Merge drm/drm-next into drm-intel-next-queued
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31
32 #include <drm/i915_drm.h>
33
34 #include "i915_drv.h"
35 #include "i915_gem_render_state.h"
36 #include "i915_reset.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 #include "intel_workarounds.h"
40
41 /* Rough estimate of the typical request size, performing a flush,
42  * set-context and then emitting the batch.
43  */
44 #define LEGACY_REQUEST_SIZE 200
45
46 unsigned int intel_ring_update_space(struct intel_ring *ring)
47 {
48         unsigned int space;
49
50         space = __intel_ring_space(ring->head, ring->emit, ring->size);
51
52         ring->space = space;
53         return space;
54 }
55
56 static int
57 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
58 {
59         unsigned int num_store_dw;
60         u32 cmd, *cs;
61
62         cmd = MI_FLUSH;
63         num_store_dw = 0;
64         if (mode & EMIT_INVALIDATE)
65                 cmd |= MI_READ_FLUSH;
66         if (mode & EMIT_FLUSH)
67                 num_store_dw = 4;
68
69         cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
70         if (IS_ERR(cs))
71                 return PTR_ERR(cs);
72
73         *cs++ = cmd;
74         while (num_store_dw--) {
75                 *cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
76                 *cs++ = i915_scratch_offset(rq->i915);
77                 *cs++ = 0;
78         }
79         *cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;
80
81         intel_ring_advance(rq, cs);
82
83         return 0;
84 }
85
86 static int
87 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
88 {
89         u32 cmd, *cs;
90         int i;
91
92         /*
93          * read/write caches:
94          *
95          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
96          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
97          * also flushed at 2d versus 3d pipeline switches.
98          *
99          * read-only caches:
100          *
101          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
102          * MI_READ_FLUSH is set, and is always flushed on 965.
103          *
104          * I915_GEM_DOMAIN_COMMAND may not exist?
105          *
106          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
107          * invalidated when MI_EXE_FLUSH is set.
108          *
109          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
110          * invalidated with every MI_FLUSH.
111          *
112          * TLBs:
113          *
114          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
115          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
116          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
117          * are flushed at any MI_FLUSH.
118          */
119
120         cmd = MI_FLUSH;
121         if (mode & EMIT_INVALIDATE) {
122                 cmd |= MI_EXE_FLUSH;
123                 if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5))
124                         cmd |= MI_INVALIDATE_ISP;
125         }
126
127         i = 2;
128         if (mode & EMIT_INVALIDATE)
129                 i += 20;
130
131         cs = intel_ring_begin(rq, i);
132         if (IS_ERR(cs))
133                 return PTR_ERR(cs);
134
135         *cs++ = cmd;
136
137         /*
138          * A random delay to let the CS invalidate take effect? Without this
139          * delay, the GPU relocation path fails as the CS does not see
140          * the updated contents. Just as important, if we apply the flushes
141          * to the EMIT_FLUSH branch (i.e. immediately after the relocation
142          * write and before the invalidate on the next batch), the relocations
143          * still fail. This implies that is a delay following invalidation
144          * that is required to reset the caches as opposed to a delay to
145          * ensure the memory is written.
146          */
147         if (mode & EMIT_INVALIDATE) {
148                 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
149                 *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
150                 *cs++ = 0;
151                 *cs++ = 0;
152
153                 for (i = 0; i < 12; i++)
154                         *cs++ = MI_FLUSH;
155
156                 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
157                 *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
158                 *cs++ = 0;
159                 *cs++ = 0;
160         }
161
162         *cs++ = cmd;
163
164         intel_ring_advance(rq, cs);
165
166         return 0;
167 }
168
169 /*
170  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
171  * implementing two workarounds on gen6.  From section 1.4.7.1
172  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
173  *
174  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
175  * produced by non-pipelined state commands), software needs to first
176  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
177  * 0.
178  *
179  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
180  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
181  *
182  * And the workaround for these two requires this workaround first:
183  *
184  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
185  * BEFORE the pipe-control with a post-sync op and no write-cache
186  * flushes.
187  *
188  * And this last workaround is tricky because of the requirements on
189  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
190  * volume 2 part 1:
191  *
192  *     "1 of the following must also be set:
193  *      - Render Target Cache Flush Enable ([12] of DW1)
194  *      - Depth Cache Flush Enable ([0] of DW1)
195  *      - Stall at Pixel Scoreboard ([1] of DW1)
196  *      - Depth Stall ([13] of DW1)
197  *      - Post-Sync Operation ([13] of DW1)
198  *      - Notify Enable ([8] of DW1)"
199  *
200  * The cache flushes require the workaround flush that triggered this
201  * one, so we can't use it.  Depth stall would trigger the same.
202  * Post-sync nonzero is what triggered this second workaround, so we
203  * can't use that one either.  Notify enable is IRQs, which aren't
204  * really our business.  That leaves only stall at scoreboard.
205  */
206 static int
207 gen6_emit_post_sync_nonzero_flush(struct i915_request *rq)
208 {
209         u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
210         u32 *cs;
211
212         cs = intel_ring_begin(rq, 6);
213         if (IS_ERR(cs))
214                 return PTR_ERR(cs);
215
216         *cs++ = GFX_OP_PIPE_CONTROL(5);
217         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
218         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
219         *cs++ = 0; /* low dword */
220         *cs++ = 0; /* high dword */
221         *cs++ = MI_NOOP;
222         intel_ring_advance(rq, cs);
223
224         cs = intel_ring_begin(rq, 6);
225         if (IS_ERR(cs))
226                 return PTR_ERR(cs);
227
228         *cs++ = GFX_OP_PIPE_CONTROL(5);
229         *cs++ = PIPE_CONTROL_QW_WRITE;
230         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
231         *cs++ = 0;
232         *cs++ = 0;
233         *cs++ = MI_NOOP;
234         intel_ring_advance(rq, cs);
235
236         return 0;
237 }
238
239 static int
240 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
241 {
242         u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
243         u32 *cs, flags = 0;
244         int ret;
245
246         /* Force SNB workarounds for PIPE_CONTROL flushes */
247         ret = gen6_emit_post_sync_nonzero_flush(rq);
248         if (ret)
249                 return ret;
250
251         /* Just flush everything.  Experiments have shown that reducing the
252          * number of bits based on the write domains has little performance
253          * impact.
254          */
255         if (mode & EMIT_FLUSH) {
256                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
258                 /*
259                  * Ensure that any following seqno writes only happen
260                  * when the render cache is indeed flushed.
261                  */
262                 flags |= PIPE_CONTROL_CS_STALL;
263         }
264         if (mode & EMIT_INVALIDATE) {
265                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
266                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
271                 /*
272                  * TLB invalidate requires a post-sync write.
273                  */
274                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
275         }
276
277         cs = intel_ring_begin(rq, 4);
278         if (IS_ERR(cs))
279                 return PTR_ERR(cs);
280
281         *cs++ = GFX_OP_PIPE_CONTROL(4);
282         *cs++ = flags;
283         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
284         *cs++ = 0;
285         intel_ring_advance(rq, cs);
286
287         return 0;
288 }
289
290 static u32 *gen6_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
291 {
292         /* First we do the gen6_emit_post_sync_nonzero_flush w/a */
293         *cs++ = GFX_OP_PIPE_CONTROL(4);
294         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
295         *cs++ = 0;
296         *cs++ = 0;
297
298         *cs++ = GFX_OP_PIPE_CONTROL(4);
299         *cs++ = PIPE_CONTROL_QW_WRITE;
300         *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
301         *cs++ = 0;
302
303         /* Finally we can flush and with it emit the breadcrumb */
304         *cs++ = GFX_OP_PIPE_CONTROL(4);
305         *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
306                  PIPE_CONTROL_DEPTH_CACHE_FLUSH |
307                  PIPE_CONTROL_DC_FLUSH_ENABLE |
308                  PIPE_CONTROL_QW_WRITE |
309                  PIPE_CONTROL_CS_STALL);
310         *cs++ = rq->timeline->hwsp_offset | PIPE_CONTROL_GLOBAL_GTT;
311         *cs++ = rq->fence.seqno;
312
313         *cs++ = GFX_OP_PIPE_CONTROL(4);
314         *cs++ = PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_STORE_DATA_INDEX;
315         *cs++ = I915_GEM_HWS_HANGCHECK_ADDR | PIPE_CONTROL_GLOBAL_GTT;
316         *cs++ = intel_engine_next_hangcheck_seqno(rq->engine);
317
318         *cs++ = MI_USER_INTERRUPT;
319         *cs++ = MI_NOOP;
320
321         rq->tail = intel_ring_offset(rq, cs);
322         assert_ring_tail_valid(rq->ring, rq->tail);
323
324         return cs;
325 }
326
327 static int
328 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
329 {
330         u32 *cs;
331
332         cs = intel_ring_begin(rq, 4);
333         if (IS_ERR(cs))
334                 return PTR_ERR(cs);
335
336         *cs++ = GFX_OP_PIPE_CONTROL(4);
337         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
338         *cs++ = 0;
339         *cs++ = 0;
340         intel_ring_advance(rq, cs);
341
342         return 0;
343 }
344
345 static int
346 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
347 {
348         u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
349         u32 *cs, flags = 0;
350
351         /*
352          * Ensure that any following seqno writes only happen when the render
353          * cache is indeed flushed.
354          *
355          * Workaround: 4th PIPE_CONTROL command (except the ones with only
356          * read-cache invalidate bits set) must have the CS_STALL bit set. We
357          * don't try to be clever and just set it unconditionally.
358          */
359         flags |= PIPE_CONTROL_CS_STALL;
360
361         /* Just flush everything.  Experiments have shown that reducing the
362          * number of bits based on the write domains has little performance
363          * impact.
364          */
365         if (mode & EMIT_FLUSH) {
366                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
367                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
368                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
369                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
370         }
371         if (mode & EMIT_INVALIDATE) {
372                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
373                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
374                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
375                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
376                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
377                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
378                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
379                 /*
380                  * TLB invalidate requires a post-sync write.
381                  */
382                 flags |= PIPE_CONTROL_QW_WRITE;
383                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
384
385                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
386
387                 /* Workaround: we must issue a pipe_control with CS-stall bit
388                  * set before a pipe_control command that has the state cache
389                  * invalidate bit set. */
390                 gen7_render_ring_cs_stall_wa(rq);
391         }
392
393         cs = intel_ring_begin(rq, 4);
394         if (IS_ERR(cs))
395                 return PTR_ERR(cs);
396
397         *cs++ = GFX_OP_PIPE_CONTROL(4);
398         *cs++ = flags;
399         *cs++ = scratch_addr;
400         *cs++ = 0;
401         intel_ring_advance(rq, cs);
402
403         return 0;
404 }
405
406 static u32 *gen7_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
407 {
408         *cs++ = GFX_OP_PIPE_CONTROL(4);
409         *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
410                  PIPE_CONTROL_DEPTH_CACHE_FLUSH |
411                  PIPE_CONTROL_DC_FLUSH_ENABLE |
412                  PIPE_CONTROL_FLUSH_ENABLE |
413                  PIPE_CONTROL_QW_WRITE |
414                  PIPE_CONTROL_GLOBAL_GTT_IVB |
415                  PIPE_CONTROL_CS_STALL);
416         *cs++ = rq->timeline->hwsp_offset;
417         *cs++ = rq->fence.seqno;
418
419         *cs++ = GFX_OP_PIPE_CONTROL(4);
420         *cs++ = (PIPE_CONTROL_QW_WRITE |
421                  PIPE_CONTROL_STORE_DATA_INDEX |
422                  PIPE_CONTROL_GLOBAL_GTT_IVB);
423         *cs++ = I915_GEM_HWS_HANGCHECK_ADDR;
424         *cs++ = intel_engine_next_hangcheck_seqno(rq->engine);
425
426         *cs++ = MI_USER_INTERRUPT;
427         *cs++ = MI_NOOP;
428
429         rq->tail = intel_ring_offset(rq, cs);
430         assert_ring_tail_valid(rq->ring, rq->tail);
431
432         return cs;
433 }
434
435 static u32 *gen6_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
436 {
437         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
438         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
439
440         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
441         *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
442         *cs++ = rq->fence.seqno;
443
444         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
445         *cs++ = I915_GEM_HWS_HANGCHECK_ADDR | MI_FLUSH_DW_USE_GTT;
446         *cs++ = intel_engine_next_hangcheck_seqno(rq->engine);
447
448         *cs++ = MI_USER_INTERRUPT;
449         *cs++ = MI_NOOP;
450
451         rq->tail = intel_ring_offset(rq, cs);
452         assert_ring_tail_valid(rq->ring, rq->tail);
453
454         return cs;
455 }
456
457 #define GEN7_XCS_WA 32
458 static u32 *gen7_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
459 {
460         int i;
461
462         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
463         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
464
465         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
466         *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
467         *cs++ = rq->fence.seqno;
468
469         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
470         *cs++ = I915_GEM_HWS_HANGCHECK_ADDR | MI_FLUSH_DW_USE_GTT;
471         *cs++ = intel_engine_next_hangcheck_seqno(rq->engine);
472
473         for (i = 0; i < GEN7_XCS_WA; i++) {
474                 *cs++ = MI_STORE_DWORD_INDEX;
475                 *cs++ = I915_GEM_HWS_SEQNO_ADDR;
476                 *cs++ = rq->fence.seqno;
477         }
478
479         *cs++ = MI_FLUSH_DW;
480         *cs++ = 0;
481         *cs++ = 0;
482
483         *cs++ = MI_USER_INTERRUPT;
484
485         rq->tail = intel_ring_offset(rq, cs);
486         assert_ring_tail_valid(rq->ring, rq->tail);
487
488         return cs;
489 }
490 #undef GEN7_XCS_WA
491
492 static void set_hwstam(struct intel_engine_cs *engine, u32 mask)
493 {
494         /*
495          * Keep the render interrupt unmasked as this papers over
496          * lost interrupts following a reset.
497          */
498         if (engine->class == RENDER_CLASS) {
499                 if (INTEL_GEN(engine->i915) >= 6)
500                         mask &= ~BIT(0);
501                 else
502                         mask &= ~I915_USER_INTERRUPT;
503         }
504
505         intel_engine_set_hwsp_writemask(engine, mask);
506 }
507
508 static void set_hws_pga(struct intel_engine_cs *engine, phys_addr_t phys)
509 {
510         struct drm_i915_private *dev_priv = engine->i915;
511         u32 addr;
512
513         addr = lower_32_bits(phys);
514         if (INTEL_GEN(dev_priv) >= 4)
515                 addr |= (phys >> 28) & 0xf0;
516
517         I915_WRITE(HWS_PGA, addr);
518 }
519
520 static struct page *status_page(struct intel_engine_cs *engine)
521 {
522         struct drm_i915_gem_object *obj = engine->status_page.vma->obj;
523
524         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
525         return sg_page(obj->mm.pages->sgl);
526 }
527
528 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
529 {
530         set_hws_pga(engine, PFN_PHYS(page_to_pfn(status_page(engine))));
531         set_hwstam(engine, ~0u);
532 }
533
534 static void set_hwsp(struct intel_engine_cs *engine, u32 offset)
535 {
536         struct drm_i915_private *dev_priv = engine->i915;
537         i915_reg_t hwsp;
538
539         /*
540          * The ring status page addresses are no longer next to the rest of
541          * the ring registers as of gen7.
542          */
543         if (IS_GEN(dev_priv, 7)) {
544                 switch (engine->id) {
545                 /*
546                  * No more rings exist on Gen7. Default case is only to shut up
547                  * gcc switch check warning.
548                  */
549                 default:
550                         GEM_BUG_ON(engine->id);
551                         /* fallthrough */
552                 case RCS0:
553                         hwsp = RENDER_HWS_PGA_GEN7;
554                         break;
555                 case BCS0:
556                         hwsp = BLT_HWS_PGA_GEN7;
557                         break;
558                 case VCS0:
559                         hwsp = BSD_HWS_PGA_GEN7;
560                         break;
561                 case VECS0:
562                         hwsp = VEBOX_HWS_PGA_GEN7;
563                         break;
564                 }
565         } else if (IS_GEN(dev_priv, 6)) {
566                 hwsp = RING_HWS_PGA_GEN6(engine->mmio_base);
567         } else {
568                 hwsp = RING_HWS_PGA(engine->mmio_base);
569         }
570
571         I915_WRITE(hwsp, offset);
572         POSTING_READ(hwsp);
573 }
574
575 static void flush_cs_tlb(struct intel_engine_cs *engine)
576 {
577         struct drm_i915_private *dev_priv = engine->i915;
578
579         if (!IS_GEN_RANGE(dev_priv, 6, 7))
580                 return;
581
582         /* ring should be idle before issuing a sync flush*/
583         WARN_ON((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
584
585         ENGINE_WRITE(engine, RING_INSTPM,
586                      _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
587                                         INSTPM_SYNC_FLUSH));
588         if (intel_wait_for_register(engine->uncore,
589                                     RING_INSTPM(engine->mmio_base),
590                                     INSTPM_SYNC_FLUSH, 0,
591                                     1000))
592                 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
593                           engine->name);
594 }
595
596 static void ring_setup_status_page(struct intel_engine_cs *engine)
597 {
598         set_hwsp(engine, i915_ggtt_offset(engine->status_page.vma));
599         set_hwstam(engine, ~0u);
600
601         flush_cs_tlb(engine);
602 }
603
604 static bool stop_ring(struct intel_engine_cs *engine)
605 {
606         struct drm_i915_private *dev_priv = engine->i915;
607
608         if (INTEL_GEN(dev_priv) > 2) {
609                 ENGINE_WRITE(engine,
610                              RING_MI_MODE, _MASKED_BIT_ENABLE(STOP_RING));
611                 if (intel_wait_for_register(engine->uncore,
612                                             RING_MI_MODE(engine->mmio_base),
613                                             MODE_IDLE,
614                                             MODE_IDLE,
615                                             1000)) {
616                         DRM_ERROR("%s : timed out trying to stop ring\n",
617                                   engine->name);
618
619                         /*
620                          * Sometimes we observe that the idle flag is not
621                          * set even though the ring is empty. So double
622                          * check before giving up.
623                          */
624                         if (ENGINE_READ(engine, RING_HEAD) !=
625                             ENGINE_READ(engine, RING_TAIL))
626                                 return false;
627                 }
628         }
629
630         ENGINE_WRITE(engine, RING_HEAD, ENGINE_READ(engine, RING_TAIL));
631
632         ENGINE_WRITE(engine, RING_HEAD, 0);
633         ENGINE_WRITE(engine, RING_TAIL, 0);
634
635         /* The ring must be empty before it is disabled */
636         ENGINE_WRITE(engine, RING_CTL, 0);
637
638         return (ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) == 0;
639 }
640
641 static int init_ring_common(struct intel_engine_cs *engine)
642 {
643         struct drm_i915_private *dev_priv = engine->i915;
644         struct intel_ring *ring = engine->buffer;
645         int ret = 0;
646
647         intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
648
649         if (!stop_ring(engine)) {
650                 /* G45 ring initialization often fails to reset head to zero */
651                 DRM_DEBUG_DRIVER("%s head not reset to zero "
652                                 "ctl %08x head %08x tail %08x start %08x\n",
653                                 engine->name,
654                                 ENGINE_READ(engine, RING_CTL),
655                                 ENGINE_READ(engine, RING_HEAD),
656                                 ENGINE_READ(engine, RING_TAIL),
657                                 ENGINE_READ(engine, RING_START));
658
659                 if (!stop_ring(engine)) {
660                         DRM_ERROR("failed to set %s head to zero "
661                                   "ctl %08x head %08x tail %08x start %08x\n",
662                                   engine->name,
663                                   ENGINE_READ(engine, RING_CTL),
664                                   ENGINE_READ(engine, RING_HEAD),
665                                   ENGINE_READ(engine, RING_TAIL),
666                                   ENGINE_READ(engine, RING_START));
667                         ret = -EIO;
668                         goto out;
669                 }
670         }
671
672         if (HWS_NEEDS_PHYSICAL(dev_priv))
673                 ring_setup_phys_status_page(engine);
674         else
675                 ring_setup_status_page(engine);
676
677         intel_engine_reset_breadcrumbs(engine);
678
679         /* Enforce ordering by reading HEAD register back */
680         ENGINE_READ(engine, RING_HEAD);
681
682         /* Initialize the ring. This must happen _after_ we've cleared the ring
683          * registers with the above sequence (the readback of the HEAD registers
684          * also enforces ordering), otherwise the hw might lose the new ring
685          * register values. */
686         ENGINE_WRITE(engine, RING_START, i915_ggtt_offset(ring->vma));
687
688         /* WaClearRingBufHeadRegAtInit:ctg,elk */
689         if (ENGINE_READ(engine, RING_HEAD))
690                 DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
691                                  engine->name, ENGINE_READ(engine, RING_HEAD));
692
693         /* Check that the ring offsets point within the ring! */
694         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
695         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
696         intel_ring_update_space(ring);
697
698         /* First wake the ring up to an empty/idle ring */
699         ENGINE_WRITE(engine, RING_HEAD, ring->head);
700         ENGINE_WRITE(engine, RING_TAIL, ring->head);
701         ENGINE_POSTING_READ(engine, RING_TAIL);
702
703         ENGINE_WRITE(engine, RING_CTL, RING_CTL_SIZE(ring->size) | RING_VALID);
704
705         /* If the head is still not zero, the ring is dead */
706         if (intel_wait_for_register(engine->uncore,
707                                     RING_CTL(engine->mmio_base),
708                                     RING_VALID, RING_VALID,
709                                     50)) {
710                 DRM_ERROR("%s initialization failed "
711                           "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
712                           engine->name,
713                           ENGINE_READ(engine, RING_CTL),
714                           ENGINE_READ(engine, RING_CTL) & RING_VALID,
715                           ENGINE_READ(engine, RING_HEAD), ring->head,
716                           ENGINE_READ(engine, RING_TAIL), ring->tail,
717                           ENGINE_READ(engine, RING_START),
718                           i915_ggtt_offset(ring->vma));
719                 ret = -EIO;
720                 goto out;
721         }
722
723         if (INTEL_GEN(dev_priv) > 2)
724                 ENGINE_WRITE(engine,
725                              RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
726
727         /* Now awake, let it get started */
728         if (ring->tail != ring->head) {
729                 ENGINE_WRITE(engine, RING_TAIL, ring->tail);
730                 ENGINE_POSTING_READ(engine, RING_TAIL);
731         }
732
733         /* Papering over lost _interrupts_ immediately following the restart */
734         intel_engine_queue_breadcrumbs(engine);
735 out:
736         intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
737
738         return ret;
739 }
740
741 static void reset_prepare(struct intel_engine_cs *engine)
742 {
743         intel_engine_stop_cs(engine);
744 }
745
746 static void reset_ring(struct intel_engine_cs *engine, bool stalled)
747 {
748         struct i915_timeline *tl = &engine->timeline;
749         struct i915_request *pos, *rq;
750         unsigned long flags;
751         u32 head;
752
753         rq = NULL;
754         spin_lock_irqsave(&tl->lock, flags);
755         list_for_each_entry(pos, &tl->requests, link) {
756                 if (!i915_request_completed(pos)) {
757                         rq = pos;
758                         break;
759                 }
760         }
761
762         /*
763          * The guilty request will get skipped on a hung engine.
764          *
765          * Users of client default contexts do not rely on logical
766          * state preserved between batches so it is safe to execute
767          * queued requests following the hang. Non default contexts
768          * rely on preserved state, so skipping a batch loses the
769          * evolution of the state and it needs to be considered corrupted.
770          * Executing more queued batches on top of corrupted state is
771          * risky. But we take the risk by trying to advance through
772          * the queued requests in order to make the client behaviour
773          * more predictable around resets, by not throwing away random
774          * amount of batches it has prepared for execution. Sophisticated
775          * clients can use gem_reset_stats_ioctl and dma fence status
776          * (exported via sync_file info ioctl on explicit fences) to observe
777          * when it loses the context state and should rebuild accordingly.
778          *
779          * The context ban, and ultimately the client ban, mechanism are safety
780          * valves if client submission ends up resulting in nothing more than
781          * subsequent hangs.
782          */
783
784         if (rq) {
785                 /*
786                  * Try to restore the logical GPU state to match the
787                  * continuation of the request queue. If we skip the
788                  * context/PD restore, then the next request may try to execute
789                  * assuming that its context is valid and loaded on the GPU and
790                  * so may try to access invalid memory, prompting repeated GPU
791                  * hangs.
792                  *
793                  * If the request was guilty, we still restore the logical
794                  * state in case the next request requires it (e.g. the
795                  * aliasing ppgtt), but skip over the hung batch.
796                  *
797                  * If the request was innocent, we try to replay the request
798                  * with the restored context.
799                  */
800                 i915_reset_request(rq, stalled);
801
802                 GEM_BUG_ON(rq->ring != engine->buffer);
803                 head = rq->head;
804         } else {
805                 head = engine->buffer->tail;
806         }
807         engine->buffer->head = intel_ring_wrap(engine->buffer, head);
808
809         spin_unlock_irqrestore(&tl->lock, flags);
810 }
811
812 static void reset_finish(struct intel_engine_cs *engine)
813 {
814 }
815
816 static int intel_rcs_ctx_init(struct i915_request *rq)
817 {
818         int ret;
819
820         ret = intel_engine_emit_ctx_wa(rq);
821         if (ret != 0)
822                 return ret;
823
824         ret = i915_gem_render_state_emit(rq);
825         if (ret)
826                 return ret;
827
828         return 0;
829 }
830
831 static int init_render_ring(struct intel_engine_cs *engine)
832 {
833         struct drm_i915_private *dev_priv = engine->i915;
834         int ret = init_ring_common(engine);
835         if (ret)
836                 return ret;
837
838         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
839         if (IS_GEN_RANGE(dev_priv, 4, 6))
840                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
841
842         /* We need to disable the AsyncFlip performance optimisations in order
843          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
844          * programmed to '1' on all products.
845          *
846          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
847          */
848         if (IS_GEN_RANGE(dev_priv, 6, 7))
849                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
850
851         /* Required for the hardware to program scanline values for waiting */
852         /* WaEnableFlushTlbInvalidationMode:snb */
853         if (IS_GEN(dev_priv, 6))
854                 I915_WRITE(GFX_MODE,
855                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
856
857         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
858         if (IS_GEN(dev_priv, 7))
859                 I915_WRITE(GFX_MODE_GEN7,
860                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
861                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
862
863         if (IS_GEN(dev_priv, 6)) {
864                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
865                  * "If this bit is set, STCunit will have LRA as replacement
866                  *  policy. [...] This bit must be reset.  LRA replacement
867                  *  policy is not supported."
868                  */
869                 I915_WRITE(CACHE_MODE_0,
870                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
871         }
872
873         if (IS_GEN_RANGE(dev_priv, 6, 7))
874                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
875
876         if (INTEL_GEN(dev_priv) >= 6)
877                 ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
878
879         return 0;
880 }
881
882 static void cancel_requests(struct intel_engine_cs *engine)
883 {
884         struct i915_request *request;
885         unsigned long flags;
886
887         spin_lock_irqsave(&engine->timeline.lock, flags);
888
889         /* Mark all submitted requests as skipped. */
890         list_for_each_entry(request, &engine->timeline.requests, link) {
891                 if (!i915_request_signaled(request))
892                         dma_fence_set_error(&request->fence, -EIO);
893
894                 i915_request_mark_complete(request);
895         }
896
897         /* Remaining _unready_ requests will be nop'ed when submitted */
898
899         spin_unlock_irqrestore(&engine->timeline.lock, flags);
900 }
901
902 static void i9xx_submit_request(struct i915_request *request)
903 {
904         i915_request_submit(request);
905
906         ENGINE_WRITE(request->engine, RING_TAIL,
907                      intel_ring_set_tail(request->ring, request->tail));
908 }
909
910 static u32 *i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
911 {
912         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
913         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
914
915         *cs++ = MI_FLUSH;
916
917         *cs++ = MI_STORE_DWORD_INDEX;
918         *cs++ = I915_GEM_HWS_SEQNO_ADDR;
919         *cs++ = rq->fence.seqno;
920
921         *cs++ = MI_STORE_DWORD_INDEX;
922         *cs++ = I915_GEM_HWS_HANGCHECK_ADDR;
923         *cs++ = intel_engine_next_hangcheck_seqno(rq->engine);
924
925         *cs++ = MI_USER_INTERRUPT;
926
927         rq->tail = intel_ring_offset(rq, cs);
928         assert_ring_tail_valid(rq->ring, rq->tail);
929
930         return cs;
931 }
932
933 #define GEN5_WA_STORES 8 /* must be at least 1! */
934 static u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs)
935 {
936         int i;
937
938         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
939         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
940
941         *cs++ = MI_FLUSH;
942
943         *cs++ = MI_STORE_DWORD_INDEX;
944         *cs++ = I915_GEM_HWS_HANGCHECK_ADDR;
945         *cs++ = intel_engine_next_hangcheck_seqno(rq->engine);
946
947         BUILD_BUG_ON(GEN5_WA_STORES < 1);
948         for (i = 0; i < GEN5_WA_STORES; i++) {
949                 *cs++ = MI_STORE_DWORD_INDEX;
950                 *cs++ = I915_GEM_HWS_SEQNO_ADDR;
951                 *cs++ = rq->fence.seqno;
952         }
953
954         *cs++ = MI_USER_INTERRUPT;
955         *cs++ = MI_NOOP;
956
957         rq->tail = intel_ring_offset(rq, cs);
958         assert_ring_tail_valid(rq->ring, rq->tail);
959
960         return cs;
961 }
962 #undef GEN5_WA_STORES
963
964 static void
965 gen5_irq_enable(struct intel_engine_cs *engine)
966 {
967         gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
968 }
969
970 static void
971 gen5_irq_disable(struct intel_engine_cs *engine)
972 {
973         gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
974 }
975
976 static void
977 i9xx_irq_enable(struct intel_engine_cs *engine)
978 {
979         GEM_BUG_ON(engine->id != RCS0);
980
981         engine->i915->irq_mask &= ~engine->irq_enable_mask;
982         ENGINE_WRITE(engine, RING_IMR, engine->i915->irq_mask);
983         ENGINE_POSTING_READ(engine, RING_IMR);
984 }
985
986 static void
987 i9xx_irq_disable(struct intel_engine_cs *engine)
988 {
989         GEM_BUG_ON(engine->id != RCS0);
990
991         engine->i915->irq_mask |= engine->irq_enable_mask;
992         ENGINE_WRITE(engine, RING_IMR, engine->i915->irq_mask);
993 }
994
995 static void
996 i8xx_irq_enable(struct intel_engine_cs *engine)
997 {
998         struct drm_i915_private *dev_priv = engine->i915;
999
1000         dev_priv->irq_mask &= ~engine->irq_enable_mask;
1001         I915_WRITE16(IMR, dev_priv->irq_mask);
1002         POSTING_READ16(RING_IMR(engine->mmio_base));
1003 }
1004
1005 static void
1006 i8xx_irq_disable(struct intel_engine_cs *engine)
1007 {
1008         struct drm_i915_private *dev_priv = engine->i915;
1009
1010         dev_priv->irq_mask |= engine->irq_enable_mask;
1011         I915_WRITE16(IMR, dev_priv->irq_mask);
1012 }
1013
1014 static int
1015 bsd_ring_flush(struct i915_request *rq, u32 mode)
1016 {
1017         u32 *cs;
1018
1019         cs = intel_ring_begin(rq, 2);
1020         if (IS_ERR(cs))
1021                 return PTR_ERR(cs);
1022
1023         *cs++ = MI_FLUSH;
1024         *cs++ = MI_NOOP;
1025         intel_ring_advance(rq, cs);
1026         return 0;
1027 }
1028
1029 static void
1030 gen6_irq_enable(struct intel_engine_cs *engine)
1031 {
1032         ENGINE_WRITE(engine, RING_IMR,
1033                      ~(engine->irq_enable_mask | engine->irq_keep_mask));
1034
1035         /* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1036         ENGINE_POSTING_READ(engine, RING_IMR);
1037
1038         gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1039 }
1040
1041 static void
1042 gen6_irq_disable(struct intel_engine_cs *engine)
1043 {
1044         ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
1045         gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1046 }
1047
1048 static void
1049 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1050 {
1051         ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask);
1052
1053         /* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1054         ENGINE_POSTING_READ(engine, RING_IMR);
1055
1056         gen6_unmask_pm_irq(engine->i915, engine->irq_enable_mask);
1057 }
1058
1059 static void
1060 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1061 {
1062         ENGINE_WRITE(engine, RING_IMR, ~0);
1063         gen6_mask_pm_irq(engine->i915, engine->irq_enable_mask);
1064 }
1065
1066 static int
1067 i965_emit_bb_start(struct i915_request *rq,
1068                    u64 offset, u32 length,
1069                    unsigned int dispatch_flags)
1070 {
1071         u32 *cs;
1072
1073         cs = intel_ring_begin(rq, 2);
1074         if (IS_ERR(cs))
1075                 return PTR_ERR(cs);
1076
1077         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1078                 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1079         *cs++ = offset;
1080         intel_ring_advance(rq, cs);
1081
1082         return 0;
1083 }
1084
1085 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1086 #define I830_BATCH_LIMIT SZ_256K
1087 #define I830_TLB_ENTRIES (2)
1088 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1089 static int
1090 i830_emit_bb_start(struct i915_request *rq,
1091                    u64 offset, u32 len,
1092                    unsigned int dispatch_flags)
1093 {
1094         u32 *cs, cs_offset = i915_scratch_offset(rq->i915);
1095
1096         GEM_BUG_ON(rq->i915->gt.scratch->size < I830_WA_SIZE);
1097
1098         cs = intel_ring_begin(rq, 6);
1099         if (IS_ERR(cs))
1100                 return PTR_ERR(cs);
1101
1102         /* Evict the invalid PTE TLBs */
1103         *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1104         *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1105         *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1106         *cs++ = cs_offset;
1107         *cs++ = 0xdeadbeef;
1108         *cs++ = MI_NOOP;
1109         intel_ring_advance(rq, cs);
1110
1111         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1112                 if (len > I830_BATCH_LIMIT)
1113                         return -ENOSPC;
1114
1115                 cs = intel_ring_begin(rq, 6 + 2);
1116                 if (IS_ERR(cs))
1117                         return PTR_ERR(cs);
1118
1119                 /* Blit the batch (which has now all relocs applied) to the
1120                  * stable batch scratch bo area (so that the CS never
1121                  * stumbles over its tlb invalidation bug) ...
1122                  */
1123                 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
1124                 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1125                 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1126                 *cs++ = cs_offset;
1127                 *cs++ = 4096;
1128                 *cs++ = offset;
1129
1130                 *cs++ = MI_FLUSH;
1131                 *cs++ = MI_NOOP;
1132                 intel_ring_advance(rq, cs);
1133
1134                 /* ... and execute it. */
1135                 offset = cs_offset;
1136         }
1137
1138         cs = intel_ring_begin(rq, 2);
1139         if (IS_ERR(cs))
1140                 return PTR_ERR(cs);
1141
1142         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1143         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1144                 MI_BATCH_NON_SECURE);
1145         intel_ring_advance(rq, cs);
1146
1147         return 0;
1148 }
1149
1150 static int
1151 i915_emit_bb_start(struct i915_request *rq,
1152                    u64 offset, u32 len,
1153                    unsigned int dispatch_flags)
1154 {
1155         u32 *cs;
1156
1157         cs = intel_ring_begin(rq, 2);
1158         if (IS_ERR(cs))
1159                 return PTR_ERR(cs);
1160
1161         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1162         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1163                 MI_BATCH_NON_SECURE);
1164         intel_ring_advance(rq, cs);
1165
1166         return 0;
1167 }
1168
1169 int intel_ring_pin(struct intel_ring *ring)
1170 {
1171         struct i915_vma *vma = ring->vma;
1172         enum i915_map_type map = i915_coherent_map_type(vma->vm->i915);
1173         unsigned int flags;
1174         void *addr;
1175         int ret;
1176
1177         GEM_BUG_ON(ring->vaddr);
1178
1179         ret = i915_timeline_pin(ring->timeline);
1180         if (ret)
1181                 return ret;
1182
1183         flags = PIN_GLOBAL;
1184
1185         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1186         flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1187
1188         if (vma->obj->stolen)
1189                 flags |= PIN_MAPPABLE;
1190         else
1191                 flags |= PIN_HIGH;
1192
1193         ret = i915_vma_pin(vma, 0, 0, flags);
1194         if (unlikely(ret))
1195                 goto unpin_timeline;
1196
1197         if (i915_vma_is_map_and_fenceable(vma))
1198                 addr = (void __force *)i915_vma_pin_iomap(vma);
1199         else
1200                 addr = i915_gem_object_pin_map(vma->obj, map);
1201         if (IS_ERR(addr)) {
1202                 ret = PTR_ERR(addr);
1203                 goto unpin_ring;
1204         }
1205
1206         vma->obj->pin_global++;
1207
1208         ring->vaddr = addr;
1209         return 0;
1210
1211 unpin_ring:
1212         i915_vma_unpin(vma);
1213 unpin_timeline:
1214         i915_timeline_unpin(ring->timeline);
1215         return ret;
1216 }
1217
1218 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1219 {
1220         GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
1221
1222         ring->tail = tail;
1223         ring->head = tail;
1224         ring->emit = tail;
1225         intel_ring_update_space(ring);
1226 }
1227
1228 void intel_ring_unpin(struct intel_ring *ring)
1229 {
1230         GEM_BUG_ON(!ring->vma);
1231         GEM_BUG_ON(!ring->vaddr);
1232
1233         /* Discard any unused bytes beyond that submitted to hw. */
1234         intel_ring_reset(ring, ring->tail);
1235
1236         if (i915_vma_is_map_and_fenceable(ring->vma))
1237                 i915_vma_unpin_iomap(ring->vma);
1238         else
1239                 i915_gem_object_unpin_map(ring->vma->obj);
1240         ring->vaddr = NULL;
1241
1242         ring->vma->obj->pin_global--;
1243         i915_vma_unpin(ring->vma);
1244
1245         i915_timeline_unpin(ring->timeline);
1246 }
1247
1248 static struct i915_vma *
1249 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1250 {
1251         struct i915_address_space *vm = &dev_priv->ggtt.vm;
1252         struct drm_i915_gem_object *obj;
1253         struct i915_vma *vma;
1254
1255         obj = i915_gem_object_create_stolen(dev_priv, size);
1256         if (!obj)
1257                 obj = i915_gem_object_create_internal(dev_priv, size);
1258         if (IS_ERR(obj))
1259                 return ERR_CAST(obj);
1260
1261         /*
1262          * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1263          * if supported by the platform's GGTT.
1264          */
1265         if (vm->has_read_only)
1266                 i915_gem_object_set_readonly(obj);
1267
1268         vma = i915_vma_instance(obj, vm, NULL);
1269         if (IS_ERR(vma))
1270                 goto err;
1271
1272         return vma;
1273
1274 err:
1275         i915_gem_object_put(obj);
1276         return vma;
1277 }
1278
1279 struct intel_ring *
1280 intel_engine_create_ring(struct intel_engine_cs *engine,
1281                          struct i915_timeline *timeline,
1282                          int size)
1283 {
1284         struct intel_ring *ring;
1285         struct i915_vma *vma;
1286
1287         GEM_BUG_ON(!is_power_of_2(size));
1288         GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1289         GEM_BUG_ON(timeline == &engine->timeline);
1290         lockdep_assert_held(&engine->i915->drm.struct_mutex);
1291
1292         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1293         if (!ring)
1294                 return ERR_PTR(-ENOMEM);
1295
1296         kref_init(&ring->ref);
1297         INIT_LIST_HEAD(&ring->request_list);
1298         ring->timeline = i915_timeline_get(timeline);
1299
1300         ring->size = size;
1301         /* Workaround an erratum on the i830 which causes a hang if
1302          * the TAIL pointer points to within the last 2 cachelines
1303          * of the buffer.
1304          */
1305         ring->effective_size = size;
1306         if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1307                 ring->effective_size -= 2 * CACHELINE_BYTES;
1308
1309         intel_ring_update_space(ring);
1310
1311         vma = intel_ring_create_vma(engine->i915, size);
1312         if (IS_ERR(vma)) {
1313                 kfree(ring);
1314                 return ERR_CAST(vma);
1315         }
1316         ring->vma = vma;
1317
1318         return ring;
1319 }
1320
1321 void intel_ring_free(struct kref *ref)
1322 {
1323         struct intel_ring *ring = container_of(ref, typeof(*ring), ref);
1324         struct drm_i915_gem_object *obj = ring->vma->obj;
1325
1326         i915_vma_close(ring->vma);
1327         __i915_gem_object_release_unless_active(obj);
1328
1329         i915_timeline_put(ring->timeline);
1330         kfree(ring);
1331 }
1332
1333 static void __ring_context_fini(struct intel_context *ce)
1334 {
1335         GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1336         i915_gem_object_put(ce->state->obj);
1337 }
1338
1339 static void ring_context_destroy(struct kref *ref)
1340 {
1341         struct intel_context *ce = container_of(ref, typeof(*ce), ref);
1342
1343         GEM_BUG_ON(intel_context_is_pinned(ce));
1344
1345         if (ce->state)
1346                 __ring_context_fini(ce);
1347
1348         intel_context_free(ce);
1349 }
1350
1351 static int __context_pin_ppgtt(struct i915_gem_context *ctx)
1352 {
1353         struct i915_hw_ppgtt *ppgtt;
1354         int err = 0;
1355
1356         ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1357         if (ppgtt)
1358                 err = gen6_ppgtt_pin(ppgtt);
1359
1360         return err;
1361 }
1362
1363 static void __context_unpin_ppgtt(struct i915_gem_context *ctx)
1364 {
1365         struct i915_hw_ppgtt *ppgtt;
1366
1367         ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1368         if (ppgtt)
1369                 gen6_ppgtt_unpin(ppgtt);
1370 }
1371
1372 static int __context_pin(struct intel_context *ce)
1373 {
1374         struct i915_vma *vma;
1375         int err;
1376
1377         vma = ce->state;
1378         if (!vma)
1379                 return 0;
1380
1381         err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1382         if (err)
1383                 return err;
1384
1385         /*
1386          * And mark is as a globally pinned object to let the shrinker know
1387          * it cannot reclaim the object until we release it.
1388          */
1389         vma->obj->pin_global++;
1390         vma->obj->mm.dirty = true;
1391
1392         return 0;
1393 }
1394
1395 static void __context_unpin(struct intel_context *ce)
1396 {
1397         struct i915_vma *vma;
1398
1399         vma = ce->state;
1400         if (!vma)
1401                 return;
1402
1403         vma->obj->pin_global--;
1404         i915_vma_unpin(vma);
1405 }
1406
1407 static void ring_context_unpin(struct intel_context *ce)
1408 {
1409         __context_unpin_ppgtt(ce->gem_context);
1410         __context_unpin(ce);
1411 }
1412
1413 static struct i915_vma *
1414 alloc_context_vma(struct intel_engine_cs *engine)
1415 {
1416         struct drm_i915_private *i915 = engine->i915;
1417         struct drm_i915_gem_object *obj;
1418         struct i915_vma *vma;
1419         int err;
1420
1421         obj = i915_gem_object_create(i915, engine->context_size);
1422         if (IS_ERR(obj))
1423                 return ERR_CAST(obj);
1424
1425         /*
1426          * Try to make the context utilize L3 as well as LLC.
1427          *
1428          * On VLV we don't have L3 controls in the PTEs so we
1429          * shouldn't touch the cache level, especially as that
1430          * would make the object snooped which might have a
1431          * negative performance impact.
1432          *
1433          * Snooping is required on non-llc platforms in execlist
1434          * mode, but since all GGTT accesses use PAT entry 0 we
1435          * get snooping anyway regardless of cache_level.
1436          *
1437          * This is only applicable for Ivy Bridge devices since
1438          * later platforms don't have L3 control bits in the PTE.
1439          */
1440         if (IS_IVYBRIDGE(i915))
1441                 i915_gem_object_set_cache_coherency(obj, I915_CACHE_L3_LLC);
1442
1443         if (engine->default_state) {
1444                 void *defaults, *vaddr;
1445
1446                 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1447                 if (IS_ERR(vaddr)) {
1448                         err = PTR_ERR(vaddr);
1449                         goto err_obj;
1450                 }
1451
1452                 defaults = i915_gem_object_pin_map(engine->default_state,
1453                                                    I915_MAP_WB);
1454                 if (IS_ERR(defaults)) {
1455                         err = PTR_ERR(defaults);
1456                         goto err_map;
1457                 }
1458
1459                 memcpy(vaddr, defaults, engine->context_size);
1460                 i915_gem_object_unpin_map(engine->default_state);
1461
1462                 i915_gem_object_flush_map(obj);
1463                 i915_gem_object_unpin_map(obj);
1464         }
1465
1466         vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
1467         if (IS_ERR(vma)) {
1468                 err = PTR_ERR(vma);
1469                 goto err_obj;
1470         }
1471
1472         return vma;
1473
1474 err_map:
1475         i915_gem_object_unpin_map(obj);
1476 err_obj:
1477         i915_gem_object_put(obj);
1478         return ERR_PTR(err);
1479 }
1480
1481 static int ring_context_pin(struct intel_context *ce)
1482 {
1483         struct intel_engine_cs *engine = ce->engine;
1484         int err;
1485
1486         /* One ringbuffer to rule them all */
1487         GEM_BUG_ON(!engine->buffer);
1488         ce->ring = engine->buffer;
1489
1490         if (!ce->state && engine->context_size) {
1491                 struct i915_vma *vma;
1492
1493                 vma = alloc_context_vma(engine);
1494                 if (IS_ERR(vma))
1495                         return PTR_ERR(vma);
1496
1497                 ce->state = vma;
1498         }
1499
1500         err = __context_pin(ce);
1501         if (err)
1502                 return err;
1503
1504         err = __context_pin_ppgtt(ce->gem_context);
1505         if (err)
1506                 goto err_unpin;
1507
1508         return 0;
1509
1510 err_unpin:
1511         __context_unpin(ce);
1512         return err;
1513 }
1514
1515 static const struct intel_context_ops ring_context_ops = {
1516         .pin = ring_context_pin,
1517         .unpin = ring_context_unpin,
1518         .destroy = ring_context_destroy,
1519 };
1520
1521 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1522 {
1523         struct i915_timeline *timeline;
1524         struct intel_ring *ring;
1525         int err;
1526
1527         err = intel_engine_setup_common(engine);
1528         if (err)
1529                 return err;
1530
1531         timeline = i915_timeline_create(engine->i915, engine->status_page.vma);
1532         if (IS_ERR(timeline)) {
1533                 err = PTR_ERR(timeline);
1534                 goto err;
1535         }
1536         GEM_BUG_ON(timeline->has_initial_breadcrumb);
1537
1538         ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
1539         i915_timeline_put(timeline);
1540         if (IS_ERR(ring)) {
1541                 err = PTR_ERR(ring);
1542                 goto err;
1543         }
1544
1545         err = intel_ring_pin(ring);
1546         if (err)
1547                 goto err_ring;
1548
1549         GEM_BUG_ON(engine->buffer);
1550         engine->buffer = ring;
1551
1552         err = intel_engine_init_common(engine);
1553         if (err)
1554                 goto err_unpin;
1555
1556         GEM_BUG_ON(ring->timeline->hwsp_ggtt != engine->status_page.vma);
1557
1558         return 0;
1559
1560 err_unpin:
1561         intel_ring_unpin(ring);
1562 err_ring:
1563         intel_ring_put(ring);
1564 err:
1565         intel_engine_cleanup_common(engine);
1566         return err;
1567 }
1568
1569 void intel_engine_cleanup(struct intel_engine_cs *engine)
1570 {
1571         struct drm_i915_private *dev_priv = engine->i915;
1572
1573         WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1574                 (ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
1575
1576         intel_ring_unpin(engine->buffer);
1577         intel_ring_put(engine->buffer);
1578
1579         if (engine->cleanup)
1580                 engine->cleanup(engine);
1581
1582         intel_engine_cleanup_common(engine);
1583
1584         dev_priv->engine[engine->id] = NULL;
1585         kfree(engine);
1586 }
1587
1588 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1589 {
1590         struct intel_engine_cs *engine;
1591         enum intel_engine_id id;
1592
1593         /* Restart from the beginning of the rings for convenience */
1594         for_each_engine(engine, dev_priv, id)
1595                 intel_ring_reset(engine->buffer, 0);
1596 }
1597
1598 static int load_pd_dir(struct i915_request *rq,
1599                        const struct i915_hw_ppgtt *ppgtt)
1600 {
1601         const struct intel_engine_cs * const engine = rq->engine;
1602         u32 *cs;
1603
1604         cs = intel_ring_begin(rq, 6);
1605         if (IS_ERR(cs))
1606                 return PTR_ERR(cs);
1607
1608         *cs++ = MI_LOAD_REGISTER_IMM(1);
1609         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine->mmio_base));
1610         *cs++ = PP_DIR_DCLV_2G;
1611
1612         *cs++ = MI_LOAD_REGISTER_IMM(1);
1613         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1614         *cs++ = ppgtt->pd.base.ggtt_offset << 10;
1615
1616         intel_ring_advance(rq, cs);
1617
1618         return 0;
1619 }
1620
1621 static int flush_pd_dir(struct i915_request *rq)
1622 {
1623         const struct intel_engine_cs * const engine = rq->engine;
1624         u32 *cs;
1625
1626         cs = intel_ring_begin(rq, 4);
1627         if (IS_ERR(cs))
1628                 return PTR_ERR(cs);
1629
1630         /* Stall until the page table load is complete */
1631         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1632         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1633         *cs++ = i915_scratch_offset(rq->i915);
1634         *cs++ = MI_NOOP;
1635
1636         intel_ring_advance(rq, cs);
1637         return 0;
1638 }
1639
1640 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1641 {
1642         struct drm_i915_private *i915 = rq->i915;
1643         struct intel_engine_cs *engine = rq->engine;
1644         enum intel_engine_id id;
1645         const int num_engines =
1646                 IS_HSW_GT1(i915) ? RUNTIME_INFO(i915)->num_engines - 1 : 0;
1647         bool force_restore = false;
1648         int len;
1649         u32 *cs;
1650
1651         flags |= MI_MM_SPACE_GTT;
1652         if (IS_HASWELL(i915))
1653                 /* These flags are for resource streamer on HSW+ */
1654                 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1655         else
1656                 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1657
1658         len = 4;
1659         if (IS_GEN(i915, 7))
1660                 len += 2 + (num_engines ? 4 * num_engines + 6 : 0);
1661         if (flags & MI_FORCE_RESTORE) {
1662                 GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1663                 flags &= ~MI_FORCE_RESTORE;
1664                 force_restore = true;
1665                 len += 2;
1666         }
1667
1668         cs = intel_ring_begin(rq, len);
1669         if (IS_ERR(cs))
1670                 return PTR_ERR(cs);
1671
1672         /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1673         if (IS_GEN(i915, 7)) {
1674                 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1675                 if (num_engines) {
1676                         struct intel_engine_cs *signaller;
1677
1678                         *cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1679                         for_each_engine(signaller, i915, id) {
1680                                 if (signaller == engine)
1681                                         continue;
1682
1683                                 *cs++ = i915_mmio_reg_offset(
1684                                            RING_PSMI_CTL(signaller->mmio_base));
1685                                 *cs++ = _MASKED_BIT_ENABLE(
1686                                                 GEN6_PSMI_SLEEP_MSG_DISABLE);
1687                         }
1688                 }
1689         }
1690
1691         if (force_restore) {
1692                 /*
1693                  * The HW doesn't handle being told to restore the current
1694                  * context very well. Quite often it likes goes to go off and
1695                  * sulk, especially when it is meant to be reloading PP_DIR.
1696                  * A very simple fix to force the reload is to simply switch
1697                  * away from the current context and back again.
1698                  *
1699                  * Note that the kernel_context will contain random state
1700                  * following the INHIBIT_RESTORE. We accept this since we
1701                  * never use the kernel_context state; it is merely a
1702                  * placeholder we use to flush other contexts.
1703                  */
1704                 *cs++ = MI_SET_CONTEXT;
1705                 *cs++ = i915_ggtt_offset(engine->kernel_context->state) |
1706                         MI_MM_SPACE_GTT |
1707                         MI_RESTORE_INHIBIT;
1708         }
1709
1710         *cs++ = MI_NOOP;
1711         *cs++ = MI_SET_CONTEXT;
1712         *cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1713         /*
1714          * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1715          * WaMiSetContext_Hang:snb,ivb,vlv
1716          */
1717         *cs++ = MI_NOOP;
1718
1719         if (IS_GEN(i915, 7)) {
1720                 if (num_engines) {
1721                         struct intel_engine_cs *signaller;
1722                         i915_reg_t last_reg = {}; /* keep gcc quiet */
1723
1724                         *cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1725                         for_each_engine(signaller, i915, id) {
1726                                 if (signaller == engine)
1727                                         continue;
1728
1729                                 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1730                                 *cs++ = i915_mmio_reg_offset(last_reg);
1731                                 *cs++ = _MASKED_BIT_DISABLE(
1732                                                 GEN6_PSMI_SLEEP_MSG_DISABLE);
1733                         }
1734
1735                         /* Insert a delay before the next switch! */
1736                         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1737                         *cs++ = i915_mmio_reg_offset(last_reg);
1738                         *cs++ = i915_scratch_offset(rq->i915);
1739                         *cs++ = MI_NOOP;
1740                 }
1741                 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1742         }
1743
1744         intel_ring_advance(rq, cs);
1745
1746         return 0;
1747 }
1748
1749 static int remap_l3(struct i915_request *rq, int slice)
1750 {
1751         u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1752         int i;
1753
1754         if (!remap_info)
1755                 return 0;
1756
1757         cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1758         if (IS_ERR(cs))
1759                 return PTR_ERR(cs);
1760
1761         /*
1762          * Note: We do not worry about the concurrent register cacheline hang
1763          * here because no other code should access these registers other than
1764          * at initialization time.
1765          */
1766         *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1767         for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1768                 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1769                 *cs++ = remap_info[i];
1770         }
1771         *cs++ = MI_NOOP;
1772         intel_ring_advance(rq, cs);
1773
1774         return 0;
1775 }
1776
1777 static int switch_context(struct i915_request *rq)
1778 {
1779         struct intel_engine_cs *engine = rq->engine;
1780         struct i915_gem_context *ctx = rq->gem_context;
1781         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1782         unsigned int unwind_mm = 0;
1783         u32 hw_flags = 0;
1784         int ret, i;
1785
1786         lockdep_assert_held(&rq->i915->drm.struct_mutex);
1787         GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1788
1789         if (ppgtt) {
1790                 int loops;
1791
1792                 /*
1793                  * Baytail takes a little more convincing that it really needs
1794                  * to reload the PD between contexts. It is not just a little
1795                  * longer, as adding more stalls after the load_pd_dir (i.e.
1796                  * adding a long loop around flush_pd_dir) is not as effective
1797                  * as reloading the PD umpteen times. 32 is derived from
1798                  * experimentation (gem_exec_parallel/fds) and has no good
1799                  * explanation.
1800                  */
1801                 loops = 1;
1802                 if (engine->id == BCS0 && IS_VALLEYVIEW(engine->i915))
1803                         loops = 32;
1804
1805                 do {
1806                         ret = load_pd_dir(rq, ppgtt);
1807                         if (ret)
1808                                 goto err;
1809                 } while (--loops);
1810
1811                 if (ppgtt->pd_dirty_engines & engine->mask) {
1812                         unwind_mm = engine->mask;
1813                         ppgtt->pd_dirty_engines &= ~unwind_mm;
1814                         hw_flags = MI_FORCE_RESTORE;
1815                 }
1816         }
1817
1818         if (rq->hw_context->state) {
1819                 GEM_BUG_ON(engine->id != RCS0);
1820
1821                 /*
1822                  * The kernel context(s) is treated as pure scratch and is not
1823                  * expected to retain any state (as we sacrifice it during
1824                  * suspend and on resume it may be corrupted). This is ok,
1825                  * as nothing actually executes using the kernel context; it
1826                  * is purely used for flushing user contexts.
1827                  */
1828                 if (i915_gem_context_is_kernel(ctx))
1829                         hw_flags = MI_RESTORE_INHIBIT;
1830
1831                 ret = mi_set_context(rq, hw_flags);
1832                 if (ret)
1833                         goto err_mm;
1834         }
1835
1836         if (ppgtt) {
1837                 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1838                 if (ret)
1839                         goto err_mm;
1840
1841                 ret = flush_pd_dir(rq);
1842                 if (ret)
1843                         goto err_mm;
1844
1845                 /*
1846                  * Not only do we need a full barrier (post-sync write) after
1847                  * invalidating the TLBs, but we need to wait a little bit
1848                  * longer. Whether this is merely delaying us, or the
1849                  * subsequent flush is a key part of serialising with the
1850                  * post-sync op, this extra pass appears vital before a
1851                  * mm switch!
1852                  */
1853                 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1854                 if (ret)
1855                         goto err_mm;
1856
1857                 ret = engine->emit_flush(rq, EMIT_FLUSH);
1858                 if (ret)
1859                         goto err_mm;
1860         }
1861
1862         if (ctx->remap_slice) {
1863                 for (i = 0; i < MAX_L3_SLICES; i++) {
1864                         if (!(ctx->remap_slice & BIT(i)))
1865                                 continue;
1866
1867                         ret = remap_l3(rq, i);
1868                         if (ret)
1869                                 goto err_mm;
1870                 }
1871
1872                 ctx->remap_slice = 0;
1873         }
1874
1875         return 0;
1876
1877 err_mm:
1878         if (unwind_mm)
1879                 ppgtt->pd_dirty_engines |= unwind_mm;
1880 err:
1881         return ret;
1882 }
1883
1884 static int ring_request_alloc(struct i915_request *request)
1885 {
1886         int ret;
1887
1888         GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1889         GEM_BUG_ON(request->timeline->has_initial_breadcrumb);
1890
1891         /*
1892          * Flush enough space to reduce the likelihood of waiting after
1893          * we start building the request - in which case we will just
1894          * have to repeat work.
1895          */
1896         request->reserved_space += LEGACY_REQUEST_SIZE;
1897
1898         ret = switch_context(request);
1899         if (ret)
1900                 return ret;
1901
1902         /* Unconditionally invalidate GPU caches and TLBs. */
1903         ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1904         if (ret)
1905                 return ret;
1906
1907         request->reserved_space -= LEGACY_REQUEST_SIZE;
1908         return 0;
1909 }
1910
1911 static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1912 {
1913         struct i915_request *target;
1914         long timeout;
1915
1916         lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1917
1918         if (intel_ring_update_space(ring) >= bytes)
1919                 return 0;
1920
1921         GEM_BUG_ON(list_empty(&ring->request_list));
1922         list_for_each_entry(target, &ring->request_list, ring_link) {
1923                 /* Would completion of this request free enough space? */
1924                 if (bytes <= __intel_ring_space(target->postfix,
1925                                                 ring->emit, ring->size))
1926                         break;
1927         }
1928
1929         if (WARN_ON(&target->ring_link == &ring->request_list))
1930                 return -ENOSPC;
1931
1932         timeout = i915_request_wait(target,
1933                                     I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1934                                     MAX_SCHEDULE_TIMEOUT);
1935         if (timeout < 0)
1936                 return timeout;
1937
1938         i915_request_retire_upto(target);
1939
1940         intel_ring_update_space(ring);
1941         GEM_BUG_ON(ring->space < bytes);
1942         return 0;
1943 }
1944
1945 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1946 {
1947         struct intel_ring *ring = rq->ring;
1948         const unsigned int remain_usable = ring->effective_size - ring->emit;
1949         const unsigned int bytes = num_dwords * sizeof(u32);
1950         unsigned int need_wrap = 0;
1951         unsigned int total_bytes;
1952         u32 *cs;
1953
1954         /* Packets must be qword aligned. */
1955         GEM_BUG_ON(num_dwords & 1);
1956
1957         total_bytes = bytes + rq->reserved_space;
1958         GEM_BUG_ON(total_bytes > ring->effective_size);
1959
1960         if (unlikely(total_bytes > remain_usable)) {
1961                 const int remain_actual = ring->size - ring->emit;
1962
1963                 if (bytes > remain_usable) {
1964                         /*
1965                          * Not enough space for the basic request. So need to
1966                          * flush out the remainder and then wait for
1967                          * base + reserved.
1968                          */
1969                         total_bytes += remain_actual;
1970                         need_wrap = remain_actual | 1;
1971                 } else  {
1972                         /*
1973                          * The base request will fit but the reserved space
1974                          * falls off the end. So we don't need an immediate
1975                          * wrap and only need to effectively wait for the
1976                          * reserved size from the start of ringbuffer.
1977                          */
1978                         total_bytes = rq->reserved_space + remain_actual;
1979                 }
1980         }
1981
1982         if (unlikely(total_bytes > ring->space)) {
1983                 int ret;
1984
1985                 /*
1986                  * Space is reserved in the ringbuffer for finalising the
1987                  * request, as that cannot be allowed to fail. During request
1988                  * finalisation, reserved_space is set to 0 to stop the
1989                  * overallocation and the assumption is that then we never need
1990                  * to wait (which has the risk of failing with EINTR).
1991                  *
1992                  * See also i915_request_alloc() and i915_request_add().
1993                  */
1994                 GEM_BUG_ON(!rq->reserved_space);
1995
1996                 ret = wait_for_space(ring, total_bytes);
1997                 if (unlikely(ret))
1998                         return ERR_PTR(ret);
1999         }
2000
2001         if (unlikely(need_wrap)) {
2002                 need_wrap &= ~1;
2003                 GEM_BUG_ON(need_wrap > ring->space);
2004                 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
2005                 GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
2006
2007                 /* Fill the tail with MI_NOOP */
2008                 memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
2009                 ring->space -= need_wrap;
2010                 ring->emit = 0;
2011         }
2012
2013         GEM_BUG_ON(ring->emit > ring->size - bytes);
2014         GEM_BUG_ON(ring->space < bytes);
2015         cs = ring->vaddr + ring->emit;
2016         GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
2017         ring->emit += bytes;
2018         ring->space -= bytes;
2019
2020         return cs;
2021 }
2022
2023 /* Align the ring tail to a cacheline boundary */
2024 int intel_ring_cacheline_align(struct i915_request *rq)
2025 {
2026         int num_dwords;
2027         void *cs;
2028
2029         num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
2030         if (num_dwords == 0)
2031                 return 0;
2032
2033         num_dwords = CACHELINE_DWORDS - num_dwords;
2034         GEM_BUG_ON(num_dwords & 1);
2035
2036         cs = intel_ring_begin(rq, num_dwords);
2037         if (IS_ERR(cs))
2038                 return PTR_ERR(cs);
2039
2040         memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
2041         intel_ring_advance(rq, cs);
2042
2043         GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
2044         return 0;
2045 }
2046
2047 static void gen6_bsd_submit_request(struct i915_request *request)
2048 {
2049         struct intel_uncore *uncore = request->engine->uncore;
2050
2051         intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
2052
2053        /* Every tail move must follow the sequence below */
2054
2055         /* Disable notification that the ring is IDLE. The GT
2056          * will then assume that it is busy and bring it out of rc6.
2057          */
2058         intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
2059                               _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2060
2061         /* Clear the context id. Here be magic! */
2062         intel_uncore_write64_fw(uncore, GEN6_BSD_RNCID, 0x0);
2063
2064         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2065         if (__intel_wait_for_register_fw(uncore,
2066                                          GEN6_BSD_SLEEP_PSMI_CONTROL,
2067                                          GEN6_BSD_SLEEP_INDICATOR,
2068                                          0,
2069                                          1000, 0, NULL))
2070                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2071
2072         /* Now that the ring is fully powered up, update the tail */
2073         i9xx_submit_request(request);
2074
2075         /* Let the ring send IDLE messages to the GT again,
2076          * and so let it sleep to conserve power when idle.
2077          */
2078         intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
2079                               _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2080
2081         intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
2082 }
2083
2084 static int mi_flush_dw(struct i915_request *rq, u32 flags)
2085 {
2086         u32 cmd, *cs;
2087
2088         cs = intel_ring_begin(rq, 4);
2089         if (IS_ERR(cs))
2090                 return PTR_ERR(cs);
2091
2092         cmd = MI_FLUSH_DW;
2093
2094         /*
2095          * We always require a command barrier so that subsequent
2096          * commands, such as breadcrumb interrupts, are strictly ordered
2097          * wrt the contents of the write cache being flushed to memory
2098          * (and thus being coherent from the CPU).
2099          */
2100         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2101
2102         /*
2103          * Bspec vol 1c.3 - blitter engine command streamer:
2104          * "If ENABLED, all TLBs will be invalidated once the flush
2105          * operation is complete. This bit is only valid when the
2106          * Post-Sync Operation field is a value of 1h or 3h."
2107          */
2108         cmd |= flags;
2109
2110         *cs++ = cmd;
2111         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2112         *cs++ = 0;
2113         *cs++ = MI_NOOP;
2114
2115         intel_ring_advance(rq, cs);
2116
2117         return 0;
2118 }
2119
2120 static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
2121 {
2122         return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
2123 }
2124
2125 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
2126 {
2127         return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
2128 }
2129
2130 static int
2131 hsw_emit_bb_start(struct i915_request *rq,
2132                   u64 offset, u32 len,
2133                   unsigned int dispatch_flags)
2134 {
2135         u32 *cs;
2136
2137         cs = intel_ring_begin(rq, 2);
2138         if (IS_ERR(cs))
2139                 return PTR_ERR(cs);
2140
2141         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2142                 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
2143         /* bit0-7 is the length on GEN6+ */
2144         *cs++ = offset;
2145         intel_ring_advance(rq, cs);
2146
2147         return 0;
2148 }
2149
2150 static int
2151 gen6_emit_bb_start(struct i915_request *rq,
2152                    u64 offset, u32 len,
2153                    unsigned int dispatch_flags)
2154 {
2155         u32 *cs;
2156
2157         cs = intel_ring_begin(rq, 2);
2158         if (IS_ERR(cs))
2159                 return PTR_ERR(cs);
2160
2161         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2162                 0 : MI_BATCH_NON_SECURE_I965);
2163         /* bit0-7 is the length on GEN6+ */
2164         *cs++ = offset;
2165         intel_ring_advance(rq, cs);
2166
2167         return 0;
2168 }
2169
2170 /* Blitter support (SandyBridge+) */
2171
2172 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
2173 {
2174         return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
2175 }
2176
2177 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2178                                 struct intel_engine_cs *engine)
2179 {
2180         if (INTEL_GEN(dev_priv) >= 6) {
2181                 engine->irq_enable = gen6_irq_enable;
2182                 engine->irq_disable = gen6_irq_disable;
2183         } else if (INTEL_GEN(dev_priv) >= 5) {
2184                 engine->irq_enable = gen5_irq_enable;
2185                 engine->irq_disable = gen5_irq_disable;
2186         } else if (INTEL_GEN(dev_priv) >= 3) {
2187                 engine->irq_enable = i9xx_irq_enable;
2188                 engine->irq_disable = i9xx_irq_disable;
2189         } else {
2190                 engine->irq_enable = i8xx_irq_enable;
2191                 engine->irq_disable = i8xx_irq_disable;
2192         }
2193 }
2194
2195 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2196 {
2197         engine->submit_request = i9xx_submit_request;
2198         engine->cancel_requests = cancel_requests;
2199
2200         engine->park = NULL;
2201         engine->unpark = NULL;
2202 }
2203
2204 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2205 {
2206         i9xx_set_default_submission(engine);
2207         engine->submit_request = gen6_bsd_submit_request;
2208 }
2209
2210 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2211                                       struct intel_engine_cs *engine)
2212 {
2213         /* gen8+ are only supported with execlists */
2214         GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
2215
2216         intel_ring_init_irq(dev_priv, engine);
2217
2218         engine->init_hw = init_ring_common;
2219         engine->reset.prepare = reset_prepare;
2220         engine->reset.reset = reset_ring;
2221         engine->reset.finish = reset_finish;
2222
2223         engine->cops = &ring_context_ops;
2224         engine->request_alloc = ring_request_alloc;
2225
2226         /*
2227          * Using a global execution timeline; the previous final breadcrumb is
2228          * equivalent to our next initial bread so we can elide
2229          * engine->emit_init_breadcrumb().
2230          */
2231         engine->emit_fini_breadcrumb = i9xx_emit_breadcrumb;
2232         if (IS_GEN(dev_priv, 5))
2233                 engine->emit_fini_breadcrumb = gen5_emit_breadcrumb;
2234
2235         engine->set_default_submission = i9xx_set_default_submission;
2236
2237         if (INTEL_GEN(dev_priv) >= 6)
2238                 engine->emit_bb_start = gen6_emit_bb_start;
2239         else if (INTEL_GEN(dev_priv) >= 4)
2240                 engine->emit_bb_start = i965_emit_bb_start;
2241         else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2242                 engine->emit_bb_start = i830_emit_bb_start;
2243         else
2244                 engine->emit_bb_start = i915_emit_bb_start;
2245 }
2246
2247 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2248 {
2249         struct drm_i915_private *dev_priv = engine->i915;
2250         int ret;
2251
2252         intel_ring_default_vfuncs(dev_priv, engine);
2253
2254         if (HAS_L3_DPF(dev_priv))
2255                 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2256
2257         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2258
2259         if (INTEL_GEN(dev_priv) >= 7) {
2260                 engine->init_context = intel_rcs_ctx_init;
2261                 engine->emit_flush = gen7_render_ring_flush;
2262                 engine->emit_fini_breadcrumb = gen7_rcs_emit_breadcrumb;
2263         } else if (IS_GEN(dev_priv, 6)) {
2264                 engine->init_context = intel_rcs_ctx_init;
2265                 engine->emit_flush = gen6_render_ring_flush;
2266                 engine->emit_fini_breadcrumb = gen6_rcs_emit_breadcrumb;
2267         } else if (IS_GEN(dev_priv, 5)) {
2268                 engine->emit_flush = gen4_render_ring_flush;
2269         } else {
2270                 if (INTEL_GEN(dev_priv) < 4)
2271                         engine->emit_flush = gen2_render_ring_flush;
2272                 else
2273                         engine->emit_flush = gen4_render_ring_flush;
2274                 engine->irq_enable_mask = I915_USER_INTERRUPT;
2275         }
2276
2277         if (IS_HASWELL(dev_priv))
2278                 engine->emit_bb_start = hsw_emit_bb_start;
2279
2280         engine->init_hw = init_render_ring;
2281
2282         ret = intel_init_ring_buffer(engine);
2283         if (ret)
2284                 return ret;
2285
2286         return 0;
2287 }
2288
2289 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2290 {
2291         struct drm_i915_private *dev_priv = engine->i915;
2292
2293         intel_ring_default_vfuncs(dev_priv, engine);
2294
2295         if (INTEL_GEN(dev_priv) >= 6) {
2296                 /* gen6 bsd needs a special wa for tail updates */
2297                 if (IS_GEN(dev_priv, 6))
2298                         engine->set_default_submission = gen6_bsd_set_default_submission;
2299                 engine->emit_flush = gen6_bsd_ring_flush;
2300                 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2301
2302                 if (IS_GEN(dev_priv, 6))
2303                         engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2304                 else
2305                         engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2306         } else {
2307                 engine->emit_flush = bsd_ring_flush;
2308                 if (IS_GEN(dev_priv, 5))
2309                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2310                 else
2311                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2312         }
2313
2314         return intel_init_ring_buffer(engine);
2315 }
2316
2317 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2318 {
2319         struct drm_i915_private *dev_priv = engine->i915;
2320
2321         GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
2322
2323         intel_ring_default_vfuncs(dev_priv, engine);
2324
2325         engine->emit_flush = gen6_ring_flush;
2326         engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2327
2328         if (IS_GEN(dev_priv, 6))
2329                 engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2330         else
2331                 engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2332
2333         return intel_init_ring_buffer(engine);
2334 }
2335
2336 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2337 {
2338         struct drm_i915_private *dev_priv = engine->i915;
2339
2340         GEM_BUG_ON(INTEL_GEN(dev_priv) < 7);
2341
2342         intel_ring_default_vfuncs(dev_priv, engine);
2343
2344         engine->emit_flush = gen6_ring_flush;
2345         engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2346         engine->irq_enable = hsw_vebox_irq_enable;
2347         engine->irq_disable = hsw_vebox_irq_disable;
2348
2349         engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2350
2351         return intel_init_ring_buffer(engine);
2352 }