Merge tag 'vmwgfx-next-4.19-3' of git://people.freedesktop.org/~thomash/linux into...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / vmwgfx / vmwgfx_kms.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33
34 /* Might need a hrtimer here? */
35 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
36
37 void vmw_du_cleanup(struct vmw_display_unit *du)
38 {
39         drm_plane_cleanup(&du->primary);
40         drm_plane_cleanup(&du->cursor);
41
42         drm_connector_unregister(&du->connector);
43         drm_crtc_cleanup(&du->crtc);
44         drm_encoder_cleanup(&du->encoder);
45         drm_connector_cleanup(&du->connector);
46 }
47
48 /*
49  * Display Unit Cursor functions
50  */
51
52 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
53                                    u32 *image, u32 width, u32 height,
54                                    u32 hotspotX, u32 hotspotY)
55 {
56         struct {
57                 u32 cmd;
58                 SVGAFifoCmdDefineAlphaCursor cursor;
59         } *cmd;
60         u32 image_size = width * height * 4;
61         u32 cmd_size = sizeof(*cmd) + image_size;
62
63         if (!image)
64                 return -EINVAL;
65
66         cmd = vmw_fifo_reserve(dev_priv, cmd_size);
67         if (unlikely(cmd == NULL)) {
68                 DRM_ERROR("Fifo reserve failed.\n");
69                 return -ENOMEM;
70         }
71
72         memset(cmd, 0, sizeof(*cmd));
73
74         memcpy(&cmd[1], image, image_size);
75
76         cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
77         cmd->cursor.id = 0;
78         cmd->cursor.width = width;
79         cmd->cursor.height = height;
80         cmd->cursor.hotspotX = hotspotX;
81         cmd->cursor.hotspotY = hotspotY;
82
83         vmw_fifo_commit_flush(dev_priv, cmd_size);
84
85         return 0;
86 }
87
88 static int vmw_cursor_update_bo(struct vmw_private *dev_priv,
89                                 struct vmw_buffer_object *bo,
90                                 u32 width, u32 height,
91                                 u32 hotspotX, u32 hotspotY)
92 {
93         struct ttm_bo_kmap_obj map;
94         unsigned long kmap_offset;
95         unsigned long kmap_num;
96         void *virtual;
97         bool dummy;
98         int ret;
99
100         kmap_offset = 0;
101         kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
102
103         ret = ttm_bo_reserve(&bo->base, true, false, NULL);
104         if (unlikely(ret != 0)) {
105                 DRM_ERROR("reserve failed\n");
106                 return -EINVAL;
107         }
108
109         ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map);
110         if (unlikely(ret != 0))
111                 goto err_unreserve;
112
113         virtual = ttm_kmap_obj_virtual(&map, &dummy);
114         ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
115                                       hotspotX, hotspotY);
116
117         ttm_bo_kunmap(&map);
118 err_unreserve:
119         ttm_bo_unreserve(&bo->base);
120
121         return ret;
122 }
123
124
125 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
126                                        bool show, int x, int y)
127 {
128         u32 *fifo_mem = dev_priv->mmio_virt;
129         uint32_t count;
130
131         spin_lock(&dev_priv->cursor_lock);
132         vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
133         vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
134         vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
135         count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
136         vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137         spin_unlock(&dev_priv->cursor_lock);
138 }
139
140
141 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
142                           struct ttm_object_file *tfile,
143                           struct ttm_buffer_object *bo,
144                           SVGA3dCmdHeader *header)
145 {
146         struct ttm_bo_kmap_obj map;
147         unsigned long kmap_offset;
148         unsigned long kmap_num;
149         SVGA3dCopyBox *box;
150         unsigned box_count;
151         void *virtual;
152         bool dummy;
153         struct vmw_dma_cmd {
154                 SVGA3dCmdHeader header;
155                 SVGA3dCmdSurfaceDMA dma;
156         } *cmd;
157         int i, ret;
158
159         cmd = container_of(header, struct vmw_dma_cmd, header);
160
161         /* No snooper installed */
162         if (!srf->snooper.image)
163                 return;
164
165         if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
166                 DRM_ERROR("face and mipmap for cursors should never != 0\n");
167                 return;
168         }
169
170         if (cmd->header.size < 64) {
171                 DRM_ERROR("at least one full copy box must be given\n");
172                 return;
173         }
174
175         box = (SVGA3dCopyBox *)&cmd[1];
176         box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
177                         sizeof(SVGA3dCopyBox);
178
179         if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
180             box->x != 0    || box->y != 0    || box->z != 0    ||
181             box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
182             box->d != 1    || box_count != 1) {
183                 /* TODO handle none page aligned offsets */
184                 /* TODO handle more dst & src != 0 */
185                 /* TODO handle more then one copy */
186                 DRM_ERROR("Cant snoop dma request for cursor!\n");
187                 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
188                           box->srcx, box->srcy, box->srcz,
189                           box->x, box->y, box->z,
190                           box->w, box->h, box->d, box_count,
191                           cmd->dma.guest.ptr.offset);
192                 return;
193         }
194
195         kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
196         kmap_num = (64*64*4) >> PAGE_SHIFT;
197
198         ret = ttm_bo_reserve(bo, true, false, NULL);
199         if (unlikely(ret != 0)) {
200                 DRM_ERROR("reserve failed\n");
201                 return;
202         }
203
204         ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
205         if (unlikely(ret != 0))
206                 goto err_unreserve;
207
208         virtual = ttm_kmap_obj_virtual(&map, &dummy);
209
210         if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
211                 memcpy(srf->snooper.image, virtual, 64*64*4);
212         } else {
213                 /* Image is unsigned pointer. */
214                 for (i = 0; i < box->h; i++)
215                         memcpy(srf->snooper.image + i * 64,
216                                virtual + i * cmd->dma.guest.pitch,
217                                box->w * 4);
218         }
219
220         srf->snooper.age++;
221
222         ttm_bo_kunmap(&map);
223 err_unreserve:
224         ttm_bo_unreserve(bo);
225 }
226
227 /**
228  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
229  *
230  * @dev_priv: Pointer to the device private struct.
231  *
232  * Clears all legacy hotspots.
233  */
234 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
235 {
236         struct drm_device *dev = dev_priv->dev;
237         struct vmw_display_unit *du;
238         struct drm_crtc *crtc;
239
240         drm_modeset_lock_all(dev);
241         drm_for_each_crtc(crtc, dev) {
242                 du = vmw_crtc_to_du(crtc);
243
244                 du->hotspot_x = 0;
245                 du->hotspot_y = 0;
246         }
247         drm_modeset_unlock_all(dev);
248 }
249
250 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
251 {
252         struct drm_device *dev = dev_priv->dev;
253         struct vmw_display_unit *du;
254         struct drm_crtc *crtc;
255
256         mutex_lock(&dev->mode_config.mutex);
257
258         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
259                 du = vmw_crtc_to_du(crtc);
260                 if (!du->cursor_surface ||
261                     du->cursor_age == du->cursor_surface->snooper.age)
262                         continue;
263
264                 du->cursor_age = du->cursor_surface->snooper.age;
265                 vmw_cursor_update_image(dev_priv,
266                                         du->cursor_surface->snooper.image,
267                                         64, 64,
268                                         du->hotspot_x + du->core_hotspot_x,
269                                         du->hotspot_y + du->core_hotspot_y);
270         }
271
272         mutex_unlock(&dev->mode_config.mutex);
273 }
274
275
276 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
277 {
278         vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
279
280         drm_plane_cleanup(plane);
281 }
282
283
284 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
285 {
286         drm_plane_cleanup(plane);
287
288         /* Planes are static in our case so we don't free it */
289 }
290
291
292 /**
293  * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
294  *
295  * @vps: plane state associated with the display surface
296  * @unreference: true if we also want to unreference the display.
297  */
298 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
299                              bool unreference)
300 {
301         if (vps->surf) {
302                 if (vps->pinned) {
303                         vmw_resource_unpin(&vps->surf->res);
304                         vps->pinned--;
305                 }
306
307                 if (unreference) {
308                         if (vps->pinned)
309                                 DRM_ERROR("Surface still pinned\n");
310                         vmw_surface_unreference(&vps->surf);
311                 }
312         }
313 }
314
315
316 /**
317  * vmw_du_plane_cleanup_fb - Unpins the cursor
318  *
319  * @plane:  display plane
320  * @old_state: Contains the FB to clean up
321  *
322  * Unpins the framebuffer surface
323  *
324  * Returns 0 on success
325  */
326 void
327 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
328                         struct drm_plane_state *old_state)
329 {
330         struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
331
332         vmw_du_plane_unpin_surf(vps, false);
333 }
334
335
336 /**
337  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
338  *
339  * @plane:  display plane
340  * @new_state: info on the new plane state, including the FB
341  *
342  * Returns 0 on success
343  */
344 int
345 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
346                                struct drm_plane_state *new_state)
347 {
348         struct drm_framebuffer *fb = new_state->fb;
349         struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
350
351
352         if (vps->surf)
353                 vmw_surface_unreference(&vps->surf);
354
355         if (vps->bo)
356                 vmw_bo_unreference(&vps->bo);
357
358         if (fb) {
359                 if (vmw_framebuffer_to_vfb(fb)->bo) {
360                         vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer;
361                         vmw_bo_reference(vps->bo);
362                 } else {
363                         vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
364                         vmw_surface_reference(vps->surf);
365                 }
366         }
367
368         return 0;
369 }
370
371
372 void
373 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
374                                   struct drm_plane_state *old_state)
375 {
376         struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
377         struct vmw_private *dev_priv = vmw_priv(crtc->dev);
378         struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
379         struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
380         s32 hotspot_x, hotspot_y;
381         int ret = 0;
382
383
384         hotspot_x = du->hotspot_x;
385         hotspot_y = du->hotspot_y;
386
387         if (plane->state->fb) {
388                 hotspot_x += plane->state->fb->hot_x;
389                 hotspot_y += plane->state->fb->hot_y;
390         }
391
392         du->cursor_surface = vps->surf;
393         du->cursor_bo = vps->bo;
394
395         if (vps->surf) {
396                 du->cursor_age = du->cursor_surface->snooper.age;
397
398                 ret = vmw_cursor_update_image(dev_priv,
399                                               vps->surf->snooper.image,
400                                               64, 64, hotspot_x,
401                                               hotspot_y);
402         } else if (vps->bo) {
403                 ret = vmw_cursor_update_bo(dev_priv, vps->bo,
404                                            plane->state->crtc_w,
405                                            plane->state->crtc_h,
406                                            hotspot_x, hotspot_y);
407         } else {
408                 vmw_cursor_update_position(dev_priv, false, 0, 0);
409                 return;
410         }
411
412         if (!ret) {
413                 du->cursor_x = plane->state->crtc_x + du->set_gui_x;
414                 du->cursor_y = plane->state->crtc_y + du->set_gui_y;
415
416                 vmw_cursor_update_position(dev_priv, true,
417                                            du->cursor_x + hotspot_x,
418                                            du->cursor_y + hotspot_y);
419
420                 du->core_hotspot_x = hotspot_x - du->hotspot_x;
421                 du->core_hotspot_y = hotspot_y - du->hotspot_y;
422         } else {
423                 DRM_ERROR("Failed to update cursor image\n");
424         }
425 }
426
427
428 /**
429  * vmw_du_primary_plane_atomic_check - check if the new state is okay
430  *
431  * @plane: display plane
432  * @state: info on the new plane state, including the FB
433  *
434  * Check if the new state is settable given the current state.  Other
435  * than what the atomic helper checks, we care about crtc fitting
436  * the FB and maintaining one active framebuffer.
437  *
438  * Returns 0 on success
439  */
440 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
441                                       struct drm_plane_state *state)
442 {
443         struct drm_crtc_state *crtc_state = NULL;
444         struct drm_framebuffer *new_fb = state->fb;
445         int ret;
446
447         if (state->crtc)
448                 crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc);
449
450         ret = drm_atomic_helper_check_plane_state(state, crtc_state,
451                                                   DRM_PLANE_HELPER_NO_SCALING,
452                                                   DRM_PLANE_HELPER_NO_SCALING,
453                                                   false, true);
454
455         if (!ret && new_fb) {
456                 struct drm_crtc *crtc = state->crtc;
457                 struct vmw_connector_state *vcs;
458                 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
459                 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
460                 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb);
461
462                 vcs = vmw_connector_state_to_vcs(du->connector.state);
463
464                 /* Only one active implicit framebuffer at a time. */
465                 mutex_lock(&dev_priv->global_kms_state_mutex);
466                 if (vcs->is_implicit && dev_priv->implicit_fb &&
467                     !(dev_priv->num_implicit == 1 && du->active_implicit)
468                     && dev_priv->implicit_fb != vfb) {
469                         DRM_ERROR("Multiple implicit framebuffers "
470                                   "not supported.\n");
471                         ret = -EINVAL;
472                 }
473                 mutex_unlock(&dev_priv->global_kms_state_mutex);
474         }
475
476
477         return ret;
478 }
479
480
481 /**
482  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
483  *
484  * @plane: cursor plane
485  * @state: info on the new plane state
486  *
487  * This is a chance to fail if the new cursor state does not fit
488  * our requirements.
489  *
490  * Returns 0 on success
491  */
492 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
493                                      struct drm_plane_state *new_state)
494 {
495         int ret = 0;
496         struct vmw_surface *surface = NULL;
497         struct drm_framebuffer *fb = new_state->fb;
498
499         struct drm_rect src = drm_plane_state_src(new_state);
500         struct drm_rect dest = drm_plane_state_dest(new_state);
501
502         /* Turning off */
503         if (!fb)
504                 return ret;
505
506         ret = drm_plane_helper_check_update(plane, new_state->crtc, fb,
507                                             &src, &dest,
508                                             DRM_MODE_ROTATE_0,
509                                             DRM_PLANE_HELPER_NO_SCALING,
510                                             DRM_PLANE_HELPER_NO_SCALING,
511                                             true, true, &new_state->visible);
512         if (!ret)
513                 return ret;
514
515         /* A lot of the code assumes this */
516         if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
517                 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
518                           new_state->crtc_w, new_state->crtc_h);
519                 ret = -EINVAL;
520         }
521
522         if (!vmw_framebuffer_to_vfb(fb)->bo)
523                 surface = vmw_framebuffer_to_vfbs(fb)->surface;
524
525         if (surface && !surface->snooper.image) {
526                 DRM_ERROR("surface not suitable for cursor\n");
527                 ret = -EINVAL;
528         }
529
530         return ret;
531 }
532
533
534 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
535                              struct drm_crtc_state *new_state)
536 {
537         struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
538         int connector_mask = drm_connector_mask(&du->connector);
539         bool has_primary = new_state->plane_mask &
540                            drm_plane_mask(crtc->primary);
541
542         /* We always want to have an active plane with an active CRTC */
543         if (has_primary != new_state->enable)
544                 return -EINVAL;
545
546
547         if (new_state->connector_mask != connector_mask &&
548             new_state->connector_mask != 0) {
549                 DRM_ERROR("Invalid connectors configuration\n");
550                 return -EINVAL;
551         }
552
553         /*
554          * Our virtual device does not have a dot clock, so use the logical
555          * clock value as the dot clock.
556          */
557         if (new_state->mode.crtc_clock == 0)
558                 new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
559
560         return 0;
561 }
562
563
564 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
565                               struct drm_crtc_state *old_crtc_state)
566 {
567 }
568
569
570 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
571                               struct drm_crtc_state *old_crtc_state)
572 {
573         struct drm_pending_vblank_event *event = crtc->state->event;
574
575         if (event) {
576                 crtc->state->event = NULL;
577
578                 spin_lock_irq(&crtc->dev->event_lock);
579                 drm_crtc_send_vblank_event(crtc, event);
580                 spin_unlock_irq(&crtc->dev->event_lock);
581         }
582 }
583
584
585 /**
586  * vmw_du_crtc_duplicate_state - duplicate crtc state
587  * @crtc: DRM crtc
588  *
589  * Allocates and returns a copy of the crtc state (both common and
590  * vmw-specific) for the specified crtc.
591  *
592  * Returns: The newly allocated crtc state, or NULL on failure.
593  */
594 struct drm_crtc_state *
595 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
596 {
597         struct drm_crtc_state *state;
598         struct vmw_crtc_state *vcs;
599
600         if (WARN_ON(!crtc->state))
601                 return NULL;
602
603         vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
604
605         if (!vcs)
606                 return NULL;
607
608         state = &vcs->base;
609
610         __drm_atomic_helper_crtc_duplicate_state(crtc, state);
611
612         return state;
613 }
614
615
616 /**
617  * vmw_du_crtc_reset - creates a blank vmw crtc state
618  * @crtc: DRM crtc
619  *
620  * Resets the atomic state for @crtc by freeing the state pointer (which
621  * might be NULL, e.g. at driver load time) and allocating a new empty state
622  * object.
623  */
624 void vmw_du_crtc_reset(struct drm_crtc *crtc)
625 {
626         struct vmw_crtc_state *vcs;
627
628
629         if (crtc->state) {
630                 __drm_atomic_helper_crtc_destroy_state(crtc->state);
631
632                 kfree(vmw_crtc_state_to_vcs(crtc->state));
633         }
634
635         vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
636
637         if (!vcs) {
638                 DRM_ERROR("Cannot allocate vmw_crtc_state\n");
639                 return;
640         }
641
642         crtc->state = &vcs->base;
643         crtc->state->crtc = crtc;
644 }
645
646
647 /**
648  * vmw_du_crtc_destroy_state - destroy crtc state
649  * @crtc: DRM crtc
650  * @state: state object to destroy
651  *
652  * Destroys the crtc state (both common and vmw-specific) for the
653  * specified plane.
654  */
655 void
656 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
657                           struct drm_crtc_state *state)
658 {
659         drm_atomic_helper_crtc_destroy_state(crtc, state);
660 }
661
662
663 /**
664  * vmw_du_plane_duplicate_state - duplicate plane state
665  * @plane: drm plane
666  *
667  * Allocates and returns a copy of the plane state (both common and
668  * vmw-specific) for the specified plane.
669  *
670  * Returns: The newly allocated plane state, or NULL on failure.
671  */
672 struct drm_plane_state *
673 vmw_du_plane_duplicate_state(struct drm_plane *plane)
674 {
675         struct drm_plane_state *state;
676         struct vmw_plane_state *vps;
677
678         vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
679
680         if (!vps)
681                 return NULL;
682
683         vps->pinned = 0;
684         vps->cpp = 0;
685
686         /* Each ref counted resource needs to be acquired again */
687         if (vps->surf)
688                 (void) vmw_surface_reference(vps->surf);
689
690         if (vps->bo)
691                 (void) vmw_bo_reference(vps->bo);
692
693         state = &vps->base;
694
695         __drm_atomic_helper_plane_duplicate_state(plane, state);
696
697         return state;
698 }
699
700
701 /**
702  * vmw_du_plane_reset - creates a blank vmw plane state
703  * @plane: drm plane
704  *
705  * Resets the atomic state for @plane by freeing the state pointer (which might
706  * be NULL, e.g. at driver load time) and allocating a new empty state object.
707  */
708 void vmw_du_plane_reset(struct drm_plane *plane)
709 {
710         struct vmw_plane_state *vps;
711
712
713         if (plane->state)
714                 vmw_du_plane_destroy_state(plane, plane->state);
715
716         vps = kzalloc(sizeof(*vps), GFP_KERNEL);
717
718         if (!vps) {
719                 DRM_ERROR("Cannot allocate vmw_plane_state\n");
720                 return;
721         }
722
723         plane->state = &vps->base;
724         plane->state->plane = plane;
725         plane->state->rotation = DRM_MODE_ROTATE_0;
726 }
727
728
729 /**
730  * vmw_du_plane_destroy_state - destroy plane state
731  * @plane: DRM plane
732  * @state: state object to destroy
733  *
734  * Destroys the plane state (both common and vmw-specific) for the
735  * specified plane.
736  */
737 void
738 vmw_du_plane_destroy_state(struct drm_plane *plane,
739                            struct drm_plane_state *state)
740 {
741         struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
742
743
744         /* Should have been freed by cleanup_fb */
745         if (vps->surf)
746                 vmw_surface_unreference(&vps->surf);
747
748         if (vps->bo)
749                 vmw_bo_unreference(&vps->bo);
750
751         drm_atomic_helper_plane_destroy_state(plane, state);
752 }
753
754
755 /**
756  * vmw_du_connector_duplicate_state - duplicate connector state
757  * @connector: DRM connector
758  *
759  * Allocates and returns a copy of the connector state (both common and
760  * vmw-specific) for the specified connector.
761  *
762  * Returns: The newly allocated connector state, or NULL on failure.
763  */
764 struct drm_connector_state *
765 vmw_du_connector_duplicate_state(struct drm_connector *connector)
766 {
767         struct drm_connector_state *state;
768         struct vmw_connector_state *vcs;
769
770         if (WARN_ON(!connector->state))
771                 return NULL;
772
773         vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
774
775         if (!vcs)
776                 return NULL;
777
778         state = &vcs->base;
779
780         __drm_atomic_helper_connector_duplicate_state(connector, state);
781
782         return state;
783 }
784
785
786 /**
787  * vmw_du_connector_reset - creates a blank vmw connector state
788  * @connector: DRM connector
789  *
790  * Resets the atomic state for @connector by freeing the state pointer (which
791  * might be NULL, e.g. at driver load time) and allocating a new empty state
792  * object.
793  */
794 void vmw_du_connector_reset(struct drm_connector *connector)
795 {
796         struct vmw_connector_state *vcs;
797
798
799         if (connector->state) {
800                 __drm_atomic_helper_connector_destroy_state(connector->state);
801
802                 kfree(vmw_connector_state_to_vcs(connector->state));
803         }
804
805         vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
806
807         if (!vcs) {
808                 DRM_ERROR("Cannot allocate vmw_connector_state\n");
809                 return;
810         }
811
812         __drm_atomic_helper_connector_reset(connector, &vcs->base);
813 }
814
815
816 /**
817  * vmw_du_connector_destroy_state - destroy connector state
818  * @connector: DRM connector
819  * @state: state object to destroy
820  *
821  * Destroys the connector state (both common and vmw-specific) for the
822  * specified plane.
823  */
824 void
825 vmw_du_connector_destroy_state(struct drm_connector *connector,
826                           struct drm_connector_state *state)
827 {
828         drm_atomic_helper_connector_destroy_state(connector, state);
829 }
830 /*
831  * Generic framebuffer code
832  */
833
834 /*
835  * Surface framebuffer code
836  */
837
838 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
839 {
840         struct vmw_framebuffer_surface *vfbs =
841                 vmw_framebuffer_to_vfbs(framebuffer);
842
843         drm_framebuffer_cleanup(framebuffer);
844         vmw_surface_unreference(&vfbs->surface);
845         if (vfbs->base.user_obj)
846                 ttm_base_object_unref(&vfbs->base.user_obj);
847
848         kfree(vfbs);
849 }
850
851 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer,
852                                   struct drm_file *file_priv,
853                                   unsigned flags, unsigned color,
854                                   struct drm_clip_rect *clips,
855                                   unsigned num_clips)
856 {
857         struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
858         struct vmw_framebuffer_surface *vfbs =
859                 vmw_framebuffer_to_vfbs(framebuffer);
860         struct drm_clip_rect norect;
861         int ret, inc = 1;
862
863         /* Legacy Display Unit does not support 3D */
864         if (dev_priv->active_display_unit == vmw_du_legacy)
865                 return -EINVAL;
866
867         drm_modeset_lock_all(dev_priv->dev);
868
869         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
870         if (unlikely(ret != 0)) {
871                 drm_modeset_unlock_all(dev_priv->dev);
872                 return ret;
873         }
874
875         if (!num_clips) {
876                 num_clips = 1;
877                 clips = &norect;
878                 norect.x1 = norect.y1 = 0;
879                 norect.x2 = framebuffer->width;
880                 norect.y2 = framebuffer->height;
881         } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
882                 num_clips /= 2;
883                 inc = 2; /* skip source rects */
884         }
885
886         if (dev_priv->active_display_unit == vmw_du_screen_object)
887                 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base,
888                                                    clips, NULL, NULL, 0, 0,
889                                                    num_clips, inc, NULL, NULL);
890         else
891                 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base,
892                                                  clips, NULL, NULL, 0, 0,
893                                                  num_clips, inc, NULL, NULL);
894
895         vmw_fifo_flush(dev_priv, false);
896         ttm_read_unlock(&dev_priv->reservation_sem);
897
898         drm_modeset_unlock_all(dev_priv->dev);
899
900         return 0;
901 }
902
903 /**
904  * vmw_kms_readback - Perform a readback from the screen system to
905  * a buffer-object backed framebuffer.
906  *
907  * @dev_priv: Pointer to the device private structure.
908  * @file_priv: Pointer to a struct drm_file identifying the caller.
909  * Must be set to NULL if @user_fence_rep is NULL.
910  * @vfb: Pointer to the buffer-object backed framebuffer.
911  * @user_fence_rep: User-space provided structure for fence information.
912  * Must be set to non-NULL if @file_priv is non-NULL.
913  * @vclips: Array of clip rects.
914  * @num_clips: Number of clip rects in @vclips.
915  *
916  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
917  * interrupted.
918  */
919 int vmw_kms_readback(struct vmw_private *dev_priv,
920                      struct drm_file *file_priv,
921                      struct vmw_framebuffer *vfb,
922                      struct drm_vmw_fence_rep __user *user_fence_rep,
923                      struct drm_vmw_rect *vclips,
924                      uint32_t num_clips)
925 {
926         switch (dev_priv->active_display_unit) {
927         case vmw_du_screen_object:
928                 return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
929                                             user_fence_rep, vclips, num_clips,
930                                             NULL);
931         case vmw_du_screen_target:
932                 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
933                                         user_fence_rep, NULL, vclips, num_clips,
934                                         1, false, true, NULL);
935         default:
936                 WARN_ONCE(true,
937                           "Readback called with invalid display system.\n");
938 }
939
940         return -ENOSYS;
941 }
942
943
944 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
945         .destroy = vmw_framebuffer_surface_destroy,
946         .dirty = vmw_framebuffer_surface_dirty,
947 };
948
949 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
950                                            struct vmw_surface *surface,
951                                            struct vmw_framebuffer **out,
952                                            const struct drm_mode_fb_cmd2
953                                            *mode_cmd,
954                                            bool is_bo_proxy)
955
956 {
957         struct drm_device *dev = dev_priv->dev;
958         struct vmw_framebuffer_surface *vfbs;
959         enum SVGA3dSurfaceFormat format;
960         int ret;
961         struct drm_format_name_buf format_name;
962
963         /* 3D is only supported on HWv8 and newer hosts */
964         if (dev_priv->active_display_unit == vmw_du_legacy)
965                 return -ENOSYS;
966
967         /*
968          * Sanity checks.
969          */
970
971         /* Surface must be marked as a scanout. */
972         if (unlikely(!surface->scanout))
973                 return -EINVAL;
974
975         if (unlikely(surface->mip_levels[0] != 1 ||
976                      surface->num_sizes != 1 ||
977                      surface->base_size.width < mode_cmd->width ||
978                      surface->base_size.height < mode_cmd->height ||
979                      surface->base_size.depth != 1)) {
980                 DRM_ERROR("Incompatible surface dimensions "
981                           "for requested mode.\n");
982                 return -EINVAL;
983         }
984
985         switch (mode_cmd->pixel_format) {
986         case DRM_FORMAT_ARGB8888:
987                 format = SVGA3D_A8R8G8B8;
988                 break;
989         case DRM_FORMAT_XRGB8888:
990                 format = SVGA3D_X8R8G8B8;
991                 break;
992         case DRM_FORMAT_RGB565:
993                 format = SVGA3D_R5G6B5;
994                 break;
995         case DRM_FORMAT_XRGB1555:
996                 format = SVGA3D_A1R5G5B5;
997                 break;
998         default:
999                 DRM_ERROR("Invalid pixel format: %s\n",
1000                           drm_get_format_name(mode_cmd->pixel_format, &format_name));
1001                 return -EINVAL;
1002         }
1003
1004         /*
1005          * For DX, surface format validation is done when surface->scanout
1006          * is set.
1007          */
1008         if (!dev_priv->has_dx && format != surface->format) {
1009                 DRM_ERROR("Invalid surface format for requested mode.\n");
1010                 return -EINVAL;
1011         }
1012
1013         vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1014         if (!vfbs) {
1015                 ret = -ENOMEM;
1016                 goto out_err1;
1017         }
1018
1019         drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1020         vfbs->surface = vmw_surface_reference(surface);
1021         vfbs->base.user_handle = mode_cmd->handles[0];
1022         vfbs->is_bo_proxy = is_bo_proxy;
1023
1024         *out = &vfbs->base;
1025
1026         ret = drm_framebuffer_init(dev, &vfbs->base.base,
1027                                    &vmw_framebuffer_surface_funcs);
1028         if (ret)
1029                 goto out_err2;
1030
1031         return 0;
1032
1033 out_err2:
1034         vmw_surface_unreference(&surface);
1035         kfree(vfbs);
1036 out_err1:
1037         return ret;
1038 }
1039
1040 /*
1041  * Buffer-object framebuffer code
1042  */
1043
1044 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer)
1045 {
1046         struct vmw_framebuffer_bo *vfbd =
1047                 vmw_framebuffer_to_vfbd(framebuffer);
1048
1049         drm_framebuffer_cleanup(framebuffer);
1050         vmw_bo_unreference(&vfbd->buffer);
1051         if (vfbd->base.user_obj)
1052                 ttm_base_object_unref(&vfbd->base.user_obj);
1053
1054         kfree(vfbd);
1055 }
1056
1057 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer,
1058                                     struct drm_file *file_priv,
1059                                     unsigned int flags, unsigned int color,
1060                                     struct drm_clip_rect *clips,
1061                                     unsigned int num_clips)
1062 {
1063         struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1064         struct vmw_framebuffer_bo *vfbd =
1065                 vmw_framebuffer_to_vfbd(framebuffer);
1066         struct drm_clip_rect norect;
1067         int ret, increment = 1;
1068
1069         drm_modeset_lock_all(dev_priv->dev);
1070
1071         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1072         if (unlikely(ret != 0)) {
1073                 drm_modeset_unlock_all(dev_priv->dev);
1074                 return ret;
1075         }
1076
1077         if (!num_clips) {
1078                 num_clips = 1;
1079                 clips = &norect;
1080                 norect.x1 = norect.y1 = 0;
1081                 norect.x2 = framebuffer->width;
1082                 norect.y2 = framebuffer->height;
1083         } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1084                 num_clips /= 2;
1085                 increment = 2;
1086         }
1087
1088         switch (dev_priv->active_display_unit) {
1089         case vmw_du_screen_target:
1090                 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL,
1091                                        clips, NULL, num_clips, increment,
1092                                        true, true, NULL);
1093                 break;
1094         case vmw_du_screen_object:
1095                 ret = vmw_kms_sou_do_bo_dirty(dev_priv, &vfbd->base,
1096                                               clips, NULL, num_clips,
1097                                               increment, true, NULL, NULL);
1098                 break;
1099         case vmw_du_legacy:
1100                 ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0,
1101                                               clips, num_clips, increment);
1102                 break;
1103         default:
1104                 ret = -EINVAL;
1105                 WARN_ONCE(true, "Dirty called with invalid display system.\n");
1106                 break;
1107         }
1108
1109         vmw_fifo_flush(dev_priv, false);
1110         ttm_read_unlock(&dev_priv->reservation_sem);
1111
1112         drm_modeset_unlock_all(dev_priv->dev);
1113
1114         return ret;
1115 }
1116
1117 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = {
1118         .destroy = vmw_framebuffer_bo_destroy,
1119         .dirty = vmw_framebuffer_bo_dirty,
1120 };
1121
1122 /**
1123  * Pin the bofer in a location suitable for access by the
1124  * display system.
1125  */
1126 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1127 {
1128         struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1129         struct vmw_buffer_object *buf;
1130         struct ttm_placement *placement;
1131         int ret;
1132
1133         buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1134                 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1135
1136         if (!buf)
1137                 return 0;
1138
1139         switch (dev_priv->active_display_unit) {
1140         case vmw_du_legacy:
1141                 vmw_overlay_pause_all(dev_priv);
1142                 ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false);
1143                 vmw_overlay_resume_all(dev_priv);
1144                 break;
1145         case vmw_du_screen_object:
1146         case vmw_du_screen_target:
1147                 if (vfb->bo) {
1148                         if (dev_priv->capabilities & SVGA_CAP_3D) {
1149                                 /*
1150                                  * Use surface DMA to get content to
1151                                  * sreen target surface.
1152                                  */
1153                                 placement = &vmw_vram_gmr_placement;
1154                         } else {
1155                                 /* Use CPU blit. */
1156                                 placement = &vmw_sys_placement;
1157                         }
1158                 } else {
1159                         /* Use surface / image update */
1160                         placement = &vmw_mob_placement;
1161                 }
1162
1163                 return vmw_bo_pin_in_placement(dev_priv, buf, placement, false);
1164         default:
1165                 return -EINVAL;
1166         }
1167
1168         return ret;
1169 }
1170
1171 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1172 {
1173         struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1174         struct vmw_buffer_object *buf;
1175
1176         buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1177                 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1178
1179         if (WARN_ON(!buf))
1180                 return 0;
1181
1182         return vmw_bo_unpin(dev_priv, buf, false);
1183 }
1184
1185 /**
1186  * vmw_create_bo_proxy - create a proxy surface for the buffer object
1187  *
1188  * @dev: DRM device
1189  * @mode_cmd: parameters for the new surface
1190  * @bo_mob: MOB backing the buffer object
1191  * @srf_out: newly created surface
1192  *
1193  * When the content FB is a buffer object, we create a surface as a proxy to the
1194  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1195  * This is a more efficient approach
1196  *
1197  * RETURNS:
1198  * 0 on success, error code otherwise
1199  */
1200 static int vmw_create_bo_proxy(struct drm_device *dev,
1201                                const struct drm_mode_fb_cmd2 *mode_cmd,
1202                                struct vmw_buffer_object *bo_mob,
1203                                struct vmw_surface **srf_out)
1204 {
1205         uint32_t format;
1206         struct drm_vmw_size content_base_size = {0};
1207         struct vmw_resource *res;
1208         unsigned int bytes_pp;
1209         struct drm_format_name_buf format_name;
1210         int ret;
1211
1212         switch (mode_cmd->pixel_format) {
1213         case DRM_FORMAT_ARGB8888:
1214         case DRM_FORMAT_XRGB8888:
1215                 format = SVGA3D_X8R8G8B8;
1216                 bytes_pp = 4;
1217                 break;
1218
1219         case DRM_FORMAT_RGB565:
1220         case DRM_FORMAT_XRGB1555:
1221                 format = SVGA3D_R5G6B5;
1222                 bytes_pp = 2;
1223                 break;
1224
1225         case 8:
1226                 format = SVGA3D_P8;
1227                 bytes_pp = 1;
1228                 break;
1229
1230         default:
1231                 DRM_ERROR("Invalid framebuffer format %s\n",
1232                           drm_get_format_name(mode_cmd->pixel_format, &format_name));
1233                 return -EINVAL;
1234         }
1235
1236         content_base_size.width  = mode_cmd->pitches[0] / bytes_pp;
1237         content_base_size.height = mode_cmd->height;
1238         content_base_size.depth  = 1;
1239
1240         ret = vmw_surface_gb_priv_define(dev,
1241                                          0, /* kernel visible only */
1242                                          0, /* flags */
1243                                          format,
1244                                          true, /* can be a scanout buffer */
1245                                          1, /* num of mip levels */
1246                                          0,
1247                                          0,
1248                                          content_base_size,
1249                                          SVGA3D_MS_PATTERN_NONE,
1250                                          SVGA3D_MS_QUALITY_NONE,
1251                                          srf_out);
1252         if (ret) {
1253                 DRM_ERROR("Failed to allocate proxy content buffer\n");
1254                 return ret;
1255         }
1256
1257         res = &(*srf_out)->res;
1258
1259         /* Reserve and switch the backing mob. */
1260         mutex_lock(&res->dev_priv->cmdbuf_mutex);
1261         (void) vmw_resource_reserve(res, false, true);
1262         vmw_bo_unreference(&res->backup);
1263         res->backup = vmw_bo_reference(bo_mob);
1264         res->backup_offset = 0;
1265         vmw_resource_unreserve(res, false, NULL, 0);
1266         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1267
1268         return 0;
1269 }
1270
1271
1272
1273 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv,
1274                                       struct vmw_buffer_object *bo,
1275                                       struct vmw_framebuffer **out,
1276                                       const struct drm_mode_fb_cmd2
1277                                       *mode_cmd)
1278
1279 {
1280         struct drm_device *dev = dev_priv->dev;
1281         struct vmw_framebuffer_bo *vfbd;
1282         unsigned int requested_size;
1283         struct drm_format_name_buf format_name;
1284         int ret;
1285
1286         requested_size = mode_cmd->height * mode_cmd->pitches[0];
1287         if (unlikely(requested_size > bo->base.num_pages * PAGE_SIZE)) {
1288                 DRM_ERROR("Screen buffer object size is too small "
1289                           "for requested mode.\n");
1290                 return -EINVAL;
1291         }
1292
1293         /* Limited framebuffer color depth support for screen objects */
1294         if (dev_priv->active_display_unit == vmw_du_screen_object) {
1295                 switch (mode_cmd->pixel_format) {
1296                 case DRM_FORMAT_XRGB8888:
1297                 case DRM_FORMAT_ARGB8888:
1298                         break;
1299                 case DRM_FORMAT_XRGB1555:
1300                 case DRM_FORMAT_RGB565:
1301                         break;
1302                 default:
1303                         DRM_ERROR("Invalid pixel format: %s\n",
1304                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
1305                         return -EINVAL;
1306                 }
1307         }
1308
1309         vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1310         if (!vfbd) {
1311                 ret = -ENOMEM;
1312                 goto out_err1;
1313         }
1314
1315         drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1316         vfbd->base.bo = true;
1317         vfbd->buffer = vmw_bo_reference(bo);
1318         vfbd->base.user_handle = mode_cmd->handles[0];
1319         *out = &vfbd->base;
1320
1321         ret = drm_framebuffer_init(dev, &vfbd->base.base,
1322                                    &vmw_framebuffer_bo_funcs);
1323         if (ret)
1324                 goto out_err2;
1325
1326         return 0;
1327
1328 out_err2:
1329         vmw_bo_unreference(&bo);
1330         kfree(vfbd);
1331 out_err1:
1332         return ret;
1333 }
1334
1335
1336 /**
1337  * vmw_kms_srf_ok - check if a surface can be created
1338  *
1339  * @width: requested width
1340  * @height: requested height
1341  *
1342  * Surfaces need to be less than texture size
1343  */
1344 static bool
1345 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1346 {
1347         if (width  > dev_priv->texture_max_width ||
1348             height > dev_priv->texture_max_height)
1349                 return false;
1350
1351         return true;
1352 }
1353
1354 /**
1355  * vmw_kms_new_framebuffer - Create a new framebuffer.
1356  *
1357  * @dev_priv: Pointer to device private struct.
1358  * @bo: Pointer to buffer object to wrap the kms framebuffer around.
1359  * Either @bo or @surface must be NULL.
1360  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1361  * Either @bo or @surface must be NULL.
1362  * @only_2d: No presents will occur to this buffer object based framebuffer.
1363  * This helps the code to do some important optimizations.
1364  * @mode_cmd: Frame-buffer metadata.
1365  */
1366 struct vmw_framebuffer *
1367 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1368                         struct vmw_buffer_object *bo,
1369                         struct vmw_surface *surface,
1370                         bool only_2d,
1371                         const struct drm_mode_fb_cmd2 *mode_cmd)
1372 {
1373         struct vmw_framebuffer *vfb = NULL;
1374         bool is_bo_proxy = false;
1375         int ret;
1376
1377         /*
1378          * We cannot use the SurfaceDMA command in an non-accelerated VM,
1379          * therefore, wrap the buffer object in a surface so we can use the
1380          * SurfaceCopy command.
1381          */
1382         if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1383             bo && only_2d &&
1384             mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1385             dev_priv->active_display_unit == vmw_du_screen_target) {
1386                 ret = vmw_create_bo_proxy(dev_priv->dev, mode_cmd,
1387                                           bo, &surface);
1388                 if (ret)
1389                         return ERR_PTR(ret);
1390
1391                 is_bo_proxy = true;
1392         }
1393
1394         /* Create the new framebuffer depending one what we have */
1395         if (surface) {
1396                 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1397                                                       mode_cmd,
1398                                                       is_bo_proxy);
1399
1400                 /*
1401                  * vmw_create_bo_proxy() adds a reference that is no longer
1402                  * needed
1403                  */
1404                 if (is_bo_proxy)
1405                         vmw_surface_unreference(&surface);
1406         } else if (bo) {
1407                 ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb,
1408                                                  mode_cmd);
1409         } else {
1410                 BUG();
1411         }
1412
1413         if (ret)
1414                 return ERR_PTR(ret);
1415
1416         vfb->pin = vmw_framebuffer_pin;
1417         vfb->unpin = vmw_framebuffer_unpin;
1418
1419         return vfb;
1420 }
1421
1422 /*
1423  * Generic Kernel modesetting functions
1424  */
1425
1426 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1427                                                  struct drm_file *file_priv,
1428                                                  const struct drm_mode_fb_cmd2 *mode_cmd)
1429 {
1430         struct vmw_private *dev_priv = vmw_priv(dev);
1431         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1432         struct vmw_framebuffer *vfb = NULL;
1433         struct vmw_surface *surface = NULL;
1434         struct vmw_buffer_object *bo = NULL;
1435         struct ttm_base_object *user_obj;
1436         int ret;
1437
1438         /*
1439          * Take a reference on the user object of the resource
1440          * backing the kms fb. This ensures that user-space handle
1441          * lookups on that resource will always work as long as
1442          * it's registered with a kms framebuffer. This is important,
1443          * since vmw_execbuf_process identifies resources in the
1444          * command stream using user-space handles.
1445          */
1446
1447         user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1448         if (unlikely(user_obj == NULL)) {
1449                 DRM_ERROR("Could not locate requested kms frame buffer.\n");
1450                 return ERR_PTR(-ENOENT);
1451         }
1452
1453         /**
1454          * End conditioned code.
1455          */
1456
1457         /* returns either a bo or surface */
1458         ret = vmw_user_lookup_handle(dev_priv, tfile,
1459                                      mode_cmd->handles[0],
1460                                      &surface, &bo);
1461         if (ret)
1462                 goto err_out;
1463
1464
1465         if (!bo &&
1466             !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1467                 DRM_ERROR("Surface size cannot exceed %dx%d",
1468                         dev_priv->texture_max_width,
1469                         dev_priv->texture_max_height);
1470                 goto err_out;
1471         }
1472
1473
1474         vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1475                                       !(dev_priv->capabilities & SVGA_CAP_3D),
1476                                       mode_cmd);
1477         if (IS_ERR(vfb)) {
1478                 ret = PTR_ERR(vfb);
1479                 goto err_out;
1480         }
1481
1482 err_out:
1483         /* vmw_user_lookup_handle takes one ref so does new_fb */
1484         if (bo)
1485                 vmw_bo_unreference(&bo);
1486         if (surface)
1487                 vmw_surface_unreference(&surface);
1488
1489         if (ret) {
1490                 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1491                 ttm_base_object_unref(&user_obj);
1492                 return ERR_PTR(ret);
1493         } else
1494                 vfb->user_obj = user_obj;
1495
1496         return &vfb->base;
1497 }
1498
1499 /**
1500  * vmw_kms_check_display_memory - Validates display memory required for a
1501  * topology
1502  * @dev: DRM device
1503  * @num_rects: number of drm_rect in rects
1504  * @rects: array of drm_rect representing the topology to validate indexed by
1505  * crtc index.
1506  *
1507  * Returns:
1508  * 0 on success otherwise negative error code
1509  */
1510 static int vmw_kms_check_display_memory(struct drm_device *dev,
1511                                         uint32_t num_rects,
1512                                         struct drm_rect *rects)
1513 {
1514         struct vmw_private *dev_priv = vmw_priv(dev);
1515         struct drm_mode_config *mode_config = &dev->mode_config;
1516         struct drm_rect bounding_box = {0};
1517         u64 total_pixels = 0, pixel_mem, bb_mem;
1518         int i;
1519
1520         for (i = 0; i < num_rects; i++) {
1521                 /*
1522                  * Currently this check is limiting the topology within max
1523                  * texture/screentarget size. This should change in future when
1524                  * user-space support multiple fb with topology.
1525                  */
1526                 if (rects[i].x1 < 0 ||  rects[i].y1 < 0 ||
1527                     rects[i].x2 > mode_config->max_width ||
1528                     rects[i].y2 > mode_config->max_height) {
1529                         DRM_ERROR("Invalid GUI layout.\n");
1530                         return -EINVAL;
1531                 }
1532
1533                 /* Bounding box upper left is at (0,0). */
1534                 if (rects[i].x2 > bounding_box.x2)
1535                         bounding_box.x2 = rects[i].x2;
1536
1537                 if (rects[i].y2 > bounding_box.y2)
1538                         bounding_box.y2 = rects[i].y2;
1539
1540                 total_pixels += (u64) drm_rect_width(&rects[i]) *
1541                         (u64) drm_rect_height(&rects[i]);
1542         }
1543
1544         /* Virtual svga device primary limits are always in 32-bpp. */
1545         pixel_mem = total_pixels * 4;
1546
1547         /*
1548          * For HV10 and below prim_bb_mem is vram size. When
1549          * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is
1550          * limit on primary bounding box
1551          */
1552         if (pixel_mem > dev_priv->prim_bb_mem) {
1553                 DRM_ERROR("Combined output size too large.\n");
1554                 return -EINVAL;
1555         }
1556
1557         /* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */
1558         if (dev_priv->active_display_unit != vmw_du_screen_target ||
1559             !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) {
1560                 bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4;
1561
1562                 if (bb_mem > dev_priv->prim_bb_mem) {
1563                         DRM_ERROR("Topology is beyond supported limits.\n");
1564                         return -EINVAL;
1565                 }
1566         }
1567
1568         return 0;
1569 }
1570
1571 /**
1572  * vmw_kms_check_topology - Validates topology in drm_atomic_state
1573  * @dev: DRM device
1574  * @state: the driver state object
1575  *
1576  * Returns:
1577  * 0 on success otherwise negative error code
1578  */
1579 static int vmw_kms_check_topology(struct drm_device *dev,
1580                                   struct drm_atomic_state *state)
1581 {
1582         struct vmw_private *dev_priv = vmw_priv(dev);
1583         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
1584         struct drm_rect *rects;
1585         struct drm_crtc *crtc;
1586         uint32_t i;
1587         int ret = 0;
1588
1589         rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect),
1590                         GFP_KERNEL);
1591         if (!rects)
1592                 return -ENOMEM;
1593
1594         mutex_lock(&dev_priv->requested_layout_mutex);
1595
1596         drm_for_each_crtc(crtc, dev) {
1597                 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1598                 struct drm_crtc_state *crtc_state = crtc->state;
1599
1600                 i = drm_crtc_index(crtc);
1601
1602                 if (crtc_state && crtc_state->enable) {
1603                         rects[i].x1 = du->gui_x;
1604                         rects[i].y1 = du->gui_y;
1605                         rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay;
1606                         rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay;
1607                 }
1608         }
1609
1610         /* Determine change to topology due to new atomic state */
1611         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
1612                                       new_crtc_state, i) {
1613                 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1614                 struct drm_connector *connector;
1615                 struct drm_connector_state *conn_state;
1616                 struct vmw_connector_state *vmw_conn_state;
1617
1618                 if (!new_crtc_state->enable && old_crtc_state->enable) {
1619                         rects[i].x1 = 0;
1620                         rects[i].y1 = 0;
1621                         rects[i].x2 = 0;
1622                         rects[i].y2 = 0;
1623                         continue;
1624                 }
1625
1626                 if (!du->pref_active) {
1627                         ret = -EINVAL;
1628                         goto clean;
1629                 }
1630
1631                 /*
1632                  * For vmwgfx each crtc has only one connector attached and it
1633                  * is not changed so don't really need to check the
1634                  * crtc->connector_mask and iterate over it.
1635                  */
1636                 connector = &du->connector;
1637                 conn_state = drm_atomic_get_connector_state(state, connector);
1638                 if (IS_ERR(conn_state)) {
1639                         ret = PTR_ERR(conn_state);
1640                         goto clean;
1641                 }
1642
1643                 vmw_conn_state = vmw_connector_state_to_vcs(conn_state);
1644                 vmw_conn_state->gui_x = du->gui_x;
1645                 vmw_conn_state->gui_y = du->gui_y;
1646
1647                 rects[i].x1 = du->gui_x;
1648                 rects[i].y1 = du->gui_y;
1649                 rects[i].x2 = du->gui_x + new_crtc_state->mode.hdisplay;
1650                 rects[i].y2 = du->gui_y + new_crtc_state->mode.vdisplay;
1651         }
1652
1653         ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc,
1654                                            rects);
1655
1656 clean:
1657         mutex_unlock(&dev_priv->requested_layout_mutex);
1658         kfree(rects);
1659         return ret;
1660 }
1661
1662 /**
1663  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1664  *
1665  * @dev: DRM device
1666  * @state: the driver state object
1667  *
1668  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1669  * us to assign a value to mode->crtc_clock so that
1670  * drm_calc_timestamping_constants() won't throw an error message
1671  *
1672  * Returns:
1673  * Zero for success or -errno
1674  */
1675 static int
1676 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1677                              struct drm_atomic_state *state)
1678 {
1679         struct drm_crtc *crtc;
1680         struct drm_crtc_state *crtc_state;
1681         bool need_modeset = false;
1682         int i, ret;
1683
1684         ret = drm_atomic_helper_check(dev, state);
1685         if (ret)
1686                 return ret;
1687
1688         if (!state->allow_modeset)
1689                 return ret;
1690
1691         /*
1692          * Legacy path do not set allow_modeset properly like
1693          * @drm_atomic_helper_update_plane, This will result in unnecessary call
1694          * to vmw_kms_check_topology. So extra set of check.
1695          */
1696         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1697                 if (drm_atomic_crtc_needs_modeset(crtc_state))
1698                         need_modeset = true;
1699         }
1700
1701         if (need_modeset)
1702                 return vmw_kms_check_topology(dev, state);
1703
1704         return ret;
1705 }
1706
1707 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1708         .fb_create = vmw_kms_fb_create,
1709         .atomic_check = vmw_kms_atomic_check_modeset,
1710         .atomic_commit = drm_atomic_helper_commit,
1711 };
1712
1713 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1714                                    struct drm_file *file_priv,
1715                                    struct vmw_framebuffer *vfb,
1716                                    struct vmw_surface *surface,
1717                                    uint32_t sid,
1718                                    int32_t destX, int32_t destY,
1719                                    struct drm_vmw_rect *clips,
1720                                    uint32_t num_clips)
1721 {
1722         return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1723                                             &surface->res, destX, destY,
1724                                             num_clips, 1, NULL, NULL);
1725 }
1726
1727
1728 int vmw_kms_present(struct vmw_private *dev_priv,
1729                     struct drm_file *file_priv,
1730                     struct vmw_framebuffer *vfb,
1731                     struct vmw_surface *surface,
1732                     uint32_t sid,
1733                     int32_t destX, int32_t destY,
1734                     struct drm_vmw_rect *clips,
1735                     uint32_t num_clips)
1736 {
1737         int ret;
1738
1739         switch (dev_priv->active_display_unit) {
1740         case vmw_du_screen_target:
1741                 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1742                                                  &surface->res, destX, destY,
1743                                                  num_clips, 1, NULL, NULL);
1744                 break;
1745         case vmw_du_screen_object:
1746                 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1747                                               sid, destX, destY, clips,
1748                                               num_clips);
1749                 break;
1750         default:
1751                 WARN_ONCE(true,
1752                           "Present called with invalid display system.\n");
1753                 ret = -ENOSYS;
1754                 break;
1755         }
1756         if (ret)
1757                 return ret;
1758
1759         vmw_fifo_flush(dev_priv, false);
1760
1761         return 0;
1762 }
1763
1764 static void
1765 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1766 {
1767         if (dev_priv->hotplug_mode_update_property)
1768                 return;
1769
1770         dev_priv->hotplug_mode_update_property =
1771                 drm_property_create_range(dev_priv->dev,
1772                                           DRM_MODE_PROP_IMMUTABLE,
1773                                           "hotplug_mode_update", 0, 1);
1774
1775         if (!dev_priv->hotplug_mode_update_property)
1776                 return;
1777
1778 }
1779
1780 int vmw_kms_init(struct vmw_private *dev_priv)
1781 {
1782         struct drm_device *dev = dev_priv->dev;
1783         int ret;
1784
1785         drm_mode_config_init(dev);
1786         dev->mode_config.funcs = &vmw_kms_funcs;
1787         dev->mode_config.min_width = 1;
1788         dev->mode_config.min_height = 1;
1789         dev->mode_config.max_width = dev_priv->texture_max_width;
1790         dev->mode_config.max_height = dev_priv->texture_max_height;
1791
1792         drm_mode_create_suggested_offset_properties(dev);
1793         vmw_kms_create_hotplug_mode_update_property(dev_priv);
1794
1795         ret = vmw_kms_stdu_init_display(dev_priv);
1796         if (ret) {
1797                 ret = vmw_kms_sou_init_display(dev_priv);
1798                 if (ret) /* Fallback */
1799                         ret = vmw_kms_ldu_init_display(dev_priv);
1800         }
1801
1802         return ret;
1803 }
1804
1805 int vmw_kms_close(struct vmw_private *dev_priv)
1806 {
1807         int ret = 0;
1808
1809         /*
1810          * Docs says we should take the lock before calling this function
1811          * but since it destroys encoders and our destructor calls
1812          * drm_encoder_cleanup which takes the lock we deadlock.
1813          */
1814         drm_mode_config_cleanup(dev_priv->dev);
1815         if (dev_priv->active_display_unit == vmw_du_legacy)
1816                 ret = vmw_kms_ldu_close_display(dev_priv);
1817
1818         return ret;
1819 }
1820
1821 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1822                                 struct drm_file *file_priv)
1823 {
1824         struct drm_vmw_cursor_bypass_arg *arg = data;
1825         struct vmw_display_unit *du;
1826         struct drm_crtc *crtc;
1827         int ret = 0;
1828
1829
1830         mutex_lock(&dev->mode_config.mutex);
1831         if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1832
1833                 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1834                         du = vmw_crtc_to_du(crtc);
1835                         du->hotspot_x = arg->xhot;
1836                         du->hotspot_y = arg->yhot;
1837                 }
1838
1839                 mutex_unlock(&dev->mode_config.mutex);
1840                 return 0;
1841         }
1842
1843         crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1844         if (!crtc) {
1845                 ret = -ENOENT;
1846                 goto out;
1847         }
1848
1849         du = vmw_crtc_to_du(crtc);
1850
1851         du->hotspot_x = arg->xhot;
1852         du->hotspot_y = arg->yhot;
1853
1854 out:
1855         mutex_unlock(&dev->mode_config.mutex);
1856
1857         return ret;
1858 }
1859
1860 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1861                         unsigned width, unsigned height, unsigned pitch,
1862                         unsigned bpp, unsigned depth)
1863 {
1864         if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1865                 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1866         else if (vmw_fifo_have_pitchlock(vmw_priv))
1867                 vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1868                                SVGA_FIFO_PITCHLOCK);
1869         vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1870         vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1871         vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1872
1873         if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1874                 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1875                           depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1876                 return -EINVAL;
1877         }
1878
1879         return 0;
1880 }
1881
1882 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1883 {
1884         struct vmw_vga_topology_state *save;
1885         uint32_t i;
1886
1887         vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1888         vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1889         vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1890         if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1891                 vmw_priv->vga_pitchlock =
1892                   vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1893         else if (vmw_fifo_have_pitchlock(vmw_priv))
1894                 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1895                                                         SVGA_FIFO_PITCHLOCK);
1896
1897         if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1898                 return 0;
1899
1900         vmw_priv->num_displays = vmw_read(vmw_priv,
1901                                           SVGA_REG_NUM_GUEST_DISPLAYS);
1902
1903         if (vmw_priv->num_displays == 0)
1904                 vmw_priv->num_displays = 1;
1905
1906         for (i = 0; i < vmw_priv->num_displays; ++i) {
1907                 save = &vmw_priv->vga_save[i];
1908                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1909                 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1910                 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1911                 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1912                 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1913                 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1914                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1915                 if (i == 0 && vmw_priv->num_displays == 1 &&
1916                     save->width == 0 && save->height == 0) {
1917
1918                         /*
1919                          * It should be fairly safe to assume that these
1920                          * values are uninitialized.
1921                          */
1922
1923                         save->width = vmw_priv->vga_width - save->pos_x;
1924                         save->height = vmw_priv->vga_height - save->pos_y;
1925                 }
1926         }
1927
1928         return 0;
1929 }
1930
1931 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1932 {
1933         struct vmw_vga_topology_state *save;
1934         uint32_t i;
1935
1936         vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1937         vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1938         vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1939         if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1940                 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1941                           vmw_priv->vga_pitchlock);
1942         else if (vmw_fifo_have_pitchlock(vmw_priv))
1943                 vmw_mmio_write(vmw_priv->vga_pitchlock,
1944                                vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1945
1946         if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1947                 return 0;
1948
1949         for (i = 0; i < vmw_priv->num_displays; ++i) {
1950                 save = &vmw_priv->vga_save[i];
1951                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1952                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1953                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1954                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1955                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1956                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1957                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1958         }
1959
1960         return 0;
1961 }
1962
1963 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1964                                 uint32_t pitch,
1965                                 uint32_t height)
1966 {
1967         return ((u64) pitch * (u64) height) < (u64)
1968                 ((dev_priv->active_display_unit == vmw_du_screen_target) ?
1969                  dev_priv->prim_bb_mem : dev_priv->vram_size);
1970 }
1971
1972
1973 /**
1974  * Function called by DRM code called with vbl_lock held.
1975  */
1976 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1977 {
1978         return 0;
1979 }
1980
1981 /**
1982  * Function called by DRM code called with vbl_lock held.
1983  */
1984 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
1985 {
1986         return -EINVAL;
1987 }
1988
1989 /**
1990  * Function called by DRM code called with vbl_lock held.
1991  */
1992 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
1993 {
1994 }
1995
1996 /**
1997  * vmw_du_update_layout - Update the display unit with topology from resolution
1998  * plugin and generate DRM uevent
1999  * @dev_priv: device private
2000  * @num_rects: number of drm_rect in rects
2001  * @rects: toplogy to update
2002  */
2003 static int vmw_du_update_layout(struct vmw_private *dev_priv,
2004                                 unsigned int num_rects, struct drm_rect *rects)
2005 {
2006         struct drm_device *dev = dev_priv->dev;
2007         struct vmw_display_unit *du;
2008         struct drm_connector *con;
2009         struct drm_connector_list_iter conn_iter;
2010
2011         /*
2012          * Currently only gui_x/y is protected with requested_layout_mutex.
2013          */
2014         mutex_lock(&dev_priv->requested_layout_mutex);
2015         drm_connector_list_iter_begin(dev, &conn_iter);
2016         drm_for_each_connector_iter(con, &conn_iter) {
2017                 du = vmw_connector_to_du(con);
2018                 if (num_rects > du->unit) {
2019                         du->pref_width = drm_rect_width(&rects[du->unit]);
2020                         du->pref_height = drm_rect_height(&rects[du->unit]);
2021                         du->pref_active = true;
2022                         du->gui_x = rects[du->unit].x1;
2023                         du->gui_y = rects[du->unit].y1;
2024                 } else {
2025                         du->pref_width = 800;
2026                         du->pref_height = 600;
2027                         du->pref_active = false;
2028                         du->gui_x = 0;
2029                         du->gui_y = 0;
2030                 }
2031         }
2032         drm_connector_list_iter_end(&conn_iter);
2033         mutex_unlock(&dev_priv->requested_layout_mutex);
2034
2035         mutex_lock(&dev->mode_config.mutex);
2036         list_for_each_entry(con, &dev->mode_config.connector_list, head) {
2037                 du = vmw_connector_to_du(con);
2038                 if (num_rects > du->unit) {
2039                         drm_object_property_set_value
2040                           (&con->base, dev->mode_config.suggested_x_property,
2041                            du->gui_x);
2042                         drm_object_property_set_value
2043                           (&con->base, dev->mode_config.suggested_y_property,
2044                            du->gui_y);
2045                 } else {
2046                         drm_object_property_set_value
2047                           (&con->base, dev->mode_config.suggested_x_property,
2048                            0);
2049                         drm_object_property_set_value
2050                           (&con->base, dev->mode_config.suggested_y_property,
2051                            0);
2052                 }
2053                 con->status = vmw_du_connector_detect(con, true);
2054         }
2055         mutex_unlock(&dev->mode_config.mutex);
2056
2057         drm_sysfs_hotplug_event(dev);
2058
2059         return 0;
2060 }
2061
2062 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
2063                           u16 *r, u16 *g, u16 *b,
2064                           uint32_t size,
2065                           struct drm_modeset_acquire_ctx *ctx)
2066 {
2067         struct vmw_private *dev_priv = vmw_priv(crtc->dev);
2068         int i;
2069
2070         for (i = 0; i < size; i++) {
2071                 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
2072                           r[i], g[i], b[i]);
2073                 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
2074                 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
2075                 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
2076         }
2077
2078         return 0;
2079 }
2080
2081 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
2082 {
2083         return 0;
2084 }
2085
2086 enum drm_connector_status
2087 vmw_du_connector_detect(struct drm_connector *connector, bool force)
2088 {
2089         uint32_t num_displays;
2090         struct drm_device *dev = connector->dev;
2091         struct vmw_private *dev_priv = vmw_priv(dev);
2092         struct vmw_display_unit *du = vmw_connector_to_du(connector);
2093
2094         num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
2095
2096         return ((vmw_connector_to_du(connector)->unit < num_displays &&
2097                  du->pref_active) ?
2098                 connector_status_connected : connector_status_disconnected);
2099 }
2100
2101 static struct drm_display_mode vmw_kms_connector_builtin[] = {
2102         /* 640x480@60Hz */
2103         { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
2104                    752, 800, 0, 480, 489, 492, 525, 0,
2105                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2106         /* 800x600@60Hz */
2107         { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
2108                    968, 1056, 0, 600, 601, 605, 628, 0,
2109                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2110         /* 1024x768@60Hz */
2111         { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
2112                    1184, 1344, 0, 768, 771, 777, 806, 0,
2113                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2114         /* 1152x864@75Hz */
2115         { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
2116                    1344, 1600, 0, 864, 865, 868, 900, 0,
2117                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2118         /* 1280x768@60Hz */
2119         { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2120                    1472, 1664, 0, 768, 771, 778, 798, 0,
2121                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2122         /* 1280x800@60Hz */
2123         { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2124                    1480, 1680, 0, 800, 803, 809, 831, 0,
2125                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2126         /* 1280x960@60Hz */
2127         { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2128                    1488, 1800, 0, 960, 961, 964, 1000, 0,
2129                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2130         /* 1280x1024@60Hz */
2131         { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2132                    1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2133                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2134         /* 1360x768@60Hz */
2135         { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2136                    1536, 1792, 0, 768, 771, 777, 795, 0,
2137                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2138         /* 1440x1050@60Hz */
2139         { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2140                    1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2141                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2142         /* 1440x900@60Hz */
2143         { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2144                    1672, 1904, 0, 900, 903, 909, 934, 0,
2145                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2146         /* 1600x1200@60Hz */
2147         { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2148                    1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2149                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2150         /* 1680x1050@60Hz */
2151         { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2152                    1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2153                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2154         /* 1792x1344@60Hz */
2155         { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2156                    2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2157                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2158         /* 1853x1392@60Hz */
2159         { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2160                    2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2161                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2162         /* 1920x1200@60Hz */
2163         { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2164                    2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2165                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2166         /* 1920x1440@60Hz */
2167         { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2168                    2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2169                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2170         /* 2560x1600@60Hz */
2171         { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2172                    3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2173                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2174         /* Terminate */
2175         { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2176 };
2177
2178 /**
2179  * vmw_guess_mode_timing - Provide fake timings for a
2180  * 60Hz vrefresh mode.
2181  *
2182  * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2183  * members filled in.
2184  */
2185 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2186 {
2187         mode->hsync_start = mode->hdisplay + 50;
2188         mode->hsync_end = mode->hsync_start + 50;
2189         mode->htotal = mode->hsync_end + 50;
2190
2191         mode->vsync_start = mode->vdisplay + 50;
2192         mode->vsync_end = mode->vsync_start + 50;
2193         mode->vtotal = mode->vsync_end + 50;
2194
2195         mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2196         mode->vrefresh = drm_mode_vrefresh(mode);
2197 }
2198
2199
2200 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2201                                 uint32_t max_width, uint32_t max_height)
2202 {
2203         struct vmw_display_unit *du = vmw_connector_to_du(connector);
2204         struct drm_device *dev = connector->dev;
2205         struct vmw_private *dev_priv = vmw_priv(dev);
2206         struct drm_display_mode *mode = NULL;
2207         struct drm_display_mode *bmode;
2208         struct drm_display_mode prefmode = { DRM_MODE("preferred",
2209                 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2210                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2211                 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2212         };
2213         int i;
2214         u32 assumed_bpp = 4;
2215
2216         if (dev_priv->assume_16bpp)
2217                 assumed_bpp = 2;
2218
2219         if (dev_priv->active_display_unit == vmw_du_screen_target) {
2220                 max_width  = min(max_width,  dev_priv->stdu_max_width);
2221                 max_width  = min(max_width,  dev_priv->texture_max_width);
2222
2223                 max_height = min(max_height, dev_priv->stdu_max_height);
2224                 max_height = min(max_height, dev_priv->texture_max_height);
2225         }
2226
2227         /* Add preferred mode */
2228         mode = drm_mode_duplicate(dev, &prefmode);
2229         if (!mode)
2230                 return 0;
2231         mode->hdisplay = du->pref_width;
2232         mode->vdisplay = du->pref_height;
2233         vmw_guess_mode_timing(mode);
2234
2235         if (vmw_kms_validate_mode_vram(dev_priv,
2236                                         mode->hdisplay * assumed_bpp,
2237                                         mode->vdisplay)) {
2238                 drm_mode_probed_add(connector, mode);
2239         } else {
2240                 drm_mode_destroy(dev, mode);
2241                 mode = NULL;
2242         }
2243
2244         if (du->pref_mode) {
2245                 list_del_init(&du->pref_mode->head);
2246                 drm_mode_destroy(dev, du->pref_mode);
2247         }
2248
2249         /* mode might be null here, this is intended */
2250         du->pref_mode = mode;
2251
2252         for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2253                 bmode = &vmw_kms_connector_builtin[i];
2254                 if (bmode->hdisplay > max_width ||
2255                     bmode->vdisplay > max_height)
2256                         continue;
2257
2258                 if (!vmw_kms_validate_mode_vram(dev_priv,
2259                                                 bmode->hdisplay * assumed_bpp,
2260                                                 bmode->vdisplay))
2261                         continue;
2262
2263                 mode = drm_mode_duplicate(dev, bmode);
2264                 if (!mode)
2265                         return 0;
2266                 mode->vrefresh = drm_mode_vrefresh(mode);
2267
2268                 drm_mode_probed_add(connector, mode);
2269         }
2270
2271         drm_mode_connector_list_update(connector);
2272         /* Move the prefered mode first, help apps pick the right mode. */
2273         drm_mode_sort(&connector->modes);
2274
2275         return 1;
2276 }
2277
2278 int vmw_du_connector_set_property(struct drm_connector *connector,
2279                                   struct drm_property *property,
2280                                   uint64_t val)
2281 {
2282         struct vmw_display_unit *du = vmw_connector_to_du(connector);
2283         struct vmw_private *dev_priv = vmw_priv(connector->dev);
2284
2285         if (property == dev_priv->implicit_placement_property)
2286                 du->is_implicit = val;
2287
2288         return 0;
2289 }
2290
2291
2292
2293 /**
2294  * vmw_du_connector_atomic_set_property - Atomic version of get property
2295  *
2296  * @crtc - crtc the property is associated with
2297  *
2298  * Returns:
2299  * Zero on success, negative errno on failure.
2300  */
2301 int
2302 vmw_du_connector_atomic_set_property(struct drm_connector *connector,
2303                                      struct drm_connector_state *state,
2304                                      struct drm_property *property,
2305                                      uint64_t val)
2306 {
2307         struct vmw_private *dev_priv = vmw_priv(connector->dev);
2308         struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2309         struct vmw_display_unit *du = vmw_connector_to_du(connector);
2310
2311
2312         if (property == dev_priv->implicit_placement_property) {
2313                 vcs->is_implicit = val;
2314
2315                 /*
2316                  * We should really be doing a drm_atomic_commit() to
2317                  * commit the new state, but since this doesn't cause
2318                  * an immedate state change, this is probably ok
2319                  */
2320                 du->is_implicit = vcs->is_implicit;
2321         } else {
2322                 return -EINVAL;
2323         }
2324
2325         return 0;
2326 }
2327
2328
2329 /**
2330  * vmw_du_connector_atomic_get_property - Atomic version of get property
2331  *
2332  * @connector - connector the property is associated with
2333  *
2334  * Returns:
2335  * Zero on success, negative errno on failure.
2336  */
2337 int
2338 vmw_du_connector_atomic_get_property(struct drm_connector *connector,
2339                                      const struct drm_connector_state *state,
2340                                      struct drm_property *property,
2341                                      uint64_t *val)
2342 {
2343         struct vmw_private *dev_priv = vmw_priv(connector->dev);
2344         struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2345
2346         if (property == dev_priv->implicit_placement_property)
2347                 *val = vcs->is_implicit;
2348         else {
2349                 DRM_ERROR("Invalid Property %s\n", property->name);
2350                 return -EINVAL;
2351         }
2352
2353         return 0;
2354 }
2355
2356 /**
2357  * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl
2358  * @dev: drm device for the ioctl
2359  * @data: data pointer for the ioctl
2360  * @file_priv: drm file for the ioctl call
2361  *
2362  * Update preferred topology of display unit as per ioctl request. The topology
2363  * is expressed as array of drm_vmw_rect.
2364  * e.g.
2365  * [0 0 640 480] [640 0 800 600] [0 480 640 480]
2366  *
2367  * NOTE:
2368  * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside
2369  * device limit on topology, x + w and y + h (lower right) cannot be greater
2370  * than INT_MAX. So topology beyond these limits will return with error.
2371  *
2372  * Returns:
2373  * Zero on success, negative errno on failure.
2374  */
2375 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2376                                 struct drm_file *file_priv)
2377 {
2378         struct vmw_private *dev_priv = vmw_priv(dev);
2379         struct drm_vmw_update_layout_arg *arg =
2380                 (struct drm_vmw_update_layout_arg *)data;
2381         void __user *user_rects;
2382         struct drm_vmw_rect *rects;
2383         struct drm_rect *drm_rects;
2384         unsigned rects_size;
2385         int ret, i;
2386
2387         if (!arg->num_outputs) {
2388                 struct drm_rect def_rect = {0, 0, 800, 600};
2389                 vmw_du_update_layout(dev_priv, 1, &def_rect);
2390                 return 0;
2391         }
2392
2393         rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2394         rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2395                         GFP_KERNEL);
2396         if (unlikely(!rects))
2397                 return -ENOMEM;
2398
2399         user_rects = (void __user *)(unsigned long)arg->rects;
2400         ret = copy_from_user(rects, user_rects, rects_size);
2401         if (unlikely(ret != 0)) {
2402                 DRM_ERROR("Failed to get rects.\n");
2403                 ret = -EFAULT;
2404                 goto out_free;
2405         }
2406
2407         drm_rects = (struct drm_rect *)rects;
2408
2409         for (i = 0; i < arg->num_outputs; i++) {
2410                 struct drm_vmw_rect curr_rect;
2411
2412                 /* Verify user-space for overflow as kernel use drm_rect */
2413                 if ((rects[i].x + rects[i].w > INT_MAX) ||
2414                     (rects[i].y + rects[i].h > INT_MAX)) {
2415                         ret = -ERANGE;
2416                         goto out_free;
2417                 }
2418
2419                 curr_rect = rects[i];
2420                 drm_rects[i].x1 = curr_rect.x;
2421                 drm_rects[i].y1 = curr_rect.y;
2422                 drm_rects[i].x2 = curr_rect.x + curr_rect.w;
2423                 drm_rects[i].y2 = curr_rect.y + curr_rect.h;
2424         }
2425
2426         ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects);
2427
2428         if (ret == 0)
2429                 vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects);
2430
2431 out_free:
2432         kfree(rects);
2433         return ret;
2434 }
2435
2436 /**
2437  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2438  * on a set of cliprects and a set of display units.
2439  *
2440  * @dev_priv: Pointer to a device private structure.
2441  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2442  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2443  * Cliprects are given in framebuffer coordinates.
2444  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2445  * be NULL. Cliprects are given in source coordinates.
2446  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2447  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2448  * @num_clips: Number of cliprects in the @clips or @vclips array.
2449  * @increment: Integer with which to increment the clip counter when looping.
2450  * Used to skip a predetermined number of clip rects.
2451  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2452  */
2453 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2454                          struct vmw_framebuffer *framebuffer,
2455                          const struct drm_clip_rect *clips,
2456                          const struct drm_vmw_rect *vclips,
2457                          s32 dest_x, s32 dest_y,
2458                          int num_clips,
2459                          int increment,
2460                          struct vmw_kms_dirty *dirty)
2461 {
2462         struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2463         struct drm_crtc *crtc;
2464         u32 num_units = 0;
2465         u32 i, k;
2466
2467         dirty->dev_priv = dev_priv;
2468
2469         /* If crtc is passed, no need to iterate over other display units */
2470         if (dirty->crtc) {
2471                 units[num_units++] = vmw_crtc_to_du(dirty->crtc);
2472         } else {
2473                 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list,
2474                                     head) {
2475                         struct drm_plane *plane = crtc->primary;
2476
2477                         if (plane->state->fb == &framebuffer->base)
2478                                 units[num_units++] = vmw_crtc_to_du(crtc);
2479                 }
2480         }
2481
2482         for (k = 0; k < num_units; k++) {
2483                 struct vmw_display_unit *unit = units[k];
2484                 s32 crtc_x = unit->crtc.x;
2485                 s32 crtc_y = unit->crtc.y;
2486                 s32 crtc_width = unit->crtc.mode.hdisplay;
2487                 s32 crtc_height = unit->crtc.mode.vdisplay;
2488                 const struct drm_clip_rect *clips_ptr = clips;
2489                 const struct drm_vmw_rect *vclips_ptr = vclips;
2490
2491                 dirty->unit = unit;
2492                 if (dirty->fifo_reserve_size > 0) {
2493                         dirty->cmd = vmw_fifo_reserve(dev_priv,
2494                                                       dirty->fifo_reserve_size);
2495                         if (!dirty->cmd) {
2496                                 DRM_ERROR("Couldn't reserve fifo space "
2497                                           "for dirty blits.\n");
2498                                 return -ENOMEM;
2499                         }
2500                         memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2501                 }
2502                 dirty->num_hits = 0;
2503                 for (i = 0; i < num_clips; i++, clips_ptr += increment,
2504                        vclips_ptr += increment) {
2505                         s32 clip_left;
2506                         s32 clip_top;
2507
2508                         /*
2509                          * Select clip array type. Note that integer type
2510                          * in @clips is unsigned short, whereas in @vclips
2511                          * it's 32-bit.
2512                          */
2513                         if (clips) {
2514                                 dirty->fb_x = (s32) clips_ptr->x1;
2515                                 dirty->fb_y = (s32) clips_ptr->y1;
2516                                 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2517                                         crtc_x;
2518                                 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2519                                         crtc_y;
2520                         } else {
2521                                 dirty->fb_x = vclips_ptr->x;
2522                                 dirty->fb_y = vclips_ptr->y;
2523                                 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2524                                         dest_x - crtc_x;
2525                                 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2526                                         dest_y - crtc_y;
2527                         }
2528
2529                         dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2530                         dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2531
2532                         /* Skip this clip if it's outside the crtc region */
2533                         if (dirty->unit_x1 >= crtc_width ||
2534                             dirty->unit_y1 >= crtc_height ||
2535                             dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2536                                 continue;
2537
2538                         /* Clip right and bottom to crtc limits */
2539                         dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2540                                                crtc_width);
2541                         dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2542                                                crtc_height);
2543
2544                         /* Clip left and top to crtc limits */
2545                         clip_left = min_t(s32, dirty->unit_x1, 0);
2546                         clip_top = min_t(s32, dirty->unit_y1, 0);
2547                         dirty->unit_x1 -= clip_left;
2548                         dirty->unit_y1 -= clip_top;
2549                         dirty->fb_x -= clip_left;
2550                         dirty->fb_y -= clip_top;
2551
2552                         dirty->clip(dirty);
2553                 }
2554
2555                 dirty->fifo_commit(dirty);
2556         }
2557
2558         return 0;
2559 }
2560
2561 /**
2562  * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before
2563  * command submission.
2564  *
2565  * @dev_priv. Pointer to a device private structure.
2566  * @buf: The buffer object
2567  * @interruptible: Whether to perform waits as interruptible.
2568  * @validate_as_mob: Whether the buffer should be validated as a MOB. If false,
2569  * The buffer will be validated as a GMR. Already pinned buffers will not be
2570  * validated.
2571  *
2572  * Returns 0 on success, negative error code on failure, -ERESTARTSYS if
2573  * interrupted by a signal.
2574  */
2575 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv,
2576                                   struct vmw_buffer_object *buf,
2577                                   bool interruptible,
2578                                   bool validate_as_mob,
2579                                   bool for_cpu_blit)
2580 {
2581         struct ttm_operation_ctx ctx = {
2582                 .interruptible = interruptible,
2583                 .no_wait_gpu = false};
2584         struct ttm_buffer_object *bo = &buf->base;
2585         int ret;
2586
2587         ttm_bo_reserve(bo, false, false, NULL);
2588         if (for_cpu_blit)
2589                 ret = ttm_bo_validate(bo, &vmw_nonfixed_placement, &ctx);
2590         else
2591                 ret = vmw_validate_single_buffer(dev_priv, bo, interruptible,
2592                                                  validate_as_mob);
2593         if (ret)
2594                 ttm_bo_unreserve(bo);
2595
2596         return ret;
2597 }
2598
2599 /**
2600  * vmw_kms_helper_buffer_revert - Undo the actions of
2601  * vmw_kms_helper_buffer_prepare.
2602  *
2603  * @res: Pointer to the buffer object.
2604  *
2605  * Helper to be used if an error forces the caller to undo the actions of
2606  * vmw_kms_helper_buffer_prepare.
2607  */
2608 void vmw_kms_helper_buffer_revert(struct vmw_buffer_object *buf)
2609 {
2610         if (buf)
2611                 ttm_bo_unreserve(&buf->base);
2612 }
2613
2614 /**
2615  * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after
2616  * kms command submission.
2617  *
2618  * @dev_priv: Pointer to a device private structure.
2619  * @file_priv: Pointer to a struct drm_file representing the caller's
2620  * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely
2621  * if non-NULL, @user_fence_rep must be non-NULL.
2622  * @buf: The buffer object.
2623  * @out_fence:  Optional pointer to a fence pointer. If non-NULL, a
2624  * ref-counted fence pointer is returned here.
2625  * @user_fence_rep: Optional pointer to a user-space provided struct
2626  * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the
2627  * function copies fence data to user-space in a fail-safe manner.
2628  */
2629 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv,
2630                                   struct drm_file *file_priv,
2631                                   struct vmw_buffer_object *buf,
2632                                   struct vmw_fence_obj **out_fence,
2633                                   struct drm_vmw_fence_rep __user *
2634                                   user_fence_rep)
2635 {
2636         struct vmw_fence_obj *fence;
2637         uint32_t handle;
2638         int ret;
2639
2640         ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2641                                          file_priv ? &handle : NULL);
2642         if (buf)
2643                 vmw_bo_fence_single(&buf->base, fence);
2644         if (file_priv)
2645                 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2646                                             ret, user_fence_rep, fence,
2647                                             handle, -1, NULL);
2648         if (out_fence)
2649                 *out_fence = fence;
2650         else
2651                 vmw_fence_obj_unreference(&fence);
2652
2653         vmw_kms_helper_buffer_revert(buf);
2654 }
2655
2656
2657 /**
2658  * vmw_kms_helper_resource_revert - Undo the actions of
2659  * vmw_kms_helper_resource_prepare.
2660  *
2661  * @res: Pointer to the resource. Typically a surface.
2662  *
2663  * Helper to be used if an error forces the caller to undo the actions of
2664  * vmw_kms_helper_resource_prepare.
2665  */
2666 void vmw_kms_helper_resource_revert(struct vmw_validation_ctx *ctx)
2667 {
2668         struct vmw_resource *res = ctx->res;
2669
2670         vmw_kms_helper_buffer_revert(ctx->buf);
2671         vmw_bo_unreference(&ctx->buf);
2672         vmw_resource_unreserve(res, false, NULL, 0);
2673         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2674 }
2675
2676 /**
2677  * vmw_kms_helper_resource_prepare - Reserve and validate a resource before
2678  * command submission.
2679  *
2680  * @res: Pointer to the resource. Typically a surface.
2681  * @interruptible: Whether to perform waits as interruptible.
2682  *
2683  * Reserves and validates also the backup buffer if a guest-backed resource.
2684  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
2685  * interrupted by a signal.
2686  */
2687 int vmw_kms_helper_resource_prepare(struct vmw_resource *res,
2688                                     bool interruptible,
2689                                     struct vmw_validation_ctx *ctx)
2690 {
2691         int ret = 0;
2692
2693         ctx->buf = NULL;
2694         ctx->res = res;
2695
2696         if (interruptible)
2697                 ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex);
2698         else
2699                 mutex_lock(&res->dev_priv->cmdbuf_mutex);
2700
2701         if (unlikely(ret != 0))
2702                 return -ERESTARTSYS;
2703
2704         ret = vmw_resource_reserve(res, interruptible, false);
2705         if (ret)
2706                 goto out_unlock;
2707
2708         if (res->backup) {
2709                 ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup,
2710                                                     interruptible,
2711                                                     res->dev_priv->has_mob,
2712                                                     false);
2713                 if (ret)
2714                         goto out_unreserve;
2715
2716                 ctx->buf = vmw_bo_reference(res->backup);
2717         }
2718         ret = vmw_resource_validate(res);
2719         if (ret)
2720                 goto out_revert;
2721         return 0;
2722
2723 out_revert:
2724         vmw_kms_helper_buffer_revert(ctx->buf);
2725 out_unreserve:
2726         vmw_resource_unreserve(res, false, NULL, 0);
2727 out_unlock:
2728         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2729         return ret;
2730 }
2731
2732 /**
2733  * vmw_kms_helper_resource_finish - Unreserve and fence a resource after
2734  * kms command submission.
2735  *
2736  * @res: Pointer to the resource. Typically a surface.
2737  * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2738  * ref-counted fence pointer is returned here.
2739  */
2740 void vmw_kms_helper_resource_finish(struct vmw_validation_ctx *ctx,
2741                                     struct vmw_fence_obj **out_fence)
2742 {
2743         struct vmw_resource *res = ctx->res;
2744
2745         if (ctx->buf || out_fence)
2746                 vmw_kms_helper_buffer_finish(res->dev_priv, NULL, ctx->buf,
2747                                              out_fence, NULL);
2748
2749         vmw_bo_unreference(&ctx->buf);
2750         vmw_resource_unreserve(res, false, NULL, 0);
2751         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2752 }
2753
2754 /**
2755  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2756  * its backing MOB.
2757  *
2758  * @res: Pointer to the surface resource
2759  * @clips: Clip rects in framebuffer (surface) space.
2760  * @num_clips: Number of clips in @clips.
2761  * @increment: Integer with which to increment the clip counter when looping.
2762  * Used to skip a predetermined number of clip rects.
2763  *
2764  * This function makes sure the proxy surface is updated from its backing MOB
2765  * using the region given by @clips. The surface resource @res and its backing
2766  * MOB needs to be reserved and validated on call.
2767  */
2768 int vmw_kms_update_proxy(struct vmw_resource *res,
2769                          const struct drm_clip_rect *clips,
2770                          unsigned num_clips,
2771                          int increment)
2772 {
2773         struct vmw_private *dev_priv = res->dev_priv;
2774         struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2775         struct {
2776                 SVGA3dCmdHeader header;
2777                 SVGA3dCmdUpdateGBImage body;
2778         } *cmd;
2779         SVGA3dBox *box;
2780         size_t copy_size = 0;
2781         int i;
2782
2783         if (!clips)
2784                 return 0;
2785
2786         cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2787         if (!cmd) {
2788                 DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2789                           "update.\n");
2790                 return -ENOMEM;
2791         }
2792
2793         for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2794                 box = &cmd->body.box;
2795
2796                 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2797                 cmd->header.size = sizeof(cmd->body);
2798                 cmd->body.image.sid = res->id;
2799                 cmd->body.image.face = 0;
2800                 cmd->body.image.mipmap = 0;
2801
2802                 if (clips->x1 > size->width || clips->x2 > size->width ||
2803                     clips->y1 > size->height || clips->y2 > size->height) {
2804                         DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2805                         return -EINVAL;
2806                 }
2807
2808                 box->x = clips->x1;
2809                 box->y = clips->y1;
2810                 box->z = 0;
2811                 box->w = clips->x2 - clips->x1;
2812                 box->h = clips->y2 - clips->y1;
2813                 box->d = 1;
2814
2815                 copy_size += sizeof(*cmd);
2816         }
2817
2818         vmw_fifo_commit(dev_priv, copy_size);
2819
2820         return 0;
2821 }
2822
2823 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2824                             unsigned unit,
2825                             u32 max_width,
2826                             u32 max_height,
2827                             struct drm_connector **p_con,
2828                             struct drm_crtc **p_crtc,
2829                             struct drm_display_mode **p_mode)
2830 {
2831         struct drm_connector *con;
2832         struct vmw_display_unit *du;
2833         struct drm_display_mode *mode;
2834         int i = 0;
2835         int ret = 0;
2836
2837         mutex_lock(&dev_priv->dev->mode_config.mutex);
2838         list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2839                             head) {
2840                 if (i == unit)
2841                         break;
2842
2843                 ++i;
2844         }
2845
2846         if (i != unit) {
2847                 DRM_ERROR("Could not find initial display unit.\n");
2848                 ret = -EINVAL;
2849                 goto out_unlock;
2850         }
2851
2852         if (list_empty(&con->modes))
2853                 (void) vmw_du_connector_fill_modes(con, max_width, max_height);
2854
2855         if (list_empty(&con->modes)) {
2856                 DRM_ERROR("Could not find initial display mode.\n");
2857                 ret = -EINVAL;
2858                 goto out_unlock;
2859         }
2860
2861         du = vmw_connector_to_du(con);
2862         *p_con = con;
2863         *p_crtc = &du->crtc;
2864
2865         list_for_each_entry(mode, &con->modes, head) {
2866                 if (mode->type & DRM_MODE_TYPE_PREFERRED)
2867                         break;
2868         }
2869
2870         if (mode->type & DRM_MODE_TYPE_PREFERRED)
2871                 *p_mode = mode;
2872         else {
2873                 WARN_ONCE(true, "Could not find initial preferred mode.\n");
2874                 *p_mode = list_first_entry(&con->modes,
2875                                            struct drm_display_mode,
2876                                            head);
2877         }
2878
2879  out_unlock:
2880         mutex_unlock(&dev_priv->dev->mode_config.mutex);
2881
2882         return ret;
2883 }
2884
2885 /**
2886  * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer
2887  *
2888  * @dev_priv: Pointer to a device private struct.
2889  * @du: The display unit of the crtc.
2890  */
2891 void vmw_kms_del_active(struct vmw_private *dev_priv,
2892                         struct vmw_display_unit *du)
2893 {
2894         mutex_lock(&dev_priv->global_kms_state_mutex);
2895         if (du->active_implicit) {
2896                 if (--(dev_priv->num_implicit) == 0)
2897                         dev_priv->implicit_fb = NULL;
2898                 du->active_implicit = false;
2899         }
2900         mutex_unlock(&dev_priv->global_kms_state_mutex);
2901 }
2902
2903 /**
2904  * vmw_kms_add_active - register a crtc binding to an implicit framebuffer
2905  *
2906  * @vmw_priv: Pointer to a device private struct.
2907  * @du: The display unit of the crtc.
2908  * @vfb: The implicit framebuffer
2909  *
2910  * Registers a binding to an implicit framebuffer.
2911  */
2912 void vmw_kms_add_active(struct vmw_private *dev_priv,
2913                         struct vmw_display_unit *du,
2914                         struct vmw_framebuffer *vfb)
2915 {
2916         mutex_lock(&dev_priv->global_kms_state_mutex);
2917         WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb);
2918
2919         if (!du->active_implicit && du->is_implicit) {
2920                 dev_priv->implicit_fb = vfb;
2921                 du->active_implicit = true;
2922                 dev_priv->num_implicit++;
2923         }
2924         mutex_unlock(&dev_priv->global_kms_state_mutex);
2925 }
2926
2927 /**
2928  * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc.
2929  *
2930  * @dev_priv: Pointer to device-private struct.
2931  * @crtc: The crtc we want to flip.
2932  *
2933  * Returns true or false depending whether it's OK to flip this crtc
2934  * based on the criterion that we must not have more than one implicit
2935  * frame-buffer at any one time.
2936  */
2937 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv,
2938                             struct drm_crtc *crtc)
2939 {
2940         struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2941         bool ret;
2942
2943         mutex_lock(&dev_priv->global_kms_state_mutex);
2944         ret = !du->is_implicit || dev_priv->num_implicit == 1;
2945         mutex_unlock(&dev_priv->global_kms_state_mutex);
2946
2947         return ret;
2948 }
2949
2950 /**
2951  * vmw_kms_update_implicit_fb - Update the implicit fb.
2952  *
2953  * @dev_priv: Pointer to device-private struct.
2954  * @crtc: The crtc the new implicit frame-buffer is bound to.
2955  */
2956 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv,
2957                                 struct drm_crtc *crtc)
2958 {
2959         struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2960         struct drm_plane *plane = crtc->primary;
2961         struct vmw_framebuffer *vfb;
2962
2963         mutex_lock(&dev_priv->global_kms_state_mutex);
2964
2965         if (!du->is_implicit)
2966                 goto out_unlock;
2967
2968         vfb = vmw_framebuffer_to_vfb(plane->state->fb);
2969         WARN_ON_ONCE(dev_priv->num_implicit != 1 &&
2970                      dev_priv->implicit_fb != vfb);
2971
2972         dev_priv->implicit_fb = vfb;
2973 out_unlock:
2974         mutex_unlock(&dev_priv->global_kms_state_mutex);
2975 }
2976
2977 /**
2978  * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2979  * property.
2980  *
2981  * @dev_priv: Pointer to a device private struct.
2982  * @immutable: Whether the property is immutable.
2983  *
2984  * Sets up the implicit placement property unless it's already set up.
2985  */
2986 void
2987 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv,
2988                                            bool immutable)
2989 {
2990         if (dev_priv->implicit_placement_property)
2991                 return;
2992
2993         dev_priv->implicit_placement_property =
2994                 drm_property_create_range(dev_priv->dev,
2995                                           immutable ?
2996                                           DRM_MODE_PROP_IMMUTABLE : 0,
2997                                           "implicit_placement", 0, 1);
2998
2999 }
3000
3001
3002 /**
3003  * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config
3004  *
3005  * @set: The configuration to set.
3006  *
3007  * The vmwgfx Xorg driver doesn't assign the mode::type member, which
3008  * when drm_mode_set_crtcinfo is called as part of the configuration setting
3009  * causes it to return incorrect crtc dimensions causing severe problems in
3010  * the vmwgfx modesetting. So explicitly clear that member before calling
3011  * into drm_atomic_helper_set_config.
3012  */
3013 int vmw_kms_set_config(struct drm_mode_set *set,
3014                        struct drm_modeset_acquire_ctx *ctx)
3015 {
3016         if (set && set->mode)
3017                 set->mode->type = 0;
3018
3019         return drm_atomic_helper_set_config(set, ctx);
3020 }
3021
3022
3023 /**
3024  * vmw_kms_suspend - Save modesetting state and turn modesetting off.
3025  *
3026  * @dev: Pointer to the drm device
3027  * Return: 0 on success. Negative error code on failure.
3028  */
3029 int vmw_kms_suspend(struct drm_device *dev)
3030 {
3031         struct vmw_private *dev_priv = vmw_priv(dev);
3032
3033         dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
3034         if (IS_ERR(dev_priv->suspend_state)) {
3035                 int ret = PTR_ERR(dev_priv->suspend_state);
3036
3037                 DRM_ERROR("Failed kms suspend: %d\n", ret);
3038                 dev_priv->suspend_state = NULL;
3039
3040                 return ret;
3041         }
3042
3043         return 0;
3044 }
3045
3046
3047 /**
3048  * vmw_kms_resume - Re-enable modesetting and restore state
3049  *
3050  * @dev: Pointer to the drm device
3051  * Return: 0 on success. Negative error code on failure.
3052  *
3053  * State is resumed from a previous vmw_kms_suspend(). It's illegal
3054  * to call this function without a previous vmw_kms_suspend().
3055  */
3056 int vmw_kms_resume(struct drm_device *dev)
3057 {
3058         struct vmw_private *dev_priv = vmw_priv(dev);
3059         int ret;
3060
3061         if (WARN_ON(!dev_priv->suspend_state))
3062                 return 0;
3063
3064         ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
3065         dev_priv->suspend_state = NULL;
3066
3067         return ret;
3068 }
3069
3070 /**
3071  * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
3072  *
3073  * @dev: Pointer to the drm device
3074  */
3075 void vmw_kms_lost_device(struct drm_device *dev)
3076 {
3077         drm_atomic_helper_shutdown(dev);
3078 }