iommu/arm-smmu-v3: Cope with duplicated Stream IDs
[sfrench/cifs-2.6.git] / drivers / gpu / drm / ttm / ttm_page_alloc.c
1 /*
2  * Copyright (c) Red Hat Inc.
3
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sub license,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the
12  * next paragraph) shall be included in all copies or substantial portions
13  * of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: Dave Airlie <airlied@redhat.com>
24  *          Jerome Glisse <jglisse@redhat.com>
25  *          Pauli Nieminen <suokkos@gmail.com>
26  */
27
28 /* simple list based uncached page pool
29  * - Pool collects resently freed pages for reuse
30  * - Use page->lru to keep a free list
31  * - doesn't track currently in use pages
32  */
33
34 #define pr_fmt(fmt) "[TTM] " fmt
35
36 #include <linux/list.h>
37 #include <linux/spinlock.h>
38 #include <linux/highmem.h>
39 #include <linux/mm_types.h>
40 #include <linux/module.h>
41 #include <linux/mm.h>
42 #include <linux/seq_file.h> /* for seq_printf */
43 #include <linux/slab.h>
44 #include <linux/dma-mapping.h>
45
46 #include <linux/atomic.h>
47
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_page_alloc.h>
50
51 #if IS_ENABLED(CONFIG_AGP)
52 #include <asm/agp.h>
53 #endif
54 #ifdef CONFIG_X86
55 #include <asm/set_memory.h>
56 #endif
57
58 #define NUM_PAGES_TO_ALLOC              (PAGE_SIZE/sizeof(struct page *))
59 #define SMALL_ALLOCATION                16
60 #define FREE_ALL_PAGES                  (~0U)
61 /* times are in msecs */
62 #define PAGE_FREE_INTERVAL              1000
63
64 /**
65  * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
66  *
67  * @lock: Protects the shared pool from concurrnet access. Must be used with
68  * irqsave/irqrestore variants because pool allocator maybe called from
69  * delayed work.
70  * @fill_lock: Prevent concurrent calls to fill.
71  * @list: Pool of free uc/wc pages for fast reuse.
72  * @gfp_flags: Flags to pass for alloc_page.
73  * @npages: Number of pages in pool.
74  */
75 struct ttm_page_pool {
76         spinlock_t              lock;
77         bool                    fill_lock;
78         struct list_head        list;
79         gfp_t                   gfp_flags;
80         unsigned                npages;
81         char                    *name;
82         unsigned long           nfrees;
83         unsigned long           nrefills;
84         unsigned int            order;
85 };
86
87 /**
88  * Limits for the pool. They are handled without locks because only place where
89  * they may change is in sysfs store. They won't have immediate effect anyway
90  * so forcing serialization to access them is pointless.
91  */
92
93 struct ttm_pool_opts {
94         unsigned        alloc_size;
95         unsigned        max_size;
96         unsigned        small;
97 };
98
99 #define NUM_POOLS 6
100
101 /**
102  * struct ttm_pool_manager - Holds memory pools for fst allocation
103  *
104  * Manager is read only object for pool code so it doesn't need locking.
105  *
106  * @free_interval: minimum number of jiffies between freeing pages from pool.
107  * @page_alloc_inited: reference counting for pool allocation.
108  * @work: Work that is used to shrink the pool. Work is only run when there is
109  * some pages to free.
110  * @small_allocation: Limit in number of pages what is small allocation.
111  *
112  * @pools: All pool objects in use.
113  **/
114 struct ttm_pool_manager {
115         struct kobject          kobj;
116         struct shrinker         mm_shrink;
117         struct ttm_pool_opts    options;
118
119         union {
120                 struct ttm_page_pool    pools[NUM_POOLS];
121                 struct {
122                         struct ttm_page_pool    wc_pool;
123                         struct ttm_page_pool    uc_pool;
124                         struct ttm_page_pool    wc_pool_dma32;
125                         struct ttm_page_pool    uc_pool_dma32;
126                         struct ttm_page_pool    wc_pool_huge;
127                         struct ttm_page_pool    uc_pool_huge;
128                 } ;
129         };
130 };
131
132 static struct attribute ttm_page_pool_max = {
133         .name = "pool_max_size",
134         .mode = S_IRUGO | S_IWUSR
135 };
136 static struct attribute ttm_page_pool_small = {
137         .name = "pool_small_allocation",
138         .mode = S_IRUGO | S_IWUSR
139 };
140 static struct attribute ttm_page_pool_alloc_size = {
141         .name = "pool_allocation_size",
142         .mode = S_IRUGO | S_IWUSR
143 };
144
145 static struct attribute *ttm_pool_attrs[] = {
146         &ttm_page_pool_max,
147         &ttm_page_pool_small,
148         &ttm_page_pool_alloc_size,
149         NULL
150 };
151
152 static void ttm_pool_kobj_release(struct kobject *kobj)
153 {
154         struct ttm_pool_manager *m =
155                 container_of(kobj, struct ttm_pool_manager, kobj);
156         kfree(m);
157 }
158
159 static ssize_t ttm_pool_store(struct kobject *kobj,
160                 struct attribute *attr, const char *buffer, size_t size)
161 {
162         struct ttm_pool_manager *m =
163                 container_of(kobj, struct ttm_pool_manager, kobj);
164         int chars;
165         unsigned val;
166         chars = sscanf(buffer, "%u", &val);
167         if (chars == 0)
168                 return size;
169
170         /* Convert kb to number of pages */
171         val = val / (PAGE_SIZE >> 10);
172
173         if (attr == &ttm_page_pool_max)
174                 m->options.max_size = val;
175         else if (attr == &ttm_page_pool_small)
176                 m->options.small = val;
177         else if (attr == &ttm_page_pool_alloc_size) {
178                 if (val > NUM_PAGES_TO_ALLOC*8) {
179                         pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
180                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
181                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
182                         return size;
183                 } else if (val > NUM_PAGES_TO_ALLOC) {
184                         pr_warn("Setting allocation size to larger than %lu is not recommended\n",
185                                 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
186                 }
187                 m->options.alloc_size = val;
188         }
189
190         return size;
191 }
192
193 static ssize_t ttm_pool_show(struct kobject *kobj,
194                 struct attribute *attr, char *buffer)
195 {
196         struct ttm_pool_manager *m =
197                 container_of(kobj, struct ttm_pool_manager, kobj);
198         unsigned val = 0;
199
200         if (attr == &ttm_page_pool_max)
201                 val = m->options.max_size;
202         else if (attr == &ttm_page_pool_small)
203                 val = m->options.small;
204         else if (attr == &ttm_page_pool_alloc_size)
205                 val = m->options.alloc_size;
206
207         val = val * (PAGE_SIZE >> 10);
208
209         return snprintf(buffer, PAGE_SIZE, "%u\n", val);
210 }
211
212 static const struct sysfs_ops ttm_pool_sysfs_ops = {
213         .show = &ttm_pool_show,
214         .store = &ttm_pool_store,
215 };
216
217 static struct kobj_type ttm_pool_kobj_type = {
218         .release = &ttm_pool_kobj_release,
219         .sysfs_ops = &ttm_pool_sysfs_ops,
220         .default_attrs = ttm_pool_attrs,
221 };
222
223 static struct ttm_pool_manager *_manager;
224
225 #ifndef CONFIG_X86
226 static int set_pages_wb(struct page *page, int numpages)
227 {
228 #if IS_ENABLED(CONFIG_AGP)
229         int i;
230
231         for (i = 0; i < numpages; i++)
232                 unmap_page_from_agp(page++);
233 #endif
234         return 0;
235 }
236
237 static int set_pages_array_wb(struct page **pages, int addrinarray)
238 {
239 #if IS_ENABLED(CONFIG_AGP)
240         int i;
241
242         for (i = 0; i < addrinarray; i++)
243                 unmap_page_from_agp(pages[i]);
244 #endif
245         return 0;
246 }
247
248 static int set_pages_array_wc(struct page **pages, int addrinarray)
249 {
250 #if IS_ENABLED(CONFIG_AGP)
251         int i;
252
253         for (i = 0; i < addrinarray; i++)
254                 map_page_into_agp(pages[i]);
255 #endif
256         return 0;
257 }
258
259 static int set_pages_array_uc(struct page **pages, int addrinarray)
260 {
261 #if IS_ENABLED(CONFIG_AGP)
262         int i;
263
264         for (i = 0; i < addrinarray; i++)
265                 map_page_into_agp(pages[i]);
266 #endif
267         return 0;
268 }
269 #endif
270
271 /**
272  * Select the right pool or requested caching state and ttm flags. */
273 static struct ttm_page_pool *ttm_get_pool(int flags, bool huge,
274                                           enum ttm_caching_state cstate)
275 {
276         int pool_index;
277
278         if (cstate == tt_cached)
279                 return NULL;
280
281         if (cstate == tt_wc)
282                 pool_index = 0x0;
283         else
284                 pool_index = 0x1;
285
286         if (flags & TTM_PAGE_FLAG_DMA32) {
287                 if (huge)
288                         return NULL;
289                 pool_index |= 0x2;
290
291         } else if (huge) {
292                 pool_index |= 0x4;
293         }
294
295         return &_manager->pools[pool_index];
296 }
297
298 /* set memory back to wb and free the pages. */
299 static void ttm_pages_put(struct page *pages[], unsigned npages,
300                 unsigned int order)
301 {
302         unsigned int i, pages_nr = (1 << order);
303
304         if (order == 0) {
305                 if (set_pages_array_wb(pages, npages))
306                         pr_err("Failed to set %d pages to wb!\n", npages);
307         }
308
309         for (i = 0; i < npages; ++i) {
310                 if (order > 0) {
311                         if (set_pages_wb(pages[i], pages_nr))
312                                 pr_err("Failed to set %d pages to wb!\n", pages_nr);
313                 }
314                 __free_pages(pages[i], order);
315         }
316 }
317
318 static void ttm_pool_update_free_locked(struct ttm_page_pool *pool,
319                 unsigned freed_pages)
320 {
321         pool->npages -= freed_pages;
322         pool->nfrees += freed_pages;
323 }
324
325 /**
326  * Free pages from pool.
327  *
328  * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
329  * number of pages in one go.
330  *
331  * @pool: to free the pages from
332  * @free_all: If set to true will free all pages in pool
333  * @use_static: Safe to use static buffer
334  **/
335 static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free,
336                               bool use_static)
337 {
338         static struct page *static_buf[NUM_PAGES_TO_ALLOC];
339         unsigned long irq_flags;
340         struct page *p;
341         struct page **pages_to_free;
342         unsigned freed_pages = 0,
343                  npages_to_free = nr_free;
344
345         if (NUM_PAGES_TO_ALLOC < nr_free)
346                 npages_to_free = NUM_PAGES_TO_ALLOC;
347
348         if (use_static)
349                 pages_to_free = static_buf;
350         else
351                 pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
352                                         GFP_KERNEL);
353         if (!pages_to_free) {
354                 pr_debug("Failed to allocate memory for pool free operation\n");
355                 return 0;
356         }
357
358 restart:
359         spin_lock_irqsave(&pool->lock, irq_flags);
360
361         list_for_each_entry_reverse(p, &pool->list, lru) {
362                 if (freed_pages >= npages_to_free)
363                         break;
364
365                 pages_to_free[freed_pages++] = p;
366                 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
367                 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
368                         /* remove range of pages from the pool */
369                         __list_del(p->lru.prev, &pool->list);
370
371                         ttm_pool_update_free_locked(pool, freed_pages);
372                         /**
373                          * Because changing page caching is costly
374                          * we unlock the pool to prevent stalling.
375                          */
376                         spin_unlock_irqrestore(&pool->lock, irq_flags);
377
378                         ttm_pages_put(pages_to_free, freed_pages, pool->order);
379                         if (likely(nr_free != FREE_ALL_PAGES))
380                                 nr_free -= freed_pages;
381
382                         if (NUM_PAGES_TO_ALLOC >= nr_free)
383                                 npages_to_free = nr_free;
384                         else
385                                 npages_to_free = NUM_PAGES_TO_ALLOC;
386
387                         freed_pages = 0;
388
389                         /* free all so restart the processing */
390                         if (nr_free)
391                                 goto restart;
392
393                         /* Not allowed to fall through or break because
394                          * following context is inside spinlock while we are
395                          * outside here.
396                          */
397                         goto out;
398
399                 }
400         }
401
402         /* remove range of pages from the pool */
403         if (freed_pages) {
404                 __list_del(&p->lru, &pool->list);
405
406                 ttm_pool_update_free_locked(pool, freed_pages);
407                 nr_free -= freed_pages;
408         }
409
410         spin_unlock_irqrestore(&pool->lock, irq_flags);
411
412         if (freed_pages)
413                 ttm_pages_put(pages_to_free, freed_pages, pool->order);
414 out:
415         if (pages_to_free != static_buf)
416                 kfree(pages_to_free);
417         return nr_free;
418 }
419
420 /**
421  * Callback for mm to request pool to reduce number of page held.
422  *
423  * XXX: (dchinner) Deadlock warning!
424  *
425  * This code is crying out for a shrinker per pool....
426  */
427 static unsigned long
428 ttm_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
429 {
430         static DEFINE_MUTEX(lock);
431         static unsigned start_pool;
432         unsigned i;
433         unsigned pool_offset;
434         struct ttm_page_pool *pool;
435         int shrink_pages = sc->nr_to_scan;
436         unsigned long freed = 0;
437         unsigned int nr_free_pool;
438
439         if (!mutex_trylock(&lock))
440                 return SHRINK_STOP;
441         pool_offset = ++start_pool % NUM_POOLS;
442         /* select start pool in round robin fashion */
443         for (i = 0; i < NUM_POOLS; ++i) {
444                 unsigned nr_free = shrink_pages;
445                 unsigned page_nr;
446
447                 if (shrink_pages == 0)
448                         break;
449
450                 pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
451                 page_nr = (1 << pool->order);
452                 /* OK to use static buffer since global mutex is held. */
453                 nr_free_pool = roundup(nr_free, page_nr) >> pool->order;
454                 shrink_pages = ttm_page_pool_free(pool, nr_free_pool, true);
455                 freed += (nr_free_pool - shrink_pages) << pool->order;
456                 if (freed >= sc->nr_to_scan)
457                         break;
458                 shrink_pages <<= pool->order;
459         }
460         mutex_unlock(&lock);
461         return freed;
462 }
463
464
465 static unsigned long
466 ttm_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
467 {
468         unsigned i;
469         unsigned long count = 0;
470         struct ttm_page_pool *pool;
471
472         for (i = 0; i < NUM_POOLS; ++i) {
473                 pool = &_manager->pools[i];
474                 count += (pool->npages << pool->order);
475         }
476
477         return count;
478 }
479
480 static void ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
481 {
482         manager->mm_shrink.count_objects = ttm_pool_shrink_count;
483         manager->mm_shrink.scan_objects = ttm_pool_shrink_scan;
484         manager->mm_shrink.seeks = 1;
485         register_shrinker(&manager->mm_shrink);
486 }
487
488 static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
489 {
490         unregister_shrinker(&manager->mm_shrink);
491 }
492
493 static int ttm_set_pages_caching(struct page **pages,
494                 enum ttm_caching_state cstate, unsigned cpages)
495 {
496         int r = 0;
497         /* Set page caching */
498         switch (cstate) {
499         case tt_uncached:
500                 r = set_pages_array_uc(pages, cpages);
501                 if (r)
502                         pr_err("Failed to set %d pages to uc!\n", cpages);
503                 break;
504         case tt_wc:
505                 r = set_pages_array_wc(pages, cpages);
506                 if (r)
507                         pr_err("Failed to set %d pages to wc!\n", cpages);
508                 break;
509         default:
510                 break;
511         }
512         return r;
513 }
514
515 /**
516  * Free pages the pages that failed to change the caching state. If there is
517  * any pages that have changed their caching state already put them to the
518  * pool.
519  */
520 static void ttm_handle_caching_state_failure(struct list_head *pages,
521                 int ttm_flags, enum ttm_caching_state cstate,
522                 struct page **failed_pages, unsigned cpages)
523 {
524         unsigned i;
525         /* Failed pages have to be freed */
526         for (i = 0; i < cpages; ++i) {
527                 list_del(&failed_pages[i]->lru);
528                 __free_page(failed_pages[i]);
529         }
530 }
531
532 /**
533  * Allocate new pages with correct caching.
534  *
535  * This function is reentrant if caller updates count depending on number of
536  * pages returned in pages array.
537  */
538 static int ttm_alloc_new_pages(struct list_head *pages, gfp_t gfp_flags,
539                                int ttm_flags, enum ttm_caching_state cstate,
540                                unsigned count, unsigned order)
541 {
542         struct page **caching_array;
543         struct page *p;
544         int r = 0;
545         unsigned i, j, cpages;
546         unsigned npages = 1 << order;
547         unsigned max_cpages = min(count << order, (unsigned)NUM_PAGES_TO_ALLOC);
548
549         /* allocate array for page caching change */
550         caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
551
552         if (!caching_array) {
553                 pr_debug("Unable to allocate table for new pages\n");
554                 return -ENOMEM;
555         }
556
557         for (i = 0, cpages = 0; i < count; ++i) {
558                 p = alloc_pages(gfp_flags, order);
559
560                 if (!p) {
561                         pr_debug("Unable to get page %u\n", i);
562
563                         /* store already allocated pages in the pool after
564                          * setting the caching state */
565                         if (cpages) {
566                                 r = ttm_set_pages_caching(caching_array,
567                                                           cstate, cpages);
568                                 if (r)
569                                         ttm_handle_caching_state_failure(pages,
570                                                 ttm_flags, cstate,
571                                                 caching_array, cpages);
572                         }
573                         r = -ENOMEM;
574                         goto out;
575                 }
576
577                 list_add(&p->lru, pages);
578
579 #ifdef CONFIG_HIGHMEM
580                 /* gfp flags of highmem page should never be dma32 so we
581                  * we should be fine in such case
582                  */
583                 if (PageHighMem(p))
584                         continue;
585
586 #endif
587                 for (j = 0; j < npages; ++j) {
588                         caching_array[cpages++] = p++;
589                         if (cpages == max_cpages) {
590
591                                 r = ttm_set_pages_caching(caching_array,
592                                                 cstate, cpages);
593                                 if (r) {
594                                         ttm_handle_caching_state_failure(pages,
595                                                 ttm_flags, cstate,
596                                                 caching_array, cpages);
597                                         goto out;
598                                 }
599                                 cpages = 0;
600                         }
601                 }
602         }
603
604         if (cpages) {
605                 r = ttm_set_pages_caching(caching_array, cstate, cpages);
606                 if (r)
607                         ttm_handle_caching_state_failure(pages,
608                                         ttm_flags, cstate,
609                                         caching_array, cpages);
610         }
611 out:
612         kfree(caching_array);
613
614         return r;
615 }
616
617 /**
618  * Fill the given pool if there aren't enough pages and the requested number of
619  * pages is small.
620  */
621 static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool, int ttm_flags,
622                                       enum ttm_caching_state cstate,
623                                       unsigned count, unsigned long *irq_flags)
624 {
625         struct page *p;
626         int r;
627         unsigned cpages = 0;
628         /**
629          * Only allow one pool fill operation at a time.
630          * If pool doesn't have enough pages for the allocation new pages are
631          * allocated from outside of pool.
632          */
633         if (pool->fill_lock)
634                 return;
635
636         pool->fill_lock = true;
637
638         /* If allocation request is small and there are not enough
639          * pages in a pool we fill the pool up first. */
640         if (count < _manager->options.small
641                 && count > pool->npages) {
642                 struct list_head new_pages;
643                 unsigned alloc_size = _manager->options.alloc_size;
644
645                 /**
646                  * Can't change page caching if in irqsave context. We have to
647                  * drop the pool->lock.
648                  */
649                 spin_unlock_irqrestore(&pool->lock, *irq_flags);
650
651                 INIT_LIST_HEAD(&new_pages);
652                 r = ttm_alloc_new_pages(&new_pages, pool->gfp_flags, ttm_flags,
653                                         cstate, alloc_size, 0);
654                 spin_lock_irqsave(&pool->lock, *irq_flags);
655
656                 if (!r) {
657                         list_splice(&new_pages, &pool->list);
658                         ++pool->nrefills;
659                         pool->npages += alloc_size;
660                 } else {
661                         pr_debug("Failed to fill pool (%p)\n", pool);
662                         /* If we have any pages left put them to the pool. */
663                         list_for_each_entry(p, &new_pages, lru) {
664                                 ++cpages;
665                         }
666                         list_splice(&new_pages, &pool->list);
667                         pool->npages += cpages;
668                 }
669
670         }
671         pool->fill_lock = false;
672 }
673
674 /**
675  * Allocate pages from the pool and put them on the return list.
676  *
677  * @return zero for success or negative error code.
678  */
679 static int ttm_page_pool_get_pages(struct ttm_page_pool *pool,
680                                    struct list_head *pages,
681                                    int ttm_flags,
682                                    enum ttm_caching_state cstate,
683                                    unsigned count, unsigned order)
684 {
685         unsigned long irq_flags;
686         struct list_head *p;
687         unsigned i;
688         int r = 0;
689
690         spin_lock_irqsave(&pool->lock, irq_flags);
691         if (!order)
692                 ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count,
693                                           &irq_flags);
694
695         if (count >= pool->npages) {
696                 /* take all pages from the pool */
697                 list_splice_init(&pool->list, pages);
698                 count -= pool->npages;
699                 pool->npages = 0;
700                 goto out;
701         }
702         /* find the last pages to include for requested number of pages. Split
703          * pool to begin and halve it to reduce search space. */
704         if (count <= pool->npages/2) {
705                 i = 0;
706                 list_for_each(p, &pool->list) {
707                         if (++i == count)
708                                 break;
709                 }
710         } else {
711                 i = pool->npages + 1;
712                 list_for_each_prev(p, &pool->list) {
713                         if (--i == count)
714                                 break;
715                 }
716         }
717         /* Cut 'count' number of pages from the pool */
718         list_cut_position(pages, &pool->list, p);
719         pool->npages -= count;
720         count = 0;
721 out:
722         spin_unlock_irqrestore(&pool->lock, irq_flags);
723
724         /* clear the pages coming from the pool if requested */
725         if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
726                 struct page *page;
727
728                 list_for_each_entry(page, pages, lru) {
729                         if (PageHighMem(page))
730                                 clear_highpage(page);
731                         else
732                                 clear_page(page_address(page));
733                 }
734         }
735
736         /* If pool didn't have enough pages allocate new one. */
737         if (count) {
738                 gfp_t gfp_flags = pool->gfp_flags;
739
740                 /* set zero flag for page allocation if required */
741                 if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
742                         gfp_flags |= __GFP_ZERO;
743
744                 /* ttm_alloc_new_pages doesn't reference pool so we can run
745                  * multiple requests in parallel.
746                  **/
747                 r = ttm_alloc_new_pages(pages, gfp_flags, ttm_flags, cstate,
748                                         count, order);
749         }
750
751         return r;
752 }
753
754 /* Put all pages in pages list to correct pool to wait for reuse */
755 static void ttm_put_pages(struct page **pages, unsigned npages, int flags,
756                           enum ttm_caching_state cstate)
757 {
758         struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
760         struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
761 #endif
762         unsigned long irq_flags;
763         unsigned i;
764
765         if (pool == NULL) {
766                 /* No pool for this memory type so free the pages */
767                 i = 0;
768                 while (i < npages) {
769 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
770                         struct page *p = pages[i];
771 #endif
772                         unsigned order = 0, j;
773
774                         if (!pages[i]) {
775                                 ++i;
776                                 continue;
777                         }
778
779 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
780                         if (!(flags & TTM_PAGE_FLAG_DMA32)) {
781                                 for (j = 0; j < HPAGE_PMD_NR; ++j)
782                                         if (p++ != pages[i + j])
783                                             break;
784
785                                 if (j == HPAGE_PMD_NR)
786                                         order = HPAGE_PMD_ORDER;
787                         }
788 #endif
789
790                         if (page_count(pages[i]) != 1)
791                                 pr_err("Erroneous page count. Leaking pages.\n");
792                         __free_pages(pages[i], order);
793
794                         j = 1 << order;
795                         while (j) {
796                                 pages[i++] = NULL;
797                                 --j;
798                         }
799                 }
800                 return;
801         }
802
803         i = 0;
804 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
805         if (huge) {
806                 unsigned max_size, n2free;
807
808                 spin_lock_irqsave(&huge->lock, irq_flags);
809                 while (i < npages) {
810                         struct page *p = pages[i];
811                         unsigned j;
812
813                         if (!p)
814                                 break;
815
816                         for (j = 0; j < HPAGE_PMD_NR; ++j)
817                                 if (p++ != pages[i + j])
818                                     break;
819
820                         if (j != HPAGE_PMD_NR)
821                                 break;
822
823                         list_add_tail(&pages[i]->lru, &huge->list);
824
825                         for (j = 0; j < HPAGE_PMD_NR; ++j)
826                                 pages[i++] = NULL;
827                         huge->npages++;
828                 }
829
830                 /* Check that we don't go over the pool limit */
831                 max_size = _manager->options.max_size;
832                 max_size /= HPAGE_PMD_NR;
833                 if (huge->npages > max_size)
834                         n2free = huge->npages - max_size;
835                 else
836                         n2free = 0;
837                 spin_unlock_irqrestore(&huge->lock, irq_flags);
838                 if (n2free)
839                         ttm_page_pool_free(huge, n2free, false);
840         }
841 #endif
842
843         spin_lock_irqsave(&pool->lock, irq_flags);
844         while (i < npages) {
845                 if (pages[i]) {
846                         if (page_count(pages[i]) != 1)
847                                 pr_err("Erroneous page count. Leaking pages.\n");
848                         list_add_tail(&pages[i]->lru, &pool->list);
849                         pages[i] = NULL;
850                         pool->npages++;
851                 }
852                 ++i;
853         }
854         /* Check that we don't go over the pool limit */
855         npages = 0;
856         if (pool->npages > _manager->options.max_size) {
857                 npages = pool->npages - _manager->options.max_size;
858                 /* free at least NUM_PAGES_TO_ALLOC number of pages
859                  * to reduce calls to set_memory_wb */
860                 if (npages < NUM_PAGES_TO_ALLOC)
861                         npages = NUM_PAGES_TO_ALLOC;
862         }
863         spin_unlock_irqrestore(&pool->lock, irq_flags);
864         if (npages)
865                 ttm_page_pool_free(pool, npages, false);
866 }
867
868 /*
869  * On success pages list will hold count number of correctly
870  * cached pages.
871  */
872 static int ttm_get_pages(struct page **pages, unsigned npages, int flags,
873                          enum ttm_caching_state cstate)
874 {
875         struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
876 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
877         struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
878 #endif
879         struct list_head plist;
880         struct page *p = NULL;
881         unsigned count, first;
882         int r;
883
884         /* No pool for cached pages */
885         if (pool == NULL) {
886                 gfp_t gfp_flags = GFP_USER;
887                 unsigned i;
888 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
889                 unsigned j;
890 #endif
891
892                 /* set zero flag for page allocation if required */
893                 if (flags & TTM_PAGE_FLAG_ZERO_ALLOC)
894                         gfp_flags |= __GFP_ZERO;
895
896                 if (flags & TTM_PAGE_FLAG_DMA32)
897                         gfp_flags |= GFP_DMA32;
898                 else
899                         gfp_flags |= GFP_HIGHUSER;
900
901                 i = 0;
902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
903                 if (!(gfp_flags & GFP_DMA32)) {
904                         while (npages >= HPAGE_PMD_NR) {
905                                 gfp_t huge_flags = gfp_flags;
906
907                                 huge_flags |= GFP_TRANSHUGE;
908                                 huge_flags &= ~__GFP_MOVABLE;
909                                 huge_flags &= ~__GFP_COMP;
910                                 p = alloc_pages(huge_flags, HPAGE_PMD_ORDER);
911                                 if (!p)
912                                         break;
913
914                                 for (j = 0; j < HPAGE_PMD_NR; ++j)
915                                         pages[i++] = p++;
916
917                                 npages -= HPAGE_PMD_NR;
918                         }
919                 }
920 #endif
921
922                 first = i;
923                 while (npages) {
924                         p = alloc_page(gfp_flags);
925                         if (!p) {
926                                 pr_debug("Unable to allocate page\n");
927                                 return -ENOMEM;
928                         }
929
930                         /* Swap the pages if we detect consecutive order */
931                         if (i > first && pages[i - 1] == p - 1)
932                                 swap(p, pages[i - 1]);
933
934                         pages[i++] = p;
935                         --npages;
936                 }
937                 return 0;
938         }
939
940         count = 0;
941
942 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
943         if (huge && npages >= HPAGE_PMD_NR) {
944                 INIT_LIST_HEAD(&plist);
945                 ttm_page_pool_get_pages(huge, &plist, flags, cstate,
946                                         npages / HPAGE_PMD_NR,
947                                         HPAGE_PMD_ORDER);
948
949                 list_for_each_entry(p, &plist, lru) {
950                         unsigned j;
951
952                         for (j = 0; j < HPAGE_PMD_NR; ++j)
953                                 pages[count++] = &p[j];
954                 }
955         }
956 #endif
957
958         INIT_LIST_HEAD(&plist);
959         r = ttm_page_pool_get_pages(pool, &plist, flags, cstate,
960                                     npages - count, 0);
961
962         first = count;
963         list_for_each_entry(p, &plist, lru) {
964                 struct page *tmp = p;
965
966                 /* Swap the pages if we detect consecutive order */
967                 if (count > first && pages[count - 1] == tmp - 1)
968                         swap(tmp, pages[count - 1]);
969                 pages[count++] = tmp;
970         }
971
972         if (r) {
973                 /* If there is any pages in the list put them back to
974                  * the pool.
975                  */
976                 pr_debug("Failed to allocate extra pages for large request\n");
977                 ttm_put_pages(pages, count, flags, cstate);
978                 return r;
979         }
980
981         return 0;
982 }
983
984 static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, gfp_t flags,
985                 char *name, unsigned int order)
986 {
987         spin_lock_init(&pool->lock);
988         pool->fill_lock = false;
989         INIT_LIST_HEAD(&pool->list);
990         pool->npages = pool->nfrees = 0;
991         pool->gfp_flags = flags;
992         pool->name = name;
993         pool->order = order;
994 }
995
996 int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
997 {
998         int ret;
999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1000         unsigned order = HPAGE_PMD_ORDER;
1001 #else
1002         unsigned order = 0;
1003 #endif
1004
1005         WARN_ON(_manager);
1006
1007         pr_info("Initializing pool allocator\n");
1008
1009         _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1010
1011         ttm_page_pool_init_locked(&_manager->wc_pool, GFP_HIGHUSER, "wc", 0);
1012
1013         ttm_page_pool_init_locked(&_manager->uc_pool, GFP_HIGHUSER, "uc", 0);
1014
1015         ttm_page_pool_init_locked(&_manager->wc_pool_dma32,
1016                                   GFP_USER | GFP_DMA32, "wc dma", 0);
1017
1018         ttm_page_pool_init_locked(&_manager->uc_pool_dma32,
1019                                   GFP_USER | GFP_DMA32, "uc dma", 0);
1020
1021         ttm_page_pool_init_locked(&_manager->wc_pool_huge,
1022                                   GFP_TRANSHUGE & ~(__GFP_MOVABLE | __GFP_COMP),
1023                                   "wc huge", order);
1024
1025         ttm_page_pool_init_locked(&_manager->uc_pool_huge,
1026                                   GFP_TRANSHUGE & ~(__GFP_MOVABLE | __GFP_COMP)
1027                                   , "uc huge", order);
1028
1029         _manager->options.max_size = max_pages;
1030         _manager->options.small = SMALL_ALLOCATION;
1031         _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1032
1033         ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1034                                    &glob->kobj, "pool");
1035         if (unlikely(ret != 0)) {
1036                 kobject_put(&_manager->kobj);
1037                 _manager = NULL;
1038                 return ret;
1039         }
1040
1041         ttm_pool_mm_shrink_init(_manager);
1042
1043         return 0;
1044 }
1045
1046 void ttm_page_alloc_fini(void)
1047 {
1048         int i;
1049
1050         pr_info("Finalizing pool allocator\n");
1051         ttm_pool_mm_shrink_fini(_manager);
1052
1053         /* OK to use static buffer since global mutex is no longer used. */
1054         for (i = 0; i < NUM_POOLS; ++i)
1055                 ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES, true);
1056
1057         kobject_put(&_manager->kobj);
1058         _manager = NULL;
1059 }
1060
1061 int ttm_pool_populate(struct ttm_tt *ttm)
1062 {
1063         struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
1064         unsigned i;
1065         int ret;
1066
1067         if (ttm->state != tt_unpopulated)
1068                 return 0;
1069
1070         ret = ttm_get_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
1071                             ttm->caching_state);
1072         if (unlikely(ret != 0)) {
1073                 ttm_pool_unpopulate(ttm);
1074                 return ret;
1075         }
1076
1077         for (i = 0; i < ttm->num_pages; ++i) {
1078                 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
1079                                                 PAGE_SIZE);
1080                 if (unlikely(ret != 0)) {
1081                         ttm_pool_unpopulate(ttm);
1082                         return -ENOMEM;
1083                 }
1084         }
1085
1086         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
1087                 ret = ttm_tt_swapin(ttm);
1088                 if (unlikely(ret != 0)) {
1089                         ttm_pool_unpopulate(ttm);
1090                         return ret;
1091                 }
1092         }
1093
1094         ttm->state = tt_unbound;
1095         return 0;
1096 }
1097 EXPORT_SYMBOL(ttm_pool_populate);
1098
1099 void ttm_pool_unpopulate(struct ttm_tt *ttm)
1100 {
1101         unsigned i;
1102
1103         for (i = 0; i < ttm->num_pages; ++i) {
1104                 if (!ttm->pages[i])
1105                         continue;
1106
1107                 ttm_mem_global_free_page(ttm->glob->mem_glob, ttm->pages[i],
1108                                          PAGE_SIZE);
1109         }
1110         ttm_put_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
1111                       ttm->caching_state);
1112         ttm->state = tt_unpopulated;
1113 }
1114 EXPORT_SYMBOL(ttm_pool_unpopulate);
1115
1116 int ttm_populate_and_map_pages(struct device *dev, struct ttm_dma_tt *tt)
1117 {
1118         unsigned i, j;
1119         int r;
1120
1121         r = ttm_pool_populate(&tt->ttm);
1122         if (r)
1123                 return r;
1124
1125         for (i = 0; i < tt->ttm.num_pages; ++i) {
1126                 struct page *p = tt->ttm.pages[i];
1127                 size_t num_pages = 1;
1128
1129                 for (j = i + 1; j < tt->ttm.num_pages; ++j) {
1130                         if (++p != tt->ttm.pages[j])
1131                                 break;
1132
1133                         ++num_pages;
1134                 }
1135
1136                 tt->dma_address[i] = dma_map_page(dev, tt->ttm.pages[i],
1137                                                   0, num_pages * PAGE_SIZE,
1138                                                   DMA_BIDIRECTIONAL);
1139                 if (dma_mapping_error(dev, tt->dma_address[i])) {
1140                         while (i--) {
1141                                 dma_unmap_page(dev, tt->dma_address[i],
1142                                                PAGE_SIZE, DMA_BIDIRECTIONAL);
1143                                 tt->dma_address[i] = 0;
1144                         }
1145                         ttm_pool_unpopulate(&tt->ttm);
1146                         return -EFAULT;
1147                 }
1148
1149                 for (j = 1; j < num_pages; ++j) {
1150                         tt->dma_address[i + 1] = tt->dma_address[i] + PAGE_SIZE;
1151                         ++i;
1152                 }
1153         }
1154         return 0;
1155 }
1156 EXPORT_SYMBOL(ttm_populate_and_map_pages);
1157
1158 void ttm_unmap_and_unpopulate_pages(struct device *dev, struct ttm_dma_tt *tt)
1159 {
1160         unsigned i, j;
1161
1162         for (i = 0; i < tt->ttm.num_pages;) {
1163                 struct page *p = tt->ttm.pages[i];
1164                 size_t num_pages = 1;
1165
1166                 if (!tt->dma_address[i] || !tt->ttm.pages[i]) {
1167                         ++i;
1168                         continue;
1169                 }
1170
1171                 for (j = i + 1; j < tt->ttm.num_pages; ++j) {
1172                         if (++p != tt->ttm.pages[j])
1173                                 break;
1174
1175                         ++num_pages;
1176                 }
1177
1178                 dma_unmap_page(dev, tt->dma_address[i], num_pages * PAGE_SIZE,
1179                                DMA_BIDIRECTIONAL);
1180
1181                 i += num_pages;
1182         }
1183         ttm_pool_unpopulate(&tt->ttm);
1184 }
1185 EXPORT_SYMBOL(ttm_unmap_and_unpopulate_pages);
1186
1187 int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
1188 {
1189         struct ttm_page_pool *p;
1190         unsigned i;
1191         char *h[] = {"pool", "refills", "pages freed", "size"};
1192         if (!_manager) {
1193                 seq_printf(m, "No pool allocator running.\n");
1194                 return 0;
1195         }
1196         seq_printf(m, "%7s %12s %13s %8s\n",
1197                         h[0], h[1], h[2], h[3]);
1198         for (i = 0; i < NUM_POOLS; ++i) {
1199                 p = &_manager->pools[i];
1200
1201                 seq_printf(m, "%7s %12ld %13ld %8d\n",
1202                                 p->name, p->nrefills,
1203                                 p->nfrees, p->npages);
1204         }
1205         return 0;
1206 }
1207 EXPORT_SYMBOL(ttm_page_alloc_debugfs);