);
2780
2781         return 0;
2782 }
2783
2784 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
2785                 int size)
2786 {
2787         struct hidpp_report *question = hidpp->send_receive_buf;
2788         struct hidpp_report *answer = hidpp->send_receive_buf;
2789         struct hidpp_report *report = (struct hidpp_report *)data;
2790         int ret;
2791
2792         /*
2793          * If the mutex is locked then we have a pending answer from a
2794          * previously sent command.
2795          */
2796         if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
2797                 /*
2798                  * Check for a correct hidpp20 answer or the corresponding
2799                  * error
2800                  */
2801                 if (hidpp_match_answer(question, report) ||
2802                                 hidpp_match_error(question, report)) {
2803                         *answer = *report;
2804                         hidpp->answer_available = true;
2805                         wake_up(&hidpp->wait);
2806                         /*
2807                          * This was an answer to a command that this driver sent
2808                          * We return 1 to hid-core to avoid forwarding the
2809                          * command upstream as it has been treated by the driver
2810                          */
2811
2812                         return 1;
2813                 }
2814         }
2815
2816         if (unlikely(hidpp_report_is_connect_event(report))) {
2817                 atomic_set(&hidpp->connected,
2818                                 !(report->rap.params[0] & (1 << 6)));
2819                 if (schedule_work(&hidpp->work) == 0)
2820                         dbg_hid("%s: connect event already queued\n", __func__);
2821                 return 1;
2822         }
2823
2824         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
2825                 ret = hidpp20_battery_event(hidpp, data, size);
2826                 if (ret != 0)
2827                         return ret;
2828                 ret = hidpp_solar_battery_event(hidpp, data, size);
2829                 if (ret != 0)
2830                         return ret;
2831         }
2832
2833         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
2834                 ret = hidpp10_battery_event(hidpp, data, size);
2835                 if (ret != 0)
2836                         return ret;
2837         }
2838
2839         return 0;
2840 }
2841
2842 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
2843                 u8 *data, int size)
2844 {
2845         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2846         int ret = 0;
2847
2848         /* Generic HID++ processing. */
2849         switch (data[0]) {
2850         case REPORT_ID_HIDPP_VERY_LONG:
2851                 if (size != HIDPP_REPORT_VERY_LONG_LENGTH) {
2852                         hid_err(hdev, "received hid++ report of bad size (%d)",
2853                                 size);
2854                         return 1;
2855                 }
2856                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
2857                 break;
2858         case REPORT_ID_HIDPP_LONG:
2859                 if (size != HIDPP_REPORT_LONG_LENGTH) {
2860                         hid_err(hdev, "received hid++ report of bad size (%d)",
2861                                 size);
2862                         return 1;
2863                 }
2864                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
2865                 break;
2866         case REPORT_ID_HIDPP_SHORT:
2867                 if (size != HIDPP_REPORT_SHORT_LENGTH) {
2868                         hid_err(hdev, "received hid++ report of bad size (%d)",
2869                                 size);
2870                         return 1;
2871                 }
2872                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
2873                 break;
2874         }
2875
2876         /* If no report is available for further processing, skip calling
2877          * raw_event of subclasses. */
2878         if (ret != 0)
2879                 return ret;
2880
2881         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2882                 return wtp_raw_event(hdev, data, size);
2883         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
2884                 return m560_raw_event(hdev, data, size);
2885
2886         return 0;
2887 }
2888
2889 static int hidpp_event(struct hid_device *hdev, struct hid_field *field,
2890         struct hid_usage *usage, __s32 value)
2891 {
2892         /* This function will only be called for scroll events, due to the
2893          * restriction imposed in hidpp_usages.
2894          */
2895         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2896         struct hid_scroll_counter *counter = &hidpp->vertical_wheel_counter;
2897         /* A scroll event may occur before the multiplier has been retrieved or
2898          * the input device set, or high-res scroll enabling may fail. In such
2899          * cases we must return early (falling back to default behaviour) to
2900          * avoid a crash in hid_scroll_counter_handle_scroll.
2901          */
2902         if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0
2903             || counter->dev == NULL || counter->resolution_multiplier == 0)
2904                 return 0;
2905
2906         hid_scroll_counter_handle_scroll(counter, value);
2907         return 1;
2908 }
2909
2910 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
2911 {
2912         static atomic_t battery_no = ATOMIC_INIT(0);
2913         struct power_supply_config cfg = { .drv_data = hidpp };
2914         struct power_supply_desc *desc = &hidpp->battery.desc;
2915         enum power_supply_property *battery_props;
2916         struct hidpp_battery *battery;
2917         unsigned int num_battery_props;
2918         unsigned long n;
2919         int ret;
2920
2921         if (hidpp->battery.ps)
2922                 return 0;
2923
2924         hidpp->battery.feature_index = 0xff;
2925         hidpp->battery.solar_feature_index = 0xff;
2926
2927         if (hidpp->protocol_major >= 2) {
2928                 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
2929                         ret = hidpp_solar_request_battery_event(hidpp);
2930                 else
2931                         ret = hidpp20_query_battery_info(hidpp);
2932
2933                 if (ret)
2934                         return ret;
2935                 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
2936         } else {
2937                 ret = hidpp10_query_battery_status(hidpp);
2938                 if (ret) {
2939                         ret = hidpp10_query_battery_mileage(hidpp);
2940                         if (ret)
2941                                 return -ENOENT;
2942                         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
2943                 } else {
2944                         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
2945                 }
2946                 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
2947         }
2948
2949         battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
2950                                      hidpp_battery_props,
2951                                      sizeof(hidpp_battery_props),
2952                                      GFP_KERNEL);
2953         if (!battery_props)
2954                 return -ENOMEM;
2955
2956         num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 2;
2957
2958         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
2959                 battery_props[num_battery_props++] =
2960                                 POWER_SUPPLY_PROP_CAPACITY;
2961
2962         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
2963                 battery_props[num_battery_props++] =
2964                                 POWER_SUPPLY_PROP_CAPACITY_LEVEL;
2965
2966         battery = &hidpp->battery;
2967
2968         n = atomic_inc_return(&battery_no) - 1;
2969         desc->properties = battery_props;
2970         desc->num_properties = num_battery_props;
2971         desc->get_property = hidpp_battery_get_property;
2972         sprintf(battery->name, "hidpp_battery_%ld", n);
2973         desc->name = battery->name;
2974         desc->type = POWER_SUPPLY_TYPE_BATTERY;
2975         desc->use_for_apm = 0;
2976
2977         battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
2978                                                  &battery->desc,
2979                                                  &cfg);
2980         if (IS_ERR(battery->ps))
2981                 return PTR_ERR(battery->ps);
2982
2983         power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
2984
2985         return ret;
2986 }
2987
2988 static void hidpp_overwrite_name(struct hid_device *hdev)
2989 {
2990         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2991         char *name;
2992
2993         if (hidpp->protocol_major < 2)
2994                 return;
2995
2996         name = hidpp_get_device_name(hidpp);
2997
2998         if (!name) {
2999                 hid_err(hdev, "unable to retrieve the name of the device");
3000         } else {
3001                 dbg_hid("HID++: Got name: %s\n", name);
3002                 snprintf(hdev->name, sizeof(hdev->name), "%s", name);
3003         }
3004
3005         kfree(name);
3006 }
3007
3008 static int hidpp_input_open(struct input_dev *dev)
3009 {
3010         struct hid_device *hid = input_get_drvdata(dev);
3011
3012         return hid_hw_open(hid);
3013 }
3014
3015 static void hidpp_input_close(struct input_dev *dev)
3016 {
3017         struct hid_device *hid = input_get_drvdata(dev);
3018
3019         hid_hw_close(hid);
3020 }
3021
3022 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
3023 {
3024         struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
3025         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3026
3027         if (!input_dev)
3028                 return NULL;
3029
3030         input_set_drvdata(input_dev, hdev);
3031         input_dev->open = hidpp_input_open;
3032         input_dev->close = hidpp_input_close;
3033
3034         input_dev->name = hidpp->name;
3035         input_dev->phys = hdev->phys;
3036         input_dev->uniq = hdev->uniq;
3037         input_dev->id.bustype = hdev->bus;
3038         input_dev->id.vendor  = hdev->vendor;
3039         input_dev->id.product = hdev->product;
3040         input_dev->id.version = hdev->version;
3041         input_dev->dev.parent = &hdev->dev;
3042
3043         return input_dev;
3044 }
3045
3046 static void hidpp_connect_event(struct hidpp_device *hidpp)
3047 {
3048         struct hid_device *hdev = hidpp->hid_dev;
3049         int ret = 0;
3050         bool connected = atomic_read(&hidpp->connected);
3051         struct input_dev *input;
3052         char *name, *devm_name;
3053
3054         if (!connected) {
3055                 if (hidpp->battery.ps) {
3056                         hidpp->battery.online = false;
3057                         hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
3058                         hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
3059                         power_supply_changed(hidpp->battery.ps);
3060                 }
3061                 return;
3062         }
3063
3064         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3065                 ret = wtp_connect(hdev, connected);
3066                 if (ret)
3067                         return;
3068         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3069                 ret = m560_send_config_command(hdev, connected);
3070                 if (ret)
3071                         return;
3072         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3073                 ret = k400_connect(hdev, connected);
3074                 if (ret)
3075                         return;
3076         }
3077
3078         /* the device is already connected, we can ask for its name and
3079          * protocol */
3080         if (!hidpp->protocol_major) {
3081                 ret = !hidpp_is_connected(hidpp);
3082                 if (ret) {
3083                         hid_err(hdev, "Can not get the protocol version.\n");
3084                         return;
3085                 }
3086                 hid_info(hdev, "HID++ %u.%u device connected.\n",
3087                          hidpp->protocol_major, hidpp->protocol_minor);
3088         }
3089
3090         if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
3091                 name = hidpp_get_device_name(hidpp);
3092                 if (!name) {
3093                         hid_err(hdev,
3094                                 "unable to retrieve the name of the device");
3095                         return;
3096                 }
3097
3098                 devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s", name);
3099                 kfree(name);
3100                 if (!devm_name)
3101                         return;
3102
3103                 hidpp->name = devm_name;
3104         }
3105
3106         hidpp_initialize_battery(hidpp);
3107
3108         /* forward current battery state */
3109         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3110                 hidpp10_enable_battery_reporting(hidpp);
3111                 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3112                         hidpp10_query_battery_mileage(hidpp);
3113                 else
3114                         hidpp10_query_battery_status(hidpp);
3115         } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3116                 hidpp20_query_battery_info(hidpp);
3117         }
3118         if (hidpp->battery.ps)
3119                 power_supply_changed(hidpp->battery.ps);
3120
3121         if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
3122                 hi_res_scroll_enable(hidpp);
3123
3124         if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
3125                 /* if the input nodes are already created, we can stop now */
3126                 return;
3127
3128         input = hidpp_allocate_input(hdev);
3129         if (!input) {
3130                 hid_err(hdev, "cannot allocate new input device: %d\n", ret);
3131                 return;
3132         }
3133
3134         hidpp_populate_input(hidpp, input, false);
3135
3136         ret = input_register_device(input);
3137         if (ret)
3138                 input_free_device(input);
3139
3140         hidpp->delayed_input = input;
3141 }
3142
3143 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
3144
3145 static struct attribute *sysfs_attrs[] = {
3146         &dev_attr_builtin_power_supply.attr,
3147         NULL
3148 };
3149
3150 static const struct attribute_group ps_attribute_group = {
3151         .attrs = sysfs_attrs
3152 };
3153
3154 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
3155 {
3156         struct hidpp_device *hidpp;
3157         int ret;
3158         bool connected;
3159         unsigned int connect_mask = HID_CONNECT_DEFAULT;
3160
3161         hidpp = devm_kzalloc(&hdev->dev, sizeof(struct hidpp_device),
3162                         GFP_KERNEL);
3163         if (!hidpp)
3164                 return -ENOMEM;
3165
3166         hidpp->hid_dev = hdev;
3167         hidpp->name = hdev->name;
3168         hid_set_drvdata(hdev, hidpp);
3169
3170         hidpp->quirks = id->driver_data;
3171
3172         if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
3173                 hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
3174
3175         if (disable_raw_mode) {
3176                 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
3177                 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
3178         }
3179
3180         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3181                 ret = wtp_allocate(hdev, id);
3182                 if (ret)
3183                         goto allocate_fail;
3184         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3185                 ret = m560_allocate(hdev);
3186                 if (ret)
3187                         goto allocate_fail;
3188         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3189                 ret = k400_allocate(hdev);
3190                 if (ret)
3191                         goto allocate_fail;
3192         }
3193
3194         INIT_WORK(&hidpp->work, delayed_work_cb);
3195         mutex_init(&hidpp->send_mutex);
3196         init_waitqueue_head(&hidpp->wait);
3197
3198         /* indicates we are handling the battery properties in the kernel */
3199         ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
3200         if (ret)
3201                 hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
3202                          hdev->name);
3203
3204         ret = hid_parse(hdev);
3205         if (ret) {
3206                 hid_err(hdev, "%s:parse failed\n", __func__);
3207                 goto hid_parse_fail;
3208         }
3209
3210         if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
3211                 connect_mask &= ~HID_CONNECT_HIDINPUT;
3212
3213         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3214                 ret = hid_hw_start(hdev, connect_mask);
3215                 if (ret) {
3216                         hid_err(hdev, "hw start failed\n");
3217                         goto hid_hw_start_fail;
3218                 }
3219                 ret = hid_hw_open(hdev);
3220                 if (ret < 0) {
3221                         dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
3222                                 __func__, ret);
3223                         hid_hw_stop(hdev);
3224                         goto hid_hw_start_fail;
3225                 }
3226         }
3227
3228
3229         /* Allow incoming packets */
3230         hid_device_io_start(hdev);
3231
3232         if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
3233                 hidpp_unifying_init(hidpp);
3234
3235         connected = hidpp_is_connected(hidpp);
3236         atomic_set(&hidpp->connected, connected);
3237         if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
3238                 if (!connected) {
3239                         ret = -ENODEV;
3240                         hid_err(hdev, "Device not connected");
3241                         goto hid_hw_open_failed;
3242                 }
3243
3244                 hid_info(hdev, "HID++ %u.%u device connected.\n",
3245                          hidpp->protocol_major, hidpp->protocol_minor);
3246
3247                 hidpp_overwrite_name(hdev);
3248         }
3249
3250         if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
3251                 ret = wtp_get_config(hidpp);
3252                 if (ret)
3253                         goto hid_hw_open_failed;
3254         } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3255                 ret = g920_get_config(hidpp);
3256                 if (ret)
3257                         goto hid_hw_open_failed;
3258         }
3259
3260         /* Block incoming packets */
3261         hid_device_io_stop(hdev);
3262
3263         if (!(hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3264                 ret = hid_hw_start(hdev, connect_mask);
3265                 if (ret) {
3266                         hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
3267                         goto hid_hw_start_fail;
3268                 }
3269         }
3270
3271         /* Allow incoming packets */
3272         hid_device_io_start(hdev);
3273
3274         hidpp_connect_event(hidpp);
3275
3276         return ret;
3277
3278 hid_hw_open_failed:
3279         hid_device_io_stop(hdev);
3280         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3281                 hid_hw_close(hdev);
3282                 hid_hw_stop(hdev);
3283         }
3284 hid_hw_start_fail:
3285 hid_parse_fail:
3286         sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3287         cancel_work_sync(&hidpp->work);
3288         mutex_destroy(&hidpp->send_mutex);
3289 allocate_fail:
3290         hid_set_drvdata(hdev, NULL);
3291         return ret;
3292 }
3293
3294 static void hidpp_remove(struct hid_device *hdev)
3295 {
3296         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3297
3298         sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3299
3300         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3301                 hidpp_ff_deinit(hdev);
3302                 hid_hw_close(hdev);
3303         }
3304         hid_hw_stop(hdev);
3305         cancel_work_sync(&hidpp->work);
3306         mutex_destroy(&hidpp->send_mutex);
3307 }
3308
3309 #define LDJ_DEVICE(product) \
3310         HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \
3311                    USB_VENDOR_ID_LOGITECH, (product))
3312
3313 static const struct hid_device_id hidpp_devices[] = {
3314         { /* wireless touchpad */
3315           LDJ_DEVICE(0x4011),
3316           .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
3317                          HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
3318         { /* wireless touchpad T650 */
3319           LDJ_DEVICE(0x4101),
3320           .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
3321         { /* wireless touchpad T651 */
3322           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
3323                 USB_DEVICE_ID_LOGITECH_T651),
3324           .driver_data = HIDPP_QUIRK_CLASS_WTP },
3325         { /* Mouse Logitech Anywhere MX */
3326           LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3327         { /* Mouse Logitech Cube */
3328           LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3329         { /* Mouse Logitech M335 */
3330           LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3331         { /* Mouse Logitech M515 */
3332           LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3333         { /* Mouse logitech M560 */
3334           LDJ_DEVICE(0x402d),
3335           .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560
3336                 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3337         { /* Mouse Logitech M705 (firmware RQM17) */
3338           LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3339         { /* Mouse Logitech M705 (firmware RQM67) */
3340           LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3341         { /* Mouse Logitech M720 */
3342           LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3343         { /* Mouse Logitech MX Anywhere 2 */
3344           LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3345         { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3346         { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3347         { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3348         { /* Mouse Logitech MX Anywhere 2S */
3349           LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3350         { /* Mouse Logitech MX Master */
3351           LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3352         { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3353         { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3354         { /* Mouse Logitech MX Master 2S */
3355           LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3356         { /* Mouse Logitech Performance MX */
3357           LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3358         { /* Keyboard logitech K400 */
3359           LDJ_DEVICE(0x4024),
3360           .driver_data = HIDPP_QUIRK_CLASS_K400 },
3361         { /* Solar Keyboard Logitech K750 */
3362           LDJ_DEVICE(0x4002),
3363           .driver_data = HIDPP_QUIRK_CLASS_K750 },
3364
3365         { LDJ_DEVICE(HID_ANY_ID) },
3366
3367         { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
3368                 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
3369         {}
3370 };
3371
3372 MODULE_DEVICE_TABLE(hid, hidpp_devices);
3373
3374 static const struct hid_usage_id hidpp_usages[] = {
3375         { HID_GD_WHEEL, EV_REL, REL_WHEEL },
3376         { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1}
3377 };
3378
3379 static struct hid_driver hidpp_driver = {
3380         .name = "logitech-hidpp-device",
3381         .id_table = hidpp_devices,
3382         .probe = hidpp_probe,
3383         .remove = hidpp_remove,
3384         .raw_event = hidpp_raw_event,
3385         .usage_table = hidpp_usages,
3386         .event = hidpp_event,
3387         .input_configured = hidpp_input_configured,
3388         .input_mapping = hidpp_input_mapping,
3389         .input_mapped = hidpp_input_mapped,
3390 };
3391
3392 module_hid_driver(hidpp_driver);