Merge branch 'for-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jikos/hid
[sfrench/cifs-2.6.git] / drivers / hid / hid-core.c
1 /*
2  *  HID support for Linux
3  *
4  *  Copyright (c) 1999 Andreas Gal
5  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7  *  Copyright (c) 2006-2007 Jiri Kosina
8  */
9
10 /*
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  */
16
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/list.h>
22 #include <linux/mm.h>
23 #include <linux/smp_lock.h>
24 #include <linux/spinlock.h>
25 #include <asm/unaligned.h>
26 #include <asm/byteorder.h>
27 #include <linux/input.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34
35 /*
36  * Version Information
37  */
38
39 #define DRIVER_VERSION "v2.6"
40 #define DRIVER_AUTHOR "Andreas Gal, Vojtech Pavlik, Jiri Kosina"
41 #define DRIVER_DESC "HID core driver"
42 #define DRIVER_LICENSE "GPL"
43
44 /*
45  * Register a new report for a device.
46  */
47
48 static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
49 {
50         struct hid_report_enum *report_enum = device->report_enum + type;
51         struct hid_report *report;
52
53         if (report_enum->report_id_hash[id])
54                 return report_enum->report_id_hash[id];
55
56         if (!(report = kzalloc(sizeof(struct hid_report), GFP_KERNEL)))
57                 return NULL;
58
59         if (id != 0)
60                 report_enum->numbered = 1;
61
62         report->id = id;
63         report->type = type;
64         report->size = 0;
65         report->device = device;
66         report_enum->report_id_hash[id] = report;
67
68         list_add_tail(&report->list, &report_enum->report_list);
69
70         return report;
71 }
72
73 /*
74  * Register a new field for this report.
75  */
76
77 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
78 {
79         struct hid_field *field;
80
81         if (report->maxfield == HID_MAX_FIELDS) {
82                 dbg("too many fields in report");
83                 return NULL;
84         }
85
86         if (!(field = kzalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
87                 + values * sizeof(unsigned), GFP_KERNEL))) return NULL;
88
89         field->index = report->maxfield++;
90         report->field[field->index] = field;
91         field->usage = (struct hid_usage *)(field + 1);
92         field->value = (unsigned *)(field->usage + usages);
93         field->report = report;
94
95         return field;
96 }
97
98 /*
99  * Open a collection. The type/usage is pushed on the stack.
100  */
101
102 static int open_collection(struct hid_parser *parser, unsigned type)
103 {
104         struct hid_collection *collection;
105         unsigned usage;
106
107         usage = parser->local.usage[0];
108
109         if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
110                 dbg("collection stack overflow");
111                 return -1;
112         }
113
114         if (parser->device->maxcollection == parser->device->collection_size) {
115                 collection = kmalloc(sizeof(struct hid_collection) *
116                                 parser->device->collection_size * 2, GFP_KERNEL);
117                 if (collection == NULL) {
118                         dbg("failed to reallocate collection array");
119                         return -1;
120                 }
121                 memcpy(collection, parser->device->collection,
122                         sizeof(struct hid_collection) *
123                         parser->device->collection_size);
124                 memset(collection + parser->device->collection_size, 0,
125                         sizeof(struct hid_collection) *
126                         parser->device->collection_size);
127                 kfree(parser->device->collection);
128                 parser->device->collection = collection;
129                 parser->device->collection_size *= 2;
130         }
131
132         parser->collection_stack[parser->collection_stack_ptr++] =
133                 parser->device->maxcollection;
134
135         collection = parser->device->collection +
136                 parser->device->maxcollection++;
137         collection->type = type;
138         collection->usage = usage;
139         collection->level = parser->collection_stack_ptr - 1;
140
141         if (type == HID_COLLECTION_APPLICATION)
142                 parser->device->maxapplication++;
143
144         return 0;
145 }
146
147 /*
148  * Close a collection.
149  */
150
151 static int close_collection(struct hid_parser *parser)
152 {
153         if (!parser->collection_stack_ptr) {
154                 dbg("collection stack underflow");
155                 return -1;
156         }
157         parser->collection_stack_ptr--;
158         return 0;
159 }
160
161 /*
162  * Climb up the stack, search for the specified collection type
163  * and return the usage.
164  */
165
166 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
167 {
168         int n;
169         for (n = parser->collection_stack_ptr - 1; n >= 0; n--)
170                 if (parser->device->collection[parser->collection_stack[n]].type == type)
171                         return parser->device->collection[parser->collection_stack[n]].usage;
172         return 0; /* we know nothing about this usage type */
173 }
174
175 /*
176  * Add a usage to the temporary parser table.
177  */
178
179 static int hid_add_usage(struct hid_parser *parser, unsigned usage)
180 {
181         if (parser->local.usage_index >= HID_MAX_USAGES) {
182                 dbg("usage index exceeded");
183                 return -1;
184         }
185         parser->local.usage[parser->local.usage_index] = usage;
186         parser->local.collection_index[parser->local.usage_index] =
187                 parser->collection_stack_ptr ?
188                 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
189         parser->local.usage_index++;
190         return 0;
191 }
192
193 /*
194  * Register a new field for this report.
195  */
196
197 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
198 {
199         struct hid_report *report;
200         struct hid_field *field;
201         int usages;
202         unsigned offset;
203         int i;
204
205         if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) {
206                 dbg("hid_register_report failed");
207                 return -1;
208         }
209
210         if (parser->global.logical_maximum < parser->global.logical_minimum) {
211                 dbg("logical range invalid %d %d", parser->global.logical_minimum, parser->global.logical_maximum);
212                 return -1;
213         }
214
215         offset = report->size;
216         report->size += parser->global.report_size * parser->global.report_count;
217
218         if (!parser->local.usage_index) /* Ignore padding fields */
219                 return 0;
220
221         usages = max_t(int, parser->local.usage_index, parser->global.report_count);
222
223         if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL)
224                 return 0;
225
226         field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
227         field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
228         field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
229
230         for (i = 0; i < usages; i++) {
231                 int j = i;
232                 /* Duplicate the last usage we parsed if we have excess values */
233                 if (i >= parser->local.usage_index)
234                         j = parser->local.usage_index - 1;
235                 field->usage[i].hid = parser->local.usage[j];
236                 field->usage[i].collection_index =
237                         parser->local.collection_index[j];
238         }
239
240         field->maxusage = usages;
241         field->flags = flags;
242         field->report_offset = offset;
243         field->report_type = report_type;
244         field->report_size = parser->global.report_size;
245         field->report_count = parser->global.report_count;
246         field->logical_minimum = parser->global.logical_minimum;
247         field->logical_maximum = parser->global.logical_maximum;
248         field->physical_minimum = parser->global.physical_minimum;
249         field->physical_maximum = parser->global.physical_maximum;
250         field->unit_exponent = parser->global.unit_exponent;
251         field->unit = parser->global.unit;
252
253         return 0;
254 }
255
256 /*
257  * Read data value from item.
258  */
259
260 static u32 item_udata(struct hid_item *item)
261 {
262         switch (item->size) {
263                 case 1: return item->data.u8;
264                 case 2: return item->data.u16;
265                 case 4: return item->data.u32;
266         }
267         return 0;
268 }
269
270 static s32 item_sdata(struct hid_item *item)
271 {
272         switch (item->size) {
273                 case 1: return item->data.s8;
274                 case 2: return item->data.s16;
275                 case 4: return item->data.s32;
276         }
277         return 0;
278 }
279
280 /*
281  * Process a global item.
282  */
283
284 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
285 {
286         switch (item->tag) {
287
288                 case HID_GLOBAL_ITEM_TAG_PUSH:
289
290                         if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
291                                 dbg("global enviroment stack overflow");
292                                 return -1;
293                         }
294
295                         memcpy(parser->global_stack + parser->global_stack_ptr++,
296                                 &parser->global, sizeof(struct hid_global));
297                         return 0;
298
299                 case HID_GLOBAL_ITEM_TAG_POP:
300
301                         if (!parser->global_stack_ptr) {
302                                 dbg("global enviroment stack underflow");
303                                 return -1;
304                         }
305
306                         memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr,
307                                 sizeof(struct hid_global));
308                         return 0;
309
310                 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
311                         parser->global.usage_page = item_udata(item);
312                         return 0;
313
314                 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
315                         parser->global.logical_minimum = item_sdata(item);
316                         return 0;
317
318                 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
319                         if (parser->global.logical_minimum < 0)
320                                 parser->global.logical_maximum = item_sdata(item);
321                         else
322                                 parser->global.logical_maximum = item_udata(item);
323                         return 0;
324
325                 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
326                         parser->global.physical_minimum = item_sdata(item);
327                         return 0;
328
329                 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
330                         if (parser->global.physical_minimum < 0)
331                                 parser->global.physical_maximum = item_sdata(item);
332                         else
333                                 parser->global.physical_maximum = item_udata(item);
334                         return 0;
335
336                 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
337                         parser->global.unit_exponent = item_sdata(item);
338                         return 0;
339
340                 case HID_GLOBAL_ITEM_TAG_UNIT:
341                         parser->global.unit = item_udata(item);
342                         return 0;
343
344                 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
345                         if ((parser->global.report_size = item_udata(item)) > 32) {
346                                 dbg("invalid report_size %d", parser->global.report_size);
347                                 return -1;
348                         }
349                         return 0;
350
351                 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
352                         if ((parser->global.report_count = item_udata(item)) > HID_MAX_USAGES) {
353                                 dbg("invalid report_count %d", parser->global.report_count);
354                                 return -1;
355                         }
356                         return 0;
357
358                 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
359                         if ((parser->global.report_id = item_udata(item)) == 0) {
360                                 dbg("report_id 0 is invalid");
361                                 return -1;
362                         }
363                         return 0;
364
365                 default:
366                         dbg("unknown global tag 0x%x", item->tag);
367                         return -1;
368         }
369 }
370
371 /*
372  * Process a local item.
373  */
374
375 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
376 {
377         __u32 data;
378         unsigned n;
379
380         if (item->size == 0) {
381                 dbg("item data expected for local item");
382                 return -1;
383         }
384
385         data = item_udata(item);
386
387         switch (item->tag) {
388
389                 case HID_LOCAL_ITEM_TAG_DELIMITER:
390
391                         if (data) {
392                                 /*
393                                  * We treat items before the first delimiter
394                                  * as global to all usage sets (branch 0).
395                                  * In the moment we process only these global
396                                  * items and the first delimiter set.
397                                  */
398                                 if (parser->local.delimiter_depth != 0) {
399                                         dbg("nested delimiters");
400                                         return -1;
401                                 }
402                                 parser->local.delimiter_depth++;
403                                 parser->local.delimiter_branch++;
404                         } else {
405                                 if (parser->local.delimiter_depth < 1) {
406                                         dbg("bogus close delimiter");
407                                         return -1;
408                                 }
409                                 parser->local.delimiter_depth--;
410                         }
411                         return 1;
412
413                 case HID_LOCAL_ITEM_TAG_USAGE:
414
415                         if (parser->local.delimiter_branch > 1) {
416                                 dbg("alternative usage ignored");
417                                 return 0;
418                         }
419
420                         if (item->size <= 2)
421                                 data = (parser->global.usage_page << 16) + data;
422
423                         return hid_add_usage(parser, data);
424
425                 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
426
427                         if (parser->local.delimiter_branch > 1) {
428                                 dbg("alternative usage ignored");
429                                 return 0;
430                         }
431
432                         if (item->size <= 2)
433                                 data = (parser->global.usage_page << 16) + data;
434
435                         parser->local.usage_minimum = data;
436                         return 0;
437
438                 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
439
440                         if (parser->local.delimiter_branch > 1) {
441                                 dbg("alternative usage ignored");
442                                 return 0;
443                         }
444
445                         if (item->size <= 2)
446                                 data = (parser->global.usage_page << 16) + data;
447
448                         for (n = parser->local.usage_minimum; n <= data; n++)
449                                 if (hid_add_usage(parser, n)) {
450                                         dbg("hid_add_usage failed\n");
451                                         return -1;
452                                 }
453                         return 0;
454
455                 default:
456
457                         dbg("unknown local item tag 0x%x", item->tag);
458                         return 0;
459         }
460         return 0;
461 }
462
463 /*
464  * Process a main item.
465  */
466
467 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
468 {
469         __u32 data;
470         int ret;
471
472         data = item_udata(item);
473
474         switch (item->tag) {
475                 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
476                         ret = open_collection(parser, data & 0xff);
477                         break;
478                 case HID_MAIN_ITEM_TAG_END_COLLECTION:
479                         ret = close_collection(parser);
480                         break;
481                 case HID_MAIN_ITEM_TAG_INPUT:
482                         ret = hid_add_field(parser, HID_INPUT_REPORT, data);
483                         break;
484                 case HID_MAIN_ITEM_TAG_OUTPUT:
485                         ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
486                         break;
487                 case HID_MAIN_ITEM_TAG_FEATURE:
488                         ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
489                         break;
490                 default:
491                         dbg("unknown main item tag 0x%x", item->tag);
492                         ret = 0;
493         }
494
495         memset(&parser->local, 0, sizeof(parser->local));       /* Reset the local parser environment */
496
497         return ret;
498 }
499
500 /*
501  * Process a reserved item.
502  */
503
504 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
505 {
506         dbg("reserved item type, tag 0x%x", item->tag);
507         return 0;
508 }
509
510 /*
511  * Free a report and all registered fields. The field->usage and
512  * field->value table's are allocated behind the field, so we need
513  * only to free(field) itself.
514  */
515
516 static void hid_free_report(struct hid_report *report)
517 {
518         unsigned n;
519
520         for (n = 0; n < report->maxfield; n++)
521                 kfree(report->field[n]);
522         kfree(report);
523 }
524
525 /*
526  * Free a device structure, all reports, and all fields.
527  */
528
529 void hid_free_device(struct hid_device *device)
530 {
531         unsigned i,j;
532
533         for (i = 0; i < HID_REPORT_TYPES; i++) {
534                 struct hid_report_enum *report_enum = device->report_enum + i;
535
536                 for (j = 0; j < 256; j++) {
537                         struct hid_report *report = report_enum->report_id_hash[j];
538                         if (report)
539                                 hid_free_report(report);
540                 }
541         }
542
543         kfree(device->rdesc);
544         kfree(device->collection);
545         kfree(device);
546 }
547 EXPORT_SYMBOL_GPL(hid_free_device);
548
549 /*
550  * Fetch a report description item from the data stream. We support long
551  * items, though they are not used yet.
552  */
553
554 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
555 {
556         u8 b;
557
558         if ((end - start) <= 0)
559                 return NULL;
560
561         b = *start++;
562
563         item->type = (b >> 2) & 3;
564         item->tag  = (b >> 4) & 15;
565
566         if (item->tag == HID_ITEM_TAG_LONG) {
567
568                 item->format = HID_ITEM_FORMAT_LONG;
569
570                 if ((end - start) < 2)
571                         return NULL;
572
573                 item->size = *start++;
574                 item->tag  = *start++;
575
576                 if ((end - start) < item->size)
577                         return NULL;
578
579                 item->data.longdata = start;
580                 start += item->size;
581                 return start;
582         }
583
584         item->format = HID_ITEM_FORMAT_SHORT;
585         item->size = b & 3;
586
587         switch (item->size) {
588
589                 case 0:
590                         return start;
591
592                 case 1:
593                         if ((end - start) < 1)
594                                 return NULL;
595                         item->data.u8 = *start++;
596                         return start;
597
598                 case 2:
599                         if ((end - start) < 2)
600                                 return NULL;
601                         item->data.u16 = le16_to_cpu(get_unaligned((__le16*)start));
602                         start = (__u8 *)((__le16 *)start + 1);
603                         return start;
604
605                 case 3:
606                         item->size++;
607                         if ((end - start) < 4)
608                                 return NULL;
609                         item->data.u32 = le32_to_cpu(get_unaligned((__le32*)start));
610                         start = (__u8 *)((__le32 *)start + 1);
611                         return start;
612         }
613
614         return NULL;
615 }
616
617 /*
618  * Parse a report description into a hid_device structure. Reports are
619  * enumerated, fields are attached to these reports.
620  */
621
622 struct hid_device *hid_parse_report(__u8 *start, unsigned size)
623 {
624         struct hid_device *device;
625         struct hid_parser *parser;
626         struct hid_item item;
627         __u8 *end;
628         unsigned i;
629         static int (*dispatch_type[])(struct hid_parser *parser,
630                                       struct hid_item *item) = {
631                 hid_parser_main,
632                 hid_parser_global,
633                 hid_parser_local,
634                 hid_parser_reserved
635         };
636
637         if (!(device = kzalloc(sizeof(struct hid_device), GFP_KERNEL)))
638                 return NULL;
639
640         if (!(device->collection = kzalloc(sizeof(struct hid_collection) *
641                                    HID_DEFAULT_NUM_COLLECTIONS, GFP_KERNEL))) {
642                 kfree(device);
643                 return NULL;
644         }
645         device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
646
647         for (i = 0; i < HID_REPORT_TYPES; i++)
648                 INIT_LIST_HEAD(&device->report_enum[i].report_list);
649
650         if (!(device->rdesc = kmalloc(size, GFP_KERNEL))) {
651                 kfree(device->collection);
652                 kfree(device);
653                 return NULL;
654         }
655         memcpy(device->rdesc, start, size);
656         device->rsize = size;
657
658         if (!(parser = vmalloc(sizeof(struct hid_parser)))) {
659                 kfree(device->rdesc);
660                 kfree(device->collection);
661                 kfree(device);
662                 return NULL;
663         }
664         memset(parser, 0, sizeof(struct hid_parser));
665         parser->device = device;
666
667         end = start + size;
668         while ((start = fetch_item(start, end, &item)) != NULL) {
669
670                 if (item.format != HID_ITEM_FORMAT_SHORT) {
671                         dbg("unexpected long global item");
672                         hid_free_device(device);
673                         vfree(parser);
674                         return NULL;
675                 }
676
677                 if (dispatch_type[item.type](parser, &item)) {
678                         dbg("item %u %u %u %u parsing failed\n",
679                                 item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag);
680                         hid_free_device(device);
681                         vfree(parser);
682                         return NULL;
683                 }
684
685                 if (start == end) {
686                         if (parser->collection_stack_ptr) {
687                                 dbg("unbalanced collection at end of report description");
688                                 hid_free_device(device);
689                                 vfree(parser);
690                                 return NULL;
691                         }
692                         if (parser->local.delimiter_depth) {
693                                 dbg("unbalanced delimiter at end of report description");
694                                 hid_free_device(device);
695                                 vfree(parser);
696                                 return NULL;
697                         }
698                         vfree(parser);
699                         return device;
700                 }
701         }
702
703         dbg("item fetching failed at offset %d\n", (int)(end - start));
704         hid_free_device(device);
705         vfree(parser);
706         return NULL;
707 }
708 EXPORT_SYMBOL_GPL(hid_parse_report);
709
710 /*
711  * Convert a signed n-bit integer to signed 32-bit integer. Common
712  * cases are done through the compiler, the screwed things has to be
713  * done by hand.
714  */
715
716 static s32 snto32(__u32 value, unsigned n)
717 {
718         switch (n) {
719                 case 8:  return ((__s8)value);
720                 case 16: return ((__s16)value);
721                 case 32: return ((__s32)value);
722         }
723         return value & (1 << (n - 1)) ? value | (-1 << n) : value;
724 }
725
726 /*
727  * Convert a signed 32-bit integer to a signed n-bit integer.
728  */
729
730 static u32 s32ton(__s32 value, unsigned n)
731 {
732         s32 a = value >> (n - 1);
733         if (a && a != -1)
734                 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
735         return value & ((1 << n) - 1);
736 }
737
738 /*
739  * Extract/implement a data field from/to a little endian report (bit array).
740  *
741  * Code sort-of follows HID spec:
742  *     http://www.usb.org/developers/devclass_docs/HID1_11.pdf
743  *
744  * While the USB HID spec allows unlimited length bit fields in "report
745  * descriptors", most devices never use more than 16 bits.
746  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
747  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
748  */
749
750 static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n)
751 {
752         u64 x;
753
754         WARN_ON(n > 32);
755
756         report += offset >> 3;  /* adjust byte index */
757         offset &= 7;            /* now only need bit offset into one byte */
758         x = le64_to_cpu(get_unaligned((__le64 *) report));
759         x = (x >> offset) & ((1ULL << n) - 1);  /* extract bit field */
760         return (u32) x;
761 }
762
763 /*
764  * "implement" : set bits in a little endian bit stream.
765  * Same concepts as "extract" (see comments above).
766  * The data mangled in the bit stream remains in little endian
767  * order the whole time. It make more sense to talk about
768  * endianness of register values by considering a register
769  * a "cached" copy of the little endiad bit stream.
770  */
771 static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value)
772 {
773         __le64 x;
774         u64 m = (1ULL << n) - 1;
775
776         WARN_ON(n > 32);
777
778         WARN_ON(value > m);
779         value &= m;
780
781         report += offset >> 3;
782         offset &= 7;
783
784         x = get_unaligned((__le64 *)report);
785         x &= cpu_to_le64(~(m << offset));
786         x |= cpu_to_le64(((u64) value) << offset);
787         put_unaligned(x, (__le64 *) report);
788 }
789
790 /*
791  * Search an array for a value.
792  */
793
794 static __inline__ int search(__s32 *array, __s32 value, unsigned n)
795 {
796         while (n--) {
797                 if (*array++ == value)
798                         return 0;
799         }
800         return -1;
801 }
802
803 static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value, int interrupt)
804 {
805         hid_dump_input(usage, value);
806         if (hid->claimed & HID_CLAIMED_INPUT)
807                 hidinput_hid_event(hid, field, usage, value);
808         if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
809                 hid->hiddev_hid_event(hid, field, usage, value);
810 }
811
812 /*
813  * Analyse a received field, and fetch the data from it. The field
814  * content is stored for next report processing (we do differential
815  * reporting to the layer).
816  */
817
818 void hid_input_field(struct hid_device *hid, struct hid_field *field, __u8 *data, int interrupt)
819 {
820         unsigned n;
821         unsigned count = field->report_count;
822         unsigned offset = field->report_offset;
823         unsigned size = field->report_size;
824         __s32 min = field->logical_minimum;
825         __s32 max = field->logical_maximum;
826         __s32 *value;
827
828         if (!(value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC)))
829                 return;
830
831         for (n = 0; n < count; n++) {
832
833                         value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) :
834                                                     extract(data, offset + n * size, size);
835
836                         if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */
837                             && value[n] >= min && value[n] <= max
838                             && field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
839                                 goto exit;
840         }
841
842         for (n = 0; n < count; n++) {
843
844                 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
845                         hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
846                         continue;
847                 }
848
849                 if (field->value[n] >= min && field->value[n] <= max
850                         && field->usage[field->value[n] - min].hid
851                         && search(value, field->value[n], count))
852                                 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
853
854                 if (value[n] >= min && value[n] <= max
855                         && field->usage[value[n] - min].hid
856                         && search(field->value, value[n], count))
857                                 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
858         }
859
860         memcpy(field->value, value, count * sizeof(__s32));
861 exit:
862         kfree(value);
863 }
864 EXPORT_SYMBOL_GPL(hid_input_field);
865
866 /*
867  * Output the field into the report.
868  */
869
870 static void hid_output_field(struct hid_field *field, __u8 *data)
871 {
872         unsigned count = field->report_count;
873         unsigned offset = field->report_offset;
874         unsigned size = field->report_size;
875         unsigned bitsused = offset + count * size;
876         unsigned n;
877
878         /* make sure the unused bits in the last byte are zeros */
879         if (count > 0 && size > 0 && (bitsused % 8) != 0)
880                 data[(bitsused-1)/8] &= (1 << (bitsused % 8)) - 1;
881
882         for (n = 0; n < count; n++) {
883                 if (field->logical_minimum < 0) /* signed values */
884                         implement(data, offset + n * size, size, s32ton(field->value[n], size));
885                 else                            /* unsigned values */
886                         implement(data, offset + n * size, size, field->value[n]);
887         }
888 }
889
890 /*
891  * Create a report.
892  */
893
894 void hid_output_report(struct hid_report *report, __u8 *data)
895 {
896         unsigned n;
897
898         if (report->id > 0)
899                 *data++ = report->id;
900
901         for (n = 0; n < report->maxfield; n++)
902                 hid_output_field(report->field[n], data);
903 }
904 EXPORT_SYMBOL_GPL(hid_output_report);
905
906 /*
907  * Set a field value. The report this field belongs to has to be
908  * created and transferred to the device, to set this value in the
909  * device.
910  */
911
912 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
913 {
914         unsigned size = field->report_size;
915
916         hid_dump_input(field->usage + offset, value);
917
918         if (offset >= field->report_count) {
919                 dbg("offset (%d) exceeds report_count (%d)", offset, field->report_count);
920                 hid_dump_field(field, 8);
921                 return -1;
922         }
923         if (field->logical_minimum < 0) {
924                 if (value != snto32(s32ton(value, size), size)) {
925                         dbg("value %d is out of range", value);
926                         return -1;
927                 }
928         }
929         field->value[offset] = value;
930         return 0;
931 }
932 EXPORT_SYMBOL_GPL(hid_set_field);
933
934 int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
935 {
936         struct hid_report_enum *report_enum = hid->report_enum + type;
937         struct hid_report *report;
938         int n, rsize;
939
940         if (!hid)
941                 return -ENODEV;
942
943         if (!size) {
944                 dbg("empty report");
945                 return -1;
946         }
947
948 #ifdef CONFIG_HID_DEBUG
949         printk(KERN_DEBUG __FILE__ ": report (size %u) (%snumbered)\n", size, report_enum->numbered ? "" : "un");
950 #endif
951
952         n = 0;                          /* Normally report number is 0 */
953         if (report_enum->numbered) {    /* Device uses numbered reports, data[0] is report number */
954                 n = *data++;
955                 size--;
956         }
957
958 #ifdef CONFIG_HID_DEBUG
959         {
960                 int i;
961                 printk(KERN_DEBUG __FILE__ ": report %d (size %u) = ", n, size);
962                 for (i = 0; i < size; i++)
963                         printk(" %02x", data[i]);
964                 printk("\n");
965         }
966 #endif
967
968         if (!(report = report_enum->report_id_hash[n])) {
969                 dbg("undefined report_id %d received", n);
970                 return -1;
971         }
972
973         rsize = ((report->size - 1) >> 3) + 1;
974
975         if (size < rsize) {
976                 dbg("report %d is too short, (%d < %d)", report->id, size, rsize);
977                 memset(data + size, 0, rsize - size);
978         }
979
980         if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
981                 hid->hiddev_report_event(hid, report);
982
983         for (n = 0; n < report->maxfield; n++)
984                 hid_input_field(hid, report->field[n], data, interrupt);
985
986         if (hid->claimed & HID_CLAIMED_INPUT)
987                 hidinput_report_event(hid, report);
988
989         return 0;
990 }
991 EXPORT_SYMBOL_GPL(hid_input_report);
992
993 MODULE_LICENSE(DRIVER_LICENSE);
994