Merge tag 'tags/upstream-4.17-rc1' of git://git.infradead.org/linux-ubifs
[sfrench/cifs-2.6.git] / drivers / hid / hid-core.c
1 /*
2  *  HID support for Linux
3  *
4  *  Copyright (c) 1999 Andreas Gal
5  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7  *  Copyright (c) 2006-2012 Jiri Kosina
8  */
9
10 /*
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/mm.h>
25 #include <linux/spinlock.h>
26 #include <asm/unaligned.h>
27 #include <asm/byteorder.h>
28 #include <linux/input.h>
29 #include <linux/wait.h>
30 #include <linux/vmalloc.h>
31 #include <linux/sched.h>
32 #include <linux/semaphore.h>
33
34 #include <linux/hid.h>
35 #include <linux/hiddev.h>
36 #include <linux/hid-debug.h>
37 #include <linux/hidraw.h>
38
39 #include "hid-ids.h"
40
41 /*
42  * Version Information
43  */
44
45 #define DRIVER_DESC "HID core driver"
46
47 int hid_debug = 0;
48 module_param_named(debug, hid_debug, int, 0600);
49 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
50 EXPORT_SYMBOL_GPL(hid_debug);
51
52 static int hid_ignore_special_drivers = 0;
53 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
54 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
55
56 /*
57  * Register a new report for a device.
58  */
59
60 struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
61 {
62         struct hid_report_enum *report_enum = device->report_enum + type;
63         struct hid_report *report;
64
65         if (id >= HID_MAX_IDS)
66                 return NULL;
67         if (report_enum->report_id_hash[id])
68                 return report_enum->report_id_hash[id];
69
70         report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
71         if (!report)
72                 return NULL;
73
74         if (id != 0)
75                 report_enum->numbered = 1;
76
77         report->id = id;
78         report->type = type;
79         report->size = 0;
80         report->device = device;
81         report_enum->report_id_hash[id] = report;
82
83         list_add_tail(&report->list, &report_enum->report_list);
84
85         return report;
86 }
87 EXPORT_SYMBOL_GPL(hid_register_report);
88
89 /*
90  * Register a new field for this report.
91  */
92
93 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
94 {
95         struct hid_field *field;
96
97         if (report->maxfield == HID_MAX_FIELDS) {
98                 hid_err(report->device, "too many fields in report\n");
99                 return NULL;
100         }
101
102         field = kzalloc((sizeof(struct hid_field) +
103                          usages * sizeof(struct hid_usage) +
104                          values * sizeof(unsigned)), GFP_KERNEL);
105         if (!field)
106                 return NULL;
107
108         field->index = report->maxfield++;
109         report->field[field->index] = field;
110         field->usage = (struct hid_usage *)(field + 1);
111         field->value = (s32 *)(field->usage + usages);
112         field->report = report;
113
114         return field;
115 }
116
117 /*
118  * Open a collection. The type/usage is pushed on the stack.
119  */
120
121 static int open_collection(struct hid_parser *parser, unsigned type)
122 {
123         struct hid_collection *collection;
124         unsigned usage;
125
126         usage = parser->local.usage[0];
127
128         if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
129                 hid_err(parser->device, "collection stack overflow\n");
130                 return -EINVAL;
131         }
132
133         if (parser->device->maxcollection == parser->device->collection_size) {
134                 collection = kmalloc(sizeof(struct hid_collection) *
135                                 parser->device->collection_size * 2, GFP_KERNEL);
136                 if (collection == NULL) {
137                         hid_err(parser->device, "failed to reallocate collection array\n");
138                         return -ENOMEM;
139                 }
140                 memcpy(collection, parser->device->collection,
141                         sizeof(struct hid_collection) *
142                         parser->device->collection_size);
143                 memset(collection + parser->device->collection_size, 0,
144                         sizeof(struct hid_collection) *
145                         parser->device->collection_size);
146                 kfree(parser->device->collection);
147                 parser->device->collection = collection;
148                 parser->device->collection_size *= 2;
149         }
150
151         parser->collection_stack[parser->collection_stack_ptr++] =
152                 parser->device->maxcollection;
153
154         collection = parser->device->collection +
155                 parser->device->maxcollection++;
156         collection->type = type;
157         collection->usage = usage;
158         collection->level = parser->collection_stack_ptr - 1;
159
160         if (type == HID_COLLECTION_APPLICATION)
161                 parser->device->maxapplication++;
162
163         return 0;
164 }
165
166 /*
167  * Close a collection.
168  */
169
170 static int close_collection(struct hid_parser *parser)
171 {
172         if (!parser->collection_stack_ptr) {
173                 hid_err(parser->device, "collection stack underflow\n");
174                 return -EINVAL;
175         }
176         parser->collection_stack_ptr--;
177         return 0;
178 }
179
180 /*
181  * Climb up the stack, search for the specified collection type
182  * and return the usage.
183  */
184
185 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
186 {
187         struct hid_collection *collection = parser->device->collection;
188         int n;
189
190         for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
191                 unsigned index = parser->collection_stack[n];
192                 if (collection[index].type == type)
193                         return collection[index].usage;
194         }
195         return 0; /* we know nothing about this usage type */
196 }
197
198 /*
199  * Add a usage to the temporary parser table.
200  */
201
202 static int hid_add_usage(struct hid_parser *parser, unsigned usage)
203 {
204         if (parser->local.usage_index >= HID_MAX_USAGES) {
205                 hid_err(parser->device, "usage index exceeded\n");
206                 return -1;
207         }
208         parser->local.usage[parser->local.usage_index] = usage;
209         parser->local.collection_index[parser->local.usage_index] =
210                 parser->collection_stack_ptr ?
211                 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
212         parser->local.usage_index++;
213         return 0;
214 }
215
216 /*
217  * Register a new field for this report.
218  */
219
220 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
221 {
222         struct hid_report *report;
223         struct hid_field *field;
224         unsigned usages;
225         unsigned offset;
226         unsigned i;
227
228         report = hid_register_report(parser->device, report_type, parser->global.report_id);
229         if (!report) {
230                 hid_err(parser->device, "hid_register_report failed\n");
231                 return -1;
232         }
233
234         /* Handle both signed and unsigned cases properly */
235         if ((parser->global.logical_minimum < 0 &&
236                 parser->global.logical_maximum <
237                 parser->global.logical_minimum) ||
238                 (parser->global.logical_minimum >= 0 &&
239                 (__u32)parser->global.logical_maximum <
240                 (__u32)parser->global.logical_minimum)) {
241                 dbg_hid("logical range invalid 0x%x 0x%x\n",
242                         parser->global.logical_minimum,
243                         parser->global.logical_maximum);
244                 return -1;
245         }
246
247         offset = report->size;
248         report->size += parser->global.report_size * parser->global.report_count;
249
250         if (!parser->local.usage_index) /* Ignore padding fields */
251                 return 0;
252
253         usages = max_t(unsigned, parser->local.usage_index,
254                                  parser->global.report_count);
255
256         field = hid_register_field(report, usages, parser->global.report_count);
257         if (!field)
258                 return 0;
259
260         field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
261         field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
262         field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
263
264         for (i = 0; i < usages; i++) {
265                 unsigned j = i;
266                 /* Duplicate the last usage we parsed if we have excess values */
267                 if (i >= parser->local.usage_index)
268                         j = parser->local.usage_index - 1;
269                 field->usage[i].hid = parser->local.usage[j];
270                 field->usage[i].collection_index =
271                         parser->local.collection_index[j];
272                 field->usage[i].usage_index = i;
273         }
274
275         field->maxusage = usages;
276         field->flags = flags;
277         field->report_offset = offset;
278         field->report_type = report_type;
279         field->report_size = parser->global.report_size;
280         field->report_count = parser->global.report_count;
281         field->logical_minimum = parser->global.logical_minimum;
282         field->logical_maximum = parser->global.logical_maximum;
283         field->physical_minimum = parser->global.physical_minimum;
284         field->physical_maximum = parser->global.physical_maximum;
285         field->unit_exponent = parser->global.unit_exponent;
286         field->unit = parser->global.unit;
287
288         return 0;
289 }
290
291 /*
292  * Read data value from item.
293  */
294
295 static u32 item_udata(struct hid_item *item)
296 {
297         switch (item->size) {
298         case 1: return item->data.u8;
299         case 2: return item->data.u16;
300         case 4: return item->data.u32;
301         }
302         return 0;
303 }
304
305 static s32 item_sdata(struct hid_item *item)
306 {
307         switch (item->size) {
308         case 1: return item->data.s8;
309         case 2: return item->data.s16;
310         case 4: return item->data.s32;
311         }
312         return 0;
313 }
314
315 /*
316  * Process a global item.
317  */
318
319 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
320 {
321         __s32 raw_value;
322         switch (item->tag) {
323         case HID_GLOBAL_ITEM_TAG_PUSH:
324
325                 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
326                         hid_err(parser->device, "global environment stack overflow\n");
327                         return -1;
328                 }
329
330                 memcpy(parser->global_stack + parser->global_stack_ptr++,
331                         &parser->global, sizeof(struct hid_global));
332                 return 0;
333
334         case HID_GLOBAL_ITEM_TAG_POP:
335
336                 if (!parser->global_stack_ptr) {
337                         hid_err(parser->device, "global environment stack underflow\n");
338                         return -1;
339                 }
340
341                 memcpy(&parser->global, parser->global_stack +
342                         --parser->global_stack_ptr, sizeof(struct hid_global));
343                 return 0;
344
345         case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
346                 parser->global.usage_page = item_udata(item);
347                 return 0;
348
349         case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
350                 parser->global.logical_minimum = item_sdata(item);
351                 return 0;
352
353         case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
354                 if (parser->global.logical_minimum < 0)
355                         parser->global.logical_maximum = item_sdata(item);
356                 else
357                         parser->global.logical_maximum = item_udata(item);
358                 return 0;
359
360         case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
361                 parser->global.physical_minimum = item_sdata(item);
362                 return 0;
363
364         case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
365                 if (parser->global.physical_minimum < 0)
366                         parser->global.physical_maximum = item_sdata(item);
367                 else
368                         parser->global.physical_maximum = item_udata(item);
369                 return 0;
370
371         case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
372                 /* Many devices provide unit exponent as a two's complement
373                  * nibble due to the common misunderstanding of HID
374                  * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
375                  * both this and the standard encoding. */
376                 raw_value = item_sdata(item);
377                 if (!(raw_value & 0xfffffff0))
378                         parser->global.unit_exponent = hid_snto32(raw_value, 4);
379                 else
380                         parser->global.unit_exponent = raw_value;
381                 return 0;
382
383         case HID_GLOBAL_ITEM_TAG_UNIT:
384                 parser->global.unit = item_udata(item);
385                 return 0;
386
387         case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
388                 parser->global.report_size = item_udata(item);
389                 if (parser->global.report_size > 128) {
390                         hid_err(parser->device, "invalid report_size %d\n",
391                                         parser->global.report_size);
392                         return -1;
393                 }
394                 return 0;
395
396         case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
397                 parser->global.report_count = item_udata(item);
398                 if (parser->global.report_count > HID_MAX_USAGES) {
399                         hid_err(parser->device, "invalid report_count %d\n",
400                                         parser->global.report_count);
401                         return -1;
402                 }
403                 return 0;
404
405         case HID_GLOBAL_ITEM_TAG_REPORT_ID:
406                 parser->global.report_id = item_udata(item);
407                 if (parser->global.report_id == 0 ||
408                     parser->global.report_id >= HID_MAX_IDS) {
409                         hid_err(parser->device, "report_id %u is invalid\n",
410                                 parser->global.report_id);
411                         return -1;
412                 }
413                 return 0;
414
415         default:
416                 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
417                 return -1;
418         }
419 }
420
421 /*
422  * Process a local item.
423  */
424
425 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
426 {
427         __u32 data;
428         unsigned n;
429         __u32 count;
430
431         data = item_udata(item);
432
433         switch (item->tag) {
434         case HID_LOCAL_ITEM_TAG_DELIMITER:
435
436                 if (data) {
437                         /*
438                          * We treat items before the first delimiter
439                          * as global to all usage sets (branch 0).
440                          * In the moment we process only these global
441                          * items and the first delimiter set.
442                          */
443                         if (parser->local.delimiter_depth != 0) {
444                                 hid_err(parser->device, "nested delimiters\n");
445                                 return -1;
446                         }
447                         parser->local.delimiter_depth++;
448                         parser->local.delimiter_branch++;
449                 } else {
450                         if (parser->local.delimiter_depth < 1) {
451                                 hid_err(parser->device, "bogus close delimiter\n");
452                                 return -1;
453                         }
454                         parser->local.delimiter_depth--;
455                 }
456                 return 0;
457
458         case HID_LOCAL_ITEM_TAG_USAGE:
459
460                 if (parser->local.delimiter_branch > 1) {
461                         dbg_hid("alternative usage ignored\n");
462                         return 0;
463                 }
464
465                 if (item->size <= 2)
466                         data = (parser->global.usage_page << 16) + data;
467
468                 return hid_add_usage(parser, data);
469
470         case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
471
472                 if (parser->local.delimiter_branch > 1) {
473                         dbg_hid("alternative usage ignored\n");
474                         return 0;
475                 }
476
477                 if (item->size <= 2)
478                         data = (parser->global.usage_page << 16) + data;
479
480                 parser->local.usage_minimum = data;
481                 return 0;
482
483         case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
484
485                 if (parser->local.delimiter_branch > 1) {
486                         dbg_hid("alternative usage ignored\n");
487                         return 0;
488                 }
489
490                 if (item->size <= 2)
491                         data = (parser->global.usage_page << 16) + data;
492
493                 count = data - parser->local.usage_minimum;
494                 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
495                         /*
496                          * We do not warn if the name is not set, we are
497                          * actually pre-scanning the device.
498                          */
499                         if (dev_name(&parser->device->dev))
500                                 hid_warn(parser->device,
501                                          "ignoring exceeding usage max\n");
502                         data = HID_MAX_USAGES - parser->local.usage_index +
503                                 parser->local.usage_minimum - 1;
504                         if (data <= 0) {
505                                 hid_err(parser->device,
506                                         "no more usage index available\n");
507                                 return -1;
508                         }
509                 }
510
511                 for (n = parser->local.usage_minimum; n <= data; n++)
512                         if (hid_add_usage(parser, n)) {
513                                 dbg_hid("hid_add_usage failed\n");
514                                 return -1;
515                         }
516                 return 0;
517
518         default:
519
520                 dbg_hid("unknown local item tag 0x%x\n", item->tag);
521                 return 0;
522         }
523         return 0;
524 }
525
526 /*
527  * Process a main item.
528  */
529
530 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
531 {
532         __u32 data;
533         int ret;
534
535         data = item_udata(item);
536
537         switch (item->tag) {
538         case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
539                 ret = open_collection(parser, data & 0xff);
540                 break;
541         case HID_MAIN_ITEM_TAG_END_COLLECTION:
542                 ret = close_collection(parser);
543                 break;
544         case HID_MAIN_ITEM_TAG_INPUT:
545                 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
546                 break;
547         case HID_MAIN_ITEM_TAG_OUTPUT:
548                 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
549                 break;
550         case HID_MAIN_ITEM_TAG_FEATURE:
551                 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
552                 break;
553         default:
554                 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
555                 ret = 0;
556         }
557
558         memset(&parser->local, 0, sizeof(parser->local));       /* Reset the local parser environment */
559
560         return ret;
561 }
562
563 /*
564  * Process a reserved item.
565  */
566
567 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
568 {
569         dbg_hid("reserved item type, tag 0x%x\n", item->tag);
570         return 0;
571 }
572
573 /*
574  * Free a report and all registered fields. The field->usage and
575  * field->value table's are allocated behind the field, so we need
576  * only to free(field) itself.
577  */
578
579 static void hid_free_report(struct hid_report *report)
580 {
581         unsigned n;
582
583         for (n = 0; n < report->maxfield; n++)
584                 kfree(report->field[n]);
585         kfree(report);
586 }
587
588 /*
589  * Close report. This function returns the device
590  * state to the point prior to hid_open_report().
591  */
592 static void hid_close_report(struct hid_device *device)
593 {
594         unsigned i, j;
595
596         for (i = 0; i < HID_REPORT_TYPES; i++) {
597                 struct hid_report_enum *report_enum = device->report_enum + i;
598
599                 for (j = 0; j < HID_MAX_IDS; j++) {
600                         struct hid_report *report = report_enum->report_id_hash[j];
601                         if (report)
602                                 hid_free_report(report);
603                 }
604                 memset(report_enum, 0, sizeof(*report_enum));
605                 INIT_LIST_HEAD(&report_enum->report_list);
606         }
607
608         kfree(device->rdesc);
609         device->rdesc = NULL;
610         device->rsize = 0;
611
612         kfree(device->collection);
613         device->collection = NULL;
614         device->collection_size = 0;
615         device->maxcollection = 0;
616         device->maxapplication = 0;
617
618         device->status &= ~HID_STAT_PARSED;
619 }
620
621 /*
622  * Free a device structure, all reports, and all fields.
623  */
624
625 static void hid_device_release(struct device *dev)
626 {
627         struct hid_device *hid = to_hid_device(dev);
628
629         hid_close_report(hid);
630         kfree(hid->dev_rdesc);
631         kfree(hid);
632 }
633
634 /*
635  * Fetch a report description item from the data stream. We support long
636  * items, though they are not used yet.
637  */
638
639 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
640 {
641         u8 b;
642
643         if ((end - start) <= 0)
644                 return NULL;
645
646         b = *start++;
647
648         item->type = (b >> 2) & 3;
649         item->tag  = (b >> 4) & 15;
650
651         if (item->tag == HID_ITEM_TAG_LONG) {
652
653                 item->format = HID_ITEM_FORMAT_LONG;
654
655                 if ((end - start) < 2)
656                         return NULL;
657
658                 item->size = *start++;
659                 item->tag  = *start++;
660
661                 if ((end - start) < item->size)
662                         return NULL;
663
664                 item->data.longdata = start;
665                 start += item->size;
666                 return start;
667         }
668
669         item->format = HID_ITEM_FORMAT_SHORT;
670         item->size = b & 3;
671
672         switch (item->size) {
673         case 0:
674                 return start;
675
676         case 1:
677                 if ((end - start) < 1)
678                         return NULL;
679                 item->data.u8 = *start++;
680                 return start;
681
682         case 2:
683                 if ((end - start) < 2)
684                         return NULL;
685                 item->data.u16 = get_unaligned_le16(start);
686                 start = (__u8 *)((__le16 *)start + 1);
687                 return start;
688
689         case 3:
690                 item->size++;
691                 if ((end - start) < 4)
692                         return NULL;
693                 item->data.u32 = get_unaligned_le32(start);
694                 start = (__u8 *)((__le32 *)start + 1);
695                 return start;
696         }
697
698         return NULL;
699 }
700
701 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
702 {
703         struct hid_device *hid = parser->device;
704
705         if (usage == HID_DG_CONTACTID)
706                 hid->group = HID_GROUP_MULTITOUCH;
707 }
708
709 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
710 {
711         if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
712             parser->global.report_size == 8)
713                 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
714 }
715
716 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
717 {
718         struct hid_device *hid = parser->device;
719         int i;
720
721         if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
722             type == HID_COLLECTION_PHYSICAL)
723                 hid->group = HID_GROUP_SENSOR_HUB;
724
725         if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
726             hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
727             hid->group == HID_GROUP_MULTITOUCH)
728                 hid->group = HID_GROUP_GENERIC;
729
730         if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
731                 for (i = 0; i < parser->local.usage_index; i++)
732                         if (parser->local.usage[i] == HID_GD_POINTER)
733                                 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
734
735         if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
736                 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
737 }
738
739 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
740 {
741         __u32 data;
742         int i;
743
744         data = item_udata(item);
745
746         switch (item->tag) {
747         case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
748                 hid_scan_collection(parser, data & 0xff);
749                 break;
750         case HID_MAIN_ITEM_TAG_END_COLLECTION:
751                 break;
752         case HID_MAIN_ITEM_TAG_INPUT:
753                 /* ignore constant inputs, they will be ignored by hid-input */
754                 if (data & HID_MAIN_ITEM_CONSTANT)
755                         break;
756                 for (i = 0; i < parser->local.usage_index; i++)
757                         hid_scan_input_usage(parser, parser->local.usage[i]);
758                 break;
759         case HID_MAIN_ITEM_TAG_OUTPUT:
760                 break;
761         case HID_MAIN_ITEM_TAG_FEATURE:
762                 for (i = 0; i < parser->local.usage_index; i++)
763                         hid_scan_feature_usage(parser, parser->local.usage[i]);
764                 break;
765         }
766
767         /* Reset the local parser environment */
768         memset(&parser->local, 0, sizeof(parser->local));
769
770         return 0;
771 }
772
773 /*
774  * Scan a report descriptor before the device is added to the bus.
775  * Sets device groups and other properties that determine what driver
776  * to load.
777  */
778 static int hid_scan_report(struct hid_device *hid)
779 {
780         struct hid_parser *parser;
781         struct hid_item item;
782         __u8 *start = hid->dev_rdesc;
783         __u8 *end = start + hid->dev_rsize;
784         static int (*dispatch_type[])(struct hid_parser *parser,
785                                       struct hid_item *item) = {
786                 hid_scan_main,
787                 hid_parser_global,
788                 hid_parser_local,
789                 hid_parser_reserved
790         };
791
792         parser = vzalloc(sizeof(struct hid_parser));
793         if (!parser)
794                 return -ENOMEM;
795
796         parser->device = hid;
797         hid->group = HID_GROUP_GENERIC;
798
799         /*
800          * The parsing is simpler than the one in hid_open_report() as we should
801          * be robust against hid errors. Those errors will be raised by
802          * hid_open_report() anyway.
803          */
804         while ((start = fetch_item(start, end, &item)) != NULL)
805                 dispatch_type[item.type](parser, &item);
806
807         /*
808          * Handle special flags set during scanning.
809          */
810         if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
811             (hid->group == HID_GROUP_MULTITOUCH))
812                 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
813
814         /*
815          * Vendor specific handlings
816          */
817         switch (hid->vendor) {
818         case USB_VENDOR_ID_WACOM:
819                 hid->group = HID_GROUP_WACOM;
820                 break;
821         case USB_VENDOR_ID_SYNAPTICS:
822                 if (hid->group == HID_GROUP_GENERIC)
823                         if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
824                             && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
825                                 /*
826                                  * hid-rmi should take care of them,
827                                  * not hid-generic
828                                  */
829                                 hid->group = HID_GROUP_RMI;
830                 break;
831         }
832
833         vfree(parser);
834         return 0;
835 }
836
837 /**
838  * hid_parse_report - parse device report
839  *
840  * @device: hid device
841  * @start: report start
842  * @size: report size
843  *
844  * Allocate the device report as read by the bus driver. This function should
845  * only be called from parse() in ll drivers.
846  */
847 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
848 {
849         hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
850         if (!hid->dev_rdesc)
851                 return -ENOMEM;
852         hid->dev_rsize = size;
853         return 0;
854 }
855 EXPORT_SYMBOL_GPL(hid_parse_report);
856
857 static const char * const hid_report_names[] = {
858         "HID_INPUT_REPORT",
859         "HID_OUTPUT_REPORT",
860         "HID_FEATURE_REPORT",
861 };
862 /**
863  * hid_validate_values - validate existing device report's value indexes
864  *
865  * @device: hid device
866  * @type: which report type to examine
867  * @id: which report ID to examine (0 for first)
868  * @field_index: which report field to examine
869  * @report_counts: expected number of values
870  *
871  * Validate the number of values in a given field of a given report, after
872  * parsing.
873  */
874 struct hid_report *hid_validate_values(struct hid_device *hid,
875                                        unsigned int type, unsigned int id,
876                                        unsigned int field_index,
877                                        unsigned int report_counts)
878 {
879         struct hid_report *report;
880
881         if (type > HID_FEATURE_REPORT) {
882                 hid_err(hid, "invalid HID report type %u\n", type);
883                 return NULL;
884         }
885
886         if (id >= HID_MAX_IDS) {
887                 hid_err(hid, "invalid HID report id %u\n", id);
888                 return NULL;
889         }
890
891         /*
892          * Explicitly not using hid_get_report() here since it depends on
893          * ->numbered being checked, which may not always be the case when
894          * drivers go to access report values.
895          */
896         if (id == 0) {
897                 /*
898                  * Validating on id 0 means we should examine the first
899                  * report in the list.
900                  */
901                 report = list_entry(
902                                 hid->report_enum[type].report_list.next,
903                                 struct hid_report, list);
904         } else {
905                 report = hid->report_enum[type].report_id_hash[id];
906         }
907         if (!report) {
908                 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
909                 return NULL;
910         }
911         if (report->maxfield <= field_index) {
912                 hid_err(hid, "not enough fields in %s %u\n",
913                         hid_report_names[type], id);
914                 return NULL;
915         }
916         if (report->field[field_index]->report_count < report_counts) {
917                 hid_err(hid, "not enough values in %s %u field %u\n",
918                         hid_report_names[type], id, field_index);
919                 return NULL;
920         }
921         return report;
922 }
923 EXPORT_SYMBOL_GPL(hid_validate_values);
924
925 /**
926  * hid_open_report - open a driver-specific device report
927  *
928  * @device: hid device
929  *
930  * Parse a report description into a hid_device structure. Reports are
931  * enumerated, fields are attached to these reports.
932  * 0 returned on success, otherwise nonzero error value.
933  *
934  * This function (or the equivalent hid_parse() macro) should only be
935  * called from probe() in drivers, before starting the device.
936  */
937 int hid_open_report(struct hid_device *device)
938 {
939         struct hid_parser *parser;
940         struct hid_item item;
941         unsigned int size;
942         __u8 *start;
943         __u8 *buf;
944         __u8 *end;
945         int ret;
946         static int (*dispatch_type[])(struct hid_parser *parser,
947                                       struct hid_item *item) = {
948                 hid_parser_main,
949                 hid_parser_global,
950                 hid_parser_local,
951                 hid_parser_reserved
952         };
953
954         if (WARN_ON(device->status & HID_STAT_PARSED))
955                 return -EBUSY;
956
957         start = device->dev_rdesc;
958         if (WARN_ON(!start))
959                 return -ENODEV;
960         size = device->dev_rsize;
961
962         buf = kmemdup(start, size, GFP_KERNEL);
963         if (buf == NULL)
964                 return -ENOMEM;
965
966         if (device->driver->report_fixup)
967                 start = device->driver->report_fixup(device, buf, &size);
968         else
969                 start = buf;
970
971         start = kmemdup(start, size, GFP_KERNEL);
972         kfree(buf);
973         if (start == NULL)
974                 return -ENOMEM;
975
976         device->rdesc = start;
977         device->rsize = size;
978
979         parser = vzalloc(sizeof(struct hid_parser));
980         if (!parser) {
981                 ret = -ENOMEM;
982                 goto err;
983         }
984
985         parser->device = device;
986
987         end = start + size;
988
989         device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
990                                      sizeof(struct hid_collection), GFP_KERNEL);
991         if (!device->collection) {
992                 ret = -ENOMEM;
993                 goto err;
994         }
995         device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
996
997         ret = -EINVAL;
998         while ((start = fetch_item(start, end, &item)) != NULL) {
999
1000                 if (item.format != HID_ITEM_FORMAT_SHORT) {
1001                         hid_err(device, "unexpected long global item\n");
1002                         goto err;
1003                 }
1004
1005                 if (dispatch_type[item.type](parser, &item)) {
1006                         hid_err(device, "item %u %u %u %u parsing failed\n",
1007                                 item.format, (unsigned)item.size,
1008                                 (unsigned)item.type, (unsigned)item.tag);
1009                         goto err;
1010                 }
1011
1012                 if (start == end) {
1013                         if (parser->collection_stack_ptr) {
1014                                 hid_err(device, "unbalanced collection at end of report description\n");
1015                                 goto err;
1016                         }
1017                         if (parser->local.delimiter_depth) {
1018                                 hid_err(device, "unbalanced delimiter at end of report description\n");
1019                                 goto err;
1020                         }
1021                         vfree(parser);
1022                         device->status |= HID_STAT_PARSED;
1023                         return 0;
1024                 }
1025         }
1026
1027         hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
1028 err:
1029         vfree(parser);
1030         hid_close_report(device);
1031         return ret;
1032 }
1033 EXPORT_SYMBOL_GPL(hid_open_report);
1034
1035 /*
1036  * Convert a signed n-bit integer to signed 32-bit integer. Common
1037  * cases are done through the compiler, the screwed things has to be
1038  * done by hand.
1039  */
1040
1041 static s32 snto32(__u32 value, unsigned n)
1042 {
1043         switch (n) {
1044         case 8:  return ((__s8)value);
1045         case 16: return ((__s16)value);
1046         case 32: return ((__s32)value);
1047         }
1048         return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1049 }
1050
1051 s32 hid_snto32(__u32 value, unsigned n)
1052 {
1053         return snto32(value, n);
1054 }
1055 EXPORT_SYMBOL_GPL(hid_snto32);
1056
1057 /*
1058  * Convert a signed 32-bit integer to a signed n-bit integer.
1059  */
1060
1061 static u32 s32ton(__s32 value, unsigned n)
1062 {
1063         s32 a = value >> (n - 1);
1064         if (a && a != -1)
1065                 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1066         return value & ((1 << n) - 1);
1067 }
1068
1069 /*
1070  * Extract/implement a data field from/to a little endian report (bit array).
1071  *
1072  * Code sort-of follows HID spec:
1073  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1074  *
1075  * While the USB HID spec allows unlimited length bit fields in "report
1076  * descriptors", most devices never use more than 16 bits.
1077  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1078  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1079  */
1080
1081 static u32 __extract(u8 *report, unsigned offset, int n)
1082 {
1083         unsigned int idx = offset / 8;
1084         unsigned int bit_nr = 0;
1085         unsigned int bit_shift = offset % 8;
1086         int bits_to_copy = 8 - bit_shift;
1087         u32 value = 0;
1088         u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1089
1090         while (n > 0) {
1091                 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1092                 n -= bits_to_copy;
1093                 bit_nr += bits_to_copy;
1094                 bits_to_copy = 8;
1095                 bit_shift = 0;
1096                 idx++;
1097         }
1098
1099         return value & mask;
1100 }
1101
1102 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1103                         unsigned offset, unsigned n)
1104 {
1105         if (n > 32) {
1106                 hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n",
1107                          n, current->comm);
1108                 n = 32;
1109         }
1110
1111         return __extract(report, offset, n);
1112 }
1113 EXPORT_SYMBOL_GPL(hid_field_extract);
1114
1115 /*
1116  * "implement" : set bits in a little endian bit stream.
1117  * Same concepts as "extract" (see comments above).
1118  * The data mangled in the bit stream remains in little endian
1119  * order the whole time. It make more sense to talk about
1120  * endianness of register values by considering a register
1121  * a "cached" copy of the little endian bit stream.
1122  */
1123
1124 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1125 {
1126         unsigned int idx = offset / 8;
1127         unsigned int bit_shift = offset % 8;
1128         int bits_to_set = 8 - bit_shift;
1129
1130         while (n - bits_to_set >= 0) {
1131                 report[idx] &= ~(0xff << bit_shift);
1132                 report[idx] |= value << bit_shift;
1133                 value >>= bits_to_set;
1134                 n -= bits_to_set;
1135                 bits_to_set = 8;
1136                 bit_shift = 0;
1137                 idx++;
1138         }
1139
1140         /* last nibble */
1141         if (n) {
1142                 u8 bit_mask = ((1U << n) - 1);
1143                 report[idx] &= ~(bit_mask << bit_shift);
1144                 report[idx] |= value << bit_shift;
1145         }
1146 }
1147
1148 static void implement(const struct hid_device *hid, u8 *report,
1149                       unsigned offset, unsigned n, u32 value)
1150 {
1151         if (unlikely(n > 32)) {
1152                 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1153                          __func__, n, current->comm);
1154                 n = 32;
1155         } else if (n < 32) {
1156                 u32 m = (1U << n) - 1;
1157
1158                 if (unlikely(value > m)) {
1159                         hid_warn(hid,
1160                                  "%s() called with too large value %d (n: %d)! (%s)\n",
1161                                  __func__, value, n, current->comm);
1162                         WARN_ON(1);
1163                         value &= m;
1164                 }
1165         }
1166
1167         __implement(report, offset, n, value);
1168 }
1169
1170 /*
1171  * Search an array for a value.
1172  */
1173
1174 static int search(__s32 *array, __s32 value, unsigned n)
1175 {
1176         while (n--) {
1177                 if (*array++ == value)
1178                         return 0;
1179         }
1180         return -1;
1181 }
1182
1183 /**
1184  * hid_match_report - check if driver's raw_event should be called
1185  *
1186  * @hid: hid device
1187  * @report_type: type to match against
1188  *
1189  * compare hid->driver->report_table->report_type to report->type
1190  */
1191 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1192 {
1193         const struct hid_report_id *id = hid->driver->report_table;
1194
1195         if (!id) /* NULL means all */
1196                 return 1;
1197
1198         for (; id->report_type != HID_TERMINATOR; id++)
1199                 if (id->report_type == HID_ANY_ID ||
1200                                 id->report_type == report->type)
1201                         return 1;
1202         return 0;
1203 }
1204
1205 /**
1206  * hid_match_usage - check if driver's event should be called
1207  *
1208  * @hid: hid device
1209  * @usage: usage to match against
1210  *
1211  * compare hid->driver->usage_table->usage_{type,code} to
1212  * usage->usage_{type,code}
1213  */
1214 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1215 {
1216         const struct hid_usage_id *id = hid->driver->usage_table;
1217
1218         if (!id) /* NULL means all */
1219                 return 1;
1220
1221         for (; id->usage_type != HID_ANY_ID - 1; id++)
1222                 if ((id->usage_hid == HID_ANY_ID ||
1223                                 id->usage_hid == usage->hid) &&
1224                                 (id->usage_type == HID_ANY_ID ||
1225                                 id->usage_type == usage->type) &&
1226                                 (id->usage_code == HID_ANY_ID ||
1227                                  id->usage_code == usage->code))
1228                         return 1;
1229         return 0;
1230 }
1231
1232 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1233                 struct hid_usage *usage, __s32 value, int interrupt)
1234 {
1235         struct hid_driver *hdrv = hid->driver;
1236         int ret;
1237
1238         if (!list_empty(&hid->debug_list))
1239                 hid_dump_input(hid, usage, value);
1240
1241         if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1242                 ret = hdrv->event(hid, field, usage, value);
1243                 if (ret != 0) {
1244                         if (ret < 0)
1245                                 hid_err(hid, "%s's event failed with %d\n",
1246                                                 hdrv->name, ret);
1247                         return;
1248                 }
1249         }
1250
1251         if (hid->claimed & HID_CLAIMED_INPUT)
1252                 hidinput_hid_event(hid, field, usage, value);
1253         if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1254                 hid->hiddev_hid_event(hid, field, usage, value);
1255 }
1256
1257 /*
1258  * Analyse a received field, and fetch the data from it. The field
1259  * content is stored for next report processing (we do differential
1260  * reporting to the layer).
1261  */
1262
1263 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1264                             __u8 *data, int interrupt)
1265 {
1266         unsigned n;
1267         unsigned count = field->report_count;
1268         unsigned offset = field->report_offset;
1269         unsigned size = field->report_size;
1270         __s32 min = field->logical_minimum;
1271         __s32 max = field->logical_maximum;
1272         __s32 *value;
1273
1274         value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC);
1275         if (!value)
1276                 return;
1277
1278         for (n = 0; n < count; n++) {
1279
1280                 value[n] = min < 0 ?
1281                         snto32(hid_field_extract(hid, data, offset + n * size,
1282                                size), size) :
1283                         hid_field_extract(hid, data, offset + n * size, size);
1284
1285                 /* Ignore report if ErrorRollOver */
1286                 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1287                     value[n] >= min && value[n] <= max &&
1288                     value[n] - min < field->maxusage &&
1289                     field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1290                         goto exit;
1291         }
1292
1293         for (n = 0; n < count; n++) {
1294
1295                 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1296                         hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1297                         continue;
1298                 }
1299
1300                 if (field->value[n] >= min && field->value[n] <= max
1301                         && field->value[n] - min < field->maxusage
1302                         && field->usage[field->value[n] - min].hid
1303                         && search(value, field->value[n], count))
1304                                 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1305
1306                 if (value[n] >= min && value[n] <= max
1307                         && value[n] - min < field->maxusage
1308                         && field->usage[value[n] - min].hid
1309                         && search(field->value, value[n], count))
1310                                 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1311         }
1312
1313         memcpy(field->value, value, count * sizeof(__s32));
1314 exit:
1315         kfree(value);
1316 }
1317
1318 /*
1319  * Output the field into the report.
1320  */
1321
1322 static void hid_output_field(const struct hid_device *hid,
1323                              struct hid_field *field, __u8 *data)
1324 {
1325         unsigned count = field->report_count;
1326         unsigned offset = field->report_offset;
1327         unsigned size = field->report_size;
1328         unsigned n;
1329
1330         for (n = 0; n < count; n++) {
1331                 if (field->logical_minimum < 0) /* signed values */
1332                         implement(hid, data, offset + n * size, size,
1333                                   s32ton(field->value[n], size));
1334                 else                            /* unsigned values */
1335                         implement(hid, data, offset + n * size, size,
1336                                   field->value[n]);
1337         }
1338 }
1339
1340 /*
1341  * Create a report. 'data' has to be allocated using
1342  * hid_alloc_report_buf() so that it has proper size.
1343  */
1344
1345 void hid_output_report(struct hid_report *report, __u8 *data)
1346 {
1347         unsigned n;
1348
1349         if (report->id > 0)
1350                 *data++ = report->id;
1351
1352         memset(data, 0, ((report->size - 1) >> 3) + 1);
1353         for (n = 0; n < report->maxfield; n++)
1354                 hid_output_field(report->device, report->field[n], data);
1355 }
1356 EXPORT_SYMBOL_GPL(hid_output_report);
1357
1358 /*
1359  * Allocator for buffer that is going to be passed to hid_output_report()
1360  */
1361 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1362 {
1363         /*
1364          * 7 extra bytes are necessary to achieve proper functionality
1365          * of implement() working on 8 byte chunks
1366          */
1367
1368         u32 len = hid_report_len(report) + 7;
1369
1370         return kmalloc(len, flags);
1371 }
1372 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1373
1374 /*
1375  * Set a field value. The report this field belongs to has to be
1376  * created and transferred to the device, to set this value in the
1377  * device.
1378  */
1379
1380 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1381 {
1382         unsigned size;
1383
1384         if (!field)
1385                 return -1;
1386
1387         size = field->report_size;
1388
1389         hid_dump_input(field->report->device, field->usage + offset, value);
1390
1391         if (offset >= field->report_count) {
1392                 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1393                                 offset, field->report_count);
1394                 return -1;
1395         }
1396         if (field->logical_minimum < 0) {
1397                 if (value != snto32(s32ton(value, size), size)) {
1398                         hid_err(field->report->device, "value %d is out of range\n", value);
1399                         return -1;
1400                 }
1401         }
1402         field->value[offset] = value;
1403         return 0;
1404 }
1405 EXPORT_SYMBOL_GPL(hid_set_field);
1406
1407 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1408                 const u8 *data)
1409 {
1410         struct hid_report *report;
1411         unsigned int n = 0;     /* Normally report number is 0 */
1412
1413         /* Device uses numbered reports, data[0] is report number */
1414         if (report_enum->numbered)
1415                 n = *data;
1416
1417         report = report_enum->report_id_hash[n];
1418         if (report == NULL)
1419                 dbg_hid("undefined report_id %u received\n", n);
1420
1421         return report;
1422 }
1423
1424 /*
1425  * Implement a generic .request() callback, using .raw_request()
1426  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1427  */
1428 void __hid_request(struct hid_device *hid, struct hid_report *report,
1429                 int reqtype)
1430 {
1431         char *buf;
1432         int ret;
1433         u32 len;
1434
1435         buf = hid_alloc_report_buf(report, GFP_KERNEL);
1436         if (!buf)
1437                 return;
1438
1439         len = hid_report_len(report);
1440
1441         if (reqtype == HID_REQ_SET_REPORT)
1442                 hid_output_report(report, buf);
1443
1444         ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1445                                           report->type, reqtype);
1446         if (ret < 0) {
1447                 dbg_hid("unable to complete request: %d\n", ret);
1448                 goto out;
1449         }
1450
1451         if (reqtype == HID_REQ_GET_REPORT)
1452                 hid_input_report(hid, report->type, buf, ret, 0);
1453
1454 out:
1455         kfree(buf);
1456 }
1457 EXPORT_SYMBOL_GPL(__hid_request);
1458
1459 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1460                 int interrupt)
1461 {
1462         struct hid_report_enum *report_enum = hid->report_enum + type;
1463         struct hid_report *report;
1464         struct hid_driver *hdrv;
1465         unsigned int a;
1466         u32 rsize, csize = size;
1467         u8 *cdata = data;
1468         int ret = 0;
1469
1470         report = hid_get_report(report_enum, data);
1471         if (!report)
1472                 goto out;
1473
1474         if (report_enum->numbered) {
1475                 cdata++;
1476                 csize--;
1477         }
1478
1479         rsize = ((report->size - 1) >> 3) + 1;
1480
1481         if (rsize > HID_MAX_BUFFER_SIZE)
1482                 rsize = HID_MAX_BUFFER_SIZE;
1483
1484         if (csize < rsize) {
1485                 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1486                                 csize, rsize);
1487                 memset(cdata + csize, 0, rsize - csize);
1488         }
1489
1490         if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1491                 hid->hiddev_report_event(hid, report);
1492         if (hid->claimed & HID_CLAIMED_HIDRAW) {
1493                 ret = hidraw_report_event(hid, data, size);
1494                 if (ret)
1495                         goto out;
1496         }
1497
1498         if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1499                 for (a = 0; a < report->maxfield; a++)
1500                         hid_input_field(hid, report->field[a], cdata, interrupt);
1501                 hdrv = hid->driver;
1502                 if (hdrv && hdrv->report)
1503                         hdrv->report(hid, report);
1504         }
1505
1506         if (hid->claimed & HID_CLAIMED_INPUT)
1507                 hidinput_report_event(hid, report);
1508 out:
1509         return ret;
1510 }
1511 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1512
1513 /**
1514  * hid_input_report - report data from lower layer (usb, bt...)
1515  *
1516  * @hid: hid device
1517  * @type: HID report type (HID_*_REPORT)
1518  * @data: report contents
1519  * @size: size of data parameter
1520  * @interrupt: distinguish between interrupt and control transfers
1521  *
1522  * This is data entry for lower layers.
1523  */
1524 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1525 {
1526         struct hid_report_enum *report_enum;
1527         struct hid_driver *hdrv;
1528         struct hid_report *report;
1529         int ret = 0;
1530
1531         if (!hid)
1532                 return -ENODEV;
1533
1534         if (down_trylock(&hid->driver_input_lock))
1535                 return -EBUSY;
1536
1537         if (!hid->driver) {
1538                 ret = -ENODEV;
1539                 goto unlock;
1540         }
1541         report_enum = hid->report_enum + type;
1542         hdrv = hid->driver;
1543
1544         if (!size) {
1545                 dbg_hid("empty report\n");
1546                 ret = -1;
1547                 goto unlock;
1548         }
1549
1550         /* Avoid unnecessary overhead if debugfs is disabled */
1551         if (!list_empty(&hid->debug_list))
1552                 hid_dump_report(hid, type, data, size);
1553
1554         report = hid_get_report(report_enum, data);
1555
1556         if (!report) {
1557                 ret = -1;
1558                 goto unlock;
1559         }
1560
1561         if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1562                 ret = hdrv->raw_event(hid, report, data, size);
1563                 if (ret < 0)
1564                         goto unlock;
1565         }
1566
1567         ret = hid_report_raw_event(hid, type, data, size, interrupt);
1568
1569 unlock:
1570         up(&hid->driver_input_lock);
1571         return ret;
1572 }
1573 EXPORT_SYMBOL_GPL(hid_input_report);
1574
1575 bool hid_match_one_id(const struct hid_device *hdev,
1576                       const struct hid_device_id *id)
1577 {
1578         return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1579                 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1580                 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1581                 (id->product == HID_ANY_ID || id->product == hdev->product);
1582 }
1583
1584 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1585                 const struct hid_device_id *id)
1586 {
1587         for (; id->bus; id++)
1588                 if (hid_match_one_id(hdev, id))
1589                         return id;
1590
1591         return NULL;
1592 }
1593
1594 static const struct hid_device_id hid_hiddev_list[] = {
1595         { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1596         { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1597         { }
1598 };
1599
1600 static bool hid_hiddev(struct hid_device *hdev)
1601 {
1602         return !!hid_match_id(hdev, hid_hiddev_list);
1603 }
1604
1605
1606 static ssize_t
1607 read_report_descriptor(struct file *filp, struct kobject *kobj,
1608                 struct bin_attribute *attr,
1609                 char *buf, loff_t off, size_t count)
1610 {
1611         struct device *dev = kobj_to_dev(kobj);
1612         struct hid_device *hdev = to_hid_device(dev);
1613
1614         if (off >= hdev->rsize)
1615                 return 0;
1616
1617         if (off + count > hdev->rsize)
1618                 count = hdev->rsize - off;
1619
1620         memcpy(buf, hdev->rdesc + off, count);
1621
1622         return count;
1623 }
1624
1625 static ssize_t
1626 show_country(struct device *dev, struct device_attribute *attr,
1627                 char *buf)
1628 {
1629         struct hid_device *hdev = to_hid_device(dev);
1630
1631         return sprintf(buf, "%02x\n", hdev->country & 0xff);
1632 }
1633
1634 static struct bin_attribute dev_bin_attr_report_desc = {
1635         .attr = { .name = "report_descriptor", .mode = 0444 },
1636         .read = read_report_descriptor,
1637         .size = HID_MAX_DESCRIPTOR_SIZE,
1638 };
1639
1640 static const struct device_attribute dev_attr_country = {
1641         .attr = { .name = "country", .mode = 0444 },
1642         .show = show_country,
1643 };
1644
1645 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1646 {
1647         static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1648                 "Joystick", "Gamepad", "Keyboard", "Keypad",
1649                 "Multi-Axis Controller"
1650         };
1651         const char *type, *bus;
1652         char buf[64] = "";
1653         unsigned int i;
1654         int len;
1655         int ret;
1656
1657         if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1658                 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1659         if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1660                 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1661         if (hdev->bus != BUS_USB)
1662                 connect_mask &= ~HID_CONNECT_HIDDEV;
1663         if (hid_hiddev(hdev))
1664                 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1665
1666         if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1667                                 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1668                 hdev->claimed |= HID_CLAIMED_INPUT;
1669
1670         if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1671                         !hdev->hiddev_connect(hdev,
1672                                 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1673                 hdev->claimed |= HID_CLAIMED_HIDDEV;
1674         if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1675                 hdev->claimed |= HID_CLAIMED_HIDRAW;
1676
1677         if (connect_mask & HID_CONNECT_DRIVER)
1678                 hdev->claimed |= HID_CLAIMED_DRIVER;
1679
1680         /* Drivers with the ->raw_event callback set are not required to connect
1681          * to any other listener. */
1682         if (!hdev->claimed && !hdev->driver->raw_event) {
1683                 hid_err(hdev, "device has no listeners, quitting\n");
1684                 return -ENODEV;
1685         }
1686
1687         if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1688                         (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1689                 hdev->ff_init(hdev);
1690
1691         len = 0;
1692         if (hdev->claimed & HID_CLAIMED_INPUT)
1693                 len += sprintf(buf + len, "input");
1694         if (hdev->claimed & HID_CLAIMED_HIDDEV)
1695                 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1696                                 ((struct hiddev *)hdev->hiddev)->minor);
1697         if (hdev->claimed & HID_CLAIMED_HIDRAW)
1698                 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1699                                 ((struct hidraw *)hdev->hidraw)->minor);
1700
1701         type = "Device";
1702         for (i = 0; i < hdev->maxcollection; i++) {
1703                 struct hid_collection *col = &hdev->collection[i];
1704                 if (col->type == HID_COLLECTION_APPLICATION &&
1705                    (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1706                    (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1707                         type = types[col->usage & 0xffff];
1708                         break;
1709                 }
1710         }
1711
1712         switch (hdev->bus) {
1713         case BUS_USB:
1714                 bus = "USB";
1715                 break;
1716         case BUS_BLUETOOTH:
1717                 bus = "BLUETOOTH";
1718                 break;
1719         case BUS_I2C:
1720                 bus = "I2C";
1721                 break;
1722         default:
1723                 bus = "<UNKNOWN>";
1724         }
1725
1726         ret = device_create_file(&hdev->dev, &dev_attr_country);
1727         if (ret)
1728                 hid_warn(hdev,
1729                          "can't create sysfs country code attribute err: %d\n", ret);
1730
1731         hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1732                  buf, bus, hdev->version >> 8, hdev->version & 0xff,
1733                  type, hdev->name, hdev->phys);
1734
1735         return 0;
1736 }
1737 EXPORT_SYMBOL_GPL(hid_connect);
1738
1739 void hid_disconnect(struct hid_device *hdev)
1740 {
1741         device_remove_file(&hdev->dev, &dev_attr_country);
1742         if (hdev->claimed & HID_CLAIMED_INPUT)
1743                 hidinput_disconnect(hdev);
1744         if (hdev->claimed & HID_CLAIMED_HIDDEV)
1745                 hdev->hiddev_disconnect(hdev);
1746         if (hdev->claimed & HID_CLAIMED_HIDRAW)
1747                 hidraw_disconnect(hdev);
1748         hdev->claimed = 0;
1749 }
1750 EXPORT_SYMBOL_GPL(hid_disconnect);
1751
1752 /**
1753  * hid_hw_start - start underlying HW
1754  * @hdev: hid device
1755  * @connect_mask: which outputs to connect, see HID_CONNECT_*
1756  *
1757  * Call this in probe function *after* hid_parse. This will setup HW
1758  * buffers and start the device (if not defeirred to device open).
1759  * hid_hw_stop must be called if this was successful.
1760  */
1761 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1762 {
1763         int error;
1764
1765         error = hdev->ll_driver->start(hdev);
1766         if (error)
1767                 return error;
1768
1769         if (connect_mask) {
1770                 error = hid_connect(hdev, connect_mask);
1771                 if (error) {
1772                         hdev->ll_driver->stop(hdev);
1773                         return error;
1774                 }
1775         }
1776
1777         return 0;
1778 }
1779 EXPORT_SYMBOL_GPL(hid_hw_start);
1780
1781 /**
1782  * hid_hw_stop - stop underlying HW
1783  * @hdev: hid device
1784  *
1785  * This is usually called from remove function or from probe when something
1786  * failed and hid_hw_start was called already.
1787  */
1788 void hid_hw_stop(struct hid_device *hdev)
1789 {
1790         hid_disconnect(hdev);
1791         hdev->ll_driver->stop(hdev);
1792 }
1793 EXPORT_SYMBOL_GPL(hid_hw_stop);
1794
1795 /**
1796  * hid_hw_open - signal underlying HW to start delivering events
1797  * @hdev: hid device
1798  *
1799  * Tell underlying HW to start delivering events from the device.
1800  * This function should be called sometime after successful call
1801  * to hid_hiw_start().
1802  */
1803 int hid_hw_open(struct hid_device *hdev)
1804 {
1805         int ret;
1806
1807         ret = mutex_lock_killable(&hdev->ll_open_lock);
1808         if (ret)
1809                 return ret;
1810
1811         if (!hdev->ll_open_count++) {
1812                 ret = hdev->ll_driver->open(hdev);
1813                 if (ret)
1814                         hdev->ll_open_count--;
1815         }
1816
1817         mutex_unlock(&hdev->ll_open_lock);
1818         return ret;
1819 }
1820 EXPORT_SYMBOL_GPL(hid_hw_open);
1821
1822 /**
1823  * hid_hw_close - signal underlaying HW to stop delivering events
1824  *
1825  * @hdev: hid device
1826  *
1827  * This function indicates that we are not interested in the events
1828  * from this device anymore. Delivery of events may or may not stop,
1829  * depending on the number of users still outstanding.
1830  */
1831 void hid_hw_close(struct hid_device *hdev)
1832 {
1833         mutex_lock(&hdev->ll_open_lock);
1834         if (!--hdev->ll_open_count)
1835                 hdev->ll_driver->close(hdev);
1836         mutex_unlock(&hdev->ll_open_lock);
1837 }
1838 EXPORT_SYMBOL_GPL(hid_hw_close);
1839
1840 struct hid_dynid {
1841         struct list_head list;
1842         struct hid_device_id id;
1843 };
1844
1845 /**
1846  * store_new_id - add a new HID device ID to this driver and re-probe devices
1847  * @driver: target device driver
1848  * @buf: buffer for scanning device ID data
1849  * @count: input size
1850  *
1851  * Adds a new dynamic hid device ID to this driver,
1852  * and causes the driver to probe for all devices again.
1853  */
1854 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
1855                 size_t count)
1856 {
1857         struct hid_driver *hdrv = to_hid_driver(drv);
1858         struct hid_dynid *dynid;
1859         __u32 bus, vendor, product;
1860         unsigned long driver_data = 0;
1861         int ret;
1862
1863         ret = sscanf(buf, "%x %x %x %lx",
1864                         &bus, &vendor, &product, &driver_data);
1865         if (ret < 3)
1866                 return -EINVAL;
1867
1868         dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
1869         if (!dynid)
1870                 return -ENOMEM;
1871
1872         dynid->id.bus = bus;
1873         dynid->id.group = HID_GROUP_ANY;
1874         dynid->id.vendor = vendor;
1875         dynid->id.product = product;
1876         dynid->id.driver_data = driver_data;
1877
1878         spin_lock(&hdrv->dyn_lock);
1879         list_add_tail(&dynid->list, &hdrv->dyn_list);
1880         spin_unlock(&hdrv->dyn_lock);
1881
1882         ret = driver_attach(&hdrv->driver);
1883
1884         return ret ? : count;
1885 }
1886 static DRIVER_ATTR_WO(new_id);
1887
1888 static struct attribute *hid_drv_attrs[] = {
1889         &driver_attr_new_id.attr,
1890         NULL,
1891 };
1892 ATTRIBUTE_GROUPS(hid_drv);
1893
1894 static void hid_free_dynids(struct hid_driver *hdrv)
1895 {
1896         struct hid_dynid *dynid, *n;
1897
1898         spin_lock(&hdrv->dyn_lock);
1899         list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
1900                 list_del(&dynid->list);
1901                 kfree(dynid);
1902         }
1903         spin_unlock(&hdrv->dyn_lock);
1904 }
1905
1906 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
1907                                              struct hid_driver *hdrv)
1908 {
1909         struct hid_dynid *dynid;
1910
1911         spin_lock(&hdrv->dyn_lock);
1912         list_for_each_entry(dynid, &hdrv->dyn_list, list) {
1913                 if (hid_match_one_id(hdev, &dynid->id)) {
1914                         spin_unlock(&hdrv->dyn_lock);
1915                         return &dynid->id;
1916                 }
1917         }
1918         spin_unlock(&hdrv->dyn_lock);
1919
1920         return hid_match_id(hdev, hdrv->id_table);
1921 }
1922 EXPORT_SYMBOL_GPL(hid_match_device);
1923
1924 static int hid_bus_match(struct device *dev, struct device_driver *drv)
1925 {
1926         struct hid_driver *hdrv = to_hid_driver(drv);
1927         struct hid_device *hdev = to_hid_device(dev);
1928
1929         return hid_match_device(hdev, hdrv) != NULL;
1930 }
1931
1932 static int hid_device_probe(struct device *dev)
1933 {
1934         struct hid_driver *hdrv = to_hid_driver(dev->driver);
1935         struct hid_device *hdev = to_hid_device(dev);
1936         const struct hid_device_id *id;
1937         int ret = 0;
1938
1939         if (down_interruptible(&hdev->driver_input_lock)) {
1940                 ret = -EINTR;
1941                 goto end;
1942         }
1943         hdev->io_started = false;
1944
1945         if (!hdev->driver) {
1946                 id = hid_match_device(hdev, hdrv);
1947                 if (id == NULL) {
1948                         ret = -ENODEV;
1949                         goto unlock;
1950                 }
1951
1952                 if (hdrv->match) {
1953                         if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
1954                                 ret = -ENODEV;
1955                                 goto unlock;
1956                         }
1957                 } else {
1958                         /*
1959                          * hid-generic implements .match(), so if
1960                          * hid_ignore_special_drivers is set, we can safely
1961                          * return.
1962                          */
1963                         if (hid_ignore_special_drivers) {
1964                                 ret = -ENODEV;
1965                                 goto unlock;
1966                         }
1967                 }
1968
1969                 /* reset the quirks that has been previously set */
1970                 hdev->quirks = hid_lookup_quirk(hdev);
1971                 hdev->driver = hdrv;
1972                 if (hdrv->probe) {
1973                         ret = hdrv->probe(hdev, id);
1974                 } else { /* default probe */
1975                         ret = hid_open_report(hdev);
1976                         if (!ret)
1977                                 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
1978                 }
1979                 if (ret) {
1980                         hid_close_report(hdev);
1981                         hdev->driver = NULL;
1982                 }
1983         }
1984 unlock:
1985         if (!hdev->io_started)
1986                 up(&hdev->driver_input_lock);
1987 end:
1988         return ret;
1989 }
1990
1991 static int hid_device_remove(struct device *dev)
1992 {
1993         struct hid_device *hdev = to_hid_device(dev);
1994         struct hid_driver *hdrv;
1995         int ret = 0;
1996
1997         if (down_interruptible(&hdev->driver_input_lock)) {
1998                 ret = -EINTR;
1999                 goto end;
2000         }
2001         hdev->io_started = false;
2002
2003         hdrv = hdev->driver;
2004         if (hdrv) {
2005                 if (hdrv->remove)
2006                         hdrv->remove(hdev);
2007                 else /* default remove */
2008                         hid_hw_stop(hdev);
2009                 hid_close_report(hdev);
2010                 hdev->driver = NULL;
2011         }
2012
2013         if (!hdev->io_started)
2014                 up(&hdev->driver_input_lock);
2015 end:
2016         return ret;
2017 }
2018
2019 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2020                              char *buf)
2021 {
2022         struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2023
2024         return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2025                          hdev->bus, hdev->group, hdev->vendor, hdev->product);
2026 }
2027 static DEVICE_ATTR_RO(modalias);
2028
2029 static struct attribute *hid_dev_attrs[] = {
2030         &dev_attr_modalias.attr,
2031         NULL,
2032 };
2033 static struct bin_attribute *hid_dev_bin_attrs[] = {
2034         &dev_bin_attr_report_desc,
2035         NULL
2036 };
2037 static const struct attribute_group hid_dev_group = {
2038         .attrs = hid_dev_attrs,
2039         .bin_attrs = hid_dev_bin_attrs,
2040 };
2041 __ATTRIBUTE_GROUPS(hid_dev);
2042
2043 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2044 {
2045         struct hid_device *hdev = to_hid_device(dev);
2046
2047         if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2048                         hdev->bus, hdev->vendor, hdev->product))
2049                 return -ENOMEM;
2050
2051         if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2052                 return -ENOMEM;
2053
2054         if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2055                 return -ENOMEM;
2056
2057         if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2058                 return -ENOMEM;
2059
2060         if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2061                            hdev->bus, hdev->group, hdev->vendor, hdev->product))
2062                 return -ENOMEM;
2063
2064         return 0;
2065 }
2066
2067 struct bus_type hid_bus_type = {
2068         .name           = "hid",
2069         .dev_groups     = hid_dev_groups,
2070         .drv_groups     = hid_drv_groups,
2071         .match          = hid_bus_match,
2072         .probe          = hid_device_probe,
2073         .remove         = hid_device_remove,
2074         .uevent         = hid_uevent,
2075 };
2076 EXPORT_SYMBOL(hid_bus_type);
2077
2078 int hid_add_device(struct hid_device *hdev)
2079 {
2080         static atomic_t id = ATOMIC_INIT(0);
2081         int ret;
2082
2083         if (WARN_ON(hdev->status & HID_STAT_ADDED))
2084                 return -EBUSY;
2085
2086         hdev->quirks = hid_lookup_quirk(hdev);
2087
2088         /* we need to kill them here, otherwise they will stay allocated to
2089          * wait for coming driver */
2090         if (hid_ignore(hdev))
2091                 return -ENODEV;
2092
2093         /*
2094          * Check for the mandatory transport channel.
2095          */
2096          if (!hdev->ll_driver->raw_request) {
2097                 hid_err(hdev, "transport driver missing .raw_request()\n");
2098                 return -EINVAL;
2099          }
2100
2101         /*
2102          * Read the device report descriptor once and use as template
2103          * for the driver-specific modifications.
2104          */
2105         ret = hdev->ll_driver->parse(hdev);
2106         if (ret)
2107                 return ret;
2108         if (!hdev->dev_rdesc)
2109                 return -ENODEV;
2110
2111         /*
2112          * Scan generic devices for group information
2113          */
2114         if (hid_ignore_special_drivers) {
2115                 hdev->group = HID_GROUP_GENERIC;
2116         } else if (!hdev->group &&
2117                    !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2118                 ret = hid_scan_report(hdev);
2119                 if (ret)
2120                         hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2121         }
2122
2123         /* XXX hack, any other cleaner solution after the driver core
2124          * is converted to allow more than 20 bytes as the device name? */
2125         dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2126                      hdev->vendor, hdev->product, atomic_inc_return(&id));
2127
2128         hid_debug_register(hdev, dev_name(&hdev->dev));
2129         ret = device_add(&hdev->dev);
2130         if (!ret)
2131                 hdev->status |= HID_STAT_ADDED;
2132         else
2133                 hid_debug_unregister(hdev);
2134
2135         return ret;
2136 }
2137 EXPORT_SYMBOL_GPL(hid_add_device);
2138
2139 /**
2140  * hid_allocate_device - allocate new hid device descriptor
2141  *
2142  * Allocate and initialize hid device, so that hid_destroy_device might be
2143  * used to free it.
2144  *
2145  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2146  * error value.
2147  */
2148 struct hid_device *hid_allocate_device(void)
2149 {
2150         struct hid_device *hdev;
2151         int ret = -ENOMEM;
2152
2153         hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2154         if (hdev == NULL)
2155                 return ERR_PTR(ret);
2156
2157         device_initialize(&hdev->dev);
2158         hdev->dev.release = hid_device_release;
2159         hdev->dev.bus = &hid_bus_type;
2160         device_enable_async_suspend(&hdev->dev);
2161
2162         hid_close_report(hdev);
2163
2164         init_waitqueue_head(&hdev->debug_wait);
2165         INIT_LIST_HEAD(&hdev->debug_list);
2166         spin_lock_init(&hdev->debug_list_lock);
2167         sema_init(&hdev->driver_input_lock, 1);
2168         mutex_init(&hdev->ll_open_lock);
2169
2170         return hdev;
2171 }
2172 EXPORT_SYMBOL_GPL(hid_allocate_device);
2173
2174 static void hid_remove_device(struct hid_device *hdev)
2175 {
2176         if (hdev->status & HID_STAT_ADDED) {
2177                 device_del(&hdev->dev);
2178                 hid_debug_unregister(hdev);
2179                 hdev->status &= ~HID_STAT_ADDED;
2180         }
2181         kfree(hdev->dev_rdesc);
2182         hdev->dev_rdesc = NULL;
2183         hdev->dev_rsize = 0;
2184 }
2185
2186 /**
2187  * hid_destroy_device - free previously allocated device
2188  *
2189  * @hdev: hid device
2190  *
2191  * If you allocate hid_device through hid_allocate_device, you should ever
2192  * free by this function.
2193  */
2194 void hid_destroy_device(struct hid_device *hdev)
2195 {
2196         hid_remove_device(hdev);
2197         put_device(&hdev->dev);
2198 }
2199 EXPORT_SYMBOL_GPL(hid_destroy_device);
2200
2201
2202 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2203 {
2204         struct hid_driver *hdrv = data;
2205         struct hid_device *hdev = to_hid_device(dev);
2206
2207         if (hdev->driver == hdrv &&
2208             !hdrv->match(hdev, hid_ignore_special_drivers))
2209                 return device_reprobe(dev);
2210
2211         return 0;
2212 }
2213
2214 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2215 {
2216         struct hid_driver *hdrv = to_hid_driver(drv);
2217
2218         if (hdrv->match) {
2219                 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2220                                  __hid_bus_reprobe_drivers);
2221         }
2222
2223         return 0;
2224 }
2225
2226 static int __bus_removed_driver(struct device_driver *drv, void *data)
2227 {
2228         return bus_rescan_devices(&hid_bus_type);
2229 }
2230
2231 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2232                 const char *mod_name)
2233 {
2234         int ret;
2235
2236         hdrv->driver.name = hdrv->name;
2237         hdrv->driver.bus = &hid_bus_type;
2238         hdrv->driver.owner = owner;
2239         hdrv->driver.mod_name = mod_name;
2240
2241         INIT_LIST_HEAD(&hdrv->dyn_list);
2242         spin_lock_init(&hdrv->dyn_lock);
2243
2244         ret = driver_register(&hdrv->driver);
2245
2246         if (ret == 0)
2247                 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2248                                  __hid_bus_driver_added);
2249
2250         return ret;
2251 }
2252 EXPORT_SYMBOL_GPL(__hid_register_driver);
2253
2254 void hid_unregister_driver(struct hid_driver *hdrv)
2255 {
2256         driver_unregister(&hdrv->driver);
2257         hid_free_dynids(hdrv);
2258
2259         bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2260 }
2261 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2262
2263 int hid_check_keys_pressed(struct hid_device *hid)
2264 {
2265         struct hid_input *hidinput;
2266         int i;
2267
2268         if (!(hid->claimed & HID_CLAIMED_INPUT))
2269                 return 0;
2270
2271         list_for_each_entry(hidinput, &hid->inputs, list) {
2272                 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2273                         if (hidinput->input->key[i])
2274                                 return 1;
2275         }
2276
2277         return 0;
2278 }
2279
2280 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2281
2282 static int __init hid_init(void)
2283 {
2284         int ret;
2285
2286         if (hid_debug)
2287                 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2288                         "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2289
2290         ret = bus_register(&hid_bus_type);
2291         if (ret) {
2292                 pr_err("can't register hid bus\n");
2293                 goto err;
2294         }
2295
2296         ret = hidraw_init();
2297         if (ret)
2298                 goto err_bus;
2299
2300         hid_debug_init();
2301
2302         return 0;
2303 err_bus:
2304         bus_unregister(&hid_bus_type);
2305 err:
2306         return ret;
2307 }
2308
2309 static void __exit hid_exit(void)
2310 {
2311         hid_debug_exit();
2312         hidraw_exit();
2313         bus_unregister(&hid_bus_type);
2314         hid_quirks_exit(HID_BUS_ANY);
2315 }
2316
2317 module_init(hid_init);
2318 module_exit(hid_exit);
2319
2320 MODULE_AUTHOR("Andreas Gal");
2321 MODULE_AUTHOR("Vojtech Pavlik");
2322 MODULE_AUTHOR("Jiri Kosina");
2323 MODULE_LICENSE("GPL");