Merge branch 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #define pr_fmt(fmt) "[TTM] " fmt
32
33 #include <drm/ttm/ttm_module.h>
34 #include <drm/ttm/ttm_bo_driver.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <linux/jiffies.h>
37 #include <linux/slab.h>
38 #include <linux/sched.h>
39 #include <linux/mm.h>
40 #include <linux/file.h>
41 #include <linux/module.h>
42 #include <linux/atomic.h>
43
44 #define TTM_ASSERT_LOCKED(param)
45 #define TTM_DEBUG(fmt, arg...)
46 #define TTM_BO_HASH_ORDER 13
47
48 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
49 static void ttm_bo_global_kobj_release(struct kobject *kobj);
50
51 static struct attribute ttm_bo_count = {
52         .name = "bo_count",
53         .mode = S_IRUGO
54 };
55
56 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
57 {
58         int i;
59
60         for (i = 0; i <= TTM_PL_PRIV5; i++)
61                 if (flags & (1 << i)) {
62                         *mem_type = i;
63                         return 0;
64                 }
65         return -EINVAL;
66 }
67
68 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
69 {
70         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
71
72         pr_err("    has_type: %d\n", man->has_type);
73         pr_err("    use_type: %d\n", man->use_type);
74         pr_err("    flags: 0x%08X\n", man->flags);
75         pr_err("    gpu_offset: 0x%08lX\n", man->gpu_offset);
76         pr_err("    size: %llu\n", man->size);
77         pr_err("    available_caching: 0x%08X\n", man->available_caching);
78         pr_err("    default_caching: 0x%08X\n", man->default_caching);
79         if (mem_type != TTM_PL_SYSTEM)
80                 (*man->func->debug)(man, TTM_PFX);
81 }
82
83 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
84                                         struct ttm_placement *placement)
85 {
86         int i, ret, mem_type;
87
88         pr_err("No space for %p (%lu pages, %luK, %luM)\n",
89                bo, bo->mem.num_pages, bo->mem.size >> 10,
90                bo->mem.size >> 20);
91         for (i = 0; i < placement->num_placement; i++) {
92                 ret = ttm_mem_type_from_flags(placement->placement[i],
93                                                 &mem_type);
94                 if (ret)
95                         return;
96                 pr_err("  placement[%d]=0x%08X (%d)\n",
97                        i, placement->placement[i], mem_type);
98                 ttm_mem_type_debug(bo->bdev, mem_type);
99         }
100 }
101
102 static ssize_t ttm_bo_global_show(struct kobject *kobj,
103                                   struct attribute *attr,
104                                   char *buffer)
105 {
106         struct ttm_bo_global *glob =
107                 container_of(kobj, struct ttm_bo_global, kobj);
108
109         return snprintf(buffer, PAGE_SIZE, "%lu\n",
110                         (unsigned long) atomic_read(&glob->bo_count));
111 }
112
113 static struct attribute *ttm_bo_global_attrs[] = {
114         &ttm_bo_count,
115         NULL
116 };
117
118 static const struct sysfs_ops ttm_bo_global_ops = {
119         .show = &ttm_bo_global_show
120 };
121
122 static struct kobj_type ttm_bo_glob_kobj_type  = {
123         .release = &ttm_bo_global_kobj_release,
124         .sysfs_ops = &ttm_bo_global_ops,
125         .default_attrs = ttm_bo_global_attrs
126 };
127
128
129 static inline uint32_t ttm_bo_type_flags(unsigned type)
130 {
131         return 1 << (type);
132 }
133
134 static void ttm_bo_release_list(struct kref *list_kref)
135 {
136         struct ttm_buffer_object *bo =
137             container_of(list_kref, struct ttm_buffer_object, list_kref);
138         struct ttm_bo_device *bdev = bo->bdev;
139         size_t acc_size = bo->acc_size;
140
141         BUG_ON(atomic_read(&bo->list_kref.refcount));
142         BUG_ON(atomic_read(&bo->kref.refcount));
143         BUG_ON(atomic_read(&bo->cpu_writers));
144         BUG_ON(bo->sync_obj != NULL);
145         BUG_ON(bo->mem.mm_node != NULL);
146         BUG_ON(!list_empty(&bo->lru));
147         BUG_ON(!list_empty(&bo->ddestroy));
148
149         if (bo->ttm)
150                 ttm_tt_destroy(bo->ttm);
151         atomic_dec(&bo->glob->bo_count);
152         if (bo->resv == &bo->ttm_resv)
153                 reservation_object_fini(&bo->ttm_resv);
154         mutex_destroy(&bo->wu_mutex);
155         if (bo->destroy)
156                 bo->destroy(bo);
157         else {
158                 kfree(bo);
159         }
160         ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
161 }
162
163 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
164 {
165         struct ttm_bo_device *bdev = bo->bdev;
166         struct ttm_mem_type_manager *man;
167
168         lockdep_assert_held(&bo->resv->lock.base);
169
170         if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
171
172                 BUG_ON(!list_empty(&bo->lru));
173
174                 man = &bdev->man[bo->mem.mem_type];
175                 list_add_tail(&bo->lru, &man->lru);
176                 kref_get(&bo->list_kref);
177
178                 if (bo->ttm != NULL) {
179                         list_add_tail(&bo->swap, &bo->glob->swap_lru);
180                         kref_get(&bo->list_kref);
181                 }
182         }
183 }
184 EXPORT_SYMBOL(ttm_bo_add_to_lru);
185
186 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
187 {
188         int put_count = 0;
189
190         if (!list_empty(&bo->swap)) {
191                 list_del_init(&bo->swap);
192                 ++put_count;
193         }
194         if (!list_empty(&bo->lru)) {
195                 list_del_init(&bo->lru);
196                 ++put_count;
197         }
198
199         /*
200          * TODO: Add a driver hook to delete from
201          * driver-specific LRU's here.
202          */
203
204         return put_count;
205 }
206
207 static void ttm_bo_ref_bug(struct kref *list_kref)
208 {
209         BUG();
210 }
211
212 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
213                          bool never_free)
214 {
215         kref_sub(&bo->list_kref, count,
216                  (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
217 }
218
219 void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
220 {
221         int put_count;
222
223         spin_lock(&bo->glob->lru_lock);
224         put_count = ttm_bo_del_from_lru(bo);
225         spin_unlock(&bo->glob->lru_lock);
226         ttm_bo_list_ref_sub(bo, put_count, true);
227 }
228 EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
229
230 /*
231  * Call bo->mutex locked.
232  */
233 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
234 {
235         struct ttm_bo_device *bdev = bo->bdev;
236         struct ttm_bo_global *glob = bo->glob;
237         int ret = 0;
238         uint32_t page_flags = 0;
239
240         TTM_ASSERT_LOCKED(&bo->mutex);
241         bo->ttm = NULL;
242
243         if (bdev->need_dma32)
244                 page_flags |= TTM_PAGE_FLAG_DMA32;
245
246         switch (bo->type) {
247         case ttm_bo_type_device:
248                 if (zero_alloc)
249                         page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
250         case ttm_bo_type_kernel:
251                 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
252                                                       page_flags, glob->dummy_read_page);
253                 if (unlikely(bo->ttm == NULL))
254                         ret = -ENOMEM;
255                 break;
256         case ttm_bo_type_sg:
257                 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
258                                                       page_flags | TTM_PAGE_FLAG_SG,
259                                                       glob->dummy_read_page);
260                 if (unlikely(bo->ttm == NULL)) {
261                         ret = -ENOMEM;
262                         break;
263                 }
264                 bo->ttm->sg = bo->sg;
265                 break;
266         default:
267                 pr_err("Illegal buffer object type\n");
268                 ret = -EINVAL;
269                 break;
270         }
271
272         return ret;
273 }
274
275 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
276                                   struct ttm_mem_reg *mem,
277                                   bool evict, bool interruptible,
278                                   bool no_wait_gpu)
279 {
280         struct ttm_bo_device *bdev = bo->bdev;
281         bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
282         bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
283         struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
284         struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
285         int ret = 0;
286
287         if (old_is_pci || new_is_pci ||
288             ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
289                 ret = ttm_mem_io_lock(old_man, true);
290                 if (unlikely(ret != 0))
291                         goto out_err;
292                 ttm_bo_unmap_virtual_locked(bo);
293                 ttm_mem_io_unlock(old_man);
294         }
295
296         /*
297          * Create and bind a ttm if required.
298          */
299
300         if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
301                 if (bo->ttm == NULL) {
302                         bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
303                         ret = ttm_bo_add_ttm(bo, zero);
304                         if (ret)
305                                 goto out_err;
306                 }
307
308                 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
309                 if (ret)
310                         goto out_err;
311
312                 if (mem->mem_type != TTM_PL_SYSTEM) {
313                         ret = ttm_tt_bind(bo->ttm, mem);
314                         if (ret)
315                                 goto out_err;
316                 }
317
318                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
319                         if (bdev->driver->move_notify)
320                                 bdev->driver->move_notify(bo, mem);
321                         bo->mem = *mem;
322                         mem->mm_node = NULL;
323                         goto moved;
324                 }
325         }
326
327         if (bdev->driver->move_notify)
328                 bdev->driver->move_notify(bo, mem);
329
330         if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
331             !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
332                 ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
333         else if (bdev->driver->move)
334                 ret = bdev->driver->move(bo, evict, interruptible,
335                                          no_wait_gpu, mem);
336         else
337                 ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
338
339         if (ret) {
340                 if (bdev->driver->move_notify) {
341                         struct ttm_mem_reg tmp_mem = *mem;
342                         *mem = bo->mem;
343                         bo->mem = tmp_mem;
344                         bdev->driver->move_notify(bo, mem);
345                         bo->mem = *mem;
346                         *mem = tmp_mem;
347                 }
348
349                 goto out_err;
350         }
351
352 moved:
353         if (bo->evicted) {
354                 if (bdev->driver->invalidate_caches) {
355                         ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
356                         if (ret)
357                                 pr_err("Can not flush read caches\n");
358                 }
359                 bo->evicted = false;
360         }
361
362         if (bo->mem.mm_node) {
363                 bo->offset = (bo->mem.start << PAGE_SHIFT) +
364                     bdev->man[bo->mem.mem_type].gpu_offset;
365                 bo->cur_placement = bo->mem.placement;
366         } else
367                 bo->offset = 0;
368
369         return 0;
370
371 out_err:
372         new_man = &bdev->man[bo->mem.mem_type];
373         if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
374                 ttm_tt_unbind(bo->ttm);
375                 ttm_tt_destroy(bo->ttm);
376                 bo->ttm = NULL;
377         }
378
379         return ret;
380 }
381
382 /**
383  * Call bo::reserved.
384  * Will release GPU memory type usage on destruction.
385  * This is the place to put in driver specific hooks to release
386  * driver private resources.
387  * Will release the bo::reserved lock.
388  */
389
390 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
391 {
392         if (bo->bdev->driver->move_notify)
393                 bo->bdev->driver->move_notify(bo, NULL);
394
395         if (bo->ttm) {
396                 ttm_tt_unbind(bo->ttm);
397                 ttm_tt_destroy(bo->ttm);
398                 bo->ttm = NULL;
399         }
400         ttm_bo_mem_put(bo, &bo->mem);
401
402         ww_mutex_unlock (&bo->resv->lock);
403 }
404
405 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
406 {
407         struct ttm_bo_device *bdev = bo->bdev;
408         struct ttm_bo_global *glob = bo->glob;
409         struct ttm_bo_driver *driver = bdev->driver;
410         void *sync_obj = NULL;
411         int put_count;
412         int ret;
413
414         spin_lock(&glob->lru_lock);
415         ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
416
417         spin_lock(&bdev->fence_lock);
418         (void) ttm_bo_wait(bo, false, false, true);
419         if (!ret && !bo->sync_obj) {
420                 spin_unlock(&bdev->fence_lock);
421                 put_count = ttm_bo_del_from_lru(bo);
422
423                 spin_unlock(&glob->lru_lock);
424                 ttm_bo_cleanup_memtype_use(bo);
425
426                 ttm_bo_list_ref_sub(bo, put_count, true);
427
428                 return;
429         }
430         if (bo->sync_obj)
431                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
432         spin_unlock(&bdev->fence_lock);
433
434         if (!ret) {
435
436                 /*
437                  * Make NO_EVICT bos immediately available to
438                  * shrinkers, now that they are queued for
439                  * destruction.
440                  */
441                 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
442                         bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
443                         ttm_bo_add_to_lru(bo);
444                 }
445
446                 ww_mutex_unlock(&bo->resv->lock);
447         }
448
449         kref_get(&bo->list_kref);
450         list_add_tail(&bo->ddestroy, &bdev->ddestroy);
451         spin_unlock(&glob->lru_lock);
452
453         if (sync_obj) {
454                 driver->sync_obj_flush(sync_obj);
455                 driver->sync_obj_unref(&sync_obj);
456         }
457         schedule_delayed_work(&bdev->wq,
458                               ((HZ / 100) < 1) ? 1 : HZ / 100);
459 }
460
461 /**
462  * function ttm_bo_cleanup_refs_and_unlock
463  * If bo idle, remove from delayed- and lru lists, and unref.
464  * If not idle, do nothing.
465  *
466  * Must be called with lru_lock and reservation held, this function
467  * will drop both before returning.
468  *
469  * @interruptible         Any sleeps should occur interruptibly.
470  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
471  */
472
473 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
474                                           bool interruptible,
475                                           bool no_wait_gpu)
476 {
477         struct ttm_bo_device *bdev = bo->bdev;
478         struct ttm_bo_driver *driver = bdev->driver;
479         struct ttm_bo_global *glob = bo->glob;
480         int put_count;
481         int ret;
482
483         spin_lock(&bdev->fence_lock);
484         ret = ttm_bo_wait(bo, false, false, true);
485
486         if (ret && !no_wait_gpu) {
487                 void *sync_obj;
488
489                 /*
490                  * Take a reference to the fence and unreserve,
491                  * at this point the buffer should be dead, so
492                  * no new sync objects can be attached.
493                  */
494                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
495                 spin_unlock(&bdev->fence_lock);
496
497                 ww_mutex_unlock(&bo->resv->lock);
498                 spin_unlock(&glob->lru_lock);
499
500                 ret = driver->sync_obj_wait(sync_obj, false, interruptible);
501                 driver->sync_obj_unref(&sync_obj);
502                 if (ret)
503                         return ret;
504
505                 /*
506                  * remove sync_obj with ttm_bo_wait, the wait should be
507                  * finished, and no new wait object should have been added.
508                  */
509                 spin_lock(&bdev->fence_lock);
510                 ret = ttm_bo_wait(bo, false, false, true);
511                 WARN_ON(ret);
512                 spin_unlock(&bdev->fence_lock);
513                 if (ret)
514                         return ret;
515
516                 spin_lock(&glob->lru_lock);
517                 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
518
519                 /*
520                  * We raced, and lost, someone else holds the reservation now,
521                  * and is probably busy in ttm_bo_cleanup_memtype_use.
522                  *
523                  * Even if it's not the case, because we finished waiting any
524                  * delayed destruction would succeed, so just return success
525                  * here.
526                  */
527                 if (ret) {
528                         spin_unlock(&glob->lru_lock);
529                         return 0;
530                 }
531         } else
532                 spin_unlock(&bdev->fence_lock);
533
534         if (ret || unlikely(list_empty(&bo->ddestroy))) {
535                 ww_mutex_unlock(&bo->resv->lock);
536                 spin_unlock(&glob->lru_lock);
537                 return ret;
538         }
539
540         put_count = ttm_bo_del_from_lru(bo);
541         list_del_init(&bo->ddestroy);
542         ++put_count;
543
544         spin_unlock(&glob->lru_lock);
545         ttm_bo_cleanup_memtype_use(bo);
546
547         ttm_bo_list_ref_sub(bo, put_count, true);
548
549         return 0;
550 }
551
552 /**
553  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
554  * encountered buffers.
555  */
556
557 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
558 {
559         struct ttm_bo_global *glob = bdev->glob;
560         struct ttm_buffer_object *entry = NULL;
561         int ret = 0;
562
563         spin_lock(&glob->lru_lock);
564         if (list_empty(&bdev->ddestroy))
565                 goto out_unlock;
566
567         entry = list_first_entry(&bdev->ddestroy,
568                 struct ttm_buffer_object, ddestroy);
569         kref_get(&entry->list_kref);
570
571         for (;;) {
572                 struct ttm_buffer_object *nentry = NULL;
573
574                 if (entry->ddestroy.next != &bdev->ddestroy) {
575                         nentry = list_first_entry(&entry->ddestroy,
576                                 struct ttm_buffer_object, ddestroy);
577                         kref_get(&nentry->list_kref);
578                 }
579
580                 ret = ttm_bo_reserve_nolru(entry, false, true, false, 0);
581                 if (remove_all && ret) {
582                         spin_unlock(&glob->lru_lock);
583                         ret = ttm_bo_reserve_nolru(entry, false, false,
584                                                    false, 0);
585                         spin_lock(&glob->lru_lock);
586                 }
587
588                 if (!ret)
589                         ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
590                                                              !remove_all);
591                 else
592                         spin_unlock(&glob->lru_lock);
593
594                 kref_put(&entry->list_kref, ttm_bo_release_list);
595                 entry = nentry;
596
597                 if (ret || !entry)
598                         goto out;
599
600                 spin_lock(&glob->lru_lock);
601                 if (list_empty(&entry->ddestroy))
602                         break;
603         }
604
605 out_unlock:
606         spin_unlock(&glob->lru_lock);
607 out:
608         if (entry)
609                 kref_put(&entry->list_kref, ttm_bo_release_list);
610         return ret;
611 }
612
613 static void ttm_bo_delayed_workqueue(struct work_struct *work)
614 {
615         struct ttm_bo_device *bdev =
616             container_of(work, struct ttm_bo_device, wq.work);
617
618         if (ttm_bo_delayed_delete(bdev, false)) {
619                 schedule_delayed_work(&bdev->wq,
620                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
621         }
622 }
623
624 static void ttm_bo_release(struct kref *kref)
625 {
626         struct ttm_buffer_object *bo =
627             container_of(kref, struct ttm_buffer_object, kref);
628         struct ttm_bo_device *bdev = bo->bdev;
629         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
630
631         drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node);
632         ttm_mem_io_lock(man, false);
633         ttm_mem_io_free_vm(bo);
634         ttm_mem_io_unlock(man);
635         ttm_bo_cleanup_refs_or_queue(bo);
636         kref_put(&bo->list_kref, ttm_bo_release_list);
637 }
638
639 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
640 {
641         struct ttm_buffer_object *bo = *p_bo;
642
643         *p_bo = NULL;
644         kref_put(&bo->kref, ttm_bo_release);
645 }
646 EXPORT_SYMBOL(ttm_bo_unref);
647
648 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
649 {
650         return cancel_delayed_work_sync(&bdev->wq);
651 }
652 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
653
654 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
655 {
656         if (resched)
657                 schedule_delayed_work(&bdev->wq,
658                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
659 }
660 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
661
662 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
663                         bool no_wait_gpu)
664 {
665         struct ttm_bo_device *bdev = bo->bdev;
666         struct ttm_mem_reg evict_mem;
667         struct ttm_placement placement;
668         int ret = 0;
669
670         spin_lock(&bdev->fence_lock);
671         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
672         spin_unlock(&bdev->fence_lock);
673
674         if (unlikely(ret != 0)) {
675                 if (ret != -ERESTARTSYS) {
676                         pr_err("Failed to expire sync object before buffer eviction\n");
677                 }
678                 goto out;
679         }
680
681         lockdep_assert_held(&bo->resv->lock.base);
682
683         evict_mem = bo->mem;
684         evict_mem.mm_node = NULL;
685         evict_mem.bus.io_reserved_vm = false;
686         evict_mem.bus.io_reserved_count = 0;
687
688         placement.fpfn = 0;
689         placement.lpfn = 0;
690         placement.num_placement = 0;
691         placement.num_busy_placement = 0;
692         bdev->driver->evict_flags(bo, &placement);
693         ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
694                                 no_wait_gpu);
695         if (ret) {
696                 if (ret != -ERESTARTSYS) {
697                         pr_err("Failed to find memory space for buffer 0x%p eviction\n",
698                                bo);
699                         ttm_bo_mem_space_debug(bo, &placement);
700                 }
701                 goto out;
702         }
703
704         ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
705                                      no_wait_gpu);
706         if (ret) {
707                 if (ret != -ERESTARTSYS)
708                         pr_err("Buffer eviction failed\n");
709                 ttm_bo_mem_put(bo, &evict_mem);
710                 goto out;
711         }
712         bo->evicted = true;
713 out:
714         return ret;
715 }
716
717 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
718                                 uint32_t mem_type,
719                                 bool interruptible,
720                                 bool no_wait_gpu)
721 {
722         struct ttm_bo_global *glob = bdev->glob;
723         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
724         struct ttm_buffer_object *bo;
725         int ret = -EBUSY, put_count;
726
727         spin_lock(&glob->lru_lock);
728         list_for_each_entry(bo, &man->lru, lru) {
729                 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
730                 if (!ret)
731                         break;
732         }
733
734         if (ret) {
735                 spin_unlock(&glob->lru_lock);
736                 return ret;
737         }
738
739         kref_get(&bo->list_kref);
740
741         if (!list_empty(&bo->ddestroy)) {
742                 ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
743                                                      no_wait_gpu);
744                 kref_put(&bo->list_kref, ttm_bo_release_list);
745                 return ret;
746         }
747
748         put_count = ttm_bo_del_from_lru(bo);
749         spin_unlock(&glob->lru_lock);
750
751         BUG_ON(ret != 0);
752
753         ttm_bo_list_ref_sub(bo, put_count, true);
754
755         ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
756         ttm_bo_unreserve(bo);
757
758         kref_put(&bo->list_kref, ttm_bo_release_list);
759         return ret;
760 }
761
762 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
763 {
764         struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
765
766         if (mem->mm_node)
767                 (*man->func->put_node)(man, mem);
768 }
769 EXPORT_SYMBOL(ttm_bo_mem_put);
770
771 /**
772  * Repeatedly evict memory from the LRU for @mem_type until we create enough
773  * space, or we've evicted everything and there isn't enough space.
774  */
775 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
776                                         uint32_t mem_type,
777                                         struct ttm_placement *placement,
778                                         struct ttm_mem_reg *mem,
779                                         bool interruptible,
780                                         bool no_wait_gpu)
781 {
782         struct ttm_bo_device *bdev = bo->bdev;
783         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
784         int ret;
785
786         do {
787                 ret = (*man->func->get_node)(man, bo, placement, mem);
788                 if (unlikely(ret != 0))
789                         return ret;
790                 if (mem->mm_node)
791                         break;
792                 ret = ttm_mem_evict_first(bdev, mem_type,
793                                           interruptible, no_wait_gpu);
794                 if (unlikely(ret != 0))
795                         return ret;
796         } while (1);
797         if (mem->mm_node == NULL)
798                 return -ENOMEM;
799         mem->mem_type = mem_type;
800         return 0;
801 }
802
803 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
804                                       uint32_t cur_placement,
805                                       uint32_t proposed_placement)
806 {
807         uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
808         uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
809
810         /**
811          * Keep current caching if possible.
812          */
813
814         if ((cur_placement & caching) != 0)
815                 result |= (cur_placement & caching);
816         else if ((man->default_caching & caching) != 0)
817                 result |= man->default_caching;
818         else if ((TTM_PL_FLAG_CACHED & caching) != 0)
819                 result |= TTM_PL_FLAG_CACHED;
820         else if ((TTM_PL_FLAG_WC & caching) != 0)
821                 result |= TTM_PL_FLAG_WC;
822         else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
823                 result |= TTM_PL_FLAG_UNCACHED;
824
825         return result;
826 }
827
828 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
829                                  uint32_t mem_type,
830                                  uint32_t proposed_placement,
831                                  uint32_t *masked_placement)
832 {
833         uint32_t cur_flags = ttm_bo_type_flags(mem_type);
834
835         if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
836                 return false;
837
838         if ((proposed_placement & man->available_caching) == 0)
839                 return false;
840
841         cur_flags |= (proposed_placement & man->available_caching);
842
843         *masked_placement = cur_flags;
844         return true;
845 }
846
847 /**
848  * Creates space for memory region @mem according to its type.
849  *
850  * This function first searches for free space in compatible memory types in
851  * the priority order defined by the driver.  If free space isn't found, then
852  * ttm_bo_mem_force_space is attempted in priority order to evict and find
853  * space.
854  */
855 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
856                         struct ttm_placement *placement,
857                         struct ttm_mem_reg *mem,
858                         bool interruptible,
859                         bool no_wait_gpu)
860 {
861         struct ttm_bo_device *bdev = bo->bdev;
862         struct ttm_mem_type_manager *man;
863         uint32_t mem_type = TTM_PL_SYSTEM;
864         uint32_t cur_flags = 0;
865         bool type_found = false;
866         bool type_ok = false;
867         bool has_erestartsys = false;
868         int i, ret;
869
870         mem->mm_node = NULL;
871         for (i = 0; i < placement->num_placement; ++i) {
872                 ret = ttm_mem_type_from_flags(placement->placement[i],
873                                                 &mem_type);
874                 if (ret)
875                         return ret;
876                 man = &bdev->man[mem_type];
877
878                 type_ok = ttm_bo_mt_compatible(man,
879                                                 mem_type,
880                                                 placement->placement[i],
881                                                 &cur_flags);
882
883                 if (!type_ok)
884                         continue;
885
886                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
887                                                   cur_flags);
888                 /*
889                  * Use the access and other non-mapping-related flag bits from
890                  * the memory placement flags to the current flags
891                  */
892                 ttm_flag_masked(&cur_flags, placement->placement[i],
893                                 ~TTM_PL_MASK_MEMTYPE);
894
895                 if (mem_type == TTM_PL_SYSTEM)
896                         break;
897
898                 if (man->has_type && man->use_type) {
899                         type_found = true;
900                         ret = (*man->func->get_node)(man, bo, placement, mem);
901                         if (unlikely(ret))
902                                 return ret;
903                 }
904                 if (mem->mm_node)
905                         break;
906         }
907
908         if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
909                 mem->mem_type = mem_type;
910                 mem->placement = cur_flags;
911                 return 0;
912         }
913
914         if (!type_found)
915                 return -EINVAL;
916
917         for (i = 0; i < placement->num_busy_placement; ++i) {
918                 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
919                                                 &mem_type);
920                 if (ret)
921                         return ret;
922                 man = &bdev->man[mem_type];
923                 if (!man->has_type)
924                         continue;
925                 if (!ttm_bo_mt_compatible(man,
926                                                 mem_type,
927                                                 placement->busy_placement[i],
928                                                 &cur_flags))
929                         continue;
930
931                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
932                                                   cur_flags);
933                 /*
934                  * Use the access and other non-mapping-related flag bits from
935                  * the memory placement flags to the current flags
936                  */
937                 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
938                                 ~TTM_PL_MASK_MEMTYPE);
939
940
941                 if (mem_type == TTM_PL_SYSTEM) {
942                         mem->mem_type = mem_type;
943                         mem->placement = cur_flags;
944                         mem->mm_node = NULL;
945                         return 0;
946                 }
947
948                 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
949                                                 interruptible, no_wait_gpu);
950                 if (ret == 0 && mem->mm_node) {
951                         mem->placement = cur_flags;
952                         return 0;
953                 }
954                 if (ret == -ERESTARTSYS)
955                         has_erestartsys = true;
956         }
957         ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
958         return ret;
959 }
960 EXPORT_SYMBOL(ttm_bo_mem_space);
961
962 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
963                         struct ttm_placement *placement,
964                         bool interruptible,
965                         bool no_wait_gpu)
966 {
967         int ret = 0;
968         struct ttm_mem_reg mem;
969         struct ttm_bo_device *bdev = bo->bdev;
970
971         lockdep_assert_held(&bo->resv->lock.base);
972
973         /*
974          * FIXME: It's possible to pipeline buffer moves.
975          * Have the driver move function wait for idle when necessary,
976          * instead of doing it here.
977          */
978         spin_lock(&bdev->fence_lock);
979         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
980         spin_unlock(&bdev->fence_lock);
981         if (ret)
982                 return ret;
983         mem.num_pages = bo->num_pages;
984         mem.size = mem.num_pages << PAGE_SHIFT;
985         mem.page_alignment = bo->mem.page_alignment;
986         mem.bus.io_reserved_vm = false;
987         mem.bus.io_reserved_count = 0;
988         /*
989          * Determine where to move the buffer.
990          */
991         ret = ttm_bo_mem_space(bo, placement, &mem,
992                                interruptible, no_wait_gpu);
993         if (ret)
994                 goto out_unlock;
995         ret = ttm_bo_handle_move_mem(bo, &mem, false,
996                                      interruptible, no_wait_gpu);
997 out_unlock:
998         if (ret && mem.mm_node)
999                 ttm_bo_mem_put(bo, &mem);
1000         return ret;
1001 }
1002
1003 static bool ttm_bo_mem_compat(struct ttm_placement *placement,
1004                               struct ttm_mem_reg *mem,
1005                               uint32_t *new_flags)
1006 {
1007         int i;
1008
1009         if (mem->mm_node && placement->lpfn != 0 &&
1010             (mem->start < placement->fpfn ||
1011              mem->start + mem->num_pages > placement->lpfn))
1012                 return false;
1013
1014         for (i = 0; i < placement->num_placement; i++) {
1015                 *new_flags = placement->placement[i];
1016                 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1017                     (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1018                         return true;
1019         }
1020
1021         for (i = 0; i < placement->num_busy_placement; i++) {
1022                 *new_flags = placement->busy_placement[i];
1023                 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1024                     (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1025                         return true;
1026         }
1027
1028         return false;
1029 }
1030
1031 int ttm_bo_validate(struct ttm_buffer_object *bo,
1032                         struct ttm_placement *placement,
1033                         bool interruptible,
1034                         bool no_wait_gpu)
1035 {
1036         int ret;
1037         uint32_t new_flags;
1038
1039         lockdep_assert_held(&bo->resv->lock.base);
1040         /* Check that range is valid */
1041         if (placement->lpfn || placement->fpfn)
1042                 if (placement->fpfn > placement->lpfn ||
1043                         (placement->lpfn - placement->fpfn) < bo->num_pages)
1044                         return -EINVAL;
1045         /*
1046          * Check whether we need to move buffer.
1047          */
1048         if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1049                 ret = ttm_bo_move_buffer(bo, placement, interruptible,
1050                                          no_wait_gpu);
1051                 if (ret)
1052                         return ret;
1053         } else {
1054                 /*
1055                  * Use the access and other non-mapping-related flag bits from
1056                  * the compatible memory placement flags to the active flags
1057                  */
1058                 ttm_flag_masked(&bo->mem.placement, new_flags,
1059                                 ~TTM_PL_MASK_MEMTYPE);
1060         }
1061         /*
1062          * We might need to add a TTM.
1063          */
1064         if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1065                 ret = ttm_bo_add_ttm(bo, true);
1066                 if (ret)
1067                         return ret;
1068         }
1069         return 0;
1070 }
1071 EXPORT_SYMBOL(ttm_bo_validate);
1072
1073 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1074                                 struct ttm_placement *placement)
1075 {
1076         BUG_ON((placement->fpfn || placement->lpfn) &&
1077                (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1078
1079         return 0;
1080 }
1081
1082 int ttm_bo_init(struct ttm_bo_device *bdev,
1083                 struct ttm_buffer_object *bo,
1084                 unsigned long size,
1085                 enum ttm_bo_type type,
1086                 struct ttm_placement *placement,
1087                 uint32_t page_alignment,
1088                 bool interruptible,
1089                 struct file *persistent_swap_storage,
1090                 size_t acc_size,
1091                 struct sg_table *sg,
1092                 void (*destroy) (struct ttm_buffer_object *))
1093 {
1094         int ret = 0;
1095         unsigned long num_pages;
1096         struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1097         bool locked;
1098
1099         ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1100         if (ret) {
1101                 pr_err("Out of kernel memory\n");
1102                 if (destroy)
1103                         (*destroy)(bo);
1104                 else
1105                         kfree(bo);
1106                 return -ENOMEM;
1107         }
1108
1109         num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1110         if (num_pages == 0) {
1111                 pr_err("Illegal buffer object size\n");
1112                 if (destroy)
1113                         (*destroy)(bo);
1114                 else
1115                         kfree(bo);
1116                 ttm_mem_global_free(mem_glob, acc_size);
1117                 return -EINVAL;
1118         }
1119         bo->destroy = destroy;
1120
1121         kref_init(&bo->kref);
1122         kref_init(&bo->list_kref);
1123         atomic_set(&bo->cpu_writers, 0);
1124         INIT_LIST_HEAD(&bo->lru);
1125         INIT_LIST_HEAD(&bo->ddestroy);
1126         INIT_LIST_HEAD(&bo->swap);
1127         INIT_LIST_HEAD(&bo->io_reserve_lru);
1128         mutex_init(&bo->wu_mutex);
1129         bo->bdev = bdev;
1130         bo->glob = bdev->glob;
1131         bo->type = type;
1132         bo->num_pages = num_pages;
1133         bo->mem.size = num_pages << PAGE_SHIFT;
1134         bo->mem.mem_type = TTM_PL_SYSTEM;
1135         bo->mem.num_pages = bo->num_pages;
1136         bo->mem.mm_node = NULL;
1137         bo->mem.page_alignment = page_alignment;
1138         bo->mem.bus.io_reserved_vm = false;
1139         bo->mem.bus.io_reserved_count = 0;
1140         bo->priv_flags = 0;
1141         bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1142         bo->persistent_swap_storage = persistent_swap_storage;
1143         bo->acc_size = acc_size;
1144         bo->sg = sg;
1145         bo->resv = &bo->ttm_resv;
1146         reservation_object_init(bo->resv);
1147         atomic_inc(&bo->glob->bo_count);
1148         drm_vma_node_reset(&bo->vma_node);
1149
1150         ret = ttm_bo_check_placement(bo, placement);
1151
1152         /*
1153          * For ttm_bo_type_device buffers, allocate
1154          * address space from the device.
1155          */
1156         if (likely(!ret) &&
1157             (bo->type == ttm_bo_type_device ||
1158              bo->type == ttm_bo_type_sg))
1159                 ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node,
1160                                          bo->mem.num_pages);
1161
1162         locked = ww_mutex_trylock(&bo->resv->lock);
1163         WARN_ON(!locked);
1164
1165         if (likely(!ret))
1166                 ret = ttm_bo_validate(bo, placement, interruptible, false);
1167
1168         ttm_bo_unreserve(bo);
1169
1170         if (unlikely(ret))
1171                 ttm_bo_unref(&bo);
1172
1173         return ret;
1174 }
1175 EXPORT_SYMBOL(ttm_bo_init);
1176
1177 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1178                        unsigned long bo_size,
1179                        unsigned struct_size)
1180 {
1181         unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1182         size_t size = 0;
1183
1184         size += ttm_round_pot(struct_size);
1185         size += PAGE_ALIGN(npages * sizeof(void *));
1186         size += ttm_round_pot(sizeof(struct ttm_tt));
1187         return size;
1188 }
1189 EXPORT_SYMBOL(ttm_bo_acc_size);
1190
1191 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1192                            unsigned long bo_size,
1193                            unsigned struct_size)
1194 {
1195         unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1196         size_t size = 0;
1197
1198         size += ttm_round_pot(struct_size);
1199         size += PAGE_ALIGN(npages * sizeof(void *));
1200         size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1201         size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1202         return size;
1203 }
1204 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1205
1206 int ttm_bo_create(struct ttm_bo_device *bdev,
1207                         unsigned long size,
1208                         enum ttm_bo_type type,
1209                         struct ttm_placement *placement,
1210                         uint32_t page_alignment,
1211                         bool interruptible,
1212                         struct file *persistent_swap_storage,
1213                         struct ttm_buffer_object **p_bo)
1214 {
1215         struct ttm_buffer_object *bo;
1216         size_t acc_size;
1217         int ret;
1218
1219         bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1220         if (unlikely(bo == NULL))
1221                 return -ENOMEM;
1222
1223         acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1224         ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1225                           interruptible, persistent_swap_storage, acc_size,
1226                           NULL, NULL);
1227         if (likely(ret == 0))
1228                 *p_bo = bo;
1229
1230         return ret;
1231 }
1232 EXPORT_SYMBOL(ttm_bo_create);
1233
1234 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1235                                         unsigned mem_type, bool allow_errors)
1236 {
1237         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1238         struct ttm_bo_global *glob = bdev->glob;
1239         int ret;
1240
1241         /*
1242          * Can't use standard list traversal since we're unlocking.
1243          */
1244
1245         spin_lock(&glob->lru_lock);
1246         while (!list_empty(&man->lru)) {
1247                 spin_unlock(&glob->lru_lock);
1248                 ret = ttm_mem_evict_first(bdev, mem_type, false, false);
1249                 if (ret) {
1250                         if (allow_errors) {
1251                                 return ret;
1252                         } else {
1253                                 pr_err("Cleanup eviction failed\n");
1254                         }
1255                 }
1256                 spin_lock(&glob->lru_lock);
1257         }
1258         spin_unlock(&glob->lru_lock);
1259         return 0;
1260 }
1261
1262 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1263 {
1264         struct ttm_mem_type_manager *man;
1265         int ret = -EINVAL;
1266
1267         if (mem_type >= TTM_NUM_MEM_TYPES) {
1268                 pr_err("Illegal memory type %d\n", mem_type);
1269                 return ret;
1270         }
1271         man = &bdev->man[mem_type];
1272
1273         if (!man->has_type) {
1274                 pr_err("Trying to take down uninitialized memory manager type %u\n",
1275                        mem_type);
1276                 return ret;
1277         }
1278
1279         man->use_type = false;
1280         man->has_type = false;
1281
1282         ret = 0;
1283         if (mem_type > 0) {
1284                 ttm_bo_force_list_clean(bdev, mem_type, false);
1285
1286                 ret = (*man->func->takedown)(man);
1287         }
1288
1289         return ret;
1290 }
1291 EXPORT_SYMBOL(ttm_bo_clean_mm);
1292
1293 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1294 {
1295         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1296
1297         if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1298                 pr_err("Illegal memory manager memory type %u\n", mem_type);
1299                 return -EINVAL;
1300         }
1301
1302         if (!man->has_type) {
1303                 pr_err("Memory type %u has not been initialized\n", mem_type);
1304                 return 0;
1305         }
1306
1307         return ttm_bo_force_list_clean(bdev, mem_type, true);
1308 }
1309 EXPORT_SYMBOL(ttm_bo_evict_mm);
1310
1311 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1312                         unsigned long p_size)
1313 {
1314         int ret = -EINVAL;
1315         struct ttm_mem_type_manager *man;
1316
1317         BUG_ON(type >= TTM_NUM_MEM_TYPES);
1318         man = &bdev->man[type];
1319         BUG_ON(man->has_type);
1320         man->io_reserve_fastpath = true;
1321         man->use_io_reserve_lru = false;
1322         mutex_init(&man->io_reserve_mutex);
1323         INIT_LIST_HEAD(&man->io_reserve_lru);
1324
1325         ret = bdev->driver->init_mem_type(bdev, type, man);
1326         if (ret)
1327                 return ret;
1328         man->bdev = bdev;
1329
1330         ret = 0;
1331         if (type != TTM_PL_SYSTEM) {
1332                 ret = (*man->func->init)(man, p_size);
1333                 if (ret)
1334                         return ret;
1335         }
1336         man->has_type = true;
1337         man->use_type = true;
1338         man->size = p_size;
1339
1340         INIT_LIST_HEAD(&man->lru);
1341
1342         return 0;
1343 }
1344 EXPORT_SYMBOL(ttm_bo_init_mm);
1345
1346 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1347 {
1348         struct ttm_bo_global *glob =
1349                 container_of(kobj, struct ttm_bo_global, kobj);
1350
1351         ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1352         __free_page(glob->dummy_read_page);
1353         kfree(glob);
1354 }
1355
1356 void ttm_bo_global_release(struct drm_global_reference *ref)
1357 {
1358         struct ttm_bo_global *glob = ref->object;
1359
1360         kobject_del(&glob->kobj);
1361         kobject_put(&glob->kobj);
1362 }
1363 EXPORT_SYMBOL(ttm_bo_global_release);
1364
1365 int ttm_bo_global_init(struct drm_global_reference *ref)
1366 {
1367         struct ttm_bo_global_ref *bo_ref =
1368                 container_of(ref, struct ttm_bo_global_ref, ref);
1369         struct ttm_bo_global *glob = ref->object;
1370         int ret;
1371
1372         mutex_init(&glob->device_list_mutex);
1373         spin_lock_init(&glob->lru_lock);
1374         glob->mem_glob = bo_ref->mem_glob;
1375         glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1376
1377         if (unlikely(glob->dummy_read_page == NULL)) {
1378                 ret = -ENOMEM;
1379                 goto out_no_drp;
1380         }
1381
1382         INIT_LIST_HEAD(&glob->swap_lru);
1383         INIT_LIST_HEAD(&glob->device_list);
1384
1385         ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1386         ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1387         if (unlikely(ret != 0)) {
1388                 pr_err("Could not register buffer object swapout\n");
1389                 goto out_no_shrink;
1390         }
1391
1392         atomic_set(&glob->bo_count, 0);
1393
1394         ret = kobject_init_and_add(
1395                 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1396         if (unlikely(ret != 0))
1397                 kobject_put(&glob->kobj);
1398         return ret;
1399 out_no_shrink:
1400         __free_page(glob->dummy_read_page);
1401 out_no_drp:
1402         kfree(glob);
1403         return ret;
1404 }
1405 EXPORT_SYMBOL(ttm_bo_global_init);
1406
1407
1408 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1409 {
1410         int ret = 0;
1411         unsigned i = TTM_NUM_MEM_TYPES;
1412         struct ttm_mem_type_manager *man;
1413         struct ttm_bo_global *glob = bdev->glob;
1414
1415         while (i--) {
1416                 man = &bdev->man[i];
1417                 if (man->has_type) {
1418                         man->use_type = false;
1419                         if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1420                                 ret = -EBUSY;
1421                                 pr_err("DRM memory manager type %d is not clean\n",
1422                                        i);
1423                         }
1424                         man->has_type = false;
1425                 }
1426         }
1427
1428         mutex_lock(&glob->device_list_mutex);
1429         list_del(&bdev->device_list);
1430         mutex_unlock(&glob->device_list_mutex);
1431
1432         cancel_delayed_work_sync(&bdev->wq);
1433
1434         while (ttm_bo_delayed_delete(bdev, true))
1435                 ;
1436
1437         spin_lock(&glob->lru_lock);
1438         if (list_empty(&bdev->ddestroy))
1439                 TTM_DEBUG("Delayed destroy list was clean\n");
1440
1441         if (list_empty(&bdev->man[0].lru))
1442                 TTM_DEBUG("Swap list was clean\n");
1443         spin_unlock(&glob->lru_lock);
1444
1445         drm_vma_offset_manager_destroy(&bdev->vma_manager);
1446
1447         return ret;
1448 }
1449 EXPORT_SYMBOL(ttm_bo_device_release);
1450
1451 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1452                        struct ttm_bo_global *glob,
1453                        struct ttm_bo_driver *driver,
1454                        uint64_t file_page_offset,
1455                        bool need_dma32)
1456 {
1457         int ret = -EINVAL;
1458
1459         bdev->driver = driver;
1460
1461         memset(bdev->man, 0, sizeof(bdev->man));
1462
1463         /*
1464          * Initialize the system memory buffer type.
1465          * Other types need to be driver / IOCTL initialized.
1466          */
1467         ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1468         if (unlikely(ret != 0))
1469                 goto out_no_sys;
1470
1471         drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset,
1472                                     0x10000000);
1473         INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1474         INIT_LIST_HEAD(&bdev->ddestroy);
1475         bdev->dev_mapping = NULL;
1476         bdev->glob = glob;
1477         bdev->need_dma32 = need_dma32;
1478         bdev->val_seq = 0;
1479         spin_lock_init(&bdev->fence_lock);
1480         mutex_lock(&glob->device_list_mutex);
1481         list_add_tail(&bdev->device_list, &glob->device_list);
1482         mutex_unlock(&glob->device_list_mutex);
1483
1484         return 0;
1485 out_no_sys:
1486         return ret;
1487 }
1488 EXPORT_SYMBOL(ttm_bo_device_init);
1489
1490 /*
1491  * buffer object vm functions.
1492  */
1493
1494 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1495 {
1496         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1497
1498         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1499                 if (mem->mem_type == TTM_PL_SYSTEM)
1500                         return false;
1501
1502                 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1503                         return false;
1504
1505                 if (mem->placement & TTM_PL_FLAG_CACHED)
1506                         return false;
1507         }
1508         return true;
1509 }
1510
1511 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1512 {
1513         struct ttm_bo_device *bdev = bo->bdev;
1514
1515         drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping);
1516         ttm_mem_io_free_vm(bo);
1517 }
1518
1519 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1520 {
1521         struct ttm_bo_device *bdev = bo->bdev;
1522         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1523
1524         ttm_mem_io_lock(man, false);
1525         ttm_bo_unmap_virtual_locked(bo);
1526         ttm_mem_io_unlock(man);
1527 }
1528
1529
1530 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1531
1532
1533 int ttm_bo_wait(struct ttm_buffer_object *bo,
1534                 bool lazy, bool interruptible, bool no_wait)
1535 {
1536         struct ttm_bo_driver *driver = bo->bdev->driver;
1537         struct ttm_bo_device *bdev = bo->bdev;
1538         void *sync_obj;
1539         int ret = 0;
1540
1541         if (likely(bo->sync_obj == NULL))
1542                 return 0;
1543
1544         while (bo->sync_obj) {
1545
1546                 if (driver->sync_obj_signaled(bo->sync_obj)) {
1547                         void *tmp_obj = bo->sync_obj;
1548                         bo->sync_obj = NULL;
1549                         clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1550                         spin_unlock(&bdev->fence_lock);
1551                         driver->sync_obj_unref(&tmp_obj);
1552                         spin_lock(&bdev->fence_lock);
1553                         continue;
1554                 }
1555
1556                 if (no_wait)
1557                         return -EBUSY;
1558
1559                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1560                 spin_unlock(&bdev->fence_lock);
1561                 ret = driver->sync_obj_wait(sync_obj,
1562                                             lazy, interruptible);
1563                 if (unlikely(ret != 0)) {
1564                         driver->sync_obj_unref(&sync_obj);
1565                         spin_lock(&bdev->fence_lock);
1566                         return ret;
1567                 }
1568                 spin_lock(&bdev->fence_lock);
1569                 if (likely(bo->sync_obj == sync_obj)) {
1570                         void *tmp_obj = bo->sync_obj;
1571                         bo->sync_obj = NULL;
1572                         clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1573                                   &bo->priv_flags);
1574                         spin_unlock(&bdev->fence_lock);
1575                         driver->sync_obj_unref(&sync_obj);
1576                         driver->sync_obj_unref(&tmp_obj);
1577                         spin_lock(&bdev->fence_lock);
1578                 } else {
1579                         spin_unlock(&bdev->fence_lock);
1580                         driver->sync_obj_unref(&sync_obj);
1581                         spin_lock(&bdev->fence_lock);
1582                 }
1583         }
1584         return 0;
1585 }
1586 EXPORT_SYMBOL(ttm_bo_wait);
1587
1588 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1589 {
1590         struct ttm_bo_device *bdev = bo->bdev;
1591         int ret = 0;
1592
1593         /*
1594          * Using ttm_bo_reserve makes sure the lru lists are updated.
1595          */
1596
1597         ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1598         if (unlikely(ret != 0))
1599                 return ret;
1600         spin_lock(&bdev->fence_lock);
1601         ret = ttm_bo_wait(bo, false, true, no_wait);
1602         spin_unlock(&bdev->fence_lock);
1603         if (likely(ret == 0))
1604                 atomic_inc(&bo->cpu_writers);
1605         ttm_bo_unreserve(bo);
1606         return ret;
1607 }
1608 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1609
1610 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1611 {
1612         atomic_dec(&bo->cpu_writers);
1613 }
1614 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1615
1616 /**
1617  * A buffer object shrink method that tries to swap out the first
1618  * buffer object on the bo_global::swap_lru list.
1619  */
1620
1621 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1622 {
1623         struct ttm_bo_global *glob =
1624             container_of(shrink, struct ttm_bo_global, shrink);
1625         struct ttm_buffer_object *bo;
1626         int ret = -EBUSY;
1627         int put_count;
1628         uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1629
1630         spin_lock(&glob->lru_lock);
1631         list_for_each_entry(bo, &glob->swap_lru, swap) {
1632                 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
1633                 if (!ret)
1634                         break;
1635         }
1636
1637         if (ret) {
1638                 spin_unlock(&glob->lru_lock);
1639                 return ret;
1640         }
1641
1642         kref_get(&bo->list_kref);
1643
1644         if (!list_empty(&bo->ddestroy)) {
1645                 ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1646                 kref_put(&bo->list_kref, ttm_bo_release_list);
1647                 return ret;
1648         }
1649
1650         put_count = ttm_bo_del_from_lru(bo);
1651         spin_unlock(&glob->lru_lock);
1652
1653         ttm_bo_list_ref_sub(bo, put_count, true);
1654
1655         /**
1656          * Wait for GPU, then move to system cached.
1657          */
1658
1659         spin_lock(&bo->bdev->fence_lock);
1660         ret = ttm_bo_wait(bo, false, false, false);
1661         spin_unlock(&bo->bdev->fence_lock);
1662
1663         if (unlikely(ret != 0))
1664                 goto out;
1665
1666         if ((bo->mem.placement & swap_placement) != swap_placement) {
1667                 struct ttm_mem_reg evict_mem;
1668
1669                 evict_mem = bo->mem;
1670                 evict_mem.mm_node = NULL;
1671                 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1672                 evict_mem.mem_type = TTM_PL_SYSTEM;
1673
1674                 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1675                                              false, false);
1676                 if (unlikely(ret != 0))
1677                         goto out;
1678         }
1679
1680         ttm_bo_unmap_virtual(bo);
1681
1682         /**
1683          * Swap out. Buffer will be swapped in again as soon as
1684          * anyone tries to access a ttm page.
1685          */
1686
1687         if (bo->bdev->driver->swap_notify)
1688                 bo->bdev->driver->swap_notify(bo);
1689
1690         ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1691 out:
1692
1693         /**
1694          *
1695          * Unreserve without putting on LRU to avoid swapping out an
1696          * already swapped buffer.
1697          */
1698
1699         ww_mutex_unlock(&bo->resv->lock);
1700         kref_put(&bo->list_kref, ttm_bo_release_list);
1701         return ret;
1702 }
1703
1704 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1705 {
1706         while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1707                 ;
1708 }
1709 EXPORT_SYMBOL(ttm_bo_swapout_all);
1710
1711 /**
1712  * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1713  * unreserved
1714  *
1715  * @bo: Pointer to buffer
1716  */
1717 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
1718 {
1719         int ret;
1720
1721         /*
1722          * In the absense of a wait_unlocked API,
1723          * Use the bo::wu_mutex to avoid triggering livelocks due to
1724          * concurrent use of this function. Note that this use of
1725          * bo::wu_mutex can go away if we change locking order to
1726          * mmap_sem -> bo::reserve.
1727          */
1728         ret = mutex_lock_interruptible(&bo->wu_mutex);
1729         if (unlikely(ret != 0))
1730                 return -ERESTARTSYS;
1731         if (!ww_mutex_is_locked(&bo->resv->lock))
1732                 goto out_unlock;
1733         ret = ttm_bo_reserve_nolru(bo, true, false, false, NULL);
1734         if (unlikely(ret != 0))
1735                 goto out_unlock;
1736         ww_mutex_unlock(&bo->resv->lock);
1737
1738 out_unlock:
1739         mutex_unlock(&bo->wu_mutex);
1740         return ret;
1741 }