Merge branch 'for-4.18/multitouch' into for-linus
[sfrench/cifs-2.6.git] / drivers / hid / hid-core.c
1 /*
2  *  HID support for Linux
3  *
4  *  Copyright (c) 1999 Andreas Gal
5  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7  *  Copyright (c) 2006-2012 Jiri Kosina
8  */
9
10 /*
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/mm.h>
25 #include <linux/spinlock.h>
26 #include <asm/unaligned.h>
27 #include <asm/byteorder.h>
28 #include <linux/input.h>
29 #include <linux/wait.h>
30 #include <linux/vmalloc.h>
31 #include <linux/sched.h>
32 #include <linux/semaphore.h>
33
34 #include <linux/hid.h>
35 #include <linux/hiddev.h>
36 #include <linux/hid-debug.h>
37 #include <linux/hidraw.h>
38
39 #include "hid-ids.h"
40
41 /*
42  * Version Information
43  */
44
45 #define DRIVER_DESC "HID core driver"
46
47 int hid_debug = 0;
48 module_param_named(debug, hid_debug, int, 0600);
49 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
50 EXPORT_SYMBOL_GPL(hid_debug);
51
52 static int hid_ignore_special_drivers = 0;
53 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
54 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
55
56 /*
57  * Register a new report for a device.
58  */
59
60 struct hid_report *hid_register_report(struct hid_device *device,
61                                        unsigned int type, unsigned int id,
62                                        unsigned int application)
63 {
64         struct hid_report_enum *report_enum = device->report_enum + type;
65         struct hid_report *report;
66
67         if (id >= HID_MAX_IDS)
68                 return NULL;
69         if (report_enum->report_id_hash[id])
70                 return report_enum->report_id_hash[id];
71
72         report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
73         if (!report)
74                 return NULL;
75
76         if (id != 0)
77                 report_enum->numbered = 1;
78
79         report->id = id;
80         report->type = type;
81         report->size = 0;
82         report->device = device;
83         report->application = application;
84         report_enum->report_id_hash[id] = report;
85
86         list_add_tail(&report->list, &report_enum->report_list);
87
88         return report;
89 }
90 EXPORT_SYMBOL_GPL(hid_register_report);
91
92 /*
93  * Register a new field for this report.
94  */
95
96 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
97 {
98         struct hid_field *field;
99
100         if (report->maxfield == HID_MAX_FIELDS) {
101                 hid_err(report->device, "too many fields in report\n");
102                 return NULL;
103         }
104
105         field = kzalloc((sizeof(struct hid_field) +
106                          usages * sizeof(struct hid_usage) +
107                          values * sizeof(unsigned)), GFP_KERNEL);
108         if (!field)
109                 return NULL;
110
111         field->index = report->maxfield++;
112         report->field[field->index] = field;
113         field->usage = (struct hid_usage *)(field + 1);
114         field->value = (s32 *)(field->usage + usages);
115         field->report = report;
116
117         return field;
118 }
119
120 /*
121  * Open a collection. The type/usage is pushed on the stack.
122  */
123
124 static int open_collection(struct hid_parser *parser, unsigned type)
125 {
126         struct hid_collection *collection;
127         unsigned usage;
128
129         usage = parser->local.usage[0];
130
131         if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
132                 hid_err(parser->device, "collection stack overflow\n");
133                 return -EINVAL;
134         }
135
136         if (parser->device->maxcollection == parser->device->collection_size) {
137                 collection = kmalloc(sizeof(struct hid_collection) *
138                                 parser->device->collection_size * 2, GFP_KERNEL);
139                 if (collection == NULL) {
140                         hid_err(parser->device, "failed to reallocate collection array\n");
141                         return -ENOMEM;
142                 }
143                 memcpy(collection, parser->device->collection,
144                         sizeof(struct hid_collection) *
145                         parser->device->collection_size);
146                 memset(collection + parser->device->collection_size, 0,
147                         sizeof(struct hid_collection) *
148                         parser->device->collection_size);
149                 kfree(parser->device->collection);
150                 parser->device->collection = collection;
151                 parser->device->collection_size *= 2;
152         }
153
154         parser->collection_stack[parser->collection_stack_ptr++] =
155                 parser->device->maxcollection;
156
157         collection = parser->device->collection +
158                 parser->device->maxcollection++;
159         collection->type = type;
160         collection->usage = usage;
161         collection->level = parser->collection_stack_ptr - 1;
162
163         if (type == HID_COLLECTION_APPLICATION)
164                 parser->device->maxapplication++;
165
166         return 0;
167 }
168
169 /*
170  * Close a collection.
171  */
172
173 static int close_collection(struct hid_parser *parser)
174 {
175         if (!parser->collection_stack_ptr) {
176                 hid_err(parser->device, "collection stack underflow\n");
177                 return -EINVAL;
178         }
179         parser->collection_stack_ptr--;
180         return 0;
181 }
182
183 /*
184  * Climb up the stack, search for the specified collection type
185  * and return the usage.
186  */
187
188 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
189 {
190         struct hid_collection *collection = parser->device->collection;
191         int n;
192
193         for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
194                 unsigned index = parser->collection_stack[n];
195                 if (collection[index].type == type)
196                         return collection[index].usage;
197         }
198         return 0; /* we know nothing about this usage type */
199 }
200
201 /*
202  * Add a usage to the temporary parser table.
203  */
204
205 static int hid_add_usage(struct hid_parser *parser, unsigned usage)
206 {
207         if (parser->local.usage_index >= HID_MAX_USAGES) {
208                 hid_err(parser->device, "usage index exceeded\n");
209                 return -1;
210         }
211         parser->local.usage[parser->local.usage_index] = usage;
212         parser->local.collection_index[parser->local.usage_index] =
213                 parser->collection_stack_ptr ?
214                 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
215         parser->local.usage_index++;
216         return 0;
217 }
218
219 /*
220  * Register a new field for this report.
221  */
222
223 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
224 {
225         struct hid_report *report;
226         struct hid_field *field;
227         unsigned int usages;
228         unsigned int offset;
229         unsigned int i;
230         unsigned int application;
231
232         application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
233
234         report = hid_register_report(parser->device, report_type,
235                                      parser->global.report_id, application);
236         if (!report) {
237                 hid_err(parser->device, "hid_register_report failed\n");
238                 return -1;
239         }
240
241         /* Handle both signed and unsigned cases properly */
242         if ((parser->global.logical_minimum < 0 &&
243                 parser->global.logical_maximum <
244                 parser->global.logical_minimum) ||
245                 (parser->global.logical_minimum >= 0 &&
246                 (__u32)parser->global.logical_maximum <
247                 (__u32)parser->global.logical_minimum)) {
248                 dbg_hid("logical range invalid 0x%x 0x%x\n",
249                         parser->global.logical_minimum,
250                         parser->global.logical_maximum);
251                 return -1;
252         }
253
254         offset = report->size;
255         report->size += parser->global.report_size * parser->global.report_count;
256
257         if (!parser->local.usage_index) /* Ignore padding fields */
258                 return 0;
259
260         usages = max_t(unsigned, parser->local.usage_index,
261                                  parser->global.report_count);
262
263         field = hid_register_field(report, usages, parser->global.report_count);
264         if (!field)
265                 return 0;
266
267         field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
268         field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
269         field->application = application;
270
271         for (i = 0; i < usages; i++) {
272                 unsigned j = i;
273                 /* Duplicate the last usage we parsed if we have excess values */
274                 if (i >= parser->local.usage_index)
275                         j = parser->local.usage_index - 1;
276                 field->usage[i].hid = parser->local.usage[j];
277                 field->usage[i].collection_index =
278                         parser->local.collection_index[j];
279                 field->usage[i].usage_index = i;
280         }
281
282         field->maxusage = usages;
283         field->flags = flags;
284         field->report_offset = offset;
285         field->report_type = report_type;
286         field->report_size = parser->global.report_size;
287         field->report_count = parser->global.report_count;
288         field->logical_minimum = parser->global.logical_minimum;
289         field->logical_maximum = parser->global.logical_maximum;
290         field->physical_minimum = parser->global.physical_minimum;
291         field->physical_maximum = parser->global.physical_maximum;
292         field->unit_exponent = parser->global.unit_exponent;
293         field->unit = parser->global.unit;
294
295         return 0;
296 }
297
298 /*
299  * Read data value from item.
300  */
301
302 static u32 item_udata(struct hid_item *item)
303 {
304         switch (item->size) {
305         case 1: return item->data.u8;
306         case 2: return item->data.u16;
307         case 4: return item->data.u32;
308         }
309         return 0;
310 }
311
312 static s32 item_sdata(struct hid_item *item)
313 {
314         switch (item->size) {
315         case 1: return item->data.s8;
316         case 2: return item->data.s16;
317         case 4: return item->data.s32;
318         }
319         return 0;
320 }
321
322 /*
323  * Process a global item.
324  */
325
326 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
327 {
328         __s32 raw_value;
329         switch (item->tag) {
330         case HID_GLOBAL_ITEM_TAG_PUSH:
331
332                 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
333                         hid_err(parser->device, "global environment stack overflow\n");
334                         return -1;
335                 }
336
337                 memcpy(parser->global_stack + parser->global_stack_ptr++,
338                         &parser->global, sizeof(struct hid_global));
339                 return 0;
340
341         case HID_GLOBAL_ITEM_TAG_POP:
342
343                 if (!parser->global_stack_ptr) {
344                         hid_err(parser->device, "global environment stack underflow\n");
345                         return -1;
346                 }
347
348                 memcpy(&parser->global, parser->global_stack +
349                         --parser->global_stack_ptr, sizeof(struct hid_global));
350                 return 0;
351
352         case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
353                 parser->global.usage_page = item_udata(item);
354                 return 0;
355
356         case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
357                 parser->global.logical_minimum = item_sdata(item);
358                 return 0;
359
360         case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
361                 if (parser->global.logical_minimum < 0)
362                         parser->global.logical_maximum = item_sdata(item);
363                 else
364                         parser->global.logical_maximum = item_udata(item);
365                 return 0;
366
367         case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
368                 parser->global.physical_minimum = item_sdata(item);
369                 return 0;
370
371         case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
372                 if (parser->global.physical_minimum < 0)
373                         parser->global.physical_maximum = item_sdata(item);
374                 else
375                         parser->global.physical_maximum = item_udata(item);
376                 return 0;
377
378         case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
379                 /* Many devices provide unit exponent as a two's complement
380                  * nibble due to the common misunderstanding of HID
381                  * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
382                  * both this and the standard encoding. */
383                 raw_value = item_sdata(item);
384                 if (!(raw_value & 0xfffffff0))
385                         parser->global.unit_exponent = hid_snto32(raw_value, 4);
386                 else
387                         parser->global.unit_exponent = raw_value;
388                 return 0;
389
390         case HID_GLOBAL_ITEM_TAG_UNIT:
391                 parser->global.unit = item_udata(item);
392                 return 0;
393
394         case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
395                 parser->global.report_size = item_udata(item);
396                 if (parser->global.report_size > 128) {
397                         hid_err(parser->device, "invalid report_size %d\n",
398                                         parser->global.report_size);
399                         return -1;
400                 }
401                 return 0;
402
403         case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
404                 parser->global.report_count = item_udata(item);
405                 if (parser->global.report_count > HID_MAX_USAGES) {
406                         hid_err(parser->device, "invalid report_count %d\n",
407                                         parser->global.report_count);
408                         return -1;
409                 }
410                 return 0;
411
412         case HID_GLOBAL_ITEM_TAG_REPORT_ID:
413                 parser->global.report_id = item_udata(item);
414                 if (parser->global.report_id == 0 ||
415                     parser->global.report_id >= HID_MAX_IDS) {
416                         hid_err(parser->device, "report_id %u is invalid\n",
417                                 parser->global.report_id);
418                         return -1;
419                 }
420                 return 0;
421
422         default:
423                 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
424                 return -1;
425         }
426 }
427
428 /*
429  * Process a local item.
430  */
431
432 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
433 {
434         __u32 data;
435         unsigned n;
436         __u32 count;
437
438         data = item_udata(item);
439
440         switch (item->tag) {
441         case HID_LOCAL_ITEM_TAG_DELIMITER:
442
443                 if (data) {
444                         /*
445                          * We treat items before the first delimiter
446                          * as global to all usage sets (branch 0).
447                          * In the moment we process only these global
448                          * items and the first delimiter set.
449                          */
450                         if (parser->local.delimiter_depth != 0) {
451                                 hid_err(parser->device, "nested delimiters\n");
452                                 return -1;
453                         }
454                         parser->local.delimiter_depth++;
455                         parser->local.delimiter_branch++;
456                 } else {
457                         if (parser->local.delimiter_depth < 1) {
458                                 hid_err(parser->device, "bogus close delimiter\n");
459                                 return -1;
460                         }
461                         parser->local.delimiter_depth--;
462                 }
463                 return 0;
464
465         case HID_LOCAL_ITEM_TAG_USAGE:
466
467                 if (parser->local.delimiter_branch > 1) {
468                         dbg_hid("alternative usage ignored\n");
469                         return 0;
470                 }
471
472                 if (item->size <= 2)
473                         data = (parser->global.usage_page << 16) + data;
474
475                 return hid_add_usage(parser, data);
476
477         case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
478
479                 if (parser->local.delimiter_branch > 1) {
480                         dbg_hid("alternative usage ignored\n");
481                         return 0;
482                 }
483
484                 if (item->size <= 2)
485                         data = (parser->global.usage_page << 16) + data;
486
487                 parser->local.usage_minimum = data;
488                 return 0;
489
490         case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
491
492                 if (parser->local.delimiter_branch > 1) {
493                         dbg_hid("alternative usage ignored\n");
494                         return 0;
495                 }
496
497                 if (item->size <= 2)
498                         data = (parser->global.usage_page << 16) + data;
499
500                 count = data - parser->local.usage_minimum;
501                 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
502                         /*
503                          * We do not warn if the name is not set, we are
504                          * actually pre-scanning the device.
505                          */
506                         if (dev_name(&parser->device->dev))
507                                 hid_warn(parser->device,
508                                          "ignoring exceeding usage max\n");
509                         data = HID_MAX_USAGES - parser->local.usage_index +
510                                 parser->local.usage_minimum - 1;
511                         if (data <= 0) {
512                                 hid_err(parser->device,
513                                         "no more usage index available\n");
514                                 return -1;
515                         }
516                 }
517
518                 for (n = parser->local.usage_minimum; n <= data; n++)
519                         if (hid_add_usage(parser, n)) {
520                                 dbg_hid("hid_add_usage failed\n");
521                                 return -1;
522                         }
523                 return 0;
524
525         default:
526
527                 dbg_hid("unknown local item tag 0x%x\n", item->tag);
528                 return 0;
529         }
530         return 0;
531 }
532
533 /*
534  * Process a main item.
535  */
536
537 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
538 {
539         __u32 data;
540         int ret;
541
542         data = item_udata(item);
543
544         switch (item->tag) {
545         case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
546                 ret = open_collection(parser, data & 0xff);
547                 break;
548         case HID_MAIN_ITEM_TAG_END_COLLECTION:
549                 ret = close_collection(parser);
550                 break;
551         case HID_MAIN_ITEM_TAG_INPUT:
552                 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
553                 break;
554         case HID_MAIN_ITEM_TAG_OUTPUT:
555                 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
556                 break;
557         case HID_MAIN_ITEM_TAG_FEATURE:
558                 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
559                 break;
560         default:
561                 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
562                 ret = 0;
563         }
564
565         memset(&parser->local, 0, sizeof(parser->local));       /* Reset the local parser environment */
566
567         return ret;
568 }
569
570 /*
571  * Process a reserved item.
572  */
573
574 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
575 {
576         dbg_hid("reserved item type, tag 0x%x\n", item->tag);
577         return 0;
578 }
579
580 /*
581  * Free a report and all registered fields. The field->usage and
582  * field->value table's are allocated behind the field, so we need
583  * only to free(field) itself.
584  */
585
586 static void hid_free_report(struct hid_report *report)
587 {
588         unsigned n;
589
590         for (n = 0; n < report->maxfield; n++)
591                 kfree(report->field[n]);
592         kfree(report);
593 }
594
595 /*
596  * Close report. This function returns the device
597  * state to the point prior to hid_open_report().
598  */
599 static void hid_close_report(struct hid_device *device)
600 {
601         unsigned i, j;
602
603         for (i = 0; i < HID_REPORT_TYPES; i++) {
604                 struct hid_report_enum *report_enum = device->report_enum + i;
605
606                 for (j = 0; j < HID_MAX_IDS; j++) {
607                         struct hid_report *report = report_enum->report_id_hash[j];
608                         if (report)
609                                 hid_free_report(report);
610                 }
611                 memset(report_enum, 0, sizeof(*report_enum));
612                 INIT_LIST_HEAD(&report_enum->report_list);
613         }
614
615         kfree(device->rdesc);
616         device->rdesc = NULL;
617         device->rsize = 0;
618
619         kfree(device->collection);
620         device->collection = NULL;
621         device->collection_size = 0;
622         device->maxcollection = 0;
623         device->maxapplication = 0;
624
625         device->status &= ~HID_STAT_PARSED;
626 }
627
628 /*
629  * Free a device structure, all reports, and all fields.
630  */
631
632 static void hid_device_release(struct device *dev)
633 {
634         struct hid_device *hid = to_hid_device(dev);
635
636         hid_close_report(hid);
637         kfree(hid->dev_rdesc);
638         kfree(hid);
639 }
640
641 /*
642  * Fetch a report description item from the data stream. We support long
643  * items, though they are not used yet.
644  */
645
646 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
647 {
648         u8 b;
649
650         if ((end - start) <= 0)
651                 return NULL;
652
653         b = *start++;
654
655         item->type = (b >> 2) & 3;
656         item->tag  = (b >> 4) & 15;
657
658         if (item->tag == HID_ITEM_TAG_LONG) {
659
660                 item->format = HID_ITEM_FORMAT_LONG;
661
662                 if ((end - start) < 2)
663                         return NULL;
664
665                 item->size = *start++;
666                 item->tag  = *start++;
667
668                 if ((end - start) < item->size)
669                         return NULL;
670
671                 item->data.longdata = start;
672                 start += item->size;
673                 return start;
674         }
675
676         item->format = HID_ITEM_FORMAT_SHORT;
677         item->size = b & 3;
678
679         switch (item->size) {
680         case 0:
681                 return start;
682
683         case 1:
684                 if ((end - start) < 1)
685                         return NULL;
686                 item->data.u8 = *start++;
687                 return start;
688
689         case 2:
690                 if ((end - start) < 2)
691                         return NULL;
692                 item->data.u16 = get_unaligned_le16(start);
693                 start = (__u8 *)((__le16 *)start + 1);
694                 return start;
695
696         case 3:
697                 item->size++;
698                 if ((end - start) < 4)
699                         return NULL;
700                 item->data.u32 = get_unaligned_le32(start);
701                 start = (__u8 *)((__le32 *)start + 1);
702                 return start;
703         }
704
705         return NULL;
706 }
707
708 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
709 {
710         struct hid_device *hid = parser->device;
711
712         if (usage == HID_DG_CONTACTID)
713                 hid->group = HID_GROUP_MULTITOUCH;
714 }
715
716 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
717 {
718         if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
719             parser->global.report_size == 8)
720                 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
721 }
722
723 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
724 {
725         struct hid_device *hid = parser->device;
726         int i;
727
728         if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
729             type == HID_COLLECTION_PHYSICAL)
730                 hid->group = HID_GROUP_SENSOR_HUB;
731
732         if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
733             hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
734             hid->group == HID_GROUP_MULTITOUCH)
735                 hid->group = HID_GROUP_GENERIC;
736
737         if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
738                 for (i = 0; i < parser->local.usage_index; i++)
739                         if (parser->local.usage[i] == HID_GD_POINTER)
740                                 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
741
742         if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
743                 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
744 }
745
746 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
747 {
748         __u32 data;
749         int i;
750
751         data = item_udata(item);
752
753         switch (item->tag) {
754         case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
755                 hid_scan_collection(parser, data & 0xff);
756                 break;
757         case HID_MAIN_ITEM_TAG_END_COLLECTION:
758                 break;
759         case HID_MAIN_ITEM_TAG_INPUT:
760                 /* ignore constant inputs, they will be ignored by hid-input */
761                 if (data & HID_MAIN_ITEM_CONSTANT)
762                         break;
763                 for (i = 0; i < parser->local.usage_index; i++)
764                         hid_scan_input_usage(parser, parser->local.usage[i]);
765                 break;
766         case HID_MAIN_ITEM_TAG_OUTPUT:
767                 break;
768         case HID_MAIN_ITEM_TAG_FEATURE:
769                 for (i = 0; i < parser->local.usage_index; i++)
770                         hid_scan_feature_usage(parser, parser->local.usage[i]);
771                 break;
772         }
773
774         /* Reset the local parser environment */
775         memset(&parser->local, 0, sizeof(parser->local));
776
777         return 0;
778 }
779
780 /*
781  * Scan a report descriptor before the device is added to the bus.
782  * Sets device groups and other properties that determine what driver
783  * to load.
784  */
785 static int hid_scan_report(struct hid_device *hid)
786 {
787         struct hid_parser *parser;
788         struct hid_item item;
789         __u8 *start = hid->dev_rdesc;
790         __u8 *end = start + hid->dev_rsize;
791         static int (*dispatch_type[])(struct hid_parser *parser,
792                                       struct hid_item *item) = {
793                 hid_scan_main,
794                 hid_parser_global,
795                 hid_parser_local,
796                 hid_parser_reserved
797         };
798
799         parser = vzalloc(sizeof(struct hid_parser));
800         if (!parser)
801                 return -ENOMEM;
802
803         parser->device = hid;
804         hid->group = HID_GROUP_GENERIC;
805
806         /*
807          * The parsing is simpler than the one in hid_open_report() as we should
808          * be robust against hid errors. Those errors will be raised by
809          * hid_open_report() anyway.
810          */
811         while ((start = fetch_item(start, end, &item)) != NULL)
812                 dispatch_type[item.type](parser, &item);
813
814         /*
815          * Handle special flags set during scanning.
816          */
817         if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
818             (hid->group == HID_GROUP_MULTITOUCH))
819                 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
820
821         /*
822          * Vendor specific handlings
823          */
824         switch (hid->vendor) {
825         case USB_VENDOR_ID_WACOM:
826                 hid->group = HID_GROUP_WACOM;
827                 break;
828         case USB_VENDOR_ID_SYNAPTICS:
829                 if (hid->group == HID_GROUP_GENERIC)
830                         if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
831                             && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
832                                 /*
833                                  * hid-rmi should take care of them,
834                                  * not hid-generic
835                                  */
836                                 hid->group = HID_GROUP_RMI;
837                 break;
838         }
839
840         vfree(parser);
841         return 0;
842 }
843
844 /**
845  * hid_parse_report - parse device report
846  *
847  * @device: hid device
848  * @start: report start
849  * @size: report size
850  *
851  * Allocate the device report as read by the bus driver. This function should
852  * only be called from parse() in ll drivers.
853  */
854 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
855 {
856         hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
857         if (!hid->dev_rdesc)
858                 return -ENOMEM;
859         hid->dev_rsize = size;
860         return 0;
861 }
862 EXPORT_SYMBOL_GPL(hid_parse_report);
863
864 static const char * const hid_report_names[] = {
865         "HID_INPUT_REPORT",
866         "HID_OUTPUT_REPORT",
867         "HID_FEATURE_REPORT",
868 };
869 /**
870  * hid_validate_values - validate existing device report's value indexes
871  *
872  * @device: hid device
873  * @type: which report type to examine
874  * @id: which report ID to examine (0 for first)
875  * @field_index: which report field to examine
876  * @report_counts: expected number of values
877  *
878  * Validate the number of values in a given field of a given report, after
879  * parsing.
880  */
881 struct hid_report *hid_validate_values(struct hid_device *hid,
882                                        unsigned int type, unsigned int id,
883                                        unsigned int field_index,
884                                        unsigned int report_counts)
885 {
886         struct hid_report *report;
887
888         if (type > HID_FEATURE_REPORT) {
889                 hid_err(hid, "invalid HID report type %u\n", type);
890                 return NULL;
891         }
892
893         if (id >= HID_MAX_IDS) {
894                 hid_err(hid, "invalid HID report id %u\n", id);
895                 return NULL;
896         }
897
898         /*
899          * Explicitly not using hid_get_report() here since it depends on
900          * ->numbered being checked, which may not always be the case when
901          * drivers go to access report values.
902          */
903         if (id == 0) {
904                 /*
905                  * Validating on id 0 means we should examine the first
906                  * report in the list.
907                  */
908                 report = list_entry(
909                                 hid->report_enum[type].report_list.next,
910                                 struct hid_report, list);
911         } else {
912                 report = hid->report_enum[type].report_id_hash[id];
913         }
914         if (!report) {
915                 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
916                 return NULL;
917         }
918         if (report->maxfield <= field_index) {
919                 hid_err(hid, "not enough fields in %s %u\n",
920                         hid_report_names[type], id);
921                 return NULL;
922         }
923         if (report->field[field_index]->report_count < report_counts) {
924                 hid_err(hid, "not enough values in %s %u field %u\n",
925                         hid_report_names[type], id, field_index);
926                 return NULL;
927         }
928         return report;
929 }
930 EXPORT_SYMBOL_GPL(hid_validate_values);
931
932 /**
933  * hid_open_report - open a driver-specific device report
934  *
935  * @device: hid device
936  *
937  * Parse a report description into a hid_device structure. Reports are
938  * enumerated, fields are attached to these reports.
939  * 0 returned on success, otherwise nonzero error value.
940  *
941  * This function (or the equivalent hid_parse() macro) should only be
942  * called from probe() in drivers, before starting the device.
943  */
944 int hid_open_report(struct hid_device *device)
945 {
946         struct hid_parser *parser;
947         struct hid_item item;
948         unsigned int size;
949         __u8 *start;
950         __u8 *buf;
951         __u8 *end;
952         int ret;
953         static int (*dispatch_type[])(struct hid_parser *parser,
954                                       struct hid_item *item) = {
955                 hid_parser_main,
956                 hid_parser_global,
957                 hid_parser_local,
958                 hid_parser_reserved
959         };
960
961         if (WARN_ON(device->status & HID_STAT_PARSED))
962                 return -EBUSY;
963
964         start = device->dev_rdesc;
965         if (WARN_ON(!start))
966                 return -ENODEV;
967         size = device->dev_rsize;
968
969         buf = kmemdup(start, size, GFP_KERNEL);
970         if (buf == NULL)
971                 return -ENOMEM;
972
973         if (device->driver->report_fixup)
974                 start = device->driver->report_fixup(device, buf, &size);
975         else
976                 start = buf;
977
978         start = kmemdup(start, size, GFP_KERNEL);
979         kfree(buf);
980         if (start == NULL)
981                 return -ENOMEM;
982
983         device->rdesc = start;
984         device->rsize = size;
985
986         parser = vzalloc(sizeof(struct hid_parser));
987         if (!parser) {
988                 ret = -ENOMEM;
989                 goto err;
990         }
991
992         parser->device = device;
993
994         end = start + size;
995
996         device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
997                                      sizeof(struct hid_collection), GFP_KERNEL);
998         if (!device->collection) {
999                 ret = -ENOMEM;
1000                 goto err;
1001         }
1002         device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1003
1004         ret = -EINVAL;
1005         while ((start = fetch_item(start, end, &item)) != NULL) {
1006
1007                 if (item.format != HID_ITEM_FORMAT_SHORT) {
1008                         hid_err(device, "unexpected long global item\n");
1009                         goto err;
1010                 }
1011
1012                 if (dispatch_type[item.type](parser, &item)) {
1013                         hid_err(device, "item %u %u %u %u parsing failed\n",
1014                                 item.format, (unsigned)item.size,
1015                                 (unsigned)item.type, (unsigned)item.tag);
1016                         goto err;
1017                 }
1018
1019                 if (start == end) {
1020                         if (parser->collection_stack_ptr) {
1021                                 hid_err(device, "unbalanced collection at end of report description\n");
1022                                 goto err;
1023                         }
1024                         if (parser->local.delimiter_depth) {
1025                                 hid_err(device, "unbalanced delimiter at end of report description\n");
1026                                 goto err;
1027                         }
1028                         vfree(parser);
1029                         device->status |= HID_STAT_PARSED;
1030                         return 0;
1031                 }
1032         }
1033
1034         hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
1035 err:
1036         vfree(parser);
1037         hid_close_report(device);
1038         return ret;
1039 }
1040 EXPORT_SYMBOL_GPL(hid_open_report);
1041
1042 /*
1043  * Convert a signed n-bit integer to signed 32-bit integer. Common
1044  * cases are done through the compiler, the screwed things has to be
1045  * done by hand.
1046  */
1047
1048 static s32 snto32(__u32 value, unsigned n)
1049 {
1050         switch (n) {
1051         case 8:  return ((__s8)value);
1052         case 16: return ((__s16)value);
1053         case 32: return ((__s32)value);
1054         }
1055         return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1056 }
1057
1058 s32 hid_snto32(__u32 value, unsigned n)
1059 {
1060         return snto32(value, n);
1061 }
1062 EXPORT_SYMBOL_GPL(hid_snto32);
1063
1064 /*
1065  * Convert a signed 32-bit integer to a signed n-bit integer.
1066  */
1067
1068 static u32 s32ton(__s32 value, unsigned n)
1069 {
1070         s32 a = value >> (n - 1);
1071         if (a && a != -1)
1072                 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1073         return value & ((1 << n) - 1);
1074 }
1075
1076 /*
1077  * Extract/implement a data field from/to a little endian report (bit array).
1078  *
1079  * Code sort-of follows HID spec:
1080  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1081  *
1082  * While the USB HID spec allows unlimited length bit fields in "report
1083  * descriptors", most devices never use more than 16 bits.
1084  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1085  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1086  */
1087
1088 static u32 __extract(u8 *report, unsigned offset, int n)
1089 {
1090         unsigned int idx = offset / 8;
1091         unsigned int bit_nr = 0;
1092         unsigned int bit_shift = offset % 8;
1093         int bits_to_copy = 8 - bit_shift;
1094         u32 value = 0;
1095         u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1096
1097         while (n > 0) {
1098                 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1099                 n -= bits_to_copy;
1100                 bit_nr += bits_to_copy;
1101                 bits_to_copy = 8;
1102                 bit_shift = 0;
1103                 idx++;
1104         }
1105
1106         return value & mask;
1107 }
1108
1109 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1110                         unsigned offset, unsigned n)
1111 {
1112         if (n > 32) {
1113                 hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n",
1114                          n, current->comm);
1115                 n = 32;
1116         }
1117
1118         return __extract(report, offset, n);
1119 }
1120 EXPORT_SYMBOL_GPL(hid_field_extract);
1121
1122 /*
1123  * "implement" : set bits in a little endian bit stream.
1124  * Same concepts as "extract" (see comments above).
1125  * The data mangled in the bit stream remains in little endian
1126  * order the whole time. It make more sense to talk about
1127  * endianness of register values by considering a register
1128  * a "cached" copy of the little endian bit stream.
1129  */
1130
1131 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1132 {
1133         unsigned int idx = offset / 8;
1134         unsigned int bit_shift = offset % 8;
1135         int bits_to_set = 8 - bit_shift;
1136
1137         while (n - bits_to_set >= 0) {
1138                 report[idx] &= ~(0xff << bit_shift);
1139                 report[idx] |= value << bit_shift;
1140                 value >>= bits_to_set;
1141                 n -= bits_to_set;
1142                 bits_to_set = 8;
1143                 bit_shift = 0;
1144                 idx++;
1145         }
1146
1147         /* last nibble */
1148         if (n) {
1149                 u8 bit_mask = ((1U << n) - 1);
1150                 report[idx] &= ~(bit_mask << bit_shift);
1151                 report[idx] |= value << bit_shift;
1152         }
1153 }
1154
1155 static void implement(const struct hid_device *hid, u8 *report,
1156                       unsigned offset, unsigned n, u32 value)
1157 {
1158         if (unlikely(n > 32)) {
1159                 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1160                          __func__, n, current->comm);
1161                 n = 32;
1162         } else if (n < 32) {
1163                 u32 m = (1U << n) - 1;
1164
1165                 if (unlikely(value > m)) {
1166                         hid_warn(hid,
1167                                  "%s() called with too large value %d (n: %d)! (%s)\n",
1168                                  __func__, value, n, current->comm);
1169                         WARN_ON(1);
1170                         value &= m;
1171                 }
1172         }
1173
1174         __implement(report, offset, n, value);
1175 }
1176
1177 /*
1178  * Search an array for a value.
1179  */
1180
1181 static int search(__s32 *array, __s32 value, unsigned n)
1182 {
1183         while (n--) {
1184                 if (*array++ == value)
1185                         return 0;
1186         }
1187         return -1;
1188 }
1189
1190 /**
1191  * hid_match_report - check if driver's raw_event should be called
1192  *
1193  * @hid: hid device
1194  * @report_type: type to match against
1195  *
1196  * compare hid->driver->report_table->report_type to report->type
1197  */
1198 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1199 {
1200         const struct hid_report_id *id = hid->driver->report_table;
1201
1202         if (!id) /* NULL means all */
1203                 return 1;
1204
1205         for (; id->report_type != HID_TERMINATOR; id++)
1206                 if (id->report_type == HID_ANY_ID ||
1207                                 id->report_type == report->type)
1208                         return 1;
1209         return 0;
1210 }
1211
1212 /**
1213  * hid_match_usage - check if driver's event should be called
1214  *
1215  * @hid: hid device
1216  * @usage: usage to match against
1217  *
1218  * compare hid->driver->usage_table->usage_{type,code} to
1219  * usage->usage_{type,code}
1220  */
1221 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1222 {
1223         const struct hid_usage_id *id = hid->driver->usage_table;
1224
1225         if (!id) /* NULL means all */
1226                 return 1;
1227
1228         for (; id->usage_type != HID_ANY_ID - 1; id++)
1229                 if ((id->usage_hid == HID_ANY_ID ||
1230                                 id->usage_hid == usage->hid) &&
1231                                 (id->usage_type == HID_ANY_ID ||
1232                                 id->usage_type == usage->type) &&
1233                                 (id->usage_code == HID_ANY_ID ||
1234                                  id->usage_code == usage->code))
1235                         return 1;
1236         return 0;
1237 }
1238
1239 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1240                 struct hid_usage *usage, __s32 value, int interrupt)
1241 {
1242         struct hid_driver *hdrv = hid->driver;
1243         int ret;
1244
1245         if (!list_empty(&hid->debug_list))
1246                 hid_dump_input(hid, usage, value);
1247
1248         if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1249                 ret = hdrv->event(hid, field, usage, value);
1250                 if (ret != 0) {
1251                         if (ret < 0)
1252                                 hid_err(hid, "%s's event failed with %d\n",
1253                                                 hdrv->name, ret);
1254                         return;
1255                 }
1256         }
1257
1258         if (hid->claimed & HID_CLAIMED_INPUT)
1259                 hidinput_hid_event(hid, field, usage, value);
1260         if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1261                 hid->hiddev_hid_event(hid, field, usage, value);
1262 }
1263
1264 /*
1265  * Analyse a received field, and fetch the data from it. The field
1266  * content is stored for next report processing (we do differential
1267  * reporting to the layer).
1268  */
1269
1270 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1271                             __u8 *data, int interrupt)
1272 {
1273         unsigned n;
1274         unsigned count = field->report_count;
1275         unsigned offset = field->report_offset;
1276         unsigned size = field->report_size;
1277         __s32 min = field->logical_minimum;
1278         __s32 max = field->logical_maximum;
1279         __s32 *value;
1280
1281         value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC);
1282         if (!value)
1283                 return;
1284
1285         for (n = 0; n < count; n++) {
1286
1287                 value[n] = min < 0 ?
1288                         snto32(hid_field_extract(hid, data, offset + n * size,
1289                                size), size) :
1290                         hid_field_extract(hid, data, offset + n * size, size);
1291
1292                 /* Ignore report if ErrorRollOver */
1293                 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1294                     value[n] >= min && value[n] <= max &&
1295                     value[n] - min < field->maxusage &&
1296                     field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1297                         goto exit;
1298         }
1299
1300         for (n = 0; n < count; n++) {
1301
1302                 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1303                         hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1304                         continue;
1305                 }
1306
1307                 if (field->value[n] >= min && field->value[n] <= max
1308                         && field->value[n] - min < field->maxusage
1309                         && field->usage[field->value[n] - min].hid
1310                         && search(value, field->value[n], count))
1311                                 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1312
1313                 if (value[n] >= min && value[n] <= max
1314                         && value[n] - min < field->maxusage
1315                         && field->usage[value[n] - min].hid
1316                         && search(field->value, value[n], count))
1317                                 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1318         }
1319
1320         memcpy(field->value, value, count * sizeof(__s32));
1321 exit:
1322         kfree(value);
1323 }
1324
1325 /*
1326  * Output the field into the report.
1327  */
1328
1329 static void hid_output_field(const struct hid_device *hid,
1330                              struct hid_field *field, __u8 *data)
1331 {
1332         unsigned count = field->report_count;
1333         unsigned offset = field->report_offset;
1334         unsigned size = field->report_size;
1335         unsigned n;
1336
1337         for (n = 0; n < count; n++) {
1338                 if (field->logical_minimum < 0) /* signed values */
1339                         implement(hid, data, offset + n * size, size,
1340                                   s32ton(field->value[n], size));
1341                 else                            /* unsigned values */
1342                         implement(hid, data, offset + n * size, size,
1343                                   field->value[n]);
1344         }
1345 }
1346
1347 /*
1348  * Create a report. 'data' has to be allocated using
1349  * hid_alloc_report_buf() so that it has proper size.
1350  */
1351
1352 void hid_output_report(struct hid_report *report, __u8 *data)
1353 {
1354         unsigned n;
1355
1356         if (report->id > 0)
1357                 *data++ = report->id;
1358
1359         memset(data, 0, ((report->size - 1) >> 3) + 1);
1360         for (n = 0; n < report->maxfield; n++)
1361                 hid_output_field(report->device, report->field[n], data);
1362 }
1363 EXPORT_SYMBOL_GPL(hid_output_report);
1364
1365 /*
1366  * Allocator for buffer that is going to be passed to hid_output_report()
1367  */
1368 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1369 {
1370         /*
1371          * 7 extra bytes are necessary to achieve proper functionality
1372          * of implement() working on 8 byte chunks
1373          */
1374
1375         u32 len = hid_report_len(report) + 7;
1376
1377         return kmalloc(len, flags);
1378 }
1379 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1380
1381 /*
1382  * Set a field value. The report this field belongs to has to be
1383  * created and transferred to the device, to set this value in the
1384  * device.
1385  */
1386
1387 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1388 {
1389         unsigned size;
1390
1391         if (!field)
1392                 return -1;
1393
1394         size = field->report_size;
1395
1396         hid_dump_input(field->report->device, field->usage + offset, value);
1397
1398         if (offset >= field->report_count) {
1399                 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1400                                 offset, field->report_count);
1401                 return -1;
1402         }
1403         if (field->logical_minimum < 0) {
1404                 if (value != snto32(s32ton(value, size), size)) {
1405                         hid_err(field->report->device, "value %d is out of range\n", value);
1406                         return -1;
1407                 }
1408         }
1409         field->value[offset] = value;
1410         return 0;
1411 }
1412 EXPORT_SYMBOL_GPL(hid_set_field);
1413
1414 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1415                 const u8 *data)
1416 {
1417         struct hid_report *report;
1418         unsigned int n = 0;     /* Normally report number is 0 */
1419
1420         /* Device uses numbered reports, data[0] is report number */
1421         if (report_enum->numbered)
1422                 n = *data;
1423
1424         report = report_enum->report_id_hash[n];
1425         if (report == NULL)
1426                 dbg_hid("undefined report_id %u received\n", n);
1427
1428         return report;
1429 }
1430
1431 /*
1432  * Implement a generic .request() callback, using .raw_request()
1433  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1434  */
1435 void __hid_request(struct hid_device *hid, struct hid_report *report,
1436                 int reqtype)
1437 {
1438         char *buf;
1439         int ret;
1440         u32 len;
1441
1442         buf = hid_alloc_report_buf(report, GFP_KERNEL);
1443         if (!buf)
1444                 return;
1445
1446         len = hid_report_len(report);
1447
1448         if (reqtype == HID_REQ_SET_REPORT)
1449                 hid_output_report(report, buf);
1450
1451         ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1452                                           report->type, reqtype);
1453         if (ret < 0) {
1454                 dbg_hid("unable to complete request: %d\n", ret);
1455                 goto out;
1456         }
1457
1458         if (reqtype == HID_REQ_GET_REPORT)
1459                 hid_input_report(hid, report->type, buf, ret, 0);
1460
1461 out:
1462         kfree(buf);
1463 }
1464 EXPORT_SYMBOL_GPL(__hid_request);
1465
1466 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1467                 int interrupt)
1468 {
1469         struct hid_report_enum *report_enum = hid->report_enum + type;
1470         struct hid_report *report;
1471         struct hid_driver *hdrv;
1472         unsigned int a;
1473         u32 rsize, csize = size;
1474         u8 *cdata = data;
1475         int ret = 0;
1476
1477         report = hid_get_report(report_enum, data);
1478         if (!report)
1479                 goto out;
1480
1481         if (report_enum->numbered) {
1482                 cdata++;
1483                 csize--;
1484         }
1485
1486         rsize = ((report->size - 1) >> 3) + 1;
1487
1488         if (rsize > HID_MAX_BUFFER_SIZE)
1489                 rsize = HID_MAX_BUFFER_SIZE;
1490
1491         if (csize < rsize) {
1492                 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1493                                 csize, rsize);
1494                 memset(cdata + csize, 0, rsize - csize);
1495         }
1496
1497         if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1498                 hid->hiddev_report_event(hid, report);
1499         if (hid->claimed & HID_CLAIMED_HIDRAW) {
1500                 ret = hidraw_report_event(hid, data, size);
1501                 if (ret)
1502                         goto out;
1503         }
1504
1505         if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1506                 for (a = 0; a < report->maxfield; a++)
1507                         hid_input_field(hid, report->field[a], cdata, interrupt);
1508                 hdrv = hid->driver;
1509                 if (hdrv && hdrv->report)
1510                         hdrv->report(hid, report);
1511         }
1512
1513         if (hid->claimed & HID_CLAIMED_INPUT)
1514                 hidinput_report_event(hid, report);
1515 out:
1516         return ret;
1517 }
1518 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1519
1520 /**
1521  * hid_input_report - report data from lower layer (usb, bt...)
1522  *
1523  * @hid: hid device
1524  * @type: HID report type (HID_*_REPORT)
1525  * @data: report contents
1526  * @size: size of data parameter
1527  * @interrupt: distinguish between interrupt and control transfers
1528  *
1529  * This is data entry for lower layers.
1530  */
1531 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1532 {
1533         struct hid_report_enum *report_enum;
1534         struct hid_driver *hdrv;
1535         struct hid_report *report;
1536         int ret = 0;
1537
1538         if (!hid)
1539                 return -ENODEV;
1540
1541         if (down_trylock(&hid->driver_input_lock))
1542                 return -EBUSY;
1543
1544         if (!hid->driver) {
1545                 ret = -ENODEV;
1546                 goto unlock;
1547         }
1548         report_enum = hid->report_enum + type;
1549         hdrv = hid->driver;
1550
1551         if (!size) {
1552                 dbg_hid("empty report\n");
1553                 ret = -1;
1554                 goto unlock;
1555         }
1556
1557         /* Avoid unnecessary overhead if debugfs is disabled */
1558         if (!list_empty(&hid->debug_list))
1559                 hid_dump_report(hid, type, data, size);
1560
1561         report = hid_get_report(report_enum, data);
1562
1563         if (!report) {
1564                 ret = -1;
1565                 goto unlock;
1566         }
1567
1568         if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1569                 ret = hdrv->raw_event(hid, report, data, size);
1570                 if (ret < 0)
1571                         goto unlock;
1572         }
1573
1574         ret = hid_report_raw_event(hid, type, data, size, interrupt);
1575
1576 unlock:
1577         up(&hid->driver_input_lock);
1578         return ret;
1579 }
1580 EXPORT_SYMBOL_GPL(hid_input_report);
1581
1582 bool hid_match_one_id(const struct hid_device *hdev,
1583                       const struct hid_device_id *id)
1584 {
1585         return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1586                 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1587                 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1588                 (id->product == HID_ANY_ID || id->product == hdev->product);
1589 }
1590
1591 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1592                 const struct hid_device_id *id)
1593 {
1594         for (; id->bus; id++)
1595                 if (hid_match_one_id(hdev, id))
1596                         return id;
1597
1598         return NULL;
1599 }
1600
1601 static const struct hid_device_id hid_hiddev_list[] = {
1602         { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1603         { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1604         { }
1605 };
1606
1607 static bool hid_hiddev(struct hid_device *hdev)
1608 {
1609         return !!hid_match_id(hdev, hid_hiddev_list);
1610 }
1611
1612
1613 static ssize_t
1614 read_report_descriptor(struct file *filp, struct kobject *kobj,
1615                 struct bin_attribute *attr,
1616                 char *buf, loff_t off, size_t count)
1617 {
1618         struct device *dev = kobj_to_dev(kobj);
1619         struct hid_device *hdev = to_hid_device(dev);
1620
1621         if (off >= hdev->rsize)
1622                 return 0;
1623
1624         if (off + count > hdev->rsize)
1625                 count = hdev->rsize - off;
1626
1627         memcpy(buf, hdev->rdesc + off, count);
1628
1629         return count;
1630 }
1631
1632 static ssize_t
1633 show_country(struct device *dev, struct device_attribute *attr,
1634                 char *buf)
1635 {
1636         struct hid_device *hdev = to_hid_device(dev);
1637
1638         return sprintf(buf, "%02x\n", hdev->country & 0xff);
1639 }
1640
1641 static struct bin_attribute dev_bin_attr_report_desc = {
1642         .attr = { .name = "report_descriptor", .mode = 0444 },
1643         .read = read_report_descriptor,
1644         .size = HID_MAX_DESCRIPTOR_SIZE,
1645 };
1646
1647 static const struct device_attribute dev_attr_country = {
1648         .attr = { .name = "country", .mode = 0444 },
1649         .show = show_country,
1650 };
1651
1652 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1653 {
1654         static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1655                 "Joystick", "Gamepad", "Keyboard", "Keypad",
1656                 "Multi-Axis Controller"
1657         };
1658         const char *type, *bus;
1659         char buf[64] = "";
1660         unsigned int i;
1661         int len;
1662         int ret;
1663
1664         if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1665                 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1666         if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1667                 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1668         if (hdev->bus != BUS_USB)
1669                 connect_mask &= ~HID_CONNECT_HIDDEV;
1670         if (hid_hiddev(hdev))
1671                 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1672
1673         if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1674                                 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1675                 hdev->claimed |= HID_CLAIMED_INPUT;
1676
1677         if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1678                         !hdev->hiddev_connect(hdev,
1679                                 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1680                 hdev->claimed |= HID_CLAIMED_HIDDEV;
1681         if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1682                 hdev->claimed |= HID_CLAIMED_HIDRAW;
1683
1684         if (connect_mask & HID_CONNECT_DRIVER)
1685                 hdev->claimed |= HID_CLAIMED_DRIVER;
1686
1687         /* Drivers with the ->raw_event callback set are not required to connect
1688          * to any other listener. */
1689         if (!hdev->claimed && !hdev->driver->raw_event) {
1690                 hid_err(hdev, "device has no listeners, quitting\n");
1691                 return -ENODEV;
1692         }
1693
1694         if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1695                         (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1696                 hdev->ff_init(hdev);
1697
1698         len = 0;
1699         if (hdev->claimed & HID_CLAIMED_INPUT)
1700                 len += sprintf(buf + len, "input");
1701         if (hdev->claimed & HID_CLAIMED_HIDDEV)
1702                 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1703                                 ((struct hiddev *)hdev->hiddev)->minor);
1704         if (hdev->claimed & HID_CLAIMED_HIDRAW)
1705                 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1706                                 ((struct hidraw *)hdev->hidraw)->minor);
1707
1708         type = "Device";
1709         for (i = 0; i < hdev->maxcollection; i++) {
1710                 struct hid_collection *col = &hdev->collection[i];
1711                 if (col->type == HID_COLLECTION_APPLICATION &&
1712                    (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1713                    (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1714                         type = types[col->usage & 0xffff];
1715                         break;
1716                 }
1717         }
1718
1719         switch (hdev->bus) {
1720         case BUS_USB:
1721                 bus = "USB";
1722                 break;
1723         case BUS_BLUETOOTH:
1724                 bus = "BLUETOOTH";
1725                 break;
1726         case BUS_I2C:
1727                 bus = "I2C";
1728                 break;
1729         default:
1730                 bus = "<UNKNOWN>";
1731         }
1732
1733         ret = device_create_file(&hdev->dev, &dev_attr_country);
1734         if (ret)
1735                 hid_warn(hdev,
1736                          "can't create sysfs country code attribute err: %d\n", ret);
1737
1738         hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1739                  buf, bus, hdev->version >> 8, hdev->version & 0xff,
1740                  type, hdev->name, hdev->phys);
1741
1742         return 0;
1743 }
1744 EXPORT_SYMBOL_GPL(hid_connect);
1745
1746 void hid_disconnect(struct hid_device *hdev)
1747 {
1748         device_remove_file(&hdev->dev, &dev_attr_country);
1749         if (hdev->claimed & HID_CLAIMED_INPUT)
1750                 hidinput_disconnect(hdev);
1751         if (hdev->claimed & HID_CLAIMED_HIDDEV)
1752                 hdev->hiddev_disconnect(hdev);
1753         if (hdev->claimed & HID_CLAIMED_HIDRAW)
1754                 hidraw_disconnect(hdev);
1755         hdev->claimed = 0;
1756 }
1757 EXPORT_SYMBOL_GPL(hid_disconnect);
1758
1759 /**
1760  * hid_hw_start - start underlying HW
1761  * @hdev: hid device
1762  * @connect_mask: which outputs to connect, see HID_CONNECT_*
1763  *
1764  * Call this in probe function *after* hid_parse. This will setup HW
1765  * buffers and start the device (if not defeirred to device open).
1766  * hid_hw_stop must be called if this was successful.
1767  */
1768 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1769 {
1770         int error;
1771
1772         error = hdev->ll_driver->start(hdev);
1773         if (error)
1774                 return error;
1775
1776         if (connect_mask) {
1777                 error = hid_connect(hdev, connect_mask);
1778                 if (error) {
1779                         hdev->ll_driver->stop(hdev);
1780                         return error;
1781                 }
1782         }
1783
1784         return 0;
1785 }
1786 EXPORT_SYMBOL_GPL(hid_hw_start);
1787
1788 /**
1789  * hid_hw_stop - stop underlying HW
1790  * @hdev: hid device
1791  *
1792  * This is usually called from remove function or from probe when something
1793  * failed and hid_hw_start was called already.
1794  */
1795 void hid_hw_stop(struct hid_device *hdev)
1796 {
1797         hid_disconnect(hdev);
1798         hdev->ll_driver->stop(hdev);
1799 }
1800 EXPORT_SYMBOL_GPL(hid_hw_stop);
1801
1802 /**
1803  * hid_hw_open - signal underlying HW to start delivering events
1804  * @hdev: hid device
1805  *
1806  * Tell underlying HW to start delivering events from the device.
1807  * This function should be called sometime after successful call
1808  * to hid_hw_start().
1809  */
1810 int hid_hw_open(struct hid_device *hdev)
1811 {
1812         int ret;
1813
1814         ret = mutex_lock_killable(&hdev->ll_open_lock);
1815         if (ret)
1816                 return ret;
1817
1818         if (!hdev->ll_open_count++) {
1819                 ret = hdev->ll_driver->open(hdev);
1820                 if (ret)
1821                         hdev->ll_open_count--;
1822         }
1823
1824         mutex_unlock(&hdev->ll_open_lock);
1825         return ret;
1826 }
1827 EXPORT_SYMBOL_GPL(hid_hw_open);
1828
1829 /**
1830  * hid_hw_close - signal underlaying HW to stop delivering events
1831  *
1832  * @hdev: hid device
1833  *
1834  * This function indicates that we are not interested in the events
1835  * from this device anymore. Delivery of events may or may not stop,
1836  * depending on the number of users still outstanding.
1837  */
1838 void hid_hw_close(struct hid_device *hdev)
1839 {
1840         mutex_lock(&hdev->ll_open_lock);
1841         if (!--hdev->ll_open_count)
1842                 hdev->ll_driver->close(hdev);
1843         mutex_unlock(&hdev->ll_open_lock);
1844 }
1845 EXPORT_SYMBOL_GPL(hid_hw_close);
1846
1847 struct hid_dynid {
1848         struct list_head list;
1849         struct hid_device_id id;
1850 };
1851
1852 /**
1853  * store_new_id - add a new HID device ID to this driver and re-probe devices
1854  * @driver: target device driver
1855  * @buf: buffer for scanning device ID data
1856  * @count: input size
1857  *
1858  * Adds a new dynamic hid device ID to this driver,
1859  * and causes the driver to probe for all devices again.
1860  */
1861 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
1862                 size_t count)
1863 {
1864         struct hid_driver *hdrv = to_hid_driver(drv);
1865         struct hid_dynid *dynid;
1866         __u32 bus, vendor, product;
1867         unsigned long driver_data = 0;
1868         int ret;
1869
1870         ret = sscanf(buf, "%x %x %x %lx",
1871                         &bus, &vendor, &product, &driver_data);
1872         if (ret < 3)
1873                 return -EINVAL;
1874
1875         dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
1876         if (!dynid)
1877                 return -ENOMEM;
1878
1879         dynid->id.bus = bus;
1880         dynid->id.group = HID_GROUP_ANY;
1881         dynid->id.vendor = vendor;
1882         dynid->id.product = product;
1883         dynid->id.driver_data = driver_data;
1884
1885         spin_lock(&hdrv->dyn_lock);
1886         list_add_tail(&dynid->list, &hdrv->dyn_list);
1887         spin_unlock(&hdrv->dyn_lock);
1888
1889         ret = driver_attach(&hdrv->driver);
1890
1891         return ret ? : count;
1892 }
1893 static DRIVER_ATTR_WO(new_id);
1894
1895 static struct attribute *hid_drv_attrs[] = {
1896         &driver_attr_new_id.attr,
1897         NULL,
1898 };
1899 ATTRIBUTE_GROUPS(hid_drv);
1900
1901 static void hid_free_dynids(struct hid_driver *hdrv)
1902 {
1903         struct hid_dynid *dynid, *n;
1904
1905         spin_lock(&hdrv->dyn_lock);
1906         list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
1907                 list_del(&dynid->list);
1908                 kfree(dynid);
1909         }
1910         spin_unlock(&hdrv->dyn_lock);
1911 }
1912
1913 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
1914                                              struct hid_driver *hdrv)
1915 {
1916         struct hid_dynid *dynid;
1917
1918         spin_lock(&hdrv->dyn_lock);
1919         list_for_each_entry(dynid, &hdrv->dyn_list, list) {
1920                 if (hid_match_one_id(hdev, &dynid->id)) {
1921                         spin_unlock(&hdrv->dyn_lock);
1922                         return &dynid->id;
1923                 }
1924         }
1925         spin_unlock(&hdrv->dyn_lock);
1926
1927         return hid_match_id(hdev, hdrv->id_table);
1928 }
1929 EXPORT_SYMBOL_GPL(hid_match_device);
1930
1931 static int hid_bus_match(struct device *dev, struct device_driver *drv)
1932 {
1933         struct hid_driver *hdrv = to_hid_driver(drv);
1934         struct hid_device *hdev = to_hid_device(dev);
1935
1936         return hid_match_device(hdev, hdrv) != NULL;
1937 }
1938
1939 static int hid_device_probe(struct device *dev)
1940 {
1941         struct hid_driver *hdrv = to_hid_driver(dev->driver);
1942         struct hid_device *hdev = to_hid_device(dev);
1943         const struct hid_device_id *id;
1944         int ret = 0;
1945
1946         if (down_interruptible(&hdev->driver_input_lock)) {
1947                 ret = -EINTR;
1948                 goto end;
1949         }
1950         hdev->io_started = false;
1951
1952         if (!hdev->driver) {
1953                 id = hid_match_device(hdev, hdrv);
1954                 if (id == NULL) {
1955                         ret = -ENODEV;
1956                         goto unlock;
1957                 }
1958
1959                 if (hdrv->match) {
1960                         if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
1961                                 ret = -ENODEV;
1962                                 goto unlock;
1963                         }
1964                 } else {
1965                         /*
1966                          * hid-generic implements .match(), so if
1967                          * hid_ignore_special_drivers is set, we can safely
1968                          * return.
1969                          */
1970                         if (hid_ignore_special_drivers) {
1971                                 ret = -ENODEV;
1972                                 goto unlock;
1973                         }
1974                 }
1975
1976                 /* reset the quirks that has been previously set */
1977                 hdev->quirks = hid_lookup_quirk(hdev);
1978                 hdev->driver = hdrv;
1979                 if (hdrv->probe) {
1980                         ret = hdrv->probe(hdev, id);
1981                 } else { /* default probe */
1982                         ret = hid_open_report(hdev);
1983                         if (!ret)
1984                                 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
1985                 }
1986                 if (ret) {
1987                         hid_close_report(hdev);
1988                         hdev->driver = NULL;
1989                 }
1990         }
1991 unlock:
1992         if (!hdev->io_started)
1993                 up(&hdev->driver_input_lock);
1994 end:
1995         return ret;
1996 }
1997
1998 static int hid_device_remove(struct device *dev)
1999 {
2000         struct hid_device *hdev = to_hid_device(dev);
2001         struct hid_driver *hdrv;
2002         int ret = 0;
2003
2004         if (down_interruptible(&hdev->driver_input_lock)) {
2005                 ret = -EINTR;
2006                 goto end;
2007         }
2008         hdev->io_started = false;
2009
2010         hdrv = hdev->driver;
2011         if (hdrv) {
2012                 if (hdrv->remove)
2013                         hdrv->remove(hdev);
2014                 else /* default remove */
2015                         hid_hw_stop(hdev);
2016                 hid_close_report(hdev);
2017                 hdev->driver = NULL;
2018         }
2019
2020         if (!hdev->io_started)
2021                 up(&hdev->driver_input_lock);
2022 end:
2023         return ret;
2024 }
2025
2026 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2027                              char *buf)
2028 {
2029         struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2030
2031         return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2032                          hdev->bus, hdev->group, hdev->vendor, hdev->product);
2033 }
2034 static DEVICE_ATTR_RO(modalias);
2035
2036 static struct attribute *hid_dev_attrs[] = {
2037         &dev_attr_modalias.attr,
2038         NULL,
2039 };
2040 static struct bin_attribute *hid_dev_bin_attrs[] = {
2041         &dev_bin_attr_report_desc,
2042         NULL
2043 };
2044 static const struct attribute_group hid_dev_group = {
2045         .attrs = hid_dev_attrs,
2046         .bin_attrs = hid_dev_bin_attrs,
2047 };
2048 __ATTRIBUTE_GROUPS(hid_dev);
2049
2050 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2051 {
2052         struct hid_device *hdev = to_hid_device(dev);
2053
2054         if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2055                         hdev->bus, hdev->vendor, hdev->product))
2056                 return -ENOMEM;
2057
2058         if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2059                 return -ENOMEM;
2060
2061         if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2062                 return -ENOMEM;
2063
2064         if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2065                 return -ENOMEM;
2066
2067         if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2068                            hdev->bus, hdev->group, hdev->vendor, hdev->product))
2069                 return -ENOMEM;
2070
2071         return 0;
2072 }
2073
2074 struct bus_type hid_bus_type = {
2075         .name           = "hid",
2076         .dev_groups     = hid_dev_groups,
2077         .drv_groups     = hid_drv_groups,
2078         .match          = hid_bus_match,
2079         .probe          = hid_device_probe,
2080         .remove         = hid_device_remove,
2081         .uevent         = hid_uevent,
2082 };
2083 EXPORT_SYMBOL(hid_bus_type);
2084
2085 int hid_add_device(struct hid_device *hdev)
2086 {
2087         static atomic_t id = ATOMIC_INIT(0);
2088         int ret;
2089
2090         if (WARN_ON(hdev->status & HID_STAT_ADDED))
2091                 return -EBUSY;
2092
2093         hdev->quirks = hid_lookup_quirk(hdev);
2094
2095         /* we need to kill them here, otherwise they will stay allocated to
2096          * wait for coming driver */
2097         if (hid_ignore(hdev))
2098                 return -ENODEV;
2099
2100         /*
2101          * Check for the mandatory transport channel.
2102          */
2103          if (!hdev->ll_driver->raw_request) {
2104                 hid_err(hdev, "transport driver missing .raw_request()\n");
2105                 return -EINVAL;
2106          }
2107
2108         /*
2109          * Read the device report descriptor once and use as template
2110          * for the driver-specific modifications.
2111          */
2112         ret = hdev->ll_driver->parse(hdev);
2113         if (ret)
2114                 return ret;
2115         if (!hdev->dev_rdesc)
2116                 return -ENODEV;
2117
2118         /*
2119          * Scan generic devices for group information
2120          */
2121         if (hid_ignore_special_drivers) {
2122                 hdev->group = HID_GROUP_GENERIC;
2123         } else if (!hdev->group &&
2124                    !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2125                 ret = hid_scan_report(hdev);
2126                 if (ret)
2127                         hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2128         }
2129
2130         /* XXX hack, any other cleaner solution after the driver core
2131          * is converted to allow more than 20 bytes as the device name? */
2132         dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2133                      hdev->vendor, hdev->product, atomic_inc_return(&id));
2134
2135         hid_debug_register(hdev, dev_name(&hdev->dev));
2136         ret = device_add(&hdev->dev);
2137         if (!ret)
2138                 hdev->status |= HID_STAT_ADDED;
2139         else
2140                 hid_debug_unregister(hdev);
2141
2142         return ret;
2143 }
2144 EXPORT_SYMBOL_GPL(hid_add_device);
2145
2146 /**
2147  * hid_allocate_device - allocate new hid device descriptor
2148  *
2149  * Allocate and initialize hid device, so that hid_destroy_device might be
2150  * used to free it.
2151  *
2152  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2153  * error value.
2154  */
2155 struct hid_device *hid_allocate_device(void)
2156 {
2157         struct hid_device *hdev;
2158         int ret = -ENOMEM;
2159
2160         hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2161         if (hdev == NULL)
2162                 return ERR_PTR(ret);
2163
2164         device_initialize(&hdev->dev);
2165         hdev->dev.release = hid_device_release;
2166         hdev->dev.bus = &hid_bus_type;
2167         device_enable_async_suspend(&hdev->dev);
2168
2169         hid_close_report(hdev);
2170
2171         init_waitqueue_head(&hdev->debug_wait);
2172         INIT_LIST_HEAD(&hdev->debug_list);
2173         spin_lock_init(&hdev->debug_list_lock);
2174         sema_init(&hdev->driver_input_lock, 1);
2175         mutex_init(&hdev->ll_open_lock);
2176
2177         return hdev;
2178 }
2179 EXPORT_SYMBOL_GPL(hid_allocate_device);
2180
2181 static void hid_remove_device(struct hid_device *hdev)
2182 {
2183         if (hdev->status & HID_STAT_ADDED) {
2184                 device_del(&hdev->dev);
2185                 hid_debug_unregister(hdev);
2186                 hdev->status &= ~HID_STAT_ADDED;
2187         }
2188         kfree(hdev->dev_rdesc);
2189         hdev->dev_rdesc = NULL;
2190         hdev->dev_rsize = 0;
2191 }
2192
2193 /**
2194  * hid_destroy_device - free previously allocated device
2195  *
2196  * @hdev: hid device
2197  *
2198  * If you allocate hid_device through hid_allocate_device, you should ever
2199  * free by this function.
2200  */
2201 void hid_destroy_device(struct hid_device *hdev)
2202 {
2203         hid_remove_device(hdev);
2204         put_device(&hdev->dev);
2205 }
2206 EXPORT_SYMBOL_GPL(hid_destroy_device);
2207
2208
2209 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2210 {
2211         struct hid_driver *hdrv = data;
2212         struct hid_device *hdev = to_hid_device(dev);
2213
2214         if (hdev->driver == hdrv &&
2215             !hdrv->match(hdev, hid_ignore_special_drivers))
2216                 return device_reprobe(dev);
2217
2218         return 0;
2219 }
2220
2221 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2222 {
2223         struct hid_driver *hdrv = to_hid_driver(drv);
2224
2225         if (hdrv->match) {
2226                 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2227                                  __hid_bus_reprobe_drivers);
2228         }
2229
2230         return 0;
2231 }
2232
2233 static int __bus_removed_driver(struct device_driver *drv, void *data)
2234 {
2235         return bus_rescan_devices(&hid_bus_type);
2236 }
2237
2238 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2239                 const char *mod_name)
2240 {
2241         int ret;
2242
2243         hdrv->driver.name = hdrv->name;
2244         hdrv->driver.bus = &hid_bus_type;
2245         hdrv->driver.owner = owner;
2246         hdrv->driver.mod_name = mod_name;
2247
2248         INIT_LIST_HEAD(&hdrv->dyn_list);
2249         spin_lock_init(&hdrv->dyn_lock);
2250
2251         ret = driver_register(&hdrv->driver);
2252
2253         if (ret == 0)
2254                 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2255                                  __hid_bus_driver_added);
2256
2257         return ret;
2258 }
2259 EXPORT_SYMBOL_GPL(__hid_register_driver);
2260
2261 void hid_unregister_driver(struct hid_driver *hdrv)
2262 {
2263         driver_unregister(&hdrv->driver);
2264         hid_free_dynids(hdrv);
2265
2266         bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2267 }
2268 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2269
2270 int hid_check_keys_pressed(struct hid_device *hid)
2271 {
2272         struct hid_input *hidinput;
2273         int i;
2274
2275         if (!(hid->claimed & HID_CLAIMED_INPUT))
2276                 return 0;
2277
2278         list_for_each_entry(hidinput, &hid->inputs, list) {
2279                 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2280                         if (hidinput->input->key[i])
2281                                 return 1;
2282         }
2283
2284         return 0;
2285 }
2286
2287 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2288
2289 static int __init hid_init(void)
2290 {
2291         int ret;
2292
2293         if (hid_debug)
2294                 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2295                         "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2296
2297         ret = bus_register(&hid_bus_type);
2298         if (ret) {
2299                 pr_err("can't register hid bus\n");
2300                 goto err;
2301         }
2302
2303         ret = hidraw_init();
2304         if (ret)
2305                 goto err_bus;
2306
2307         hid_debug_init();
2308
2309         return 0;
2310 err_bus:
2311         bus_unregister(&hid_bus_type);
2312 err:
2313         return ret;
2314 }
2315
2316 static void __exit hid_exit(void)
2317 {
2318         hid_debug_exit();
2319         hidraw_exit();
2320         bus_unregister(&hid_bus_type);
2321         hid_quirks_exit(HID_BUS_ANY);
2322 }
2323
2324 module_init(hid_init);
2325 module_exit(hid_exit);
2326
2327 MODULE_AUTHOR("Andreas Gal");
2328 MODULE_AUTHOR("Vojtech Pavlik");
2329 MODULE_AUTHOR("Jiri Kosina");
2330 MODULE_LICENSE("GPL");