Merge tag 'samsung-defconfig-5.4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / msm / disp / dpu1 / dpu_encoder.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2013 Red Hat
5  * Author: Rob Clark <robdclark@gmail.com>
6  */
7
8 #define pr_fmt(fmt)     "[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/kthread.h>
10 #include <linux/debugfs.h>
11 #include <linux/seq_file.h>
12
13 #include "msm_drv.h"
14 #include "dpu_kms.h"
15 #include <drm/drm_crtc.h>
16 #include <drm/drm_probe_helper.h>
17 #include "dpu_hwio.h"
18 #include "dpu_hw_catalog.h"
19 #include "dpu_hw_intf.h"
20 #include "dpu_hw_ctl.h"
21 #include "dpu_formats.h"
22 #include "dpu_encoder_phys.h"
23 #include "dpu_crtc.h"
24 #include "dpu_trace.h"
25 #include "dpu_core_irq.h"
26
27 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
28                 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
29
30 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
31                 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
32
33 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
34                 (p) ? (p)->parent->base.id : -1, \
35                 (p) ? (p)->intf_idx - INTF_0 : -1, \
36                 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
37                 ##__VA_ARGS__)
38
39 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
40                 (p) ? (p)->parent->base.id : -1, \
41                 (p) ? (p)->intf_idx - INTF_0 : -1, \
42                 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
43                 ##__VA_ARGS__)
44
45 /*
46  * Two to anticipate panels that can do cmd/vid dynamic switching
47  * plan is to create all possible physical encoder types, and switch between
48  * them at runtime
49  */
50 #define NUM_PHYS_ENCODER_TYPES 2
51
52 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
53         (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
54
55 #define MAX_CHANNELS_PER_ENC 2
56
57 #define IDLE_SHORT_TIMEOUT      1
58
59 #define MAX_VDISPLAY_SPLIT 1080
60
61 /* timeout in frames waiting for frame done */
62 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
63
64 /**
65  * enum dpu_enc_rc_events - events for resource control state machine
66  * @DPU_ENC_RC_EVENT_KICKOFF:
67  *      This event happens at NORMAL priority.
68  *      Event that signals the start of the transfer. When this event is
69  *      received, enable MDP/DSI core clocks. Regardless of the previous
70  *      state, the resource should be in ON state at the end of this event.
71  * @DPU_ENC_RC_EVENT_FRAME_DONE:
72  *      This event happens at INTERRUPT level.
73  *      Event signals the end of the data transfer after the PP FRAME_DONE
74  *      event. At the end of this event, a delayed work is scheduled to go to
75  *      IDLE_PC state after IDLE_TIMEOUT time.
76  * @DPU_ENC_RC_EVENT_PRE_STOP:
77  *      This event happens at NORMAL priority.
78  *      This event, when received during the ON state, leave the RC STATE
79  *      in the PRE_OFF state. It should be followed by the STOP event as
80  *      part of encoder disable.
81  *      If received during IDLE or OFF states, it will do nothing.
82  * @DPU_ENC_RC_EVENT_STOP:
83  *      This event happens at NORMAL priority.
84  *      When this event is received, disable all the MDP/DSI core clocks, and
85  *      disable IRQs. It should be called from the PRE_OFF or IDLE states.
86  *      IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
87  *      PRE_OFF is expected when PRE_STOP was executed during the ON state.
88  *      Resource state should be in OFF at the end of the event.
89  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
90  *      This event happens at NORMAL priority from a work item.
91  *      Event signals that there were no frame updates for IDLE_TIMEOUT time.
92  *      This would disable MDP/DSI core clocks and change the resource state
93  *      to IDLE.
94  */
95 enum dpu_enc_rc_events {
96         DPU_ENC_RC_EVENT_KICKOFF = 1,
97         DPU_ENC_RC_EVENT_FRAME_DONE,
98         DPU_ENC_RC_EVENT_PRE_STOP,
99         DPU_ENC_RC_EVENT_STOP,
100         DPU_ENC_RC_EVENT_ENTER_IDLE
101 };
102
103 /*
104  * enum dpu_enc_rc_states - states that the resource control maintains
105  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
106  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
107  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
108  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
109  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
110  */
111 enum dpu_enc_rc_states {
112         DPU_ENC_RC_STATE_OFF,
113         DPU_ENC_RC_STATE_PRE_OFF,
114         DPU_ENC_RC_STATE_ON,
115         DPU_ENC_RC_STATE_IDLE
116 };
117
118 /**
119  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
120  *      encoders. Virtual encoder manages one "logical" display. Physical
121  *      encoders manage one intf block, tied to a specific panel/sub-panel.
122  *      Virtual encoder defers as much as possible to the physical encoders.
123  *      Virtual encoder registers itself with the DRM Framework as the encoder.
124  * @base:               drm_encoder base class for registration with DRM
125  * @enc_spinlock:       Virtual-Encoder-Wide Spin Lock for IRQ purposes
126  * @bus_scaling_client: Client handle to the bus scaling interface
127  * @enabled:            True if the encoder is active, protected by enc_lock
128  * @num_phys_encs:      Actual number of physical encoders contained.
129  * @phys_encs:          Container of physical encoders managed.
130  * @cur_master:         Pointer to the current master in this mode. Optimization
131  *                      Only valid after enable. Cleared as disable.
132  * @hw_pp               Handle to the pingpong blocks used for the display. No.
133  *                      pingpong blocks can be different than num_phys_encs.
134  * @intfs_swapped       Whether or not the phys_enc interfaces have been swapped
135  *                      for partial update right-only cases, such as pingpong
136  *                      split where virtual pingpong does not generate IRQs
137  * @crtc:               Pointer to the currently assigned crtc. Normally you
138  *                      would use crtc->state->encoder_mask to determine the
139  *                      link between encoder/crtc. However in this case we need
140  *                      to track crtc in the disable() hook which is called
141  *                      _after_ encoder_mask is cleared.
142  * @crtc_kickoff_cb:            Callback into CRTC that will flush & start
143  *                              all CTL paths
144  * @crtc_kickoff_cb_data:       Opaque user data given to crtc_kickoff_cb
145  * @debugfs_root:               Debug file system root file node
146  * @enc_lock:                   Lock around physical encoder
147  *                              create/destroy/enable/disable
148  * @frame_busy_mask:            Bitmask tracking which phys_enc we are still
149  *                              busy processing current command.
150  *                              Bit0 = phys_encs[0] etc.
151  * @crtc_frame_event_cb:        callback handler for frame event
152  * @crtc_frame_event_cb_data:   callback handler private data
153  * @frame_done_timeout_ms:      frame done timeout in ms
154  * @frame_done_timer:           watchdog timer for frame done event
155  * @vsync_event_timer:          vsync timer
156  * @disp_info:                  local copy of msm_display_info struct
157  * @idle_pc_supported:          indicate if idle power collaps is supported
158  * @rc_lock:                    resource control mutex lock to protect
159  *                              virt encoder over various state changes
160  * @rc_state:                   resource controller state
161  * @delayed_off_work:           delayed worker to schedule disabling of
162  *                              clks and resources after IDLE_TIMEOUT time.
163  * @vsync_event_work:           worker to handle vsync event for autorefresh
164  * @topology:                   topology of the display
165  * @mode_set_complete:          flag to indicate modeset completion
166  * @idle_timeout:               idle timeout duration in milliseconds
167  */
168 struct dpu_encoder_virt {
169         struct drm_encoder base;
170         spinlock_t enc_spinlock;
171         uint32_t bus_scaling_client;
172
173         bool enabled;
174
175         unsigned int num_phys_encs;
176         struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
177         struct dpu_encoder_phys *cur_master;
178         struct dpu_encoder_phys *cur_slave;
179         struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
180
181         bool intfs_swapped;
182
183         struct drm_crtc *crtc;
184
185         struct dentry *debugfs_root;
186         struct mutex enc_lock;
187         DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
188         void (*crtc_frame_event_cb)(void *, u32 event);
189         void *crtc_frame_event_cb_data;
190
191         atomic_t frame_done_timeout_ms;
192         struct timer_list frame_done_timer;
193         struct timer_list vsync_event_timer;
194
195         struct msm_display_info disp_info;
196
197         bool idle_pc_supported;
198         struct mutex rc_lock;
199         enum dpu_enc_rc_states rc_state;
200         struct delayed_work delayed_off_work;
201         struct kthread_work vsync_event_work;
202         struct msm_display_topology topology;
203         bool mode_set_complete;
204
205         u32 idle_timeout;
206 };
207
208 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
209
210 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
211                 enum dpu_intr_idx intr_idx)
212 {
213         DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
214                   DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
215                   phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
216
217         if (phys_enc->parent_ops->handle_frame_done)
218                 phys_enc->parent_ops->handle_frame_done(
219                                 phys_enc->parent, phys_enc,
220                                 DPU_ENCODER_FRAME_EVENT_ERROR);
221 }
222
223 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
224                 int32_t hw_id, struct dpu_encoder_wait_info *info);
225
226 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
227                 enum dpu_intr_idx intr_idx,
228                 struct dpu_encoder_wait_info *wait_info)
229 {
230         struct dpu_encoder_irq *irq;
231         u32 irq_status;
232         int ret;
233
234         if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) {
235                 DPU_ERROR("invalid params\n");
236                 return -EINVAL;
237         }
238         irq = &phys_enc->irq[intr_idx];
239
240         /* note: do master / slave checking outside */
241
242         /* return EWOULDBLOCK since we know the wait isn't necessary */
243         if (phys_enc->enable_state == DPU_ENC_DISABLED) {
244                 DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
245                           DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
246                           irq->irq_idx);
247                 return -EWOULDBLOCK;
248         }
249
250         if (irq->irq_idx < 0) {
251                 DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
252                               DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
253                               irq->name);
254                 return 0;
255         }
256
257         DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
258                       DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
259                       irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
260                       atomic_read(wait_info->atomic_cnt));
261
262         ret = dpu_encoder_helper_wait_event_timeout(
263                         DRMID(phys_enc->parent),
264                         irq->hw_idx,
265                         wait_info);
266
267         if (ret <= 0) {
268                 irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
269                                 irq->irq_idx, true);
270                 if (irq_status) {
271                         unsigned long flags;
272
273                         DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
274                                       "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
275                                       DRMID(phys_enc->parent), intr_idx,
276                                       irq->hw_idx, irq->irq_idx,
277                                       phys_enc->hw_pp->idx - PINGPONG_0,
278                                       atomic_read(wait_info->atomic_cnt));
279                         local_irq_save(flags);
280                         irq->cb.func(phys_enc, irq->irq_idx);
281                         local_irq_restore(flags);
282                         ret = 0;
283                 } else {
284                         ret = -ETIMEDOUT;
285                         DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
286                                       "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
287                                       DRMID(phys_enc->parent), intr_idx,
288                                       irq->hw_idx, irq->irq_idx,
289                                       phys_enc->hw_pp->idx - PINGPONG_0,
290                                       atomic_read(wait_info->atomic_cnt));
291                 }
292         } else {
293                 ret = 0;
294                 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
295                         intr_idx, irq->hw_idx, irq->irq_idx,
296                         phys_enc->hw_pp->idx - PINGPONG_0,
297                         atomic_read(wait_info->atomic_cnt));
298         }
299
300         return ret;
301 }
302
303 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
304                 enum dpu_intr_idx intr_idx)
305 {
306         struct dpu_encoder_irq *irq;
307         int ret = 0;
308
309         if (!phys_enc || intr_idx >= INTR_IDX_MAX) {
310                 DPU_ERROR("invalid params\n");
311                 return -EINVAL;
312         }
313         irq = &phys_enc->irq[intr_idx];
314
315         if (irq->irq_idx >= 0) {
316                 DPU_DEBUG_PHYS(phys_enc,
317                                 "skipping already registered irq %s type %d\n",
318                                 irq->name, irq->intr_type);
319                 return 0;
320         }
321
322         irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms,
323                         irq->intr_type, irq->hw_idx);
324         if (irq->irq_idx < 0) {
325                 DPU_ERROR_PHYS(phys_enc,
326                         "failed to lookup IRQ index for %s type:%d\n",
327                         irq->name, irq->intr_type);
328                 return -EINVAL;
329         }
330
331         ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
332                         &irq->cb);
333         if (ret) {
334                 DPU_ERROR_PHYS(phys_enc,
335                         "failed to register IRQ callback for %s\n",
336                         irq->name);
337                 irq->irq_idx = -EINVAL;
338                 return ret;
339         }
340
341         ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1);
342         if (ret) {
343                 DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
344                           DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
345                           irq->irq_idx);
346                 dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
347                                 irq->irq_idx, &irq->cb);
348                 irq->irq_idx = -EINVAL;
349                 return ret;
350         }
351
352         trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
353                                 irq->hw_idx, irq->irq_idx);
354
355         return ret;
356 }
357
358 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
359                 enum dpu_intr_idx intr_idx)
360 {
361         struct dpu_encoder_irq *irq;
362         int ret;
363
364         if (!phys_enc) {
365                 DPU_ERROR("invalid encoder\n");
366                 return -EINVAL;
367         }
368         irq = &phys_enc->irq[intr_idx];
369
370         /* silently skip irqs that weren't registered */
371         if (irq->irq_idx < 0) {
372                 DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
373                           DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
374                           irq->irq_idx);
375                 return 0;
376         }
377
378         ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1);
379         if (ret) {
380                 DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
381                           DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
382                           irq->irq_idx, ret);
383         }
384
385         ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
386                         &irq->cb);
387         if (ret) {
388                 DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
389                           DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
390                           irq->irq_idx, ret);
391         }
392
393         trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
394                                              irq->hw_idx, irq->irq_idx);
395
396         irq->irq_idx = -EINVAL;
397
398         return 0;
399 }
400
401 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
402                                   struct dpu_encoder_hw_resources *hw_res)
403 {
404         struct dpu_encoder_virt *dpu_enc = NULL;
405         int i = 0;
406
407         dpu_enc = to_dpu_encoder_virt(drm_enc);
408         DPU_DEBUG_ENC(dpu_enc, "\n");
409
410         /* Query resources used by phys encs, expected to be without overlap */
411         memset(hw_res, 0, sizeof(*hw_res));
412
413         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
414                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
415
416                 if (phys && phys->ops.get_hw_resources)
417                         phys->ops.get_hw_resources(phys, hw_res);
418         }
419 }
420
421 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
422 {
423         struct dpu_encoder_virt *dpu_enc = NULL;
424         int i = 0;
425
426         if (!drm_enc) {
427                 DPU_ERROR("invalid encoder\n");
428                 return;
429         }
430
431         dpu_enc = to_dpu_encoder_virt(drm_enc);
432         DPU_DEBUG_ENC(dpu_enc, "\n");
433
434         mutex_lock(&dpu_enc->enc_lock);
435
436         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
437                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
438
439                 if (phys && phys->ops.destroy) {
440                         phys->ops.destroy(phys);
441                         --dpu_enc->num_phys_encs;
442                         dpu_enc->phys_encs[i] = NULL;
443                 }
444         }
445
446         if (dpu_enc->num_phys_encs)
447                 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
448                                 dpu_enc->num_phys_encs);
449         dpu_enc->num_phys_encs = 0;
450         mutex_unlock(&dpu_enc->enc_lock);
451
452         drm_encoder_cleanup(drm_enc);
453         mutex_destroy(&dpu_enc->enc_lock);
454 }
455
456 void dpu_encoder_helper_split_config(
457                 struct dpu_encoder_phys *phys_enc,
458                 enum dpu_intf interface)
459 {
460         struct dpu_encoder_virt *dpu_enc;
461         struct split_pipe_cfg cfg = { 0 };
462         struct dpu_hw_mdp *hw_mdptop;
463         struct msm_display_info *disp_info;
464
465         if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) {
466                 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0);
467                 return;
468         }
469
470         dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
471         hw_mdptop = phys_enc->hw_mdptop;
472         disp_info = &dpu_enc->disp_info;
473
474         if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
475                 return;
476
477         /**
478          * disable split modes since encoder will be operating in as the only
479          * encoder, either for the entire use case in the case of, for example,
480          * single DSI, or for this frame in the case of left/right only partial
481          * update.
482          */
483         if (phys_enc->split_role == ENC_ROLE_SOLO) {
484                 if (hw_mdptop->ops.setup_split_pipe)
485                         hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
486                 return;
487         }
488
489         cfg.en = true;
490         cfg.mode = phys_enc->intf_mode;
491         cfg.intf = interface;
492
493         if (cfg.en && phys_enc->ops.needs_single_flush &&
494                         phys_enc->ops.needs_single_flush(phys_enc))
495                 cfg.split_flush_en = true;
496
497         if (phys_enc->split_role == ENC_ROLE_MASTER) {
498                 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
499
500                 if (hw_mdptop->ops.setup_split_pipe)
501                         hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
502         }
503 }
504
505 static void _dpu_encoder_adjust_mode(struct drm_connector *connector,
506                 struct drm_display_mode *adj_mode)
507 {
508         struct drm_display_mode *cur_mode;
509
510         if (!connector || !adj_mode)
511                 return;
512
513         list_for_each_entry(cur_mode, &connector->modes, head) {
514                 if (cur_mode->vdisplay == adj_mode->vdisplay &&
515                     cur_mode->hdisplay == adj_mode->hdisplay &&
516                     drm_mode_vrefresh(cur_mode) == drm_mode_vrefresh(adj_mode)) {
517                         adj_mode->private = cur_mode->private;
518                         adj_mode->private_flags |= cur_mode->private_flags;
519                 }
520         }
521 }
522
523 static struct msm_display_topology dpu_encoder_get_topology(
524                         struct dpu_encoder_virt *dpu_enc,
525                         struct dpu_kms *dpu_kms,
526                         struct drm_display_mode *mode)
527 {
528         struct msm_display_topology topology;
529         int i, intf_count = 0;
530
531         for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
532                 if (dpu_enc->phys_encs[i])
533                         intf_count++;
534
535         /* User split topology for width > 1080 */
536         topology.num_lm = (mode->vdisplay > MAX_VDISPLAY_SPLIT) ? 2 : 1;
537         topology.num_enc = 0;
538         topology.num_intf = intf_count;
539
540         return topology;
541 }
542 static int dpu_encoder_virt_atomic_check(
543                 struct drm_encoder *drm_enc,
544                 struct drm_crtc_state *crtc_state,
545                 struct drm_connector_state *conn_state)
546 {
547         struct dpu_encoder_virt *dpu_enc;
548         struct msm_drm_private *priv;
549         struct dpu_kms *dpu_kms;
550         const struct drm_display_mode *mode;
551         struct drm_display_mode *adj_mode;
552         struct msm_display_topology topology;
553         int i = 0;
554         int ret = 0;
555
556         if (!drm_enc || !crtc_state || !conn_state) {
557                 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
558                                 drm_enc != 0, crtc_state != 0, conn_state != 0);
559                 return -EINVAL;
560         }
561
562         dpu_enc = to_dpu_encoder_virt(drm_enc);
563         DPU_DEBUG_ENC(dpu_enc, "\n");
564
565         priv = drm_enc->dev->dev_private;
566         dpu_kms = to_dpu_kms(priv->kms);
567         mode = &crtc_state->mode;
568         adj_mode = &crtc_state->adjusted_mode;
569         trace_dpu_enc_atomic_check(DRMID(drm_enc));
570
571         /*
572          * display drivers may populate private fields of the drm display mode
573          * structure while registering possible modes of a connector with DRM.
574          * These private fields are not populated back while DRM invokes
575          * the mode_set callbacks. This module retrieves and populates the
576          * private fields of the given mode.
577          */
578         _dpu_encoder_adjust_mode(conn_state->connector, adj_mode);
579
580         /* perform atomic check on the first physical encoder (master) */
581         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
582                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
583
584                 if (phys && phys->ops.atomic_check)
585                         ret = phys->ops.atomic_check(phys, crtc_state,
586                                         conn_state);
587                 else if (phys && phys->ops.mode_fixup)
588                         if (!phys->ops.mode_fixup(phys, mode, adj_mode))
589                                 ret = -EINVAL;
590
591                 if (ret) {
592                         DPU_ERROR_ENC(dpu_enc,
593                                         "mode unsupported, phys idx %d\n", i);
594                         break;
595                 }
596         }
597
598         topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
599
600         /* Reserve dynamic resources now. Indicating AtomicTest phase */
601         if (!ret) {
602                 /*
603                  * Avoid reserving resources when mode set is pending. Topology
604                  * info may not be available to complete reservation.
605                  */
606                 if (drm_atomic_crtc_needs_modeset(crtc_state)
607                                 && dpu_enc->mode_set_complete) {
608                         ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state,
609                                              topology, true);
610                         dpu_enc->mode_set_complete = false;
611                 }
612         }
613
614         trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags,
615                         adj_mode->private_flags);
616
617         return ret;
618 }
619
620 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
621                         struct msm_display_info *disp_info)
622 {
623         struct dpu_vsync_source_cfg vsync_cfg = { 0 };
624         struct msm_drm_private *priv;
625         struct dpu_kms *dpu_kms;
626         struct dpu_hw_mdp *hw_mdptop;
627         struct drm_encoder *drm_enc;
628         int i;
629
630         if (!dpu_enc || !disp_info) {
631                 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
632                                         dpu_enc != NULL, disp_info != NULL);
633                 return;
634         } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
635                 DPU_ERROR("invalid num phys enc %d/%d\n",
636                                 dpu_enc->num_phys_encs,
637                                 (int) ARRAY_SIZE(dpu_enc->hw_pp));
638                 return;
639         }
640
641         drm_enc = &dpu_enc->base;
642         /* this pointers are checked in virt_enable_helper */
643         priv = drm_enc->dev->dev_private;
644
645         dpu_kms = to_dpu_kms(priv->kms);
646         if (!dpu_kms) {
647                 DPU_ERROR("invalid dpu_kms\n");
648                 return;
649         }
650
651         hw_mdptop = dpu_kms->hw_mdp;
652         if (!hw_mdptop) {
653                 DPU_ERROR("invalid mdptop\n");
654                 return;
655         }
656
657         if (hw_mdptop->ops.setup_vsync_source &&
658                         disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
659                 for (i = 0; i < dpu_enc->num_phys_encs; i++)
660                         vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
661
662                 vsync_cfg.pp_count = dpu_enc->num_phys_encs;
663                 if (disp_info->is_te_using_watchdog_timer)
664                         vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
665                 else
666                         vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
667
668                 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
669         }
670 }
671
672 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
673 {
674         struct dpu_encoder_virt *dpu_enc;
675         int i;
676
677         if (!drm_enc) {
678                 DPU_ERROR("invalid encoder\n");
679                 return;
680         }
681
682         dpu_enc = to_dpu_encoder_virt(drm_enc);
683
684         DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
685         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
686                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
687
688                 if (phys && phys->ops.irq_control)
689                         phys->ops.irq_control(phys, enable);
690         }
691
692 }
693
694 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
695                 bool enable)
696 {
697         struct msm_drm_private *priv;
698         struct dpu_kms *dpu_kms;
699         struct dpu_encoder_virt *dpu_enc;
700
701         dpu_enc = to_dpu_encoder_virt(drm_enc);
702         priv = drm_enc->dev->dev_private;
703         dpu_kms = to_dpu_kms(priv->kms);
704
705         trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
706
707         if (!dpu_enc->cur_master) {
708                 DPU_ERROR("encoder master not set\n");
709                 return;
710         }
711
712         if (enable) {
713                 /* enable DPU core clks */
714                 pm_runtime_get_sync(&dpu_kms->pdev->dev);
715
716                 /* enable all the irq */
717                 _dpu_encoder_irq_control(drm_enc, true);
718
719         } else {
720                 /* disable all the irq */
721                 _dpu_encoder_irq_control(drm_enc, false);
722
723                 /* disable DPU core clks */
724                 pm_runtime_put_sync(&dpu_kms->pdev->dev);
725         }
726
727 }
728
729 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
730                 u32 sw_event)
731 {
732         struct dpu_encoder_virt *dpu_enc;
733         struct msm_drm_private *priv;
734         bool is_vid_mode = false;
735
736         if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private ||
737                         !drm_enc->crtc) {
738                 DPU_ERROR("invalid parameters\n");
739                 return -EINVAL;
740         }
741         dpu_enc = to_dpu_encoder_virt(drm_enc);
742         priv = drm_enc->dev->dev_private;
743         is_vid_mode = dpu_enc->disp_info.capabilities &
744                                                 MSM_DISPLAY_CAP_VID_MODE;
745
746         /*
747          * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
748          * events and return early for other events (ie wb display).
749          */
750         if (!dpu_enc->idle_pc_supported &&
751                         (sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
752                         sw_event != DPU_ENC_RC_EVENT_STOP &&
753                         sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
754                 return 0;
755
756         trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
757                          dpu_enc->rc_state, "begin");
758
759         switch (sw_event) {
760         case DPU_ENC_RC_EVENT_KICKOFF:
761                 /* cancel delayed off work, if any */
762                 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
763                         DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
764                                         sw_event);
765
766                 mutex_lock(&dpu_enc->rc_lock);
767
768                 /* return if the resource control is already in ON state */
769                 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
770                         DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
771                                       DRMID(drm_enc), sw_event);
772                         mutex_unlock(&dpu_enc->rc_lock);
773                         return 0;
774                 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
775                                 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
776                         DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
777                                       DRMID(drm_enc), sw_event,
778                                       dpu_enc->rc_state);
779                         mutex_unlock(&dpu_enc->rc_lock);
780                         return -EINVAL;
781                 }
782
783                 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
784                         _dpu_encoder_irq_control(drm_enc, true);
785                 else
786                         _dpu_encoder_resource_control_helper(drm_enc, true);
787
788                 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
789
790                 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
791                                  dpu_enc->idle_pc_supported, dpu_enc->rc_state,
792                                  "kickoff");
793
794                 mutex_unlock(&dpu_enc->rc_lock);
795                 break;
796
797         case DPU_ENC_RC_EVENT_FRAME_DONE:
798                 /*
799                  * mutex lock is not used as this event happens at interrupt
800                  * context. And locking is not required as, the other events
801                  * like KICKOFF and STOP does a wait-for-idle before executing
802                  * the resource_control
803                  */
804                 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
805                         DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
806                                       DRMID(drm_enc), sw_event,
807                                       dpu_enc->rc_state);
808                         return -EINVAL;
809                 }
810
811                 /*
812                  * schedule off work item only when there are no
813                  * frames pending
814                  */
815                 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
816                         DRM_DEBUG_KMS("id:%d skip schedule work\n",
817                                       DRMID(drm_enc));
818                         return 0;
819                 }
820
821                 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
822                                    msecs_to_jiffies(dpu_enc->idle_timeout));
823
824                 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
825                                  dpu_enc->idle_pc_supported, dpu_enc->rc_state,
826                                  "frame done");
827                 break;
828
829         case DPU_ENC_RC_EVENT_PRE_STOP:
830                 /* cancel delayed off work, if any */
831                 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
832                         DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
833                                         sw_event);
834
835                 mutex_lock(&dpu_enc->rc_lock);
836
837                 if (is_vid_mode &&
838                           dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
839                         _dpu_encoder_irq_control(drm_enc, true);
840                 }
841                 /* skip if is already OFF or IDLE, resources are off already */
842                 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
843                                 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
844                         DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
845                                       DRMID(drm_enc), sw_event,
846                                       dpu_enc->rc_state);
847                         mutex_unlock(&dpu_enc->rc_lock);
848                         return 0;
849                 }
850
851                 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
852
853                 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
854                                  dpu_enc->idle_pc_supported, dpu_enc->rc_state,
855                                  "pre stop");
856
857                 mutex_unlock(&dpu_enc->rc_lock);
858                 break;
859
860         case DPU_ENC_RC_EVENT_STOP:
861                 mutex_lock(&dpu_enc->rc_lock);
862
863                 /* return if the resource control is already in OFF state */
864                 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
865                         DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
866                                       DRMID(drm_enc), sw_event);
867                         mutex_unlock(&dpu_enc->rc_lock);
868                         return 0;
869                 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
870                         DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
871                                   DRMID(drm_enc), sw_event, dpu_enc->rc_state);
872                         mutex_unlock(&dpu_enc->rc_lock);
873                         return -EINVAL;
874                 }
875
876                 /**
877                  * expect to arrive here only if in either idle state or pre-off
878                  * and in IDLE state the resources are already disabled
879                  */
880                 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
881                         _dpu_encoder_resource_control_helper(drm_enc, false);
882
883                 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
884
885                 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
886                                  dpu_enc->idle_pc_supported, dpu_enc->rc_state,
887                                  "stop");
888
889                 mutex_unlock(&dpu_enc->rc_lock);
890                 break;
891
892         case DPU_ENC_RC_EVENT_ENTER_IDLE:
893                 mutex_lock(&dpu_enc->rc_lock);
894
895                 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
896                         DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
897                                   DRMID(drm_enc), sw_event, dpu_enc->rc_state);
898                         mutex_unlock(&dpu_enc->rc_lock);
899                         return 0;
900                 }
901
902                 /*
903                  * if we are in ON but a frame was just kicked off,
904                  * ignore the IDLE event, it's probably a stale timer event
905                  */
906                 if (dpu_enc->frame_busy_mask[0]) {
907                         DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
908                                   DRMID(drm_enc), sw_event, dpu_enc->rc_state);
909                         mutex_unlock(&dpu_enc->rc_lock);
910                         return 0;
911                 }
912
913                 if (is_vid_mode)
914                         _dpu_encoder_irq_control(drm_enc, false);
915                 else
916                         _dpu_encoder_resource_control_helper(drm_enc, false);
917
918                 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
919
920                 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
921                                  dpu_enc->idle_pc_supported, dpu_enc->rc_state,
922                                  "idle");
923
924                 mutex_unlock(&dpu_enc->rc_lock);
925                 break;
926
927         default:
928                 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
929                           sw_event);
930                 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
931                                  dpu_enc->idle_pc_supported, dpu_enc->rc_state,
932                                  "error");
933                 break;
934         }
935
936         trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
937                          dpu_enc->idle_pc_supported, dpu_enc->rc_state,
938                          "end");
939         return 0;
940 }
941
942 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
943                                       struct drm_display_mode *mode,
944                                       struct drm_display_mode *adj_mode)
945 {
946         struct dpu_encoder_virt *dpu_enc;
947         struct msm_drm_private *priv;
948         struct dpu_kms *dpu_kms;
949         struct list_head *connector_list;
950         struct drm_connector *conn = NULL, *conn_iter;
951         struct drm_crtc *drm_crtc;
952         struct dpu_crtc_state *cstate;
953         struct dpu_rm_hw_iter hw_iter;
954         struct msm_display_topology topology;
955         struct dpu_hw_ctl *hw_ctl[MAX_CHANNELS_PER_ENC] = { NULL };
956         struct dpu_hw_mixer *hw_lm[MAX_CHANNELS_PER_ENC] = { NULL };
957         int num_lm = 0, num_ctl = 0;
958         int i, j, ret;
959
960         if (!drm_enc) {
961                 DPU_ERROR("invalid encoder\n");
962                 return;
963         }
964
965         dpu_enc = to_dpu_encoder_virt(drm_enc);
966         DPU_DEBUG_ENC(dpu_enc, "\n");
967
968         priv = drm_enc->dev->dev_private;
969         dpu_kms = to_dpu_kms(priv->kms);
970         connector_list = &dpu_kms->dev->mode_config.connector_list;
971
972         trace_dpu_enc_mode_set(DRMID(drm_enc));
973
974         list_for_each_entry(conn_iter, connector_list, head)
975                 if (conn_iter->encoder == drm_enc)
976                         conn = conn_iter;
977
978         if (!conn) {
979                 DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
980                 return;
981         } else if (!conn->state) {
982                 DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
983                 return;
984         }
985
986         drm_for_each_crtc(drm_crtc, drm_enc->dev)
987                 if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc))
988                         break;
989
990         topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
991
992         /* Reserve dynamic resources now. Indicating non-AtomicTest phase */
993         ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_crtc->state,
994                              topology, false);
995         if (ret) {
996                 DPU_ERROR_ENC(dpu_enc,
997                                 "failed to reserve hw resources, %d\n", ret);
998                 return;
999         }
1000
1001         dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG);
1002         for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1003                 dpu_enc->hw_pp[i] = NULL;
1004                 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1005                         break;
1006                 dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) hw_iter.hw;
1007         }
1008
1009         dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_CTL);
1010         for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1011                 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1012                         break;
1013                 hw_ctl[i] = (struct dpu_hw_ctl *)hw_iter.hw;
1014                 num_ctl++;
1015         }
1016
1017         dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_LM);
1018         for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1019                 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1020                         break;
1021                 hw_lm[i] = (struct dpu_hw_mixer *)hw_iter.hw;
1022                 num_lm++;
1023         }
1024
1025         cstate = to_dpu_crtc_state(drm_crtc->state);
1026
1027         for (i = 0; i < num_lm; i++) {
1028                 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1029
1030                 cstate->mixers[i].hw_lm = hw_lm[i];
1031                 cstate->mixers[i].lm_ctl = hw_ctl[ctl_idx];
1032         }
1033
1034         cstate->num_mixers = num_lm;
1035
1036         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1037                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1038
1039                 if (phys) {
1040                         if (!dpu_enc->hw_pp[i]) {
1041                                 DPU_ERROR_ENC(dpu_enc, "no pp block assigned"
1042                                              "at idx: %d\n", i);
1043                                 goto error;
1044                         }
1045
1046                         if (!hw_ctl[i]) {
1047                                 DPU_ERROR_ENC(dpu_enc, "no ctl block assigned"
1048                                              "at idx: %d\n", i);
1049                                 goto error;
1050                         }
1051
1052                         phys->hw_pp = dpu_enc->hw_pp[i];
1053                         phys->hw_ctl = hw_ctl[i];
1054
1055                         dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id,
1056                                             DPU_HW_BLK_INTF);
1057                         for (j = 0; j < MAX_CHANNELS_PER_ENC; j++) {
1058                                 struct dpu_hw_intf *hw_intf;
1059
1060                                 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1061                                         break;
1062
1063                                 hw_intf = (struct dpu_hw_intf *)hw_iter.hw;
1064                                 if (hw_intf->idx == phys->intf_idx)
1065                                         phys->hw_intf = hw_intf;
1066                         }
1067
1068                         if (!phys->hw_intf) {
1069                                 DPU_ERROR_ENC(dpu_enc,
1070                                               "no intf block assigned at idx: %d\n",
1071                                               i);
1072                                 goto error;
1073                         }
1074
1075                         phys->connector = conn->state->connector;
1076                         if (phys->ops.mode_set)
1077                                 phys->ops.mode_set(phys, mode, adj_mode);
1078                 }
1079         }
1080
1081         dpu_enc->mode_set_complete = true;
1082
1083 error:
1084         dpu_rm_release(&dpu_kms->rm, drm_enc);
1085 }
1086
1087 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1088 {
1089         struct dpu_encoder_virt *dpu_enc = NULL;
1090         struct msm_drm_private *priv;
1091         struct dpu_kms *dpu_kms;
1092
1093         if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) {
1094                 DPU_ERROR("invalid parameters\n");
1095                 return;
1096         }
1097
1098         priv = drm_enc->dev->dev_private;
1099         dpu_kms = to_dpu_kms(priv->kms);
1100         if (!dpu_kms) {
1101                 DPU_ERROR("invalid dpu_kms\n");
1102                 return;
1103         }
1104
1105         dpu_enc = to_dpu_encoder_virt(drm_enc);
1106         if (!dpu_enc || !dpu_enc->cur_master) {
1107                 DPU_ERROR("invalid dpu encoder/master\n");
1108                 return;
1109         }
1110
1111         if (dpu_enc->cur_master->hw_mdptop &&
1112                         dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc)
1113                 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc(
1114                                 dpu_enc->cur_master->hw_mdptop,
1115                                 dpu_kms->catalog);
1116
1117         _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1118 }
1119
1120 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1121 {
1122         struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1123
1124         mutex_lock(&dpu_enc->enc_lock);
1125
1126         if (!dpu_enc->enabled)
1127                 goto out;
1128
1129         if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1130                 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1131         if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1132                 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1133
1134         _dpu_encoder_virt_enable_helper(drm_enc);
1135
1136 out:
1137         mutex_unlock(&dpu_enc->enc_lock);
1138 }
1139
1140 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1141 {
1142         struct dpu_encoder_virt *dpu_enc = NULL;
1143         int ret = 0;
1144         struct drm_display_mode *cur_mode = NULL;
1145
1146         if (!drm_enc) {
1147                 DPU_ERROR("invalid encoder\n");
1148                 return;
1149         }
1150         dpu_enc = to_dpu_encoder_virt(drm_enc);
1151
1152         mutex_lock(&dpu_enc->enc_lock);
1153         cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1154
1155         trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1156                              cur_mode->vdisplay);
1157
1158         /* always enable slave encoder before master */
1159         if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1160                 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1161
1162         if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1163                 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1164
1165         ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1166         if (ret) {
1167                 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1168                                 ret);
1169                 goto out;
1170         }
1171
1172         _dpu_encoder_virt_enable_helper(drm_enc);
1173
1174         dpu_enc->enabled = true;
1175
1176 out:
1177         mutex_unlock(&dpu_enc->enc_lock);
1178 }
1179
1180 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1181 {
1182         struct dpu_encoder_virt *dpu_enc = NULL;
1183         struct msm_drm_private *priv;
1184         struct dpu_kms *dpu_kms;
1185         struct drm_display_mode *mode;
1186         int i = 0;
1187
1188         if (!drm_enc) {
1189                 DPU_ERROR("invalid encoder\n");
1190                 return;
1191         } else if (!drm_enc->dev) {
1192                 DPU_ERROR("invalid dev\n");
1193                 return;
1194         } else if (!drm_enc->dev->dev_private) {
1195                 DPU_ERROR("invalid dev_private\n");
1196                 return;
1197         }
1198
1199         dpu_enc = to_dpu_encoder_virt(drm_enc);
1200         DPU_DEBUG_ENC(dpu_enc, "\n");
1201
1202         mutex_lock(&dpu_enc->enc_lock);
1203         dpu_enc->enabled = false;
1204
1205         mode = &drm_enc->crtc->state->adjusted_mode;
1206
1207         priv = drm_enc->dev->dev_private;
1208         dpu_kms = to_dpu_kms(priv->kms);
1209
1210         trace_dpu_enc_disable(DRMID(drm_enc));
1211
1212         /* wait for idle */
1213         dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1214
1215         dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1216
1217         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1218                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1219
1220                 if (phys && phys->ops.disable)
1221                         phys->ops.disable(phys);
1222         }
1223
1224         /* after phys waits for frame-done, should be no more frames pending */
1225         if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1226                 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1227                 del_timer_sync(&dpu_enc->frame_done_timer);
1228         }
1229
1230         dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1231
1232         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1233                 if (dpu_enc->phys_encs[i])
1234                         dpu_enc->phys_encs[i]->connector = NULL;
1235         }
1236
1237         DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1238
1239         dpu_rm_release(&dpu_kms->rm, drm_enc);
1240
1241         mutex_unlock(&dpu_enc->enc_lock);
1242 }
1243
1244 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1245                 enum dpu_intf_type type, u32 controller_id)
1246 {
1247         int i = 0;
1248
1249         for (i = 0; i < catalog->intf_count; i++) {
1250                 if (catalog->intf[i].type == type
1251                     && catalog->intf[i].controller_id == controller_id) {
1252                         return catalog->intf[i].id;
1253                 }
1254         }
1255
1256         return INTF_MAX;
1257 }
1258
1259 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1260                 struct dpu_encoder_phys *phy_enc)
1261 {
1262         struct dpu_encoder_virt *dpu_enc = NULL;
1263         unsigned long lock_flags;
1264
1265         if (!drm_enc || !phy_enc)
1266                 return;
1267
1268         DPU_ATRACE_BEGIN("encoder_vblank_callback");
1269         dpu_enc = to_dpu_encoder_virt(drm_enc);
1270
1271         spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1272         if (dpu_enc->crtc)
1273                 dpu_crtc_vblank_callback(dpu_enc->crtc);
1274         spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1275
1276         atomic_inc(&phy_enc->vsync_cnt);
1277         DPU_ATRACE_END("encoder_vblank_callback");
1278 }
1279
1280 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1281                 struct dpu_encoder_phys *phy_enc)
1282 {
1283         if (!phy_enc)
1284                 return;
1285
1286         DPU_ATRACE_BEGIN("encoder_underrun_callback");
1287         atomic_inc(&phy_enc->underrun_cnt);
1288         trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1289                                   atomic_read(&phy_enc->underrun_cnt));
1290         DPU_ATRACE_END("encoder_underrun_callback");
1291 }
1292
1293 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1294 {
1295         struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1296         unsigned long lock_flags;
1297
1298         spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1299         /* crtc should always be cleared before re-assigning */
1300         WARN_ON(crtc && dpu_enc->crtc);
1301         dpu_enc->crtc = crtc;
1302         spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1303 }
1304
1305 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1306                                         struct drm_crtc *crtc, bool enable)
1307 {
1308         struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1309         unsigned long lock_flags;
1310         int i;
1311
1312         trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1313
1314         spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1315         if (dpu_enc->crtc != crtc) {
1316                 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1317                 return;
1318         }
1319         spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1320
1321         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1322                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1323
1324                 if (phys && phys->ops.control_vblank_irq)
1325                         phys->ops.control_vblank_irq(phys, enable);
1326         }
1327 }
1328
1329 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1330                 void (*frame_event_cb)(void *, u32 event),
1331                 void *frame_event_cb_data)
1332 {
1333         struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1334         unsigned long lock_flags;
1335         bool enable;
1336
1337         enable = frame_event_cb ? true : false;
1338
1339         if (!drm_enc) {
1340                 DPU_ERROR("invalid encoder\n");
1341                 return;
1342         }
1343         trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1344
1345         spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1346         dpu_enc->crtc_frame_event_cb = frame_event_cb;
1347         dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1348         spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1349 }
1350
1351 static void dpu_encoder_frame_done_callback(
1352                 struct drm_encoder *drm_enc,
1353                 struct dpu_encoder_phys *ready_phys, u32 event)
1354 {
1355         struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1356         unsigned int i;
1357
1358         if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1359                         | DPU_ENCODER_FRAME_EVENT_ERROR
1360                         | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1361
1362                 if (!dpu_enc->frame_busy_mask[0]) {
1363                         /**
1364                          * suppress frame_done without waiter,
1365                          * likely autorefresh
1366                          */
1367                         trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1368                                         event, ready_phys->intf_idx);
1369                         return;
1370                 }
1371
1372                 /* One of the physical encoders has become idle */
1373                 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1374                         if (dpu_enc->phys_encs[i] == ready_phys) {
1375                                 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1376                                                 dpu_enc->frame_busy_mask[0]);
1377                                 clear_bit(i, dpu_enc->frame_busy_mask);
1378                         }
1379                 }
1380
1381                 if (!dpu_enc->frame_busy_mask[0]) {
1382                         atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1383                         del_timer(&dpu_enc->frame_done_timer);
1384
1385                         dpu_encoder_resource_control(drm_enc,
1386                                         DPU_ENC_RC_EVENT_FRAME_DONE);
1387
1388                         if (dpu_enc->crtc_frame_event_cb)
1389                                 dpu_enc->crtc_frame_event_cb(
1390                                         dpu_enc->crtc_frame_event_cb_data,
1391                                         event);
1392                 }
1393         } else {
1394                 if (dpu_enc->crtc_frame_event_cb)
1395                         dpu_enc->crtc_frame_event_cb(
1396                                 dpu_enc->crtc_frame_event_cb_data, event);
1397         }
1398 }
1399
1400 static void dpu_encoder_off_work(struct work_struct *work)
1401 {
1402         struct dpu_encoder_virt *dpu_enc = container_of(work,
1403                         struct dpu_encoder_virt, delayed_off_work.work);
1404
1405         if (!dpu_enc) {
1406                 DPU_ERROR("invalid dpu encoder\n");
1407                 return;
1408         }
1409
1410         dpu_encoder_resource_control(&dpu_enc->base,
1411                                                 DPU_ENC_RC_EVENT_ENTER_IDLE);
1412
1413         dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1414                                 DPU_ENCODER_FRAME_EVENT_IDLE);
1415 }
1416
1417 /**
1418  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1419  * drm_enc: Pointer to drm encoder structure
1420  * phys: Pointer to physical encoder structure
1421  * extra_flush_bits: Additional bit mask to include in flush trigger
1422  */
1423 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1424                 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits,
1425                 bool async)
1426 {
1427         struct dpu_hw_ctl *ctl;
1428         int pending_kickoff_cnt;
1429         u32 ret = UINT_MAX;
1430
1431         if (!drm_enc || !phys) {
1432                 DPU_ERROR("invalid argument(s), drm_enc %d, phys_enc %d\n",
1433                                 drm_enc != 0, phys != 0);
1434                 return;
1435         }
1436
1437         if (!phys->hw_pp) {
1438                 DPU_ERROR("invalid pingpong hw\n");
1439                 return;
1440         }
1441
1442         ctl = phys->hw_ctl;
1443         if (!ctl || !ctl->ops.trigger_flush) {
1444                 DPU_ERROR("missing trigger cb\n");
1445                 return;
1446         }
1447
1448         if (!async)
1449                 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1450         else
1451                 pending_kickoff_cnt = atomic_read(&phys->pending_kickoff_cnt);
1452
1453         if (extra_flush_bits && ctl->ops.update_pending_flush)
1454                 ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1455
1456         ctl->ops.trigger_flush(ctl);
1457
1458         if (ctl->ops.get_pending_flush)
1459                 ret = ctl->ops.get_pending_flush(ctl);
1460
1461         trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1462                                     pending_kickoff_cnt, ctl->idx,
1463                                     extra_flush_bits, ret);
1464 }
1465
1466 /**
1467  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1468  * phys: Pointer to physical encoder structure
1469  */
1470 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1471 {
1472         if (!phys) {
1473                 DPU_ERROR("invalid argument(s)\n");
1474                 return;
1475         }
1476
1477         if (!phys->hw_pp) {
1478                 DPU_ERROR("invalid pingpong hw\n");
1479                 return;
1480         }
1481
1482         if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1483                 phys->ops.trigger_start(phys);
1484 }
1485
1486 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1487 {
1488         struct dpu_hw_ctl *ctl;
1489
1490         if (!phys_enc) {
1491                 DPU_ERROR("invalid encoder\n");
1492                 return;
1493         }
1494
1495         ctl = phys_enc->hw_ctl;
1496         if (ctl && ctl->ops.trigger_start) {
1497                 ctl->ops.trigger_start(ctl);
1498                 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1499         }
1500 }
1501
1502 static int dpu_encoder_helper_wait_event_timeout(
1503                 int32_t drm_id,
1504                 int32_t hw_id,
1505                 struct dpu_encoder_wait_info *info)
1506 {
1507         int rc = 0;
1508         s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1509         s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1510         s64 time;
1511
1512         do {
1513                 rc = wait_event_timeout(*(info->wq),
1514                                 atomic_read(info->atomic_cnt) == 0, jiffies);
1515                 time = ktime_to_ms(ktime_get());
1516
1517                 trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time,
1518                                                  expected_time,
1519                                                  atomic_read(info->atomic_cnt));
1520         /* If we timed out, counter is valid and time is less, wait again */
1521         } while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1522                         (time < expected_time));
1523
1524         return rc;
1525 }
1526
1527 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1528 {
1529         struct dpu_encoder_virt *dpu_enc;
1530         struct dpu_hw_ctl *ctl;
1531         int rc;
1532
1533         if (!phys_enc) {
1534                 DPU_ERROR("invalid encoder\n");
1535                 return;
1536         }
1537         dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1538         ctl = phys_enc->hw_ctl;
1539
1540         if (!ctl || !ctl->ops.reset)
1541                 return;
1542
1543         DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent),
1544                       ctl->idx);
1545
1546         rc = ctl->ops.reset(ctl);
1547         if (rc)
1548                 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1549
1550         phys_enc->enable_state = DPU_ENC_ENABLED;
1551 }
1552
1553 /**
1554  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1555  *      Iterate through the physical encoders and perform consolidated flush
1556  *      and/or control start triggering as needed. This is done in the virtual
1557  *      encoder rather than the individual physical ones in order to handle
1558  *      use cases that require visibility into multiple physical encoders at
1559  *      a time.
1560  * dpu_enc: Pointer to virtual encoder structure
1561  */
1562 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc,
1563                                       bool async)
1564 {
1565         struct dpu_hw_ctl *ctl;
1566         uint32_t i, pending_flush;
1567         unsigned long lock_flags;
1568
1569         if (!dpu_enc) {
1570                 DPU_ERROR("invalid encoder\n");
1571                 return;
1572         }
1573
1574         pending_flush = 0x0;
1575
1576         /* update pending counts and trigger kickoff ctl flush atomically */
1577         spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1578
1579         /* don't perform flush/start operations for slave encoders */
1580         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1581                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1582
1583                 if (!phys || phys->enable_state == DPU_ENC_DISABLED)
1584                         continue;
1585
1586                 ctl = phys->hw_ctl;
1587                 if (!ctl)
1588                         continue;
1589
1590                 /*
1591                  * This is cleared in frame_done worker, which isn't invoked
1592                  * for async commits. So don't set this for async, since it'll
1593                  * roll over to the next commit.
1594                  */
1595                 if (!async && phys->split_role != ENC_ROLE_SLAVE)
1596                         set_bit(i, dpu_enc->frame_busy_mask);
1597
1598                 if (!phys->ops.needs_single_flush ||
1599                                 !phys->ops.needs_single_flush(phys))
1600                         _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0,
1601                                                    async);
1602                 else if (ctl->ops.get_pending_flush)
1603                         pending_flush |= ctl->ops.get_pending_flush(ctl);
1604         }
1605
1606         /* for split flush, combine pending flush masks and send to master */
1607         if (pending_flush && dpu_enc->cur_master) {
1608                 _dpu_encoder_trigger_flush(
1609                                 &dpu_enc->base,
1610                                 dpu_enc->cur_master,
1611                                 pending_flush, async);
1612         }
1613
1614         _dpu_encoder_trigger_start(dpu_enc->cur_master);
1615
1616         spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1617 }
1618
1619 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1620 {
1621         struct dpu_encoder_virt *dpu_enc;
1622         struct dpu_encoder_phys *phys;
1623         unsigned int i;
1624         struct dpu_hw_ctl *ctl;
1625         struct msm_display_info *disp_info;
1626
1627         if (!drm_enc) {
1628                 DPU_ERROR("invalid encoder\n");
1629                 return;
1630         }
1631         dpu_enc = to_dpu_encoder_virt(drm_enc);
1632         disp_info = &dpu_enc->disp_info;
1633
1634         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1635                 phys = dpu_enc->phys_encs[i];
1636
1637                 if (phys && phys->hw_ctl) {
1638                         ctl = phys->hw_ctl;
1639                         if (ctl->ops.clear_pending_flush)
1640                                 ctl->ops.clear_pending_flush(ctl);
1641
1642                         /* update only for command mode primary ctl */
1643                         if ((phys == dpu_enc->cur_master) &&
1644                            (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1645                             && ctl->ops.trigger_pending)
1646                                 ctl->ops.trigger_pending(ctl);
1647                 }
1648         }
1649 }
1650
1651 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1652                 struct drm_display_mode *mode)
1653 {
1654         u64 pclk_rate;
1655         u32 pclk_period;
1656         u32 line_time;
1657
1658         /*
1659          * For linetime calculation, only operate on master encoder.
1660          */
1661         if (!dpu_enc->cur_master)
1662                 return 0;
1663
1664         if (!dpu_enc->cur_master->ops.get_line_count) {
1665                 DPU_ERROR("get_line_count function not defined\n");
1666                 return 0;
1667         }
1668
1669         pclk_rate = mode->clock; /* pixel clock in kHz */
1670         if (pclk_rate == 0) {
1671                 DPU_ERROR("pclk is 0, cannot calculate line time\n");
1672                 return 0;
1673         }
1674
1675         pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1676         if (pclk_period == 0) {
1677                 DPU_ERROR("pclk period is 0\n");
1678                 return 0;
1679         }
1680
1681         /*
1682          * Line time calculation based on Pixel clock and HTOTAL.
1683          * Final unit is in ns.
1684          */
1685         line_time = (pclk_period * mode->htotal) / 1000;
1686         if (line_time == 0) {
1687                 DPU_ERROR("line time calculation is 0\n");
1688                 return 0;
1689         }
1690
1691         DPU_DEBUG_ENC(dpu_enc,
1692                         "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1693                         pclk_rate, pclk_period, line_time);
1694
1695         return line_time;
1696 }
1697
1698 static int _dpu_encoder_wakeup_time(struct drm_encoder *drm_enc,
1699                 ktime_t *wakeup_time)
1700 {
1701         struct drm_display_mode *mode;
1702         struct dpu_encoder_virt *dpu_enc;
1703         u32 cur_line;
1704         u32 line_time;
1705         u32 vtotal, time_to_vsync;
1706         ktime_t cur_time;
1707
1708         dpu_enc = to_dpu_encoder_virt(drm_enc);
1709
1710         if (!drm_enc->crtc || !drm_enc->crtc->state) {
1711                 DPU_ERROR("crtc/crtc state object is NULL\n");
1712                 return -EINVAL;
1713         }
1714         mode = &drm_enc->crtc->state->adjusted_mode;
1715
1716         line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1717         if (!line_time)
1718                 return -EINVAL;
1719
1720         cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1721
1722         vtotal = mode->vtotal;
1723         if (cur_line >= vtotal)
1724                 time_to_vsync = line_time * vtotal;
1725         else
1726                 time_to_vsync = line_time * (vtotal - cur_line);
1727
1728         if (time_to_vsync == 0) {
1729                 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1730                                 vtotal);
1731                 return -EINVAL;
1732         }
1733
1734         cur_time = ktime_get();
1735         *wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1736
1737         DPU_DEBUG_ENC(dpu_enc,
1738                         "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1739                         cur_line, vtotal, time_to_vsync,
1740                         ktime_to_ms(cur_time),
1741                         ktime_to_ms(*wakeup_time));
1742         return 0;
1743 }
1744
1745 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1746 {
1747         struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1748                         vsync_event_timer);
1749         struct drm_encoder *drm_enc = &dpu_enc->base;
1750         struct msm_drm_private *priv;
1751         struct msm_drm_thread *event_thread;
1752
1753         if (!drm_enc->dev || !drm_enc->dev->dev_private ||
1754                         !drm_enc->crtc) {
1755                 DPU_ERROR("invalid parameters\n");
1756                 return;
1757         }
1758
1759         priv = drm_enc->dev->dev_private;
1760
1761         if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1762                 DPU_ERROR("invalid crtc index\n");
1763                 return;
1764         }
1765         event_thread = &priv->event_thread[drm_enc->crtc->index];
1766         if (!event_thread) {
1767                 DPU_ERROR("event_thread not found for crtc:%d\n",
1768                                 drm_enc->crtc->index);
1769                 return;
1770         }
1771
1772         del_timer(&dpu_enc->vsync_event_timer);
1773 }
1774
1775 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1776 {
1777         struct dpu_encoder_virt *dpu_enc = container_of(work,
1778                         struct dpu_encoder_virt, vsync_event_work);
1779         ktime_t wakeup_time;
1780
1781         if (!dpu_enc) {
1782                 DPU_ERROR("invalid dpu encoder\n");
1783                 return;
1784         }
1785
1786         if (_dpu_encoder_wakeup_time(&dpu_enc->base, &wakeup_time))
1787                 return;
1788
1789         trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1790         mod_timer(&dpu_enc->vsync_event_timer,
1791                         nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1792 }
1793
1794 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc, bool async)
1795 {
1796         struct dpu_encoder_virt *dpu_enc;
1797         struct dpu_encoder_phys *phys;
1798         bool needs_hw_reset = false;
1799         unsigned int i;
1800
1801         if (!drm_enc) {
1802                 DPU_ERROR("invalid args\n");
1803                 return;
1804         }
1805         dpu_enc = to_dpu_encoder_virt(drm_enc);
1806
1807         trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1808
1809         /* prepare for next kickoff, may include waiting on previous kickoff */
1810         DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1811         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1812                 phys = dpu_enc->phys_encs[i];
1813                 if (phys) {
1814                         if (phys->ops.prepare_for_kickoff)
1815                                 phys->ops.prepare_for_kickoff(phys);
1816                         if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1817                                 needs_hw_reset = true;
1818                 }
1819         }
1820         DPU_ATRACE_END("enc_prepare_for_kickoff");
1821
1822         dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1823
1824         /* if any phys needs reset, reset all phys, in-order */
1825         if (needs_hw_reset) {
1826                 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1827                 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1828                         dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1829                 }
1830         }
1831 }
1832
1833 void dpu_encoder_kickoff(struct drm_encoder *drm_enc, bool async)
1834 {
1835         struct dpu_encoder_virt *dpu_enc;
1836         struct dpu_encoder_phys *phys;
1837         ktime_t wakeup_time;
1838         unsigned int i;
1839
1840         if (!drm_enc) {
1841                 DPU_ERROR("invalid encoder\n");
1842                 return;
1843         }
1844         DPU_ATRACE_BEGIN("encoder_kickoff");
1845         dpu_enc = to_dpu_encoder_virt(drm_enc);
1846
1847         trace_dpu_enc_kickoff(DRMID(drm_enc));
1848
1849         /*
1850          * Asynchronous frames don't handle FRAME_DONE events. As such, they
1851          * shouldn't enable the frame_done watchdog since it will always time
1852          * out.
1853          */
1854         if (!async) {
1855                 unsigned long timeout_ms;
1856                 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1857                         drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1858
1859                 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1860                 mod_timer(&dpu_enc->frame_done_timer,
1861                           jiffies + msecs_to_jiffies(timeout_ms));
1862         }
1863
1864         /* All phys encs are ready to go, trigger the kickoff */
1865         _dpu_encoder_kickoff_phys(dpu_enc, async);
1866
1867         /* allow phys encs to handle any post-kickoff business */
1868         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1869                 phys = dpu_enc->phys_encs[i];
1870                 if (phys && phys->ops.handle_post_kickoff)
1871                         phys->ops.handle_post_kickoff(phys);
1872         }
1873
1874         if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1875                         !_dpu_encoder_wakeup_time(drm_enc, &wakeup_time)) {
1876                 trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1877                                             ktime_to_ms(wakeup_time));
1878                 mod_timer(&dpu_enc->vsync_event_timer,
1879                                 nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1880         }
1881
1882         DPU_ATRACE_END("encoder_kickoff");
1883 }
1884
1885 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1886 {
1887         struct dpu_encoder_virt *dpu_enc;
1888         struct dpu_encoder_phys *phys;
1889         int i;
1890
1891         if (!drm_enc) {
1892                 DPU_ERROR("invalid encoder\n");
1893                 return;
1894         }
1895         dpu_enc = to_dpu_encoder_virt(drm_enc);
1896
1897         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1898                 phys = dpu_enc->phys_encs[i];
1899                 if (phys && phys->ops.prepare_commit)
1900                         phys->ops.prepare_commit(phys);
1901         }
1902 }
1903
1904 #ifdef CONFIG_DEBUG_FS
1905 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1906 {
1907         struct dpu_encoder_virt *dpu_enc = s->private;
1908         int i;
1909
1910         mutex_lock(&dpu_enc->enc_lock);
1911         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1912                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1913
1914                 if (!phys)
1915                         continue;
1916
1917                 seq_printf(s, "intf:%d    vsync:%8d     underrun:%8d    ",
1918                                 phys->intf_idx - INTF_0,
1919                                 atomic_read(&phys->vsync_cnt),
1920                                 atomic_read(&phys->underrun_cnt));
1921
1922                 switch (phys->intf_mode) {
1923                 case INTF_MODE_VIDEO:
1924                         seq_puts(s, "mode: video\n");
1925                         break;
1926                 case INTF_MODE_CMD:
1927                         seq_puts(s, "mode: command\n");
1928                         break;
1929                 default:
1930                         seq_puts(s, "mode: ???\n");
1931                         break;
1932                 }
1933         }
1934         mutex_unlock(&dpu_enc->enc_lock);
1935
1936         return 0;
1937 }
1938
1939 static int _dpu_encoder_debugfs_status_open(struct inode *inode,
1940                 struct file *file)
1941 {
1942         return single_open(file, _dpu_encoder_status_show, inode->i_private);
1943 }
1944
1945 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1946 {
1947         struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1948         struct msm_drm_private *priv;
1949         struct dpu_kms *dpu_kms;
1950         int i;
1951
1952         static const struct file_operations debugfs_status_fops = {
1953                 .open =         _dpu_encoder_debugfs_status_open,
1954                 .read =         seq_read,
1955                 .llseek =       seq_lseek,
1956                 .release =      single_release,
1957         };
1958
1959         char name[DPU_NAME_SIZE];
1960
1961         if (!drm_enc->dev || !drm_enc->dev->dev_private) {
1962                 DPU_ERROR("invalid encoder or kms\n");
1963                 return -EINVAL;
1964         }
1965
1966         priv = drm_enc->dev->dev_private;
1967         dpu_kms = to_dpu_kms(priv->kms);
1968
1969         snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1970
1971         /* create overall sub-directory for the encoder */
1972         dpu_enc->debugfs_root = debugfs_create_dir(name,
1973                         drm_enc->dev->primary->debugfs_root);
1974
1975         /* don't error check these */
1976         debugfs_create_file("status", 0600,
1977                 dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops);
1978
1979         for (i = 0; i < dpu_enc->num_phys_encs; i++)
1980                 if (dpu_enc->phys_encs[i] &&
1981                                 dpu_enc->phys_encs[i]->ops.late_register)
1982                         dpu_enc->phys_encs[i]->ops.late_register(
1983                                         dpu_enc->phys_encs[i],
1984                                         dpu_enc->debugfs_root);
1985
1986         return 0;
1987 }
1988 #else
1989 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1990 {
1991         return 0;
1992 }
1993 #endif
1994
1995 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1996 {
1997         return _dpu_encoder_init_debugfs(encoder);
1998 }
1999
2000 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
2001 {
2002         struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2003
2004         debugfs_remove_recursive(dpu_enc->debugfs_root);
2005 }
2006
2007 static int dpu_encoder_virt_add_phys_encs(
2008                 u32 display_caps,
2009                 struct dpu_encoder_virt *dpu_enc,
2010                 struct dpu_enc_phys_init_params *params)
2011 {
2012         struct dpu_encoder_phys *enc = NULL;
2013
2014         DPU_DEBUG_ENC(dpu_enc, "\n");
2015
2016         /*
2017          * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2018          * in this function, check up-front.
2019          */
2020         if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2021                         ARRAY_SIZE(dpu_enc->phys_encs)) {
2022                 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2023                           dpu_enc->num_phys_encs);
2024                 return -EINVAL;
2025         }
2026
2027         if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
2028                 enc = dpu_encoder_phys_vid_init(params);
2029
2030                 if (IS_ERR_OR_NULL(enc)) {
2031                         DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2032                                 PTR_ERR(enc));
2033                         return enc == 0 ? -EINVAL : PTR_ERR(enc);
2034                 }
2035
2036                 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2037                 ++dpu_enc->num_phys_encs;
2038         }
2039
2040         if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
2041                 enc = dpu_encoder_phys_cmd_init(params);
2042
2043                 if (IS_ERR_OR_NULL(enc)) {
2044                         DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2045                                 PTR_ERR(enc));
2046                         return enc == 0 ? -EINVAL : PTR_ERR(enc);
2047                 }
2048
2049                 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2050                 ++dpu_enc->num_phys_encs;
2051         }
2052
2053         if (params->split_role == ENC_ROLE_SLAVE)
2054                 dpu_enc->cur_slave = enc;
2055         else
2056                 dpu_enc->cur_master = enc;
2057
2058         return 0;
2059 }
2060
2061 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2062         .handle_vblank_virt = dpu_encoder_vblank_callback,
2063         .handle_underrun_virt = dpu_encoder_underrun_callback,
2064         .handle_frame_done = dpu_encoder_frame_done_callback,
2065 };
2066
2067 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2068                                  struct dpu_kms *dpu_kms,
2069                                  struct msm_display_info *disp_info)
2070 {
2071         int ret = 0;
2072         int i = 0;
2073         enum dpu_intf_type intf_type;
2074         struct dpu_enc_phys_init_params phys_params;
2075
2076         if (!dpu_enc || !dpu_kms) {
2077                 DPU_ERROR("invalid arg(s), enc %d kms %d\n",
2078                                 dpu_enc != 0, dpu_kms != 0);
2079                 return -EINVAL;
2080         }
2081
2082         dpu_enc->cur_master = NULL;
2083
2084         memset(&phys_params, 0, sizeof(phys_params));
2085         phys_params.dpu_kms = dpu_kms;
2086         phys_params.parent = &dpu_enc->base;
2087         phys_params.parent_ops = &dpu_encoder_parent_ops;
2088         phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2089
2090         DPU_DEBUG("\n");
2091
2092         switch (disp_info->intf_type) {
2093         case DRM_MODE_ENCODER_DSI:
2094                 intf_type = INTF_DSI;
2095                 break;
2096         default:
2097                 DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n");
2098                 return -EINVAL;
2099         }
2100
2101         WARN_ON(disp_info->num_of_h_tiles < 1);
2102
2103         DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2104
2105         if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2106             (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2107                 dpu_enc->idle_pc_supported =
2108                                 dpu_kms->catalog->caps->has_idle_pc;
2109
2110         mutex_lock(&dpu_enc->enc_lock);
2111         for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2112                 /*
2113                  * Left-most tile is at index 0, content is controller id
2114                  * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2115                  * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2116                  */
2117                 u32 controller_id = disp_info->h_tile_instance[i];
2118
2119                 if (disp_info->num_of_h_tiles > 1) {
2120                         if (i == 0)
2121                                 phys_params.split_role = ENC_ROLE_MASTER;
2122                         else
2123                                 phys_params.split_role = ENC_ROLE_SLAVE;
2124                 } else {
2125                         phys_params.split_role = ENC_ROLE_SOLO;
2126                 }
2127
2128                 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2129                                 i, controller_id, phys_params.split_role);
2130
2131                 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2132                                                                                                         intf_type,
2133                                                                                                         controller_id);
2134                 if (phys_params.intf_idx == INTF_MAX) {
2135                         DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2136                                                   intf_type, controller_id);
2137                         ret = -EINVAL;
2138                 }
2139
2140                 if (!ret) {
2141                         ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2142                                                                                                  dpu_enc,
2143                                                                                                  &phys_params);
2144                         if (ret)
2145                                 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2146                 }
2147         }
2148
2149         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2150                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2151
2152                 if (phys) {
2153                         atomic_set(&phys->vsync_cnt, 0);
2154                         atomic_set(&phys->underrun_cnt, 0);
2155                 }
2156         }
2157         mutex_unlock(&dpu_enc->enc_lock);
2158
2159         return ret;
2160 }
2161
2162 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2163 {
2164         struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2165                         frame_done_timer);
2166         struct drm_encoder *drm_enc = &dpu_enc->base;
2167         struct msm_drm_private *priv;
2168         u32 event;
2169
2170         if (!drm_enc->dev || !drm_enc->dev->dev_private) {
2171                 DPU_ERROR("invalid parameters\n");
2172                 return;
2173         }
2174         priv = drm_enc->dev->dev_private;
2175
2176         if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2177                 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2178                               DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2179                 return;
2180         } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2181                 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2182                 return;
2183         }
2184
2185         DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2186
2187         event = DPU_ENCODER_FRAME_EVENT_ERROR;
2188         trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2189         dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2190 }
2191
2192 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2193         .mode_set = dpu_encoder_virt_mode_set,
2194         .disable = dpu_encoder_virt_disable,
2195         .enable = dpu_kms_encoder_enable,
2196         .atomic_check = dpu_encoder_virt_atomic_check,
2197
2198         /* This is called by dpu_kms_encoder_enable */
2199         .commit = dpu_encoder_virt_enable,
2200 };
2201
2202 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2203                 .destroy = dpu_encoder_destroy,
2204                 .late_register = dpu_encoder_late_register,
2205                 .early_unregister = dpu_encoder_early_unregister,
2206 };
2207
2208 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2209                 struct msm_display_info *disp_info)
2210 {
2211         struct msm_drm_private *priv = dev->dev_private;
2212         struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2213         struct drm_encoder *drm_enc = NULL;
2214         struct dpu_encoder_virt *dpu_enc = NULL;
2215         int ret = 0;
2216
2217         dpu_enc = to_dpu_encoder_virt(enc);
2218
2219         mutex_init(&dpu_enc->enc_lock);
2220         ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2221         if (ret)
2222                 goto fail;
2223
2224         atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2225         timer_setup(&dpu_enc->frame_done_timer,
2226                         dpu_encoder_frame_done_timeout, 0);
2227
2228         if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2229                 timer_setup(&dpu_enc->vsync_event_timer,
2230                                 dpu_encoder_vsync_event_handler,
2231                                 0);
2232
2233
2234         mutex_init(&dpu_enc->rc_lock);
2235         INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2236                         dpu_encoder_off_work);
2237         dpu_enc->idle_timeout = IDLE_TIMEOUT;
2238
2239         kthread_init_work(&dpu_enc->vsync_event_work,
2240                         dpu_encoder_vsync_event_work_handler);
2241
2242         memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2243
2244         DPU_DEBUG_ENC(dpu_enc, "created\n");
2245
2246         return ret;
2247
2248 fail:
2249         DPU_ERROR("failed to create encoder\n");
2250         if (drm_enc)
2251                 dpu_encoder_destroy(drm_enc);
2252
2253         return ret;
2254
2255
2256 }
2257
2258 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2259                 int drm_enc_mode)
2260 {
2261         struct dpu_encoder_virt *dpu_enc = NULL;
2262         int rc = 0;
2263
2264         dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2265         if (!dpu_enc)
2266                 return ERR_PTR(ENOMEM);
2267
2268         rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2269                         drm_enc_mode, NULL);
2270         if (rc) {
2271                 devm_kfree(dev->dev, dpu_enc);
2272                 return ERR_PTR(rc);
2273         }
2274
2275         drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2276
2277         spin_lock_init(&dpu_enc->enc_spinlock);
2278         dpu_enc->enabled = false;
2279
2280         return &dpu_enc->base;
2281 }
2282
2283 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2284         enum msm_event_wait event)
2285 {
2286         int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2287         struct dpu_encoder_virt *dpu_enc = NULL;
2288         int i, ret = 0;
2289
2290         if (!drm_enc) {
2291                 DPU_ERROR("invalid encoder\n");
2292                 return -EINVAL;
2293         }
2294         dpu_enc = to_dpu_encoder_virt(drm_enc);
2295         DPU_DEBUG_ENC(dpu_enc, "\n");
2296
2297         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2298                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2299                 if (!phys)
2300                         continue;
2301
2302                 switch (event) {
2303                 case MSM_ENC_COMMIT_DONE:
2304                         fn_wait = phys->ops.wait_for_commit_done;
2305                         break;
2306                 case MSM_ENC_TX_COMPLETE:
2307                         fn_wait = phys->ops.wait_for_tx_complete;
2308                         break;
2309                 case MSM_ENC_VBLANK:
2310                         fn_wait = phys->ops.wait_for_vblank;
2311                         break;
2312                 default:
2313                         DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2314                                         event);
2315                         return -EINVAL;
2316                 };
2317
2318                 if (fn_wait) {
2319                         DPU_ATRACE_BEGIN("wait_for_completion_event");
2320                         ret = fn_wait(phys);
2321                         DPU_ATRACE_END("wait_for_completion_event");
2322                         if (ret)
2323                                 return ret;
2324                 }
2325         }
2326
2327         return ret;
2328 }
2329
2330 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2331 {
2332         struct dpu_encoder_virt *dpu_enc = NULL;
2333         int i;
2334
2335         if (!encoder) {
2336                 DPU_ERROR("invalid encoder\n");
2337                 return INTF_MODE_NONE;
2338         }
2339         dpu_enc = to_dpu_encoder_virt(encoder);
2340
2341         if (dpu_enc->cur_master)
2342                 return dpu_enc->cur_master->intf_mode;
2343
2344         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2345                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2346
2347                 if (phys)
2348                         return phys->intf_mode;
2349         }
2350
2351         return INTF_MODE_NONE;
2352 }