Merge remote-tracking branches 'asoc/topic/max9878', 'asoc/topic/max98927', 'asoc...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / vmwgfx / vmwgfx_resource.c
1 /**************************************************************************
2  *
3  * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/vmwgfx_drm.h>
30 #include <drm/ttm/ttm_object.h>
31 #include <drm/ttm/ttm_placement.h>
32 #include <drm/drmP.h>
33 #include "vmwgfx_resource_priv.h"
34 #include "vmwgfx_binding.h"
35
36 #define VMW_RES_EVICT_ERR_COUNT 10
37
38 struct vmw_user_dma_buffer {
39         struct ttm_prime_object prime;
40         struct vmw_dma_buffer dma;
41 };
42
43 struct vmw_bo_user_rep {
44         uint32_t handle;
45         uint64_t map_handle;
46 };
47
48 struct vmw_stream {
49         struct vmw_resource res;
50         uint32_t stream_id;
51 };
52
53 struct vmw_user_stream {
54         struct ttm_base_object base;
55         struct vmw_stream stream;
56 };
57
58
59 static uint64_t vmw_user_stream_size;
60
61 static const struct vmw_res_func vmw_stream_func = {
62         .res_type = vmw_res_stream,
63         .needs_backup = false,
64         .may_evict = false,
65         .type_name = "video streams",
66         .backup_placement = NULL,
67         .create = NULL,
68         .destroy = NULL,
69         .bind = NULL,
70         .unbind = NULL
71 };
72
73 static inline struct vmw_dma_buffer *
74 vmw_dma_buffer(struct ttm_buffer_object *bo)
75 {
76         return container_of(bo, struct vmw_dma_buffer, base);
77 }
78
79 static inline struct vmw_user_dma_buffer *
80 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
81 {
82         struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
83         return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
84 }
85
86 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
87 {
88         kref_get(&res->kref);
89         return res;
90 }
91
92 struct vmw_resource *
93 vmw_resource_reference_unless_doomed(struct vmw_resource *res)
94 {
95         return kref_get_unless_zero(&res->kref) ? res : NULL;
96 }
97
98 /**
99  * vmw_resource_release_id - release a resource id to the id manager.
100  *
101  * @res: Pointer to the resource.
102  *
103  * Release the resource id to the resource id manager and set it to -1
104  */
105 void vmw_resource_release_id(struct vmw_resource *res)
106 {
107         struct vmw_private *dev_priv = res->dev_priv;
108         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
109
110         write_lock(&dev_priv->resource_lock);
111         if (res->id != -1)
112                 idr_remove(idr, res->id);
113         res->id = -1;
114         write_unlock(&dev_priv->resource_lock);
115 }
116
117 static void vmw_resource_release(struct kref *kref)
118 {
119         struct vmw_resource *res =
120             container_of(kref, struct vmw_resource, kref);
121         struct vmw_private *dev_priv = res->dev_priv;
122         int id;
123         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
124
125         write_lock(&dev_priv->resource_lock);
126         res->avail = false;
127         list_del_init(&res->lru_head);
128         write_unlock(&dev_priv->resource_lock);
129         if (res->backup) {
130                 struct ttm_buffer_object *bo = &res->backup->base;
131
132                 ttm_bo_reserve(bo, false, false, NULL);
133                 if (!list_empty(&res->mob_head) &&
134                     res->func->unbind != NULL) {
135                         struct ttm_validate_buffer val_buf;
136
137                         val_buf.bo = bo;
138                         val_buf.shared = false;
139                         res->func->unbind(res, false, &val_buf);
140                 }
141                 res->backup_dirty = false;
142                 list_del_init(&res->mob_head);
143                 ttm_bo_unreserve(bo);
144                 vmw_dmabuf_unreference(&res->backup);
145         }
146
147         if (likely(res->hw_destroy != NULL)) {
148                 mutex_lock(&dev_priv->binding_mutex);
149                 vmw_binding_res_list_kill(&res->binding_head);
150                 mutex_unlock(&dev_priv->binding_mutex);
151                 res->hw_destroy(res);
152         }
153
154         id = res->id;
155         if (res->res_free != NULL)
156                 res->res_free(res);
157         else
158                 kfree(res);
159
160         write_lock(&dev_priv->resource_lock);
161         if (id != -1)
162                 idr_remove(idr, id);
163         write_unlock(&dev_priv->resource_lock);
164 }
165
166 void vmw_resource_unreference(struct vmw_resource **p_res)
167 {
168         struct vmw_resource *res = *p_res;
169
170         *p_res = NULL;
171         kref_put(&res->kref, vmw_resource_release);
172 }
173
174
175 /**
176  * vmw_resource_alloc_id - release a resource id to the id manager.
177  *
178  * @res: Pointer to the resource.
179  *
180  * Allocate the lowest free resource from the resource manager, and set
181  * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
182  */
183 int vmw_resource_alloc_id(struct vmw_resource *res)
184 {
185         struct vmw_private *dev_priv = res->dev_priv;
186         int ret;
187         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
188
189         BUG_ON(res->id != -1);
190
191         idr_preload(GFP_KERNEL);
192         write_lock(&dev_priv->resource_lock);
193
194         ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
195         if (ret >= 0)
196                 res->id = ret;
197
198         write_unlock(&dev_priv->resource_lock);
199         idr_preload_end();
200         return ret < 0 ? ret : 0;
201 }
202
203 /**
204  * vmw_resource_init - initialize a struct vmw_resource
205  *
206  * @dev_priv:       Pointer to a device private struct.
207  * @res:            The struct vmw_resource to initialize.
208  * @obj_type:       Resource object type.
209  * @delay_id:       Boolean whether to defer device id allocation until
210  *                  the first validation.
211  * @res_free:       Resource destructor.
212  * @func:           Resource function table.
213  */
214 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
215                       bool delay_id,
216                       void (*res_free) (struct vmw_resource *res),
217                       const struct vmw_res_func *func)
218 {
219         kref_init(&res->kref);
220         res->hw_destroy = NULL;
221         res->res_free = res_free;
222         res->avail = false;
223         res->dev_priv = dev_priv;
224         res->func = func;
225         INIT_LIST_HEAD(&res->lru_head);
226         INIT_LIST_HEAD(&res->mob_head);
227         INIT_LIST_HEAD(&res->binding_head);
228         res->id = -1;
229         res->backup = NULL;
230         res->backup_offset = 0;
231         res->backup_dirty = false;
232         res->res_dirty = false;
233         if (delay_id)
234                 return 0;
235         else
236                 return vmw_resource_alloc_id(res);
237 }
238
239 /**
240  * vmw_resource_activate
241  *
242  * @res:        Pointer to the newly created resource
243  * @hw_destroy: Destroy function. NULL if none.
244  *
245  * Activate a resource after the hardware has been made aware of it.
246  * Set tye destroy function to @destroy. Typically this frees the
247  * resource and destroys the hardware resources associated with it.
248  * Activate basically means that the function vmw_resource_lookup will
249  * find it.
250  */
251 void vmw_resource_activate(struct vmw_resource *res,
252                            void (*hw_destroy) (struct vmw_resource *))
253 {
254         struct vmw_private *dev_priv = res->dev_priv;
255
256         write_lock(&dev_priv->resource_lock);
257         res->avail = true;
258         res->hw_destroy = hw_destroy;
259         write_unlock(&dev_priv->resource_lock);
260 }
261
262 static struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
263                                                 struct idr *idr, int id)
264 {
265         struct vmw_resource *res;
266
267         read_lock(&dev_priv->resource_lock);
268         res = idr_find(idr, id);
269         if (!res || !res->avail || !kref_get_unless_zero(&res->kref))
270                 res = NULL;
271
272         read_unlock(&dev_priv->resource_lock);
273
274         if (unlikely(res == NULL))
275                 return NULL;
276
277         return res;
278 }
279
280 /**
281  * vmw_user_resource_lookup_handle - lookup a struct resource from a
282  * TTM user-space handle and perform basic type checks
283  *
284  * @dev_priv:     Pointer to a device private struct
285  * @tfile:        Pointer to a struct ttm_object_file identifying the caller
286  * @handle:       The TTM user-space handle
287  * @converter:    Pointer to an object describing the resource type
288  * @p_res:        On successful return the location pointed to will contain
289  *                a pointer to a refcounted struct vmw_resource.
290  *
291  * If the handle can't be found or is associated with an incorrect resource
292  * type, -EINVAL will be returned.
293  */
294 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
295                                     struct ttm_object_file *tfile,
296                                     uint32_t handle,
297                                     const struct vmw_user_resource_conv
298                                     *converter,
299                                     struct vmw_resource **p_res)
300 {
301         struct ttm_base_object *base;
302         struct vmw_resource *res;
303         int ret = -EINVAL;
304
305         base = ttm_base_object_lookup(tfile, handle);
306         if (unlikely(base == NULL))
307                 return -EINVAL;
308
309         if (unlikely(ttm_base_object_type(base) != converter->object_type))
310                 goto out_bad_resource;
311
312         res = converter->base_obj_to_res(base);
313
314         read_lock(&dev_priv->resource_lock);
315         if (!res->avail || res->res_free != converter->res_free) {
316                 read_unlock(&dev_priv->resource_lock);
317                 goto out_bad_resource;
318         }
319
320         kref_get(&res->kref);
321         read_unlock(&dev_priv->resource_lock);
322
323         *p_res = res;
324         ret = 0;
325
326 out_bad_resource:
327         ttm_base_object_unref(&base);
328
329         return ret;
330 }
331
332 /**
333  * Helper function that looks either a surface or dmabuf.
334  *
335  * The pointer this pointed at by out_surf and out_buf needs to be null.
336  */
337 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
338                            struct ttm_object_file *tfile,
339                            uint32_t handle,
340                            struct vmw_surface **out_surf,
341                            struct vmw_dma_buffer **out_buf)
342 {
343         struct vmw_resource *res;
344         int ret;
345
346         BUG_ON(*out_surf || *out_buf);
347
348         ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
349                                               user_surface_converter,
350                                               &res);
351         if (!ret) {
352                 *out_surf = vmw_res_to_srf(res);
353                 return 0;
354         }
355
356         *out_surf = NULL;
357         ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL);
358         return ret;
359 }
360
361 /**
362  * Buffer management.
363  */
364
365 /**
366  * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
367  *
368  * @dev_priv: Pointer to a struct vmw_private identifying the device.
369  * @size: The requested buffer size.
370  * @user: Whether this is an ordinary dma buffer or a user dma buffer.
371  */
372 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
373                                   bool user)
374 {
375         static size_t struct_size, user_struct_size;
376         size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
377         size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
378
379         if (unlikely(struct_size == 0)) {
380                 size_t backend_size = ttm_round_pot(vmw_tt_size);
381
382                 struct_size = backend_size +
383                         ttm_round_pot(sizeof(struct vmw_dma_buffer));
384                 user_struct_size = backend_size +
385                         ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
386         }
387
388         if (dev_priv->map_mode == vmw_dma_alloc_coherent)
389                 page_array_size +=
390                         ttm_round_pot(num_pages * sizeof(dma_addr_t));
391
392         return ((user) ? user_struct_size : struct_size) +
393                 page_array_size;
394 }
395
396 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
397 {
398         struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
399
400         kfree(vmw_bo);
401 }
402
403 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
404 {
405         struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
406
407         ttm_prime_object_kfree(vmw_user_bo, prime);
408 }
409
410 int vmw_dmabuf_init(struct vmw_private *dev_priv,
411                     struct vmw_dma_buffer *vmw_bo,
412                     size_t size, struct ttm_placement *placement,
413                     bool interruptible,
414                     void (*bo_free) (struct ttm_buffer_object *bo))
415 {
416         struct ttm_bo_device *bdev = &dev_priv->bdev;
417         size_t acc_size;
418         int ret;
419         bool user = (bo_free == &vmw_user_dmabuf_destroy);
420
421         BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
422
423         acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
424         memset(vmw_bo, 0, sizeof(*vmw_bo));
425
426         INIT_LIST_HEAD(&vmw_bo->res_list);
427
428         ret = ttm_bo_init(bdev, &vmw_bo->base, size,
429                           ttm_bo_type_device, placement,
430                           0, interruptible,
431                           NULL, acc_size, NULL, NULL, bo_free);
432         return ret;
433 }
434
435 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
436 {
437         struct vmw_user_dma_buffer *vmw_user_bo;
438         struct ttm_base_object *base = *p_base;
439         struct ttm_buffer_object *bo;
440
441         *p_base = NULL;
442
443         if (unlikely(base == NULL))
444                 return;
445
446         vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
447                                    prime.base);
448         bo = &vmw_user_bo->dma.base;
449         ttm_bo_unref(&bo);
450 }
451
452 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
453                                             enum ttm_ref_type ref_type)
454 {
455         struct vmw_user_dma_buffer *user_bo;
456         user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
457
458         switch (ref_type) {
459         case TTM_REF_SYNCCPU_WRITE:
460                 ttm_bo_synccpu_write_release(&user_bo->dma.base);
461                 break;
462         default:
463                 BUG();
464         }
465 }
466
467 /**
468  * vmw_user_dmabuf_alloc - Allocate a user dma buffer
469  *
470  * @dev_priv: Pointer to a struct device private.
471  * @tfile: Pointer to a struct ttm_object_file on which to register the user
472  * object.
473  * @size: Size of the dma buffer.
474  * @shareable: Boolean whether the buffer is shareable with other open files.
475  * @handle: Pointer to where the handle value should be assigned.
476  * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
477  * should be assigned.
478  */
479 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
480                           struct ttm_object_file *tfile,
481                           uint32_t size,
482                           bool shareable,
483                           uint32_t *handle,
484                           struct vmw_dma_buffer **p_dma_buf,
485                           struct ttm_base_object **p_base)
486 {
487         struct vmw_user_dma_buffer *user_bo;
488         struct ttm_buffer_object *tmp;
489         int ret;
490
491         user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
492         if (unlikely(user_bo == NULL)) {
493                 DRM_ERROR("Failed to allocate a buffer.\n");
494                 return -ENOMEM;
495         }
496
497         ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
498                               (dev_priv->has_mob) ?
499                               &vmw_sys_placement :
500                               &vmw_vram_sys_placement, true,
501                               &vmw_user_dmabuf_destroy);
502         if (unlikely(ret != 0))
503                 return ret;
504
505         tmp = ttm_bo_reference(&user_bo->dma.base);
506         ret = ttm_prime_object_init(tfile,
507                                     size,
508                                     &user_bo->prime,
509                                     shareable,
510                                     ttm_buffer_type,
511                                     &vmw_user_dmabuf_release,
512                                     &vmw_user_dmabuf_ref_obj_release);
513         if (unlikely(ret != 0)) {
514                 ttm_bo_unref(&tmp);
515                 goto out_no_base_object;
516         }
517
518         *p_dma_buf = &user_bo->dma;
519         if (p_base) {
520                 *p_base = &user_bo->prime.base;
521                 kref_get(&(*p_base)->refcount);
522         }
523         *handle = user_bo->prime.base.hash.key;
524
525 out_no_base_object:
526         return ret;
527 }
528
529 /**
530  * vmw_user_dmabuf_verify_access - verify access permissions on this
531  * buffer object.
532  *
533  * @bo: Pointer to the buffer object being accessed
534  * @tfile: Identifying the caller.
535  */
536 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
537                                   struct ttm_object_file *tfile)
538 {
539         struct vmw_user_dma_buffer *vmw_user_bo;
540
541         if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
542                 return -EPERM;
543
544         vmw_user_bo = vmw_user_dma_buffer(bo);
545
546         /* Check that the caller has opened the object. */
547         if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
548                 return 0;
549
550         DRM_ERROR("Could not grant buffer access.\n");
551         return -EPERM;
552 }
553
554 /**
555  * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
556  * access, idling previous GPU operations on the buffer and optionally
557  * blocking it for further command submissions.
558  *
559  * @user_bo: Pointer to the buffer object being grabbed for CPU access
560  * @tfile: Identifying the caller.
561  * @flags: Flags indicating how the grab should be performed.
562  *
563  * A blocking grab will be automatically released when @tfile is closed.
564  */
565 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
566                                         struct ttm_object_file *tfile,
567                                         uint32_t flags)
568 {
569         struct ttm_buffer_object *bo = &user_bo->dma.base;
570         bool existed;
571         int ret;
572
573         if (flags & drm_vmw_synccpu_allow_cs) {
574                 bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
575                 long lret;
576
577                 lret = reservation_object_wait_timeout_rcu(bo->resv, true, true,
578                                                            nonblock ? 0 : MAX_SCHEDULE_TIMEOUT);
579                 if (!lret)
580                         return -EBUSY;
581                 else if (lret < 0)
582                         return lret;
583                 return 0;
584         }
585
586         ret = ttm_bo_synccpu_write_grab
587                 (bo, !!(flags & drm_vmw_synccpu_dontblock));
588         if (unlikely(ret != 0))
589                 return ret;
590
591         ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
592                                  TTM_REF_SYNCCPU_WRITE, &existed, false);
593         if (ret != 0 || existed)
594                 ttm_bo_synccpu_write_release(&user_bo->dma.base);
595
596         return ret;
597 }
598
599 /**
600  * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
601  * and unblock command submission on the buffer if blocked.
602  *
603  * @handle: Handle identifying the buffer object.
604  * @tfile: Identifying the caller.
605  * @flags: Flags indicating the type of release.
606  */
607 static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
608                                            struct ttm_object_file *tfile,
609                                            uint32_t flags)
610 {
611         if (!(flags & drm_vmw_synccpu_allow_cs))
612                 return ttm_ref_object_base_unref(tfile, handle,
613                                                  TTM_REF_SYNCCPU_WRITE);
614
615         return 0;
616 }
617
618 /**
619  * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
620  * functionality.
621  *
622  * @dev: Identifies the drm device.
623  * @data: Pointer to the ioctl argument.
624  * @file_priv: Identifies the caller.
625  *
626  * This function checks the ioctl arguments for validity and calls the
627  * relevant synccpu functions.
628  */
629 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
630                                   struct drm_file *file_priv)
631 {
632         struct drm_vmw_synccpu_arg *arg =
633                 (struct drm_vmw_synccpu_arg *) data;
634         struct vmw_dma_buffer *dma_buf;
635         struct vmw_user_dma_buffer *user_bo;
636         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
637         struct ttm_base_object *buffer_base;
638         int ret;
639
640         if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
641             || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
642                                drm_vmw_synccpu_dontblock |
643                                drm_vmw_synccpu_allow_cs)) != 0) {
644                 DRM_ERROR("Illegal synccpu flags.\n");
645                 return -EINVAL;
646         }
647
648         switch (arg->op) {
649         case drm_vmw_synccpu_grab:
650                 ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf,
651                                              &buffer_base);
652                 if (unlikely(ret != 0))
653                         return ret;
654
655                 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
656                                        dma);
657                 ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
658                 vmw_dmabuf_unreference(&dma_buf);
659                 ttm_base_object_unref(&buffer_base);
660                 if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
661                              ret != -EBUSY)) {
662                         DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
663                                   (unsigned int) arg->handle);
664                         return ret;
665                 }
666                 break;
667         case drm_vmw_synccpu_release:
668                 ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
669                                                       arg->flags);
670                 if (unlikely(ret != 0)) {
671                         DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
672                                   (unsigned int) arg->handle);
673                         return ret;
674                 }
675                 break;
676         default:
677                 DRM_ERROR("Invalid synccpu operation.\n");
678                 return -EINVAL;
679         }
680
681         return 0;
682 }
683
684 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
685                            struct drm_file *file_priv)
686 {
687         struct vmw_private *dev_priv = vmw_priv(dev);
688         union drm_vmw_alloc_dmabuf_arg *arg =
689             (union drm_vmw_alloc_dmabuf_arg *)data;
690         struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
691         struct drm_vmw_dmabuf_rep *rep = &arg->rep;
692         struct vmw_dma_buffer *dma_buf;
693         uint32_t handle;
694         int ret;
695
696         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
697         if (unlikely(ret != 0))
698                 return ret;
699
700         ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
701                                     req->size, false, &handle, &dma_buf,
702                                     NULL);
703         if (unlikely(ret != 0))
704                 goto out_no_dmabuf;
705
706         rep->handle = handle;
707         rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
708         rep->cur_gmr_id = handle;
709         rep->cur_gmr_offset = 0;
710
711         vmw_dmabuf_unreference(&dma_buf);
712
713 out_no_dmabuf:
714         ttm_read_unlock(&dev_priv->reservation_sem);
715
716         return ret;
717 }
718
719 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
720                            struct drm_file *file_priv)
721 {
722         struct drm_vmw_unref_dmabuf_arg *arg =
723             (struct drm_vmw_unref_dmabuf_arg *)data;
724
725         return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
726                                          arg->handle,
727                                          TTM_REF_USAGE);
728 }
729
730 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
731                            uint32_t handle, struct vmw_dma_buffer **out,
732                            struct ttm_base_object **p_base)
733 {
734         struct vmw_user_dma_buffer *vmw_user_bo;
735         struct ttm_base_object *base;
736
737         base = ttm_base_object_lookup(tfile, handle);
738         if (unlikely(base == NULL)) {
739                 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
740                        (unsigned long)handle);
741                 return -ESRCH;
742         }
743
744         if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
745                 ttm_base_object_unref(&base);
746                 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
747                        (unsigned long)handle);
748                 return -EINVAL;
749         }
750
751         vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
752                                    prime.base);
753         (void)ttm_bo_reference(&vmw_user_bo->dma.base);
754         if (p_base)
755                 *p_base = base;
756         else
757                 ttm_base_object_unref(&base);
758         *out = &vmw_user_bo->dma;
759
760         return 0;
761 }
762
763 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
764                               struct vmw_dma_buffer *dma_buf,
765                               uint32_t *handle)
766 {
767         struct vmw_user_dma_buffer *user_bo;
768
769         if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
770                 return -EINVAL;
771
772         user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
773
774         *handle = user_bo->prime.base.hash.key;
775         return ttm_ref_object_add(tfile, &user_bo->prime.base,
776                                   TTM_REF_USAGE, NULL, false);
777 }
778
779 /*
780  * Stream management
781  */
782
783 static void vmw_stream_destroy(struct vmw_resource *res)
784 {
785         struct vmw_private *dev_priv = res->dev_priv;
786         struct vmw_stream *stream;
787         int ret;
788
789         DRM_INFO("%s: unref\n", __func__);
790         stream = container_of(res, struct vmw_stream, res);
791
792         ret = vmw_overlay_unref(dev_priv, stream->stream_id);
793         WARN_ON(ret != 0);
794 }
795
796 static int vmw_stream_init(struct vmw_private *dev_priv,
797                            struct vmw_stream *stream,
798                            void (*res_free) (struct vmw_resource *res))
799 {
800         struct vmw_resource *res = &stream->res;
801         int ret;
802
803         ret = vmw_resource_init(dev_priv, res, false, res_free,
804                                 &vmw_stream_func);
805
806         if (unlikely(ret != 0)) {
807                 if (res_free == NULL)
808                         kfree(stream);
809                 else
810                         res_free(&stream->res);
811                 return ret;
812         }
813
814         ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
815         if (ret) {
816                 vmw_resource_unreference(&res);
817                 return ret;
818         }
819
820         DRM_INFO("%s: claimed\n", __func__);
821
822         vmw_resource_activate(&stream->res, vmw_stream_destroy);
823         return 0;
824 }
825
826 static void vmw_user_stream_free(struct vmw_resource *res)
827 {
828         struct vmw_user_stream *stream =
829             container_of(res, struct vmw_user_stream, stream.res);
830         struct vmw_private *dev_priv = res->dev_priv;
831
832         ttm_base_object_kfree(stream, base);
833         ttm_mem_global_free(vmw_mem_glob(dev_priv),
834                             vmw_user_stream_size);
835 }
836
837 /**
838  * This function is called when user space has no more references on the
839  * base object. It releases the base-object's reference on the resource object.
840  */
841
842 static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
843 {
844         struct ttm_base_object *base = *p_base;
845         struct vmw_user_stream *stream =
846             container_of(base, struct vmw_user_stream, base);
847         struct vmw_resource *res = &stream->stream.res;
848
849         *p_base = NULL;
850         vmw_resource_unreference(&res);
851 }
852
853 int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
854                            struct drm_file *file_priv)
855 {
856         struct vmw_private *dev_priv = vmw_priv(dev);
857         struct vmw_resource *res;
858         struct vmw_user_stream *stream;
859         struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
860         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
861         struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
862         int ret = 0;
863
864
865         res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
866         if (unlikely(res == NULL))
867                 return -EINVAL;
868
869         if (res->res_free != &vmw_user_stream_free) {
870                 ret = -EINVAL;
871                 goto out;
872         }
873
874         stream = container_of(res, struct vmw_user_stream, stream.res);
875         if (stream->base.tfile != tfile) {
876                 ret = -EINVAL;
877                 goto out;
878         }
879
880         ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
881 out:
882         vmw_resource_unreference(&res);
883         return ret;
884 }
885
886 int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
887                            struct drm_file *file_priv)
888 {
889         struct vmw_private *dev_priv = vmw_priv(dev);
890         struct vmw_user_stream *stream;
891         struct vmw_resource *res;
892         struct vmw_resource *tmp;
893         struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
894         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
895         int ret;
896
897         /*
898          * Approximate idr memory usage with 128 bytes. It will be limited
899          * by maximum number_of streams anyway?
900          */
901
902         if (unlikely(vmw_user_stream_size == 0))
903                 vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
904
905         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
906         if (unlikely(ret != 0))
907                 return ret;
908
909         ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
910                                    vmw_user_stream_size,
911                                    false, true);
912         ttm_read_unlock(&dev_priv->reservation_sem);
913         if (unlikely(ret != 0)) {
914                 if (ret != -ERESTARTSYS)
915                         DRM_ERROR("Out of graphics memory for stream"
916                                   " creation.\n");
917
918                 goto out_ret;
919         }
920
921         stream = kmalloc(sizeof(*stream), GFP_KERNEL);
922         if (unlikely(stream == NULL)) {
923                 ttm_mem_global_free(vmw_mem_glob(dev_priv),
924                                     vmw_user_stream_size);
925                 ret = -ENOMEM;
926                 goto out_ret;
927         }
928
929         res = &stream->stream.res;
930         stream->base.shareable = false;
931         stream->base.tfile = NULL;
932
933         /*
934          * From here on, the destructor takes over resource freeing.
935          */
936
937         ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
938         if (unlikely(ret != 0))
939                 goto out_ret;
940
941         tmp = vmw_resource_reference(res);
942         ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
943                                    &vmw_user_stream_base_release, NULL);
944
945         if (unlikely(ret != 0)) {
946                 vmw_resource_unreference(&tmp);
947                 goto out_err;
948         }
949
950         arg->stream_id = res->id;
951 out_err:
952         vmw_resource_unreference(&res);
953 out_ret:
954         return ret;
955 }
956
957 int vmw_user_stream_lookup(struct vmw_private *dev_priv,
958                            struct ttm_object_file *tfile,
959                            uint32_t *inout_id, struct vmw_resource **out)
960 {
961         struct vmw_user_stream *stream;
962         struct vmw_resource *res;
963         int ret;
964
965         res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
966                                   *inout_id);
967         if (unlikely(res == NULL))
968                 return -EINVAL;
969
970         if (res->res_free != &vmw_user_stream_free) {
971                 ret = -EINVAL;
972                 goto err_ref;
973         }
974
975         stream = container_of(res, struct vmw_user_stream, stream.res);
976         if (stream->base.tfile != tfile) {
977                 ret = -EPERM;
978                 goto err_ref;
979         }
980
981         *inout_id = stream->stream.stream_id;
982         *out = res;
983         return 0;
984 err_ref:
985         vmw_resource_unreference(&res);
986         return ret;
987 }
988
989
990 /**
991  * vmw_dumb_create - Create a dumb kms buffer
992  *
993  * @file_priv: Pointer to a struct drm_file identifying the caller.
994  * @dev: Pointer to the drm device.
995  * @args: Pointer to a struct drm_mode_create_dumb structure
996  *
997  * This is a driver callback for the core drm create_dumb functionality.
998  * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
999  * that the arguments have a different format.
1000  */
1001 int vmw_dumb_create(struct drm_file *file_priv,
1002                     struct drm_device *dev,
1003                     struct drm_mode_create_dumb *args)
1004 {
1005         struct vmw_private *dev_priv = vmw_priv(dev);
1006         struct vmw_dma_buffer *dma_buf;
1007         int ret;
1008
1009         args->pitch = args->width * ((args->bpp + 7) / 8);
1010         args->size = args->pitch * args->height;
1011
1012         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1013         if (unlikely(ret != 0))
1014                 return ret;
1015
1016         ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
1017                                     args->size, false, &args->handle,
1018                                     &dma_buf, NULL);
1019         if (unlikely(ret != 0))
1020                 goto out_no_dmabuf;
1021
1022         vmw_dmabuf_unreference(&dma_buf);
1023 out_no_dmabuf:
1024         ttm_read_unlock(&dev_priv->reservation_sem);
1025         return ret;
1026 }
1027
1028 /**
1029  * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
1030  *
1031  * @file_priv: Pointer to a struct drm_file identifying the caller.
1032  * @dev: Pointer to the drm device.
1033  * @handle: Handle identifying the dumb buffer.
1034  * @offset: The address space offset returned.
1035  *
1036  * This is a driver callback for the core drm dumb_map_offset functionality.
1037  */
1038 int vmw_dumb_map_offset(struct drm_file *file_priv,
1039                         struct drm_device *dev, uint32_t handle,
1040                         uint64_t *offset)
1041 {
1042         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1043         struct vmw_dma_buffer *out_buf;
1044         int ret;
1045
1046         ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL);
1047         if (ret != 0)
1048                 return -EINVAL;
1049
1050         *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
1051         vmw_dmabuf_unreference(&out_buf);
1052         return 0;
1053 }
1054
1055 /**
1056  * vmw_dumb_destroy - Destroy a dumb boffer
1057  *
1058  * @file_priv: Pointer to a struct drm_file identifying the caller.
1059  * @dev: Pointer to the drm device.
1060  * @handle: Handle identifying the dumb buffer.
1061  *
1062  * This is a driver callback for the core drm dumb_destroy functionality.
1063  */
1064 int vmw_dumb_destroy(struct drm_file *file_priv,
1065                      struct drm_device *dev,
1066                      uint32_t handle)
1067 {
1068         return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1069                                          handle, TTM_REF_USAGE);
1070 }
1071
1072 /**
1073  * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
1074  *
1075  * @res:            The resource for which to allocate a backup buffer.
1076  * @interruptible:  Whether any sleeps during allocation should be
1077  *                  performed while interruptible.
1078  */
1079 static int vmw_resource_buf_alloc(struct vmw_resource *res,
1080                                   bool interruptible)
1081 {
1082         unsigned long size =
1083                 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
1084         struct vmw_dma_buffer *backup;
1085         int ret;
1086
1087         if (likely(res->backup)) {
1088                 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
1089                 return 0;
1090         }
1091
1092         backup = kzalloc(sizeof(*backup), GFP_KERNEL);
1093         if (unlikely(backup == NULL))
1094                 return -ENOMEM;
1095
1096         ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
1097                               res->func->backup_placement,
1098                               interruptible,
1099                               &vmw_dmabuf_bo_free);
1100         if (unlikely(ret != 0))
1101                 goto out_no_dmabuf;
1102
1103         res->backup = backup;
1104
1105 out_no_dmabuf:
1106         return ret;
1107 }
1108
1109 /**
1110  * vmw_resource_do_validate - Make a resource up-to-date and visible
1111  *                            to the device.
1112  *
1113  * @res:            The resource to make visible to the device.
1114  * @val_buf:        Information about a buffer possibly
1115  *                  containing backup data if a bind operation is needed.
1116  *
1117  * On hardware resource shortage, this function returns -EBUSY and
1118  * should be retried once resources have been freed up.
1119  */
1120 static int vmw_resource_do_validate(struct vmw_resource *res,
1121                                     struct ttm_validate_buffer *val_buf)
1122 {
1123         int ret = 0;
1124         const struct vmw_res_func *func = res->func;
1125
1126         if (unlikely(res->id == -1)) {
1127                 ret = func->create(res);
1128                 if (unlikely(ret != 0))
1129                         return ret;
1130         }
1131
1132         if (func->bind &&
1133             ((func->needs_backup && list_empty(&res->mob_head) &&
1134               val_buf->bo != NULL) ||
1135              (!func->needs_backup && val_buf->bo != NULL))) {
1136                 ret = func->bind(res, val_buf);
1137                 if (unlikely(ret != 0))
1138                         goto out_bind_failed;
1139                 if (func->needs_backup)
1140                         list_add_tail(&res->mob_head, &res->backup->res_list);
1141         }
1142
1143         /*
1144          * Only do this on write operations, and move to
1145          * vmw_resource_unreserve if it can be called after
1146          * backup buffers have been unreserved. Otherwise
1147          * sort out locking.
1148          */
1149         res->res_dirty = true;
1150
1151         return 0;
1152
1153 out_bind_failed:
1154         func->destroy(res);
1155
1156         return ret;
1157 }
1158
1159 /**
1160  * vmw_resource_unreserve - Unreserve a resource previously reserved for
1161  * command submission.
1162  *
1163  * @res:               Pointer to the struct vmw_resource to unreserve.
1164  * @switch_backup:     Backup buffer has been switched.
1165  * @new_backup:        Pointer to new backup buffer if command submission
1166  *                     switched. May be NULL.
1167  * @new_backup_offset: New backup offset if @switch_backup is true.
1168  *
1169  * Currently unreserving a resource means putting it back on the device's
1170  * resource lru list, so that it can be evicted if necessary.
1171  */
1172 void vmw_resource_unreserve(struct vmw_resource *res,
1173                             bool switch_backup,
1174                             struct vmw_dma_buffer *new_backup,
1175                             unsigned long new_backup_offset)
1176 {
1177         struct vmw_private *dev_priv = res->dev_priv;
1178
1179         if (!list_empty(&res->lru_head))
1180                 return;
1181
1182         if (switch_backup && new_backup != res->backup) {
1183                 if (res->backup) {
1184                         lockdep_assert_held(&res->backup->base.resv->lock.base);
1185                         list_del_init(&res->mob_head);
1186                         vmw_dmabuf_unreference(&res->backup);
1187                 }
1188
1189                 if (new_backup) {
1190                         res->backup = vmw_dmabuf_reference(new_backup);
1191                         lockdep_assert_held(&new_backup->base.resv->lock.base);
1192                         list_add_tail(&res->mob_head, &new_backup->res_list);
1193                 } else {
1194                         res->backup = NULL;
1195                 }
1196         }
1197         if (switch_backup)
1198                 res->backup_offset = new_backup_offset;
1199
1200         if (!res->func->may_evict || res->id == -1 || res->pin_count)
1201                 return;
1202
1203         write_lock(&dev_priv->resource_lock);
1204         list_add_tail(&res->lru_head,
1205                       &res->dev_priv->res_lru[res->func->res_type]);
1206         write_unlock(&dev_priv->resource_lock);
1207 }
1208
1209 /**
1210  * vmw_resource_check_buffer - Check whether a backup buffer is needed
1211  *                             for a resource and in that case, allocate
1212  *                             one, reserve and validate it.
1213  *
1214  * @res:            The resource for which to allocate a backup buffer.
1215  * @interruptible:  Whether any sleeps during allocation should be
1216  *                  performed while interruptible.
1217  * @val_buf:        On successful return contains data about the
1218  *                  reserved and validated backup buffer.
1219  */
1220 static int
1221 vmw_resource_check_buffer(struct vmw_resource *res,
1222                           bool interruptible,
1223                           struct ttm_validate_buffer *val_buf)
1224 {
1225         struct list_head val_list;
1226         bool backup_dirty = false;
1227         int ret;
1228
1229         if (unlikely(res->backup == NULL)) {
1230                 ret = vmw_resource_buf_alloc(res, interruptible);
1231                 if (unlikely(ret != 0))
1232                         return ret;
1233         }
1234
1235         INIT_LIST_HEAD(&val_list);
1236         val_buf->bo = ttm_bo_reference(&res->backup->base);
1237         val_buf->shared = false;
1238         list_add_tail(&val_buf->head, &val_list);
1239         ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL);
1240         if (unlikely(ret != 0))
1241                 goto out_no_reserve;
1242
1243         if (res->func->needs_backup && list_empty(&res->mob_head))
1244                 return 0;
1245
1246         backup_dirty = res->backup_dirty;
1247         ret = ttm_bo_validate(&res->backup->base,
1248                               res->func->backup_placement,
1249                               true, false);
1250
1251         if (unlikely(ret != 0))
1252                 goto out_no_validate;
1253
1254         return 0;
1255
1256 out_no_validate:
1257         ttm_eu_backoff_reservation(NULL, &val_list);
1258 out_no_reserve:
1259         ttm_bo_unref(&val_buf->bo);
1260         if (backup_dirty)
1261                 vmw_dmabuf_unreference(&res->backup);
1262
1263         return ret;
1264 }
1265
1266 /**
1267  * vmw_resource_reserve - Reserve a resource for command submission
1268  *
1269  * @res:            The resource to reserve.
1270  *
1271  * This function takes the resource off the LRU list and make sure
1272  * a backup buffer is present for guest-backed resources. However,
1273  * the buffer may not be bound to the resource at this point.
1274  *
1275  */
1276 int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
1277                          bool no_backup)
1278 {
1279         struct vmw_private *dev_priv = res->dev_priv;
1280         int ret;
1281
1282         write_lock(&dev_priv->resource_lock);
1283         list_del_init(&res->lru_head);
1284         write_unlock(&dev_priv->resource_lock);
1285
1286         if (res->func->needs_backup && res->backup == NULL &&
1287             !no_backup) {
1288                 ret = vmw_resource_buf_alloc(res, interruptible);
1289                 if (unlikely(ret != 0)) {
1290                         DRM_ERROR("Failed to allocate a backup buffer "
1291                                   "of size %lu. bytes\n",
1292                                   (unsigned long) res->backup_size);
1293                         return ret;
1294                 }
1295         }
1296
1297         return 0;
1298 }
1299
1300 /**
1301  * vmw_resource_backoff_reservation - Unreserve and unreference a
1302  *                                    backup buffer
1303  *.
1304  * @val_buf:        Backup buffer information.
1305  */
1306 static void
1307 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1308 {
1309         struct list_head val_list;
1310
1311         if (likely(val_buf->bo == NULL))
1312                 return;
1313
1314         INIT_LIST_HEAD(&val_list);
1315         list_add_tail(&val_buf->head, &val_list);
1316         ttm_eu_backoff_reservation(NULL, &val_list);
1317         ttm_bo_unref(&val_buf->bo);
1318 }
1319
1320 /**
1321  * vmw_resource_do_evict - Evict a resource, and transfer its data
1322  *                         to a backup buffer.
1323  *
1324  * @res:            The resource to evict.
1325  * @interruptible:  Whether to wait interruptible.
1326  */
1327 static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1328 {
1329         struct ttm_validate_buffer val_buf;
1330         const struct vmw_res_func *func = res->func;
1331         int ret;
1332
1333         BUG_ON(!func->may_evict);
1334
1335         val_buf.bo = NULL;
1336         val_buf.shared = false;
1337         ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1338         if (unlikely(ret != 0))
1339                 return ret;
1340
1341         if (unlikely(func->unbind != NULL &&
1342                      (!func->needs_backup || !list_empty(&res->mob_head)))) {
1343                 ret = func->unbind(res, res->res_dirty, &val_buf);
1344                 if (unlikely(ret != 0))
1345                         goto out_no_unbind;
1346                 list_del_init(&res->mob_head);
1347         }
1348         ret = func->destroy(res);
1349         res->backup_dirty = true;
1350         res->res_dirty = false;
1351 out_no_unbind:
1352         vmw_resource_backoff_reservation(&val_buf);
1353
1354         return ret;
1355 }
1356
1357
1358 /**
1359  * vmw_resource_validate - Make a resource up-to-date and visible
1360  *                         to the device.
1361  *
1362  * @res:            The resource to make visible to the device.
1363  *
1364  * On succesful return, any backup DMA buffer pointed to by @res->backup will
1365  * be reserved and validated.
1366  * On hardware resource shortage, this function will repeatedly evict
1367  * resources of the same type until the validation succeeds.
1368  */
1369 int vmw_resource_validate(struct vmw_resource *res)
1370 {
1371         int ret;
1372         struct vmw_resource *evict_res;
1373         struct vmw_private *dev_priv = res->dev_priv;
1374         struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1375         struct ttm_validate_buffer val_buf;
1376         unsigned err_count = 0;
1377
1378         if (!res->func->create)
1379                 return 0;
1380
1381         val_buf.bo = NULL;
1382         val_buf.shared = false;
1383         if (res->backup)
1384                 val_buf.bo = &res->backup->base;
1385         do {
1386                 ret = vmw_resource_do_validate(res, &val_buf);
1387                 if (likely(ret != -EBUSY))
1388                         break;
1389
1390                 write_lock(&dev_priv->resource_lock);
1391                 if (list_empty(lru_list) || !res->func->may_evict) {
1392                         DRM_ERROR("Out of device device resources "
1393                                   "for %s.\n", res->func->type_name);
1394                         ret = -EBUSY;
1395                         write_unlock(&dev_priv->resource_lock);
1396                         break;
1397                 }
1398
1399                 evict_res = vmw_resource_reference
1400                         (list_first_entry(lru_list, struct vmw_resource,
1401                                           lru_head));
1402                 list_del_init(&evict_res->lru_head);
1403
1404                 write_unlock(&dev_priv->resource_lock);
1405
1406                 ret = vmw_resource_do_evict(evict_res, true);
1407                 if (unlikely(ret != 0)) {
1408                         write_lock(&dev_priv->resource_lock);
1409                         list_add_tail(&evict_res->lru_head, lru_list);
1410                         write_unlock(&dev_priv->resource_lock);
1411                         if (ret == -ERESTARTSYS ||
1412                             ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1413                                 vmw_resource_unreference(&evict_res);
1414                                 goto out_no_validate;
1415                         }
1416                 }
1417
1418                 vmw_resource_unreference(&evict_res);
1419         } while (1);
1420
1421         if (unlikely(ret != 0))
1422                 goto out_no_validate;
1423         else if (!res->func->needs_backup && res->backup) {
1424                 list_del_init(&res->mob_head);
1425                 vmw_dmabuf_unreference(&res->backup);
1426         }
1427
1428         return 0;
1429
1430 out_no_validate:
1431         return ret;
1432 }
1433
1434 /**
1435  * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1436  *                       object without unreserving it.
1437  *
1438  * @bo:             Pointer to the struct ttm_buffer_object to fence.
1439  * @fence:          Pointer to the fence. If NULL, this function will
1440  *                  insert a fence into the command stream..
1441  *
1442  * Contrary to the ttm_eu version of this function, it takes only
1443  * a single buffer object instead of a list, and it also doesn't
1444  * unreserve the buffer object, which needs to be done separately.
1445  */
1446 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1447                          struct vmw_fence_obj *fence)
1448 {
1449         struct ttm_bo_device *bdev = bo->bdev;
1450
1451         struct vmw_private *dev_priv =
1452                 container_of(bdev, struct vmw_private, bdev);
1453
1454         if (fence == NULL) {
1455                 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1456                 reservation_object_add_excl_fence(bo->resv, &fence->base);
1457                 dma_fence_put(&fence->base);
1458         } else
1459                 reservation_object_add_excl_fence(bo->resv, &fence->base);
1460 }
1461
1462 /**
1463  * vmw_resource_move_notify - TTM move_notify_callback
1464  *
1465  * @bo: The TTM buffer object about to move.
1466  * @mem: The struct ttm_mem_reg indicating to what memory
1467  *       region the move is taking place.
1468  *
1469  * Evicts the Guest Backed hardware resource if the backup
1470  * buffer is being moved out of MOB memory.
1471  * Note that this function should not race with the resource
1472  * validation code as long as it accesses only members of struct
1473  * resource that remain static while bo::res is !NULL and
1474  * while we have @bo reserved. struct resource::backup is *not* a
1475  * static member. The resource validation code will take care
1476  * to set @bo::res to NULL, while having @bo reserved when the
1477  * buffer is no longer bound to the resource, so @bo:res can be
1478  * used to determine whether there is a need to unbind and whether
1479  * it is safe to unbind.
1480  */
1481 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1482                               struct ttm_mem_reg *mem)
1483 {
1484         struct vmw_dma_buffer *dma_buf;
1485
1486         if (mem == NULL)
1487                 return;
1488
1489         if (bo->destroy != vmw_dmabuf_bo_free &&
1490             bo->destroy != vmw_user_dmabuf_destroy)
1491                 return;
1492
1493         dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1494
1495         if (mem->mem_type != VMW_PL_MOB) {
1496                 struct vmw_resource *res, *n;
1497                 struct ttm_validate_buffer val_buf;
1498
1499                 val_buf.bo = bo;
1500                 val_buf.shared = false;
1501
1502                 list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1503
1504                         if (unlikely(res->func->unbind == NULL))
1505                                 continue;
1506
1507                         (void) res->func->unbind(res, true, &val_buf);
1508                         res->backup_dirty = true;
1509                         res->res_dirty = false;
1510                         list_del_init(&res->mob_head);
1511                 }
1512
1513                 (void) ttm_bo_wait(bo, false, false);
1514         }
1515 }
1516
1517
1518
1519 /**
1520  * vmw_query_readback_all - Read back cached query states
1521  *
1522  * @dx_query_mob: Buffer containing the DX query MOB
1523  *
1524  * Read back cached states from the device if they exist.  This function
1525  * assumings binding_mutex is held.
1526  */
1527 int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob)
1528 {
1529         struct vmw_resource *dx_query_ctx;
1530         struct vmw_private *dev_priv;
1531         struct {
1532                 SVGA3dCmdHeader header;
1533                 SVGA3dCmdDXReadbackAllQuery body;
1534         } *cmd;
1535
1536
1537         /* No query bound, so do nothing */
1538         if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
1539                 return 0;
1540
1541         dx_query_ctx = dx_query_mob->dx_query_ctx;
1542         dev_priv     = dx_query_ctx->dev_priv;
1543
1544         cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id);
1545         if (unlikely(cmd == NULL)) {
1546                 DRM_ERROR("Failed reserving FIFO space for "
1547                           "query MOB read back.\n");
1548                 return -ENOMEM;
1549         }
1550
1551         cmd->header.id   = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
1552         cmd->header.size = sizeof(cmd->body);
1553         cmd->body.cid    = dx_query_ctx->id;
1554
1555         vmw_fifo_commit(dev_priv, sizeof(*cmd));
1556
1557         /* Triggers a rebind the next time affected context is bound */
1558         dx_query_mob->dx_query_ctx = NULL;
1559
1560         return 0;
1561 }
1562
1563
1564
1565 /**
1566  * vmw_query_move_notify - Read back cached query states
1567  *
1568  * @bo: The TTM buffer object about to move.
1569  * @mem: The memory region @bo is moving to.
1570  *
1571  * Called before the query MOB is swapped out to read back cached query
1572  * states from the device.
1573  */
1574 void vmw_query_move_notify(struct ttm_buffer_object *bo,
1575                            struct ttm_mem_reg *mem)
1576 {
1577         struct vmw_dma_buffer *dx_query_mob;
1578         struct ttm_bo_device *bdev = bo->bdev;
1579         struct vmw_private *dev_priv;
1580
1581
1582         dev_priv = container_of(bdev, struct vmw_private, bdev);
1583
1584         mutex_lock(&dev_priv->binding_mutex);
1585
1586         dx_query_mob = container_of(bo, struct vmw_dma_buffer, base);
1587         if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) {
1588                 mutex_unlock(&dev_priv->binding_mutex);
1589                 return;
1590         }
1591
1592         /* If BO is being moved from MOB to system memory */
1593         if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) {
1594                 struct vmw_fence_obj *fence;
1595
1596                 (void) vmw_query_readback_all(dx_query_mob);
1597                 mutex_unlock(&dev_priv->binding_mutex);
1598
1599                 /* Create a fence and attach the BO to it */
1600                 (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1601                 vmw_fence_single_bo(bo, fence);
1602
1603                 if (fence != NULL)
1604                         vmw_fence_obj_unreference(&fence);
1605
1606                 (void) ttm_bo_wait(bo, false, false);
1607         } else
1608                 mutex_unlock(&dev_priv->binding_mutex);
1609
1610 }
1611
1612 /**
1613  * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1614  *
1615  * @res:            The resource being queried.
1616  */
1617 bool vmw_resource_needs_backup(const struct vmw_resource *res)
1618 {
1619         return res->func->needs_backup;
1620 }
1621
1622 /**
1623  * vmw_resource_evict_type - Evict all resources of a specific type
1624  *
1625  * @dev_priv:       Pointer to a device private struct
1626  * @type:           The resource type to evict
1627  *
1628  * To avoid thrashing starvation or as part of the hibernation sequence,
1629  * try to evict all evictable resources of a specific type.
1630  */
1631 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1632                                     enum vmw_res_type type)
1633 {
1634         struct list_head *lru_list = &dev_priv->res_lru[type];
1635         struct vmw_resource *evict_res;
1636         unsigned err_count = 0;
1637         int ret;
1638
1639         do {
1640                 write_lock(&dev_priv->resource_lock);
1641
1642                 if (list_empty(lru_list))
1643                         goto out_unlock;
1644
1645                 evict_res = vmw_resource_reference(
1646                         list_first_entry(lru_list, struct vmw_resource,
1647                                          lru_head));
1648                 list_del_init(&evict_res->lru_head);
1649                 write_unlock(&dev_priv->resource_lock);
1650
1651                 ret = vmw_resource_do_evict(evict_res, false);
1652                 if (unlikely(ret != 0)) {
1653                         write_lock(&dev_priv->resource_lock);
1654                         list_add_tail(&evict_res->lru_head, lru_list);
1655                         write_unlock(&dev_priv->resource_lock);
1656                         if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1657                                 vmw_resource_unreference(&evict_res);
1658                                 return;
1659                         }
1660                 }
1661
1662                 vmw_resource_unreference(&evict_res);
1663         } while (1);
1664
1665 out_unlock:
1666         write_unlock(&dev_priv->resource_lock);
1667 }
1668
1669 /**
1670  * vmw_resource_evict_all - Evict all evictable resources
1671  *
1672  * @dev_priv:       Pointer to a device private struct
1673  *
1674  * To avoid thrashing starvation or as part of the hibernation sequence,
1675  * evict all evictable resources. In particular this means that all
1676  * guest-backed resources that are registered with the device are
1677  * evicted and the OTable becomes clean.
1678  */
1679 void vmw_resource_evict_all(struct vmw_private *dev_priv)
1680 {
1681         enum vmw_res_type type;
1682
1683         mutex_lock(&dev_priv->cmdbuf_mutex);
1684
1685         for (type = 0; type < vmw_res_max; ++type)
1686                 vmw_resource_evict_type(dev_priv, type);
1687
1688         mutex_unlock(&dev_priv->cmdbuf_mutex);
1689 }
1690
1691 /**
1692  * vmw_resource_pin - Add a pin reference on a resource
1693  *
1694  * @res: The resource to add a pin reference on
1695  *
1696  * This function adds a pin reference, and if needed validates the resource.
1697  * Having a pin reference means that the resource can never be evicted, and
1698  * its id will never change as long as there is a pin reference.
1699  * This function returns 0 on success and a negative error code on failure.
1700  */
1701 int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
1702 {
1703         struct vmw_private *dev_priv = res->dev_priv;
1704         int ret;
1705
1706         ttm_write_lock(&dev_priv->reservation_sem, interruptible);
1707         mutex_lock(&dev_priv->cmdbuf_mutex);
1708         ret = vmw_resource_reserve(res, interruptible, false);
1709         if (ret)
1710                 goto out_no_reserve;
1711
1712         if (res->pin_count == 0) {
1713                 struct vmw_dma_buffer *vbo = NULL;
1714
1715                 if (res->backup) {
1716                         vbo = res->backup;
1717
1718                         ttm_bo_reserve(&vbo->base, interruptible, false, NULL);
1719                         if (!vbo->pin_count) {
1720                                 ret = ttm_bo_validate
1721                                         (&vbo->base,
1722                                          res->func->backup_placement,
1723                                          interruptible, false);
1724                                 if (ret) {
1725                                         ttm_bo_unreserve(&vbo->base);
1726                                         goto out_no_validate;
1727                                 }
1728                         }
1729
1730                         /* Do we really need to pin the MOB as well? */
1731                         vmw_bo_pin_reserved(vbo, true);
1732                 }
1733                 ret = vmw_resource_validate(res);
1734                 if (vbo)
1735                         ttm_bo_unreserve(&vbo->base);
1736                 if (ret)
1737                         goto out_no_validate;
1738         }
1739         res->pin_count++;
1740
1741 out_no_validate:
1742         vmw_resource_unreserve(res, false, NULL, 0UL);
1743 out_no_reserve:
1744         mutex_unlock(&dev_priv->cmdbuf_mutex);
1745         ttm_write_unlock(&dev_priv->reservation_sem);
1746
1747         return ret;
1748 }
1749
1750 /**
1751  * vmw_resource_unpin - Remove a pin reference from a resource
1752  *
1753  * @res: The resource to remove a pin reference from
1754  *
1755  * Having a pin reference means that the resource can never be evicted, and
1756  * its id will never change as long as there is a pin reference.
1757  */
1758 void vmw_resource_unpin(struct vmw_resource *res)
1759 {
1760         struct vmw_private *dev_priv = res->dev_priv;
1761         int ret;
1762
1763         (void) ttm_read_lock(&dev_priv->reservation_sem, false);
1764         mutex_lock(&dev_priv->cmdbuf_mutex);
1765
1766         ret = vmw_resource_reserve(res, false, true);
1767         WARN_ON(ret);
1768
1769         WARN_ON(res->pin_count == 0);
1770         if (--res->pin_count == 0 && res->backup) {
1771                 struct vmw_dma_buffer *vbo = res->backup;
1772
1773                 (void) ttm_bo_reserve(&vbo->base, false, false, NULL);
1774                 vmw_bo_pin_reserved(vbo, false);
1775                 ttm_bo_unreserve(&vbo->base);
1776         }
1777
1778         vmw_resource_unreserve(res, false, NULL, 0UL);
1779
1780         mutex_unlock(&dev_priv->cmdbuf_mutex);
1781         ttm_read_unlock(&dev_priv->reservation_sem);
1782 }
1783
1784 /**
1785  * vmw_res_type - Return the resource type
1786  *
1787  * @res: Pointer to the resource
1788  */
1789 enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1790 {
1791         return res->func->res_type;
1792 }