Merge tag 'sunxi-fixes-for-4.13' of https://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / hid / hid-logitech-hidpp.c
1 /*
2  *  HIDPP protocol for Logitech Unifying receivers
3  *
4  *  Copyright (c) 2011 Logitech (c)
5  *  Copyright (c) 2012-2013 Google (c)
6  *  Copyright (c) 2013-2014 Red Hat Inc.
7  */
8
9 /*
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the Free
12  * Software Foundation; version 2 of the License.
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/device.h>
18 #include <linux/input.h>
19 #include <linux/usb.h>
20 #include <linux/hid.h>
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/sched.h>
24 #include <linux/kfifo.h>
25 #include <linux/input/mt.h>
26 #include <linux/workqueue.h>
27 #include <linux/atomic.h>
28 #include <linux/fixp-arith.h>
29 #include <asm/unaligned.h>
30 #include "usbhid/usbhid.h"
31 #include "hid-ids.h"
32
33 MODULE_LICENSE("GPL");
34 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
35 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
36
37 static bool disable_raw_mode;
38 module_param(disable_raw_mode, bool, 0644);
39 MODULE_PARM_DESC(disable_raw_mode,
40         "Disable Raw mode reporting for touchpads and keep firmware gestures.");
41
42 static bool disable_tap_to_click;
43 module_param(disable_tap_to_click, bool, 0644);
44 MODULE_PARM_DESC(disable_tap_to_click,
45         "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
46
47 #define REPORT_ID_HIDPP_SHORT                   0x10
48 #define REPORT_ID_HIDPP_LONG                    0x11
49 #define REPORT_ID_HIDPP_VERY_LONG               0x12
50
51 #define HIDPP_REPORT_SHORT_LENGTH               7
52 #define HIDPP_REPORT_LONG_LENGTH                20
53 #define HIDPP_REPORT_VERY_LONG_LENGTH           64
54
55 #define HIDPP_QUIRK_CLASS_WTP                   BIT(0)
56 #define HIDPP_QUIRK_CLASS_M560                  BIT(1)
57 #define HIDPP_QUIRK_CLASS_K400                  BIT(2)
58 #define HIDPP_QUIRK_CLASS_G920                  BIT(3)
59 #define HIDPP_QUIRK_CLASS_K750                  BIT(4)
60
61 /* bits 2..20 are reserved for classes */
62 /* #define HIDPP_QUIRK_CONNECT_EVENTS           BIT(21) disabled */
63 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS        BIT(22)
64 #define HIDPP_QUIRK_NO_HIDINPUT                 BIT(23)
65 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS        BIT(24)
66 #define HIDPP_QUIRK_UNIFYING                    BIT(25)
67
68 #define HIDPP_QUIRK_DELAYED_INIT                HIDPP_QUIRK_NO_HIDINPUT
69
70 #define HIDPP_CAPABILITY_HIDPP10_BATTERY        BIT(0)
71 #define HIDPP_CAPABILITY_HIDPP20_BATTERY        BIT(1)
72 #define HIDPP_CAPABILITY_BATTERY_MILEAGE        BIT(2)
73 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS   BIT(3)
74
75 /*
76  * There are two hidpp protocols in use, the first version hidpp10 is known
77  * as register access protocol or RAP, the second version hidpp20 is known as
78  * feature access protocol or FAP
79  *
80  * Most older devices (including the Unifying usb receiver) use the RAP protocol
81  * where as most newer devices use the FAP protocol. Both protocols are
82  * compatible with the underlying transport, which could be usb, Unifiying, or
83  * bluetooth. The message lengths are defined by the hid vendor specific report
84  * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
85  * the HIDPP_LONG report type (total message length 20 bytes)
86  *
87  * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
88  * messages. The Unifying receiver itself responds to RAP messages (device index
89  * is 0xFF for the receiver), and all messages (short or long) with a device
90  * index between 1 and 6 are passed untouched to the corresponding paired
91  * Unifying device.
92  *
93  * The paired device can be RAP or FAP, it will receive the message untouched
94  * from the Unifiying receiver.
95  */
96
97 struct fap {
98         u8 feature_index;
99         u8 funcindex_clientid;
100         u8 params[HIDPP_REPORT_VERY_LONG_LENGTH - 4U];
101 };
102
103 struct rap {
104         u8 sub_id;
105         u8 reg_address;
106         u8 params[HIDPP_REPORT_VERY_LONG_LENGTH - 4U];
107 };
108
109 struct hidpp_report {
110         u8 report_id;
111         u8 device_index;
112         union {
113                 struct fap fap;
114                 struct rap rap;
115                 u8 rawbytes[sizeof(struct fap)];
116         };
117 } __packed;
118
119 struct hidpp_battery {
120         u8 feature_index;
121         u8 solar_feature_index;
122         struct power_supply_desc desc;
123         struct power_supply *ps;
124         char name[64];
125         int status;
126         int capacity;
127         int level;
128         bool online;
129 };
130
131 struct hidpp_device {
132         struct hid_device *hid_dev;
133         struct mutex send_mutex;
134         void *send_receive_buf;
135         char *name;             /* will never be NULL and should not be freed */
136         wait_queue_head_t wait;
137         bool answer_available;
138         u8 protocol_major;
139         u8 protocol_minor;
140
141         void *private_data;
142
143         struct work_struct work;
144         struct kfifo delayed_work_fifo;
145         atomic_t connected;
146         struct input_dev *delayed_input;
147
148         unsigned long quirks;
149         unsigned long capabilities;
150
151         struct hidpp_battery battery;
152 };
153
154 /* HID++ 1.0 error codes */
155 #define HIDPP_ERROR                             0x8f
156 #define HIDPP_ERROR_SUCCESS                     0x00
157 #define HIDPP_ERROR_INVALID_SUBID               0x01
158 #define HIDPP_ERROR_INVALID_ADRESS              0x02
159 #define HIDPP_ERROR_INVALID_VALUE               0x03
160 #define HIDPP_ERROR_CONNECT_FAIL                0x04
161 #define HIDPP_ERROR_TOO_MANY_DEVICES            0x05
162 #define HIDPP_ERROR_ALREADY_EXISTS              0x06
163 #define HIDPP_ERROR_BUSY                        0x07
164 #define HIDPP_ERROR_UNKNOWN_DEVICE              0x08
165 #define HIDPP_ERROR_RESOURCE_ERROR              0x09
166 #define HIDPP_ERROR_REQUEST_UNAVAILABLE         0x0a
167 #define HIDPP_ERROR_INVALID_PARAM_VALUE         0x0b
168 #define HIDPP_ERROR_WRONG_PIN_CODE              0x0c
169 /* HID++ 2.0 error codes */
170 #define HIDPP20_ERROR                           0xff
171
172 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
173
174 static int __hidpp_send_report(struct hid_device *hdev,
175                                 struct hidpp_report *hidpp_report)
176 {
177         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
178         int fields_count, ret;
179
180         hidpp = hid_get_drvdata(hdev);
181
182         switch (hidpp_report->report_id) {
183         case REPORT_ID_HIDPP_SHORT:
184                 fields_count = HIDPP_REPORT_SHORT_LENGTH;
185                 break;
186         case REPORT_ID_HIDPP_LONG:
187                 fields_count = HIDPP_REPORT_LONG_LENGTH;
188                 break;
189         case REPORT_ID_HIDPP_VERY_LONG:
190                 fields_count = HIDPP_REPORT_VERY_LONG_LENGTH;
191                 break;
192         default:
193                 return -ENODEV;
194         }
195
196         /*
197          * set the device_index as the receiver, it will be overwritten by
198          * hid_hw_request if needed
199          */
200         hidpp_report->device_index = 0xff;
201
202         if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
203                 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
204         } else {
205                 ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
206                         (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
207                         HID_REQ_SET_REPORT);
208         }
209
210         return ret == fields_count ? 0 : -1;
211 }
212
213 /**
214  * hidpp_send_message_sync() returns 0 in case of success, and something else
215  * in case of a failure.
216  * - If ' something else' is positive, that means that an error has been raised
217  *   by the protocol itself.
218  * - If ' something else' is negative, that means that we had a classic error
219  *   (-ENOMEM, -EPIPE, etc...)
220  */
221 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
222         struct hidpp_report *message,
223         struct hidpp_report *response)
224 {
225         int ret;
226
227         mutex_lock(&hidpp->send_mutex);
228
229         hidpp->send_receive_buf = response;
230         hidpp->answer_available = false;
231
232         /*
233          * So that we can later validate the answer when it arrives
234          * in hidpp_raw_event
235          */
236         *response = *message;
237
238         ret = __hidpp_send_report(hidpp->hid_dev, message);
239
240         if (ret) {
241                 dbg_hid("__hidpp_send_report returned err: %d\n", ret);
242                 memset(response, 0, sizeof(struct hidpp_report));
243                 goto exit;
244         }
245
246         if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
247                                 5*HZ)) {
248                 dbg_hid("%s:timeout waiting for response\n", __func__);
249                 memset(response, 0, sizeof(struct hidpp_report));
250                 ret = -ETIMEDOUT;
251         }
252
253         if (response->report_id == REPORT_ID_HIDPP_SHORT &&
254             response->rap.sub_id == HIDPP_ERROR) {
255                 ret = response->rap.params[1];
256                 dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
257                 goto exit;
258         }
259
260         if ((response->report_id == REPORT_ID_HIDPP_LONG ||
261                         response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
262                         response->fap.feature_index == HIDPP20_ERROR) {
263                 ret = response->fap.params[1];
264                 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
265                 goto exit;
266         }
267
268 exit:
269         mutex_unlock(&hidpp->send_mutex);
270         return ret;
271
272 }
273
274 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
275         u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
276         struct hidpp_report *response)
277 {
278         struct hidpp_report *message;
279         int ret;
280
281         if (param_count > sizeof(message->fap.params))
282                 return -EINVAL;
283
284         message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
285         if (!message)
286                 return -ENOMEM;
287
288         if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
289                 message->report_id = REPORT_ID_HIDPP_VERY_LONG;
290         else
291                 message->report_id = REPORT_ID_HIDPP_LONG;
292         message->fap.feature_index = feat_index;
293         message->fap.funcindex_clientid = funcindex_clientid;
294         memcpy(&message->fap.params, params, param_count);
295
296         ret = hidpp_send_message_sync(hidpp, message, response);
297         kfree(message);
298         return ret;
299 }
300
301 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
302         u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
303         struct hidpp_report *response)
304 {
305         struct hidpp_report *message;
306         int ret, max_count;
307
308         switch (report_id) {
309         case REPORT_ID_HIDPP_SHORT:
310                 max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
311                 break;
312         case REPORT_ID_HIDPP_LONG:
313                 max_count = HIDPP_REPORT_LONG_LENGTH - 4;
314                 break;
315         case REPORT_ID_HIDPP_VERY_LONG:
316                 max_count = HIDPP_REPORT_VERY_LONG_LENGTH - 4;
317                 break;
318         default:
319                 return -EINVAL;
320         }
321
322         if (param_count > max_count)
323                 return -EINVAL;
324
325         message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
326         if (!message)
327                 return -ENOMEM;
328         message->report_id = report_id;
329         message->rap.sub_id = sub_id;
330         message->rap.reg_address = reg_address;
331         memcpy(&message->rap.params, params, param_count);
332
333         ret = hidpp_send_message_sync(hidpp_dev, message, response);
334         kfree(message);
335         return ret;
336 }
337
338 static void delayed_work_cb(struct work_struct *work)
339 {
340         struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
341                                                         work);
342         hidpp_connect_event(hidpp);
343 }
344
345 static inline bool hidpp_match_answer(struct hidpp_report *question,
346                 struct hidpp_report *answer)
347 {
348         return (answer->fap.feature_index == question->fap.feature_index) &&
349            (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
350 }
351
352 static inline bool hidpp_match_error(struct hidpp_report *question,
353                 struct hidpp_report *answer)
354 {
355         return ((answer->rap.sub_id == HIDPP_ERROR) ||
356             (answer->fap.feature_index == HIDPP20_ERROR)) &&
357             (answer->fap.funcindex_clientid == question->fap.feature_index) &&
358             (answer->fap.params[0] == question->fap.funcindex_clientid);
359 }
360
361 static inline bool hidpp_report_is_connect_event(struct hidpp_report *report)
362 {
363         return (report->report_id == REPORT_ID_HIDPP_SHORT) &&
364                 (report->rap.sub_id == 0x41);
365 }
366
367 /**
368  * hidpp_prefix_name() prefixes the current given name with "Logitech ".
369  */
370 static void hidpp_prefix_name(char **name, int name_length)
371 {
372 #define PREFIX_LENGTH 9 /* "Logitech " */
373
374         int new_length;
375         char *new_name;
376
377         if (name_length > PREFIX_LENGTH &&
378             strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
379                 /* The prefix has is already in the name */
380                 return;
381
382         new_length = PREFIX_LENGTH + name_length;
383         new_name = kzalloc(new_length, GFP_KERNEL);
384         if (!new_name)
385                 return;
386
387         snprintf(new_name, new_length, "Logitech %s", *name);
388
389         kfree(*name);
390
391         *name = new_name;
392 }
393
394 /* -------------------------------------------------------------------------- */
395 /* HIDP++ 1.0 commands                                                        */
396 /* -------------------------------------------------------------------------- */
397
398 #define HIDPP_SET_REGISTER                              0x80
399 #define HIDPP_GET_REGISTER                              0x81
400 #define HIDPP_SET_LONG_REGISTER                         0x82
401 #define HIDPP_GET_LONG_REGISTER                         0x83
402
403 #define HIDPP_REG_GENERAL                               0x00
404
405 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
406 {
407         struct hidpp_report response;
408         int ret;
409         u8 params[3] = { 0 };
410
411         ret = hidpp_send_rap_command_sync(hidpp_dev,
412                                         REPORT_ID_HIDPP_SHORT,
413                                         HIDPP_GET_REGISTER,
414                                         HIDPP_REG_GENERAL,
415                                         NULL, 0, &response);
416         if (ret)
417                 return ret;
418
419         memcpy(params, response.rap.params, 3);
420
421         /* Set the battery bit */
422         params[0] |= BIT(4);
423
424         return hidpp_send_rap_command_sync(hidpp_dev,
425                                         REPORT_ID_HIDPP_SHORT,
426                                         HIDPP_SET_REGISTER,
427                                         HIDPP_REG_GENERAL,
428                                         params, 3, &response);
429 }
430
431 #define HIDPP_REG_BATTERY_STATUS                        0x07
432
433 static int hidpp10_battery_status_map_level(u8 param)
434 {
435         int level;
436
437         switch (param) {
438         case 1 ... 2:
439                 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
440                 break;
441         case 3 ... 4:
442                 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
443                 break;
444         case 5 ... 6:
445                 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
446                 break;
447         case 7:
448                 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
449                 break;
450         default:
451                 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
452         }
453
454         return level;
455 }
456
457 static int hidpp10_battery_status_map_status(u8 param)
458 {
459         int status;
460
461         switch (param) {
462         case 0x00:
463                 /* discharging (in use) */
464                 status = POWER_SUPPLY_STATUS_DISCHARGING;
465                 break;
466         case 0x21: /* (standard) charging */
467         case 0x24: /* fast charging */
468         case 0x25: /* slow charging */
469                 status = POWER_SUPPLY_STATUS_CHARGING;
470                 break;
471         case 0x26: /* topping charge */
472         case 0x22: /* charge complete */
473                 status = POWER_SUPPLY_STATUS_FULL;
474                 break;
475         case 0x20: /* unknown */
476                 status = POWER_SUPPLY_STATUS_UNKNOWN;
477                 break;
478         /*
479          * 0x01...0x1F = reserved (not charging)
480          * 0x23 = charging error
481          * 0x27..0xff = reserved
482          */
483         default:
484                 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
485                 break;
486         }
487
488         return status;
489 }
490
491 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
492 {
493         struct hidpp_report response;
494         int ret, status;
495
496         ret = hidpp_send_rap_command_sync(hidpp,
497                                         REPORT_ID_HIDPP_SHORT,
498                                         HIDPP_GET_REGISTER,
499                                         HIDPP_REG_BATTERY_STATUS,
500                                         NULL, 0, &response);
501         if (ret)
502                 return ret;
503
504         hidpp->battery.level =
505                 hidpp10_battery_status_map_level(response.rap.params[0]);
506         status = hidpp10_battery_status_map_status(response.rap.params[1]);
507         hidpp->battery.status = status;
508         /* the capacity is only available when discharging or full */
509         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
510                                 status == POWER_SUPPLY_STATUS_FULL;
511
512         return 0;
513 }
514
515 #define HIDPP_REG_BATTERY_MILEAGE                       0x0D
516
517 static int hidpp10_battery_mileage_map_status(u8 param)
518 {
519         int status;
520
521         switch (param >> 6) {
522         case 0x00:
523                 /* discharging (in use) */
524                 status = POWER_SUPPLY_STATUS_DISCHARGING;
525                 break;
526         case 0x01: /* charging */
527                 status = POWER_SUPPLY_STATUS_CHARGING;
528                 break;
529         case 0x02: /* charge complete */
530                 status = POWER_SUPPLY_STATUS_FULL;
531                 break;
532         /*
533          * 0x03 = charging error
534          */
535         default:
536                 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
537                 break;
538         }
539
540         return status;
541 }
542
543 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
544 {
545         struct hidpp_report response;
546         int ret, status;
547
548         ret = hidpp_send_rap_command_sync(hidpp,
549                                         REPORT_ID_HIDPP_SHORT,
550                                         HIDPP_GET_REGISTER,
551                                         HIDPP_REG_BATTERY_MILEAGE,
552                                         NULL, 0, &response);
553         if (ret)
554                 return ret;
555
556         hidpp->battery.capacity = response.rap.params[0];
557         status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
558         hidpp->battery.status = status;
559         /* the capacity is only available when discharging or full */
560         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
561                                 status == POWER_SUPPLY_STATUS_FULL;
562
563         return 0;
564 }
565
566 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
567 {
568         struct hidpp_report *report = (struct hidpp_report *)data;
569         int status, capacity, level;
570         bool changed;
571
572         if (report->report_id != REPORT_ID_HIDPP_SHORT)
573                 return 0;
574
575         switch (report->rap.sub_id) {
576         case HIDPP_REG_BATTERY_STATUS:
577                 capacity = hidpp->battery.capacity;
578                 level = hidpp10_battery_status_map_level(report->rawbytes[1]);
579                 status = hidpp10_battery_status_map_status(report->rawbytes[2]);
580                 break;
581         case HIDPP_REG_BATTERY_MILEAGE:
582                 capacity = report->rap.params[0];
583                 level = hidpp->battery.level;
584                 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
585                 break;
586         default:
587                 return 0;
588         }
589
590         changed = capacity != hidpp->battery.capacity ||
591                   level != hidpp->battery.level ||
592                   status != hidpp->battery.status;
593
594         /* the capacity is only available when discharging or full */
595         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
596                                 status == POWER_SUPPLY_STATUS_FULL;
597
598         if (changed) {
599                 hidpp->battery.level = level;
600                 hidpp->battery.status = status;
601                 if (hidpp->battery.ps)
602                         power_supply_changed(hidpp->battery.ps);
603         }
604
605         return 0;
606 }
607
608 #define HIDPP_REG_PAIRING_INFORMATION                   0xB5
609 #define HIDPP_EXTENDED_PAIRING                          0x30
610 #define HIDPP_DEVICE_NAME                               0x40
611
612 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
613 {
614         struct hidpp_report response;
615         int ret;
616         u8 params[1] = { HIDPP_DEVICE_NAME };
617         char *name;
618         int len;
619
620         ret = hidpp_send_rap_command_sync(hidpp_dev,
621                                         REPORT_ID_HIDPP_SHORT,
622                                         HIDPP_GET_LONG_REGISTER,
623                                         HIDPP_REG_PAIRING_INFORMATION,
624                                         params, 1, &response);
625         if (ret)
626                 return NULL;
627
628         len = response.rap.params[1];
629
630         if (2 + len > sizeof(response.rap.params))
631                 return NULL;
632
633         name = kzalloc(len + 1, GFP_KERNEL);
634         if (!name)
635                 return NULL;
636
637         memcpy(name, &response.rap.params[2], len);
638
639         /* include the terminating '\0' */
640         hidpp_prefix_name(&name, len + 1);
641
642         return name;
643 }
644
645 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
646 {
647         struct hidpp_report response;
648         int ret;
649         u8 params[1] = { HIDPP_EXTENDED_PAIRING };
650
651         ret = hidpp_send_rap_command_sync(hidpp,
652                                         REPORT_ID_HIDPP_SHORT,
653                                         HIDPP_GET_LONG_REGISTER,
654                                         HIDPP_REG_PAIRING_INFORMATION,
655                                         params, 1, &response);
656         if (ret)
657                 return ret;
658
659         /*
660          * We don't care about LE or BE, we will output it as a string
661          * with %4phD, so we need to keep the order.
662          */
663         *serial = *((u32 *)&response.rap.params[1]);
664         return 0;
665 }
666
667 static int hidpp_unifying_init(struct hidpp_device *hidpp)
668 {
669         struct hid_device *hdev = hidpp->hid_dev;
670         const char *name;
671         u32 serial;
672         int ret;
673
674         ret = hidpp_unifying_get_serial(hidpp, &serial);
675         if (ret)
676                 return ret;
677
678         snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
679                  hdev->product, &serial);
680         dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
681
682         name = hidpp_unifying_get_name(hidpp);
683         if (!name)
684                 return -EIO;
685
686         snprintf(hdev->name, sizeof(hdev->name), "%s", name);
687         dbg_hid("HID++ Unifying: Got name: %s\n", name);
688
689         kfree(name);
690         return 0;
691 }
692
693 /* -------------------------------------------------------------------------- */
694 /* 0x0000: Root                                                               */
695 /* -------------------------------------------------------------------------- */
696
697 #define HIDPP_PAGE_ROOT                                 0x0000
698 #define HIDPP_PAGE_ROOT_IDX                             0x00
699
700 #define CMD_ROOT_GET_FEATURE                            0x01
701 #define CMD_ROOT_GET_PROTOCOL_VERSION                   0x11
702
703 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
704         u8 *feature_index, u8 *feature_type)
705 {
706         struct hidpp_report response;
707         int ret;
708         u8 params[2] = { feature >> 8, feature & 0x00FF };
709
710         ret = hidpp_send_fap_command_sync(hidpp,
711                         HIDPP_PAGE_ROOT_IDX,
712                         CMD_ROOT_GET_FEATURE,
713                         params, 2, &response);
714         if (ret)
715                 return ret;
716
717         if (response.fap.params[0] == 0)
718                 return -ENOENT;
719
720         *feature_index = response.fap.params[0];
721         *feature_type = response.fap.params[1];
722
723         return ret;
724 }
725
726 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
727 {
728         struct hidpp_report response;
729         int ret;
730
731         ret = hidpp_send_fap_command_sync(hidpp,
732                         HIDPP_PAGE_ROOT_IDX,
733                         CMD_ROOT_GET_PROTOCOL_VERSION,
734                         NULL, 0, &response);
735
736         if (ret == HIDPP_ERROR_INVALID_SUBID) {
737                 hidpp->protocol_major = 1;
738                 hidpp->protocol_minor = 0;
739                 return 0;
740         }
741
742         /* the device might not be connected */
743         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
744                 return -EIO;
745
746         if (ret > 0) {
747                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
748                         __func__, ret);
749                 return -EPROTO;
750         }
751         if (ret)
752                 return ret;
753
754         hidpp->protocol_major = response.fap.params[0];
755         hidpp->protocol_minor = response.fap.params[1];
756
757         return ret;
758 }
759
760 static bool hidpp_is_connected(struct hidpp_device *hidpp)
761 {
762         int ret;
763
764         ret = hidpp_root_get_protocol_version(hidpp);
765         if (!ret)
766                 hid_dbg(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
767                         hidpp->protocol_major, hidpp->protocol_minor);
768         return ret == 0;
769 }
770
771 /* -------------------------------------------------------------------------- */
772 /* 0x0005: GetDeviceNameType                                                  */
773 /* -------------------------------------------------------------------------- */
774
775 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE                 0x0005
776
777 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT              0x01
778 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME        0x11
779 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE               0x21
780
781 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
782         u8 feature_index, u8 *nameLength)
783 {
784         struct hidpp_report response;
785         int ret;
786
787         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
788                 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
789
790         if (ret > 0) {
791                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
792                         __func__, ret);
793                 return -EPROTO;
794         }
795         if (ret)
796                 return ret;
797
798         *nameLength = response.fap.params[0];
799
800         return ret;
801 }
802
803 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
804         u8 feature_index, u8 char_index, char *device_name, int len_buf)
805 {
806         struct hidpp_report response;
807         int ret, i;
808         int count;
809
810         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
811                 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
812                 &response);
813
814         if (ret > 0) {
815                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
816                         __func__, ret);
817                 return -EPROTO;
818         }
819         if (ret)
820                 return ret;
821
822         switch (response.report_id) {
823         case REPORT_ID_HIDPP_VERY_LONG:
824                 count = HIDPP_REPORT_VERY_LONG_LENGTH - 4;
825                 break;
826         case REPORT_ID_HIDPP_LONG:
827                 count = HIDPP_REPORT_LONG_LENGTH - 4;
828                 break;
829         case REPORT_ID_HIDPP_SHORT:
830                 count = HIDPP_REPORT_SHORT_LENGTH - 4;
831                 break;
832         default:
833                 return -EPROTO;
834         }
835
836         if (len_buf < count)
837                 count = len_buf;
838
839         for (i = 0; i < count; i++)
840                 device_name[i] = response.fap.params[i];
841
842         return count;
843 }
844
845 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
846 {
847         u8 feature_type;
848         u8 feature_index;
849         u8 __name_length;
850         char *name;
851         unsigned index = 0;
852         int ret;
853
854         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
855                 &feature_index, &feature_type);
856         if (ret)
857                 return NULL;
858
859         ret = hidpp_devicenametype_get_count(hidpp, feature_index,
860                 &__name_length);
861         if (ret)
862                 return NULL;
863
864         name = kzalloc(__name_length + 1, GFP_KERNEL);
865         if (!name)
866                 return NULL;
867
868         while (index < __name_length) {
869                 ret = hidpp_devicenametype_get_device_name(hidpp,
870                         feature_index, index, name + index,
871                         __name_length - index);
872                 if (ret <= 0) {
873                         kfree(name);
874                         return NULL;
875                 }
876                 index += ret;
877         }
878
879         /* include the terminating '\0' */
880         hidpp_prefix_name(&name, __name_length + 1);
881
882         return name;
883 }
884
885 /* -------------------------------------------------------------------------- */
886 /* 0x1000: Battery level status                                               */
887 /* -------------------------------------------------------------------------- */
888
889 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS                         0x1000
890
891 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS       0x00
892 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY         0x10
893
894 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST                    0x00
895
896 #define FLAG_BATTERY_LEVEL_DISABLE_OSD                          BIT(0)
897 #define FLAG_BATTERY_LEVEL_MILEAGE                              BIT(1)
898 #define FLAG_BATTERY_LEVEL_RECHARGEABLE                         BIT(2)
899
900 static int hidpp_map_battery_level(int capacity)
901 {
902         if (capacity < 11)
903                 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
904         else if (capacity < 31)
905                 return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
906         else if (capacity < 81)
907                 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
908         return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
909 }
910
911 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
912                                                     int *next_capacity,
913                                                     int *level)
914 {
915         int status;
916
917         *capacity = data[0];
918         *next_capacity = data[1];
919         *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
920
921         /* When discharging, we can rely on the device reported capacity.
922          * For all other states the device reports 0 (unknown).
923          */
924         switch (data[2]) {
925                 case 0: /* discharging (in use) */
926                         status = POWER_SUPPLY_STATUS_DISCHARGING;
927                         *level = hidpp_map_battery_level(*capacity);
928                         break;
929                 case 1: /* recharging */
930                         status = POWER_SUPPLY_STATUS_CHARGING;
931                         break;
932                 case 2: /* charge in final stage */
933                         status = POWER_SUPPLY_STATUS_CHARGING;
934                         break;
935                 case 3: /* charge complete */
936                         status = POWER_SUPPLY_STATUS_FULL;
937                         *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
938                         *capacity = 100;
939                         break;
940                 case 4: /* recharging below optimal speed */
941                         status = POWER_SUPPLY_STATUS_CHARGING;
942                         break;
943                 /* 5 = invalid battery type
944                    6 = thermal error
945                    7 = other charging error */
946                 default:
947                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
948                         break;
949         }
950
951         return status;
952 }
953
954 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
955                                                      u8 feature_index,
956                                                      int *status,
957                                                      int *capacity,
958                                                      int *next_capacity,
959                                                      int *level)
960 {
961         struct hidpp_report response;
962         int ret;
963         u8 *params = (u8 *)response.fap.params;
964
965         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
966                                           CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
967                                           NULL, 0, &response);
968         if (ret > 0) {
969                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
970                         __func__, ret);
971                 return -EPROTO;
972         }
973         if (ret)
974                 return ret;
975
976         *status = hidpp20_batterylevel_map_status_capacity(params, capacity,
977                                                            next_capacity,
978                                                            level);
979
980         return 0;
981 }
982
983 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
984                                                   u8 feature_index)
985 {
986         struct hidpp_report response;
987         int ret;
988         u8 *params = (u8 *)response.fap.params;
989         unsigned int level_count, flags;
990
991         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
992                                           CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
993                                           NULL, 0, &response);
994         if (ret > 0) {
995                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
996                         __func__, ret);
997                 return -EPROTO;
998         }
999         if (ret)
1000                 return ret;
1001
1002         level_count = params[0];
1003         flags = params[1];
1004
1005         if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1006                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1007         else
1008                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1009
1010         return 0;
1011 }
1012
1013 static int hidpp20_query_battery_info(struct hidpp_device *hidpp)
1014 {
1015         u8 feature_type;
1016         int ret;
1017         int status, capacity, next_capacity, level;
1018
1019         if (hidpp->battery.feature_index == 0xff) {
1020                 ret = hidpp_root_get_feature(hidpp,
1021                                              HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1022                                              &hidpp->battery.feature_index,
1023                                              &feature_type);
1024                 if (ret)
1025                         return ret;
1026         }
1027
1028         ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1029                                                 hidpp->battery.feature_index,
1030                                                 &status, &capacity,
1031                                                 &next_capacity, &level);
1032         if (ret)
1033                 return ret;
1034
1035         ret = hidpp20_batterylevel_get_battery_info(hidpp,
1036                                                 hidpp->battery.feature_index);
1037         if (ret)
1038                 return ret;
1039
1040         hidpp->battery.status = status;
1041         hidpp->battery.capacity = capacity;
1042         hidpp->battery.level = level;
1043         /* the capacity is only available when discharging or full */
1044         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1045                                 status == POWER_SUPPLY_STATUS_FULL;
1046
1047         return 0;
1048 }
1049
1050 static int hidpp20_battery_event(struct hidpp_device *hidpp,
1051                                  u8 *data, int size)
1052 {
1053         struct hidpp_report *report = (struct hidpp_report *)data;
1054         int status, capacity, next_capacity, level;
1055         bool changed;
1056
1057         if (report->fap.feature_index != hidpp->battery.feature_index ||
1058             report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1059                 return 0;
1060
1061         status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1062                                                           &capacity,
1063                                                           &next_capacity,
1064                                                           &level);
1065
1066         /* the capacity is only available when discharging or full */
1067         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1068                                 status == POWER_SUPPLY_STATUS_FULL;
1069
1070         changed = capacity != hidpp->battery.capacity ||
1071                   level != hidpp->battery.level ||
1072                   status != hidpp->battery.status;
1073
1074         if (changed) {
1075                 hidpp->battery.level = level;
1076                 hidpp->battery.capacity = capacity;
1077                 hidpp->battery.status = status;
1078                 if (hidpp->battery.ps)
1079                         power_supply_changed(hidpp->battery.ps);
1080         }
1081
1082         return 0;
1083 }
1084
1085 static enum power_supply_property hidpp_battery_props[] = {
1086         POWER_SUPPLY_PROP_ONLINE,
1087         POWER_SUPPLY_PROP_STATUS,
1088         POWER_SUPPLY_PROP_SCOPE,
1089         POWER_SUPPLY_PROP_MODEL_NAME,
1090         POWER_SUPPLY_PROP_MANUFACTURER,
1091         POWER_SUPPLY_PROP_SERIAL_NUMBER,
1092         0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1093         0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1094 };
1095
1096 static int hidpp_battery_get_property(struct power_supply *psy,
1097                                       enum power_supply_property psp,
1098                                       union power_supply_propval *val)
1099 {
1100         struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1101         int ret = 0;
1102
1103         switch(psp) {
1104                 case POWER_SUPPLY_PROP_STATUS:
1105                         val->intval = hidpp->battery.status;
1106                         break;
1107                 case POWER_SUPPLY_PROP_CAPACITY:
1108                         val->intval = hidpp->battery.capacity;
1109                         break;
1110                 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1111                         val->intval = hidpp->battery.level;
1112                         break;
1113                 case POWER_SUPPLY_PROP_SCOPE:
1114                         val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1115                         break;
1116                 case POWER_SUPPLY_PROP_ONLINE:
1117                         val->intval = hidpp->battery.online;
1118                         break;
1119                 case POWER_SUPPLY_PROP_MODEL_NAME:
1120                         if (!strncmp(hidpp->name, "Logitech ", 9))
1121                                 val->strval = hidpp->name + 9;
1122                         else
1123                                 val->strval = hidpp->name;
1124                         break;
1125                 case POWER_SUPPLY_PROP_MANUFACTURER:
1126                         val->strval = "Logitech";
1127                         break;
1128                 case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1129                         val->strval = hidpp->hid_dev->uniq;
1130                         break;
1131                 default:
1132                         ret = -EINVAL;
1133                         break;
1134         }
1135
1136         return ret;
1137 }
1138
1139 /* -------------------------------------------------------------------------- */
1140 /* 0x4301: Solar Keyboard                                                     */
1141 /* -------------------------------------------------------------------------- */
1142
1143 #define HIDPP_PAGE_SOLAR_KEYBOARD                       0x4301
1144
1145 #define CMD_SOLAR_SET_LIGHT_MEASURE                     0x00
1146
1147 #define EVENT_SOLAR_BATTERY_BROADCAST                   0x00
1148 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE               0x10
1149 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON                  0x20
1150
1151 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1152 {
1153         struct hidpp_report response;
1154         u8 params[2] = { 1, 1 };
1155         u8 feature_type;
1156         int ret;
1157
1158         if (hidpp->battery.feature_index == 0xff) {
1159                 ret = hidpp_root_get_feature(hidpp,
1160                                              HIDPP_PAGE_SOLAR_KEYBOARD,
1161                                              &hidpp->battery.solar_feature_index,
1162                                              &feature_type);
1163                 if (ret)
1164                         return ret;
1165         }
1166
1167         ret = hidpp_send_fap_command_sync(hidpp,
1168                                           hidpp->battery.solar_feature_index,
1169                                           CMD_SOLAR_SET_LIGHT_MEASURE,
1170                                           params, 2, &response);
1171         if (ret > 0) {
1172                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1173                         __func__, ret);
1174                 return -EPROTO;
1175         }
1176         if (ret)
1177                 return ret;
1178
1179         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1180
1181         return 0;
1182 }
1183
1184 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1185                                      u8 *data, int size)
1186 {
1187         struct hidpp_report *report = (struct hidpp_report *)data;
1188         int capacity, lux, status;
1189         u8 function;
1190
1191         function = report->fap.funcindex_clientid;
1192
1193
1194         if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1195             !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1196               function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1197               function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1198                 return 0;
1199
1200         capacity = report->fap.params[0];
1201
1202         switch (function) {
1203         case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1204                 lux = (report->fap.params[1] << 8) | report->fap.params[2];
1205                 if (lux > 200)
1206                         status = POWER_SUPPLY_STATUS_CHARGING;
1207                 else
1208                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1209                 break;
1210         case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1211         default:
1212                 if (capacity < hidpp->battery.capacity)
1213                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1214                 else
1215                         status = POWER_SUPPLY_STATUS_CHARGING;
1216
1217         }
1218
1219         if (capacity == 100)
1220                 status = POWER_SUPPLY_STATUS_FULL;
1221
1222         hidpp->battery.online = true;
1223         if (capacity != hidpp->battery.capacity ||
1224             status != hidpp->battery.status) {
1225                 hidpp->battery.capacity = capacity;
1226                 hidpp->battery.status = status;
1227                 if (hidpp->battery.ps)
1228                         power_supply_changed(hidpp->battery.ps);
1229         }
1230
1231         return 0;
1232 }
1233
1234 /* -------------------------------------------------------------------------- */
1235 /* 0x6010: Touchpad FW items                                                  */
1236 /* -------------------------------------------------------------------------- */
1237
1238 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS                    0x6010
1239
1240 #define CMD_TOUCHPAD_FW_ITEMS_SET                       0x10
1241
1242 struct hidpp_touchpad_fw_items {
1243         uint8_t presence;
1244         uint8_t desired_state;
1245         uint8_t state;
1246         uint8_t persistent;
1247 };
1248
1249 /**
1250  * send a set state command to the device by reading the current items->state
1251  * field. items is then filled with the current state.
1252  */
1253 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1254                                        u8 feature_index,
1255                                        struct hidpp_touchpad_fw_items *items)
1256 {
1257         struct hidpp_report response;
1258         int ret;
1259         u8 *params = (u8 *)response.fap.params;
1260
1261         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1262                 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1263
1264         if (ret > 0) {
1265                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1266                         __func__, ret);
1267                 return -EPROTO;
1268         }
1269         if (ret)
1270                 return ret;
1271
1272         items->presence = params[0];
1273         items->desired_state = params[1];
1274         items->state = params[2];
1275         items->persistent = params[3];
1276
1277         return 0;
1278 }
1279
1280 /* -------------------------------------------------------------------------- */
1281 /* 0x6100: TouchPadRawXY                                                      */
1282 /* -------------------------------------------------------------------------- */
1283
1284 #define HIDPP_PAGE_TOUCHPAD_RAW_XY                      0x6100
1285
1286 #define CMD_TOUCHPAD_GET_RAW_INFO                       0x01
1287 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE               0x21
1288
1289 #define EVENT_TOUCHPAD_RAW_XY                           0x00
1290
1291 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT               0x01
1292 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT               0x03
1293
1294 struct hidpp_touchpad_raw_info {
1295         u16 x_size;
1296         u16 y_size;
1297         u8 z_range;
1298         u8 area_range;
1299         u8 timestamp_unit;
1300         u8 maxcontacts;
1301         u8 origin;
1302         u16 res;
1303 };
1304
1305 struct hidpp_touchpad_raw_xy_finger {
1306         u8 contact_type;
1307         u8 contact_status;
1308         u16 x;
1309         u16 y;
1310         u8 z;
1311         u8 area;
1312         u8 finger_id;
1313 };
1314
1315 struct hidpp_touchpad_raw_xy {
1316         u16 timestamp;
1317         struct hidpp_touchpad_raw_xy_finger fingers[2];
1318         u8 spurious_flag;
1319         u8 end_of_frame;
1320         u8 finger_count;
1321         u8 button;
1322 };
1323
1324 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1325         u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1326 {
1327         struct hidpp_report response;
1328         int ret;
1329         u8 *params = (u8 *)response.fap.params;
1330
1331         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1332                 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1333
1334         if (ret > 0) {
1335                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1336                         __func__, ret);
1337                 return -EPROTO;
1338         }
1339         if (ret)
1340                 return ret;
1341
1342         raw_info->x_size = get_unaligned_be16(&params[0]);
1343         raw_info->y_size = get_unaligned_be16(&params[2]);
1344         raw_info->z_range = params[4];
1345         raw_info->area_range = params[5];
1346         raw_info->maxcontacts = params[7];
1347         raw_info->origin = params[8];
1348         /* res is given in unit per inch */
1349         raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1350
1351         return ret;
1352 }
1353
1354 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1355                 u8 feature_index, bool send_raw_reports,
1356                 bool sensor_enhanced_settings)
1357 {
1358         struct hidpp_report response;
1359
1360         /*
1361          * Params:
1362          *   bit 0 - enable raw
1363          *   bit 1 - 16bit Z, no area
1364          *   bit 2 - enhanced sensitivity
1365          *   bit 3 - width, height (4 bits each) instead of area
1366          *   bit 4 - send raw + gestures (degrades smoothness)
1367          *   remaining bits - reserved
1368          */
1369         u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
1370
1371         return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
1372                 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
1373 }
1374
1375 static void hidpp_touchpad_touch_event(u8 *data,
1376         struct hidpp_touchpad_raw_xy_finger *finger)
1377 {
1378         u8 x_m = data[0] << 2;
1379         u8 y_m = data[2] << 2;
1380
1381         finger->x = x_m << 6 | data[1];
1382         finger->y = y_m << 6 | data[3];
1383
1384         finger->contact_type = data[0] >> 6;
1385         finger->contact_status = data[2] >> 6;
1386
1387         finger->z = data[4];
1388         finger->area = data[5];
1389         finger->finger_id = data[6] >> 4;
1390 }
1391
1392 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
1393                 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
1394 {
1395         memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
1396         raw_xy->end_of_frame = data[8] & 0x01;
1397         raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
1398         raw_xy->finger_count = data[15] & 0x0f;
1399         raw_xy->button = (data[8] >> 2) & 0x01;
1400
1401         if (raw_xy->finger_count) {
1402                 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
1403                 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
1404         }
1405 }
1406
1407 /* -------------------------------------------------------------------------- */
1408 /* 0x8123: Force feedback support                                             */
1409 /* -------------------------------------------------------------------------- */
1410
1411 #define HIDPP_FF_GET_INFO               0x01
1412 #define HIDPP_FF_RESET_ALL              0x11
1413 #define HIDPP_FF_DOWNLOAD_EFFECT        0x21
1414 #define HIDPP_FF_SET_EFFECT_STATE       0x31
1415 #define HIDPP_FF_DESTROY_EFFECT         0x41
1416 #define HIDPP_FF_GET_APERTURE           0x51
1417 #define HIDPP_FF_SET_APERTURE           0x61
1418 #define HIDPP_FF_GET_GLOBAL_GAINS       0x71
1419 #define HIDPP_FF_SET_GLOBAL_GAINS       0x81
1420
1421 #define HIDPP_FF_EFFECT_STATE_GET       0x00
1422 #define HIDPP_FF_EFFECT_STATE_STOP      0x01
1423 #define HIDPP_FF_EFFECT_STATE_PLAY      0x02
1424 #define HIDPP_FF_EFFECT_STATE_PAUSE     0x03
1425
1426 #define HIDPP_FF_EFFECT_CONSTANT        0x00
1427 #define HIDPP_FF_EFFECT_PERIODIC_SINE           0x01
1428 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE         0x02
1429 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE       0x03
1430 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP     0x04
1431 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN   0x05
1432 #define HIDPP_FF_EFFECT_SPRING          0x06
1433 #define HIDPP_FF_EFFECT_DAMPER          0x07
1434 #define HIDPP_FF_EFFECT_FRICTION        0x08
1435 #define HIDPP_FF_EFFECT_INERTIA         0x09
1436 #define HIDPP_FF_EFFECT_RAMP            0x0A
1437
1438 #define HIDPP_FF_EFFECT_AUTOSTART       0x80
1439
1440 #define HIDPP_FF_EFFECTID_NONE          -1
1441 #define HIDPP_FF_EFFECTID_AUTOCENTER    -2
1442
1443 #define HIDPP_FF_MAX_PARAMS     20
1444 #define HIDPP_FF_RESERVED_SLOTS 1
1445
1446 struct hidpp_ff_private_data {
1447         struct hidpp_device *hidpp;
1448         u8 feature_index;
1449         u8 version;
1450         u16 gain;
1451         s16 range;
1452         u8 slot_autocenter;
1453         u8 num_effects;
1454         int *effect_ids;
1455         struct workqueue_struct *wq;
1456         atomic_t workqueue_size;
1457 };
1458
1459 struct hidpp_ff_work_data {
1460         struct work_struct work;
1461         struct hidpp_ff_private_data *data;
1462         int effect_id;
1463         u8 command;
1464         u8 params[HIDPP_FF_MAX_PARAMS];
1465         u8 size;
1466 };
1467
1468 static const signed short hiddpp_ff_effects[] = {
1469         FF_CONSTANT,
1470         FF_PERIODIC,
1471         FF_SINE,
1472         FF_SQUARE,
1473         FF_SAW_UP,
1474         FF_SAW_DOWN,
1475         FF_TRIANGLE,
1476         FF_SPRING,
1477         FF_DAMPER,
1478         FF_AUTOCENTER,
1479         FF_GAIN,
1480         -1
1481 };
1482
1483 static const signed short hiddpp_ff_effects_v2[] = {
1484         FF_RAMP,
1485         FF_FRICTION,
1486         FF_INERTIA,
1487         -1
1488 };
1489
1490 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
1491         HIDPP_FF_EFFECT_SPRING,
1492         HIDPP_FF_EFFECT_FRICTION,
1493         HIDPP_FF_EFFECT_DAMPER,
1494         HIDPP_FF_EFFECT_INERTIA
1495 };
1496
1497 static const char *HIDPP_FF_CONDITION_NAMES[] = {
1498         "spring",
1499         "friction",
1500         "damper",
1501         "inertia"
1502 };
1503
1504
1505 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
1506 {
1507         int i;
1508
1509         for (i = 0; i < data->num_effects; i++)
1510                 if (data->effect_ids[i] == effect_id)
1511                         return i+1;
1512
1513         return 0;
1514 }
1515
1516 static void hidpp_ff_work_handler(struct work_struct *w)
1517 {
1518         struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
1519         struct hidpp_ff_private_data *data = wd->data;
1520         struct hidpp_report response;
1521         u8 slot;
1522         int ret;
1523
1524         /* add slot number if needed */
1525         switch (wd->effect_id) {
1526         case HIDPP_FF_EFFECTID_AUTOCENTER:
1527                 wd->params[0] = data->slot_autocenter;
1528                 break;
1529         case HIDPP_FF_EFFECTID_NONE:
1530                 /* leave slot as zero */
1531                 break;
1532         default:
1533                 /* find current slot for effect */
1534                 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
1535                 break;
1536         }
1537
1538         /* send command and wait for reply */
1539         ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
1540                 wd->command, wd->params, wd->size, &response);
1541
1542         if (ret) {
1543                 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
1544                 goto out;
1545         }
1546
1547         /* parse return data */
1548         switch (wd->command) {
1549         case HIDPP_FF_DOWNLOAD_EFFECT:
1550                 slot = response.fap.params[0];
1551                 if (slot > 0 && slot <= data->num_effects) {
1552                         if (wd->effect_id >= 0)
1553                                 /* regular effect uploaded */
1554                                 data->effect_ids[slot-1] = wd->effect_id;
1555                         else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1556                                 /* autocenter spring uploaded */
1557                                 data->slot_autocenter = slot;
1558                 }
1559                 break;
1560         case HIDPP_FF_DESTROY_EFFECT:
1561                 if (wd->effect_id >= 0)
1562                         /* regular effect destroyed */
1563                         data->effect_ids[wd->params[0]-1] = -1;
1564                 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1565                         /* autocenter spring destoyed */
1566                         data->slot_autocenter = 0;
1567                 break;
1568         case HIDPP_FF_SET_GLOBAL_GAINS:
1569                 data->gain = (wd->params[0] << 8) + wd->params[1];
1570                 break;
1571         case HIDPP_FF_SET_APERTURE:
1572                 data->range = (wd->params[0] << 8) + wd->params[1];
1573                 break;
1574         default:
1575                 /* no action needed */
1576                 break;
1577         }
1578
1579 out:
1580         atomic_dec(&data->workqueue_size);
1581         kfree(wd);
1582 }
1583
1584 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
1585 {
1586         struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
1587         int s;
1588
1589         if (!wd)
1590                 return -ENOMEM;
1591
1592         INIT_WORK(&wd->work, hidpp_ff_work_handler);
1593
1594         wd->data = data;
1595         wd->effect_id = effect_id;
1596         wd->command = command;
1597         wd->size = size;
1598         memcpy(wd->params, params, size);
1599
1600         atomic_inc(&data->workqueue_size);
1601         queue_work(data->wq, &wd->work);
1602
1603         /* warn about excessive queue size */
1604         s = atomic_read(&data->workqueue_size);
1605         if (s >= 20 && s % 20 == 0)
1606                 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
1607
1608         return 0;
1609 }
1610
1611 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
1612 {
1613         struct hidpp_ff_private_data *data = dev->ff->private;
1614         u8 params[20];
1615         u8 size;
1616         int force;
1617
1618         /* set common parameters */
1619         params[2] = effect->replay.length >> 8;
1620         params[3] = effect->replay.length & 255;
1621         params[4] = effect->replay.delay >> 8;
1622         params[5] = effect->replay.delay & 255;
1623
1624         switch (effect->type) {
1625         case FF_CONSTANT:
1626                 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1627                 params[1] = HIDPP_FF_EFFECT_CONSTANT;
1628                 params[6] = force >> 8;
1629                 params[7] = force & 255;
1630                 params[8] = effect->u.constant.envelope.attack_level >> 7;
1631                 params[9] = effect->u.constant.envelope.attack_length >> 8;
1632                 params[10] = effect->u.constant.envelope.attack_length & 255;
1633                 params[11] = effect->u.constant.envelope.fade_level >> 7;
1634                 params[12] = effect->u.constant.envelope.fade_length >> 8;
1635                 params[13] = effect->u.constant.envelope.fade_length & 255;
1636                 size = 14;
1637                 dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
1638                                 effect->u.constant.level,
1639                                 effect->direction, force);
1640                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1641                                 effect->u.constant.envelope.attack_level,
1642                                 effect->u.constant.envelope.attack_length,
1643                                 effect->u.constant.envelope.fade_level,
1644                                 effect->u.constant.envelope.fade_length);
1645                 break;
1646         case FF_PERIODIC:
1647         {
1648                 switch (effect->u.periodic.waveform) {
1649                 case FF_SINE:
1650                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
1651                         break;
1652                 case FF_SQUARE:
1653                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
1654                         break;
1655                 case FF_SAW_UP:
1656                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
1657                         break;
1658                 case FF_SAW_DOWN:
1659                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
1660                         break;
1661                 case FF_TRIANGLE:
1662                         params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
1663                         break;
1664                 default:
1665                         hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
1666                         return -EINVAL;
1667                 }
1668                 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1669                 params[6] = effect->u.periodic.magnitude >> 8;
1670                 params[7] = effect->u.periodic.magnitude & 255;
1671                 params[8] = effect->u.periodic.offset >> 8;
1672                 params[9] = effect->u.periodic.offset & 255;
1673                 params[10] = effect->u.periodic.period >> 8;
1674                 params[11] = effect->u.periodic.period & 255;
1675                 params[12] = effect->u.periodic.phase >> 8;
1676                 params[13] = effect->u.periodic.phase & 255;
1677                 params[14] = effect->u.periodic.envelope.attack_level >> 7;
1678                 params[15] = effect->u.periodic.envelope.attack_length >> 8;
1679                 params[16] = effect->u.periodic.envelope.attack_length & 255;
1680                 params[17] = effect->u.periodic.envelope.fade_level >> 7;
1681                 params[18] = effect->u.periodic.envelope.fade_length >> 8;
1682                 params[19] = effect->u.periodic.envelope.fade_length & 255;
1683                 size = 20;
1684                 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
1685                                 effect->u.periodic.magnitude, effect->direction,
1686                                 effect->u.periodic.offset,
1687                                 effect->u.periodic.period,
1688                                 effect->u.periodic.phase);
1689                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1690                                 effect->u.periodic.envelope.attack_level,
1691                                 effect->u.periodic.envelope.attack_length,
1692                                 effect->u.periodic.envelope.fade_level,
1693                                 effect->u.periodic.envelope.fade_length);
1694                 break;
1695         }
1696         case FF_RAMP:
1697                 params[1] = HIDPP_FF_EFFECT_RAMP;
1698                 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1699                 params[6] = force >> 8;
1700                 params[7] = force & 255;
1701                 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1702                 params[8] = force >> 8;
1703                 params[9] = force & 255;
1704                 params[10] = effect->u.ramp.envelope.attack_level >> 7;
1705                 params[11] = effect->u.ramp.envelope.attack_length >> 8;
1706                 params[12] = effect->u.ramp.envelope.attack_length & 255;
1707                 params[13] = effect->u.ramp.envelope.fade_level >> 7;
1708                 params[14] = effect->u.ramp.envelope.fade_length >> 8;
1709                 params[15] = effect->u.ramp.envelope.fade_length & 255;
1710                 size = 16;
1711                 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
1712                                 effect->u.ramp.start_level,
1713                                 effect->u.ramp.end_level,
1714                                 effect->direction, force);
1715                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1716                                 effect->u.ramp.envelope.attack_level,
1717                                 effect->u.ramp.envelope.attack_length,
1718                                 effect->u.ramp.envelope.fade_level,
1719                                 effect->u.ramp.envelope.fade_length);
1720                 break;
1721         case FF_FRICTION:
1722         case FF_INERTIA:
1723         case FF_SPRING:
1724         case FF_DAMPER:
1725                 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
1726                 params[6] = effect->u.condition[0].left_saturation >> 9;
1727                 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
1728                 params[8] = effect->u.condition[0].left_coeff >> 8;
1729                 params[9] = effect->u.condition[0].left_coeff & 255;
1730                 params[10] = effect->u.condition[0].deadband >> 9;
1731                 params[11] = (effect->u.condition[0].deadband >> 1) & 255;
1732                 params[12] = effect->u.condition[0].center >> 8;
1733                 params[13] = effect->u.condition[0].center & 255;
1734                 params[14] = effect->u.condition[0].right_coeff >> 8;
1735                 params[15] = effect->u.condition[0].right_coeff & 255;
1736                 params[16] = effect->u.condition[0].right_saturation >> 9;
1737                 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
1738                 size = 18;
1739                 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
1740                                 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
1741                                 effect->u.condition[0].left_coeff,
1742                                 effect->u.condition[0].left_saturation,
1743                                 effect->u.condition[0].right_coeff,
1744                                 effect->u.condition[0].right_saturation);
1745                 dbg_hid("          deadband=%d, center=%d\n",
1746                                 effect->u.condition[0].deadband,
1747                                 effect->u.condition[0].center);
1748                 break;
1749         default:
1750                 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
1751                 return -EINVAL;
1752         }
1753
1754         return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
1755 }
1756
1757 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
1758 {
1759         struct hidpp_ff_private_data *data = dev->ff->private;
1760         u8 params[2];
1761
1762         params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
1763
1764         dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
1765
1766         return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
1767 }
1768
1769 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
1770 {
1771         struct hidpp_ff_private_data *data = dev->ff->private;
1772         u8 slot = 0;
1773
1774         dbg_hid("Erasing effect %d.\n", effect_id);
1775
1776         return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
1777 }
1778
1779 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
1780 {
1781         struct hidpp_ff_private_data *data = dev->ff->private;
1782         u8 params[18];
1783
1784         dbg_hid("Setting autocenter to %d.\n", magnitude);
1785
1786         /* start a standard spring effect */
1787         params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
1788         /* zero delay and duration */
1789         params[2] = params[3] = params[4] = params[5] = 0;
1790         /* set coeff to 25% of saturation */
1791         params[8] = params[14] = magnitude >> 11;
1792         params[9] = params[15] = (magnitude >> 3) & 255;
1793         params[6] = params[16] = magnitude >> 9;
1794         params[7] = params[17] = (magnitude >> 1) & 255;
1795         /* zero deadband and center */
1796         params[10] = params[11] = params[12] = params[13] = 0;
1797
1798         hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
1799 }
1800
1801 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
1802 {
1803         struct hidpp_ff_private_data *data = dev->ff->private;
1804         u8 params[4];
1805
1806         dbg_hid("Setting gain to %d.\n", gain);
1807
1808         params[0] = gain >> 8;
1809         params[1] = gain & 255;
1810         params[2] = 0; /* no boost */
1811         params[3] = 0;
1812
1813         hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
1814 }
1815
1816 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
1817 {
1818         struct hid_device *hid = to_hid_device(dev);
1819         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
1820         struct input_dev *idev = hidinput->input;
1821         struct hidpp_ff_private_data *data = idev->ff->private;
1822
1823         return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
1824 }
1825
1826 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
1827 {
1828         struct hid_device *hid = to_hid_device(dev);
1829         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
1830         struct input_dev *idev = hidinput->input;
1831         struct hidpp_ff_private_data *data = idev->ff->private;
1832         u8 params[2];
1833         int range = simple_strtoul(buf, NULL, 10);
1834
1835         range = clamp(range, 180, 900);
1836
1837         params[0] = range >> 8;
1838         params[1] = range & 0x00FF;
1839
1840         hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
1841
1842         return count;
1843 }
1844
1845 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
1846
1847 static void hidpp_ff_destroy(struct ff_device *ff)
1848 {
1849         struct hidpp_ff_private_data *data = ff->private;
1850
1851         kfree(data->effect_ids);
1852 }
1853
1854 static int hidpp_ff_init(struct hidpp_device *hidpp, u8 feature_index)
1855 {
1856         struct hid_device *hid = hidpp->hid_dev;
1857         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
1858         struct input_dev *dev = hidinput->input;
1859         const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
1860         const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
1861         struct ff_device *ff;
1862         struct hidpp_report response;
1863         struct hidpp_ff_private_data *data;
1864         int error, j, num_slots;
1865         u8 version;
1866
1867         if (!dev) {
1868                 hid_err(hid, "Struct input_dev not set!\n");
1869                 return -EINVAL;
1870         }
1871
1872         /* Get firmware release */
1873         version = bcdDevice & 255;
1874
1875         /* Set supported force feedback capabilities */
1876         for (j = 0; hiddpp_ff_effects[j] >= 0; j++)
1877                 set_bit(hiddpp_ff_effects[j], dev->ffbit);
1878         if (version > 1)
1879                 for (j = 0; hiddpp_ff_effects_v2[j] >= 0; j++)
1880                         set_bit(hiddpp_ff_effects_v2[j], dev->ffbit);
1881
1882         /* Read number of slots available in device */
1883         error = hidpp_send_fap_command_sync(hidpp, feature_index,
1884                 HIDPP_FF_GET_INFO, NULL, 0, &response);
1885         if (error) {
1886                 if (error < 0)
1887                         return error;
1888                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1889                         __func__, error);
1890                 return -EPROTO;
1891         }
1892
1893         num_slots = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
1894
1895         error = input_ff_create(dev, num_slots);
1896
1897         if (error) {
1898                 hid_err(dev, "Failed to create FF device!\n");
1899                 return error;
1900         }
1901
1902         data = kzalloc(sizeof(*data), GFP_KERNEL);
1903         if (!data)
1904                 return -ENOMEM;
1905         data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
1906         if (!data->effect_ids) {
1907                 kfree(data);
1908                 return -ENOMEM;
1909         }
1910         data->hidpp = hidpp;
1911         data->feature_index = feature_index;
1912         data->version = version;
1913         data->slot_autocenter = 0;
1914         data->num_effects = num_slots;
1915         for (j = 0; j < num_slots; j++)
1916                 data->effect_ids[j] = -1;
1917
1918         ff = dev->ff;
1919         ff->private = data;
1920
1921         ff->upload = hidpp_ff_upload_effect;
1922         ff->erase = hidpp_ff_erase_effect;
1923         ff->playback = hidpp_ff_playback;
1924         ff->set_gain = hidpp_ff_set_gain;
1925         ff->set_autocenter = hidpp_ff_set_autocenter;
1926         ff->destroy = hidpp_ff_destroy;
1927
1928
1929         /* reset all forces */
1930         error = hidpp_send_fap_command_sync(hidpp, feature_index,
1931                 HIDPP_FF_RESET_ALL, NULL, 0, &response);
1932
1933         /* Read current Range */
1934         error = hidpp_send_fap_command_sync(hidpp, feature_index,
1935                 HIDPP_FF_GET_APERTURE, NULL, 0, &response);
1936         if (error)
1937                 hid_warn(hidpp->hid_dev, "Failed to read range from device!\n");
1938         data->range = error ? 900 : get_unaligned_be16(&response.fap.params[0]);
1939
1940         /* Create sysfs interface */
1941         error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
1942         if (error)
1943                 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
1944
1945         /* Read the current gain values */
1946         error = hidpp_send_fap_command_sync(hidpp, feature_index,
1947                 HIDPP_FF_GET_GLOBAL_GAINS, NULL, 0, &response);
1948         if (error)
1949                 hid_warn(hidpp->hid_dev, "Failed to read gain values from device!\n");
1950         data->gain = error ? 0xffff : get_unaligned_be16(&response.fap.params[0]);
1951         /* ignore boost value at response.fap.params[2] */
1952
1953         /* init the hardware command queue */
1954         data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
1955         atomic_set(&data->workqueue_size, 0);
1956
1957         /* initialize with zero autocenter to get wheel in usable state */
1958         hidpp_ff_set_autocenter(dev, 0);
1959
1960         hid_info(hid, "Force feeback support loaded (firmware release %d).\n", version);
1961
1962         return 0;
1963 }
1964
1965 static int hidpp_ff_deinit(struct hid_device *hid)
1966 {
1967         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
1968         struct input_dev *dev = hidinput->input;
1969         struct hidpp_ff_private_data *data;
1970
1971         if (!dev) {
1972                 hid_err(hid, "Struct input_dev not found!\n");
1973                 return -EINVAL;
1974         }
1975
1976         hid_info(hid, "Unloading HID++ force feedback.\n");
1977         data = dev->ff->private;
1978         if (!data) {
1979                 hid_err(hid, "Private data not found!\n");
1980                 return -EINVAL;
1981         }
1982
1983         destroy_workqueue(data->wq);
1984         device_remove_file(&hid->dev, &dev_attr_range);
1985
1986         return 0;
1987 }
1988
1989
1990 /* ************************************************************************** */
1991 /*                                                                            */
1992 /* Device Support                                                             */
1993 /*                                                                            */
1994 /* ************************************************************************** */
1995
1996 /* -------------------------------------------------------------------------- */
1997 /* Touchpad HID++ devices                                                     */
1998 /* -------------------------------------------------------------------------- */
1999
2000 #define WTP_MANUAL_RESOLUTION                           39
2001
2002 struct wtp_data {
2003         struct input_dev *input;
2004         u16 x_size, y_size;
2005         u8 finger_count;
2006         u8 mt_feature_index;
2007         u8 button_feature_index;
2008         u8 maxcontacts;
2009         bool flip_y;
2010         unsigned int resolution;
2011 };
2012
2013 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2014                 struct hid_field *field, struct hid_usage *usage,
2015                 unsigned long **bit, int *max)
2016 {
2017         return -1;
2018 }
2019
2020 static void wtp_populate_input(struct hidpp_device *hidpp,
2021                 struct input_dev *input_dev, bool origin_is_hid_core)
2022 {
2023         struct wtp_data *wd = hidpp->private_data;
2024
2025         __set_bit(EV_ABS, input_dev->evbit);
2026         __set_bit(EV_KEY, input_dev->evbit);
2027         __clear_bit(EV_REL, input_dev->evbit);
2028         __clear_bit(EV_LED, input_dev->evbit);
2029
2030         input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2031         input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2032         input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2033         input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2034
2035         /* Max pressure is not given by the devices, pick one */
2036         input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2037
2038         input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2039
2040         if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2041                 input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2042         else
2043                 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2044
2045         input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2046                 INPUT_MT_DROP_UNUSED);
2047
2048         wd->input = input_dev;
2049 }
2050
2051 static void wtp_touch_event(struct wtp_data *wd,
2052         struct hidpp_touchpad_raw_xy_finger *touch_report)
2053 {
2054         int slot;
2055
2056         if (!touch_report->finger_id || touch_report->contact_type)
2057                 /* no actual data */
2058                 return;
2059
2060         slot = input_mt_get_slot_by_key(wd->input, touch_report->finger_id);
2061
2062         input_mt_slot(wd->input, slot);
2063         input_mt_report_slot_state(wd->input, MT_TOOL_FINGER,
2064                                         touch_report->contact_status);
2065         if (touch_report->contact_status) {
2066                 input_event(wd->input, EV_ABS, ABS_MT_POSITION_X,
2067                                 touch_report->x);
2068                 input_event(wd->input, EV_ABS, ABS_MT_POSITION_Y,
2069                                 wd->flip_y ? wd->y_size - touch_report->y :
2070                                              touch_report->y);
2071                 input_event(wd->input, EV_ABS, ABS_MT_PRESSURE,
2072                                 touch_report->area);
2073         }
2074 }
2075
2076 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2077                 struct hidpp_touchpad_raw_xy *raw)
2078 {
2079         struct wtp_data *wd = hidpp->private_data;
2080         int i;
2081
2082         for (i = 0; i < 2; i++)
2083                 wtp_touch_event(wd, &(raw->fingers[i]));
2084
2085         if (raw->end_of_frame &&
2086             !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2087                 input_event(wd->input, EV_KEY, BTN_LEFT, raw->button);
2088
2089         if (raw->end_of_frame || raw->finger_count <= 2) {
2090                 input_mt_sync_frame(wd->input);
2091                 input_sync(wd->input);
2092         }
2093 }
2094
2095 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2096 {
2097         struct wtp_data *wd = hidpp->private_data;
2098         u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2099                       (data[7] >> 4) * (data[7] >> 4)) / 2;
2100         u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2101                       (data[13] >> 4) * (data[13] >> 4)) / 2;
2102         struct hidpp_touchpad_raw_xy raw = {
2103                 .timestamp = data[1],
2104                 .fingers = {
2105                         {
2106                                 .contact_type = 0,
2107                                 .contact_status = !!data[7],
2108                                 .x = get_unaligned_le16(&data[3]),
2109                                 .y = get_unaligned_le16(&data[5]),
2110                                 .z = c1_area,
2111                                 .area = c1_area,
2112                                 .finger_id = data[2],
2113                         }, {
2114                                 .contact_type = 0,
2115                                 .contact_status = !!data[13],
2116                                 .x = get_unaligned_le16(&data[9]),
2117                                 .y = get_unaligned_le16(&data[11]),
2118                                 .z = c2_area,
2119                                 .area = c2_area,
2120                                 .finger_id = data[8],
2121                         }
2122                 },
2123                 .finger_count = wd->maxcontacts,
2124                 .spurious_flag = 0,
2125                 .end_of_frame = (data[0] >> 7) == 0,
2126                 .button = data[0] & 0x01,
2127         };
2128
2129         wtp_send_raw_xy_event(hidpp, &raw);
2130
2131         return 1;
2132 }
2133
2134 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2135 {
2136         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2137         struct wtp_data *wd = hidpp->private_data;
2138         struct hidpp_report *report = (struct hidpp_report *)data;
2139         struct hidpp_touchpad_raw_xy raw;
2140
2141         if (!wd || !wd->input)
2142                 return 1;
2143
2144         switch (data[0]) {
2145         case 0x02:
2146                 if (size < 2) {
2147                         hid_err(hdev, "Received HID report of bad size (%d)",
2148                                 size);
2149                         return 1;
2150                 }
2151                 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2152                         input_event(wd->input, EV_KEY, BTN_LEFT,
2153                                         !!(data[1] & 0x01));
2154                         input_event(wd->input, EV_KEY, BTN_RIGHT,
2155                                         !!(data[1] & 0x02));
2156                         input_sync(wd->input);
2157                         return 0;
2158                 } else {
2159                         if (size < 21)
2160                                 return 1;
2161                         return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2162                 }
2163         case REPORT_ID_HIDPP_LONG:
2164                 /* size is already checked in hidpp_raw_event. */
2165                 if ((report->fap.feature_index != wd->mt_feature_index) ||
2166                     (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2167                         return 1;
2168                 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2169
2170                 wtp_send_raw_xy_event(hidpp, &raw);
2171                 return 0;
2172         }
2173
2174         return 0;
2175 }
2176
2177 static int wtp_get_config(struct hidpp_device *hidpp)
2178 {
2179         struct wtp_data *wd = hidpp->private_data;
2180         struct hidpp_touchpad_raw_info raw_info = {0};
2181         u8 feature_type;
2182         int ret;
2183
2184         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2185                 &wd->mt_feature_index, &feature_type);
2186         if (ret)
2187                 /* means that the device is not powered up */
2188                 return ret;
2189
2190         ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2191                 &raw_info);
2192         if (ret)
2193                 return ret;
2194
2195         wd->x_size = raw_info.x_size;
2196         wd->y_size = raw_info.y_size;
2197         wd->maxcontacts = raw_info.maxcontacts;
2198         wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2199         wd->resolution = raw_info.res;
2200         if (!wd->resolution)
2201                 wd->resolution = WTP_MANUAL_RESOLUTION;
2202
2203         return 0;
2204 }
2205
2206 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2207 {
2208         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2209         struct wtp_data *wd;
2210
2211         wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2212                         GFP_KERNEL);
2213         if (!wd)
2214                 return -ENOMEM;
2215
2216         hidpp->private_data = wd;
2217
2218         return 0;
2219 };
2220
2221 static int wtp_connect(struct hid_device *hdev, bool connected)
2222 {
2223         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2224         struct wtp_data *wd = hidpp->private_data;
2225         int ret;
2226
2227         if (!wd->x_size) {
2228                 ret = wtp_get_config(hidpp);
2229                 if (ret) {
2230                         hid_err(hdev, "Can not get wtp config: %d\n", ret);
2231                         return ret;
2232                 }
2233         }
2234
2235         return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2236                         true, true);
2237 }
2238
2239 /* ------------------------------------------------------------------------- */
2240 /* Logitech M560 devices                                                     */
2241 /* ------------------------------------------------------------------------- */
2242
2243 /*
2244  * Logitech M560 protocol overview
2245  *
2246  * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2247  * the sides buttons are pressed, it sends some keyboard keys events
2248  * instead of buttons ones.
2249  * To complicate things further, the middle button keys sequence
2250  * is different from the odd press and the even press.
2251  *
2252  * forward button -> Super_R
2253  * backward button -> Super_L+'d' (press only)
2254  * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2255  *                  2nd time: left-click (press only)
2256  * NB: press-only means that when the button is pressed, the
2257  * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2258  * together sequentially; instead when the button is released, no event is
2259  * generated !
2260  *
2261  * With the command
2262  *      10<xx>0a 3500af03 (where <xx> is the mouse id),
2263  * the mouse reacts differently:
2264  * - it never sends a keyboard key event
2265  * - for the three mouse button it sends:
2266  *      middle button               press   11<xx>0a 3500af00...
2267  *      side 1 button (forward)     press   11<xx>0a 3500b000...
2268  *      side 2 button (backward)    press   11<xx>0a 3500ae00...
2269  *      middle/side1/side2 button   release 11<xx>0a 35000000...
2270  */
2271
2272 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2273
2274 struct m560_private_data {
2275         struct input_dev *input;
2276 };
2277
2278 /* how buttons are mapped in the report */
2279 #define M560_MOUSE_BTN_LEFT             0x01
2280 #define M560_MOUSE_BTN_RIGHT            0x02
2281 #define M560_MOUSE_BTN_WHEEL_LEFT       0x08
2282 #define M560_MOUSE_BTN_WHEEL_RIGHT      0x10
2283
2284 #define M560_SUB_ID                     0x0a
2285 #define M560_BUTTON_MODE_REGISTER       0x35
2286
2287 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2288 {
2289         struct hidpp_report response;
2290         struct hidpp_device *hidpp_dev;
2291
2292         hidpp_dev = hid_get_drvdata(hdev);
2293
2294         return hidpp_send_rap_command_sync(
2295                 hidpp_dev,
2296                 REPORT_ID_HIDPP_SHORT,
2297                 M560_SUB_ID,
2298                 M560_BUTTON_MODE_REGISTER,
2299                 (u8 *)m560_config_parameter,
2300                 sizeof(m560_config_parameter),
2301                 &response
2302         );
2303 }
2304
2305 static int m560_allocate(struct hid_device *hdev)
2306 {
2307         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2308         struct m560_private_data *d;
2309
2310         d = devm_kzalloc(&hdev->dev, sizeof(struct m560_private_data),
2311                         GFP_KERNEL);
2312         if (!d)
2313                 return -ENOMEM;
2314
2315         hidpp->private_data = d;
2316
2317         return 0;
2318 };
2319
2320 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2321 {
2322         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2323         struct m560_private_data *mydata = hidpp->private_data;
2324
2325         /* sanity check */
2326         if (!mydata || !mydata->input) {
2327                 hid_err(hdev, "error in parameter\n");
2328                 return -EINVAL;
2329         }
2330
2331         if (size < 7) {
2332                 hid_err(hdev, "error in report\n");
2333                 return 0;
2334         }
2335
2336         if (data[0] == REPORT_ID_HIDPP_LONG &&
2337             data[2] == M560_SUB_ID && data[6] == 0x00) {
2338                 /*
2339                  * m560 mouse report for middle, forward and backward button
2340                  *
2341                  * data[0] = 0x11
2342                  * data[1] = device-id
2343                  * data[2] = 0x0a
2344                  * data[5] = 0xaf -> middle
2345                  *           0xb0 -> forward
2346                  *           0xae -> backward
2347                  *           0x00 -> release all
2348                  * data[6] = 0x00
2349                  */
2350
2351                 switch (data[5]) {
2352                 case 0xaf:
2353                         input_report_key(mydata->input, BTN_MIDDLE, 1);
2354                         break;
2355                 case 0xb0:
2356                         input_report_key(mydata->input, BTN_FORWARD, 1);
2357                         break;
2358                 case 0xae:
2359                         input_report_key(mydata->input, BTN_BACK, 1);
2360                         break;
2361                 case 0x00:
2362                         input_report_key(mydata->input, BTN_BACK, 0);
2363                         input_report_key(mydata->input, BTN_FORWARD, 0);
2364                         input_report_key(mydata->input, BTN_MIDDLE, 0);
2365                         break;
2366                 default:
2367                         hid_err(hdev, "error in report\n");
2368                         return 0;
2369                 }
2370                 input_sync(mydata->input);
2371
2372         } else if (data[0] == 0x02) {
2373                 /*
2374                  * Logitech M560 mouse report
2375                  *
2376                  * data[0] = type (0x02)
2377                  * data[1..2] = buttons
2378                  * data[3..5] = xy
2379                  * data[6] = wheel
2380                  */
2381
2382                 int v;
2383
2384                 input_report_key(mydata->input, BTN_LEFT,
2385                         !!(data[1] & M560_MOUSE_BTN_LEFT));
2386                 input_report_key(mydata->input, BTN_RIGHT,
2387                         !!(data[1] & M560_MOUSE_BTN_RIGHT));
2388
2389                 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT)
2390                         input_report_rel(mydata->input, REL_HWHEEL, -1);
2391                 else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT)
2392                         input_report_rel(mydata->input, REL_HWHEEL, 1);
2393
2394                 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2395                 input_report_rel(mydata->input, REL_X, v);
2396
2397                 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2398                 input_report_rel(mydata->input, REL_Y, v);
2399
2400                 v = hid_snto32(data[6], 8);
2401                 input_report_rel(mydata->input, REL_WHEEL, v);
2402
2403                 input_sync(mydata->input);
2404         }
2405
2406         return 1;
2407 }
2408
2409 static void m560_populate_input(struct hidpp_device *hidpp,
2410                 struct input_dev *input_dev, bool origin_is_hid_core)
2411 {
2412         struct m560_private_data *mydata = hidpp->private_data;
2413
2414         mydata->input = input_dev;
2415
2416         __set_bit(EV_KEY, mydata->input->evbit);
2417         __set_bit(BTN_MIDDLE, mydata->input->keybit);
2418         __set_bit(BTN_RIGHT, mydata->input->keybit);
2419         __set_bit(BTN_LEFT, mydata->input->keybit);
2420         __set_bit(BTN_BACK, mydata->input->keybit);
2421         __set_bit(BTN_FORWARD, mydata->input->keybit);
2422
2423         __set_bit(EV_REL, mydata->input->evbit);
2424         __set_bit(REL_X, mydata->input->relbit);
2425         __set_bit(REL_Y, mydata->input->relbit);
2426         __set_bit(REL_WHEEL, mydata->input->relbit);
2427         __set_bit(REL_HWHEEL, mydata->input->relbit);
2428 }
2429
2430 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2431                 struct hid_field *field, struct hid_usage *usage,
2432                 unsigned long **bit, int *max)
2433 {
2434         return -1;
2435 }
2436
2437 /* ------------------------------------------------------------------------- */
2438 /* Logitech K400 devices                                                     */
2439 /* ------------------------------------------------------------------------- */
2440
2441 /*
2442  * The Logitech K400 keyboard has an embedded touchpad which is seen
2443  * as a mouse from the OS point of view. There is a hardware shortcut to disable
2444  * tap-to-click but the setting is not remembered accross reset, annoying some
2445  * users.
2446  *
2447  * We can toggle this feature from the host by using the feature 0x6010:
2448  * Touchpad FW items
2449  */
2450
2451 struct k400_private_data {
2452         u8 feature_index;
2453 };
2454
2455 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
2456 {
2457         struct k400_private_data *k400 = hidpp->private_data;
2458         struct hidpp_touchpad_fw_items items = {};
2459         int ret;
2460         u8 feature_type;
2461
2462         if (!k400->feature_index) {
2463                 ret = hidpp_root_get_feature(hidpp,
2464                         HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
2465                         &k400->feature_index, &feature_type);
2466                 if (ret)
2467                         /* means that the device is not powered up */
2468                         return ret;
2469         }
2470
2471         ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
2472         if (ret)
2473                 return ret;
2474
2475         return 0;
2476 }
2477
2478 static int k400_allocate(struct hid_device *hdev)
2479 {
2480         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2481         struct k400_private_data *k400;
2482
2483         k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
2484                             GFP_KERNEL);
2485         if (!k400)
2486                 return -ENOMEM;
2487
2488         hidpp->private_data = k400;
2489
2490         return 0;
2491 };
2492
2493 static int k400_connect(struct hid_device *hdev, bool connected)
2494 {
2495         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2496
2497         if (!disable_tap_to_click)
2498                 return 0;
2499
2500         return k400_disable_tap_to_click(hidpp);
2501 }
2502
2503 /* ------------------------------------------------------------------------- */
2504 /* Logitech G920 Driving Force Racing Wheel for Xbox One                     */
2505 /* ------------------------------------------------------------------------- */
2506
2507 #define HIDPP_PAGE_G920_FORCE_FEEDBACK                  0x8123
2508
2509 static int g920_get_config(struct hidpp_device *hidpp)
2510 {
2511         u8 feature_type;
2512         u8 feature_index;
2513         int ret;
2514
2515         /* Find feature and store for later use */
2516         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
2517                 &feature_index, &feature_type);
2518         if (ret)
2519                 return ret;
2520
2521         ret = hidpp_ff_init(hidpp, feature_index);
2522         if (ret)
2523                 hid_warn(hidpp->hid_dev, "Unable to initialize force feedback support, errno %d\n",
2524                                 ret);
2525
2526         return 0;
2527 }
2528
2529 /* -------------------------------------------------------------------------- */
2530 /* Generic HID++ devices                                                      */
2531 /* -------------------------------------------------------------------------- */
2532
2533 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2534                 struct hid_field *field, struct hid_usage *usage,
2535                 unsigned long **bit, int *max)
2536 {
2537         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2538
2539         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2540                 return wtp_input_mapping(hdev, hi, field, usage, bit, max);
2541         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
2542                         field->application != HID_GD_MOUSE)
2543                 return m560_input_mapping(hdev, hi, field, usage, bit, max);
2544
2545         return 0;
2546 }
2547
2548 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
2549                 struct hid_field *field, struct hid_usage *usage,
2550                 unsigned long **bit, int *max)
2551 {
2552         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2553
2554         /* Ensure that Logitech G920 is not given a default fuzz/flat value */
2555         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
2556                 if (usage->type == EV_ABS && (usage->code == ABS_X ||
2557                                 usage->code == ABS_Y || usage->code == ABS_Z ||
2558                                 usage->code == ABS_RZ)) {
2559                         field->application = HID_GD_MULTIAXIS;
2560                 }
2561         }
2562
2563         return 0;
2564 }
2565
2566
2567 static void hidpp_populate_input(struct hidpp_device *hidpp,
2568                 struct input_dev *input, bool origin_is_hid_core)
2569 {
2570         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2571                 wtp_populate_input(hidpp, input, origin_is_hid_core);
2572         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
2573                 m560_populate_input(hidpp, input, origin_is_hid_core);
2574 }
2575
2576 static int hidpp_input_configured(struct hid_device *hdev,
2577                                 struct hid_input *hidinput)
2578 {
2579         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2580         struct input_dev *input = hidinput->input;
2581
2582         hidpp_populate_input(hidpp, input, true);
2583
2584         return 0;
2585 }
2586
2587 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
2588                 int size)
2589 {
2590         struct hidpp_report *question = hidpp->send_receive_buf;
2591         struct hidpp_report *answer = hidpp->send_receive_buf;
2592         struct hidpp_report *report = (struct hidpp_report *)data;
2593         int ret;
2594
2595         /*
2596          * If the mutex is locked then we have a pending answer from a
2597          * previously sent command.
2598          */
2599         if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
2600                 /*
2601                  * Check for a correct hidpp20 answer or the corresponding
2602                  * error
2603                  */
2604                 if (hidpp_match_answer(question, report) ||
2605                                 hidpp_match_error(question, report)) {
2606                         *answer = *report;
2607                         hidpp->answer_available = true;
2608                         wake_up(&hidpp->wait);
2609                         /*
2610                          * This was an answer to a command that this driver sent
2611                          * We return 1 to hid-core to avoid forwarding the
2612                          * command upstream as it has been treated by the driver
2613                          */
2614
2615                         return 1;
2616                 }
2617         }
2618
2619         if (unlikely(hidpp_report_is_connect_event(report))) {
2620                 atomic_set(&hidpp->connected,
2621                                 !(report->rap.params[0] & (1 << 6)));
2622                 if (schedule_work(&hidpp->work) == 0)
2623                         dbg_hid("%s: connect event already queued\n", __func__);
2624                 return 1;
2625         }
2626
2627         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
2628                 ret = hidpp20_battery_event(hidpp, data, size);
2629                 if (ret != 0)
2630                         return ret;
2631                 ret = hidpp_solar_battery_event(hidpp, data, size);
2632                 if (ret != 0)
2633                         return ret;
2634         }
2635
2636         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
2637                 ret = hidpp10_battery_event(hidpp, data, size);
2638                 if (ret != 0)
2639                         return ret;
2640         }
2641
2642         return 0;
2643 }
2644
2645 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
2646                 u8 *data, int size)
2647 {
2648         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2649         int ret = 0;
2650
2651         /* Generic HID++ processing. */
2652         switch (data[0]) {
2653         case REPORT_ID_HIDPP_VERY_LONG:
2654                 if (size != HIDPP_REPORT_VERY_LONG_LENGTH) {
2655                         hid_err(hdev, "received hid++ report of bad size (%d)",
2656                                 size);
2657                         return 1;
2658                 }
2659                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
2660                 break;
2661         case REPORT_ID_HIDPP_LONG:
2662                 if (size != HIDPP_REPORT_LONG_LENGTH) {
2663                         hid_err(hdev, "received hid++ report of bad size (%d)",
2664                                 size);
2665                         return 1;
2666                 }
2667                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
2668                 break;
2669         case REPORT_ID_HIDPP_SHORT:
2670                 if (size != HIDPP_REPORT_SHORT_LENGTH) {
2671                         hid_err(hdev, "received hid++ report of bad size (%d)",
2672                                 size);
2673                         return 1;
2674                 }
2675                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
2676                 break;
2677         }
2678
2679         /* If no report is available for further processing, skip calling
2680          * raw_event of subclasses. */
2681         if (ret != 0)
2682                 return ret;
2683
2684         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2685                 return wtp_raw_event(hdev, data, size);
2686         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
2687                 return m560_raw_event(hdev, data, size);
2688
2689         return 0;
2690 }
2691
2692 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
2693 {
2694         static atomic_t battery_no = ATOMIC_INIT(0);
2695         struct power_supply_config cfg = { .drv_data = hidpp };
2696         struct power_supply_desc *desc = &hidpp->battery.desc;
2697         enum power_supply_property *battery_props;
2698         struct hidpp_battery *battery;
2699         unsigned int num_battery_props;
2700         unsigned long n;
2701         int ret;
2702
2703         if (hidpp->battery.ps)
2704                 return 0;
2705
2706         hidpp->battery.feature_index = 0xff;
2707         hidpp->battery.solar_feature_index = 0xff;
2708
2709         if (hidpp->protocol_major >= 2) {
2710                 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
2711                         ret = hidpp_solar_request_battery_event(hidpp);
2712                 else
2713                         ret = hidpp20_query_battery_info(hidpp);
2714
2715                 if (ret)
2716                         return ret;
2717                 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
2718         } else {
2719                 ret = hidpp10_query_battery_status(hidpp);
2720                 if (ret) {
2721                         ret = hidpp10_query_battery_mileage(hidpp);
2722                         if (ret)
2723                                 return -ENOENT;
2724                         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
2725                 } else {
2726                         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
2727                 }
2728                 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
2729         }
2730
2731         battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
2732                                      hidpp_battery_props,
2733                                      sizeof(hidpp_battery_props),
2734                                      GFP_KERNEL);
2735         if (!battery_props)
2736                 return -ENOMEM;
2737
2738         num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 2;
2739
2740         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
2741                 battery_props[num_battery_props++] =
2742                                 POWER_SUPPLY_PROP_CAPACITY;
2743
2744         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
2745                 battery_props[num_battery_props++] =
2746                                 POWER_SUPPLY_PROP_CAPACITY_LEVEL;
2747
2748         battery = &hidpp->battery;
2749
2750         n = atomic_inc_return(&battery_no) - 1;
2751         desc->properties = battery_props;
2752         desc->num_properties = num_battery_props;
2753         desc->get_property = hidpp_battery_get_property;
2754         sprintf(battery->name, "hidpp_battery_%ld", n);
2755         desc->name = battery->name;
2756         desc->type = POWER_SUPPLY_TYPE_BATTERY;
2757         desc->use_for_apm = 0;
2758
2759         battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
2760                                                  &battery->desc,
2761                                                  &cfg);
2762         if (IS_ERR(battery->ps))
2763                 return PTR_ERR(battery->ps);
2764
2765         power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
2766
2767         return ret;
2768 }
2769
2770 static void hidpp_overwrite_name(struct hid_device *hdev)
2771 {
2772         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2773         char *name;
2774
2775         if (hidpp->protocol_major < 2)
2776                 return;
2777
2778         name = hidpp_get_device_name(hidpp);
2779
2780         if (!name) {
2781                 hid_err(hdev, "unable to retrieve the name of the device");
2782         } else {
2783                 dbg_hid("HID++: Got name: %s\n", name);
2784                 snprintf(hdev->name, sizeof(hdev->name), "%s", name);
2785         }
2786
2787         kfree(name);
2788 }
2789
2790 static int hidpp_input_open(struct input_dev *dev)
2791 {
2792         struct hid_device *hid = input_get_drvdata(dev);
2793
2794         return hid_hw_open(hid);
2795 }
2796
2797 static void hidpp_input_close(struct input_dev *dev)
2798 {
2799         struct hid_device *hid = input_get_drvdata(dev);
2800
2801         hid_hw_close(hid);
2802 }
2803
2804 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
2805 {
2806         struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
2807         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2808
2809         if (!input_dev)
2810                 return NULL;
2811
2812         input_set_drvdata(input_dev, hdev);
2813         input_dev->open = hidpp_input_open;
2814         input_dev->close = hidpp_input_close;
2815
2816         input_dev->name = hidpp->name;
2817         input_dev->phys = hdev->phys;
2818         input_dev->uniq = hdev->uniq;
2819         input_dev->id.bustype = hdev->bus;
2820         input_dev->id.vendor  = hdev->vendor;
2821         input_dev->id.product = hdev->product;
2822         input_dev->id.version = hdev->version;
2823         input_dev->dev.parent = &hdev->dev;
2824
2825         return input_dev;
2826 }
2827
2828 static void hidpp_connect_event(struct hidpp_device *hidpp)
2829 {
2830         struct hid_device *hdev = hidpp->hid_dev;
2831         int ret = 0;
2832         bool connected = atomic_read(&hidpp->connected);
2833         struct input_dev *input;
2834         char *name, *devm_name;
2835
2836         if (!connected) {
2837                 if (hidpp->battery.ps) {
2838                         hidpp->battery.online = false;
2839                         hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
2840                         hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2841                         power_supply_changed(hidpp->battery.ps);
2842                 }
2843                 return;
2844         }
2845
2846         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
2847                 ret = wtp_connect(hdev, connected);
2848                 if (ret)
2849                         return;
2850         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
2851                 ret = m560_send_config_command(hdev, connected);
2852                 if (ret)
2853                         return;
2854         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
2855                 ret = k400_connect(hdev, connected);
2856                 if (ret)
2857                         return;
2858         }
2859
2860         /* the device is already connected, we can ask for its name and
2861          * protocol */
2862         if (!hidpp->protocol_major) {
2863                 ret = !hidpp_is_connected(hidpp);
2864                 if (ret) {
2865                         hid_err(hdev, "Can not get the protocol version.\n");
2866                         return;
2867                 }
2868                 hid_info(hdev, "HID++ %u.%u device connected.\n",
2869                          hidpp->protocol_major, hidpp->protocol_minor);
2870         }
2871
2872         if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
2873                 name = hidpp_get_device_name(hidpp);
2874                 if (!name) {
2875                         hid_err(hdev,
2876                                 "unable to retrieve the name of the device");
2877                         return;
2878                 }
2879
2880                 devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s", name);
2881                 kfree(name);
2882                 if (!devm_name)
2883                         return;
2884
2885                 hidpp->name = devm_name;
2886         }
2887
2888         hidpp_initialize_battery(hidpp);
2889
2890         /* forward current battery state */
2891         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
2892                 hidpp10_enable_battery_reporting(hidpp);
2893                 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
2894                         hidpp10_query_battery_mileage(hidpp);
2895                 else
2896                         hidpp10_query_battery_status(hidpp);
2897         } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
2898                 hidpp20_query_battery_info(hidpp);
2899         }
2900         if (hidpp->battery.ps)
2901                 power_supply_changed(hidpp->battery.ps);
2902
2903         if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
2904                 /* if the input nodes are already created, we can stop now */
2905                 return;
2906
2907         input = hidpp_allocate_input(hdev);
2908         if (!input) {
2909                 hid_err(hdev, "cannot allocate new input device: %d\n", ret);
2910                 return;
2911         }
2912
2913         hidpp_populate_input(hidpp, input, false);
2914
2915         ret = input_register_device(input);
2916         if (ret)
2917                 input_free_device(input);
2918
2919         hidpp->delayed_input = input;
2920 }
2921
2922 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
2923
2924 static struct attribute *sysfs_attrs[] = {
2925         &dev_attr_builtin_power_supply.attr,
2926         NULL
2927 };
2928
2929 static struct attribute_group ps_attribute_group = {
2930         .attrs = sysfs_attrs
2931 };
2932
2933 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
2934 {
2935         struct hidpp_device *hidpp;
2936         int ret;
2937         bool connected;
2938         unsigned int connect_mask = HID_CONNECT_DEFAULT;
2939
2940         hidpp = devm_kzalloc(&hdev->dev, sizeof(struct hidpp_device),
2941                         GFP_KERNEL);
2942         if (!hidpp)
2943                 return -ENOMEM;
2944
2945         hidpp->hid_dev = hdev;
2946         hidpp->name = hdev->name;
2947         hid_set_drvdata(hdev, hidpp);
2948
2949         hidpp->quirks = id->driver_data;
2950
2951         if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
2952                 hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
2953
2954         if (disable_raw_mode) {
2955                 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
2956                 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
2957         }
2958
2959         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
2960                 ret = wtp_allocate(hdev, id);
2961                 if (ret)
2962                         goto allocate_fail;
2963         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
2964                 ret = m560_allocate(hdev);
2965                 if (ret)
2966                         goto allocate_fail;
2967         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
2968                 ret = k400_allocate(hdev);
2969                 if (ret)
2970                         goto allocate_fail;
2971         }
2972
2973         INIT_WORK(&hidpp->work, delayed_work_cb);
2974         mutex_init(&hidpp->send_mutex);
2975         init_waitqueue_head(&hidpp->wait);
2976
2977         /* indicates we are handling the battery properties in the kernel */
2978         ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
2979         if (ret)
2980                 hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
2981                          hdev->name);
2982
2983         ret = hid_parse(hdev);
2984         if (ret) {
2985                 hid_err(hdev, "%s:parse failed\n", __func__);
2986                 goto hid_parse_fail;
2987         }
2988
2989         if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
2990                 connect_mask &= ~HID_CONNECT_HIDINPUT;
2991
2992         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
2993                 ret = hid_hw_start(hdev, connect_mask);
2994                 if (ret) {
2995                         hid_err(hdev, "hw start failed\n");
2996                         goto hid_hw_start_fail;
2997                 }
2998                 ret = hid_hw_open(hdev);
2999                 if (ret < 0) {
3000                         dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
3001                                 __func__, ret);
3002                         hid_hw_stop(hdev);
3003                         goto hid_hw_start_fail;
3004                 }
3005         }
3006
3007
3008         /* Allow incoming packets */
3009         hid_device_io_start(hdev);
3010
3011         if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
3012                 hidpp_unifying_init(hidpp);
3013
3014         connected = hidpp_is_connected(hidpp);
3015         atomic_set(&hidpp->connected, connected);
3016         if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
3017                 if (!connected) {
3018                         ret = -ENODEV;
3019                         hid_err(hdev, "Device not connected");
3020                         goto hid_hw_open_failed;
3021                 }
3022
3023                 hid_info(hdev, "HID++ %u.%u device connected.\n",
3024                          hidpp->protocol_major, hidpp->protocol_minor);
3025
3026                 hidpp_overwrite_name(hdev);
3027         }
3028
3029         if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
3030                 ret = wtp_get_config(hidpp);
3031                 if (ret)
3032                         goto hid_hw_open_failed;
3033         } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3034                 ret = g920_get_config(hidpp);
3035                 if (ret)
3036                         goto hid_hw_open_failed;
3037         }
3038
3039         /* Block incoming packets */
3040         hid_device_io_stop(hdev);
3041
3042         if (!(hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3043                 ret = hid_hw_start(hdev, connect_mask);
3044                 if (ret) {
3045                         hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
3046                         goto hid_hw_start_fail;
3047                 }
3048         }
3049
3050         /* Allow incoming packets */
3051         hid_device_io_start(hdev);
3052
3053         hidpp_connect_event(hidpp);
3054
3055         return ret;
3056
3057 hid_hw_open_failed:
3058         hid_device_io_stop(hdev);
3059         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3060                 hid_hw_close(hdev);
3061                 hid_hw_stop(hdev);
3062         }
3063 hid_hw_start_fail:
3064 hid_parse_fail:
3065         sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3066         cancel_work_sync(&hidpp->work);
3067         mutex_destroy(&hidpp->send_mutex);
3068 allocate_fail:
3069         hid_set_drvdata(hdev, NULL);
3070         return ret;
3071 }
3072
3073 static void hidpp_remove(struct hid_device *hdev)
3074 {
3075         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3076
3077         sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3078
3079         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3080                 hidpp_ff_deinit(hdev);
3081                 hid_hw_close(hdev);
3082         }
3083         hid_hw_stop(hdev);
3084         cancel_work_sync(&hidpp->work);
3085         mutex_destroy(&hidpp->send_mutex);
3086 }
3087
3088 static const struct hid_device_id hidpp_devices[] = {
3089         { /* wireless touchpad */
3090           HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE,
3091                 USB_VENDOR_ID_LOGITECH, 0x4011),
3092           .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
3093                          HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
3094         { /* wireless touchpad T650 */
3095           HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE,
3096                 USB_VENDOR_ID_LOGITECH, 0x4101),
3097           .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
3098         { /* wireless touchpad T651 */
3099           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
3100                 USB_DEVICE_ID_LOGITECH_T651),
3101           .driver_data = HIDPP_QUIRK_CLASS_WTP },
3102         { /* Mouse logitech M560 */
3103           HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE,
3104                 USB_VENDOR_ID_LOGITECH, 0x402d),
3105           .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560 },
3106         { /* Keyboard logitech K400 */
3107           HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE,
3108                 USB_VENDOR_ID_LOGITECH, 0x4024),
3109           .driver_data = HIDPP_QUIRK_CLASS_K400 },
3110         { /* Solar Keyboard Logitech K750 */
3111           HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE,
3112                 USB_VENDOR_ID_LOGITECH, 0x4002),
3113           .driver_data = HIDPP_QUIRK_CLASS_K750 },
3114
3115         { HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE,
3116                 USB_VENDOR_ID_LOGITECH, HID_ANY_ID)},
3117
3118         { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
3119                 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
3120         {}
3121 };
3122
3123 MODULE_DEVICE_TABLE(hid, hidpp_devices);
3124
3125 static struct hid_driver hidpp_driver = {
3126         .name = "logitech-hidpp-device",
3127         .id_table = hidpp_devices,
3128         .probe = hidpp_probe,
3129         .remove = hidpp_remove,
3130         .raw_event = hidpp_raw_event,
3131         .input_configured = hidpp_input_configured,
3132         .input_mapping = hidpp_input_mapping,
3133         .input_mapped = hidpp_input_mapped,
3134 };
3135
3136 module_hid_driver(hidpp_driver);