Merge tag 'tilcdc-4.15-fixes' of https://github.com/jsarha/linux into drm-next
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38  * set-context and then emitting the batch.
39  */
40 #define LEGACY_REQUEST_SIZE 200
41
42 static unsigned int __intel_ring_space(unsigned int head,
43                                        unsigned int tail,
44                                        unsigned int size)
45 {
46         /*
47          * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
48          * same cacheline, the Head Pointer must not be greater than the Tail
49          * Pointer."
50          */
51         GEM_BUG_ON(!is_power_of_2(size));
52         return (head - tail - CACHELINE_BYTES) & (size - 1);
53 }
54
55 unsigned int intel_ring_update_space(struct intel_ring *ring)
56 {
57         unsigned int space;
58
59         space = __intel_ring_space(ring->head, ring->emit, ring->size);
60
61         ring->space = space;
62         return space;
63 }
64
65 static int
66 gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
67 {
68         u32 cmd, *cs;
69
70         cmd = MI_FLUSH;
71
72         if (mode & EMIT_INVALIDATE)
73                 cmd |= MI_READ_FLUSH;
74
75         cs = intel_ring_begin(req, 2);
76         if (IS_ERR(cs))
77                 return PTR_ERR(cs);
78
79         *cs++ = cmd;
80         *cs++ = MI_NOOP;
81         intel_ring_advance(req, cs);
82
83         return 0;
84 }
85
86 static int
87 gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
88 {
89         u32 cmd, *cs;
90
91         /*
92          * read/write caches:
93          *
94          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
95          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
96          * also flushed at 2d versus 3d pipeline switches.
97          *
98          * read-only caches:
99          *
100          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
101          * MI_READ_FLUSH is set, and is always flushed on 965.
102          *
103          * I915_GEM_DOMAIN_COMMAND may not exist?
104          *
105          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
106          * invalidated when MI_EXE_FLUSH is set.
107          *
108          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
109          * invalidated with every MI_FLUSH.
110          *
111          * TLBs:
112          *
113          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
114          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
115          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
116          * are flushed at any MI_FLUSH.
117          */
118
119         cmd = MI_FLUSH;
120         if (mode & EMIT_INVALIDATE) {
121                 cmd |= MI_EXE_FLUSH;
122                 if (IS_G4X(req->i915) || IS_GEN5(req->i915))
123                         cmd |= MI_INVALIDATE_ISP;
124         }
125
126         cs = intel_ring_begin(req, 2);
127         if (IS_ERR(cs))
128                 return PTR_ERR(cs);
129
130         *cs++ = cmd;
131         *cs++ = MI_NOOP;
132         intel_ring_advance(req, cs);
133
134         return 0;
135 }
136
137 /**
138  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
139  * implementing two workarounds on gen6.  From section 1.4.7.1
140  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
141  *
142  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
143  * produced by non-pipelined state commands), software needs to first
144  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
145  * 0.
146  *
147  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
148  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
149  *
150  * And the workaround for these two requires this workaround first:
151  *
152  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
153  * BEFORE the pipe-control with a post-sync op and no write-cache
154  * flushes.
155  *
156  * And this last workaround is tricky because of the requirements on
157  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
158  * volume 2 part 1:
159  *
160  *     "1 of the following must also be set:
161  *      - Render Target Cache Flush Enable ([12] of DW1)
162  *      - Depth Cache Flush Enable ([0] of DW1)
163  *      - Stall at Pixel Scoreboard ([1] of DW1)
164  *      - Depth Stall ([13] of DW1)
165  *      - Post-Sync Operation ([13] of DW1)
166  *      - Notify Enable ([8] of DW1)"
167  *
168  * The cache flushes require the workaround flush that triggered this
169  * one, so we can't use it.  Depth stall would trigger the same.
170  * Post-sync nonzero is what triggered this second workaround, so we
171  * can't use that one either.  Notify enable is IRQs, which aren't
172  * really our business.  That leaves only stall at scoreboard.
173  */
174 static int
175 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176 {
177         u32 scratch_addr =
178                 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
179         u32 *cs;
180
181         cs = intel_ring_begin(req, 6);
182         if (IS_ERR(cs))
183                 return PTR_ERR(cs);
184
185         *cs++ = GFX_OP_PIPE_CONTROL(5);
186         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
187         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
188         *cs++ = 0; /* low dword */
189         *cs++ = 0; /* high dword */
190         *cs++ = MI_NOOP;
191         intel_ring_advance(req, cs);
192
193         cs = intel_ring_begin(req, 6);
194         if (IS_ERR(cs))
195                 return PTR_ERR(cs);
196
197         *cs++ = GFX_OP_PIPE_CONTROL(5);
198         *cs++ = PIPE_CONTROL_QW_WRITE;
199         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
200         *cs++ = 0;
201         *cs++ = 0;
202         *cs++ = MI_NOOP;
203         intel_ring_advance(req, cs);
204
205         return 0;
206 }
207
208 static int
209 gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
210 {
211         u32 scratch_addr =
212                 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
213         u32 *cs, flags = 0;
214         int ret;
215
216         /* Force SNB workarounds for PIPE_CONTROL flushes */
217         ret = intel_emit_post_sync_nonzero_flush(req);
218         if (ret)
219                 return ret;
220
221         /* Just flush everything.  Experiments have shown that reducing the
222          * number of bits based on the write domains has little performance
223          * impact.
224          */
225         if (mode & EMIT_FLUSH) {
226                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
227                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
228                 /*
229                  * Ensure that any following seqno writes only happen
230                  * when the render cache is indeed flushed.
231                  */
232                 flags |= PIPE_CONTROL_CS_STALL;
233         }
234         if (mode & EMIT_INVALIDATE) {
235                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
236                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
237                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
238                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
239                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
240                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
241                 /*
242                  * TLB invalidate requires a post-sync write.
243                  */
244                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
245         }
246
247         cs = intel_ring_begin(req, 4);
248         if (IS_ERR(cs))
249                 return PTR_ERR(cs);
250
251         *cs++ = GFX_OP_PIPE_CONTROL(4);
252         *cs++ = flags;
253         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
254         *cs++ = 0;
255         intel_ring_advance(req, cs);
256
257         return 0;
258 }
259
260 static int
261 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
262 {
263         u32 *cs;
264
265         cs = intel_ring_begin(req, 4);
266         if (IS_ERR(cs))
267                 return PTR_ERR(cs);
268
269         *cs++ = GFX_OP_PIPE_CONTROL(4);
270         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
271         *cs++ = 0;
272         *cs++ = 0;
273         intel_ring_advance(req, cs);
274
275         return 0;
276 }
277
278 static int
279 gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
280 {
281         u32 scratch_addr =
282                 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
283         u32 *cs, flags = 0;
284
285         /*
286          * Ensure that any following seqno writes only happen when the render
287          * cache is indeed flushed.
288          *
289          * Workaround: 4th PIPE_CONTROL command (except the ones with only
290          * read-cache invalidate bits set) must have the CS_STALL bit set. We
291          * don't try to be clever and just set it unconditionally.
292          */
293         flags |= PIPE_CONTROL_CS_STALL;
294
295         /* Just flush everything.  Experiments have shown that reducing the
296          * number of bits based on the write domains has little performance
297          * impact.
298          */
299         if (mode & EMIT_FLUSH) {
300                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
301                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
302                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
303                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
304         }
305         if (mode & EMIT_INVALIDATE) {
306                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
307                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
308                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
309                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
310                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
311                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
312                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
313                 /*
314                  * TLB invalidate requires a post-sync write.
315                  */
316                 flags |= PIPE_CONTROL_QW_WRITE;
317                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
318
319                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
320
321                 /* Workaround: we must issue a pipe_control with CS-stall bit
322                  * set before a pipe_control command that has the state cache
323                  * invalidate bit set. */
324                 gen7_render_ring_cs_stall_wa(req);
325         }
326
327         cs = intel_ring_begin(req, 4);
328         if (IS_ERR(cs))
329                 return PTR_ERR(cs);
330
331         *cs++ = GFX_OP_PIPE_CONTROL(4);
332         *cs++ = flags;
333         *cs++ = scratch_addr;
334         *cs++ = 0;
335         intel_ring_advance(req, cs);
336
337         return 0;
338 }
339
340 static int
341 gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
342 {
343         u32 flags;
344         u32 *cs;
345
346         cs = intel_ring_begin(req, mode & EMIT_INVALIDATE ? 12 : 6);
347         if (IS_ERR(cs))
348                 return PTR_ERR(cs);
349
350         flags = PIPE_CONTROL_CS_STALL;
351
352         if (mode & EMIT_FLUSH) {
353                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
354                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
355                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
356                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
357         }
358         if (mode & EMIT_INVALIDATE) {
359                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365                 flags |= PIPE_CONTROL_QW_WRITE;
366                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
367
368                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
369                 cs = gen8_emit_pipe_control(cs,
370                                             PIPE_CONTROL_CS_STALL |
371                                             PIPE_CONTROL_STALL_AT_SCOREBOARD,
372                                             0);
373         }
374
375         cs = gen8_emit_pipe_control(cs, flags,
376                                     i915_ggtt_offset(req->engine->scratch) +
377                                     2 * CACHELINE_BYTES);
378
379         intel_ring_advance(req, cs);
380
381         return 0;
382 }
383
384 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
385 {
386         struct drm_i915_private *dev_priv = engine->i915;
387         u32 addr;
388
389         addr = dev_priv->status_page_dmah->busaddr;
390         if (INTEL_GEN(dev_priv) >= 4)
391                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
392         I915_WRITE(HWS_PGA, addr);
393 }
394
395 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
396 {
397         struct drm_i915_private *dev_priv = engine->i915;
398         i915_reg_t mmio;
399
400         /* The ring status page addresses are no longer next to the rest of
401          * the ring registers as of gen7.
402          */
403         if (IS_GEN7(dev_priv)) {
404                 switch (engine->id) {
405                 /*
406                  * No more rings exist on Gen7. Default case is only to shut up
407                  * gcc switch check warning.
408                  */
409                 default:
410                         GEM_BUG_ON(engine->id);
411                 case RCS:
412                         mmio = RENDER_HWS_PGA_GEN7;
413                         break;
414                 case BCS:
415                         mmio = BLT_HWS_PGA_GEN7;
416                         break;
417                 case VCS:
418                         mmio = BSD_HWS_PGA_GEN7;
419                         break;
420                 case VECS:
421                         mmio = VEBOX_HWS_PGA_GEN7;
422                         break;
423                 }
424         } else if (IS_GEN6(dev_priv)) {
425                 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
426         } else {
427                 /* XXX: gen8 returns to sanity */
428                 mmio = RING_HWS_PGA(engine->mmio_base);
429         }
430
431         if (INTEL_GEN(dev_priv) >= 6)
432                 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
433
434         I915_WRITE(mmio, engine->status_page.ggtt_offset);
435         POSTING_READ(mmio);
436
437         /*
438          * Flush the TLB for this page
439          *
440          * FIXME: These two bits have disappeared on gen8, so a question
441          * arises: do we still need this and if so how should we go about
442          * invalidating the TLB?
443          */
444         if (IS_GEN(dev_priv, 6, 7)) {
445                 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
446
447                 /* ring should be idle before issuing a sync flush*/
448                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
449
450                 I915_WRITE(reg,
451                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
452                                               INSTPM_SYNC_FLUSH));
453                 if (intel_wait_for_register(dev_priv,
454                                             reg, INSTPM_SYNC_FLUSH, 0,
455                                             1000))
456                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
457                                   engine->name);
458         }
459 }
460
461 static bool stop_ring(struct intel_engine_cs *engine)
462 {
463         struct drm_i915_private *dev_priv = engine->i915;
464
465         if (INTEL_GEN(dev_priv) > 2) {
466                 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
467                 if (intel_wait_for_register(dev_priv,
468                                             RING_MI_MODE(engine->mmio_base),
469                                             MODE_IDLE,
470                                             MODE_IDLE,
471                                             1000)) {
472                         DRM_ERROR("%s : timed out trying to stop ring\n",
473                                   engine->name);
474                         /* Sometimes we observe that the idle flag is not
475                          * set even though the ring is empty. So double
476                          * check before giving up.
477                          */
478                         if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
479                                 return false;
480                 }
481         }
482
483         I915_WRITE_CTL(engine, 0);
484         I915_WRITE_HEAD(engine, 0);
485         I915_WRITE_TAIL(engine, 0);
486
487         return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
488 }
489
490 static int init_ring_common(struct intel_engine_cs *engine)
491 {
492         struct drm_i915_private *dev_priv = engine->i915;
493         struct intel_ring *ring = engine->buffer;
494         int ret = 0;
495
496         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
497
498         if (!stop_ring(engine)) {
499                 /* G45 ring initialization often fails to reset head to zero */
500                 DRM_DEBUG_KMS("%s head not reset to zero "
501                               "ctl %08x head %08x tail %08x start %08x\n",
502                               engine->name,
503                               I915_READ_CTL(engine),
504                               I915_READ_HEAD(engine),
505                               I915_READ_TAIL(engine),
506                               I915_READ_START(engine));
507
508                 if (!stop_ring(engine)) {
509                         DRM_ERROR("failed to set %s head to zero "
510                                   "ctl %08x head %08x tail %08x start %08x\n",
511                                   engine->name,
512                                   I915_READ_CTL(engine),
513                                   I915_READ_HEAD(engine),
514                                   I915_READ_TAIL(engine),
515                                   I915_READ_START(engine));
516                         ret = -EIO;
517                         goto out;
518                 }
519         }
520
521         if (HWS_NEEDS_PHYSICAL(dev_priv))
522                 ring_setup_phys_status_page(engine);
523         else
524                 intel_ring_setup_status_page(engine);
525
526         intel_engine_reset_breadcrumbs(engine);
527
528         /* Enforce ordering by reading HEAD register back */
529         I915_READ_HEAD(engine);
530
531         /* Initialize the ring. This must happen _after_ we've cleared the ring
532          * registers with the above sequence (the readback of the HEAD registers
533          * also enforces ordering), otherwise the hw might lose the new ring
534          * register values. */
535         I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
536
537         /* WaClearRingBufHeadRegAtInit:ctg,elk */
538         if (I915_READ_HEAD(engine))
539                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
540                           engine->name, I915_READ_HEAD(engine));
541
542         intel_ring_update_space(ring);
543         I915_WRITE_HEAD(engine, ring->head);
544         I915_WRITE_TAIL(engine, ring->tail);
545         (void)I915_READ_TAIL(engine);
546
547         I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
548
549         /* If the head is still not zero, the ring is dead */
550         if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
551                                     RING_VALID, RING_VALID,
552                                     50)) {
553                 DRM_ERROR("%s initialization failed "
554                           "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
555                           engine->name,
556                           I915_READ_CTL(engine),
557                           I915_READ_CTL(engine) & RING_VALID,
558                           I915_READ_HEAD(engine), ring->head,
559                           I915_READ_TAIL(engine), ring->tail,
560                           I915_READ_START(engine),
561                           i915_ggtt_offset(ring->vma));
562                 ret = -EIO;
563                 goto out;
564         }
565
566         intel_engine_init_hangcheck(engine);
567
568         if (INTEL_GEN(dev_priv) > 2)
569                 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
570
571 out:
572         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
573
574         return ret;
575 }
576
577 static void reset_ring_common(struct intel_engine_cs *engine,
578                               struct drm_i915_gem_request *request)
579 {
580         /*
581          * RC6 must be prevented until the reset is complete and the engine
582          * reinitialised. If it occurs in the middle of this sequence, the
583          * state written to/loaded from the power context is ill-defined (e.g.
584          * the PP_BASE_DIR may be lost).
585          */
586         assert_forcewakes_active(engine->i915, FORCEWAKE_ALL);
587
588         /*
589          * Try to restore the logical GPU state to match the continuation
590          * of the request queue. If we skip the context/PD restore, then
591          * the next request may try to execute assuming that its context
592          * is valid and loaded on the GPU and so may try to access invalid
593          * memory, prompting repeated GPU hangs.
594          *
595          * If the request was guilty, we still restore the logical state
596          * in case the next request requires it (e.g. the aliasing ppgtt),
597          * but skip over the hung batch.
598          *
599          * If the request was innocent, we try to replay the request with
600          * the restored context.
601          */
602         if (request) {
603                 struct drm_i915_private *dev_priv = request->i915;
604                 struct intel_context *ce = &request->ctx->engine[engine->id];
605                 struct i915_hw_ppgtt *ppgtt;
606
607                 /* FIXME consider gen8 reset */
608
609                 if (ce->state) {
610                         I915_WRITE(CCID,
611                                    i915_ggtt_offset(ce->state) |
612                                    BIT(8) /* must be set! */ |
613                                    CCID_EXTENDED_STATE_SAVE |
614                                    CCID_EXTENDED_STATE_RESTORE |
615                                    CCID_EN);
616                 }
617
618                 ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
619                 if (ppgtt) {
620                         u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
621
622                         I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
623                         I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
624
625                         /* Wait for the PD reload to complete */
626                         if (intel_wait_for_register(dev_priv,
627                                                     RING_PP_DIR_BASE(engine),
628                                                     BIT(0), 0,
629                                                     10))
630                                 DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
631
632                         ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
633                 }
634
635                 /* If the rq hung, jump to its breadcrumb and skip the batch */
636                 if (request->fence.error == -EIO)
637                         request->ring->head = request->postfix;
638         } else {
639                 engine->legacy_active_context = NULL;
640         }
641 }
642
643 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
644 {
645         int ret;
646
647         ret = intel_ring_workarounds_emit(req);
648         if (ret != 0)
649                 return ret;
650
651         ret = i915_gem_render_state_emit(req);
652         if (ret)
653                 return ret;
654
655         return 0;
656 }
657
658 static int init_render_ring(struct intel_engine_cs *engine)
659 {
660         struct drm_i915_private *dev_priv = engine->i915;
661         int ret = init_ring_common(engine);
662         if (ret)
663                 return ret;
664
665         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
666         if (IS_GEN(dev_priv, 4, 6))
667                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
668
669         /* We need to disable the AsyncFlip performance optimisations in order
670          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
671          * programmed to '1' on all products.
672          *
673          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
674          */
675         if (IS_GEN(dev_priv, 6, 7))
676                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
677
678         /* Required for the hardware to program scanline values for waiting */
679         /* WaEnableFlushTlbInvalidationMode:snb */
680         if (IS_GEN6(dev_priv))
681                 I915_WRITE(GFX_MODE,
682                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
683
684         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
685         if (IS_GEN7(dev_priv))
686                 I915_WRITE(GFX_MODE_GEN7,
687                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
688                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
689
690         if (IS_GEN6(dev_priv)) {
691                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
692                  * "If this bit is set, STCunit will have LRA as replacement
693                  *  policy. [...] This bit must be reset.  LRA replacement
694                  *  policy is not supported."
695                  */
696                 I915_WRITE(CACHE_MODE_0,
697                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
698         }
699
700         if (IS_GEN(dev_priv, 6, 7))
701                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
702
703         if (INTEL_INFO(dev_priv)->gen >= 6)
704                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
705
706         return init_workarounds_ring(engine);
707 }
708
709 static void render_ring_cleanup(struct intel_engine_cs *engine)
710 {
711         struct drm_i915_private *dev_priv = engine->i915;
712
713         i915_vma_unpin_and_release(&dev_priv->semaphore);
714 }
715
716 static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *cs)
717 {
718         struct drm_i915_private *dev_priv = req->i915;
719         struct intel_engine_cs *waiter;
720         enum intel_engine_id id;
721
722         for_each_engine(waiter, dev_priv, id) {
723                 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
724                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
725                         continue;
726
727                 *cs++ = GFX_OP_PIPE_CONTROL(6);
728                 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_QW_WRITE |
729                         PIPE_CONTROL_CS_STALL;
730                 *cs++ = lower_32_bits(gtt_offset);
731                 *cs++ = upper_32_bits(gtt_offset);
732                 *cs++ = req->global_seqno;
733                 *cs++ = 0;
734                 *cs++ = MI_SEMAPHORE_SIGNAL |
735                         MI_SEMAPHORE_TARGET(waiter->hw_id);
736                 *cs++ = 0;
737         }
738
739         return cs;
740 }
741
742 static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *cs)
743 {
744         struct drm_i915_private *dev_priv = req->i915;
745         struct intel_engine_cs *waiter;
746         enum intel_engine_id id;
747
748         for_each_engine(waiter, dev_priv, id) {
749                 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
750                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
751                         continue;
752
753                 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
754                 *cs++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
755                 *cs++ = upper_32_bits(gtt_offset);
756                 *cs++ = req->global_seqno;
757                 *cs++ = MI_SEMAPHORE_SIGNAL |
758                         MI_SEMAPHORE_TARGET(waiter->hw_id);
759                 *cs++ = 0;
760         }
761
762         return cs;
763 }
764
765 static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *cs)
766 {
767         struct drm_i915_private *dev_priv = req->i915;
768         struct intel_engine_cs *engine;
769         enum intel_engine_id id;
770         int num_rings = 0;
771
772         for_each_engine(engine, dev_priv, id) {
773                 i915_reg_t mbox_reg;
774
775                 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
776                         continue;
777
778                 mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
779                 if (i915_mmio_reg_valid(mbox_reg)) {
780                         *cs++ = MI_LOAD_REGISTER_IMM(1);
781                         *cs++ = i915_mmio_reg_offset(mbox_reg);
782                         *cs++ = req->global_seqno;
783                         num_rings++;
784                 }
785         }
786         if (num_rings & 1)
787                 *cs++ = MI_NOOP;
788
789         return cs;
790 }
791
792 static void cancel_requests(struct intel_engine_cs *engine)
793 {
794         struct drm_i915_gem_request *request;
795         unsigned long flags;
796
797         spin_lock_irqsave(&engine->timeline->lock, flags);
798
799         /* Mark all submitted requests as skipped. */
800         list_for_each_entry(request, &engine->timeline->requests, link) {
801                 GEM_BUG_ON(!request->global_seqno);
802                 if (!i915_gem_request_completed(request))
803                         dma_fence_set_error(&request->fence, -EIO);
804         }
805         /* Remaining _unready_ requests will be nop'ed when submitted */
806
807         spin_unlock_irqrestore(&engine->timeline->lock, flags);
808 }
809
810 static void i9xx_submit_request(struct drm_i915_gem_request *request)
811 {
812         struct drm_i915_private *dev_priv = request->i915;
813
814         i915_gem_request_submit(request);
815
816         I915_WRITE_TAIL(request->engine,
817                         intel_ring_set_tail(request->ring, request->tail));
818 }
819
820 static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
821 {
822         *cs++ = MI_STORE_DWORD_INDEX;
823         *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
824         *cs++ = req->global_seqno;
825         *cs++ = MI_USER_INTERRUPT;
826
827         req->tail = intel_ring_offset(req, cs);
828         assert_ring_tail_valid(req->ring, req->tail);
829 }
830
831 static const int i9xx_emit_breadcrumb_sz = 4;
832
833 /**
834  * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
835  *
836  * @request - request to write to the ring
837  *
838  * Update the mailbox registers in the *other* rings with the current seqno.
839  * This acts like a signal in the canonical semaphore.
840  */
841 static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
842 {
843         return i9xx_emit_breadcrumb(req,
844                                     req->engine->semaphore.signal(req, cs));
845 }
846
847 static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
848                                         u32 *cs)
849 {
850         struct intel_engine_cs *engine = req->engine;
851
852         if (engine->semaphore.signal)
853                 cs = engine->semaphore.signal(req, cs);
854
855         *cs++ = GFX_OP_PIPE_CONTROL(6);
856         *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
857                 PIPE_CONTROL_QW_WRITE;
858         *cs++ = intel_hws_seqno_address(engine);
859         *cs++ = 0;
860         *cs++ = req->global_seqno;
861         /* We're thrashing one dword of HWS. */
862         *cs++ = 0;
863         *cs++ = MI_USER_INTERRUPT;
864         *cs++ = MI_NOOP;
865
866         req->tail = intel_ring_offset(req, cs);
867         assert_ring_tail_valid(req->ring, req->tail);
868 }
869
870 static const int gen8_render_emit_breadcrumb_sz = 8;
871
872 /**
873  * intel_ring_sync - sync the waiter to the signaller on seqno
874  *
875  * @waiter - ring that is waiting
876  * @signaller - ring which has, or will signal
877  * @seqno - seqno which the waiter will block on
878  */
879
880 static int
881 gen8_ring_sync_to(struct drm_i915_gem_request *req,
882                   struct drm_i915_gem_request *signal)
883 {
884         struct drm_i915_private *dev_priv = req->i915;
885         u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
886         struct i915_hw_ppgtt *ppgtt;
887         u32 *cs;
888
889         cs = intel_ring_begin(req, 4);
890         if (IS_ERR(cs))
891                 return PTR_ERR(cs);
892
893         *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT |
894                 MI_SEMAPHORE_SAD_GTE_SDD;
895         *cs++ = signal->global_seqno;
896         *cs++ = lower_32_bits(offset);
897         *cs++ = upper_32_bits(offset);
898         intel_ring_advance(req, cs);
899
900         /* When the !RCS engines idle waiting upon a semaphore, they lose their
901          * pagetables and we must reload them before executing the batch.
902          * We do this on the i915_switch_context() following the wait and
903          * before the dispatch.
904          */
905         ppgtt = req->ctx->ppgtt;
906         if (ppgtt && req->engine->id != RCS)
907                 ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
908         return 0;
909 }
910
911 static int
912 gen6_ring_sync_to(struct drm_i915_gem_request *req,
913                   struct drm_i915_gem_request *signal)
914 {
915         u32 dw1 = MI_SEMAPHORE_MBOX |
916                   MI_SEMAPHORE_COMPARE |
917                   MI_SEMAPHORE_REGISTER;
918         u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
919         u32 *cs;
920
921         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
922
923         cs = intel_ring_begin(req, 4);
924         if (IS_ERR(cs))
925                 return PTR_ERR(cs);
926
927         *cs++ = dw1 | wait_mbox;
928         /* Throughout all of the GEM code, seqno passed implies our current
929          * seqno is >= the last seqno executed. However for hardware the
930          * comparison is strictly greater than.
931          */
932         *cs++ = signal->global_seqno - 1;
933         *cs++ = 0;
934         *cs++ = MI_NOOP;
935         intel_ring_advance(req, cs);
936
937         return 0;
938 }
939
940 static void
941 gen5_seqno_barrier(struct intel_engine_cs *engine)
942 {
943         /* MI_STORE are internally buffered by the GPU and not flushed
944          * either by MI_FLUSH or SyncFlush or any other combination of
945          * MI commands.
946          *
947          * "Only the submission of the store operation is guaranteed.
948          * The write result will be complete (coherent) some time later
949          * (this is practically a finite period but there is no guaranteed
950          * latency)."
951          *
952          * Empirically, we observe that we need a delay of at least 75us to
953          * be sure that the seqno write is visible by the CPU.
954          */
955         usleep_range(125, 250);
956 }
957
958 static void
959 gen6_seqno_barrier(struct intel_engine_cs *engine)
960 {
961         struct drm_i915_private *dev_priv = engine->i915;
962
963         /* Workaround to force correct ordering between irq and seqno writes on
964          * ivb (and maybe also on snb) by reading from a CS register (like
965          * ACTHD) before reading the status page.
966          *
967          * Note that this effectively stalls the read by the time it takes to
968          * do a memory transaction, which more or less ensures that the write
969          * from the GPU has sufficient time to invalidate the CPU cacheline.
970          * Alternatively we could delay the interrupt from the CS ring to give
971          * the write time to land, but that would incur a delay after every
972          * batch i.e. much more frequent than a delay when waiting for the
973          * interrupt (with the same net latency).
974          *
975          * Also note that to prevent whole machine hangs on gen7, we have to
976          * take the spinlock to guard against concurrent cacheline access.
977          */
978         spin_lock_irq(&dev_priv->uncore.lock);
979         POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
980         spin_unlock_irq(&dev_priv->uncore.lock);
981 }
982
983 static void
984 gen5_irq_enable(struct intel_engine_cs *engine)
985 {
986         gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
987 }
988
989 static void
990 gen5_irq_disable(struct intel_engine_cs *engine)
991 {
992         gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
993 }
994
995 static void
996 i9xx_irq_enable(struct intel_engine_cs *engine)
997 {
998         struct drm_i915_private *dev_priv = engine->i915;
999
1000         dev_priv->irq_mask &= ~engine->irq_enable_mask;
1001         I915_WRITE(IMR, dev_priv->irq_mask);
1002         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1003 }
1004
1005 static void
1006 i9xx_irq_disable(struct intel_engine_cs *engine)
1007 {
1008         struct drm_i915_private *dev_priv = engine->i915;
1009
1010         dev_priv->irq_mask |= engine->irq_enable_mask;
1011         I915_WRITE(IMR, dev_priv->irq_mask);
1012 }
1013
1014 static void
1015 i8xx_irq_enable(struct intel_engine_cs *engine)
1016 {
1017         struct drm_i915_private *dev_priv = engine->i915;
1018
1019         dev_priv->irq_mask &= ~engine->irq_enable_mask;
1020         I915_WRITE16(IMR, dev_priv->irq_mask);
1021         POSTING_READ16(RING_IMR(engine->mmio_base));
1022 }
1023
1024 static void
1025 i8xx_irq_disable(struct intel_engine_cs *engine)
1026 {
1027         struct drm_i915_private *dev_priv = engine->i915;
1028
1029         dev_priv->irq_mask |= engine->irq_enable_mask;
1030         I915_WRITE16(IMR, dev_priv->irq_mask);
1031 }
1032
1033 static int
1034 bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1035 {
1036         u32 *cs;
1037
1038         cs = intel_ring_begin(req, 2);
1039         if (IS_ERR(cs))
1040                 return PTR_ERR(cs);
1041
1042         *cs++ = MI_FLUSH;
1043         *cs++ = MI_NOOP;
1044         intel_ring_advance(req, cs);
1045         return 0;
1046 }
1047
1048 static void
1049 gen6_irq_enable(struct intel_engine_cs *engine)
1050 {
1051         struct drm_i915_private *dev_priv = engine->i915;
1052
1053         I915_WRITE_IMR(engine,
1054                        ~(engine->irq_enable_mask |
1055                          engine->irq_keep_mask));
1056         gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1057 }
1058
1059 static void
1060 gen6_irq_disable(struct intel_engine_cs *engine)
1061 {
1062         struct drm_i915_private *dev_priv = engine->i915;
1063
1064         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1065         gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1066 }
1067
1068 static void
1069 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1070 {
1071         struct drm_i915_private *dev_priv = engine->i915;
1072
1073         I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1074         gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
1075 }
1076
1077 static void
1078 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1079 {
1080         struct drm_i915_private *dev_priv = engine->i915;
1081
1082         I915_WRITE_IMR(engine, ~0);
1083         gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
1084 }
1085
1086 static void
1087 gen8_irq_enable(struct intel_engine_cs *engine)
1088 {
1089         struct drm_i915_private *dev_priv = engine->i915;
1090
1091         I915_WRITE_IMR(engine,
1092                        ~(engine->irq_enable_mask |
1093                          engine->irq_keep_mask));
1094         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1095 }
1096
1097 static void
1098 gen8_irq_disable(struct intel_engine_cs *engine)
1099 {
1100         struct drm_i915_private *dev_priv = engine->i915;
1101
1102         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1103 }
1104
1105 static int
1106 i965_emit_bb_start(struct drm_i915_gem_request *req,
1107                    u64 offset, u32 length,
1108                    unsigned int dispatch_flags)
1109 {
1110         u32 *cs;
1111
1112         cs = intel_ring_begin(req, 2);
1113         if (IS_ERR(cs))
1114                 return PTR_ERR(cs);
1115
1116         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1117                 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1118         *cs++ = offset;
1119         intel_ring_advance(req, cs);
1120
1121         return 0;
1122 }
1123
1124 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1125 #define I830_BATCH_LIMIT (256*1024)
1126 #define I830_TLB_ENTRIES (2)
1127 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1128 static int
1129 i830_emit_bb_start(struct drm_i915_gem_request *req,
1130                    u64 offset, u32 len,
1131                    unsigned int dispatch_flags)
1132 {
1133         u32 *cs, cs_offset = i915_ggtt_offset(req->engine->scratch);
1134
1135         cs = intel_ring_begin(req, 6);
1136         if (IS_ERR(cs))
1137                 return PTR_ERR(cs);
1138
1139         /* Evict the invalid PTE TLBs */
1140         *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1141         *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1142         *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1143         *cs++ = cs_offset;
1144         *cs++ = 0xdeadbeef;
1145         *cs++ = MI_NOOP;
1146         intel_ring_advance(req, cs);
1147
1148         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1149                 if (len > I830_BATCH_LIMIT)
1150                         return -ENOSPC;
1151
1152                 cs = intel_ring_begin(req, 6 + 2);
1153                 if (IS_ERR(cs))
1154                         return PTR_ERR(cs);
1155
1156                 /* Blit the batch (which has now all relocs applied) to the
1157                  * stable batch scratch bo area (so that the CS never
1158                  * stumbles over its tlb invalidation bug) ...
1159                  */
1160                 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
1161                 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1162                 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1163                 *cs++ = cs_offset;
1164                 *cs++ = 4096;
1165                 *cs++ = offset;
1166
1167                 *cs++ = MI_FLUSH;
1168                 *cs++ = MI_NOOP;
1169                 intel_ring_advance(req, cs);
1170
1171                 /* ... and execute it. */
1172                 offset = cs_offset;
1173         }
1174
1175         cs = intel_ring_begin(req, 2);
1176         if (IS_ERR(cs))
1177                 return PTR_ERR(cs);
1178
1179         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1180         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1181                 MI_BATCH_NON_SECURE);
1182         intel_ring_advance(req, cs);
1183
1184         return 0;
1185 }
1186
1187 static int
1188 i915_emit_bb_start(struct drm_i915_gem_request *req,
1189                    u64 offset, u32 len,
1190                    unsigned int dispatch_flags)
1191 {
1192         u32 *cs;
1193
1194         cs = intel_ring_begin(req, 2);
1195         if (IS_ERR(cs))
1196                 return PTR_ERR(cs);
1197
1198         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1199         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1200                 MI_BATCH_NON_SECURE);
1201         intel_ring_advance(req, cs);
1202
1203         return 0;
1204 }
1205
1206
1207
1208 int intel_ring_pin(struct intel_ring *ring,
1209                    struct drm_i915_private *i915,
1210                    unsigned int offset_bias)
1211 {
1212         enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1213         struct i915_vma *vma = ring->vma;
1214         unsigned int flags;
1215         void *addr;
1216         int ret;
1217
1218         GEM_BUG_ON(ring->vaddr);
1219
1220
1221         flags = PIN_GLOBAL;
1222         if (offset_bias)
1223                 flags |= PIN_OFFSET_BIAS | offset_bias;
1224         if (vma->obj->stolen)
1225                 flags |= PIN_MAPPABLE;
1226
1227         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1228                 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1229                         ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1230                 else
1231                         ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1232                 if (unlikely(ret))
1233                         return ret;
1234         }
1235
1236         ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1237         if (unlikely(ret))
1238                 return ret;
1239
1240         if (i915_vma_is_map_and_fenceable(vma))
1241                 addr = (void __force *)i915_vma_pin_iomap(vma);
1242         else
1243                 addr = i915_gem_object_pin_map(vma->obj, map);
1244         if (IS_ERR(addr))
1245                 goto err;
1246
1247         vma->obj->pin_global++;
1248
1249         ring->vaddr = addr;
1250         return 0;
1251
1252 err:
1253         i915_vma_unpin(vma);
1254         return PTR_ERR(addr);
1255 }
1256
1257 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1258 {
1259         GEM_BUG_ON(!list_empty(&ring->request_list));
1260         ring->tail = tail;
1261         ring->head = tail;
1262         ring->emit = tail;
1263         intel_ring_update_space(ring);
1264 }
1265
1266 void intel_ring_unpin(struct intel_ring *ring)
1267 {
1268         GEM_BUG_ON(!ring->vma);
1269         GEM_BUG_ON(!ring->vaddr);
1270
1271         /* Discard any unused bytes beyond that submitted to hw. */
1272         intel_ring_reset(ring, ring->tail);
1273
1274         if (i915_vma_is_map_and_fenceable(ring->vma))
1275                 i915_vma_unpin_iomap(ring->vma);
1276         else
1277                 i915_gem_object_unpin_map(ring->vma->obj);
1278         ring->vaddr = NULL;
1279
1280         ring->vma->obj->pin_global--;
1281         i915_vma_unpin(ring->vma);
1282 }
1283
1284 static struct i915_vma *
1285 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1286 {
1287         struct drm_i915_gem_object *obj;
1288         struct i915_vma *vma;
1289
1290         obj = i915_gem_object_create_stolen(dev_priv, size);
1291         if (!obj)
1292                 obj = i915_gem_object_create_internal(dev_priv, size);
1293         if (IS_ERR(obj))
1294                 return ERR_CAST(obj);
1295
1296         /* mark ring buffers as read-only from GPU side by default */
1297         obj->gt_ro = 1;
1298
1299         vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1300         if (IS_ERR(vma))
1301                 goto err;
1302
1303         return vma;
1304
1305 err:
1306         i915_gem_object_put(obj);
1307         return vma;
1308 }
1309
1310 struct intel_ring *
1311 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1312 {
1313         struct intel_ring *ring;
1314         struct i915_vma *vma;
1315
1316         GEM_BUG_ON(!is_power_of_2(size));
1317         GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1318
1319         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1320         if (!ring)
1321                 return ERR_PTR(-ENOMEM);
1322
1323         INIT_LIST_HEAD(&ring->request_list);
1324
1325         ring->size = size;
1326         /* Workaround an erratum on the i830 which causes a hang if
1327          * the TAIL pointer points to within the last 2 cachelines
1328          * of the buffer.
1329          */
1330         ring->effective_size = size;
1331         if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1332                 ring->effective_size -= 2 * CACHELINE_BYTES;
1333
1334         intel_ring_update_space(ring);
1335
1336         vma = intel_ring_create_vma(engine->i915, size);
1337         if (IS_ERR(vma)) {
1338                 kfree(ring);
1339                 return ERR_CAST(vma);
1340         }
1341         ring->vma = vma;
1342
1343         return ring;
1344 }
1345
1346 void
1347 intel_ring_free(struct intel_ring *ring)
1348 {
1349         struct drm_i915_gem_object *obj = ring->vma->obj;
1350
1351         i915_vma_close(ring->vma);
1352         __i915_gem_object_release_unless_active(obj);
1353
1354         kfree(ring);
1355 }
1356
1357 static int context_pin(struct i915_gem_context *ctx)
1358 {
1359         struct i915_vma *vma = ctx->engine[RCS].state;
1360         int ret;
1361
1362         /* Clear this page out of any CPU caches for coherent swap-in/out.
1363          * We only want to do this on the first bind so that we do not stall
1364          * on an active context (which by nature is already on the GPU).
1365          */
1366         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1367                 ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
1368                 if (ret)
1369                         return ret;
1370         }
1371
1372         return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
1373                             PIN_GLOBAL | PIN_HIGH);
1374 }
1375
1376 static struct i915_vma *
1377 alloc_context_vma(struct intel_engine_cs *engine)
1378 {
1379         struct drm_i915_private *i915 = engine->i915;
1380         struct drm_i915_gem_object *obj;
1381         struct i915_vma *vma;
1382
1383         obj = i915_gem_object_create(i915, engine->context_size);
1384         if (IS_ERR(obj))
1385                 return ERR_CAST(obj);
1386
1387         /*
1388          * Try to make the context utilize L3 as well as LLC.
1389          *
1390          * On VLV we don't have L3 controls in the PTEs so we
1391          * shouldn't touch the cache level, especially as that
1392          * would make the object snooped which might have a
1393          * negative performance impact.
1394          *
1395          * Snooping is required on non-llc platforms in execlist
1396          * mode, but since all GGTT accesses use PAT entry 0 we
1397          * get snooping anyway regardless of cache_level.
1398          *
1399          * This is only applicable for Ivy Bridge devices since
1400          * later platforms don't have L3 control bits in the PTE.
1401          */
1402         if (IS_IVYBRIDGE(i915)) {
1403                 /* Ignore any error, regard it as a simple optimisation */
1404                 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1405         }
1406
1407         vma = i915_vma_instance(obj, &i915->ggtt.base, NULL);
1408         if (IS_ERR(vma))
1409                 i915_gem_object_put(obj);
1410
1411         return vma;
1412 }
1413
1414 static struct intel_ring *
1415 intel_ring_context_pin(struct intel_engine_cs *engine,
1416                        struct i915_gem_context *ctx)
1417 {
1418         struct intel_context *ce = &ctx->engine[engine->id];
1419         int ret;
1420
1421         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1422
1423         if (likely(ce->pin_count++))
1424                 goto out;
1425         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1426
1427         if (!ce->state && engine->context_size) {
1428                 struct i915_vma *vma;
1429
1430                 vma = alloc_context_vma(engine);
1431                 if (IS_ERR(vma)) {
1432                         ret = PTR_ERR(vma);
1433                         goto err;
1434                 }
1435
1436                 ce->state = vma;
1437         }
1438
1439         if (ce->state) {
1440                 ret = context_pin(ctx);
1441                 if (ret)
1442                         goto err;
1443
1444                 ce->state->obj->mm.dirty = true;
1445                 ce->state->obj->pin_global++;
1446         }
1447
1448         /* The kernel context is only used as a placeholder for flushing the
1449          * active context. It is never used for submitting user rendering and
1450          * as such never requires the golden render context, and so we can skip
1451          * emitting it when we switch to the kernel context. This is required
1452          * as during eviction we cannot allocate and pin the renderstate in
1453          * order to initialise the context.
1454          */
1455         if (i915_gem_context_is_kernel(ctx))
1456                 ce->initialised = true;
1457
1458         i915_gem_context_get(ctx);
1459
1460 out:
1461         /* One ringbuffer to rule them all */
1462         return engine->buffer;
1463
1464 err:
1465         ce->pin_count = 0;
1466         return ERR_PTR(ret);
1467 }
1468
1469 static void intel_ring_context_unpin(struct intel_engine_cs *engine,
1470                                      struct i915_gem_context *ctx)
1471 {
1472         struct intel_context *ce = &ctx->engine[engine->id];
1473
1474         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1475         GEM_BUG_ON(ce->pin_count == 0);
1476
1477         if (--ce->pin_count)
1478                 return;
1479
1480         if (ce->state) {
1481                 ce->state->obj->pin_global--;
1482                 i915_vma_unpin(ce->state);
1483         }
1484
1485         i915_gem_context_put(ctx);
1486 }
1487
1488 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1489 {
1490         struct intel_ring *ring;
1491         int err;
1492
1493         intel_engine_setup_common(engine);
1494
1495         err = intel_engine_init_common(engine);
1496         if (err)
1497                 goto err;
1498
1499         ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
1500         if (IS_ERR(ring)) {
1501                 err = PTR_ERR(ring);
1502                 goto err;
1503         }
1504
1505         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1506         err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
1507         if (err)
1508                 goto err_ring;
1509
1510         GEM_BUG_ON(engine->buffer);
1511         engine->buffer = ring;
1512
1513         return 0;
1514
1515 err_ring:
1516         intel_ring_free(ring);
1517 err:
1518         intel_engine_cleanup_common(engine);
1519         return err;
1520 }
1521
1522 void intel_engine_cleanup(struct intel_engine_cs *engine)
1523 {
1524         struct drm_i915_private *dev_priv = engine->i915;
1525
1526         WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1527                 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1528
1529         intel_ring_unpin(engine->buffer);
1530         intel_ring_free(engine->buffer);
1531
1532         if (engine->cleanup)
1533                 engine->cleanup(engine);
1534
1535         intel_engine_cleanup_common(engine);
1536
1537         dev_priv->engine[engine->id] = NULL;
1538         kfree(engine);
1539 }
1540
1541 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1542 {
1543         struct intel_engine_cs *engine;
1544         enum intel_engine_id id;
1545
1546         /* Restart from the beginning of the rings for convenience */
1547         for_each_engine(engine, dev_priv, id)
1548                 intel_ring_reset(engine->buffer, 0);
1549 }
1550
1551 static int ring_request_alloc(struct drm_i915_gem_request *request)
1552 {
1553         u32 *cs;
1554
1555         GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
1556
1557         /* Flush enough space to reduce the likelihood of waiting after
1558          * we start building the request - in which case we will just
1559          * have to repeat work.
1560          */
1561         request->reserved_space += LEGACY_REQUEST_SIZE;
1562
1563         cs = intel_ring_begin(request, 0);
1564         if (IS_ERR(cs))
1565                 return PTR_ERR(cs);
1566
1567         request->reserved_space -= LEGACY_REQUEST_SIZE;
1568         return 0;
1569 }
1570
1571 static noinline int wait_for_space(struct drm_i915_gem_request *req,
1572                                    unsigned int bytes)
1573 {
1574         struct intel_ring *ring = req->ring;
1575         struct drm_i915_gem_request *target;
1576         long timeout;
1577
1578         lockdep_assert_held(&req->i915->drm.struct_mutex);
1579
1580         if (intel_ring_update_space(ring) >= bytes)
1581                 return 0;
1582
1583         /*
1584          * Space is reserved in the ringbuffer for finalising the request,
1585          * as that cannot be allowed to fail. During request finalisation,
1586          * reserved_space is set to 0 to stop the overallocation and the
1587          * assumption is that then we never need to wait (which has the
1588          * risk of failing with EINTR).
1589          *
1590          * See also i915_gem_request_alloc() and i915_add_request().
1591          */
1592         GEM_BUG_ON(!req->reserved_space);
1593
1594         list_for_each_entry(target, &ring->request_list, ring_link) {
1595                 /* Would completion of this request free enough space? */
1596                 if (bytes <= __intel_ring_space(target->postfix,
1597                                                 ring->emit, ring->size))
1598                         break;
1599         }
1600
1601         if (WARN_ON(&target->ring_link == &ring->request_list))
1602                 return -ENOSPC;
1603
1604         timeout = i915_wait_request(target,
1605                                     I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1606                                     MAX_SCHEDULE_TIMEOUT);
1607         if (timeout < 0)
1608                 return timeout;
1609
1610         i915_gem_request_retire_upto(target);
1611
1612         intel_ring_update_space(ring);
1613         GEM_BUG_ON(ring->space < bytes);
1614         return 0;
1615 }
1616
1617 u32 *intel_ring_begin(struct drm_i915_gem_request *req,
1618                       unsigned int num_dwords)
1619 {
1620         struct intel_ring *ring = req->ring;
1621         const unsigned int remain_usable = ring->effective_size - ring->emit;
1622         const unsigned int bytes = num_dwords * sizeof(u32);
1623         unsigned int need_wrap = 0;
1624         unsigned int total_bytes;
1625         u32 *cs;
1626
1627         /* Packets must be qword aligned. */
1628         GEM_BUG_ON(num_dwords & 1);
1629
1630         total_bytes = bytes + req->reserved_space;
1631         GEM_BUG_ON(total_bytes > ring->effective_size);
1632
1633         if (unlikely(total_bytes > remain_usable)) {
1634                 const int remain_actual = ring->size - ring->emit;
1635
1636                 if (bytes > remain_usable) {
1637                         /*
1638                          * Not enough space for the basic request. So need to
1639                          * flush out the remainder and then wait for
1640                          * base + reserved.
1641                          */
1642                         total_bytes += remain_actual;
1643                         need_wrap = remain_actual | 1;
1644                 } else  {
1645                         /*
1646                          * The base request will fit but the reserved space
1647                          * falls off the end. So we don't need an immediate
1648                          * wrap and only need to effectively wait for the
1649                          * reserved size from the start of ringbuffer.
1650                          */
1651                         total_bytes = req->reserved_space + remain_actual;
1652                 }
1653         }
1654
1655         if (unlikely(total_bytes > ring->space)) {
1656                 int ret = wait_for_space(req, total_bytes);
1657                 if (unlikely(ret))
1658                         return ERR_PTR(ret);
1659         }
1660
1661         if (unlikely(need_wrap)) {
1662                 need_wrap &= ~1;
1663                 GEM_BUG_ON(need_wrap > ring->space);
1664                 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1665
1666                 /* Fill the tail with MI_NOOP */
1667                 memset(ring->vaddr + ring->emit, 0, need_wrap);
1668                 ring->emit = 0;
1669                 ring->space -= need_wrap;
1670         }
1671
1672         GEM_BUG_ON(ring->emit > ring->size - bytes);
1673         GEM_BUG_ON(ring->space < bytes);
1674         cs = ring->vaddr + ring->emit;
1675         GEM_DEBUG_EXEC(memset(cs, POISON_INUSE, bytes));
1676         ring->emit += bytes;
1677         ring->space -= bytes;
1678
1679         return cs;
1680 }
1681
1682 /* Align the ring tail to a cacheline boundary */
1683 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
1684 {
1685         int num_dwords =
1686                 (req->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1687         u32 *cs;
1688
1689         if (num_dwords == 0)
1690                 return 0;
1691
1692         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1693         cs = intel_ring_begin(req, num_dwords);
1694         if (IS_ERR(cs))
1695                 return PTR_ERR(cs);
1696
1697         while (num_dwords--)
1698                 *cs++ = MI_NOOP;
1699
1700         intel_ring_advance(req, cs);
1701
1702         return 0;
1703 }
1704
1705 static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
1706 {
1707         struct drm_i915_private *dev_priv = request->i915;
1708
1709         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1710
1711        /* Every tail move must follow the sequence below */
1712
1713         /* Disable notification that the ring is IDLE. The GT
1714          * will then assume that it is busy and bring it out of rc6.
1715          */
1716         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1717                       _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1718
1719         /* Clear the context id. Here be magic! */
1720         I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1721
1722         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1723         if (__intel_wait_for_register_fw(dev_priv,
1724                                          GEN6_BSD_SLEEP_PSMI_CONTROL,
1725                                          GEN6_BSD_SLEEP_INDICATOR,
1726                                          0,
1727                                          1000, 0, NULL))
1728                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1729
1730         /* Now that the ring is fully powered up, update the tail */
1731         i9xx_submit_request(request);
1732
1733         /* Let the ring send IDLE messages to the GT again,
1734          * and so let it sleep to conserve power when idle.
1735          */
1736         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1737                       _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1738
1739         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1740 }
1741
1742 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1743 {
1744         u32 cmd, *cs;
1745
1746         cs = intel_ring_begin(req, 4);
1747         if (IS_ERR(cs))
1748                 return PTR_ERR(cs);
1749
1750         cmd = MI_FLUSH_DW;
1751         if (INTEL_GEN(req->i915) >= 8)
1752                 cmd += 1;
1753
1754         /* We always require a command barrier so that subsequent
1755          * commands, such as breadcrumb interrupts, are strictly ordered
1756          * wrt the contents of the write cache being flushed to memory
1757          * (and thus being coherent from the CPU).
1758          */
1759         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1760
1761         /*
1762          * Bspec vol 1c.5 - video engine command streamer:
1763          * "If ENABLED, all TLBs will be invalidated once the flush
1764          * operation is complete. This bit is only valid when the
1765          * Post-Sync Operation field is a value of 1h or 3h."
1766          */
1767         if (mode & EMIT_INVALIDATE)
1768                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1769
1770         *cs++ = cmd;
1771         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1772         if (INTEL_GEN(req->i915) >= 8) {
1773                 *cs++ = 0; /* upper addr */
1774                 *cs++ = 0; /* value */
1775         } else  {
1776                 *cs++ = 0;
1777                 *cs++ = MI_NOOP;
1778         }
1779         intel_ring_advance(req, cs);
1780         return 0;
1781 }
1782
1783 static int
1784 gen8_emit_bb_start(struct drm_i915_gem_request *req,
1785                    u64 offset, u32 len,
1786                    unsigned int dispatch_flags)
1787 {
1788         bool ppgtt = USES_PPGTT(req->i915) &&
1789                         !(dispatch_flags & I915_DISPATCH_SECURE);
1790         u32 *cs;
1791
1792         cs = intel_ring_begin(req, 4);
1793         if (IS_ERR(cs))
1794                 return PTR_ERR(cs);
1795
1796         /* FIXME(BDW): Address space and security selectors. */
1797         *cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
1798                 I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1799         *cs++ = lower_32_bits(offset);
1800         *cs++ = upper_32_bits(offset);
1801         *cs++ = MI_NOOP;
1802         intel_ring_advance(req, cs);
1803
1804         return 0;
1805 }
1806
1807 static int
1808 hsw_emit_bb_start(struct drm_i915_gem_request *req,
1809                   u64 offset, u32 len,
1810                   unsigned int dispatch_flags)
1811 {
1812         u32 *cs;
1813
1814         cs = intel_ring_begin(req, 2);
1815         if (IS_ERR(cs))
1816                 return PTR_ERR(cs);
1817
1818         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1819                 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
1820                 (dispatch_flags & I915_DISPATCH_RS ?
1821                 MI_BATCH_RESOURCE_STREAMER : 0);
1822         /* bit0-7 is the length on GEN6+ */
1823         *cs++ = offset;
1824         intel_ring_advance(req, cs);
1825
1826         return 0;
1827 }
1828
1829 static int
1830 gen6_emit_bb_start(struct drm_i915_gem_request *req,
1831                    u64 offset, u32 len,
1832                    unsigned int dispatch_flags)
1833 {
1834         u32 *cs;
1835
1836         cs = intel_ring_begin(req, 2);
1837         if (IS_ERR(cs))
1838                 return PTR_ERR(cs);
1839
1840         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1841                 0 : MI_BATCH_NON_SECURE_I965);
1842         /* bit0-7 is the length on GEN6+ */
1843         *cs++ = offset;
1844         intel_ring_advance(req, cs);
1845
1846         return 0;
1847 }
1848
1849 /* Blitter support (SandyBridge+) */
1850
1851 static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1852 {
1853         u32 cmd, *cs;
1854
1855         cs = intel_ring_begin(req, 4);
1856         if (IS_ERR(cs))
1857                 return PTR_ERR(cs);
1858
1859         cmd = MI_FLUSH_DW;
1860         if (INTEL_GEN(req->i915) >= 8)
1861                 cmd += 1;
1862
1863         /* We always require a command barrier so that subsequent
1864          * commands, such as breadcrumb interrupts, are strictly ordered
1865          * wrt the contents of the write cache being flushed to memory
1866          * (and thus being coherent from the CPU).
1867          */
1868         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1869
1870         /*
1871          * Bspec vol 1c.3 - blitter engine command streamer:
1872          * "If ENABLED, all TLBs will be invalidated once the flush
1873          * operation is complete. This bit is only valid when the
1874          * Post-Sync Operation field is a value of 1h or 3h."
1875          */
1876         if (mode & EMIT_INVALIDATE)
1877                 cmd |= MI_INVALIDATE_TLB;
1878         *cs++ = cmd;
1879         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1880         if (INTEL_GEN(req->i915) >= 8) {
1881                 *cs++ = 0; /* upper addr */
1882                 *cs++ = 0; /* value */
1883         } else  {
1884                 *cs++ = 0;
1885                 *cs++ = MI_NOOP;
1886         }
1887         intel_ring_advance(req, cs);
1888
1889         return 0;
1890 }
1891
1892 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
1893                                        struct intel_engine_cs *engine)
1894 {
1895         struct drm_i915_gem_object *obj;
1896         int ret, i;
1897
1898         if (!i915_modparams.semaphores)
1899                 return;
1900
1901         if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
1902                 struct i915_vma *vma;
1903
1904                 obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
1905                 if (IS_ERR(obj))
1906                         goto err;
1907
1908                 vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1909                 if (IS_ERR(vma))
1910                         goto err_obj;
1911
1912                 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1913                 if (ret)
1914                         goto err_obj;
1915
1916                 ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1917                 if (ret)
1918                         goto err_obj;
1919
1920                 dev_priv->semaphore = vma;
1921         }
1922
1923         if (INTEL_GEN(dev_priv) >= 8) {
1924                 u32 offset = i915_ggtt_offset(dev_priv->semaphore);
1925
1926                 engine->semaphore.sync_to = gen8_ring_sync_to;
1927                 engine->semaphore.signal = gen8_xcs_signal;
1928
1929                 for (i = 0; i < I915_NUM_ENGINES; i++) {
1930                         u32 ring_offset;
1931
1932                         if (i != engine->id)
1933                                 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
1934                         else
1935                                 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
1936
1937                         engine->semaphore.signal_ggtt[i] = ring_offset;
1938                 }
1939         } else if (INTEL_GEN(dev_priv) >= 6) {
1940                 engine->semaphore.sync_to = gen6_ring_sync_to;
1941                 engine->semaphore.signal = gen6_signal;
1942
1943                 /*
1944                  * The current semaphore is only applied on pre-gen8
1945                  * platform.  And there is no VCS2 ring on the pre-gen8
1946                  * platform. So the semaphore between RCS and VCS2 is
1947                  * initialized as INVALID.  Gen8 will initialize the
1948                  * sema between VCS2 and RCS later.
1949                  */
1950                 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
1951                         static const struct {
1952                                 u32 wait_mbox;
1953                                 i915_reg_t mbox_reg;
1954                         } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
1955                                 [RCS_HW] = {
1956                                         [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
1957                                         [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
1958                                         [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
1959                                 },
1960                                 [VCS_HW] = {
1961                                         [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
1962                                         [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
1963                                         [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
1964                                 },
1965                                 [BCS_HW] = {
1966                                         [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
1967                                         [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
1968                                         [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
1969                                 },
1970                                 [VECS_HW] = {
1971                                         [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
1972                                         [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
1973                                         [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
1974                                 },
1975                         };
1976                         u32 wait_mbox;
1977                         i915_reg_t mbox_reg;
1978
1979                         if (i == engine->hw_id) {
1980                                 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
1981                                 mbox_reg = GEN6_NOSYNC;
1982                         } else {
1983                                 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
1984                                 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
1985                         }
1986
1987                         engine->semaphore.mbox.wait[i] = wait_mbox;
1988                         engine->semaphore.mbox.signal[i] = mbox_reg;
1989                 }
1990         }
1991
1992         return;
1993
1994 err_obj:
1995         i915_gem_object_put(obj);
1996 err:
1997         DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
1998         i915_modparams.semaphores = 0;
1999 }
2000
2001 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2002                                 struct intel_engine_cs *engine)
2003 {
2004         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2005
2006         if (INTEL_GEN(dev_priv) >= 8) {
2007                 engine->irq_enable = gen8_irq_enable;
2008                 engine->irq_disable = gen8_irq_disable;
2009                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2010         } else if (INTEL_GEN(dev_priv) >= 6) {
2011                 engine->irq_enable = gen6_irq_enable;
2012                 engine->irq_disable = gen6_irq_disable;
2013                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2014         } else if (INTEL_GEN(dev_priv) >= 5) {
2015                 engine->irq_enable = gen5_irq_enable;
2016                 engine->irq_disable = gen5_irq_disable;
2017                 engine->irq_seqno_barrier = gen5_seqno_barrier;
2018         } else if (INTEL_GEN(dev_priv) >= 3) {
2019                 engine->irq_enable = i9xx_irq_enable;
2020                 engine->irq_disable = i9xx_irq_disable;
2021         } else {
2022                 engine->irq_enable = i8xx_irq_enable;
2023                 engine->irq_disable = i8xx_irq_disable;
2024         }
2025 }
2026
2027 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2028 {
2029         engine->submit_request = i9xx_submit_request;
2030         engine->cancel_requests = cancel_requests;
2031 }
2032
2033 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2034 {
2035         engine->submit_request = gen6_bsd_submit_request;
2036         engine->cancel_requests = cancel_requests;
2037 }
2038
2039 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2040                                       struct intel_engine_cs *engine)
2041 {
2042         intel_ring_init_irq(dev_priv, engine);
2043         intel_ring_init_semaphores(dev_priv, engine);
2044
2045         engine->init_hw = init_ring_common;
2046         engine->reset_hw = reset_ring_common;
2047
2048         engine->context_pin = intel_ring_context_pin;
2049         engine->context_unpin = intel_ring_context_unpin;
2050
2051         engine->request_alloc = ring_request_alloc;
2052
2053         engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2054         engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2055         if (i915_modparams.semaphores) {
2056                 int num_rings;
2057
2058                 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2059
2060                 num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2061                 if (INTEL_GEN(dev_priv) >= 8) {
2062                         engine->emit_breadcrumb_sz += num_rings * 6;
2063                 } else {
2064                         engine->emit_breadcrumb_sz += num_rings * 3;
2065                         if (num_rings & 1)
2066                                 engine->emit_breadcrumb_sz++;
2067                 }
2068         }
2069
2070         engine->set_default_submission = i9xx_set_default_submission;
2071
2072         if (INTEL_GEN(dev_priv) >= 8)
2073                 engine->emit_bb_start = gen8_emit_bb_start;
2074         else if (INTEL_GEN(dev_priv) >= 6)
2075                 engine->emit_bb_start = gen6_emit_bb_start;
2076         else if (INTEL_GEN(dev_priv) >= 4)
2077                 engine->emit_bb_start = i965_emit_bb_start;
2078         else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2079                 engine->emit_bb_start = i830_emit_bb_start;
2080         else
2081                 engine->emit_bb_start = i915_emit_bb_start;
2082 }
2083
2084 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2085 {
2086         struct drm_i915_private *dev_priv = engine->i915;
2087         int ret;
2088
2089         intel_ring_default_vfuncs(dev_priv, engine);
2090
2091         if (HAS_L3_DPF(dev_priv))
2092                 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2093
2094         if (INTEL_GEN(dev_priv) >= 8) {
2095                 engine->init_context = intel_rcs_ctx_init;
2096                 engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2097                 engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2098                 engine->emit_flush = gen8_render_ring_flush;
2099                 if (i915_modparams.semaphores) {
2100                         int num_rings;
2101
2102                         engine->semaphore.signal = gen8_rcs_signal;
2103
2104                         num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2105                         engine->emit_breadcrumb_sz += num_rings * 8;
2106                 }
2107         } else if (INTEL_GEN(dev_priv) >= 6) {
2108                 engine->init_context = intel_rcs_ctx_init;
2109                 engine->emit_flush = gen7_render_ring_flush;
2110                 if (IS_GEN6(dev_priv))
2111                         engine->emit_flush = gen6_render_ring_flush;
2112         } else if (IS_GEN5(dev_priv)) {
2113                 engine->emit_flush = gen4_render_ring_flush;
2114         } else {
2115                 if (INTEL_GEN(dev_priv) < 4)
2116                         engine->emit_flush = gen2_render_ring_flush;
2117                 else
2118                         engine->emit_flush = gen4_render_ring_flush;
2119                 engine->irq_enable_mask = I915_USER_INTERRUPT;
2120         }
2121
2122         if (IS_HASWELL(dev_priv))
2123                 engine->emit_bb_start = hsw_emit_bb_start;
2124
2125         engine->init_hw = init_render_ring;
2126         engine->cleanup = render_ring_cleanup;
2127
2128         ret = intel_init_ring_buffer(engine);
2129         if (ret)
2130                 return ret;
2131
2132         if (INTEL_GEN(dev_priv) >= 6) {
2133                 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2134                 if (ret)
2135                         return ret;
2136         } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2137                 ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2138                 if (ret)
2139                         return ret;
2140         }
2141
2142         return 0;
2143 }
2144
2145 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2146 {
2147         struct drm_i915_private *dev_priv = engine->i915;
2148
2149         intel_ring_default_vfuncs(dev_priv, engine);
2150
2151         if (INTEL_GEN(dev_priv) >= 6) {
2152                 /* gen6 bsd needs a special wa for tail updates */
2153                 if (IS_GEN6(dev_priv))
2154                         engine->set_default_submission = gen6_bsd_set_default_submission;
2155                 engine->emit_flush = gen6_bsd_ring_flush;
2156                 if (INTEL_GEN(dev_priv) < 8)
2157                         engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2158         } else {
2159                 engine->mmio_base = BSD_RING_BASE;
2160                 engine->emit_flush = bsd_ring_flush;
2161                 if (IS_GEN5(dev_priv))
2162                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2163                 else
2164                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2165         }
2166
2167         return intel_init_ring_buffer(engine);
2168 }
2169
2170 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2171 {
2172         struct drm_i915_private *dev_priv = engine->i915;
2173
2174         intel_ring_default_vfuncs(dev_priv, engine);
2175
2176         engine->emit_flush = gen6_ring_flush;
2177         if (INTEL_GEN(dev_priv) < 8)
2178                 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2179
2180         return intel_init_ring_buffer(engine);
2181 }
2182
2183 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2184 {
2185         struct drm_i915_private *dev_priv = engine->i915;
2186
2187         intel_ring_default_vfuncs(dev_priv, engine);
2188
2189         engine->emit_flush = gen6_ring_flush;
2190
2191         if (INTEL_GEN(dev_priv) < 8) {
2192                 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2193                 engine->irq_enable = hsw_vebox_irq_enable;
2194                 engine->irq_disable = hsw_vebox_irq_disable;
2195         }
2196
2197         return intel_init_ring_buffer(engine);
2198 }