Merge tag 'spi-v4.1-rc1' into spi-linus
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35  * RC6 is a special power stage which allows the GPU to enter an very
36  * low-voltage mode when idle, using down to 0V while at this stage.  This
37  * stage is entered automatically when the GPU is idle when RC6 support is
38  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39  *
40  * There are different RC6 modes available in Intel GPU, which differentiate
41  * among each other with the latency required to enter and leave RC6 and
42  * voltage consumed by the GPU in different states.
43  *
44  * The combination of the following flags define which states GPU is allowed
45  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46  * RC6pp is deepest RC6. Their support by hardware varies according to the
47  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48  * which brings the most power savings; deeper states save more power, but
49  * require higher latency to switch to and wake up.
50  */
51 #define INTEL_RC6_ENABLE                        (1<<0)
52 #define INTEL_RC6p_ENABLE                       (1<<1)
53 #define INTEL_RC6pp_ENABLE                      (1<<2)
54
55 static void gen9_init_clock_gating(struct drm_device *dev)
56 {
57         struct drm_i915_private *dev_priv = dev->dev_private;
58
59         /* WaEnableLbsSlaRetryTimerDecrement:skl */
60         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
61                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
62 }
63
64 static void skl_init_clock_gating(struct drm_device *dev)
65 {
66         struct drm_i915_private *dev_priv = dev->dev_private;
67
68         gen9_init_clock_gating(dev);
69
70         if (INTEL_REVID(dev) == SKL_REVID_A0) {
71                 /*
72                  * WaDisableSDEUnitClockGating:skl
73                  * WaSetGAPSunitClckGateDisable:skl
74                  */
75                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
76                            GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
77                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
78         }
79
80         if (INTEL_REVID(dev) <= SKL_REVID_D0) {
81                 /* WaDisableHDCInvalidation:skl */
82                 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
83                            BDW_DISABLE_HDC_INVALIDATION);
84
85                 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
86                 I915_WRITE(FF_SLICE_CS_CHICKEN2,
87                            I915_READ(FF_SLICE_CS_CHICKEN2) |
88                            GEN9_TSG_BARRIER_ACK_DISABLE);
89         }
90
91         if (INTEL_REVID(dev) <= SKL_REVID_E0)
92                 /* WaDisableLSQCROPERFforOCL:skl */
93                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
94                            GEN8_LQSC_RO_PERF_DIS);
95 }
96
97 static void i915_pineview_get_mem_freq(struct drm_device *dev)
98 {
99         struct drm_i915_private *dev_priv = dev->dev_private;
100         u32 tmp;
101
102         tmp = I915_READ(CLKCFG);
103
104         switch (tmp & CLKCFG_FSB_MASK) {
105         case CLKCFG_FSB_533:
106                 dev_priv->fsb_freq = 533; /* 133*4 */
107                 break;
108         case CLKCFG_FSB_800:
109                 dev_priv->fsb_freq = 800; /* 200*4 */
110                 break;
111         case CLKCFG_FSB_667:
112                 dev_priv->fsb_freq =  667; /* 167*4 */
113                 break;
114         case CLKCFG_FSB_400:
115                 dev_priv->fsb_freq = 400; /* 100*4 */
116                 break;
117         }
118
119         switch (tmp & CLKCFG_MEM_MASK) {
120         case CLKCFG_MEM_533:
121                 dev_priv->mem_freq = 533;
122                 break;
123         case CLKCFG_MEM_667:
124                 dev_priv->mem_freq = 667;
125                 break;
126         case CLKCFG_MEM_800:
127                 dev_priv->mem_freq = 800;
128                 break;
129         }
130
131         /* detect pineview DDR3 setting */
132         tmp = I915_READ(CSHRDDR3CTL);
133         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
134 }
135
136 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
137 {
138         struct drm_i915_private *dev_priv = dev->dev_private;
139         u16 ddrpll, csipll;
140
141         ddrpll = I915_READ16(DDRMPLL1);
142         csipll = I915_READ16(CSIPLL0);
143
144         switch (ddrpll & 0xff) {
145         case 0xc:
146                 dev_priv->mem_freq = 800;
147                 break;
148         case 0x10:
149                 dev_priv->mem_freq = 1066;
150                 break;
151         case 0x14:
152                 dev_priv->mem_freq = 1333;
153                 break;
154         case 0x18:
155                 dev_priv->mem_freq = 1600;
156                 break;
157         default:
158                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
159                                  ddrpll & 0xff);
160                 dev_priv->mem_freq = 0;
161                 break;
162         }
163
164         dev_priv->ips.r_t = dev_priv->mem_freq;
165
166         switch (csipll & 0x3ff) {
167         case 0x00c:
168                 dev_priv->fsb_freq = 3200;
169                 break;
170         case 0x00e:
171                 dev_priv->fsb_freq = 3733;
172                 break;
173         case 0x010:
174                 dev_priv->fsb_freq = 4266;
175                 break;
176         case 0x012:
177                 dev_priv->fsb_freq = 4800;
178                 break;
179         case 0x014:
180                 dev_priv->fsb_freq = 5333;
181                 break;
182         case 0x016:
183                 dev_priv->fsb_freq = 5866;
184                 break;
185         case 0x018:
186                 dev_priv->fsb_freq = 6400;
187                 break;
188         default:
189                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
190                                  csipll & 0x3ff);
191                 dev_priv->fsb_freq = 0;
192                 break;
193         }
194
195         if (dev_priv->fsb_freq == 3200) {
196                 dev_priv->ips.c_m = 0;
197         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
198                 dev_priv->ips.c_m = 1;
199         } else {
200                 dev_priv->ips.c_m = 2;
201         }
202 }
203
204 static const struct cxsr_latency cxsr_latency_table[] = {
205         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
206         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
207         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
208         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
209         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
210
211         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
212         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
213         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
214         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
215         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
216
217         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
218         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
219         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
220         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
221         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
222
223         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
224         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
225         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
226         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
227         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
228
229         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
230         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
231         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
232         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
233         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
234
235         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
236         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
237         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
238         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
239         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
240 };
241
242 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
243                                                          int is_ddr3,
244                                                          int fsb,
245                                                          int mem)
246 {
247         const struct cxsr_latency *latency;
248         int i;
249
250         if (fsb == 0 || mem == 0)
251                 return NULL;
252
253         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
254                 latency = &cxsr_latency_table[i];
255                 if (is_desktop == latency->is_desktop &&
256                     is_ddr3 == latency->is_ddr3 &&
257                     fsb == latency->fsb_freq && mem == latency->mem_freq)
258                         return latency;
259         }
260
261         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
262
263         return NULL;
264 }
265
266 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
267 {
268         u32 val;
269
270         mutex_lock(&dev_priv->rps.hw_lock);
271
272         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
273         if (enable)
274                 val &= ~FORCE_DDR_HIGH_FREQ;
275         else
276                 val |= FORCE_DDR_HIGH_FREQ;
277         val &= ~FORCE_DDR_LOW_FREQ;
278         val |= FORCE_DDR_FREQ_REQ_ACK;
279         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
280
281         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
282                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
283                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
284
285         mutex_unlock(&dev_priv->rps.hw_lock);
286 }
287
288 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
289 {
290         u32 val;
291
292         mutex_lock(&dev_priv->rps.hw_lock);
293
294         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
295         if (enable)
296                 val |= DSP_MAXFIFO_PM5_ENABLE;
297         else
298                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
299         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
300
301         mutex_unlock(&dev_priv->rps.hw_lock);
302 }
303
304 #define FW_WM(value, plane) \
305         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
306
307 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
308 {
309         struct drm_device *dev = dev_priv->dev;
310         u32 val;
311
312         if (IS_VALLEYVIEW(dev)) {
313                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
314                 if (IS_CHERRYVIEW(dev))
315                         chv_set_memory_pm5(dev_priv, enable);
316         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
317                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
318         } else if (IS_PINEVIEW(dev)) {
319                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
320                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
321                 I915_WRITE(DSPFW3, val);
322         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
323                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
324                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
325                 I915_WRITE(FW_BLC_SELF, val);
326         } else if (IS_I915GM(dev)) {
327                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
328                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
329                 I915_WRITE(INSTPM, val);
330         } else {
331                 return;
332         }
333
334         DRM_DEBUG_KMS("memory self-refresh is %s\n",
335                       enable ? "enabled" : "disabled");
336 }
337
338
339 /*
340  * Latency for FIFO fetches is dependent on several factors:
341  *   - memory configuration (speed, channels)
342  *   - chipset
343  *   - current MCH state
344  * It can be fairly high in some situations, so here we assume a fairly
345  * pessimal value.  It's a tradeoff between extra memory fetches (if we
346  * set this value too high, the FIFO will fetch frequently to stay full)
347  * and power consumption (set it too low to save power and we might see
348  * FIFO underruns and display "flicker").
349  *
350  * A value of 5us seems to be a good balance; safe for very low end
351  * platforms but not overly aggressive on lower latency configs.
352  */
353 static const int pessimal_latency_ns = 5000;
354
355 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
356         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
357
358 static int vlv_get_fifo_size(struct drm_device *dev,
359                               enum pipe pipe, int plane)
360 {
361         struct drm_i915_private *dev_priv = dev->dev_private;
362         int sprite0_start, sprite1_start, size;
363
364         switch (pipe) {
365                 uint32_t dsparb, dsparb2, dsparb3;
366         case PIPE_A:
367                 dsparb = I915_READ(DSPARB);
368                 dsparb2 = I915_READ(DSPARB2);
369                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
370                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
371                 break;
372         case PIPE_B:
373                 dsparb = I915_READ(DSPARB);
374                 dsparb2 = I915_READ(DSPARB2);
375                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
376                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
377                 break;
378         case PIPE_C:
379                 dsparb2 = I915_READ(DSPARB2);
380                 dsparb3 = I915_READ(DSPARB3);
381                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
382                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
383                 break;
384         default:
385                 return 0;
386         }
387
388         switch (plane) {
389         case 0:
390                 size = sprite0_start;
391                 break;
392         case 1:
393                 size = sprite1_start - sprite0_start;
394                 break;
395         case 2:
396                 size = 512 - 1 - sprite1_start;
397                 break;
398         default:
399                 return 0;
400         }
401
402         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
403                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
404                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
405                       size);
406
407         return size;
408 }
409
410 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
411 {
412         struct drm_i915_private *dev_priv = dev->dev_private;
413         uint32_t dsparb = I915_READ(DSPARB);
414         int size;
415
416         size = dsparb & 0x7f;
417         if (plane)
418                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
419
420         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
421                       plane ? "B" : "A", size);
422
423         return size;
424 }
425
426 static int i830_get_fifo_size(struct drm_device *dev, int plane)
427 {
428         struct drm_i915_private *dev_priv = dev->dev_private;
429         uint32_t dsparb = I915_READ(DSPARB);
430         int size;
431
432         size = dsparb & 0x1ff;
433         if (plane)
434                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
435         size >>= 1; /* Convert to cachelines */
436
437         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
438                       plane ? "B" : "A", size);
439
440         return size;
441 }
442
443 static int i845_get_fifo_size(struct drm_device *dev, int plane)
444 {
445         struct drm_i915_private *dev_priv = dev->dev_private;
446         uint32_t dsparb = I915_READ(DSPARB);
447         int size;
448
449         size = dsparb & 0x7f;
450         size >>= 2; /* Convert to cachelines */
451
452         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
453                       plane ? "B" : "A",
454                       size);
455
456         return size;
457 }
458
459 /* Pineview has different values for various configs */
460 static const struct intel_watermark_params pineview_display_wm = {
461         .fifo_size = PINEVIEW_DISPLAY_FIFO,
462         .max_wm = PINEVIEW_MAX_WM,
463         .default_wm = PINEVIEW_DFT_WM,
464         .guard_size = PINEVIEW_GUARD_WM,
465         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
466 };
467 static const struct intel_watermark_params pineview_display_hplloff_wm = {
468         .fifo_size = PINEVIEW_DISPLAY_FIFO,
469         .max_wm = PINEVIEW_MAX_WM,
470         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
471         .guard_size = PINEVIEW_GUARD_WM,
472         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
473 };
474 static const struct intel_watermark_params pineview_cursor_wm = {
475         .fifo_size = PINEVIEW_CURSOR_FIFO,
476         .max_wm = PINEVIEW_CURSOR_MAX_WM,
477         .default_wm = PINEVIEW_CURSOR_DFT_WM,
478         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
479         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
480 };
481 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
482         .fifo_size = PINEVIEW_CURSOR_FIFO,
483         .max_wm = PINEVIEW_CURSOR_MAX_WM,
484         .default_wm = PINEVIEW_CURSOR_DFT_WM,
485         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
486         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
487 };
488 static const struct intel_watermark_params g4x_wm_info = {
489         .fifo_size = G4X_FIFO_SIZE,
490         .max_wm = G4X_MAX_WM,
491         .default_wm = G4X_MAX_WM,
492         .guard_size = 2,
493         .cacheline_size = G4X_FIFO_LINE_SIZE,
494 };
495 static const struct intel_watermark_params g4x_cursor_wm_info = {
496         .fifo_size = I965_CURSOR_FIFO,
497         .max_wm = I965_CURSOR_MAX_WM,
498         .default_wm = I965_CURSOR_DFT_WM,
499         .guard_size = 2,
500         .cacheline_size = G4X_FIFO_LINE_SIZE,
501 };
502 static const struct intel_watermark_params valleyview_wm_info = {
503         .fifo_size = VALLEYVIEW_FIFO_SIZE,
504         .max_wm = VALLEYVIEW_MAX_WM,
505         .default_wm = VALLEYVIEW_MAX_WM,
506         .guard_size = 2,
507         .cacheline_size = G4X_FIFO_LINE_SIZE,
508 };
509 static const struct intel_watermark_params valleyview_cursor_wm_info = {
510         .fifo_size = I965_CURSOR_FIFO,
511         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
512         .default_wm = I965_CURSOR_DFT_WM,
513         .guard_size = 2,
514         .cacheline_size = G4X_FIFO_LINE_SIZE,
515 };
516 static const struct intel_watermark_params i965_cursor_wm_info = {
517         .fifo_size = I965_CURSOR_FIFO,
518         .max_wm = I965_CURSOR_MAX_WM,
519         .default_wm = I965_CURSOR_DFT_WM,
520         .guard_size = 2,
521         .cacheline_size = I915_FIFO_LINE_SIZE,
522 };
523 static const struct intel_watermark_params i945_wm_info = {
524         .fifo_size = I945_FIFO_SIZE,
525         .max_wm = I915_MAX_WM,
526         .default_wm = 1,
527         .guard_size = 2,
528         .cacheline_size = I915_FIFO_LINE_SIZE,
529 };
530 static const struct intel_watermark_params i915_wm_info = {
531         .fifo_size = I915_FIFO_SIZE,
532         .max_wm = I915_MAX_WM,
533         .default_wm = 1,
534         .guard_size = 2,
535         .cacheline_size = I915_FIFO_LINE_SIZE,
536 };
537 static const struct intel_watermark_params i830_a_wm_info = {
538         .fifo_size = I855GM_FIFO_SIZE,
539         .max_wm = I915_MAX_WM,
540         .default_wm = 1,
541         .guard_size = 2,
542         .cacheline_size = I830_FIFO_LINE_SIZE,
543 };
544 static const struct intel_watermark_params i830_bc_wm_info = {
545         .fifo_size = I855GM_FIFO_SIZE,
546         .max_wm = I915_MAX_WM/2,
547         .default_wm = 1,
548         .guard_size = 2,
549         .cacheline_size = I830_FIFO_LINE_SIZE,
550 };
551 static const struct intel_watermark_params i845_wm_info = {
552         .fifo_size = I830_FIFO_SIZE,
553         .max_wm = I915_MAX_WM,
554         .default_wm = 1,
555         .guard_size = 2,
556         .cacheline_size = I830_FIFO_LINE_SIZE,
557 };
558
559 /**
560  * intel_calculate_wm - calculate watermark level
561  * @clock_in_khz: pixel clock
562  * @wm: chip FIFO params
563  * @pixel_size: display pixel size
564  * @latency_ns: memory latency for the platform
565  *
566  * Calculate the watermark level (the level at which the display plane will
567  * start fetching from memory again).  Each chip has a different display
568  * FIFO size and allocation, so the caller needs to figure that out and pass
569  * in the correct intel_watermark_params structure.
570  *
571  * As the pixel clock runs, the FIFO will be drained at a rate that depends
572  * on the pixel size.  When it reaches the watermark level, it'll start
573  * fetching FIFO line sized based chunks from memory until the FIFO fills
574  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
575  * will occur, and a display engine hang could result.
576  */
577 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
578                                         const struct intel_watermark_params *wm,
579                                         int fifo_size,
580                                         int pixel_size,
581                                         unsigned long latency_ns)
582 {
583         long entries_required, wm_size;
584
585         /*
586          * Note: we need to make sure we don't overflow for various clock &
587          * latency values.
588          * clocks go from a few thousand to several hundred thousand.
589          * latency is usually a few thousand
590          */
591         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
592                 1000;
593         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
594
595         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
596
597         wm_size = fifo_size - (entries_required + wm->guard_size);
598
599         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
600
601         /* Don't promote wm_size to unsigned... */
602         if (wm_size > (long)wm->max_wm)
603                 wm_size = wm->max_wm;
604         if (wm_size <= 0)
605                 wm_size = wm->default_wm;
606
607         /*
608          * Bspec seems to indicate that the value shouldn't be lower than
609          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
610          * Lets go for 8 which is the burst size since certain platforms
611          * already use a hardcoded 8 (which is what the spec says should be
612          * done).
613          */
614         if (wm_size <= 8)
615                 wm_size = 8;
616
617         return wm_size;
618 }
619
620 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
621 {
622         struct drm_crtc *crtc, *enabled = NULL;
623
624         for_each_crtc(dev, crtc) {
625                 if (intel_crtc_active(crtc)) {
626                         if (enabled)
627                                 return NULL;
628                         enabled = crtc;
629                 }
630         }
631
632         return enabled;
633 }
634
635 static void pineview_update_wm(struct drm_crtc *unused_crtc)
636 {
637         struct drm_device *dev = unused_crtc->dev;
638         struct drm_i915_private *dev_priv = dev->dev_private;
639         struct drm_crtc *crtc;
640         const struct cxsr_latency *latency;
641         u32 reg;
642         unsigned long wm;
643
644         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
645                                          dev_priv->fsb_freq, dev_priv->mem_freq);
646         if (!latency) {
647                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
648                 intel_set_memory_cxsr(dev_priv, false);
649                 return;
650         }
651
652         crtc = single_enabled_crtc(dev);
653         if (crtc) {
654                 const struct drm_display_mode *adjusted_mode;
655                 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
656                 int clock;
657
658                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
659                 clock = adjusted_mode->crtc_clock;
660
661                 /* Display SR */
662                 wm = intel_calculate_wm(clock, &pineview_display_wm,
663                                         pineview_display_wm.fifo_size,
664                                         pixel_size, latency->display_sr);
665                 reg = I915_READ(DSPFW1);
666                 reg &= ~DSPFW_SR_MASK;
667                 reg |= FW_WM(wm, SR);
668                 I915_WRITE(DSPFW1, reg);
669                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
670
671                 /* cursor SR */
672                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
673                                         pineview_display_wm.fifo_size,
674                                         pixel_size, latency->cursor_sr);
675                 reg = I915_READ(DSPFW3);
676                 reg &= ~DSPFW_CURSOR_SR_MASK;
677                 reg |= FW_WM(wm, CURSOR_SR);
678                 I915_WRITE(DSPFW3, reg);
679
680                 /* Display HPLL off SR */
681                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
682                                         pineview_display_hplloff_wm.fifo_size,
683                                         pixel_size, latency->display_hpll_disable);
684                 reg = I915_READ(DSPFW3);
685                 reg &= ~DSPFW_HPLL_SR_MASK;
686                 reg |= FW_WM(wm, HPLL_SR);
687                 I915_WRITE(DSPFW3, reg);
688
689                 /* cursor HPLL off SR */
690                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
691                                         pineview_display_hplloff_wm.fifo_size,
692                                         pixel_size, latency->cursor_hpll_disable);
693                 reg = I915_READ(DSPFW3);
694                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
695                 reg |= FW_WM(wm, HPLL_CURSOR);
696                 I915_WRITE(DSPFW3, reg);
697                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
698
699                 intel_set_memory_cxsr(dev_priv, true);
700         } else {
701                 intel_set_memory_cxsr(dev_priv, false);
702         }
703 }
704
705 static bool g4x_compute_wm0(struct drm_device *dev,
706                             int plane,
707                             const struct intel_watermark_params *display,
708                             int display_latency_ns,
709                             const struct intel_watermark_params *cursor,
710                             int cursor_latency_ns,
711                             int *plane_wm,
712                             int *cursor_wm)
713 {
714         struct drm_crtc *crtc;
715         const struct drm_display_mode *adjusted_mode;
716         int htotal, hdisplay, clock, pixel_size;
717         int line_time_us, line_count;
718         int entries, tlb_miss;
719
720         crtc = intel_get_crtc_for_plane(dev, plane);
721         if (!intel_crtc_active(crtc)) {
722                 *cursor_wm = cursor->guard_size;
723                 *plane_wm = display->guard_size;
724                 return false;
725         }
726
727         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
728         clock = adjusted_mode->crtc_clock;
729         htotal = adjusted_mode->crtc_htotal;
730         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
731         pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
732
733         /* Use the small buffer method to calculate plane watermark */
734         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
735         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
736         if (tlb_miss > 0)
737                 entries += tlb_miss;
738         entries = DIV_ROUND_UP(entries, display->cacheline_size);
739         *plane_wm = entries + display->guard_size;
740         if (*plane_wm > (int)display->max_wm)
741                 *plane_wm = display->max_wm;
742
743         /* Use the large buffer method to calculate cursor watermark */
744         line_time_us = max(htotal * 1000 / clock, 1);
745         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
746         entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
747         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
748         if (tlb_miss > 0)
749                 entries += tlb_miss;
750         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
751         *cursor_wm = entries + cursor->guard_size;
752         if (*cursor_wm > (int)cursor->max_wm)
753                 *cursor_wm = (int)cursor->max_wm;
754
755         return true;
756 }
757
758 /*
759  * Check the wm result.
760  *
761  * If any calculated watermark values is larger than the maximum value that
762  * can be programmed into the associated watermark register, that watermark
763  * must be disabled.
764  */
765 static bool g4x_check_srwm(struct drm_device *dev,
766                            int display_wm, int cursor_wm,
767                            const struct intel_watermark_params *display,
768                            const struct intel_watermark_params *cursor)
769 {
770         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
771                       display_wm, cursor_wm);
772
773         if (display_wm > display->max_wm) {
774                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
775                               display_wm, display->max_wm);
776                 return false;
777         }
778
779         if (cursor_wm > cursor->max_wm) {
780                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
781                               cursor_wm, cursor->max_wm);
782                 return false;
783         }
784
785         if (!(display_wm || cursor_wm)) {
786                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
787                 return false;
788         }
789
790         return true;
791 }
792
793 static bool g4x_compute_srwm(struct drm_device *dev,
794                              int plane,
795                              int latency_ns,
796                              const struct intel_watermark_params *display,
797                              const struct intel_watermark_params *cursor,
798                              int *display_wm, int *cursor_wm)
799 {
800         struct drm_crtc *crtc;
801         const struct drm_display_mode *adjusted_mode;
802         int hdisplay, htotal, pixel_size, clock;
803         unsigned long line_time_us;
804         int line_count, line_size;
805         int small, large;
806         int entries;
807
808         if (!latency_ns) {
809                 *display_wm = *cursor_wm = 0;
810                 return false;
811         }
812
813         crtc = intel_get_crtc_for_plane(dev, plane);
814         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
815         clock = adjusted_mode->crtc_clock;
816         htotal = adjusted_mode->crtc_htotal;
817         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
818         pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
819
820         line_time_us = max(htotal * 1000 / clock, 1);
821         line_count = (latency_ns / line_time_us + 1000) / 1000;
822         line_size = hdisplay * pixel_size;
823
824         /* Use the minimum of the small and large buffer method for primary */
825         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
826         large = line_count * line_size;
827
828         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
829         *display_wm = entries + display->guard_size;
830
831         /* calculate the self-refresh watermark for display cursor */
832         entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
833         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
834         *cursor_wm = entries + cursor->guard_size;
835
836         return g4x_check_srwm(dev,
837                               *display_wm, *cursor_wm,
838                               display, cursor);
839 }
840
841 #define FW_WM_VLV(value, plane) \
842         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
843
844 static void vlv_write_wm_values(struct intel_crtc *crtc,
845                                 const struct vlv_wm_values *wm)
846 {
847         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
848         enum pipe pipe = crtc->pipe;
849
850         I915_WRITE(VLV_DDL(pipe),
851                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
852                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
853                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
854                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
855
856         I915_WRITE(DSPFW1,
857                    FW_WM(wm->sr.plane, SR) |
858                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
859                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
860                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
861         I915_WRITE(DSPFW2,
862                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
863                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
864                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
865         I915_WRITE(DSPFW3,
866                    FW_WM(wm->sr.cursor, CURSOR_SR));
867
868         if (IS_CHERRYVIEW(dev_priv)) {
869                 I915_WRITE(DSPFW7_CHV,
870                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
871                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
872                 I915_WRITE(DSPFW8_CHV,
873                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
874                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
875                 I915_WRITE(DSPFW9_CHV,
876                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
877                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
878                 I915_WRITE(DSPHOWM,
879                            FW_WM(wm->sr.plane >> 9, SR_HI) |
880                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
881                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
882                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
883                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
884                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
885                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
886                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
887                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
888                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
889         } else {
890                 I915_WRITE(DSPFW7,
891                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
892                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
893                 I915_WRITE(DSPHOWM,
894                            FW_WM(wm->sr.plane >> 9, SR_HI) |
895                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
896                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
897                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
898                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
899                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
900                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
901         }
902
903         POSTING_READ(DSPFW1);
904
905         dev_priv->wm.vlv = *wm;
906 }
907
908 #undef FW_WM_VLV
909
910 static uint8_t vlv_compute_drain_latency(struct drm_crtc *crtc,
911                                          struct drm_plane *plane)
912 {
913         struct drm_device *dev = crtc->dev;
914         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
915         int entries, prec_mult, drain_latency, pixel_size;
916         int clock = intel_crtc->config->base.adjusted_mode.crtc_clock;
917         const int high_precision = IS_CHERRYVIEW(dev) ? 16 : 64;
918
919         /*
920          * FIXME the plane might have an fb
921          * but be invisible (eg. due to clipping)
922          */
923         if (!intel_crtc->active || !plane->state->fb)
924                 return 0;
925
926         if (WARN(clock == 0, "Pixel clock is zero!\n"))
927                 return 0;
928
929         pixel_size = drm_format_plane_cpp(plane->state->fb->pixel_format, 0);
930
931         if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
932                 return 0;
933
934         entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
935
936         prec_mult = high_precision;
937         drain_latency = 64 * prec_mult * 4 / entries;
938
939         if (drain_latency > DRAIN_LATENCY_MASK) {
940                 prec_mult /= 2;
941                 drain_latency = 64 * prec_mult * 4 / entries;
942         }
943
944         if (drain_latency > DRAIN_LATENCY_MASK)
945                 drain_latency = DRAIN_LATENCY_MASK;
946
947         return drain_latency | (prec_mult == high_precision ?
948                                 DDL_PRECISION_HIGH : DDL_PRECISION_LOW);
949 }
950
951 static int vlv_compute_wm(struct intel_crtc *crtc,
952                           struct intel_plane *plane,
953                           int fifo_size)
954 {
955         int clock, entries, pixel_size;
956
957         /*
958          * FIXME the plane might have an fb
959          * but be invisible (eg. due to clipping)
960          */
961         if (!crtc->active || !plane->base.state->fb)
962                 return 0;
963
964         pixel_size = drm_format_plane_cpp(plane->base.state->fb->pixel_format, 0);
965         clock = crtc->config->base.adjusted_mode.crtc_clock;
966
967         entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
968
969         /*
970          * Set up the watermark such that we don't start issuing memory
971          * requests until we are within PND's max deadline value (256us).
972          * Idea being to be idle as long as possible while still taking
973          * advatange of PND's deadline scheduling. The limit of 8
974          * cachelines (used when the FIFO will anyway drain in less time
975          * than 256us) should match what we would be done if trickle
976          * feed were enabled.
977          */
978         return fifo_size - clamp(DIV_ROUND_UP(256 * entries, 64), 0, fifo_size - 8);
979 }
980
981 static bool vlv_compute_sr_wm(struct drm_device *dev,
982                               struct vlv_wm_values *wm)
983 {
984         struct drm_i915_private *dev_priv = to_i915(dev);
985         struct drm_crtc *crtc;
986         enum pipe pipe = INVALID_PIPE;
987         int num_planes = 0;
988         int fifo_size = 0;
989         struct intel_plane *plane;
990
991         wm->sr.cursor = wm->sr.plane = 0;
992
993         crtc = single_enabled_crtc(dev);
994         /* maxfifo not supported on pipe C */
995         if (crtc && to_intel_crtc(crtc)->pipe != PIPE_C) {
996                 pipe = to_intel_crtc(crtc)->pipe;
997                 num_planes = !!wm->pipe[pipe].primary +
998                         !!wm->pipe[pipe].sprite[0] +
999                         !!wm->pipe[pipe].sprite[1];
1000                 fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1001         }
1002
1003         if (fifo_size == 0 || num_planes > 1)
1004                 return false;
1005
1006         wm->sr.cursor = vlv_compute_wm(to_intel_crtc(crtc),
1007                                        to_intel_plane(crtc->cursor), 0x3f);
1008
1009         list_for_each_entry(plane, &dev->mode_config.plane_list, base.head) {
1010                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1011                         continue;
1012
1013                 if (plane->pipe != pipe)
1014                         continue;
1015
1016                 wm->sr.plane = vlv_compute_wm(to_intel_crtc(crtc),
1017                                               plane, fifo_size);
1018                 if (wm->sr.plane != 0)
1019                         break;
1020         }
1021
1022         return true;
1023 }
1024
1025 static void valleyview_update_wm(struct drm_crtc *crtc)
1026 {
1027         struct drm_device *dev = crtc->dev;
1028         struct drm_i915_private *dev_priv = dev->dev_private;
1029         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1030         enum pipe pipe = intel_crtc->pipe;
1031         bool cxsr_enabled;
1032         struct vlv_wm_values wm = dev_priv->wm.vlv;
1033
1034         wm.ddl[pipe].primary = vlv_compute_drain_latency(crtc, crtc->primary);
1035         wm.pipe[pipe].primary = vlv_compute_wm(intel_crtc,
1036                                                to_intel_plane(crtc->primary),
1037                                                vlv_get_fifo_size(dev, pipe, 0));
1038
1039         wm.ddl[pipe].cursor = vlv_compute_drain_latency(crtc, crtc->cursor);
1040         wm.pipe[pipe].cursor = vlv_compute_wm(intel_crtc,
1041                                               to_intel_plane(crtc->cursor),
1042                                               0x3f);
1043
1044         cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
1045
1046         if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
1047                 return;
1048
1049         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1050                       "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
1051                       wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1052                       wm.sr.plane, wm.sr.cursor);
1053
1054         /*
1055          * FIXME DDR DVFS introduces massive memory latencies which
1056          * are not known to system agent so any deadline specified
1057          * by the display may not be respected. To support DDR DVFS
1058          * the watermark code needs to be rewritten to essentially
1059          * bypass deadline mechanism and rely solely on the
1060          * watermarks. For now disable DDR DVFS.
1061          */
1062         if (IS_CHERRYVIEW(dev_priv))
1063                 chv_set_memory_dvfs(dev_priv, false);
1064
1065         if (!cxsr_enabled)
1066                 intel_set_memory_cxsr(dev_priv, false);
1067
1068         vlv_write_wm_values(intel_crtc, &wm);
1069
1070         if (cxsr_enabled)
1071                 intel_set_memory_cxsr(dev_priv, true);
1072 }
1073
1074 static void valleyview_update_sprite_wm(struct drm_plane *plane,
1075                                         struct drm_crtc *crtc,
1076                                         uint32_t sprite_width,
1077                                         uint32_t sprite_height,
1078                                         int pixel_size,
1079                                         bool enabled, bool scaled)
1080 {
1081         struct drm_device *dev = crtc->dev;
1082         struct drm_i915_private *dev_priv = dev->dev_private;
1083         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1084         enum pipe pipe = intel_crtc->pipe;
1085         int sprite = to_intel_plane(plane)->plane;
1086         bool cxsr_enabled;
1087         struct vlv_wm_values wm = dev_priv->wm.vlv;
1088
1089         if (enabled) {
1090                 wm.ddl[pipe].sprite[sprite] =
1091                         vlv_compute_drain_latency(crtc, plane);
1092
1093                 wm.pipe[pipe].sprite[sprite] =
1094                         vlv_compute_wm(intel_crtc,
1095                                        to_intel_plane(plane),
1096                                        vlv_get_fifo_size(dev, pipe, sprite+1));
1097         } else {
1098                 wm.ddl[pipe].sprite[sprite] = 0;
1099                 wm.pipe[pipe].sprite[sprite] = 0;
1100         }
1101
1102         cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
1103
1104         if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
1105                 return;
1106
1107         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: sprite %c=%d, "
1108                       "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
1109                       sprite_name(pipe, sprite),
1110                       wm.pipe[pipe].sprite[sprite],
1111                       wm.sr.plane, wm.sr.cursor);
1112
1113         if (!cxsr_enabled)
1114                 intel_set_memory_cxsr(dev_priv, false);
1115
1116         vlv_write_wm_values(intel_crtc, &wm);
1117
1118         if (cxsr_enabled)
1119                 intel_set_memory_cxsr(dev_priv, true);
1120 }
1121
1122 #define single_plane_enabled(mask) is_power_of_2(mask)
1123
1124 static void g4x_update_wm(struct drm_crtc *crtc)
1125 {
1126         struct drm_device *dev = crtc->dev;
1127         static const int sr_latency_ns = 12000;
1128         struct drm_i915_private *dev_priv = dev->dev_private;
1129         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1130         int plane_sr, cursor_sr;
1131         unsigned int enabled = 0;
1132         bool cxsr_enabled;
1133
1134         if (g4x_compute_wm0(dev, PIPE_A,
1135                             &g4x_wm_info, pessimal_latency_ns,
1136                             &g4x_cursor_wm_info, pessimal_latency_ns,
1137                             &planea_wm, &cursora_wm))
1138                 enabled |= 1 << PIPE_A;
1139
1140         if (g4x_compute_wm0(dev, PIPE_B,
1141                             &g4x_wm_info, pessimal_latency_ns,
1142                             &g4x_cursor_wm_info, pessimal_latency_ns,
1143                             &planeb_wm, &cursorb_wm))
1144                 enabled |= 1 << PIPE_B;
1145
1146         if (single_plane_enabled(enabled) &&
1147             g4x_compute_srwm(dev, ffs(enabled) - 1,
1148                              sr_latency_ns,
1149                              &g4x_wm_info,
1150                              &g4x_cursor_wm_info,
1151                              &plane_sr, &cursor_sr)) {
1152                 cxsr_enabled = true;
1153         } else {
1154                 cxsr_enabled = false;
1155                 intel_set_memory_cxsr(dev_priv, false);
1156                 plane_sr = cursor_sr = 0;
1157         }
1158
1159         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1160                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1161                       planea_wm, cursora_wm,
1162                       planeb_wm, cursorb_wm,
1163                       plane_sr, cursor_sr);
1164
1165         I915_WRITE(DSPFW1,
1166                    FW_WM(plane_sr, SR) |
1167                    FW_WM(cursorb_wm, CURSORB) |
1168                    FW_WM(planeb_wm, PLANEB) |
1169                    FW_WM(planea_wm, PLANEA));
1170         I915_WRITE(DSPFW2,
1171                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1172                    FW_WM(cursora_wm, CURSORA));
1173         /* HPLL off in SR has some issues on G4x... disable it */
1174         I915_WRITE(DSPFW3,
1175                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1176                    FW_WM(cursor_sr, CURSOR_SR));
1177
1178         if (cxsr_enabled)
1179                 intel_set_memory_cxsr(dev_priv, true);
1180 }
1181
1182 static void i965_update_wm(struct drm_crtc *unused_crtc)
1183 {
1184         struct drm_device *dev = unused_crtc->dev;
1185         struct drm_i915_private *dev_priv = dev->dev_private;
1186         struct drm_crtc *crtc;
1187         int srwm = 1;
1188         int cursor_sr = 16;
1189         bool cxsr_enabled;
1190
1191         /* Calc sr entries for one plane configs */
1192         crtc = single_enabled_crtc(dev);
1193         if (crtc) {
1194                 /* self-refresh has much higher latency */
1195                 static const int sr_latency_ns = 12000;
1196                 const struct drm_display_mode *adjusted_mode =
1197                         &to_intel_crtc(crtc)->config->base.adjusted_mode;
1198                 int clock = adjusted_mode->crtc_clock;
1199                 int htotal = adjusted_mode->crtc_htotal;
1200                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1201                 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1202                 unsigned long line_time_us;
1203                 int entries;
1204
1205                 line_time_us = max(htotal * 1000 / clock, 1);
1206
1207                 /* Use ns/us then divide to preserve precision */
1208                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1209                         pixel_size * hdisplay;
1210                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1211                 srwm = I965_FIFO_SIZE - entries;
1212                 if (srwm < 0)
1213                         srwm = 1;
1214                 srwm &= 0x1ff;
1215                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1216                               entries, srwm);
1217
1218                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1219                         pixel_size * crtc->cursor->state->crtc_w;
1220                 entries = DIV_ROUND_UP(entries,
1221                                           i965_cursor_wm_info.cacheline_size);
1222                 cursor_sr = i965_cursor_wm_info.fifo_size -
1223                         (entries + i965_cursor_wm_info.guard_size);
1224
1225                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1226                         cursor_sr = i965_cursor_wm_info.max_wm;
1227
1228                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1229                               "cursor %d\n", srwm, cursor_sr);
1230
1231                 cxsr_enabled = true;
1232         } else {
1233                 cxsr_enabled = false;
1234                 /* Turn off self refresh if both pipes are enabled */
1235                 intel_set_memory_cxsr(dev_priv, false);
1236         }
1237
1238         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1239                       srwm);
1240
1241         /* 965 has limitations... */
1242         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1243                    FW_WM(8, CURSORB) |
1244                    FW_WM(8, PLANEB) |
1245                    FW_WM(8, PLANEA));
1246         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1247                    FW_WM(8, PLANEC_OLD));
1248         /* update cursor SR watermark */
1249         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1250
1251         if (cxsr_enabled)
1252                 intel_set_memory_cxsr(dev_priv, true);
1253 }
1254
1255 #undef FW_WM
1256
1257 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1258 {
1259         struct drm_device *dev = unused_crtc->dev;
1260         struct drm_i915_private *dev_priv = dev->dev_private;
1261         const struct intel_watermark_params *wm_info;
1262         uint32_t fwater_lo;
1263         uint32_t fwater_hi;
1264         int cwm, srwm = 1;
1265         int fifo_size;
1266         int planea_wm, planeb_wm;
1267         struct drm_crtc *crtc, *enabled = NULL;
1268
1269         if (IS_I945GM(dev))
1270                 wm_info = &i945_wm_info;
1271         else if (!IS_GEN2(dev))
1272                 wm_info = &i915_wm_info;
1273         else
1274                 wm_info = &i830_a_wm_info;
1275
1276         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1277         crtc = intel_get_crtc_for_plane(dev, 0);
1278         if (intel_crtc_active(crtc)) {
1279                 const struct drm_display_mode *adjusted_mode;
1280                 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1281                 if (IS_GEN2(dev))
1282                         cpp = 4;
1283
1284                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1285                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1286                                                wm_info, fifo_size, cpp,
1287                                                pessimal_latency_ns);
1288                 enabled = crtc;
1289         } else {
1290                 planea_wm = fifo_size - wm_info->guard_size;
1291                 if (planea_wm > (long)wm_info->max_wm)
1292                         planea_wm = wm_info->max_wm;
1293         }
1294
1295         if (IS_GEN2(dev))
1296                 wm_info = &i830_bc_wm_info;
1297
1298         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1299         crtc = intel_get_crtc_for_plane(dev, 1);
1300         if (intel_crtc_active(crtc)) {
1301                 const struct drm_display_mode *adjusted_mode;
1302                 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1303                 if (IS_GEN2(dev))
1304                         cpp = 4;
1305
1306                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1307                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1308                                                wm_info, fifo_size, cpp,
1309                                                pessimal_latency_ns);
1310                 if (enabled == NULL)
1311                         enabled = crtc;
1312                 else
1313                         enabled = NULL;
1314         } else {
1315                 planeb_wm = fifo_size - wm_info->guard_size;
1316                 if (planeb_wm > (long)wm_info->max_wm)
1317                         planeb_wm = wm_info->max_wm;
1318         }
1319
1320         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1321
1322         if (IS_I915GM(dev) && enabled) {
1323                 struct drm_i915_gem_object *obj;
1324
1325                 obj = intel_fb_obj(enabled->primary->state->fb);
1326
1327                 /* self-refresh seems busted with untiled */
1328                 if (obj->tiling_mode == I915_TILING_NONE)
1329                         enabled = NULL;
1330         }
1331
1332         /*
1333          * Overlay gets an aggressive default since video jitter is bad.
1334          */
1335         cwm = 2;
1336
1337         /* Play safe and disable self-refresh before adjusting watermarks. */
1338         intel_set_memory_cxsr(dev_priv, false);
1339
1340         /* Calc sr entries for one plane configs */
1341         if (HAS_FW_BLC(dev) && enabled) {
1342                 /* self-refresh has much higher latency */
1343                 static const int sr_latency_ns = 6000;
1344                 const struct drm_display_mode *adjusted_mode =
1345                         &to_intel_crtc(enabled)->config->base.adjusted_mode;
1346                 int clock = adjusted_mode->crtc_clock;
1347                 int htotal = adjusted_mode->crtc_htotal;
1348                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1349                 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1350                 unsigned long line_time_us;
1351                 int entries;
1352
1353                 line_time_us = max(htotal * 1000 / clock, 1);
1354
1355                 /* Use ns/us then divide to preserve precision */
1356                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1357                         pixel_size * hdisplay;
1358                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1359                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1360                 srwm = wm_info->fifo_size - entries;
1361                 if (srwm < 0)
1362                         srwm = 1;
1363
1364                 if (IS_I945G(dev) || IS_I945GM(dev))
1365                         I915_WRITE(FW_BLC_SELF,
1366                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1367                 else if (IS_I915GM(dev))
1368                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1369         }
1370
1371         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1372                       planea_wm, planeb_wm, cwm, srwm);
1373
1374         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1375         fwater_hi = (cwm & 0x1f);
1376
1377         /* Set request length to 8 cachelines per fetch */
1378         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1379         fwater_hi = fwater_hi | (1 << 8);
1380
1381         I915_WRITE(FW_BLC, fwater_lo);
1382         I915_WRITE(FW_BLC2, fwater_hi);
1383
1384         if (enabled)
1385                 intel_set_memory_cxsr(dev_priv, true);
1386 }
1387
1388 static void i845_update_wm(struct drm_crtc *unused_crtc)
1389 {
1390         struct drm_device *dev = unused_crtc->dev;
1391         struct drm_i915_private *dev_priv = dev->dev_private;
1392         struct drm_crtc *crtc;
1393         const struct drm_display_mode *adjusted_mode;
1394         uint32_t fwater_lo;
1395         int planea_wm;
1396
1397         crtc = single_enabled_crtc(dev);
1398         if (crtc == NULL)
1399                 return;
1400
1401         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1402         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1403                                        &i845_wm_info,
1404                                        dev_priv->display.get_fifo_size(dev, 0),
1405                                        4, pessimal_latency_ns);
1406         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1407         fwater_lo |= (3<<8) | planea_wm;
1408
1409         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1410
1411         I915_WRITE(FW_BLC, fwater_lo);
1412 }
1413
1414 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1415                                     struct drm_crtc *crtc)
1416 {
1417         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1418         uint32_t pixel_rate;
1419
1420         pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
1421
1422         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1423          * adjust the pixel_rate here. */
1424
1425         if (intel_crtc->config->pch_pfit.enabled) {
1426                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1427                 uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
1428
1429                 pipe_w = intel_crtc->config->pipe_src_w;
1430                 pipe_h = intel_crtc->config->pipe_src_h;
1431                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1432                 pfit_h = pfit_size & 0xFFFF;
1433                 if (pipe_w < pfit_w)
1434                         pipe_w = pfit_w;
1435                 if (pipe_h < pfit_h)
1436                         pipe_h = pfit_h;
1437
1438                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1439                                      pfit_w * pfit_h);
1440         }
1441
1442         return pixel_rate;
1443 }
1444
1445 /* latency must be in 0.1us units. */
1446 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1447                                uint32_t latency)
1448 {
1449         uint64_t ret;
1450
1451         if (WARN(latency == 0, "Latency value missing\n"))
1452                 return UINT_MAX;
1453
1454         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1455         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1456
1457         return ret;
1458 }
1459
1460 /* latency must be in 0.1us units. */
1461 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1462                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1463                                uint32_t latency)
1464 {
1465         uint32_t ret;
1466
1467         if (WARN(latency == 0, "Latency value missing\n"))
1468                 return UINT_MAX;
1469
1470         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1471         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1472         ret = DIV_ROUND_UP(ret, 64) + 2;
1473         return ret;
1474 }
1475
1476 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1477                            uint8_t bytes_per_pixel)
1478 {
1479         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1480 }
1481
1482 struct skl_pipe_wm_parameters {
1483         bool active;
1484         uint32_t pipe_htotal;
1485         uint32_t pixel_rate; /* in KHz */
1486         struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1487         struct intel_plane_wm_parameters cursor;
1488 };
1489
1490 struct ilk_pipe_wm_parameters {
1491         bool active;
1492         uint32_t pipe_htotal;
1493         uint32_t pixel_rate;
1494         struct intel_plane_wm_parameters pri;
1495         struct intel_plane_wm_parameters spr;
1496         struct intel_plane_wm_parameters cur;
1497 };
1498
1499 struct ilk_wm_maximums {
1500         uint16_t pri;
1501         uint16_t spr;
1502         uint16_t cur;
1503         uint16_t fbc;
1504 };
1505
1506 /* used in computing the new watermarks state */
1507 struct intel_wm_config {
1508         unsigned int num_pipes_active;
1509         bool sprites_enabled;
1510         bool sprites_scaled;
1511 };
1512
1513 /*
1514  * For both WM_PIPE and WM_LP.
1515  * mem_value must be in 0.1us units.
1516  */
1517 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1518                                    uint32_t mem_value,
1519                                    bool is_lp)
1520 {
1521         uint32_t method1, method2;
1522
1523         if (!params->active || !params->pri.enabled)
1524                 return 0;
1525
1526         method1 = ilk_wm_method1(params->pixel_rate,
1527                                  params->pri.bytes_per_pixel,
1528                                  mem_value);
1529
1530         if (!is_lp)
1531                 return method1;
1532
1533         method2 = ilk_wm_method2(params->pixel_rate,
1534                                  params->pipe_htotal,
1535                                  params->pri.horiz_pixels,
1536                                  params->pri.bytes_per_pixel,
1537                                  mem_value);
1538
1539         return min(method1, method2);
1540 }
1541
1542 /*
1543  * For both WM_PIPE and WM_LP.
1544  * mem_value must be in 0.1us units.
1545  */
1546 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1547                                    uint32_t mem_value)
1548 {
1549         uint32_t method1, method2;
1550
1551         if (!params->active || !params->spr.enabled)
1552                 return 0;
1553
1554         method1 = ilk_wm_method1(params->pixel_rate,
1555                                  params->spr.bytes_per_pixel,
1556                                  mem_value);
1557         method2 = ilk_wm_method2(params->pixel_rate,
1558                                  params->pipe_htotal,
1559                                  params->spr.horiz_pixels,
1560                                  params->spr.bytes_per_pixel,
1561                                  mem_value);
1562         return min(method1, method2);
1563 }
1564
1565 /*
1566  * For both WM_PIPE and WM_LP.
1567  * mem_value must be in 0.1us units.
1568  */
1569 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1570                                    uint32_t mem_value)
1571 {
1572         if (!params->active || !params->cur.enabled)
1573                 return 0;
1574
1575         return ilk_wm_method2(params->pixel_rate,
1576                               params->pipe_htotal,
1577                               params->cur.horiz_pixels,
1578                               params->cur.bytes_per_pixel,
1579                               mem_value);
1580 }
1581
1582 /* Only for WM_LP. */
1583 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1584                                    uint32_t pri_val)
1585 {
1586         if (!params->active || !params->pri.enabled)
1587                 return 0;
1588
1589         return ilk_wm_fbc(pri_val,
1590                           params->pri.horiz_pixels,
1591                           params->pri.bytes_per_pixel);
1592 }
1593
1594 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1595 {
1596         if (INTEL_INFO(dev)->gen >= 8)
1597                 return 3072;
1598         else if (INTEL_INFO(dev)->gen >= 7)
1599                 return 768;
1600         else
1601                 return 512;
1602 }
1603
1604 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1605                                          int level, bool is_sprite)
1606 {
1607         if (INTEL_INFO(dev)->gen >= 8)
1608                 /* BDW primary/sprite plane watermarks */
1609                 return level == 0 ? 255 : 2047;
1610         else if (INTEL_INFO(dev)->gen >= 7)
1611                 /* IVB/HSW primary/sprite plane watermarks */
1612                 return level == 0 ? 127 : 1023;
1613         else if (!is_sprite)
1614                 /* ILK/SNB primary plane watermarks */
1615                 return level == 0 ? 127 : 511;
1616         else
1617                 /* ILK/SNB sprite plane watermarks */
1618                 return level == 0 ? 63 : 255;
1619 }
1620
1621 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1622                                           int level)
1623 {
1624         if (INTEL_INFO(dev)->gen >= 7)
1625                 return level == 0 ? 63 : 255;
1626         else
1627                 return level == 0 ? 31 : 63;
1628 }
1629
1630 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1631 {
1632         if (INTEL_INFO(dev)->gen >= 8)
1633                 return 31;
1634         else
1635                 return 15;
1636 }
1637
1638 /* Calculate the maximum primary/sprite plane watermark */
1639 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1640                                      int level,
1641                                      const struct intel_wm_config *config,
1642                                      enum intel_ddb_partitioning ddb_partitioning,
1643                                      bool is_sprite)
1644 {
1645         unsigned int fifo_size = ilk_display_fifo_size(dev);
1646
1647         /* if sprites aren't enabled, sprites get nothing */
1648         if (is_sprite && !config->sprites_enabled)
1649                 return 0;
1650
1651         /* HSW allows LP1+ watermarks even with multiple pipes */
1652         if (level == 0 || config->num_pipes_active > 1) {
1653                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1654
1655                 /*
1656                  * For some reason the non self refresh
1657                  * FIFO size is only half of the self
1658                  * refresh FIFO size on ILK/SNB.
1659                  */
1660                 if (INTEL_INFO(dev)->gen <= 6)
1661                         fifo_size /= 2;
1662         }
1663
1664         if (config->sprites_enabled) {
1665                 /* level 0 is always calculated with 1:1 split */
1666                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1667                         if (is_sprite)
1668                                 fifo_size *= 5;
1669                         fifo_size /= 6;
1670                 } else {
1671                         fifo_size /= 2;
1672                 }
1673         }
1674
1675         /* clamp to max that the registers can hold */
1676         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1677 }
1678
1679 /* Calculate the maximum cursor plane watermark */
1680 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1681                                       int level,
1682                                       const struct intel_wm_config *config)
1683 {
1684         /* HSW LP1+ watermarks w/ multiple pipes */
1685         if (level > 0 && config->num_pipes_active > 1)
1686                 return 64;
1687
1688         /* otherwise just report max that registers can hold */
1689         return ilk_cursor_wm_reg_max(dev, level);
1690 }
1691
1692 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1693                                     int level,
1694                                     const struct intel_wm_config *config,
1695                                     enum intel_ddb_partitioning ddb_partitioning,
1696                                     struct ilk_wm_maximums *max)
1697 {
1698         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1699         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1700         max->cur = ilk_cursor_wm_max(dev, level, config);
1701         max->fbc = ilk_fbc_wm_reg_max(dev);
1702 }
1703
1704 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1705                                         int level,
1706                                         struct ilk_wm_maximums *max)
1707 {
1708         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1709         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1710         max->cur = ilk_cursor_wm_reg_max(dev, level);
1711         max->fbc = ilk_fbc_wm_reg_max(dev);
1712 }
1713
1714 static bool ilk_validate_wm_level(int level,
1715                                   const struct ilk_wm_maximums *max,
1716                                   struct intel_wm_level *result)
1717 {
1718         bool ret;
1719
1720         /* already determined to be invalid? */
1721         if (!result->enable)
1722                 return false;
1723
1724         result->enable = result->pri_val <= max->pri &&
1725                          result->spr_val <= max->spr &&
1726                          result->cur_val <= max->cur;
1727
1728         ret = result->enable;
1729
1730         /*
1731          * HACK until we can pre-compute everything,
1732          * and thus fail gracefully if LP0 watermarks
1733          * are exceeded...
1734          */
1735         if (level == 0 && !result->enable) {
1736                 if (result->pri_val > max->pri)
1737                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1738                                       level, result->pri_val, max->pri);
1739                 if (result->spr_val > max->spr)
1740                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1741                                       level, result->spr_val, max->spr);
1742                 if (result->cur_val > max->cur)
1743                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1744                                       level, result->cur_val, max->cur);
1745
1746                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1747                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1748                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1749                 result->enable = true;
1750         }
1751
1752         return ret;
1753 }
1754
1755 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1756                                  int level,
1757                                  const struct ilk_pipe_wm_parameters *p,
1758                                  struct intel_wm_level *result)
1759 {
1760         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1761         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1762         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1763
1764         /* WM1+ latency values stored in 0.5us units */
1765         if (level > 0) {
1766                 pri_latency *= 5;
1767                 spr_latency *= 5;
1768                 cur_latency *= 5;
1769         }
1770
1771         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1772         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1773         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1774         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1775         result->enable = true;
1776 }
1777
1778 static uint32_t
1779 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1780 {
1781         struct drm_i915_private *dev_priv = dev->dev_private;
1782         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1783         struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1784         u32 linetime, ips_linetime;
1785
1786         if (!intel_crtc->active)
1787                 return 0;
1788
1789         /* The WM are computed with base on how long it takes to fill a single
1790          * row at the given clock rate, multiplied by 8.
1791          * */
1792         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1793                                      mode->crtc_clock);
1794         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1795                                          intel_ddi_get_cdclk_freq(dev_priv));
1796
1797         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
1798                PIPE_WM_LINETIME_TIME(linetime);
1799 }
1800
1801 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1802 {
1803         struct drm_i915_private *dev_priv = dev->dev_private;
1804
1805         if (IS_GEN9(dev)) {
1806                 uint32_t val;
1807                 int ret, i;
1808                 int level, max_level = ilk_wm_max_level(dev);
1809
1810                 /* read the first set of memory latencies[0:3] */
1811                 val = 0; /* data0 to be programmed to 0 for first set */
1812                 mutex_lock(&dev_priv->rps.hw_lock);
1813                 ret = sandybridge_pcode_read(dev_priv,
1814                                              GEN9_PCODE_READ_MEM_LATENCY,
1815                                              &val);
1816                 mutex_unlock(&dev_priv->rps.hw_lock);
1817
1818                 if (ret) {
1819                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1820                         return;
1821                 }
1822
1823                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1824                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1825                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1826                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1827                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1828                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1829                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1830
1831                 /* read the second set of memory latencies[4:7] */
1832                 val = 1; /* data0 to be programmed to 1 for second set */
1833                 mutex_lock(&dev_priv->rps.hw_lock);
1834                 ret = sandybridge_pcode_read(dev_priv,
1835                                              GEN9_PCODE_READ_MEM_LATENCY,
1836                                              &val);
1837                 mutex_unlock(&dev_priv->rps.hw_lock);
1838                 if (ret) {
1839                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1840                         return;
1841                 }
1842
1843                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1844                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1845                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1846                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1847                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1848                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1849                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1850
1851                 /*
1852                  * WaWmMemoryReadLatency:skl
1853                  *
1854                  * punit doesn't take into account the read latency so we need
1855                  * to add 2us to the various latency levels we retrieve from
1856                  * the punit.
1857                  *   - W0 is a bit special in that it's the only level that
1858                  *   can't be disabled if we want to have display working, so
1859                  *   we always add 2us there.
1860                  *   - For levels >=1, punit returns 0us latency when they are
1861                  *   disabled, so we respect that and don't add 2us then
1862                  *
1863                  * Additionally, if a level n (n > 1) has a 0us latency, all
1864                  * levels m (m >= n) need to be disabled. We make sure to
1865                  * sanitize the values out of the punit to satisfy this
1866                  * requirement.
1867                  */
1868                 wm[0] += 2;
1869                 for (level = 1; level <= max_level; level++)
1870                         if (wm[level] != 0)
1871                                 wm[level] += 2;
1872                         else {
1873                                 for (i = level + 1; i <= max_level; i++)
1874                                         wm[i] = 0;
1875
1876                                 break;
1877                         }
1878         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1879                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
1880
1881                 wm[0] = (sskpd >> 56) & 0xFF;
1882                 if (wm[0] == 0)
1883                         wm[0] = sskpd & 0xF;
1884                 wm[1] = (sskpd >> 4) & 0xFF;
1885                 wm[2] = (sskpd >> 12) & 0xFF;
1886                 wm[3] = (sskpd >> 20) & 0x1FF;
1887                 wm[4] = (sskpd >> 32) & 0x1FF;
1888         } else if (INTEL_INFO(dev)->gen >= 6) {
1889                 uint32_t sskpd = I915_READ(MCH_SSKPD);
1890
1891                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
1892                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
1893                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
1894                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1895         } else if (INTEL_INFO(dev)->gen >= 5) {
1896                 uint32_t mltr = I915_READ(MLTR_ILK);
1897
1898                 /* ILK primary LP0 latency is 700 ns */
1899                 wm[0] = 7;
1900                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
1901                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1902         }
1903 }
1904
1905 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
1906 {
1907         /* ILK sprite LP0 latency is 1300 ns */
1908         if (INTEL_INFO(dev)->gen == 5)
1909                 wm[0] = 13;
1910 }
1911
1912 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
1913 {
1914         /* ILK cursor LP0 latency is 1300 ns */
1915         if (INTEL_INFO(dev)->gen == 5)
1916                 wm[0] = 13;
1917
1918         /* WaDoubleCursorLP3Latency:ivb */
1919         if (IS_IVYBRIDGE(dev))
1920                 wm[3] *= 2;
1921 }
1922
1923 int ilk_wm_max_level(const struct drm_device *dev)
1924 {
1925         /* how many WM levels are we expecting */
1926         if (IS_GEN9(dev))
1927                 return 7;
1928         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1929                 return 4;
1930         else if (INTEL_INFO(dev)->gen >= 6)
1931                 return 3;
1932         else
1933                 return 2;
1934 }
1935
1936 static void intel_print_wm_latency(struct drm_device *dev,
1937                                    const char *name,
1938                                    const uint16_t wm[8])
1939 {
1940         int level, max_level = ilk_wm_max_level(dev);
1941
1942         for (level = 0; level <= max_level; level++) {
1943                 unsigned int latency = wm[level];
1944
1945                 if (latency == 0) {
1946                         DRM_ERROR("%s WM%d latency not provided\n",
1947                                   name, level);
1948                         continue;
1949                 }
1950
1951                 /*
1952                  * - latencies are in us on gen9.
1953                  * - before then, WM1+ latency values are in 0.5us units
1954                  */
1955                 if (IS_GEN9(dev))
1956                         latency *= 10;
1957                 else if (level > 0)
1958                         latency *= 5;
1959
1960                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
1961                               name, level, wm[level],
1962                               latency / 10, latency % 10);
1963         }
1964 }
1965
1966 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
1967                                     uint16_t wm[5], uint16_t min)
1968 {
1969         int level, max_level = ilk_wm_max_level(dev_priv->dev);
1970
1971         if (wm[0] >= min)
1972                 return false;
1973
1974         wm[0] = max(wm[0], min);
1975         for (level = 1; level <= max_level; level++)
1976                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
1977
1978         return true;
1979 }
1980
1981 static void snb_wm_latency_quirk(struct drm_device *dev)
1982 {
1983         struct drm_i915_private *dev_priv = dev->dev_private;
1984         bool changed;
1985
1986         /*
1987          * The BIOS provided WM memory latency values are often
1988          * inadequate for high resolution displays. Adjust them.
1989          */
1990         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
1991                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
1992                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
1993
1994         if (!changed)
1995                 return;
1996
1997         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
1998         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
1999         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2000         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2001 }
2002
2003 static void ilk_setup_wm_latency(struct drm_device *dev)
2004 {
2005         struct drm_i915_private *dev_priv = dev->dev_private;
2006
2007         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2008
2009         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2010                sizeof(dev_priv->wm.pri_latency));
2011         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2012                sizeof(dev_priv->wm.pri_latency));
2013
2014         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2015         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2016
2017         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2018         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2019         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2020
2021         if (IS_GEN6(dev))
2022                 snb_wm_latency_quirk(dev);
2023 }
2024
2025 static void skl_setup_wm_latency(struct drm_device *dev)
2026 {
2027         struct drm_i915_private *dev_priv = dev->dev_private;
2028
2029         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2030         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2031 }
2032
2033 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2034                                       struct ilk_pipe_wm_parameters *p)
2035 {
2036         struct drm_device *dev = crtc->dev;
2037         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2038         enum pipe pipe = intel_crtc->pipe;
2039         struct drm_plane *plane;
2040
2041         if (!intel_crtc->active)
2042                 return;
2043
2044         p->active = true;
2045         p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2046         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2047
2048         if (crtc->primary->state->fb) {
2049                 p->pri.enabled = true;
2050                 p->pri.bytes_per_pixel =
2051                         crtc->primary->state->fb->bits_per_pixel / 8;
2052         } else {
2053                 p->pri.enabled = false;
2054                 p->pri.bytes_per_pixel = 0;
2055         }
2056
2057         if (crtc->cursor->state->fb) {
2058                 p->cur.enabled = true;
2059                 p->cur.bytes_per_pixel = 4;
2060         } else {
2061                 p->cur.enabled = false;
2062                 p->cur.bytes_per_pixel = 0;
2063         }
2064         p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
2065         p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
2066
2067         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2068                 struct intel_plane *intel_plane = to_intel_plane(plane);
2069
2070                 if (intel_plane->pipe == pipe) {
2071                         p->spr = intel_plane->wm;
2072                         break;
2073                 }
2074         }
2075 }
2076
2077 static void ilk_compute_wm_config(struct drm_device *dev,
2078                                   struct intel_wm_config *config)
2079 {
2080         struct intel_crtc *intel_crtc;
2081
2082         /* Compute the currently _active_ config */
2083         for_each_intel_crtc(dev, intel_crtc) {
2084                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2085
2086                 if (!wm->pipe_enabled)
2087                         continue;
2088
2089                 config->sprites_enabled |= wm->sprites_enabled;
2090                 config->sprites_scaled |= wm->sprites_scaled;
2091                 config->num_pipes_active++;
2092         }
2093 }
2094
2095 /* Compute new watermarks for the pipe */
2096 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2097                                   const struct ilk_pipe_wm_parameters *params,
2098                                   struct intel_pipe_wm *pipe_wm)
2099 {
2100         struct drm_device *dev = crtc->dev;
2101         const struct drm_i915_private *dev_priv = dev->dev_private;
2102         int level, max_level = ilk_wm_max_level(dev);
2103         /* LP0 watermark maximums depend on this pipe alone */
2104         struct intel_wm_config config = {
2105                 .num_pipes_active = 1,
2106                 .sprites_enabled = params->spr.enabled,
2107                 .sprites_scaled = params->spr.scaled,
2108         };
2109         struct ilk_wm_maximums max;
2110
2111         pipe_wm->pipe_enabled = params->active;
2112         pipe_wm->sprites_enabled = params->spr.enabled;
2113         pipe_wm->sprites_scaled = params->spr.scaled;
2114
2115         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2116         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2117                 max_level = 1;
2118
2119         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2120         if (params->spr.scaled)
2121                 max_level = 0;
2122
2123         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2124
2125         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2126                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2127
2128         /* LP0 watermarks always use 1/2 DDB partitioning */
2129         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2130
2131         /* At least LP0 must be valid */
2132         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2133                 return false;
2134
2135         ilk_compute_wm_reg_maximums(dev, 1, &max);
2136
2137         for (level = 1; level <= max_level; level++) {
2138                 struct intel_wm_level wm = {};
2139
2140                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2141
2142                 /*
2143                  * Disable any watermark level that exceeds the
2144                  * register maximums since such watermarks are
2145                  * always invalid.
2146                  */
2147                 if (!ilk_validate_wm_level(level, &max, &wm))
2148                         break;
2149
2150                 pipe_wm->wm[level] = wm;
2151         }
2152
2153         return true;
2154 }
2155
2156 /*
2157  * Merge the watermarks from all active pipes for a specific level.
2158  */
2159 static void ilk_merge_wm_level(struct drm_device *dev,
2160                                int level,
2161                                struct intel_wm_level *ret_wm)
2162 {
2163         const struct intel_crtc *intel_crtc;
2164
2165         ret_wm->enable = true;
2166
2167         for_each_intel_crtc(dev, intel_crtc) {
2168                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2169                 const struct intel_wm_level *wm = &active->wm[level];
2170
2171                 if (!active->pipe_enabled)
2172                         continue;
2173
2174                 /*
2175                  * The watermark values may have been used in the past,
2176                  * so we must maintain them in the registers for some
2177                  * time even if the level is now disabled.
2178                  */
2179                 if (!wm->enable)
2180                         ret_wm->enable = false;
2181
2182                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2183                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2184                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2185                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2186         }
2187 }
2188
2189 /*
2190  * Merge all low power watermarks for all active pipes.
2191  */
2192 static void ilk_wm_merge(struct drm_device *dev,
2193                          const struct intel_wm_config *config,
2194                          const struct ilk_wm_maximums *max,
2195                          struct intel_pipe_wm *merged)
2196 {
2197         int level, max_level = ilk_wm_max_level(dev);
2198         int last_enabled_level = max_level;
2199
2200         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2201         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2202             config->num_pipes_active > 1)
2203                 return;
2204
2205         /* ILK: FBC WM must be disabled always */
2206         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2207
2208         /* merge each WM1+ level */
2209         for (level = 1; level <= max_level; level++) {
2210                 struct intel_wm_level *wm = &merged->wm[level];
2211
2212                 ilk_merge_wm_level(dev, level, wm);
2213
2214                 if (level > last_enabled_level)
2215                         wm->enable = false;
2216                 else if (!ilk_validate_wm_level(level, max, wm))
2217                         /* make sure all following levels get disabled */
2218                         last_enabled_level = level - 1;
2219
2220                 /*
2221                  * The spec says it is preferred to disable
2222                  * FBC WMs instead of disabling a WM level.
2223                  */
2224                 if (wm->fbc_val > max->fbc) {
2225                         if (wm->enable)
2226                                 merged->fbc_wm_enabled = false;
2227                         wm->fbc_val = 0;
2228                 }
2229         }
2230
2231         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2232         /*
2233          * FIXME this is racy. FBC might get enabled later.
2234          * What we should check here is whether FBC can be
2235          * enabled sometime later.
2236          */
2237         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2238                 for (level = 2; level <= max_level; level++) {
2239                         struct intel_wm_level *wm = &merged->wm[level];
2240
2241                         wm->enable = false;
2242                 }
2243         }
2244 }
2245
2246 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2247 {
2248         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2249         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2250 }
2251
2252 /* The value we need to program into the WM_LPx latency field */
2253 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2254 {
2255         struct drm_i915_private *dev_priv = dev->dev_private;
2256
2257         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2258                 return 2 * level;
2259         else
2260                 return dev_priv->wm.pri_latency[level];
2261 }
2262
2263 static void ilk_compute_wm_results(struct drm_device *dev,
2264                                    const struct intel_pipe_wm *merged,
2265                                    enum intel_ddb_partitioning partitioning,
2266                                    struct ilk_wm_values *results)
2267 {
2268         struct intel_crtc *intel_crtc;
2269         int level, wm_lp;
2270
2271         results->enable_fbc_wm = merged->fbc_wm_enabled;
2272         results->partitioning = partitioning;
2273
2274         /* LP1+ register values */
2275         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2276                 const struct intel_wm_level *r;
2277
2278                 level = ilk_wm_lp_to_level(wm_lp, merged);
2279
2280                 r = &merged->wm[level];
2281
2282                 /*
2283                  * Maintain the watermark values even if the level is
2284                  * disabled. Doing otherwise could cause underruns.
2285                  */
2286                 results->wm_lp[wm_lp - 1] =
2287                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2288                         (r->pri_val << WM1_LP_SR_SHIFT) |
2289                         r->cur_val;
2290
2291                 if (r->enable)
2292                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2293
2294                 if (INTEL_INFO(dev)->gen >= 8)
2295                         results->wm_lp[wm_lp - 1] |=
2296                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2297                 else
2298                         results->wm_lp[wm_lp - 1] |=
2299                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2300
2301                 /*
2302                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2303                  * level is disabled. Doing otherwise could cause underruns.
2304                  */
2305                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2306                         WARN_ON(wm_lp != 1);
2307                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2308                 } else
2309                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2310         }
2311
2312         /* LP0 register values */
2313         for_each_intel_crtc(dev, intel_crtc) {
2314                 enum pipe pipe = intel_crtc->pipe;
2315                 const struct intel_wm_level *r =
2316                         &intel_crtc->wm.active.wm[0];
2317
2318                 if (WARN_ON(!r->enable))
2319                         continue;
2320
2321                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2322
2323                 results->wm_pipe[pipe] =
2324                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2325                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2326                         r->cur_val;
2327         }
2328 }
2329
2330 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2331  * case both are at the same level. Prefer r1 in case they're the same. */
2332 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2333                                                   struct intel_pipe_wm *r1,
2334                                                   struct intel_pipe_wm *r2)
2335 {
2336         int level, max_level = ilk_wm_max_level(dev);
2337         int level1 = 0, level2 = 0;
2338
2339         for (level = 1; level <= max_level; level++) {
2340                 if (r1->wm[level].enable)
2341                         level1 = level;
2342                 if (r2->wm[level].enable)
2343                         level2 = level;
2344         }
2345
2346         if (level1 == level2) {
2347                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2348                         return r2;
2349                 else
2350                         return r1;
2351         } else if (level1 > level2) {
2352                 return r1;
2353         } else {
2354                 return r2;
2355         }
2356 }
2357
2358 /* dirty bits used to track which watermarks need changes */
2359 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2360 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2361 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2362 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2363 #define WM_DIRTY_FBC (1 << 24)
2364 #define WM_DIRTY_DDB (1 << 25)
2365
2366 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2367                                          const struct ilk_wm_values *old,
2368                                          const struct ilk_wm_values *new)
2369 {
2370         unsigned int dirty = 0;
2371         enum pipe pipe;
2372         int wm_lp;
2373
2374         for_each_pipe(dev_priv, pipe) {
2375                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2376                         dirty |= WM_DIRTY_LINETIME(pipe);
2377                         /* Must disable LP1+ watermarks too */
2378                         dirty |= WM_DIRTY_LP_ALL;
2379                 }
2380
2381                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2382                         dirty |= WM_DIRTY_PIPE(pipe);
2383                         /* Must disable LP1+ watermarks too */
2384                         dirty |= WM_DIRTY_LP_ALL;
2385                 }
2386         }
2387
2388         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2389                 dirty |= WM_DIRTY_FBC;
2390                 /* Must disable LP1+ watermarks too */
2391                 dirty |= WM_DIRTY_LP_ALL;
2392         }
2393
2394         if (old->partitioning != new->partitioning) {
2395                 dirty |= WM_DIRTY_DDB;
2396                 /* Must disable LP1+ watermarks too */
2397                 dirty |= WM_DIRTY_LP_ALL;
2398         }
2399
2400         /* LP1+ watermarks already deemed dirty, no need to continue */
2401         if (dirty & WM_DIRTY_LP_ALL)
2402                 return dirty;
2403
2404         /* Find the lowest numbered LP1+ watermark in need of an update... */
2405         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2406                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2407                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2408                         break;
2409         }
2410
2411         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2412         for (; wm_lp <= 3; wm_lp++)
2413                 dirty |= WM_DIRTY_LP(wm_lp);
2414
2415         return dirty;
2416 }
2417
2418 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2419                                unsigned int dirty)
2420 {
2421         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2422         bool changed = false;
2423
2424         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2425                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2426                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2427                 changed = true;
2428         }
2429         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2430                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2431                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2432                 changed = true;
2433         }
2434         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2435                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2436                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2437                 changed = true;
2438         }
2439
2440         /*
2441          * Don't touch WM1S_LP_EN here.
2442          * Doing so could cause underruns.
2443          */
2444
2445         return changed;
2446 }
2447
2448 /*
2449  * The spec says we shouldn't write when we don't need, because every write
2450  * causes WMs to be re-evaluated, expending some power.
2451  */
2452 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2453                                 struct ilk_wm_values *results)
2454 {
2455         struct drm_device *dev = dev_priv->dev;
2456         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2457         unsigned int dirty;
2458         uint32_t val;
2459
2460         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2461         if (!dirty)
2462                 return;
2463
2464         _ilk_disable_lp_wm(dev_priv, dirty);
2465
2466         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2467                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2468         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2469                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2470         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2471                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2472
2473         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2474                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2475         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2476                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2477         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2478                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2479
2480         if (dirty & WM_DIRTY_DDB) {
2481                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2482                         val = I915_READ(WM_MISC);
2483                         if (results->partitioning == INTEL_DDB_PART_1_2)
2484                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2485                         else
2486                                 val |= WM_MISC_DATA_PARTITION_5_6;
2487                         I915_WRITE(WM_MISC, val);
2488                 } else {
2489                         val = I915_READ(DISP_ARB_CTL2);
2490                         if (results->partitioning == INTEL_DDB_PART_1_2)
2491                                 val &= ~DISP_DATA_PARTITION_5_6;
2492                         else
2493                                 val |= DISP_DATA_PARTITION_5_6;
2494                         I915_WRITE(DISP_ARB_CTL2, val);
2495                 }
2496         }
2497
2498         if (dirty & WM_DIRTY_FBC) {
2499                 val = I915_READ(DISP_ARB_CTL);
2500                 if (results->enable_fbc_wm)
2501                         val &= ~DISP_FBC_WM_DIS;
2502                 else
2503                         val |= DISP_FBC_WM_DIS;
2504                 I915_WRITE(DISP_ARB_CTL, val);
2505         }
2506
2507         if (dirty & WM_DIRTY_LP(1) &&
2508             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2509                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2510
2511         if (INTEL_INFO(dev)->gen >= 7) {
2512                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2513                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2514                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2515                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2516         }
2517
2518         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2519                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2520         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2521                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2522         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2523                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2524
2525         dev_priv->wm.hw = *results;
2526 }
2527
2528 static bool ilk_disable_lp_wm(struct drm_device *dev)
2529 {
2530         struct drm_i915_private *dev_priv = dev->dev_private;
2531
2532         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2533 }
2534
2535 /*
2536  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2537  * different active planes.
2538  */
2539
2540 #define SKL_DDB_SIZE            896     /* in blocks */
2541
2542 static void
2543 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2544                                    struct drm_crtc *for_crtc,
2545                                    const struct intel_wm_config *config,
2546                                    const struct skl_pipe_wm_parameters *params,
2547                                    struct skl_ddb_entry *alloc /* out */)
2548 {
2549         struct drm_crtc *crtc;
2550         unsigned int pipe_size, ddb_size;
2551         int nth_active_pipe;
2552
2553         if (!params->active) {
2554                 alloc->start = 0;
2555                 alloc->end = 0;
2556                 return;
2557         }
2558
2559         ddb_size = SKL_DDB_SIZE;
2560
2561         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2562
2563         nth_active_pipe = 0;
2564         for_each_crtc(dev, crtc) {
2565                 if (!to_intel_crtc(crtc)->active)
2566                         continue;
2567
2568                 if (crtc == for_crtc)
2569                         break;
2570
2571                 nth_active_pipe++;
2572         }
2573
2574         pipe_size = ddb_size / config->num_pipes_active;
2575         alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2576         alloc->end = alloc->start + pipe_size;
2577 }
2578
2579 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2580 {
2581         if (config->num_pipes_active == 1)
2582                 return 32;
2583
2584         return 8;
2585 }
2586
2587 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2588 {
2589         entry->start = reg & 0x3ff;
2590         entry->end = (reg >> 16) & 0x3ff;
2591         if (entry->end)
2592                 entry->end += 1;
2593 }
2594
2595 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2596                           struct skl_ddb_allocation *ddb /* out */)
2597 {
2598         enum pipe pipe;
2599         int plane;
2600         u32 val;
2601
2602         for_each_pipe(dev_priv, pipe) {
2603                 for_each_plane(dev_priv, pipe, plane) {
2604                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2605                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2606                                                    val);
2607                 }
2608
2609                 val = I915_READ(CUR_BUF_CFG(pipe));
2610                 skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2611         }
2612 }
2613
2614 static unsigned int
2615 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
2616 {
2617         return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2618 }
2619
2620 /*
2621  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2622  * a 8192x4096@32bpp framebuffer:
2623  *   3 * 4096 * 8192  * 4 < 2^32
2624  */
2625 static unsigned int
2626 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2627                                  const struct skl_pipe_wm_parameters *params)
2628 {
2629         unsigned int total_data_rate = 0;
2630         int plane;
2631
2632         for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2633                 const struct intel_plane_wm_parameters *p;
2634
2635                 p = &params->plane[plane];
2636                 if (!p->enabled)
2637                         continue;
2638
2639                 total_data_rate += skl_plane_relative_data_rate(p);
2640         }
2641
2642         return total_data_rate;
2643 }
2644
2645 static void
2646 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2647                       const struct intel_wm_config *config,
2648                       const struct skl_pipe_wm_parameters *params,
2649                       struct skl_ddb_allocation *ddb /* out */)
2650 {
2651         struct drm_device *dev = crtc->dev;
2652         struct drm_i915_private *dev_priv = dev->dev_private;
2653         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2654         enum pipe pipe = intel_crtc->pipe;
2655         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2656         uint16_t alloc_size, start, cursor_blocks;
2657         uint16_t minimum[I915_MAX_PLANES];
2658         unsigned int total_data_rate;
2659         int plane;
2660
2661         skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2662         alloc_size = skl_ddb_entry_size(alloc);
2663         if (alloc_size == 0) {
2664                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2665                 memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2666                 return;
2667         }
2668
2669         cursor_blocks = skl_cursor_allocation(config);
2670         ddb->cursor[pipe].start = alloc->end - cursor_blocks;
2671         ddb->cursor[pipe].end = alloc->end;
2672
2673         alloc_size -= cursor_blocks;
2674         alloc->end -= cursor_blocks;
2675
2676         /* 1. Allocate the mininum required blocks for each active plane */
2677         for_each_plane(dev_priv, pipe, plane) {
2678                 const struct intel_plane_wm_parameters *p;
2679
2680                 p = &params->plane[plane];
2681                 if (!p->enabled)
2682                         continue;
2683
2684                 minimum[plane] = 8;
2685                 alloc_size -= minimum[plane];
2686         }
2687
2688         /*
2689          * 2. Distribute the remaining space in proportion to the amount of
2690          * data each plane needs to fetch from memory.
2691          *
2692          * FIXME: we may not allocate every single block here.
2693          */
2694         total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2695
2696         start = alloc->start;
2697         for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2698                 const struct intel_plane_wm_parameters *p;
2699                 unsigned int data_rate;
2700                 uint16_t plane_blocks;
2701
2702                 p = &params->plane[plane];
2703                 if (!p->enabled)
2704                         continue;
2705
2706                 data_rate = skl_plane_relative_data_rate(p);
2707
2708                 /*
2709                  * promote the expression to 64 bits to avoid overflowing, the
2710                  * result is < available as data_rate / total_data_rate < 1
2711                  */
2712                 plane_blocks = minimum[plane];
2713                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2714                                         total_data_rate);
2715
2716                 ddb->plane[pipe][plane].start = start;
2717                 ddb->plane[pipe][plane].end = start + plane_blocks;
2718
2719                 start += plane_blocks;
2720         }
2721
2722 }
2723
2724 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2725 {
2726         /* TODO: Take into account the scalers once we support them */
2727         return config->base.adjusted_mode.crtc_clock;
2728 }
2729
2730 /*
2731  * The max latency should be 257 (max the punit can code is 255 and we add 2us
2732  * for the read latency) and bytes_per_pixel should always be <= 8, so that
2733  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
2734  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
2735 */
2736 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2737                                uint32_t latency)
2738 {
2739         uint32_t wm_intermediate_val, ret;
2740
2741         if (latency == 0)
2742                 return UINT_MAX;
2743
2744         wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
2745         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
2746
2747         return ret;
2748 }
2749
2750 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2751                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2752                                uint64_t tiling, uint32_t latency)
2753 {
2754         uint32_t ret;
2755         uint32_t plane_bytes_per_line, plane_blocks_per_line;
2756         uint32_t wm_intermediate_val;
2757
2758         if (latency == 0)
2759                 return UINT_MAX;
2760
2761         plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
2762
2763         if (tiling == I915_FORMAT_MOD_Y_TILED ||
2764             tiling == I915_FORMAT_MOD_Yf_TILED) {
2765                 plane_bytes_per_line *= 4;
2766                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2767                 plane_blocks_per_line /= 4;
2768         } else {
2769                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2770         }
2771
2772         wm_intermediate_val = latency * pixel_rate;
2773         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
2774                                 plane_blocks_per_line;
2775
2776         return ret;
2777 }
2778
2779 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
2780                                        const struct intel_crtc *intel_crtc)
2781 {
2782         struct drm_device *dev = intel_crtc->base.dev;
2783         struct drm_i915_private *dev_priv = dev->dev_private;
2784         const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
2785         enum pipe pipe = intel_crtc->pipe;
2786
2787         if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
2788                    sizeof(new_ddb->plane[pipe])))
2789                 return true;
2790
2791         if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
2792                     sizeof(new_ddb->cursor[pipe])))
2793                 return true;
2794
2795         return false;
2796 }
2797
2798 static void skl_compute_wm_global_parameters(struct drm_device *dev,
2799                                              struct intel_wm_config *config)
2800 {
2801         struct drm_crtc *crtc;
2802         struct drm_plane *plane;
2803
2804         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2805                 config->num_pipes_active += to_intel_crtc(crtc)->active;
2806
2807         /* FIXME: I don't think we need those two global parameters on SKL */
2808         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2809                 struct intel_plane *intel_plane = to_intel_plane(plane);
2810
2811                 config->sprites_enabled |= intel_plane->wm.enabled;
2812                 config->sprites_scaled |= intel_plane->wm.scaled;
2813         }
2814 }
2815
2816 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
2817                                            struct skl_pipe_wm_parameters *p)
2818 {
2819         struct drm_device *dev = crtc->dev;
2820         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2821         enum pipe pipe = intel_crtc->pipe;
2822         struct drm_plane *plane;
2823         struct drm_framebuffer *fb;
2824         int i = 1; /* Index for sprite planes start */
2825
2826         p->active = intel_crtc->active;
2827         if (p->active) {
2828                 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2829                 p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2830
2831                 fb = crtc->primary->state->fb;
2832                 if (fb) {
2833                         p->plane[0].enabled = true;
2834                         p->plane[0].bytes_per_pixel = fb->bits_per_pixel / 8;
2835                         p->plane[0].tiling = fb->modifier[0];
2836                 } else {
2837                         p->plane[0].enabled = false;
2838                         p->plane[0].bytes_per_pixel = 0;
2839                         p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
2840                 }
2841                 p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
2842                 p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2843                 p->plane[0].rotation = crtc->primary->state->rotation;
2844
2845                 fb = crtc->cursor->state->fb;
2846                 if (fb) {
2847                         p->cursor.enabled = true;
2848                         p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
2849                         p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
2850                         p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
2851                 } else {
2852                         p->cursor.enabled = false;
2853                         p->cursor.bytes_per_pixel = 0;
2854                         p->cursor.horiz_pixels = 64;
2855                         p->cursor.vert_pixels = 64;
2856                 }
2857         }
2858
2859         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2860                 struct intel_plane *intel_plane = to_intel_plane(plane);
2861
2862                 if (intel_plane->pipe == pipe &&
2863                         plane->type == DRM_PLANE_TYPE_OVERLAY)
2864                         p->plane[i++] = intel_plane->wm;
2865         }
2866 }
2867
2868 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
2869                                  struct skl_pipe_wm_parameters *p,
2870                                  struct intel_plane_wm_parameters *p_params,
2871                                  uint16_t ddb_allocation,
2872                                  int level,
2873                                  uint16_t *out_blocks, /* out */
2874                                  uint8_t *out_lines /* out */)
2875 {
2876         uint32_t latency = dev_priv->wm.skl_latency[level];
2877         uint32_t method1, method2;
2878         uint32_t plane_bytes_per_line, plane_blocks_per_line;
2879         uint32_t res_blocks, res_lines;
2880         uint32_t selected_result;
2881
2882         if (latency == 0 || !p->active || !p_params->enabled)
2883                 return false;
2884
2885         method1 = skl_wm_method1(p->pixel_rate,
2886                                  p_params->bytes_per_pixel,
2887                                  latency);
2888         method2 = skl_wm_method2(p->pixel_rate,
2889                                  p->pipe_htotal,
2890                                  p_params->horiz_pixels,
2891                                  p_params->bytes_per_pixel,
2892                                  p_params->tiling,
2893                                  latency);
2894
2895         plane_bytes_per_line = p_params->horiz_pixels *
2896                                         p_params->bytes_per_pixel;
2897         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2898
2899         if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
2900             p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
2901                 uint32_t min_scanlines = 4;
2902                 uint32_t y_tile_minimum;
2903                 if (intel_rotation_90_or_270(p_params->rotation)) {
2904                         switch (p_params->bytes_per_pixel) {
2905                         case 1:
2906                                 min_scanlines = 16;
2907                                 break;
2908                         case 2:
2909                                 min_scanlines = 8;
2910                                 break;
2911                         case 8:
2912                                 WARN(1, "Unsupported pixel depth for rotation");
2913                         }
2914                 }
2915                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
2916                 selected_result = max(method2, y_tile_minimum);
2917         } else {
2918                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
2919                         selected_result = min(method1, method2);
2920                 else
2921                         selected_result = method1;
2922         }
2923
2924         res_blocks = selected_result + 1;
2925         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
2926
2927         if (level >= 1 && level <= 7) {
2928                 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
2929                     p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
2930                         res_lines += 4;
2931                 else
2932                         res_blocks++;
2933         }
2934
2935         if (res_blocks >= ddb_allocation || res_lines > 31)
2936                 return false;
2937
2938         *out_blocks = res_blocks;
2939         *out_lines = res_lines;
2940
2941         return true;
2942 }
2943
2944 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
2945                                  struct skl_ddb_allocation *ddb,
2946                                  struct skl_pipe_wm_parameters *p,
2947                                  enum pipe pipe,
2948                                  int level,
2949                                  int num_planes,
2950                                  struct skl_wm_level *result)
2951 {
2952         uint16_t ddb_blocks;
2953         int i;
2954
2955         for (i = 0; i < num_planes; i++) {
2956                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
2957
2958                 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
2959                                                 p, &p->plane[i],
2960                                                 ddb_blocks,
2961                                                 level,
2962                                                 &result->plane_res_b[i],
2963                                                 &result->plane_res_l[i]);
2964         }
2965
2966         ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
2967         result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
2968                                                  ddb_blocks, level,
2969                                                  &result->cursor_res_b,
2970                                                  &result->cursor_res_l);
2971 }
2972
2973 static uint32_t
2974 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
2975 {
2976         if (!to_intel_crtc(crtc)->active)
2977                 return 0;
2978
2979         return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
2980
2981 }
2982
2983 static void skl_compute_transition_wm(struct drm_crtc *crtc,
2984                                       struct skl_pipe_wm_parameters *params,
2985                                       struct skl_wm_level *trans_wm /* out */)
2986 {
2987         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2988         int i;
2989
2990         if (!params->active)
2991                 return;
2992
2993         /* Until we know more, just disable transition WMs */
2994         for (i = 0; i < intel_num_planes(intel_crtc); i++)
2995                 trans_wm->plane_en[i] = false;
2996         trans_wm->cursor_en = false;
2997 }
2998
2999 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3000                                 struct skl_ddb_allocation *ddb,
3001                                 struct skl_pipe_wm_parameters *params,
3002                                 struct skl_pipe_wm *pipe_wm)
3003 {
3004         struct drm_device *dev = crtc->dev;
3005         const struct drm_i915_private *dev_priv = dev->dev_private;
3006         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3007         int level, max_level = ilk_wm_max_level(dev);
3008
3009         for (level = 0; level <= max_level; level++) {
3010                 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3011                                      level, intel_num_planes(intel_crtc),
3012                                      &pipe_wm->wm[level]);
3013         }
3014         pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3015
3016         skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3017 }
3018
3019 static void skl_compute_wm_results(struct drm_device *dev,
3020                                    struct skl_pipe_wm_parameters *p,
3021                                    struct skl_pipe_wm *p_wm,
3022                                    struct skl_wm_values *r,
3023                                    struct intel_crtc *intel_crtc)
3024 {
3025         int level, max_level = ilk_wm_max_level(dev);
3026         enum pipe pipe = intel_crtc->pipe;
3027         uint32_t temp;
3028         int i;
3029
3030         for (level = 0; level <= max_level; level++) {
3031                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3032                         temp = 0;
3033
3034                         temp |= p_wm->wm[level].plane_res_l[i] <<
3035                                         PLANE_WM_LINES_SHIFT;
3036                         temp |= p_wm->wm[level].plane_res_b[i];
3037                         if (p_wm->wm[level].plane_en[i])
3038                                 temp |= PLANE_WM_EN;
3039
3040                         r->plane[pipe][i][level] = temp;
3041                 }
3042
3043                 temp = 0;
3044
3045                 temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
3046                 temp |= p_wm->wm[level].cursor_res_b;
3047
3048                 if (p_wm->wm[level].cursor_en)
3049                         temp |= PLANE_WM_EN;
3050
3051                 r->cursor[pipe][level] = temp;
3052
3053         }
3054
3055         /* transition WMs */
3056         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3057                 temp = 0;
3058                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3059                 temp |= p_wm->trans_wm.plane_res_b[i];
3060                 if (p_wm->trans_wm.plane_en[i])
3061                         temp |= PLANE_WM_EN;
3062
3063                 r->plane_trans[pipe][i] = temp;
3064         }
3065
3066         temp = 0;
3067         temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
3068         temp |= p_wm->trans_wm.cursor_res_b;
3069         if (p_wm->trans_wm.cursor_en)
3070                 temp |= PLANE_WM_EN;
3071
3072         r->cursor_trans[pipe] = temp;
3073
3074         r->wm_linetime[pipe] = p_wm->linetime;
3075 }
3076
3077 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3078                                 const struct skl_ddb_entry *entry)
3079 {
3080         if (entry->end)
3081                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3082         else
3083                 I915_WRITE(reg, 0);
3084 }
3085
3086 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3087                                 const struct skl_wm_values *new)
3088 {
3089         struct drm_device *dev = dev_priv->dev;
3090         struct intel_crtc *crtc;
3091
3092         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3093                 int i, level, max_level = ilk_wm_max_level(dev);
3094                 enum pipe pipe = crtc->pipe;
3095
3096                 if (!new->dirty[pipe])
3097                         continue;
3098
3099                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3100
3101                 for (level = 0; level <= max_level; level++) {
3102                         for (i = 0; i < intel_num_planes(crtc); i++)
3103                                 I915_WRITE(PLANE_WM(pipe, i, level),
3104                                            new->plane[pipe][i][level]);
3105                         I915_WRITE(CUR_WM(pipe, level),
3106                                    new->cursor[pipe][level]);
3107                 }
3108                 for (i = 0; i < intel_num_planes(crtc); i++)
3109                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3110                                    new->plane_trans[pipe][i]);
3111                 I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
3112
3113                 for (i = 0; i < intel_num_planes(crtc); i++)
3114                         skl_ddb_entry_write(dev_priv,
3115                                             PLANE_BUF_CFG(pipe, i),
3116                                             &new->ddb.plane[pipe][i]);
3117
3118                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3119                                     &new->ddb.cursor[pipe]);
3120         }
3121 }
3122
3123 /*
3124  * When setting up a new DDB allocation arrangement, we need to correctly
3125  * sequence the times at which the new allocations for the pipes are taken into
3126  * account or we'll have pipes fetching from space previously allocated to
3127  * another pipe.
3128  *
3129  * Roughly the sequence looks like:
3130  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3131  *     overlapping with a previous light-up pipe (another way to put it is:
3132  *     pipes with their new allocation strickly included into their old ones).
3133  *  2. re-allocate the other pipes that get their allocation reduced
3134  *  3. allocate the pipes having their allocation increased
3135  *
3136  * Steps 1. and 2. are here to take care of the following case:
3137  * - Initially DDB looks like this:
3138  *     |   B    |   C    |
3139  * - enable pipe A.
3140  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3141  *   allocation
3142  *     |  A  |  B  |  C  |
3143  *
3144  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3145  */
3146
3147 static void
3148 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3149 {
3150         int plane;
3151
3152         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3153
3154         for_each_plane(dev_priv, pipe, plane) {
3155                 I915_WRITE(PLANE_SURF(pipe, plane),
3156                            I915_READ(PLANE_SURF(pipe, plane)));
3157         }
3158         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3159 }
3160
3161 static bool
3162 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3163                             const struct skl_ddb_allocation *new,
3164                             enum pipe pipe)
3165 {
3166         uint16_t old_size, new_size;
3167
3168         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3169         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3170
3171         return old_size != new_size &&
3172                new->pipe[pipe].start >= old->pipe[pipe].start &&
3173                new->pipe[pipe].end <= old->pipe[pipe].end;
3174 }
3175
3176 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3177                                 struct skl_wm_values *new_values)
3178 {
3179         struct drm_device *dev = dev_priv->dev;
3180         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3181         bool reallocated[I915_MAX_PIPES] = {false, false, false};
3182         struct intel_crtc *crtc;
3183         enum pipe pipe;
3184
3185         new_ddb = &new_values->ddb;
3186         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3187
3188         /*
3189          * First pass: flush the pipes with the new allocation contained into
3190          * the old space.
3191          *
3192          * We'll wait for the vblank on those pipes to ensure we can safely
3193          * re-allocate the freed space without this pipe fetching from it.
3194          */
3195         for_each_intel_crtc(dev, crtc) {
3196                 if (!crtc->active)
3197                         continue;
3198
3199                 pipe = crtc->pipe;
3200
3201                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3202                         continue;
3203
3204                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3205                 intel_wait_for_vblank(dev, pipe);
3206
3207                 reallocated[pipe] = true;
3208         }
3209
3210
3211         /*
3212          * Second pass: flush the pipes that are having their allocation
3213          * reduced, but overlapping with a previous allocation.
3214          *
3215          * Here as well we need to wait for the vblank to make sure the freed
3216          * space is not used anymore.
3217          */
3218         for_each_intel_crtc(dev, crtc) {
3219                 if (!crtc->active)
3220                         continue;
3221
3222                 pipe = crtc->pipe;
3223
3224                 if (reallocated[pipe])
3225                         continue;
3226
3227                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3228                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3229                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3230                         intel_wait_for_vblank(dev, pipe);
3231                         reallocated[pipe] = true;
3232                 }
3233         }
3234
3235         /*
3236          * Third pass: flush the pipes that got more space allocated.
3237          *
3238          * We don't need to actively wait for the update here, next vblank
3239          * will just get more DDB space with the correct WM values.
3240          */
3241         for_each_intel_crtc(dev, crtc) {
3242                 if (!crtc->active)
3243                         continue;
3244
3245                 pipe = crtc->pipe;
3246
3247                 /*
3248                  * At this point, only the pipes more space than before are
3249                  * left to re-allocate.
3250                  */
3251                 if (reallocated[pipe])
3252                         continue;
3253
3254                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3255         }
3256 }
3257
3258 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3259                                struct skl_pipe_wm_parameters *params,
3260                                struct intel_wm_config *config,
3261                                struct skl_ddb_allocation *ddb, /* out */
3262                                struct skl_pipe_wm *pipe_wm /* out */)
3263 {
3264         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3265
3266         skl_compute_wm_pipe_parameters(crtc, params);
3267         skl_allocate_pipe_ddb(crtc, config, params, ddb);
3268         skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3269
3270         if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3271                 return false;
3272
3273         intel_crtc->wm.skl_active = *pipe_wm;
3274         return true;
3275 }
3276
3277 static void skl_update_other_pipe_wm(struct drm_device *dev,
3278                                      struct drm_crtc *crtc,
3279                                      struct intel_wm_config *config,
3280                                      struct skl_wm_values *r)
3281 {
3282         struct intel_crtc *intel_crtc;
3283         struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3284
3285         /*
3286          * If the WM update hasn't changed the allocation for this_crtc (the
3287          * crtc we are currently computing the new WM values for), other
3288          * enabled crtcs will keep the same allocation and we don't need to
3289          * recompute anything for them.
3290          */
3291         if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3292                 return;
3293
3294         /*
3295          * Otherwise, because of this_crtc being freshly enabled/disabled, the
3296          * other active pipes need new DDB allocation and WM values.
3297          */
3298         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3299                                 base.head) {
3300                 struct skl_pipe_wm_parameters params = {};
3301                 struct skl_pipe_wm pipe_wm = {};
3302                 bool wm_changed;
3303
3304                 if (this_crtc->pipe == intel_crtc->pipe)
3305                         continue;
3306
3307                 if (!intel_crtc->active)
3308                         continue;
3309
3310                 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3311                                                 &params, config,
3312                                                 &r->ddb, &pipe_wm);
3313
3314                 /*
3315                  * If we end up re-computing the other pipe WM values, it's
3316                  * because it was really needed, so we expect the WM values to
3317                  * be different.
3318                  */
3319                 WARN_ON(!wm_changed);
3320
3321                 skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3322                 r->dirty[intel_crtc->pipe] = true;
3323         }
3324 }
3325
3326 static void skl_update_wm(struct drm_crtc *crtc)
3327 {
3328         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3329         struct drm_device *dev = crtc->dev;
3330         struct drm_i915_private *dev_priv = dev->dev_private;
3331         struct skl_pipe_wm_parameters params = {};
3332         struct skl_wm_values *results = &dev_priv->wm.skl_results;
3333         struct skl_pipe_wm pipe_wm = {};
3334         struct intel_wm_config config = {};
3335
3336         memset(results, 0, sizeof(*results));
3337
3338         skl_compute_wm_global_parameters(dev, &config);
3339
3340         if (!skl_update_pipe_wm(crtc, &params, &config,
3341                                 &results->ddb, &pipe_wm))
3342                 return;
3343
3344         skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3345         results->dirty[intel_crtc->pipe] = true;
3346
3347         skl_update_other_pipe_wm(dev, crtc, &config, results);
3348         skl_write_wm_values(dev_priv, results);
3349         skl_flush_wm_values(dev_priv, results);
3350
3351         /* store the new configuration */
3352         dev_priv->wm.skl_hw = *results;
3353 }
3354
3355 static void
3356 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3357                      uint32_t sprite_width, uint32_t sprite_height,
3358                      int pixel_size, bool enabled, bool scaled)
3359 {
3360         struct intel_plane *intel_plane = to_intel_plane(plane);
3361         struct drm_framebuffer *fb = plane->state->fb;
3362
3363         intel_plane->wm.enabled = enabled;
3364         intel_plane->wm.scaled = scaled;
3365         intel_plane->wm.horiz_pixels = sprite_width;
3366         intel_plane->wm.vert_pixels = sprite_height;
3367         intel_plane->wm.bytes_per_pixel = pixel_size;
3368         intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3369         /*
3370          * Framebuffer can be NULL on plane disable, but it does not
3371          * matter for watermarks if we assume no tiling in that case.
3372          */
3373         if (fb)
3374                 intel_plane->wm.tiling = fb->modifier[0];
3375         intel_plane->wm.rotation = plane->state->rotation;
3376
3377         skl_update_wm(crtc);
3378 }
3379
3380 static void ilk_update_wm(struct drm_crtc *crtc)
3381 {
3382         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3383         struct drm_device *dev = crtc->dev;
3384         struct drm_i915_private *dev_priv = dev->dev_private;
3385         struct ilk_wm_maximums max;
3386         struct ilk_pipe_wm_parameters params = {};
3387         struct ilk_wm_values results = {};
3388         enum intel_ddb_partitioning partitioning;
3389         struct intel_pipe_wm pipe_wm = {};
3390         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3391         struct intel_wm_config config = {};
3392
3393         ilk_compute_wm_parameters(crtc, &params);
3394
3395         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3396
3397         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3398                 return;
3399
3400         intel_crtc->wm.active = pipe_wm;
3401
3402         ilk_compute_wm_config(dev, &config);
3403
3404         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3405         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3406
3407         /* 5/6 split only in single pipe config on IVB+ */
3408         if (INTEL_INFO(dev)->gen >= 7 &&
3409             config.num_pipes_active == 1 && config.sprites_enabled) {
3410                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3411                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3412
3413                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3414         } else {
3415                 best_lp_wm = &lp_wm_1_2;
3416         }
3417
3418         partitioning = (best_lp_wm == &lp_wm_1_2) ?
3419                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3420
3421         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3422
3423         ilk_write_wm_values(dev_priv, &results);
3424 }
3425
3426 static void
3427 ilk_update_sprite_wm(struct drm_plane *plane,
3428                      struct drm_crtc *crtc,
3429                      uint32_t sprite_width, uint32_t sprite_height,
3430                      int pixel_size, bool enabled, bool scaled)
3431 {
3432         struct drm_device *dev = plane->dev;
3433         struct intel_plane *intel_plane = to_intel_plane(plane);
3434
3435         intel_plane->wm.enabled = enabled;
3436         intel_plane->wm.scaled = scaled;
3437         intel_plane->wm.horiz_pixels = sprite_width;
3438         intel_plane->wm.vert_pixels = sprite_width;
3439         intel_plane->wm.bytes_per_pixel = pixel_size;
3440
3441         /*
3442          * IVB workaround: must disable low power watermarks for at least
3443          * one frame before enabling scaling.  LP watermarks can be re-enabled
3444          * when scaling is disabled.
3445          *
3446          * WaCxSRDisabledForSpriteScaling:ivb
3447          */
3448         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3449                 intel_wait_for_vblank(dev, intel_plane->pipe);
3450
3451         ilk_update_wm(crtc);
3452 }
3453
3454 static void skl_pipe_wm_active_state(uint32_t val,
3455                                      struct skl_pipe_wm *active,
3456                                      bool is_transwm,
3457                                      bool is_cursor,
3458                                      int i,
3459                                      int level)
3460 {
3461         bool is_enabled = (val & PLANE_WM_EN) != 0;
3462
3463         if (!is_transwm) {
3464                 if (!is_cursor) {
3465                         active->wm[level].plane_en[i] = is_enabled;
3466                         active->wm[level].plane_res_b[i] =
3467                                         val & PLANE_WM_BLOCKS_MASK;
3468                         active->wm[level].plane_res_l[i] =
3469                                         (val >> PLANE_WM_LINES_SHIFT) &
3470                                                 PLANE_WM_LINES_MASK;
3471                 } else {
3472                         active->wm[level].cursor_en = is_enabled;
3473                         active->wm[level].cursor_res_b =
3474                                         val & PLANE_WM_BLOCKS_MASK;
3475                         active->wm[level].cursor_res_l =
3476                                         (val >> PLANE_WM_LINES_SHIFT) &
3477                                                 PLANE_WM_LINES_MASK;
3478                 }
3479         } else {
3480                 if (!is_cursor) {
3481                         active->trans_wm.plane_en[i] = is_enabled;
3482                         active->trans_wm.plane_res_b[i] =
3483                                         val & PLANE_WM_BLOCKS_MASK;
3484                         active->trans_wm.plane_res_l[i] =
3485                                         (val >> PLANE_WM_LINES_SHIFT) &
3486                                                 PLANE_WM_LINES_MASK;
3487                 } else {
3488                         active->trans_wm.cursor_en = is_enabled;
3489                         active->trans_wm.cursor_res_b =
3490                                         val & PLANE_WM_BLOCKS_MASK;
3491                         active->trans_wm.cursor_res_l =
3492                                         (val >> PLANE_WM_LINES_SHIFT) &
3493                                                 PLANE_WM_LINES_MASK;
3494                 }
3495         }
3496 }
3497
3498 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3499 {
3500         struct drm_device *dev = crtc->dev;
3501         struct drm_i915_private *dev_priv = dev->dev_private;
3502         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3503         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3504         struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3505         enum pipe pipe = intel_crtc->pipe;
3506         int level, i, max_level;
3507         uint32_t temp;
3508
3509         max_level = ilk_wm_max_level(dev);
3510
3511         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3512
3513         for (level = 0; level <= max_level; level++) {
3514                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3515                         hw->plane[pipe][i][level] =
3516                                         I915_READ(PLANE_WM(pipe, i, level));
3517                 hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3518         }
3519
3520         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3521                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3522         hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3523
3524         if (!intel_crtc->active)
3525                 return;
3526
3527         hw->dirty[pipe] = true;
3528
3529         active->linetime = hw->wm_linetime[pipe];
3530
3531         for (level = 0; level <= max_level; level++) {
3532                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3533                         temp = hw->plane[pipe][i][level];
3534                         skl_pipe_wm_active_state(temp, active, false,
3535                                                 false, i, level);
3536                 }
3537                 temp = hw->cursor[pipe][level];
3538                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3539         }
3540
3541         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3542                 temp = hw->plane_trans[pipe][i];
3543                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3544         }
3545
3546         temp = hw->cursor_trans[pipe];
3547         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3548 }
3549
3550 void skl_wm_get_hw_state(struct drm_device *dev)
3551 {
3552         struct drm_i915_private *dev_priv = dev->dev_private;
3553         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3554         struct drm_crtc *crtc;
3555
3556         skl_ddb_get_hw_state(dev_priv, ddb);
3557         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3558                 skl_pipe_wm_get_hw_state(crtc);
3559 }
3560
3561 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3562 {
3563         struct drm_device *dev = crtc->dev;
3564         struct drm_i915_private *dev_priv = dev->dev_private;
3565         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3566         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3567         struct intel_pipe_wm *active = &intel_crtc->wm.active;
3568         enum pipe pipe = intel_crtc->pipe;
3569         static const unsigned int wm0_pipe_reg[] = {
3570                 [PIPE_A] = WM0_PIPEA_ILK,
3571                 [PIPE_B] = WM0_PIPEB_ILK,
3572                 [PIPE_C] = WM0_PIPEC_IVB,
3573         };
3574
3575         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3576         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3577                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3578
3579         active->pipe_enabled = intel_crtc->active;
3580
3581         if (active->pipe_enabled) {
3582                 u32 tmp = hw->wm_pipe[pipe];
3583
3584                 /*
3585                  * For active pipes LP0 watermark is marked as
3586                  * enabled, and LP1+ watermaks as disabled since
3587                  * we can't really reverse compute them in case
3588                  * multiple pipes are active.
3589                  */
3590                 active->wm[0].enable = true;
3591                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3592                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3593                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3594                 active->linetime = hw->wm_linetime[pipe];
3595         } else {
3596                 int level, max_level = ilk_wm_max_level(dev);
3597
3598                 /*
3599                  * For inactive pipes, all watermark levels
3600                  * should be marked as enabled but zeroed,
3601                  * which is what we'd compute them to.
3602                  */
3603                 for (level = 0; level <= max_level; level++)
3604                         active->wm[level].enable = true;
3605         }
3606 }
3607
3608 void ilk_wm_get_hw_state(struct drm_device *dev)
3609 {
3610         struct drm_i915_private *dev_priv = dev->dev_private;
3611         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3612         struct drm_crtc *crtc;
3613
3614         for_each_crtc(dev, crtc)
3615                 ilk_pipe_wm_get_hw_state(crtc);
3616
3617         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3618         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3619         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3620
3621         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3622         if (INTEL_INFO(dev)->gen >= 7) {
3623                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3624                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3625         }
3626
3627         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3628                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3629                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3630         else if (IS_IVYBRIDGE(dev))
3631                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3632                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3633
3634         hw->enable_fbc_wm =
3635                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3636 }
3637
3638 /**
3639  * intel_update_watermarks - update FIFO watermark values based on current modes
3640  *
3641  * Calculate watermark values for the various WM regs based on current mode
3642  * and plane configuration.
3643  *
3644  * There are several cases to deal with here:
3645  *   - normal (i.e. non-self-refresh)
3646  *   - self-refresh (SR) mode
3647  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3648  *   - lines are small relative to FIFO size (buffer can hold more than 2
3649  *     lines), so need to account for TLB latency
3650  *
3651  *   The normal calculation is:
3652  *     watermark = dotclock * bytes per pixel * latency
3653  *   where latency is platform & configuration dependent (we assume pessimal
3654  *   values here).
3655  *
3656  *   The SR calculation is:
3657  *     watermark = (trunc(latency/line time)+1) * surface width *
3658  *       bytes per pixel
3659  *   where
3660  *     line time = htotal / dotclock
3661  *     surface width = hdisplay for normal plane and 64 for cursor
3662  *   and latency is assumed to be high, as above.
3663  *
3664  * The final value programmed to the register should always be rounded up,
3665  * and include an extra 2 entries to account for clock crossings.
3666  *
3667  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3668  * to set the non-SR watermarks to 8.
3669  */
3670 void intel_update_watermarks(struct drm_crtc *crtc)
3671 {
3672         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3673
3674         if (dev_priv->display.update_wm)
3675                 dev_priv->display.update_wm(crtc);
3676 }
3677
3678 void intel_update_sprite_watermarks(struct drm_plane *plane,
3679                                     struct drm_crtc *crtc,
3680                                     uint32_t sprite_width,
3681                                     uint32_t sprite_height,
3682                                     int pixel_size,
3683                                     bool enabled, bool scaled)
3684 {
3685         struct drm_i915_private *dev_priv = plane->dev->dev_private;
3686
3687         if (dev_priv->display.update_sprite_wm)
3688                 dev_priv->display.update_sprite_wm(plane, crtc,
3689                                                    sprite_width, sprite_height,
3690                                                    pixel_size, enabled, scaled);
3691 }
3692
3693 /**
3694  * Lock protecting IPS related data structures
3695  */
3696 DEFINE_SPINLOCK(mchdev_lock);
3697
3698 /* Global for IPS driver to get at the current i915 device. Protected by
3699  * mchdev_lock. */
3700 static struct drm_i915_private *i915_mch_dev;
3701
3702 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3703 {
3704         struct drm_i915_private *dev_priv = dev->dev_private;
3705         u16 rgvswctl;
3706
3707         assert_spin_locked(&mchdev_lock);
3708
3709         rgvswctl = I915_READ16(MEMSWCTL);
3710         if (rgvswctl & MEMCTL_CMD_STS) {
3711                 DRM_DEBUG("gpu busy, RCS change rejected\n");
3712                 return false; /* still busy with another command */
3713         }
3714
3715         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3716                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3717         I915_WRITE16(MEMSWCTL, rgvswctl);
3718         POSTING_READ16(MEMSWCTL);
3719
3720         rgvswctl |= MEMCTL_CMD_STS;
3721         I915_WRITE16(MEMSWCTL, rgvswctl);
3722
3723         return true;
3724 }
3725
3726 static void ironlake_enable_drps(struct drm_device *dev)
3727 {
3728         struct drm_i915_private *dev_priv = dev->dev_private;
3729         u32 rgvmodectl = I915_READ(MEMMODECTL);
3730         u8 fmax, fmin, fstart, vstart;
3731
3732         spin_lock_irq(&mchdev_lock);
3733
3734         /* Enable temp reporting */
3735         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3736         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3737
3738         /* 100ms RC evaluation intervals */
3739         I915_WRITE(RCUPEI, 100000);
3740         I915_WRITE(RCDNEI, 100000);
3741
3742         /* Set max/min thresholds to 90ms and 80ms respectively */
3743         I915_WRITE(RCBMAXAVG, 90000);
3744         I915_WRITE(RCBMINAVG, 80000);
3745
3746         I915_WRITE(MEMIHYST, 1);
3747
3748         /* Set up min, max, and cur for interrupt handling */
3749         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3750         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3751         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3752                 MEMMODE_FSTART_SHIFT;
3753
3754         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3755                 PXVFREQ_PX_SHIFT;
3756
3757         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3758         dev_priv->ips.fstart = fstart;
3759
3760         dev_priv->ips.max_delay = fstart;
3761         dev_priv->ips.min_delay = fmin;
3762         dev_priv->ips.cur_delay = fstart;
3763
3764         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3765                          fmax, fmin, fstart);
3766
3767         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3768
3769         /*
3770          * Interrupts will be enabled in ironlake_irq_postinstall
3771          */
3772
3773         I915_WRITE(VIDSTART, vstart);
3774         POSTING_READ(VIDSTART);
3775
3776         rgvmodectl |= MEMMODE_SWMODE_EN;
3777         I915_WRITE(MEMMODECTL, rgvmodectl);
3778
3779         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3780                 DRM_ERROR("stuck trying to change perf mode\n");
3781         mdelay(1);
3782
3783         ironlake_set_drps(dev, fstart);
3784
3785         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3786                 I915_READ(0x112e0);
3787         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3788         dev_priv->ips.last_count2 = I915_READ(0x112f4);
3789         dev_priv->ips.last_time2 = ktime_get_raw_ns();
3790
3791         spin_unlock_irq(&mchdev_lock);
3792 }
3793
3794 static void ironlake_disable_drps(struct drm_device *dev)
3795 {
3796         struct drm_i915_private *dev_priv = dev->dev_private;
3797         u16 rgvswctl;
3798
3799         spin_lock_irq(&mchdev_lock);
3800
3801         rgvswctl = I915_READ16(MEMSWCTL);
3802
3803         /* Ack interrupts, disable EFC interrupt */
3804         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3805         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3806         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3807         I915_WRITE(DEIIR, DE_PCU_EVENT);
3808         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3809
3810         /* Go back to the starting frequency */
3811         ironlake_set_drps(dev, dev_priv->ips.fstart);
3812         mdelay(1);
3813         rgvswctl |= MEMCTL_CMD_STS;
3814         I915_WRITE(MEMSWCTL, rgvswctl);
3815         mdelay(1);
3816
3817         spin_unlock_irq(&mchdev_lock);
3818 }
3819
3820 /* There's a funny hw issue where the hw returns all 0 when reading from
3821  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3822  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3823  * all limits and the gpu stuck at whatever frequency it is at atm).
3824  */
3825 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3826 {
3827         u32 limits;
3828
3829         /* Only set the down limit when we've reached the lowest level to avoid
3830          * getting more interrupts, otherwise leave this clear. This prevents a
3831          * race in the hw when coming out of rc6: There's a tiny window where
3832          * the hw runs at the minimal clock before selecting the desired
3833          * frequency, if the down threshold expires in that window we will not
3834          * receive a down interrupt. */
3835         if (IS_GEN9(dev_priv->dev)) {
3836                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
3837                 if (val <= dev_priv->rps.min_freq_softlimit)
3838                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
3839         } else {
3840                 limits = dev_priv->rps.max_freq_softlimit << 24;
3841                 if (val <= dev_priv->rps.min_freq_softlimit)
3842                         limits |= dev_priv->rps.min_freq_softlimit << 16;
3843         }
3844
3845         return limits;
3846 }
3847
3848 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3849 {
3850         int new_power;
3851         u32 threshold_up = 0, threshold_down = 0; /* in % */
3852         u32 ei_up = 0, ei_down = 0;
3853
3854         new_power = dev_priv->rps.power;
3855         switch (dev_priv->rps.power) {
3856         case LOW_POWER:
3857                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3858                         new_power = BETWEEN;
3859                 break;
3860
3861         case BETWEEN:
3862                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3863                         new_power = LOW_POWER;
3864                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3865                         new_power = HIGH_POWER;
3866                 break;
3867
3868         case HIGH_POWER:
3869                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3870                         new_power = BETWEEN;
3871                 break;
3872         }
3873         /* Max/min bins are special */
3874         if (val <= dev_priv->rps.min_freq_softlimit)
3875                 new_power = LOW_POWER;
3876         if (val >= dev_priv->rps.max_freq_softlimit)
3877                 new_power = HIGH_POWER;
3878         if (new_power == dev_priv->rps.power)
3879                 return;
3880
3881         /* Note the units here are not exactly 1us, but 1280ns. */
3882         switch (new_power) {
3883         case LOW_POWER:
3884                 /* Upclock if more than 95% busy over 16ms */
3885                 ei_up = 16000;
3886                 threshold_up = 95;
3887
3888                 /* Downclock if less than 85% busy over 32ms */
3889                 ei_down = 32000;
3890                 threshold_down = 85;
3891                 break;
3892
3893         case BETWEEN:
3894                 /* Upclock if more than 90% busy over 13ms */
3895                 ei_up = 13000;
3896                 threshold_up = 90;
3897
3898                 /* Downclock if less than 75% busy over 32ms */
3899                 ei_down = 32000;
3900                 threshold_down = 75;
3901                 break;
3902
3903         case HIGH_POWER:
3904                 /* Upclock if more than 85% busy over 10ms */
3905                 ei_up = 10000;
3906                 threshold_up = 85;
3907
3908                 /* Downclock if less than 60% busy over 32ms */
3909                 ei_down = 32000;
3910                 threshold_down = 60;
3911                 break;
3912         }
3913
3914         I915_WRITE(GEN6_RP_UP_EI,
3915                 GT_INTERVAL_FROM_US(dev_priv, ei_up));
3916         I915_WRITE(GEN6_RP_UP_THRESHOLD,
3917                 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
3918
3919         I915_WRITE(GEN6_RP_DOWN_EI,
3920                 GT_INTERVAL_FROM_US(dev_priv, ei_down));
3921         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
3922                 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
3923
3924          I915_WRITE(GEN6_RP_CONTROL,
3925                     GEN6_RP_MEDIA_TURBO |
3926                     GEN6_RP_MEDIA_HW_NORMAL_MODE |
3927                     GEN6_RP_MEDIA_IS_GFX |
3928                     GEN6_RP_ENABLE |
3929                     GEN6_RP_UP_BUSY_AVG |
3930                     GEN6_RP_DOWN_IDLE_AVG);
3931
3932         dev_priv->rps.power = new_power;
3933         dev_priv->rps.last_adj = 0;
3934 }
3935
3936 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3937 {
3938         u32 mask = 0;
3939
3940         if (val > dev_priv->rps.min_freq_softlimit)
3941                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3942         if (val < dev_priv->rps.max_freq_softlimit)
3943                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
3944
3945         mask &= dev_priv->pm_rps_events;
3946
3947         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
3948 }
3949
3950 /* gen6_set_rps is called to update the frequency request, but should also be
3951  * called when the range (min_delay and max_delay) is modified so that we can
3952  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3953 static void gen6_set_rps(struct drm_device *dev, u8 val)
3954 {
3955         struct drm_i915_private *dev_priv = dev->dev_private;
3956
3957         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3958         WARN_ON(val > dev_priv->rps.max_freq);
3959         WARN_ON(val < dev_priv->rps.min_freq);
3960
3961         /* min/max delay may still have been modified so be sure to
3962          * write the limits value.
3963          */
3964         if (val != dev_priv->rps.cur_freq) {
3965                 gen6_set_rps_thresholds(dev_priv, val);
3966
3967                 if (IS_GEN9(dev))
3968                         I915_WRITE(GEN6_RPNSWREQ,
3969                                    GEN9_FREQUENCY(val));
3970                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3971                         I915_WRITE(GEN6_RPNSWREQ,
3972                                    HSW_FREQUENCY(val));
3973                 else
3974                         I915_WRITE(GEN6_RPNSWREQ,
3975                                    GEN6_FREQUENCY(val) |
3976                                    GEN6_OFFSET(0) |
3977                                    GEN6_AGGRESSIVE_TURBO);
3978         }
3979
3980         /* Make sure we continue to get interrupts
3981          * until we hit the minimum or maximum frequencies.
3982          */
3983         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
3984         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3985
3986         POSTING_READ(GEN6_RPNSWREQ);
3987
3988         dev_priv->rps.cur_freq = val;
3989         trace_intel_gpu_freq_change(val * 50);
3990 }
3991
3992 static void valleyview_set_rps(struct drm_device *dev, u8 val)
3993 {
3994         struct drm_i915_private *dev_priv = dev->dev_private;
3995
3996         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3997         WARN_ON(val > dev_priv->rps.max_freq);
3998         WARN_ON(val < dev_priv->rps.min_freq);
3999
4000         if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4001                       "Odd GPU freq value\n"))
4002                 val &= ~1;
4003
4004         if (val != dev_priv->rps.cur_freq)
4005                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4006
4007         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4008
4009         dev_priv->rps.cur_freq = val;
4010         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4011 }
4012
4013 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
4014  *
4015  * * If Gfx is Idle, then
4016  * 1. Mask Turbo interrupts
4017  * 2. Bring up Gfx clock
4018  * 3. Change the freq to Rpn and wait till P-Unit updates freq
4019  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
4020  * 5. Unmask Turbo interrupts
4021 */
4022 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4023 {
4024         struct drm_device *dev = dev_priv->dev;
4025         u32 val = dev_priv->rps.idle_freq;
4026
4027         /* CHV and latest VLV don't need to force the gfx clock */
4028         if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
4029                 valleyview_set_rps(dev_priv->dev, val);
4030                 return;
4031         }
4032
4033         /*
4034          * When we are idle.  Drop to min voltage state.
4035          */
4036
4037         if (dev_priv->rps.cur_freq <= val)
4038                 return;
4039
4040         /* Mask turbo interrupt so that they will not come in between */
4041         I915_WRITE(GEN6_PMINTRMSK,
4042                    gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4043
4044         vlv_force_gfx_clock(dev_priv, true);
4045
4046         dev_priv->rps.cur_freq = val;
4047
4048         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4049
4050         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
4051                                 & GENFREQSTATUS) == 0, 100))
4052                 DRM_ERROR("timed out waiting for Punit\n");
4053
4054         vlv_force_gfx_clock(dev_priv, false);
4055
4056         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4057 }
4058
4059 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4060 {
4061         mutex_lock(&dev_priv->rps.hw_lock);
4062         if (dev_priv->rps.enabled) {
4063                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4064                         gen6_rps_reset_ei(dev_priv);
4065                 I915_WRITE(GEN6_PMINTRMSK,
4066                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4067         }
4068         mutex_unlock(&dev_priv->rps.hw_lock);
4069 }
4070
4071 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4072 {
4073         struct drm_device *dev = dev_priv->dev;
4074
4075         mutex_lock(&dev_priv->rps.hw_lock);
4076         if (dev_priv->rps.enabled) {
4077                 if (IS_VALLEYVIEW(dev))
4078                         vlv_set_rps_idle(dev_priv);
4079                 else
4080                         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4081                 dev_priv->rps.last_adj = 0;
4082                 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4083         }
4084         mutex_unlock(&dev_priv->rps.hw_lock);
4085 }
4086
4087 void gen6_rps_boost(struct drm_i915_private *dev_priv)
4088 {
4089         u32 val;
4090
4091         mutex_lock(&dev_priv->rps.hw_lock);
4092         val = dev_priv->rps.max_freq_softlimit;
4093         if (dev_priv->rps.enabled &&
4094             dev_priv->mm.busy &&
4095             dev_priv->rps.cur_freq < val) {
4096                 intel_set_rps(dev_priv->dev, val);
4097                 dev_priv->rps.last_adj = 0;
4098         }
4099         mutex_unlock(&dev_priv->rps.hw_lock);
4100 }
4101
4102 void intel_set_rps(struct drm_device *dev, u8 val)
4103 {
4104         if (IS_VALLEYVIEW(dev))
4105                 valleyview_set_rps(dev, val);
4106         else
4107                 gen6_set_rps(dev, val);
4108 }
4109
4110 static void gen9_disable_rps(struct drm_device *dev)
4111 {
4112         struct drm_i915_private *dev_priv = dev->dev_private;
4113
4114         I915_WRITE(GEN6_RC_CONTROL, 0);
4115         I915_WRITE(GEN9_PG_ENABLE, 0);
4116 }
4117
4118 static void gen6_disable_rps(struct drm_device *dev)
4119 {
4120         struct drm_i915_private *dev_priv = dev->dev_private;
4121
4122         I915_WRITE(GEN6_RC_CONTROL, 0);
4123         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4124 }
4125
4126 static void cherryview_disable_rps(struct drm_device *dev)
4127 {
4128         struct drm_i915_private *dev_priv = dev->dev_private;
4129
4130         I915_WRITE(GEN6_RC_CONTROL, 0);
4131 }
4132
4133 static void valleyview_disable_rps(struct drm_device *dev)
4134 {
4135         struct drm_i915_private *dev_priv = dev->dev_private;
4136
4137         /* we're doing forcewake before Disabling RC6,
4138          * This what the BIOS expects when going into suspend */
4139         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4140
4141         I915_WRITE(GEN6_RC_CONTROL, 0);
4142
4143         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4144 }
4145
4146 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4147 {
4148         if (IS_VALLEYVIEW(dev)) {
4149                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4150                         mode = GEN6_RC_CTL_RC6_ENABLE;
4151                 else
4152                         mode = 0;
4153         }
4154         if (HAS_RC6p(dev))
4155                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4156                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4157                               (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4158                               (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4159
4160         else
4161                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4162                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4163 }
4164
4165 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4166 {
4167         /* No RC6 before Ironlake */
4168         if (INTEL_INFO(dev)->gen < 5)
4169                 return 0;
4170
4171         /* RC6 is only on Ironlake mobile not on desktop */
4172         if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
4173                 return 0;
4174
4175         /* Respect the kernel parameter if it is set */
4176         if (enable_rc6 >= 0) {
4177                 int mask;
4178
4179                 if (HAS_RC6p(dev))
4180                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4181                                INTEL_RC6pp_ENABLE;
4182                 else
4183                         mask = INTEL_RC6_ENABLE;
4184
4185                 if ((enable_rc6 & mask) != enable_rc6)
4186                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4187                                       enable_rc6 & mask, enable_rc6, mask);
4188
4189                 return enable_rc6 & mask;
4190         }
4191
4192         /* Disable RC6 on Ironlake */
4193         if (INTEL_INFO(dev)->gen == 5)
4194                 return 0;
4195
4196         if (IS_IVYBRIDGE(dev))
4197                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4198
4199         return INTEL_RC6_ENABLE;
4200 }
4201
4202 int intel_enable_rc6(const struct drm_device *dev)
4203 {
4204         return i915.enable_rc6;
4205 }
4206
4207 static void gen6_init_rps_frequencies(struct drm_device *dev)
4208 {
4209         struct drm_i915_private *dev_priv = dev->dev_private;
4210         uint32_t rp_state_cap;
4211         u32 ddcc_status = 0;
4212         int ret;
4213
4214         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4215         /* All of these values are in units of 50MHz */
4216         dev_priv->rps.cur_freq          = 0;
4217         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4218         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
4219         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
4220         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
4221         if (IS_SKYLAKE(dev)) {
4222                 /* Store the frequency values in 16.66 MHZ units, which is
4223                    the natural hardware unit for SKL */
4224                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4225                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4226                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4227         }
4228         /* hw_max = RP0 until we check for overclocking */
4229         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
4230
4231         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4232         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4233                 ret = sandybridge_pcode_read(dev_priv,
4234                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4235                                         &ddcc_status);
4236                 if (0 == ret)
4237                         dev_priv->rps.efficient_freq =
4238                                 clamp_t(u8,
4239                                         ((ddcc_status >> 8) & 0xff),
4240                                         dev_priv->rps.min_freq,
4241                                         dev_priv->rps.max_freq);
4242         }
4243
4244         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4245
4246         /* Preserve min/max settings in case of re-init */
4247         if (dev_priv->rps.max_freq_softlimit == 0)
4248                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4249
4250         if (dev_priv->rps.min_freq_softlimit == 0) {
4251                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4252                         dev_priv->rps.min_freq_softlimit =
4253                                 /* max(RPe, 450 MHz) */
4254                                 max(dev_priv->rps.efficient_freq, (u8) 9);
4255                 else
4256                         dev_priv->rps.min_freq_softlimit =
4257                                 dev_priv->rps.min_freq;
4258         }
4259 }
4260
4261 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4262 static void gen9_enable_rps(struct drm_device *dev)
4263 {
4264         struct drm_i915_private *dev_priv = dev->dev_private;
4265
4266         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4267
4268         gen6_init_rps_frequencies(dev);
4269
4270         /* Program defaults and thresholds for RPS*/
4271         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4272                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4273
4274         /* 1 second timeout*/
4275         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4276                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4277
4278         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4279
4280         /* Leaning on the below call to gen6_set_rps to program/setup the
4281          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4282          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4283         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4284         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4285
4286         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4287 }
4288
4289 static void gen9_enable_rc6(struct drm_device *dev)
4290 {
4291         struct drm_i915_private *dev_priv = dev->dev_private;
4292         struct intel_engine_cs *ring;
4293         uint32_t rc6_mask = 0;
4294         int unused;
4295
4296         /* 1a: Software RC state - RC0 */
4297         I915_WRITE(GEN6_RC_STATE, 0);
4298
4299         /* 1b: Get forcewake during program sequence. Although the driver
4300          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4301         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4302
4303         /* 2a: Disable RC states. */
4304         I915_WRITE(GEN6_RC_CONTROL, 0);
4305
4306         /* 2b: Program RC6 thresholds.*/
4307         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4308         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4309         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4310         for_each_ring(ring, dev_priv, unused)
4311                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4312         I915_WRITE(GEN6_RC_SLEEP, 0);
4313         I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4314
4315         /* 2c: Program Coarse Power Gating Policies. */
4316         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4317         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4318
4319         /* 3a: Enable RC6 */
4320         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4321                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4322         DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4323                         "on" : "off");
4324         I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4325                                    GEN6_RC_CTL_EI_MODE(1) |
4326                                    rc6_mask);
4327
4328         /* 3b: Enable Coarse Power Gating only when RC6 is enabled */
4329         I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? 3 : 0);
4330
4331         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4332
4333 }
4334
4335 static void gen8_enable_rps(struct drm_device *dev)
4336 {
4337         struct drm_i915_private *dev_priv = dev->dev_private;
4338         struct intel_engine_cs *ring;
4339         uint32_t rc6_mask = 0;
4340         int unused;
4341
4342         /* 1a: Software RC state - RC0 */
4343         I915_WRITE(GEN6_RC_STATE, 0);
4344
4345         /* 1c & 1d: Get forcewake during program sequence. Although the driver
4346          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4347         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4348
4349         /* 2a: Disable RC states. */
4350         I915_WRITE(GEN6_RC_CONTROL, 0);
4351
4352         /* Initialize rps frequencies */
4353         gen6_init_rps_frequencies(dev);
4354
4355         /* 2b: Program RC6 thresholds.*/
4356         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4357         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4358         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4359         for_each_ring(ring, dev_priv, unused)
4360                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4361         I915_WRITE(GEN6_RC_SLEEP, 0);
4362         if (IS_BROADWELL(dev))
4363                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4364         else
4365                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4366
4367         /* 3: Enable RC6 */
4368         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4369                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4370         intel_print_rc6_info(dev, rc6_mask);
4371         if (IS_BROADWELL(dev))
4372                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4373                                 GEN7_RC_CTL_TO_MODE |
4374                                 rc6_mask);
4375         else
4376                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4377                                 GEN6_RC_CTL_EI_MODE(1) |
4378                                 rc6_mask);
4379
4380         /* 4 Program defaults and thresholds for RPS*/
4381         I915_WRITE(GEN6_RPNSWREQ,
4382                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4383         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4384                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4385         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4386         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4387
4388         /* Docs recommend 900MHz, and 300 MHz respectively */
4389         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4390                    dev_priv->rps.max_freq_softlimit << 24 |
4391                    dev_priv->rps.min_freq_softlimit << 16);
4392
4393         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4394         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4395         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4396         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4397
4398         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4399
4400         /* 5: Enable RPS */
4401         I915_WRITE(GEN6_RP_CONTROL,
4402                    GEN6_RP_MEDIA_TURBO |
4403                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4404                    GEN6_RP_MEDIA_IS_GFX |
4405                    GEN6_RP_ENABLE |
4406                    GEN6_RP_UP_BUSY_AVG |
4407                    GEN6_RP_DOWN_IDLE_AVG);
4408
4409         /* 6: Ring frequency + overclocking (our driver does this later */
4410
4411         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4412         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4413
4414         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4415 }
4416
4417 static void gen6_enable_rps(struct drm_device *dev)
4418 {
4419         struct drm_i915_private *dev_priv = dev->dev_private;
4420         struct intel_engine_cs *ring;
4421         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4422         u32 gtfifodbg;
4423         int rc6_mode;
4424         int i, ret;
4425
4426         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4427
4428         /* Here begins a magic sequence of register writes to enable
4429          * auto-downclocking.
4430          *
4431          * Perhaps there might be some value in exposing these to
4432          * userspace...
4433          */
4434         I915_WRITE(GEN6_RC_STATE, 0);
4435
4436         /* Clear the DBG now so we don't confuse earlier errors */
4437         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4438                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4439                 I915_WRITE(GTFIFODBG, gtfifodbg);
4440         }
4441
4442         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4443
4444         /* Initialize rps frequencies */
4445         gen6_init_rps_frequencies(dev);
4446
4447         /* disable the counters and set deterministic thresholds */
4448         I915_WRITE(GEN6_RC_CONTROL, 0);
4449
4450         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4451         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4452         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4453         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4454         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4455
4456         for_each_ring(ring, dev_priv, i)
4457                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4458
4459         I915_WRITE(GEN6_RC_SLEEP, 0);
4460         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4461         if (IS_IVYBRIDGE(dev))
4462                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4463         else
4464                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4465         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4466         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4467
4468         /* Check if we are enabling RC6 */
4469         rc6_mode = intel_enable_rc6(dev_priv->dev);
4470         if (rc6_mode & INTEL_RC6_ENABLE)
4471                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4472
4473         /* We don't use those on Haswell */
4474         if (!IS_HASWELL(dev)) {
4475                 if (rc6_mode & INTEL_RC6p_ENABLE)
4476                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4477
4478                 if (rc6_mode & INTEL_RC6pp_ENABLE)
4479                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4480         }
4481
4482         intel_print_rc6_info(dev, rc6_mask);
4483
4484         I915_WRITE(GEN6_RC_CONTROL,
4485                    rc6_mask |
4486                    GEN6_RC_CTL_EI_MODE(1) |
4487                    GEN6_RC_CTL_HW_ENABLE);
4488
4489         /* Power down if completely idle for over 50ms */
4490         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4491         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4492
4493         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4494         if (ret)
4495                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4496
4497         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4498         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4499                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4500                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4501                                  (pcu_mbox & 0xff) * 50);
4502                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
4503         }
4504
4505         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4506         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4507
4508         rc6vids = 0;
4509         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4510         if (IS_GEN6(dev) && ret) {
4511                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4512         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4513                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4514                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4515                 rc6vids &= 0xffff00;
4516                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
4517                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4518                 if (ret)
4519                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4520         }
4521
4522         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4523 }
4524
4525 static void __gen6_update_ring_freq(struct drm_device *dev)
4526 {
4527         struct drm_i915_private *dev_priv = dev->dev_private;
4528         int min_freq = 15;
4529         unsigned int gpu_freq;
4530         unsigned int max_ia_freq, min_ring_freq;
4531         int scaling_factor = 180;
4532         struct cpufreq_policy *policy;
4533
4534         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4535
4536         policy = cpufreq_cpu_get(0);
4537         if (policy) {
4538                 max_ia_freq = policy->cpuinfo.max_freq;
4539                 cpufreq_cpu_put(policy);
4540         } else {
4541                 /*
4542                  * Default to measured freq if none found, PCU will ensure we
4543                  * don't go over
4544                  */
4545                 max_ia_freq = tsc_khz;
4546         }
4547
4548         /* Convert from kHz to MHz */
4549         max_ia_freq /= 1000;
4550
4551         min_ring_freq = I915_READ(DCLK) & 0xf;
4552         /* convert DDR frequency from units of 266.6MHz to bandwidth */
4553         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4554
4555         /*
4556          * For each potential GPU frequency, load a ring frequency we'd like
4557          * to use for memory access.  We do this by specifying the IA frequency
4558          * the PCU should use as a reference to determine the ring frequency.
4559          */
4560         for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4561              gpu_freq--) {
4562                 int diff = dev_priv->rps.max_freq - gpu_freq;
4563                 unsigned int ia_freq = 0, ring_freq = 0;
4564
4565                 if (INTEL_INFO(dev)->gen >= 8) {
4566                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
4567                         ring_freq = max(min_ring_freq, gpu_freq);
4568                 } else if (IS_HASWELL(dev)) {
4569                         ring_freq = mult_frac(gpu_freq, 5, 4);
4570                         ring_freq = max(min_ring_freq, ring_freq);
4571                         /* leave ia_freq as the default, chosen by cpufreq */
4572                 } else {
4573                         /* On older processors, there is no separate ring
4574                          * clock domain, so in order to boost the bandwidth
4575                          * of the ring, we need to upclock the CPU (ia_freq).
4576                          *
4577                          * For GPU frequencies less than 750MHz,
4578                          * just use the lowest ring freq.
4579                          */
4580                         if (gpu_freq < min_freq)
4581                                 ia_freq = 800;
4582                         else
4583                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4584                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4585                 }
4586
4587                 sandybridge_pcode_write(dev_priv,
4588                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4589                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4590                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4591                                         gpu_freq);
4592         }
4593 }
4594
4595 void gen6_update_ring_freq(struct drm_device *dev)
4596 {
4597         struct drm_i915_private *dev_priv = dev->dev_private;
4598
4599         if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
4600                 return;
4601
4602         mutex_lock(&dev_priv->rps.hw_lock);
4603         __gen6_update_ring_freq(dev);
4604         mutex_unlock(&dev_priv->rps.hw_lock);
4605 }
4606
4607 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4608 {
4609         struct drm_device *dev = dev_priv->dev;
4610         u32 val, rp0;
4611
4612         if (dev->pdev->revision >= 0x20) {
4613                 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4614
4615                 switch (INTEL_INFO(dev)->eu_total) {
4616                 case 8:
4617                                 /* (2 * 4) config */
4618                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
4619                                 break;
4620                 case 12:
4621                                 /* (2 * 6) config */
4622                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
4623                                 break;
4624                 case 16:
4625                                 /* (2 * 8) config */
4626                 default:
4627                                 /* Setting (2 * 8) Min RP0 for any other combination */
4628                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
4629                                 break;
4630                 }
4631                 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
4632         } else {
4633                 /* For pre-production hardware */
4634                 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4635                 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4636                        PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4637         }
4638         return rp0;
4639 }
4640
4641 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4642 {
4643         u32 val, rpe;
4644
4645         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
4646         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
4647
4648         return rpe;
4649 }
4650
4651 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
4652 {
4653         struct drm_device *dev = dev_priv->dev;
4654         u32 val, rp1;
4655
4656         if (dev->pdev->revision >= 0x20) {
4657                 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4658                 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
4659         } else {
4660                 /* For pre-production hardware */
4661                 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4662                 rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4663                        PUNIT_GPU_STATUS_MAX_FREQ_MASK);
4664         }
4665         return rp1;
4666 }
4667
4668 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4669 {
4670         struct drm_device *dev = dev_priv->dev;
4671         u32 val, rpn;
4672
4673         if (dev->pdev->revision >= 0x20) {
4674                 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
4675                 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
4676                        FB_GFX_FREQ_FUSE_MASK);
4677         } else { /* For pre-production hardware */
4678                 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4679                 rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
4680                        PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
4681         }
4682
4683         return rpn;
4684 }
4685
4686 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4687 {
4688         u32 val, rp1;
4689
4690         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4691
4692         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4693
4694         return rp1;
4695 }
4696
4697 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4698 {
4699         u32 val, rp0;
4700
4701         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4702
4703         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4704         /* Clamp to max */
4705         rp0 = min_t(u32, rp0, 0xea);
4706
4707         return rp0;
4708 }
4709
4710 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4711 {
4712         u32 val, rpe;
4713
4714         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4715         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4716         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4717         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4718
4719         return rpe;
4720 }
4721
4722 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4723 {
4724         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4725 }
4726
4727 /* Check that the pctx buffer wasn't move under us. */
4728 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4729 {
4730         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4731
4732         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4733                              dev_priv->vlv_pctx->stolen->start);
4734 }
4735
4736
4737 /* Check that the pcbr address is not empty. */
4738 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4739 {
4740         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4741
4742         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4743 }
4744
4745 static void cherryview_setup_pctx(struct drm_device *dev)
4746 {
4747         struct drm_i915_private *dev_priv = dev->dev_private;
4748         unsigned long pctx_paddr, paddr;
4749         struct i915_gtt *gtt = &dev_priv->gtt;
4750         u32 pcbr;
4751         int pctx_size = 32*1024;
4752
4753         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4754
4755         pcbr = I915_READ(VLV_PCBR);
4756         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4757                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4758                 paddr = (dev_priv->mm.stolen_base +
4759                          (gtt->stolen_size - pctx_size));
4760
4761                 pctx_paddr = (paddr & (~4095));
4762                 I915_WRITE(VLV_PCBR, pctx_paddr);
4763         }
4764
4765         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4766 }
4767
4768 static void valleyview_setup_pctx(struct drm_device *dev)
4769 {
4770         struct drm_i915_private *dev_priv = dev->dev_private;
4771         struct drm_i915_gem_object *pctx;
4772         unsigned long pctx_paddr;
4773         u32 pcbr;
4774         int pctx_size = 24*1024;
4775
4776         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4777
4778         pcbr = I915_READ(VLV_PCBR);
4779         if (pcbr) {
4780                 /* BIOS set it up already, grab the pre-alloc'd space */
4781                 int pcbr_offset;
4782
4783                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4784                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4785                                                                       pcbr_offset,
4786                                                                       I915_GTT_OFFSET_NONE,
4787                                                                       pctx_size);
4788                 goto out;
4789         }
4790
4791         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4792
4793         /*
4794          * From the Gunit register HAS:
4795          * The Gfx driver is expected to program this register and ensure
4796          * proper allocation within Gfx stolen memory.  For example, this
4797          * register should be programmed such than the PCBR range does not
4798          * overlap with other ranges, such as the frame buffer, protected
4799          * memory, or any other relevant ranges.
4800          */
4801         pctx = i915_gem_object_create_stolen(dev, pctx_size);
4802         if (!pctx) {
4803                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4804                 return;
4805         }
4806
4807         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4808         I915_WRITE(VLV_PCBR, pctx_paddr);
4809
4810 out:
4811         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4812         dev_priv->vlv_pctx = pctx;
4813 }
4814
4815 static void valleyview_cleanup_pctx(struct drm_device *dev)
4816 {
4817         struct drm_i915_private *dev_priv = dev->dev_private;
4818
4819         if (WARN_ON(!dev_priv->vlv_pctx))
4820                 return;
4821
4822         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4823         dev_priv->vlv_pctx = NULL;
4824 }
4825
4826 static void valleyview_init_gt_powersave(struct drm_device *dev)
4827 {
4828         struct drm_i915_private *dev_priv = dev->dev_private;
4829         u32 val;
4830
4831         valleyview_setup_pctx(dev);
4832
4833         mutex_lock(&dev_priv->rps.hw_lock);
4834
4835         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4836         switch ((val >> 6) & 3) {
4837         case 0:
4838         case 1:
4839                 dev_priv->mem_freq = 800;
4840                 break;
4841         case 2:
4842                 dev_priv->mem_freq = 1066;
4843                 break;
4844         case 3:
4845                 dev_priv->mem_freq = 1333;
4846                 break;
4847         }
4848         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4849
4850         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4851         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4852         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4853                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4854                          dev_priv->rps.max_freq);
4855
4856         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4857         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4858                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4859                          dev_priv->rps.efficient_freq);
4860
4861         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4862         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4863                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4864                          dev_priv->rps.rp1_freq);
4865
4866         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4867         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4868                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4869                          dev_priv->rps.min_freq);
4870
4871         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4872
4873         /* Preserve min/max settings in case of re-init */
4874         if (dev_priv->rps.max_freq_softlimit == 0)
4875                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4876
4877         if (dev_priv->rps.min_freq_softlimit == 0)
4878                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4879
4880         mutex_unlock(&dev_priv->rps.hw_lock);
4881 }
4882
4883 static void cherryview_init_gt_powersave(struct drm_device *dev)
4884 {
4885         struct drm_i915_private *dev_priv = dev->dev_private;
4886         u32 val;
4887
4888         cherryview_setup_pctx(dev);
4889
4890         mutex_lock(&dev_priv->rps.hw_lock);
4891
4892         mutex_lock(&dev_priv->dpio_lock);
4893         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
4894         mutex_unlock(&dev_priv->dpio_lock);
4895
4896         switch ((val >> 2) & 0x7) {
4897         case 0:
4898         case 1:
4899                 dev_priv->rps.cz_freq = 200;
4900                 dev_priv->mem_freq = 1600;
4901                 break;
4902         case 2:
4903                 dev_priv->rps.cz_freq = 267;
4904                 dev_priv->mem_freq = 1600;
4905                 break;
4906         case 3:
4907                 dev_priv->rps.cz_freq = 333;
4908                 dev_priv->mem_freq = 2000;
4909                 break;
4910         case 4:
4911                 dev_priv->rps.cz_freq = 320;
4912                 dev_priv->mem_freq = 1600;
4913                 break;
4914         case 5:
4915                 dev_priv->rps.cz_freq = 400;
4916                 dev_priv->mem_freq = 1600;
4917                 break;
4918         }
4919         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4920
4921         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4922         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4923         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4924                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4925                          dev_priv->rps.max_freq);
4926
4927         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4928         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4929                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4930                          dev_priv->rps.efficient_freq);
4931
4932         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4933         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4934                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4935                          dev_priv->rps.rp1_freq);
4936
4937         dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4938         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4939                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4940                          dev_priv->rps.min_freq);
4941
4942         WARN_ONCE((dev_priv->rps.max_freq |
4943                    dev_priv->rps.efficient_freq |
4944                    dev_priv->rps.rp1_freq |
4945                    dev_priv->rps.min_freq) & 1,
4946                   "Odd GPU freq values\n");
4947
4948         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4949
4950         /* Preserve min/max settings in case of re-init */
4951         if (dev_priv->rps.max_freq_softlimit == 0)
4952                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4953
4954         if (dev_priv->rps.min_freq_softlimit == 0)
4955                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4956
4957         mutex_unlock(&dev_priv->rps.hw_lock);
4958 }
4959
4960 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4961 {
4962         valleyview_cleanup_pctx(dev);
4963 }
4964
4965 static void cherryview_enable_rps(struct drm_device *dev)
4966 {
4967         struct drm_i915_private *dev_priv = dev->dev_private;
4968         struct intel_engine_cs *ring;
4969         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4970         int i;
4971
4972         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4973
4974         gtfifodbg = I915_READ(GTFIFODBG);
4975         if (gtfifodbg) {
4976                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4977                                  gtfifodbg);
4978                 I915_WRITE(GTFIFODBG, gtfifodbg);
4979         }
4980
4981         cherryview_check_pctx(dev_priv);
4982
4983         /* 1a & 1b: Get forcewake during program sequence. Although the driver
4984          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4985         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4986
4987         /*  Disable RC states. */
4988         I915_WRITE(GEN6_RC_CONTROL, 0);
4989
4990         /* 2a: Program RC6 thresholds.*/
4991         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4992         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4993         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4994
4995         for_each_ring(ring, dev_priv, i)
4996                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4997         I915_WRITE(GEN6_RC_SLEEP, 0);
4998
4999         /* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
5000         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5001
5002         /* allows RC6 residency counter to work */
5003         I915_WRITE(VLV_COUNTER_CONTROL,
5004                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5005                                       VLV_MEDIA_RC6_COUNT_EN |
5006                                       VLV_RENDER_RC6_COUNT_EN));
5007
5008         /* For now we assume BIOS is allocating and populating the PCBR  */
5009         pcbr = I915_READ(VLV_PCBR);
5010
5011         /* 3: Enable RC6 */
5012         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5013                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5014                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5015
5016         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5017
5018         /* 4 Program defaults and thresholds for RPS*/
5019         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5020         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5021         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5022         I915_WRITE(GEN6_RP_UP_EI, 66000);
5023         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5024
5025         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5026
5027         /* 5: Enable RPS */
5028         I915_WRITE(GEN6_RP_CONTROL,
5029                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5030                    GEN6_RP_MEDIA_IS_GFX |
5031                    GEN6_RP_ENABLE |
5032                    GEN6_RP_UP_BUSY_AVG |
5033                    GEN6_RP_DOWN_IDLE_AVG);
5034
5035         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5036
5037         /* RPS code assumes GPLL is used */
5038         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5039
5040         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5041         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5042
5043         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5044         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5045                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5046                          dev_priv->rps.cur_freq);
5047
5048         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5049                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5050                          dev_priv->rps.efficient_freq);
5051
5052         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5053
5054         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5055 }
5056
5057 static void valleyview_enable_rps(struct drm_device *dev)
5058 {
5059         struct drm_i915_private *dev_priv = dev->dev_private;
5060         struct intel_engine_cs *ring;
5061         u32 gtfifodbg, val, rc6_mode = 0;
5062         int i;
5063
5064         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5065
5066         valleyview_check_pctx(dev_priv);
5067
5068         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5069                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5070                                  gtfifodbg);
5071                 I915_WRITE(GTFIFODBG, gtfifodbg);
5072         }
5073
5074         /* If VLV, Forcewake all wells, else re-direct to regular path */
5075         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5076
5077         /*  Disable RC states. */
5078         I915_WRITE(GEN6_RC_CONTROL, 0);
5079
5080         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5081         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5082         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5083         I915_WRITE(GEN6_RP_UP_EI, 66000);
5084         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5085
5086         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5087
5088         I915_WRITE(GEN6_RP_CONTROL,
5089                    GEN6_RP_MEDIA_TURBO |
5090                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5091                    GEN6_RP_MEDIA_IS_GFX |
5092                    GEN6_RP_ENABLE |
5093                    GEN6_RP_UP_BUSY_AVG |
5094                    GEN6_RP_DOWN_IDLE_CONT);
5095
5096         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5097         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5098         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5099
5100         for_each_ring(ring, dev_priv, i)
5101                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5102
5103         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5104
5105         /* allows RC6 residency counter to work */
5106         I915_WRITE(VLV_COUNTER_CONTROL,
5107                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5108                                       VLV_RENDER_RC0_COUNT_EN |
5109                                       VLV_MEDIA_RC6_COUNT_EN |
5110                                       VLV_RENDER_RC6_COUNT_EN));
5111
5112         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5113                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5114
5115         intel_print_rc6_info(dev, rc6_mode);
5116
5117         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5118
5119         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5120
5121         /* RPS code assumes GPLL is used */
5122         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5123
5124         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5125         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5126
5127         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5128         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5129                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5130                          dev_priv->rps.cur_freq);
5131
5132         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5133                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5134                          dev_priv->rps.efficient_freq);
5135
5136         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5137
5138         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5139 }
5140
5141 static unsigned long intel_pxfreq(u32 vidfreq)
5142 {
5143         unsigned long freq;
5144         int div = (vidfreq & 0x3f0000) >> 16;
5145         int post = (vidfreq & 0x3000) >> 12;
5146         int pre = (vidfreq & 0x7);
5147
5148         if (!pre)
5149                 return 0;
5150
5151         freq = ((div * 133333) / ((1<<post) * pre));
5152
5153         return freq;
5154 }
5155
5156 static const struct cparams {
5157         u16 i;
5158         u16 t;
5159         u16 m;
5160         u16 c;
5161 } cparams[] = {
5162         { 1, 1333, 301, 28664 },
5163         { 1, 1066, 294, 24460 },
5164         { 1, 800, 294, 25192 },
5165         { 0, 1333, 276, 27605 },
5166         { 0, 1066, 276, 27605 },
5167         { 0, 800, 231, 23784 },
5168 };
5169
5170 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5171 {
5172         u64 total_count, diff, ret;
5173         u32 count1, count2, count3, m = 0, c = 0;
5174         unsigned long now = jiffies_to_msecs(jiffies), diff1;
5175         int i;
5176
5177         assert_spin_locked(&mchdev_lock);
5178
5179         diff1 = now - dev_priv->ips.last_time1;
5180
5181         /* Prevent division-by-zero if we are asking too fast.
5182          * Also, we don't get interesting results if we are polling
5183          * faster than once in 10ms, so just return the saved value
5184          * in such cases.
5185          */
5186         if (diff1 <= 10)
5187                 return dev_priv->ips.chipset_power;
5188
5189         count1 = I915_READ(DMIEC);
5190         count2 = I915_READ(DDREC);
5191         count3 = I915_READ(CSIEC);
5192
5193         total_count = count1 + count2 + count3;
5194
5195         /* FIXME: handle per-counter overflow */
5196         if (total_count < dev_priv->ips.last_count1) {
5197                 diff = ~0UL - dev_priv->ips.last_count1;
5198                 diff += total_count;
5199         } else {
5200                 diff = total_count - dev_priv->ips.last_count1;
5201         }
5202
5203         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5204                 if (cparams[i].i == dev_priv->ips.c_m &&
5205                     cparams[i].t == dev_priv->ips.r_t) {
5206                         m = cparams[i].m;
5207                         c = cparams[i].c;
5208                         break;
5209                 }
5210         }
5211
5212         diff = div_u64(diff, diff1);
5213         ret = ((m * diff) + c);
5214         ret = div_u64(ret, 10);
5215
5216         dev_priv->ips.last_count1 = total_count;
5217         dev_priv->ips.last_time1 = now;
5218
5219         dev_priv->ips.chipset_power = ret;
5220
5221         return ret;
5222 }
5223
5224 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5225 {
5226         struct drm_device *dev = dev_priv->dev;
5227         unsigned long val;
5228
5229         if (INTEL_INFO(dev)->gen != 5)
5230                 return 0;
5231
5232         spin_lock_irq(&mchdev_lock);
5233
5234         val = __i915_chipset_val(dev_priv);
5235
5236         spin_unlock_irq(&mchdev_lock);
5237
5238         return val;
5239 }
5240
5241 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5242 {
5243         unsigned long m, x, b;
5244         u32 tsfs;
5245
5246         tsfs = I915_READ(TSFS);
5247
5248         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5249         x = I915_READ8(TR1);
5250
5251         b = tsfs & TSFS_INTR_MASK;
5252
5253         return ((m * x) / 127) - b;
5254 }
5255
5256 static int _pxvid_to_vd(u8 pxvid)
5257 {
5258         if (pxvid == 0)
5259                 return 0;
5260
5261         if (pxvid >= 8 && pxvid < 31)
5262                 pxvid = 31;
5263
5264         return (pxvid + 2) * 125;
5265 }
5266
5267 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5268 {
5269         struct drm_device *dev = dev_priv->dev;
5270         const int vd = _pxvid_to_vd(pxvid);
5271         const int vm = vd - 1125;
5272
5273         if (INTEL_INFO(dev)->is_mobile)
5274                 return vm > 0 ? vm : 0;
5275
5276         return vd;
5277 }
5278
5279 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5280 {
5281         u64 now, diff, diffms;
5282         u32 count;
5283
5284         assert_spin_locked(&mchdev_lock);
5285
5286         now = ktime_get_raw_ns();
5287         diffms = now - dev_priv->ips.last_time2;
5288         do_div(diffms, NSEC_PER_MSEC);
5289
5290         /* Don't divide by 0 */
5291         if (!diffms)
5292                 return;
5293
5294         count = I915_READ(GFXEC);
5295
5296         if (count < dev_priv->ips.last_count2) {
5297                 diff = ~0UL - dev_priv->ips.last_count2;
5298                 diff += count;
5299         } else {
5300                 diff = count - dev_priv->ips.last_count2;
5301         }
5302
5303         dev_priv->ips.last_count2 = count;
5304         dev_priv->ips.last_time2 = now;
5305
5306         /* More magic constants... */
5307         diff = diff * 1181;
5308         diff = div_u64(diff, diffms * 10);
5309         dev_priv->ips.gfx_power = diff;
5310 }
5311
5312 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5313 {
5314         struct drm_device *dev = dev_priv->dev;
5315
5316         if (INTEL_INFO(dev)->gen != 5)
5317                 return;
5318
5319         spin_lock_irq(&mchdev_lock);
5320
5321         __i915_update_gfx_val(dev_priv);
5322
5323         spin_unlock_irq(&mchdev_lock);
5324 }
5325
5326 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5327 {
5328         unsigned long t, corr, state1, corr2, state2;
5329         u32 pxvid, ext_v;
5330
5331         assert_spin_locked(&mchdev_lock);
5332
5333         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5334         pxvid = (pxvid >> 24) & 0x7f;
5335         ext_v = pvid_to_extvid(dev_priv, pxvid);
5336
5337         state1 = ext_v;
5338
5339         t = i915_mch_val(dev_priv);
5340
5341         /* Revel in the empirically derived constants */
5342
5343         /* Correction factor in 1/100000 units */
5344         if (t > 80)
5345                 corr = ((t * 2349) + 135940);
5346         else if (t >= 50)
5347                 corr = ((t * 964) + 29317);
5348         else /* < 50 */
5349                 corr = ((t * 301) + 1004);
5350
5351         corr = corr * ((150142 * state1) / 10000 - 78642);
5352         corr /= 100000;
5353         corr2 = (corr * dev_priv->ips.corr);
5354
5355         state2 = (corr2 * state1) / 10000;
5356         state2 /= 100; /* convert to mW */
5357
5358         __i915_update_gfx_val(dev_priv);
5359
5360         return dev_priv->ips.gfx_power + state2;
5361 }
5362
5363 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5364 {
5365         struct drm_device *dev = dev_priv->dev;
5366         unsigned long val;
5367
5368         if (INTEL_INFO(dev)->gen != 5)
5369                 return 0;
5370
5371         spin_lock_irq(&mchdev_lock);
5372
5373         val = __i915_gfx_val(dev_priv);
5374
5375         spin_unlock_irq(&mchdev_lock);
5376
5377         return val;
5378 }
5379
5380 /**
5381  * i915_read_mch_val - return value for IPS use
5382  *
5383  * Calculate and return a value for the IPS driver to use when deciding whether
5384  * we have thermal and power headroom to increase CPU or GPU power budget.
5385  */
5386 unsigned long i915_read_mch_val(void)
5387 {
5388         struct drm_i915_private *dev_priv;
5389         unsigned long chipset_val, graphics_val, ret = 0;
5390
5391         spin_lock_irq(&mchdev_lock);
5392         if (!i915_mch_dev)
5393                 goto out_unlock;
5394         dev_priv = i915_mch_dev;
5395
5396         chipset_val = __i915_chipset_val(dev_priv);
5397         graphics_val = __i915_gfx_val(dev_priv);
5398
5399         ret = chipset_val + graphics_val;
5400
5401 out_unlock:
5402         spin_unlock_irq(&mchdev_lock);
5403
5404         return ret;
5405 }
5406 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5407
5408 /**
5409  * i915_gpu_raise - raise GPU frequency limit
5410  *
5411  * Raise the limit; IPS indicates we have thermal headroom.
5412  */
5413 bool i915_gpu_raise(void)
5414 {
5415         struct drm_i915_private *dev_priv;
5416         bool ret = true;
5417
5418         spin_lock_irq(&mchdev_lock);
5419         if (!i915_mch_dev) {
5420                 ret = false;
5421                 goto out_unlock;
5422         }
5423         dev_priv = i915_mch_dev;
5424
5425         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5426                 dev_priv->ips.max_delay--;
5427
5428 out_unlock:
5429         spin_unlock_irq(&mchdev_lock);
5430
5431         return ret;
5432 }
5433 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5434
5435 /**
5436  * i915_gpu_lower - lower GPU frequency limit
5437  *
5438  * IPS indicates we're close to a thermal limit, so throttle back the GPU
5439  * frequency maximum.
5440  */
5441 bool i915_gpu_lower(void)
5442 {
5443         struct drm_i915_private *dev_priv;
5444         bool ret = true;
5445
5446         spin_lock_irq(&mchdev_lock);
5447         if (!i915_mch_dev) {
5448                 ret = false;
5449                 goto out_unlock;
5450         }
5451         dev_priv = i915_mch_dev;
5452
5453         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5454                 dev_priv->ips.max_delay++;
5455
5456 out_unlock:
5457         spin_unlock_irq(&mchdev_lock);
5458
5459         return ret;
5460 }
5461 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5462
5463 /**
5464  * i915_gpu_busy - indicate GPU business to IPS
5465  *
5466  * Tell the IPS driver whether or not the GPU is busy.
5467  */
5468 bool i915_gpu_busy(void)
5469 {
5470         struct drm_i915_private *dev_priv;
5471         struct intel_engine_cs *ring;
5472         bool ret = false;
5473         int i;
5474
5475         spin_lock_irq(&mchdev_lock);
5476         if (!i915_mch_dev)
5477                 goto out_unlock;
5478         dev_priv = i915_mch_dev;
5479
5480         for_each_ring(ring, dev_priv, i)
5481                 ret |= !list_empty(&ring->request_list);
5482
5483 out_unlock:
5484         spin_unlock_irq(&mchdev_lock);
5485
5486         return ret;
5487 }
5488 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5489
5490 /**
5491  * i915_gpu_turbo_disable - disable graphics turbo
5492  *
5493  * Disable graphics turbo by resetting the max frequency and setting the
5494  * current frequency to the default.
5495  */
5496 bool i915_gpu_turbo_disable(void)
5497 {
5498         struct drm_i915_private *dev_priv;
5499         bool ret = true;
5500
5501         spin_lock_irq(&mchdev_lock);
5502         if (!i915_mch_dev) {
5503                 ret = false;
5504                 goto out_unlock;
5505         }
5506         dev_priv = i915_mch_dev;
5507
5508         dev_priv->ips.max_delay = dev_priv->ips.fstart;
5509
5510         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5511                 ret = false;
5512
5513 out_unlock:
5514         spin_unlock_irq(&mchdev_lock);
5515
5516         return ret;
5517 }
5518 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5519
5520 /**
5521  * Tells the intel_ips driver that the i915 driver is now loaded, if
5522  * IPS got loaded first.
5523  *
5524  * This awkward dance is so that neither module has to depend on the
5525  * other in order for IPS to do the appropriate communication of
5526  * GPU turbo limits to i915.
5527  */
5528 static void
5529 ips_ping_for_i915_load(void)
5530 {
5531         void (*link)(void);
5532
5533         link = symbol_get(ips_link_to_i915_driver);
5534         if (link) {
5535                 link();
5536                 symbol_put(ips_link_to_i915_driver);
5537         }
5538 }
5539
5540 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5541 {
5542         /* We only register the i915 ips part with intel-ips once everything is
5543          * set up, to avoid intel-ips sneaking in and reading bogus values. */
5544         spin_lock_irq(&mchdev_lock);
5545         i915_mch_dev = dev_priv;
5546         spin_unlock_irq(&mchdev_lock);
5547
5548         ips_ping_for_i915_load();
5549 }
5550
5551 void intel_gpu_ips_teardown(void)
5552 {
5553         spin_lock_irq(&mchdev_lock);
5554         i915_mch_dev = NULL;
5555         spin_unlock_irq(&mchdev_lock);
5556 }
5557
5558 static void intel_init_emon(struct drm_device *dev)
5559 {
5560         struct drm_i915_private *dev_priv = dev->dev_private;
5561         u32 lcfuse;
5562         u8 pxw[16];
5563         int i;
5564
5565         /* Disable to program */
5566         I915_WRITE(ECR, 0);
5567         POSTING_READ(ECR);
5568
5569         /* Program energy weights for various events */
5570         I915_WRITE(SDEW, 0x15040d00);
5571         I915_WRITE(CSIEW0, 0x007f0000);
5572         I915_WRITE(CSIEW1, 0x1e220004);
5573         I915_WRITE(CSIEW2, 0x04000004);
5574
5575         for (i = 0; i < 5; i++)
5576                 I915_WRITE(PEW + (i * 4), 0);
5577         for (i = 0; i < 3; i++)
5578                 I915_WRITE(DEW + (i * 4), 0);
5579
5580         /* Program P-state weights to account for frequency power adjustment */
5581         for (i = 0; i < 16; i++) {
5582                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5583                 unsigned long freq = intel_pxfreq(pxvidfreq);
5584                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5585                         PXVFREQ_PX_SHIFT;
5586                 unsigned long val;
5587
5588                 val = vid * vid;
5589                 val *= (freq / 1000);
5590                 val *= 255;
5591                 val /= (127*127*900);
5592                 if (val > 0xff)
5593                         DRM_ERROR("bad pxval: %ld\n", val);
5594                 pxw[i] = val;
5595         }
5596         /* Render standby states get 0 weight */
5597         pxw[14] = 0;
5598         pxw[15] = 0;
5599
5600         for (i = 0; i < 4; i++) {
5601                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5602                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5603                 I915_WRITE(PXW + (i * 4), val);
5604         }
5605
5606         /* Adjust magic regs to magic values (more experimental results) */
5607         I915_WRITE(OGW0, 0);
5608         I915_WRITE(OGW1, 0);
5609         I915_WRITE(EG0, 0x00007f00);
5610         I915_WRITE(EG1, 0x0000000e);
5611         I915_WRITE(EG2, 0x000e0000);
5612         I915_WRITE(EG3, 0x68000300);
5613         I915_WRITE(EG4, 0x42000000);
5614         I915_WRITE(EG5, 0x00140031);
5615         I915_WRITE(EG6, 0);
5616         I915_WRITE(EG7, 0);
5617
5618         for (i = 0; i < 8; i++)
5619                 I915_WRITE(PXWL + (i * 4), 0);
5620
5621         /* Enable PMON + select events */
5622         I915_WRITE(ECR, 0x80000019);
5623
5624         lcfuse = I915_READ(LCFUSE02);
5625
5626         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5627 }
5628
5629 void intel_init_gt_powersave(struct drm_device *dev)
5630 {
5631         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5632
5633         if (IS_CHERRYVIEW(dev))
5634                 cherryview_init_gt_powersave(dev);
5635         else if (IS_VALLEYVIEW(dev))
5636                 valleyview_init_gt_powersave(dev);
5637 }
5638
5639 void intel_cleanup_gt_powersave(struct drm_device *dev)
5640 {
5641         if (IS_CHERRYVIEW(dev))
5642                 return;
5643         else if (IS_VALLEYVIEW(dev))
5644                 valleyview_cleanup_gt_powersave(dev);
5645 }
5646
5647 static void gen6_suspend_rps(struct drm_device *dev)
5648 {
5649         struct drm_i915_private *dev_priv = dev->dev_private;
5650
5651         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5652
5653         gen6_disable_rps_interrupts(dev);
5654 }
5655
5656 /**
5657  * intel_suspend_gt_powersave - suspend PM work and helper threads
5658  * @dev: drm device
5659  *
5660  * We don't want to disable RC6 or other features here, we just want
5661  * to make sure any work we've queued has finished and won't bother
5662  * us while we're suspended.
5663  */
5664 void intel_suspend_gt_powersave(struct drm_device *dev)
5665 {
5666         struct drm_i915_private *dev_priv = dev->dev_private;
5667
5668         if (INTEL_INFO(dev)->gen < 6)
5669                 return;
5670
5671         gen6_suspend_rps(dev);
5672
5673         /* Force GPU to min freq during suspend */
5674         gen6_rps_idle(dev_priv);
5675 }
5676
5677 void intel_disable_gt_powersave(struct drm_device *dev)
5678 {
5679         struct drm_i915_private *dev_priv = dev->dev_private;
5680
5681         if (IS_IRONLAKE_M(dev)) {
5682                 ironlake_disable_drps(dev);
5683         } else if (INTEL_INFO(dev)->gen >= 6) {
5684                 intel_suspend_gt_powersave(dev);
5685
5686                 mutex_lock(&dev_priv->rps.hw_lock);
5687                 if (INTEL_INFO(dev)->gen >= 9)
5688                         gen9_disable_rps(dev);
5689                 else if (IS_CHERRYVIEW(dev))
5690                         cherryview_disable_rps(dev);
5691                 else if (IS_VALLEYVIEW(dev))
5692                         valleyview_disable_rps(dev);
5693                 else
5694                         gen6_disable_rps(dev);
5695
5696                 dev_priv->rps.enabled = false;
5697                 mutex_unlock(&dev_priv->rps.hw_lock);
5698         }
5699 }
5700
5701 static void intel_gen6_powersave_work(struct work_struct *work)
5702 {
5703         struct drm_i915_private *dev_priv =
5704                 container_of(work, struct drm_i915_private,
5705                              rps.delayed_resume_work.work);
5706         struct drm_device *dev = dev_priv->dev;
5707
5708         mutex_lock(&dev_priv->rps.hw_lock);
5709
5710         gen6_reset_rps_interrupts(dev);
5711
5712         if (IS_CHERRYVIEW(dev)) {
5713                 cherryview_enable_rps(dev);
5714         } else if (IS_VALLEYVIEW(dev)) {
5715                 valleyview_enable_rps(dev);
5716         } else if (INTEL_INFO(dev)->gen >= 9) {
5717                 gen9_enable_rc6(dev);
5718                 gen9_enable_rps(dev);
5719                 __gen6_update_ring_freq(dev);
5720         } else if (IS_BROADWELL(dev)) {
5721                 gen8_enable_rps(dev);
5722                 __gen6_update_ring_freq(dev);
5723         } else {
5724                 gen6_enable_rps(dev);
5725                 __gen6_update_ring_freq(dev);
5726         }
5727
5728         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
5729         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
5730
5731         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
5732         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
5733
5734         dev_priv->rps.enabled = true;
5735
5736         gen6_enable_rps_interrupts(dev);
5737
5738         mutex_unlock(&dev_priv->rps.hw_lock);
5739
5740         intel_runtime_pm_put(dev_priv);
5741 }
5742
5743 void intel_enable_gt_powersave(struct drm_device *dev)
5744 {
5745         struct drm_i915_private *dev_priv = dev->dev_private;
5746
5747         /* Powersaving is controlled by the host when inside a VM */
5748         if (intel_vgpu_active(dev))
5749                 return;
5750
5751         if (IS_IRONLAKE_M(dev)) {
5752                 mutex_lock(&dev->struct_mutex);
5753                 ironlake_enable_drps(dev);
5754                 intel_init_emon(dev);
5755                 mutex_unlock(&dev->struct_mutex);
5756         } else if (INTEL_INFO(dev)->gen >= 6) {
5757                 /*
5758                  * PCU communication is slow and this doesn't need to be
5759                  * done at any specific time, so do this out of our fast path
5760                  * to make resume and init faster.
5761                  *
5762                  * We depend on the HW RC6 power context save/restore
5763                  * mechanism when entering D3 through runtime PM suspend. So
5764                  * disable RPM until RPS/RC6 is properly setup. We can only
5765                  * get here via the driver load/system resume/runtime resume
5766                  * paths, so the _noresume version is enough (and in case of
5767                  * runtime resume it's necessary).
5768                  */
5769                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5770                                            round_jiffies_up_relative(HZ)))
5771                         intel_runtime_pm_get_noresume(dev_priv);
5772         }
5773 }
5774
5775 void intel_reset_gt_powersave(struct drm_device *dev)
5776 {
5777         struct drm_i915_private *dev_priv = dev->dev_private;
5778
5779         if (INTEL_INFO(dev)->gen < 6)
5780                 return;
5781
5782         gen6_suspend_rps(dev);
5783         dev_priv->rps.enabled = false;
5784 }
5785
5786 static void ibx_init_clock_gating(struct drm_device *dev)
5787 {
5788         struct drm_i915_private *dev_priv = dev->dev_private;
5789
5790         /*
5791          * On Ibex Peak and Cougar Point, we need to disable clock
5792          * gating for the panel power sequencer or it will fail to
5793          * start up when no ports are active.
5794          */
5795         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5796 }
5797
5798 static void g4x_disable_trickle_feed(struct drm_device *dev)
5799 {
5800         struct drm_i915_private *dev_priv = dev->dev_private;
5801         int pipe;
5802
5803         for_each_pipe(dev_priv, pipe) {
5804                 I915_WRITE(DSPCNTR(pipe),
5805                            I915_READ(DSPCNTR(pipe)) |
5806                            DISPPLANE_TRICKLE_FEED_DISABLE);
5807                 intel_flush_primary_plane(dev_priv, pipe);
5808         }
5809 }
5810
5811 static void ilk_init_lp_watermarks(struct drm_device *dev)
5812 {
5813         struct drm_i915_private *dev_priv = dev->dev_private;
5814
5815         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5816         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5817         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5818
5819         /*
5820          * Don't touch WM1S_LP_EN here.
5821          * Doing so could cause underruns.
5822          */
5823 }
5824
5825 static void ironlake_init_clock_gating(struct drm_device *dev)
5826 {
5827         struct drm_i915_private *dev_priv = dev->dev_private;
5828         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5829
5830         /*
5831          * Required for FBC
5832          * WaFbcDisableDpfcClockGating:ilk
5833          */
5834         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5835                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5836                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5837
5838         I915_WRITE(PCH_3DCGDIS0,
5839                    MARIUNIT_CLOCK_GATE_DISABLE |
5840                    SVSMUNIT_CLOCK_GATE_DISABLE);
5841         I915_WRITE(PCH_3DCGDIS1,
5842                    VFMUNIT_CLOCK_GATE_DISABLE);
5843
5844         /*
5845          * According to the spec the following bits should be set in
5846          * order to enable memory self-refresh
5847          * The bit 22/21 of 0x42004
5848          * The bit 5 of 0x42020
5849          * The bit 15 of 0x45000
5850          */
5851         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5852                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
5853                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5854         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5855         I915_WRITE(DISP_ARB_CTL,
5856                    (I915_READ(DISP_ARB_CTL) |
5857                     DISP_FBC_WM_DIS));
5858
5859         ilk_init_lp_watermarks(dev);
5860
5861         /*
5862          * Based on the document from hardware guys the following bits
5863          * should be set unconditionally in order to enable FBC.
5864          * The bit 22 of 0x42000
5865          * The bit 22 of 0x42004
5866          * The bit 7,8,9 of 0x42020.
5867          */
5868         if (IS_IRONLAKE_M(dev)) {
5869                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5870                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5871                            I915_READ(ILK_DISPLAY_CHICKEN1) |
5872                            ILK_FBCQ_DIS);
5873                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5874                            I915_READ(ILK_DISPLAY_CHICKEN2) |
5875                            ILK_DPARB_GATE);
5876         }
5877
5878         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5879
5880         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5881                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5882                    ILK_ELPIN_409_SELECT);
5883         I915_WRITE(_3D_CHICKEN2,
5884                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5885                    _3D_CHICKEN2_WM_READ_PIPELINED);
5886
5887         /* WaDisableRenderCachePipelinedFlush:ilk */
5888         I915_WRITE(CACHE_MODE_0,
5889                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5890
5891         /* WaDisable_RenderCache_OperationalFlush:ilk */
5892         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5893
5894         g4x_disable_trickle_feed(dev);
5895
5896         ibx_init_clock_gating(dev);
5897 }
5898
5899 static void cpt_init_clock_gating(struct drm_device *dev)
5900 {
5901         struct drm_i915_private *dev_priv = dev->dev_private;
5902         int pipe;
5903         uint32_t val;
5904
5905         /*
5906          * On Ibex Peak and Cougar Point, we need to disable clock
5907          * gating for the panel power sequencer or it will fail to
5908          * start up when no ports are active.
5909          */
5910         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5911                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5912                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
5913         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5914                    DPLS_EDP_PPS_FIX_DIS);
5915         /* The below fixes the weird display corruption, a few pixels shifted
5916          * downward, on (only) LVDS of some HP laptops with IVY.
5917          */
5918         for_each_pipe(dev_priv, pipe) {
5919                 val = I915_READ(TRANS_CHICKEN2(pipe));
5920                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5921                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5922                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5923                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5924                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5925                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5926                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5927                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5928         }
5929         /* WADP0ClockGatingDisable */
5930         for_each_pipe(dev_priv, pipe) {
5931                 I915_WRITE(TRANS_CHICKEN1(pipe),
5932                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5933         }
5934 }
5935
5936 static void gen6_check_mch_setup(struct drm_device *dev)
5937 {
5938         struct drm_i915_private *dev_priv = dev->dev_private;
5939         uint32_t tmp;
5940
5941         tmp = I915_READ(MCH_SSKPD);
5942         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5943                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5944                               tmp);
5945 }
5946
5947 static void gen6_init_clock_gating(struct drm_device *dev)
5948 {
5949         struct drm_i915_private *dev_priv = dev->dev_private;
5950         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5951
5952         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5953
5954         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5955                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5956                    ILK_ELPIN_409_SELECT);
5957
5958         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5959         I915_WRITE(_3D_CHICKEN,
5960                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5961
5962         /* WaDisable_RenderCache_OperationalFlush:snb */
5963         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5964
5965         /*
5966          * BSpec recoomends 8x4 when MSAA is used,
5967          * however in practice 16x4 seems fastest.
5968          *
5969          * Note that PS/WM thread counts depend on the WIZ hashing
5970          * disable bit, which we don't touch here, but it's good
5971          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5972          */
5973         I915_WRITE(GEN6_GT_MODE,
5974                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5975
5976         ilk_init_lp_watermarks(dev);
5977
5978         I915_WRITE(CACHE_MODE_0,
5979                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5980
5981         I915_WRITE(GEN6_UCGCTL1,
5982                    I915_READ(GEN6_UCGCTL1) |
5983                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5984                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5985
5986         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5987          * gating disable must be set.  Failure to set it results in
5988          * flickering pixels due to Z write ordering failures after
5989          * some amount of runtime in the Mesa "fire" demo, and Unigine
5990          * Sanctuary and Tropics, and apparently anything else with
5991          * alpha test or pixel discard.
5992          *
5993          * According to the spec, bit 11 (RCCUNIT) must also be set,
5994          * but we didn't debug actual testcases to find it out.
5995          *
5996          * WaDisableRCCUnitClockGating:snb
5997          * WaDisableRCPBUnitClockGating:snb
5998          */
5999         I915_WRITE(GEN6_UCGCTL2,
6000                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6001                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6002
6003         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6004         I915_WRITE(_3D_CHICKEN3,
6005                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6006
6007         /*
6008          * Bspec says:
6009          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6010          * 3DSTATE_SF number of SF output attributes is more than 16."
6011          */
6012         I915_WRITE(_3D_CHICKEN3,
6013                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6014
6015         /*
6016          * According to the spec the following bits should be
6017          * set in order to enable memory self-refresh and fbc:
6018          * The bit21 and bit22 of 0x42000
6019          * The bit21 and bit22 of 0x42004
6020          * The bit5 and bit7 of 0x42020
6021          * The bit14 of 0x70180
6022          * The bit14 of 0x71180
6023          *
6024          * WaFbcAsynchFlipDisableFbcQueue:snb
6025          */
6026         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6027                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6028                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6029         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6030                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6031                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6032         I915_WRITE(ILK_DSPCLK_GATE_D,
6033                    I915_READ(ILK_DSPCLK_GATE_D) |
6034                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6035                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6036
6037         g4x_disable_trickle_feed(dev);
6038
6039         cpt_init_clock_gating(dev);
6040
6041         gen6_check_mch_setup(dev);
6042 }
6043
6044 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6045 {
6046         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6047
6048         /*
6049          * WaVSThreadDispatchOverride:ivb,vlv
6050          *
6051          * This actually overrides the dispatch
6052          * mode for all thread types.
6053          */
6054         reg &= ~GEN7_FF_SCHED_MASK;
6055         reg |= GEN7_FF_TS_SCHED_HW;
6056         reg |= GEN7_FF_VS_SCHED_HW;
6057         reg |= GEN7_FF_DS_SCHED_HW;
6058
6059         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6060 }
6061
6062 static void lpt_init_clock_gating(struct drm_device *dev)
6063 {
6064         struct drm_i915_private *dev_priv = dev->dev_private;
6065
6066         /*
6067          * TODO: this bit should only be enabled when really needed, then
6068          * disabled when not needed anymore in order to save power.
6069          */
6070         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
6071                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6072                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6073                            PCH_LP_PARTITION_LEVEL_DISABLE);
6074
6075         /* WADPOClockGatingDisable:hsw */
6076         I915_WRITE(_TRANSA_CHICKEN1,
6077                    I915_READ(_TRANSA_CHICKEN1) |
6078                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6079 }
6080
6081 static void lpt_suspend_hw(struct drm_device *dev)
6082 {
6083         struct drm_i915_private *dev_priv = dev->dev_private;
6084
6085         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6086                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6087
6088                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6089                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6090         }
6091 }
6092
6093 static void broadwell_init_clock_gating(struct drm_device *dev)
6094 {
6095         struct drm_i915_private *dev_priv = dev->dev_private;
6096         enum pipe pipe;
6097
6098         I915_WRITE(WM3_LP_ILK, 0);
6099         I915_WRITE(WM2_LP_ILK, 0);
6100         I915_WRITE(WM1_LP_ILK, 0);
6101
6102         /* WaSwitchSolVfFArbitrationPriority:bdw */
6103         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6104
6105         /* WaPsrDPAMaskVBlankInSRD:bdw */
6106         I915_WRITE(CHICKEN_PAR1_1,
6107                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6108
6109         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6110         for_each_pipe(dev_priv, pipe) {
6111                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6112                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
6113                            BDW_DPRS_MASK_VBLANK_SRD);
6114         }
6115
6116         /* WaVSRefCountFullforceMissDisable:bdw */
6117         /* WaDSRefCountFullforceMissDisable:bdw */
6118         I915_WRITE(GEN7_FF_THREAD_MODE,
6119                    I915_READ(GEN7_FF_THREAD_MODE) &
6120                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6121
6122         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6123                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6124
6125         /* WaDisableSDEUnitClockGating:bdw */
6126         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6127                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6128
6129         lpt_init_clock_gating(dev);
6130 }
6131
6132 static void haswell_init_clock_gating(struct drm_device *dev)
6133 {
6134         struct drm_i915_private *dev_priv = dev->dev_private;
6135
6136         ilk_init_lp_watermarks(dev);
6137
6138         /* L3 caching of data atomics doesn't work -- disable it. */
6139         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6140         I915_WRITE(HSW_ROW_CHICKEN3,
6141                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6142
6143         /* This is required by WaCatErrorRejectionIssue:hsw */
6144         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6145                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6146                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6147
6148         /* WaVSRefCountFullforceMissDisable:hsw */
6149         I915_WRITE(GEN7_FF_THREAD_MODE,
6150                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6151
6152         /* WaDisable_RenderCache_OperationalFlush:hsw */
6153         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6154
6155         /* enable HiZ Raw Stall Optimization */
6156         I915_WRITE(CACHE_MODE_0_GEN7,
6157                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6158
6159         /* WaDisable4x2SubspanOptimization:hsw */
6160         I915_WRITE(CACHE_MODE_1,
6161                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6162
6163         /*
6164          * BSpec recommends 8x4 when MSAA is used,
6165          * however in practice 16x4 seems fastest.
6166          *
6167          * Note that PS/WM thread counts depend on the WIZ hashing
6168          * disable bit, which we don't touch here, but it's good
6169          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6170          */
6171         I915_WRITE(GEN7_GT_MODE,
6172                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6173
6174         /* WaSampleCChickenBitEnable:hsw */
6175         I915_WRITE(HALF_SLICE_CHICKEN3,
6176                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6177
6178         /* WaSwitchSolVfFArbitrationPriority:hsw */
6179         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6180
6181         /* WaRsPkgCStateDisplayPMReq:hsw */
6182         I915_WRITE(CHICKEN_PAR1_1,
6183                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6184
6185         lpt_init_clock_gating(dev);
6186 }
6187
6188 static void ivybridge_init_clock_gating(struct drm_device *dev)
6189 {
6190         struct drm_i915_private *dev_priv = dev->dev_private;
6191         uint32_t snpcr;
6192
6193         ilk_init_lp_watermarks(dev);
6194
6195         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6196
6197         /* WaDisableEarlyCull:ivb */
6198         I915_WRITE(_3D_CHICKEN3,
6199                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6200
6201         /* WaDisableBackToBackFlipFix:ivb */
6202         I915_WRITE(IVB_CHICKEN3,
6203                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6204                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6205
6206         /* WaDisablePSDDualDispatchEnable:ivb */
6207         if (IS_IVB_GT1(dev))
6208                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6209                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6210
6211         /* WaDisable_RenderCache_OperationalFlush:ivb */
6212         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6213
6214         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6215         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6216                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6217
6218         /* WaApplyL3ControlAndL3ChickenMode:ivb */
6219         I915_WRITE(GEN7_L3CNTLREG1,
6220                         GEN7_WA_FOR_GEN7_L3_CONTROL);
6221         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6222                    GEN7_WA_L3_CHICKEN_MODE);
6223         if (IS_IVB_GT1(dev))
6224                 I915_WRITE(GEN7_ROW_CHICKEN2,
6225                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6226         else {
6227                 /* must write both registers */
6228                 I915_WRITE(GEN7_ROW_CHICKEN2,
6229                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6230                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6231                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6232         }
6233
6234         /* WaForceL3Serialization:ivb */
6235         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6236                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6237
6238         /*
6239          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6240          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6241          */
6242         I915_WRITE(GEN6_UCGCTL2,
6243                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6244
6245         /* This is required by WaCatErrorRejectionIssue:ivb */
6246         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6247                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6248                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6249
6250         g4x_disable_trickle_feed(dev);
6251
6252         gen7_setup_fixed_func_scheduler(dev_priv);
6253
6254         if (0) { /* causes HiZ corruption on ivb:gt1 */
6255                 /* enable HiZ Raw Stall Optimization */
6256                 I915_WRITE(CACHE_MODE_0_GEN7,
6257                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6258         }
6259
6260         /* WaDisable4x2SubspanOptimization:ivb */
6261         I915_WRITE(CACHE_MODE_1,
6262                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6263
6264         /*
6265          * BSpec recommends 8x4 when MSAA is used,
6266          * however in practice 16x4 seems fastest.
6267          *
6268          * Note that PS/WM thread counts depend on the WIZ hashing
6269          * disable bit, which we don't touch here, but it's good
6270          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6271          */
6272         I915_WRITE(GEN7_GT_MODE,
6273                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6274
6275         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6276         snpcr &= ~GEN6_MBC_SNPCR_MASK;
6277         snpcr |= GEN6_MBC_SNPCR_MED;
6278         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6279
6280         if (!HAS_PCH_NOP(dev))
6281                 cpt_init_clock_gating(dev);
6282
6283         gen6_check_mch_setup(dev);
6284 }
6285
6286 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6287 {
6288         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6289
6290         /*
6291          * Disable trickle feed and enable pnd deadline calculation
6292          */
6293         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6294         I915_WRITE(CBR1_VLV, 0);
6295 }
6296
6297 static void valleyview_init_clock_gating(struct drm_device *dev)
6298 {
6299         struct drm_i915_private *dev_priv = dev->dev_private;
6300
6301         vlv_init_display_clock_gating(dev_priv);
6302
6303         /* WaDisableEarlyCull:vlv */
6304         I915_WRITE(_3D_CHICKEN3,
6305                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6306
6307         /* WaDisableBackToBackFlipFix:vlv */
6308         I915_WRITE(IVB_CHICKEN3,
6309                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6310                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6311
6312         /* WaPsdDispatchEnable:vlv */
6313         /* WaDisablePSDDualDispatchEnable:vlv */
6314         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6315                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6316                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6317
6318         /* WaDisable_RenderCache_OperationalFlush:vlv */
6319         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6320
6321         /* WaForceL3Serialization:vlv */
6322         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6323                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6324
6325         /* WaDisableDopClockGating:vlv */
6326         I915_WRITE(GEN7_ROW_CHICKEN2,
6327                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6328
6329         /* This is required by WaCatErrorRejectionIssue:vlv */
6330         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6331                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6332                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6333
6334         gen7_setup_fixed_func_scheduler(dev_priv);
6335
6336         /*
6337          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6338          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6339          */
6340         I915_WRITE(GEN6_UCGCTL2,
6341                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6342
6343         /* WaDisableL3Bank2xClockGate:vlv
6344          * Disabling L3 clock gating- MMIO 940c[25] = 1
6345          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6346         I915_WRITE(GEN7_UCGCTL4,
6347                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6348
6349         /*
6350          * BSpec says this must be set, even though
6351          * WaDisable4x2SubspanOptimization isn't listed for VLV.
6352          */
6353         I915_WRITE(CACHE_MODE_1,
6354                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6355
6356         /*
6357          * BSpec recommends 8x4 when MSAA is used,
6358          * however in practice 16x4 seems fastest.
6359          *
6360          * Note that PS/WM thread counts depend on the WIZ hashing
6361          * disable bit, which we don't touch here, but it's good
6362          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6363          */
6364         I915_WRITE(GEN7_GT_MODE,
6365                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6366
6367         /*
6368          * WaIncreaseL3CreditsForVLVB0:vlv
6369          * This is the hardware default actually.
6370          */
6371         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6372
6373         /*
6374          * WaDisableVLVClockGating_VBIIssue:vlv
6375          * Disable clock gating on th GCFG unit to prevent a delay
6376          * in the reporting of vblank events.
6377          */
6378         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6379 }
6380
6381 static void cherryview_init_clock_gating(struct drm_device *dev)
6382 {
6383         struct drm_i915_private *dev_priv = dev->dev_private;
6384
6385         vlv_init_display_clock_gating(dev_priv);
6386
6387         /* WaVSRefCountFullforceMissDisable:chv */
6388         /* WaDSRefCountFullforceMissDisable:chv */
6389         I915_WRITE(GEN7_FF_THREAD_MODE,
6390                    I915_READ(GEN7_FF_THREAD_MODE) &
6391                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6392
6393         /* WaDisableSemaphoreAndSyncFlipWait:chv */
6394         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6395                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6396
6397         /* WaDisableCSUnitClockGating:chv */
6398         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6399                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6400
6401         /* WaDisableSDEUnitClockGating:chv */
6402         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6403                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6404 }
6405
6406 static void g4x_init_clock_gating(struct drm_device *dev)
6407 {
6408         struct drm_i915_private *dev_priv = dev->dev_private;
6409         uint32_t dspclk_gate;
6410
6411         I915_WRITE(RENCLK_GATE_D1, 0);
6412         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6413                    GS_UNIT_CLOCK_GATE_DISABLE |
6414                    CL_UNIT_CLOCK_GATE_DISABLE);
6415         I915_WRITE(RAMCLK_GATE_D, 0);
6416         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6417                 OVRUNIT_CLOCK_GATE_DISABLE |
6418                 OVCUNIT_CLOCK_GATE_DISABLE;
6419         if (IS_GM45(dev))
6420                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6421         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6422
6423         /* WaDisableRenderCachePipelinedFlush */
6424         I915_WRITE(CACHE_MODE_0,
6425                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6426
6427         /* WaDisable_RenderCache_OperationalFlush:g4x */
6428         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6429
6430         g4x_disable_trickle_feed(dev);
6431 }
6432
6433 static void crestline_init_clock_gating(struct drm_device *dev)
6434 {
6435         struct drm_i915_private *dev_priv = dev->dev_private;
6436
6437         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6438         I915_WRITE(RENCLK_GATE_D2, 0);
6439         I915_WRITE(DSPCLK_GATE_D, 0);
6440         I915_WRITE(RAMCLK_GATE_D, 0);
6441         I915_WRITE16(DEUC, 0);
6442         I915_WRITE(MI_ARB_STATE,
6443                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6444
6445         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6446         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6447 }
6448
6449 static void broadwater_init_clock_gating(struct drm_device *dev)
6450 {
6451         struct drm_i915_private *dev_priv = dev->dev_private;
6452
6453         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6454                    I965_RCC_CLOCK_GATE_DISABLE |
6455                    I965_RCPB_CLOCK_GATE_DISABLE |
6456                    I965_ISC_CLOCK_GATE_DISABLE |
6457                    I965_FBC_CLOCK_GATE_DISABLE);
6458         I915_WRITE(RENCLK_GATE_D2, 0);
6459         I915_WRITE(MI_ARB_STATE,
6460                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6461
6462         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6463         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6464 }
6465
6466 static void gen3_init_clock_gating(struct drm_device *dev)
6467 {
6468         struct drm_i915_private *dev_priv = dev->dev_private;
6469         u32 dstate = I915_READ(D_STATE);
6470
6471         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6472                 DSTATE_DOT_CLOCK_GATING;
6473         I915_WRITE(D_STATE, dstate);
6474
6475         if (IS_PINEVIEW(dev))
6476                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6477
6478         /* IIR "flip pending" means done if this bit is set */
6479         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6480
6481         /* interrupts should cause a wake up from C3 */
6482         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6483
6484         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6485         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6486
6487         I915_WRITE(MI_ARB_STATE,
6488                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6489 }
6490
6491 static void i85x_init_clock_gating(struct drm_device *dev)
6492 {
6493         struct drm_i915_private *dev_priv = dev->dev_private;
6494
6495         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6496
6497         /* interrupts should cause a wake up from C3 */
6498         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6499                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6500
6501         I915_WRITE(MEM_MODE,
6502                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6503 }
6504
6505 static void i830_init_clock_gating(struct drm_device *dev)
6506 {
6507         struct drm_i915_private *dev_priv = dev->dev_private;
6508
6509         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6510
6511         I915_WRITE(MEM_MODE,
6512                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6513                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6514 }
6515
6516 void intel_init_clock_gating(struct drm_device *dev)
6517 {
6518         struct drm_i915_private *dev_priv = dev->dev_private;
6519
6520         if (dev_priv->display.init_clock_gating)
6521                 dev_priv->display.init_clock_gating(dev);
6522 }
6523
6524 void intel_suspend_hw(struct drm_device *dev)
6525 {
6526         if (HAS_PCH_LPT(dev))
6527                 lpt_suspend_hw(dev);
6528 }
6529
6530 /* Set up chip specific power management-related functions */
6531 void intel_init_pm(struct drm_device *dev)
6532 {
6533         struct drm_i915_private *dev_priv = dev->dev_private;
6534
6535         intel_fbc_init(dev_priv);
6536
6537         /* For cxsr */
6538         if (IS_PINEVIEW(dev))
6539                 i915_pineview_get_mem_freq(dev);
6540         else if (IS_GEN5(dev))
6541                 i915_ironlake_get_mem_freq(dev);
6542
6543         /* For FIFO watermark updates */
6544         if (INTEL_INFO(dev)->gen >= 9) {
6545                 skl_setup_wm_latency(dev);
6546
6547                 dev_priv->display.init_clock_gating = skl_init_clock_gating;
6548                 dev_priv->display.update_wm = skl_update_wm;
6549                 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6550         } else if (HAS_PCH_SPLIT(dev)) {
6551                 ilk_setup_wm_latency(dev);
6552
6553                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6554                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6555                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6556                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6557                         dev_priv->display.update_wm = ilk_update_wm;
6558                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6559                 } else {
6560                         DRM_DEBUG_KMS("Failed to read display plane latency. "
6561                                       "Disable CxSR\n");
6562                 }
6563
6564                 if (IS_GEN5(dev))
6565                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6566                 else if (IS_GEN6(dev))
6567                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6568                 else if (IS_IVYBRIDGE(dev))
6569                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6570                 else if (IS_HASWELL(dev))
6571                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6572                 else if (INTEL_INFO(dev)->gen == 8)
6573                         dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6574         } else if (IS_CHERRYVIEW(dev)) {
6575                 dev_priv->display.update_wm = valleyview_update_wm;
6576                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6577                 dev_priv->display.init_clock_gating =
6578                         cherryview_init_clock_gating;
6579         } else if (IS_VALLEYVIEW(dev)) {
6580                 dev_priv->display.update_wm = valleyview_update_wm;
6581                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6582                 dev_priv->display.init_clock_gating =
6583                         valleyview_init_clock_gating;
6584         } else if (IS_PINEVIEW(dev)) {
6585                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6586                                             dev_priv->is_ddr3,
6587                                             dev_priv->fsb_freq,
6588                                             dev_priv->mem_freq)) {
6589                         DRM_INFO("failed to find known CxSR latency "
6590                                  "(found ddr%s fsb freq %d, mem freq %d), "
6591                                  "disabling CxSR\n",
6592                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
6593                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6594                         /* Disable CxSR and never update its watermark again */
6595                         intel_set_memory_cxsr(dev_priv, false);
6596                         dev_priv->display.update_wm = NULL;
6597                 } else
6598                         dev_priv->display.update_wm = pineview_update_wm;
6599                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6600         } else if (IS_G4X(dev)) {
6601                 dev_priv->display.update_wm = g4x_update_wm;
6602                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6603         } else if (IS_GEN4(dev)) {
6604                 dev_priv->display.update_wm = i965_update_wm;
6605                 if (IS_CRESTLINE(dev))
6606                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6607                 else if (IS_BROADWATER(dev))
6608                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6609         } else if (IS_GEN3(dev)) {
6610                 dev_priv->display.update_wm = i9xx_update_wm;
6611                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6612                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6613         } else if (IS_GEN2(dev)) {
6614                 if (INTEL_INFO(dev)->num_pipes == 1) {
6615                         dev_priv->display.update_wm = i845_update_wm;
6616                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6617                 } else {
6618                         dev_priv->display.update_wm = i9xx_update_wm;
6619                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6620                 }
6621
6622                 if (IS_I85X(dev) || IS_I865G(dev))
6623                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6624                 else
6625                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
6626         } else {
6627                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6628         }
6629 }
6630
6631 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
6632 {
6633         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6634
6635         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6636                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6637                 return -EAGAIN;
6638         }
6639
6640         I915_WRITE(GEN6_PCODE_DATA, *val);
6641         I915_WRITE(GEN6_PCODE_DATA1, 0);
6642         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6643
6644         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6645                      500)) {
6646                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6647                 return -ETIMEDOUT;
6648         }
6649
6650         *val = I915_READ(GEN6_PCODE_DATA);
6651         I915_WRITE(GEN6_PCODE_DATA, 0);
6652
6653         return 0;
6654 }
6655
6656 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
6657 {
6658         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6659
6660         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6661                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6662                 return -EAGAIN;
6663         }
6664
6665         I915_WRITE(GEN6_PCODE_DATA, val);
6666         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6667
6668         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6669                      500)) {
6670                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6671                 return -ETIMEDOUT;
6672         }
6673
6674         I915_WRITE(GEN6_PCODE_DATA, 0);
6675
6676         return 0;
6677 }
6678
6679 static int vlv_gpu_freq_div(unsigned int czclk_freq)
6680 {
6681         switch (czclk_freq) {
6682         case 200:
6683                 return 10;
6684         case 267:
6685                 return 12;
6686         case 320:
6687         case 333:
6688                 return 16;
6689         case 400:
6690                 return 20;
6691         default:
6692                 return -1;
6693         }
6694 }
6695
6696 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
6697 {
6698         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6699
6700         div = vlv_gpu_freq_div(czclk_freq);
6701         if (div < 0)
6702                 return div;
6703
6704         return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6705 }
6706
6707 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6708 {
6709         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6710
6711         mul = vlv_gpu_freq_div(czclk_freq);
6712         if (mul < 0)
6713                 return mul;
6714
6715         return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6716 }
6717
6718 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6719 {
6720         int div, czclk_freq = dev_priv->rps.cz_freq;
6721
6722         div = vlv_gpu_freq_div(czclk_freq) / 2;
6723         if (div < 0)
6724                 return div;
6725
6726         return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6727 }
6728
6729 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6730 {
6731         int mul, czclk_freq = dev_priv->rps.cz_freq;
6732
6733         mul = vlv_gpu_freq_div(czclk_freq) / 2;
6734         if (mul < 0)
6735                 return mul;
6736
6737         /* CHV needs even values */
6738         return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6739 }
6740
6741 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
6742 {
6743         if (IS_GEN9(dev_priv->dev))
6744                 return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
6745         else if (IS_CHERRYVIEW(dev_priv->dev))
6746                 return chv_gpu_freq(dev_priv, val);
6747         else if (IS_VALLEYVIEW(dev_priv->dev))
6748                 return byt_gpu_freq(dev_priv, val);
6749         else
6750                 return val * GT_FREQUENCY_MULTIPLIER;
6751 }
6752
6753 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
6754 {
6755         if (IS_GEN9(dev_priv->dev))
6756                 return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
6757         else if (IS_CHERRYVIEW(dev_priv->dev))
6758                 return chv_freq_opcode(dev_priv, val);
6759         else if (IS_VALLEYVIEW(dev_priv->dev))
6760                 return byt_freq_opcode(dev_priv, val);
6761         else
6762                 return val / GT_FREQUENCY_MULTIPLIER;
6763 }
6764
6765 void intel_pm_setup(struct drm_device *dev)
6766 {
6767         struct drm_i915_private *dev_priv = dev->dev_private;
6768
6769         mutex_init(&dev_priv->rps.hw_lock);
6770
6771         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6772                           intel_gen6_powersave_work);
6773
6774         dev_priv->pm.suspended = false;
6775 }