Merge branches 'arm/rockchip', 'arm/exynos', 'arm/smmu', 'x86/vt-d', 'x86/amd', ...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35  * RC6 is a special power stage which allows the GPU to enter an very
36  * low-voltage mode when idle, using down to 0V while at this stage.  This
37  * stage is entered automatically when the GPU is idle when RC6 support is
38  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39  *
40  * There are different RC6 modes available in Intel GPU, which differentiate
41  * among each other with the latency required to enter and leave RC6 and
42  * voltage consumed by the GPU in different states.
43  *
44  * The combination of the following flags define which states GPU is allowed
45  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46  * RC6pp is deepest RC6. Their support by hardware varies according to the
47  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48  * which brings the most power savings; deeper states save more power, but
49  * require higher latency to switch to and wake up.
50  */
51 #define INTEL_RC6_ENABLE                        (1<<0)
52 #define INTEL_RC6p_ENABLE                       (1<<1)
53 #define INTEL_RC6pp_ENABLE                      (1<<2)
54
55 static void gen9_init_clock_gating(struct drm_device *dev)
56 {
57         struct drm_i915_private *dev_priv = dev->dev_private;
58
59         /* WaEnableLbsSlaRetryTimerDecrement:skl */
60         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
61                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
62 }
63
64 static void skl_init_clock_gating(struct drm_device *dev)
65 {
66         struct drm_i915_private *dev_priv = dev->dev_private;
67
68         gen9_init_clock_gating(dev);
69
70         if (INTEL_REVID(dev) == SKL_REVID_A0) {
71                 /*
72                  * WaDisableSDEUnitClockGating:skl
73                  * WaSetGAPSunitClckGateDisable:skl
74                  */
75                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
76                            GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
77                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
78         }
79
80         if (INTEL_REVID(dev) <= SKL_REVID_D0) {
81                 /* WaDisableHDCInvalidation:skl */
82                 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
83                            BDW_DISABLE_HDC_INVALIDATION);
84
85                 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
86                 I915_WRITE(FF_SLICE_CS_CHICKEN2,
87                            I915_READ(FF_SLICE_CS_CHICKEN2) |
88                            GEN9_TSG_BARRIER_ACK_DISABLE);
89         }
90
91         if (INTEL_REVID(dev) <= SKL_REVID_E0)
92                 /* WaDisableLSQCROPERFforOCL:skl */
93                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
94                            GEN8_LQSC_RO_PERF_DIS);
95 }
96
97 static void i915_pineview_get_mem_freq(struct drm_device *dev)
98 {
99         struct drm_i915_private *dev_priv = dev->dev_private;
100         u32 tmp;
101
102         tmp = I915_READ(CLKCFG);
103
104         switch (tmp & CLKCFG_FSB_MASK) {
105         case CLKCFG_FSB_533:
106                 dev_priv->fsb_freq = 533; /* 133*4 */
107                 break;
108         case CLKCFG_FSB_800:
109                 dev_priv->fsb_freq = 800; /* 200*4 */
110                 break;
111         case CLKCFG_FSB_667:
112                 dev_priv->fsb_freq =  667; /* 167*4 */
113                 break;
114         case CLKCFG_FSB_400:
115                 dev_priv->fsb_freq = 400; /* 100*4 */
116                 break;
117         }
118
119         switch (tmp & CLKCFG_MEM_MASK) {
120         case CLKCFG_MEM_533:
121                 dev_priv->mem_freq = 533;
122                 break;
123         case CLKCFG_MEM_667:
124                 dev_priv->mem_freq = 667;
125                 break;
126         case CLKCFG_MEM_800:
127                 dev_priv->mem_freq = 800;
128                 break;
129         }
130
131         /* detect pineview DDR3 setting */
132         tmp = I915_READ(CSHRDDR3CTL);
133         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
134 }
135
136 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
137 {
138         struct drm_i915_private *dev_priv = dev->dev_private;
139         u16 ddrpll, csipll;
140
141         ddrpll = I915_READ16(DDRMPLL1);
142         csipll = I915_READ16(CSIPLL0);
143
144         switch (ddrpll & 0xff) {
145         case 0xc:
146                 dev_priv->mem_freq = 800;
147                 break;
148         case 0x10:
149                 dev_priv->mem_freq = 1066;
150                 break;
151         case 0x14:
152                 dev_priv->mem_freq = 1333;
153                 break;
154         case 0x18:
155                 dev_priv->mem_freq = 1600;
156                 break;
157         default:
158                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
159                                  ddrpll & 0xff);
160                 dev_priv->mem_freq = 0;
161                 break;
162         }
163
164         dev_priv->ips.r_t = dev_priv->mem_freq;
165
166         switch (csipll & 0x3ff) {
167         case 0x00c:
168                 dev_priv->fsb_freq = 3200;
169                 break;
170         case 0x00e:
171                 dev_priv->fsb_freq = 3733;
172                 break;
173         case 0x010:
174                 dev_priv->fsb_freq = 4266;
175                 break;
176         case 0x012:
177                 dev_priv->fsb_freq = 4800;
178                 break;
179         case 0x014:
180                 dev_priv->fsb_freq = 5333;
181                 break;
182         case 0x016:
183                 dev_priv->fsb_freq = 5866;
184                 break;
185         case 0x018:
186                 dev_priv->fsb_freq = 6400;
187                 break;
188         default:
189                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
190                                  csipll & 0x3ff);
191                 dev_priv->fsb_freq = 0;
192                 break;
193         }
194
195         if (dev_priv->fsb_freq == 3200) {
196                 dev_priv->ips.c_m = 0;
197         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
198                 dev_priv->ips.c_m = 1;
199         } else {
200                 dev_priv->ips.c_m = 2;
201         }
202 }
203
204 static const struct cxsr_latency cxsr_latency_table[] = {
205         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
206         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
207         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
208         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
209         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
210
211         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
212         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
213         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
214         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
215         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
216
217         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
218         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
219         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
220         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
221         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
222
223         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
224         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
225         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
226         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
227         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
228
229         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
230         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
231         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
232         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
233         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
234
235         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
236         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
237         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
238         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
239         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
240 };
241
242 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
243                                                          int is_ddr3,
244                                                          int fsb,
245                                                          int mem)
246 {
247         const struct cxsr_latency *latency;
248         int i;
249
250         if (fsb == 0 || mem == 0)
251                 return NULL;
252
253         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
254                 latency = &cxsr_latency_table[i];
255                 if (is_desktop == latency->is_desktop &&
256                     is_ddr3 == latency->is_ddr3 &&
257                     fsb == latency->fsb_freq && mem == latency->mem_freq)
258                         return latency;
259         }
260
261         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
262
263         return NULL;
264 }
265
266 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
267 {
268         u32 val;
269
270         mutex_lock(&dev_priv->rps.hw_lock);
271
272         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
273         if (enable)
274                 val &= ~FORCE_DDR_HIGH_FREQ;
275         else
276                 val |= FORCE_DDR_HIGH_FREQ;
277         val &= ~FORCE_DDR_LOW_FREQ;
278         val |= FORCE_DDR_FREQ_REQ_ACK;
279         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
280
281         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
282                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
283                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
284
285         mutex_unlock(&dev_priv->rps.hw_lock);
286 }
287
288 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
289 {
290         u32 val;
291
292         mutex_lock(&dev_priv->rps.hw_lock);
293
294         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
295         if (enable)
296                 val |= DSP_MAXFIFO_PM5_ENABLE;
297         else
298                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
299         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
300
301         mutex_unlock(&dev_priv->rps.hw_lock);
302 }
303
304 #define FW_WM(value, plane) \
305         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
306
307 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
308 {
309         struct drm_device *dev = dev_priv->dev;
310         u32 val;
311
312         if (IS_VALLEYVIEW(dev)) {
313                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
314                 if (IS_CHERRYVIEW(dev))
315                         chv_set_memory_pm5(dev_priv, enable);
316         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
317                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
318         } else if (IS_PINEVIEW(dev)) {
319                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
320                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
321                 I915_WRITE(DSPFW3, val);
322         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
323                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
324                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
325                 I915_WRITE(FW_BLC_SELF, val);
326         } else if (IS_I915GM(dev)) {
327                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
328                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
329                 I915_WRITE(INSTPM, val);
330         } else {
331                 return;
332         }
333
334         DRM_DEBUG_KMS("memory self-refresh is %s\n",
335                       enable ? "enabled" : "disabled");
336 }
337
338
339 /*
340  * Latency for FIFO fetches is dependent on several factors:
341  *   - memory configuration (speed, channels)
342  *   - chipset
343  *   - current MCH state
344  * It can be fairly high in some situations, so here we assume a fairly
345  * pessimal value.  It's a tradeoff between extra memory fetches (if we
346  * set this value too high, the FIFO will fetch frequently to stay full)
347  * and power consumption (set it too low to save power and we might see
348  * FIFO underruns and display "flicker").
349  *
350  * A value of 5us seems to be a good balance; safe for very low end
351  * platforms but not overly aggressive on lower latency configs.
352  */
353 static const int pessimal_latency_ns = 5000;
354
355 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
356         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
357
358 static int vlv_get_fifo_size(struct drm_device *dev,
359                               enum pipe pipe, int plane)
360 {
361         struct drm_i915_private *dev_priv = dev->dev_private;
362         int sprite0_start, sprite1_start, size;
363
364         switch (pipe) {
365                 uint32_t dsparb, dsparb2, dsparb3;
366         case PIPE_A:
367                 dsparb = I915_READ(DSPARB);
368                 dsparb2 = I915_READ(DSPARB2);
369                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
370                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
371                 break;
372         case PIPE_B:
373                 dsparb = I915_READ(DSPARB);
374                 dsparb2 = I915_READ(DSPARB2);
375                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
376                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
377                 break;
378         case PIPE_C:
379                 dsparb2 = I915_READ(DSPARB2);
380                 dsparb3 = I915_READ(DSPARB3);
381                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
382                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
383                 break;
384         default:
385                 return 0;
386         }
387
388         switch (plane) {
389         case 0:
390                 size = sprite0_start;
391                 break;
392         case 1:
393                 size = sprite1_start - sprite0_start;
394                 break;
395         case 2:
396                 size = 512 - 1 - sprite1_start;
397                 break;
398         default:
399                 return 0;
400         }
401
402         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
403                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
404                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
405                       size);
406
407         return size;
408 }
409
410 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
411 {
412         struct drm_i915_private *dev_priv = dev->dev_private;
413         uint32_t dsparb = I915_READ(DSPARB);
414         int size;
415
416         size = dsparb & 0x7f;
417         if (plane)
418                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
419
420         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
421                       plane ? "B" : "A", size);
422
423         return size;
424 }
425
426 static int i830_get_fifo_size(struct drm_device *dev, int plane)
427 {
428         struct drm_i915_private *dev_priv = dev->dev_private;
429         uint32_t dsparb = I915_READ(DSPARB);
430         int size;
431
432         size = dsparb & 0x1ff;
433         if (plane)
434                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
435         size >>= 1; /* Convert to cachelines */
436
437         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
438                       plane ? "B" : "A", size);
439
440         return size;
441 }
442
443 static int i845_get_fifo_size(struct drm_device *dev, int plane)
444 {
445         struct drm_i915_private *dev_priv = dev->dev_private;
446         uint32_t dsparb = I915_READ(DSPARB);
447         int size;
448
449         size = dsparb & 0x7f;
450         size >>= 2; /* Convert to cachelines */
451
452         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
453                       plane ? "B" : "A",
454                       size);
455
456         return size;
457 }
458
459 /* Pineview has different values for various configs */
460 static const struct intel_watermark_params pineview_display_wm = {
461         .fifo_size = PINEVIEW_DISPLAY_FIFO,
462         .max_wm = PINEVIEW_MAX_WM,
463         .default_wm = PINEVIEW_DFT_WM,
464         .guard_size = PINEVIEW_GUARD_WM,
465         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
466 };
467 static const struct intel_watermark_params pineview_display_hplloff_wm = {
468         .fifo_size = PINEVIEW_DISPLAY_FIFO,
469         .max_wm = PINEVIEW_MAX_WM,
470         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
471         .guard_size = PINEVIEW_GUARD_WM,
472         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
473 };
474 static const struct intel_watermark_params pineview_cursor_wm = {
475         .fifo_size = PINEVIEW_CURSOR_FIFO,
476         .max_wm = PINEVIEW_CURSOR_MAX_WM,
477         .default_wm = PINEVIEW_CURSOR_DFT_WM,
478         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
479         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
480 };
481 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
482         .fifo_size = PINEVIEW_CURSOR_FIFO,
483         .max_wm = PINEVIEW_CURSOR_MAX_WM,
484         .default_wm = PINEVIEW_CURSOR_DFT_WM,
485         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
486         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
487 };
488 static const struct intel_watermark_params g4x_wm_info = {
489         .fifo_size = G4X_FIFO_SIZE,
490         .max_wm = G4X_MAX_WM,
491         .default_wm = G4X_MAX_WM,
492         .guard_size = 2,
493         .cacheline_size = G4X_FIFO_LINE_SIZE,
494 };
495 static const struct intel_watermark_params g4x_cursor_wm_info = {
496         .fifo_size = I965_CURSOR_FIFO,
497         .max_wm = I965_CURSOR_MAX_WM,
498         .default_wm = I965_CURSOR_DFT_WM,
499         .guard_size = 2,
500         .cacheline_size = G4X_FIFO_LINE_SIZE,
501 };
502 static const struct intel_watermark_params valleyview_wm_info = {
503         .fifo_size = VALLEYVIEW_FIFO_SIZE,
504         .max_wm = VALLEYVIEW_MAX_WM,
505         .default_wm = VALLEYVIEW_MAX_WM,
506         .guard_size = 2,
507         .cacheline_size = G4X_FIFO_LINE_SIZE,
508 };
509 static const struct intel_watermark_params valleyview_cursor_wm_info = {
510         .fifo_size = I965_CURSOR_FIFO,
511         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
512         .default_wm = I965_CURSOR_DFT_WM,
513         .guard_size = 2,
514         .cacheline_size = G4X_FIFO_LINE_SIZE,
515 };
516 static const struct intel_watermark_params i965_cursor_wm_info = {
517         .fifo_size = I965_CURSOR_FIFO,
518         .max_wm = I965_CURSOR_MAX_WM,
519         .default_wm = I965_CURSOR_DFT_WM,
520         .guard_size = 2,
521         .cacheline_size = I915_FIFO_LINE_SIZE,
522 };
523 static const struct intel_watermark_params i945_wm_info = {
524         .fifo_size = I945_FIFO_SIZE,
525         .max_wm = I915_MAX_WM,
526         .default_wm = 1,
527         .guard_size = 2,
528         .cacheline_size = I915_FIFO_LINE_SIZE,
529 };
530 static const struct intel_watermark_params i915_wm_info = {
531         .fifo_size = I915_FIFO_SIZE,
532         .max_wm = I915_MAX_WM,
533         .default_wm = 1,
534         .guard_size = 2,
535         .cacheline_size = I915_FIFO_LINE_SIZE,
536 };
537 static const struct intel_watermark_params i830_a_wm_info = {
538         .fifo_size = I855GM_FIFO_SIZE,
539         .max_wm = I915_MAX_WM,
540         .default_wm = 1,
541         .guard_size = 2,
542         .cacheline_size = I830_FIFO_LINE_SIZE,
543 };
544 static const struct intel_watermark_params i830_bc_wm_info = {
545         .fifo_size = I855GM_FIFO_SIZE,
546         .max_wm = I915_MAX_WM/2,
547         .default_wm = 1,
548         .guard_size = 2,
549         .cacheline_size = I830_FIFO_LINE_SIZE,
550 };
551 static const struct intel_watermark_params i845_wm_info = {
552         .fifo_size = I830_FIFO_SIZE,
553         .max_wm = I915_MAX_WM,
554         .default_wm = 1,
555         .guard_size = 2,
556         .cacheline_size = I830_FIFO_LINE_SIZE,
557 };
558
559 /**
560  * intel_calculate_wm - calculate watermark level
561  * @clock_in_khz: pixel clock
562  * @wm: chip FIFO params
563  * @pixel_size: display pixel size
564  * @latency_ns: memory latency for the platform
565  *
566  * Calculate the watermark level (the level at which the display plane will
567  * start fetching from memory again).  Each chip has a different display
568  * FIFO size and allocation, so the caller needs to figure that out and pass
569  * in the correct intel_watermark_params structure.
570  *
571  * As the pixel clock runs, the FIFO will be drained at a rate that depends
572  * on the pixel size.  When it reaches the watermark level, it'll start
573  * fetching FIFO line sized based chunks from memory until the FIFO fills
574  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
575  * will occur, and a display engine hang could result.
576  */
577 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
578                                         const struct intel_watermark_params *wm,
579                                         int fifo_size,
580                                         int pixel_size,
581                                         unsigned long latency_ns)
582 {
583         long entries_required, wm_size;
584
585         /*
586          * Note: we need to make sure we don't overflow for various clock &
587          * latency values.
588          * clocks go from a few thousand to several hundred thousand.
589          * latency is usually a few thousand
590          */
591         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
592                 1000;
593         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
594
595         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
596
597         wm_size = fifo_size - (entries_required + wm->guard_size);
598
599         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
600
601         /* Don't promote wm_size to unsigned... */
602         if (wm_size > (long)wm->max_wm)
603                 wm_size = wm->max_wm;
604         if (wm_size <= 0)
605                 wm_size = wm->default_wm;
606
607         /*
608          * Bspec seems to indicate that the value shouldn't be lower than
609          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
610          * Lets go for 8 which is the burst size since certain platforms
611          * already use a hardcoded 8 (which is what the spec says should be
612          * done).
613          */
614         if (wm_size <= 8)
615                 wm_size = 8;
616
617         return wm_size;
618 }
619
620 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
621 {
622         struct drm_crtc *crtc, *enabled = NULL;
623
624         for_each_crtc(dev, crtc) {
625                 if (intel_crtc_active(crtc)) {
626                         if (enabled)
627                                 return NULL;
628                         enabled = crtc;
629                 }
630         }
631
632         return enabled;
633 }
634
635 static void pineview_update_wm(struct drm_crtc *unused_crtc)
636 {
637         struct drm_device *dev = unused_crtc->dev;
638         struct drm_i915_private *dev_priv = dev->dev_private;
639         struct drm_crtc *crtc;
640         const struct cxsr_latency *latency;
641         u32 reg;
642         unsigned long wm;
643
644         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
645                                          dev_priv->fsb_freq, dev_priv->mem_freq);
646         if (!latency) {
647                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
648                 intel_set_memory_cxsr(dev_priv, false);
649                 return;
650         }
651
652         crtc = single_enabled_crtc(dev);
653         if (crtc) {
654                 const struct drm_display_mode *adjusted_mode;
655                 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
656                 int clock;
657
658                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
659                 clock = adjusted_mode->crtc_clock;
660
661                 /* Display SR */
662                 wm = intel_calculate_wm(clock, &pineview_display_wm,
663                                         pineview_display_wm.fifo_size,
664                                         pixel_size, latency->display_sr);
665                 reg = I915_READ(DSPFW1);
666                 reg &= ~DSPFW_SR_MASK;
667                 reg |= FW_WM(wm, SR);
668                 I915_WRITE(DSPFW1, reg);
669                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
670
671                 /* cursor SR */
672                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
673                                         pineview_display_wm.fifo_size,
674                                         pixel_size, latency->cursor_sr);
675                 reg = I915_READ(DSPFW3);
676                 reg &= ~DSPFW_CURSOR_SR_MASK;
677                 reg |= FW_WM(wm, CURSOR_SR);
678                 I915_WRITE(DSPFW3, reg);
679
680                 /* Display HPLL off SR */
681                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
682                                         pineview_display_hplloff_wm.fifo_size,
683                                         pixel_size, latency->display_hpll_disable);
684                 reg = I915_READ(DSPFW3);
685                 reg &= ~DSPFW_HPLL_SR_MASK;
686                 reg |= FW_WM(wm, HPLL_SR);
687                 I915_WRITE(DSPFW3, reg);
688
689                 /* cursor HPLL off SR */
690                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
691                                         pineview_display_hplloff_wm.fifo_size,
692                                         pixel_size, latency->cursor_hpll_disable);
693                 reg = I915_READ(DSPFW3);
694                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
695                 reg |= FW_WM(wm, HPLL_CURSOR);
696                 I915_WRITE(DSPFW3, reg);
697                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
698
699                 intel_set_memory_cxsr(dev_priv, true);
700         } else {
701                 intel_set_memory_cxsr(dev_priv, false);
702         }
703 }
704
705 static bool g4x_compute_wm0(struct drm_device *dev,
706                             int plane,
707                             const struct intel_watermark_params *display,
708                             int display_latency_ns,
709                             const struct intel_watermark_params *cursor,
710                             int cursor_latency_ns,
711                             int *plane_wm,
712                             int *cursor_wm)
713 {
714         struct drm_crtc *crtc;
715         const struct drm_display_mode *adjusted_mode;
716         int htotal, hdisplay, clock, pixel_size;
717         int line_time_us, line_count;
718         int entries, tlb_miss;
719
720         crtc = intel_get_crtc_for_plane(dev, plane);
721         if (!intel_crtc_active(crtc)) {
722                 *cursor_wm = cursor->guard_size;
723                 *plane_wm = display->guard_size;
724                 return false;
725         }
726
727         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
728         clock = adjusted_mode->crtc_clock;
729         htotal = adjusted_mode->crtc_htotal;
730         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
731         pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
732
733         /* Use the small buffer method to calculate plane watermark */
734         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
735         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
736         if (tlb_miss > 0)
737                 entries += tlb_miss;
738         entries = DIV_ROUND_UP(entries, display->cacheline_size);
739         *plane_wm = entries + display->guard_size;
740         if (*plane_wm > (int)display->max_wm)
741                 *plane_wm = display->max_wm;
742
743         /* Use the large buffer method to calculate cursor watermark */
744         line_time_us = max(htotal * 1000 / clock, 1);
745         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
746         entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
747         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
748         if (tlb_miss > 0)
749                 entries += tlb_miss;
750         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
751         *cursor_wm = entries + cursor->guard_size;
752         if (*cursor_wm > (int)cursor->max_wm)
753                 *cursor_wm = (int)cursor->max_wm;
754
755         return true;
756 }
757
758 /*
759  * Check the wm result.
760  *
761  * If any calculated watermark values is larger than the maximum value that
762  * can be programmed into the associated watermark register, that watermark
763  * must be disabled.
764  */
765 static bool g4x_check_srwm(struct drm_device *dev,
766                            int display_wm, int cursor_wm,
767                            const struct intel_watermark_params *display,
768                            const struct intel_watermark_params *cursor)
769 {
770         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
771                       display_wm, cursor_wm);
772
773         if (display_wm > display->max_wm) {
774                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
775                               display_wm, display->max_wm);
776                 return false;
777         }
778
779         if (cursor_wm > cursor->max_wm) {
780                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
781                               cursor_wm, cursor->max_wm);
782                 return false;
783         }
784
785         if (!(display_wm || cursor_wm)) {
786                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
787                 return false;
788         }
789
790         return true;
791 }
792
793 static bool g4x_compute_srwm(struct drm_device *dev,
794                              int plane,
795                              int latency_ns,
796                              const struct intel_watermark_params *display,
797                              const struct intel_watermark_params *cursor,
798                              int *display_wm, int *cursor_wm)
799 {
800         struct drm_crtc *crtc;
801         const struct drm_display_mode *adjusted_mode;
802         int hdisplay, htotal, pixel_size, clock;
803         unsigned long line_time_us;
804         int line_count, line_size;
805         int small, large;
806         int entries;
807
808         if (!latency_ns) {
809                 *display_wm = *cursor_wm = 0;
810                 return false;
811         }
812
813         crtc = intel_get_crtc_for_plane(dev, plane);
814         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
815         clock = adjusted_mode->crtc_clock;
816         htotal = adjusted_mode->crtc_htotal;
817         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
818         pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
819
820         line_time_us = max(htotal * 1000 / clock, 1);
821         line_count = (latency_ns / line_time_us + 1000) / 1000;
822         line_size = hdisplay * pixel_size;
823
824         /* Use the minimum of the small and large buffer method for primary */
825         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
826         large = line_count * line_size;
827
828         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
829         *display_wm = entries + display->guard_size;
830
831         /* calculate the self-refresh watermark for display cursor */
832         entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
833         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
834         *cursor_wm = entries + cursor->guard_size;
835
836         return g4x_check_srwm(dev,
837                               *display_wm, *cursor_wm,
838                               display, cursor);
839 }
840
841 #define FW_WM_VLV(value, plane) \
842         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
843
844 static void vlv_write_wm_values(struct intel_crtc *crtc,
845                                 const struct vlv_wm_values *wm)
846 {
847         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
848         enum pipe pipe = crtc->pipe;
849
850         I915_WRITE(VLV_DDL(pipe),
851                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
852                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
853                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
854                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
855
856         I915_WRITE(DSPFW1,
857                    FW_WM(wm->sr.plane, SR) |
858                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
859                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
860                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
861         I915_WRITE(DSPFW2,
862                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
863                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
864                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
865         I915_WRITE(DSPFW3,
866                    FW_WM(wm->sr.cursor, CURSOR_SR));
867
868         if (IS_CHERRYVIEW(dev_priv)) {
869                 I915_WRITE(DSPFW7_CHV,
870                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
871                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
872                 I915_WRITE(DSPFW8_CHV,
873                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
874                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
875                 I915_WRITE(DSPFW9_CHV,
876                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
877                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
878                 I915_WRITE(DSPHOWM,
879                            FW_WM(wm->sr.plane >> 9, SR_HI) |
880                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
881                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
882                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
883                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
884                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
885                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
886                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
887                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
888                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
889         } else {
890                 I915_WRITE(DSPFW7,
891                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
892                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
893                 I915_WRITE(DSPHOWM,
894                            FW_WM(wm->sr.plane >> 9, SR_HI) |
895                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
896                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
897                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
898                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
899                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
900                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
901         }
902
903         POSTING_READ(DSPFW1);
904
905         dev_priv->wm.vlv = *wm;
906 }
907
908 #undef FW_WM_VLV
909
910 static uint8_t vlv_compute_drain_latency(struct drm_crtc *crtc,
911                                          struct drm_plane *plane)
912 {
913         struct drm_device *dev = crtc->dev;
914         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
915         int entries, prec_mult, drain_latency, pixel_size;
916         int clock = intel_crtc->config->base.adjusted_mode.crtc_clock;
917         const int high_precision = IS_CHERRYVIEW(dev) ? 16 : 64;
918
919         /*
920          * FIXME the plane might have an fb
921          * but be invisible (eg. due to clipping)
922          */
923         if (!intel_crtc->active || !plane->state->fb)
924                 return 0;
925
926         if (WARN(clock == 0, "Pixel clock is zero!\n"))
927                 return 0;
928
929         pixel_size = drm_format_plane_cpp(plane->state->fb->pixel_format, 0);
930
931         if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
932                 return 0;
933
934         entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
935
936         prec_mult = high_precision;
937         drain_latency = 64 * prec_mult * 4 / entries;
938
939         if (drain_latency > DRAIN_LATENCY_MASK) {
940                 prec_mult /= 2;
941                 drain_latency = 64 * prec_mult * 4 / entries;
942         }
943
944         if (drain_latency > DRAIN_LATENCY_MASK)
945                 drain_latency = DRAIN_LATENCY_MASK;
946
947         return drain_latency | (prec_mult == high_precision ?
948                                 DDL_PRECISION_HIGH : DDL_PRECISION_LOW);
949 }
950
951 static int vlv_compute_wm(struct intel_crtc *crtc,
952                           struct intel_plane *plane,
953                           int fifo_size)
954 {
955         int clock, entries, pixel_size;
956
957         /*
958          * FIXME the plane might have an fb
959          * but be invisible (eg. due to clipping)
960          */
961         if (!crtc->active || !plane->base.state->fb)
962                 return 0;
963
964         pixel_size = drm_format_plane_cpp(plane->base.state->fb->pixel_format, 0);
965         clock = crtc->config->base.adjusted_mode.crtc_clock;
966
967         entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
968
969         /*
970          * Set up the watermark such that we don't start issuing memory
971          * requests until we are within PND's max deadline value (256us).
972          * Idea being to be idle as long as possible while still taking
973          * advatange of PND's deadline scheduling. The limit of 8
974          * cachelines (used when the FIFO will anyway drain in less time
975          * than 256us) should match what we would be done if trickle
976          * feed were enabled.
977          */
978         return fifo_size - clamp(DIV_ROUND_UP(256 * entries, 64), 0, fifo_size - 8);
979 }
980
981 static bool vlv_compute_sr_wm(struct drm_device *dev,
982                               struct vlv_wm_values *wm)
983 {
984         struct drm_i915_private *dev_priv = to_i915(dev);
985         struct drm_crtc *crtc;
986         enum pipe pipe = INVALID_PIPE;
987         int num_planes = 0;
988         int fifo_size = 0;
989         struct intel_plane *plane;
990
991         wm->sr.cursor = wm->sr.plane = 0;
992
993         crtc = single_enabled_crtc(dev);
994         /* maxfifo not supported on pipe C */
995         if (crtc && to_intel_crtc(crtc)->pipe != PIPE_C) {
996                 pipe = to_intel_crtc(crtc)->pipe;
997                 num_planes = !!wm->pipe[pipe].primary +
998                         !!wm->pipe[pipe].sprite[0] +
999                         !!wm->pipe[pipe].sprite[1];
1000                 fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1001         }
1002
1003         if (fifo_size == 0 || num_planes > 1)
1004                 return false;
1005
1006         wm->sr.cursor = vlv_compute_wm(to_intel_crtc(crtc),
1007                                        to_intel_plane(crtc->cursor), 0x3f);
1008
1009         list_for_each_entry(plane, &dev->mode_config.plane_list, base.head) {
1010                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1011                         continue;
1012
1013                 if (plane->pipe != pipe)
1014                         continue;
1015
1016                 wm->sr.plane = vlv_compute_wm(to_intel_crtc(crtc),
1017                                               plane, fifo_size);
1018                 if (wm->sr.plane != 0)
1019                         break;
1020         }
1021
1022         return true;
1023 }
1024
1025 static void valleyview_update_wm(struct drm_crtc *crtc)
1026 {
1027         struct drm_device *dev = crtc->dev;
1028         struct drm_i915_private *dev_priv = dev->dev_private;
1029         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1030         enum pipe pipe = intel_crtc->pipe;
1031         bool cxsr_enabled;
1032         struct vlv_wm_values wm = dev_priv->wm.vlv;
1033
1034         wm.ddl[pipe].primary = vlv_compute_drain_latency(crtc, crtc->primary);
1035         wm.pipe[pipe].primary = vlv_compute_wm(intel_crtc,
1036                                                to_intel_plane(crtc->primary),
1037                                                vlv_get_fifo_size(dev, pipe, 0));
1038
1039         wm.ddl[pipe].cursor = vlv_compute_drain_latency(crtc, crtc->cursor);
1040         wm.pipe[pipe].cursor = vlv_compute_wm(intel_crtc,
1041                                               to_intel_plane(crtc->cursor),
1042                                               0x3f);
1043
1044         cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
1045
1046         if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
1047                 return;
1048
1049         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1050                       "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
1051                       wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1052                       wm.sr.plane, wm.sr.cursor);
1053
1054         /*
1055          * FIXME DDR DVFS introduces massive memory latencies which
1056          * are not known to system agent so any deadline specified
1057          * by the display may not be respected. To support DDR DVFS
1058          * the watermark code needs to be rewritten to essentially
1059          * bypass deadline mechanism and rely solely on the
1060          * watermarks. For now disable DDR DVFS.
1061          */
1062         if (IS_CHERRYVIEW(dev_priv))
1063                 chv_set_memory_dvfs(dev_priv, false);
1064
1065         if (!cxsr_enabled)
1066                 intel_set_memory_cxsr(dev_priv, false);
1067
1068         vlv_write_wm_values(intel_crtc, &wm);
1069
1070         if (cxsr_enabled)
1071                 intel_set_memory_cxsr(dev_priv, true);
1072 }
1073
1074 static void valleyview_update_sprite_wm(struct drm_plane *plane,
1075                                         struct drm_crtc *crtc,
1076                                         uint32_t sprite_width,
1077                                         uint32_t sprite_height,
1078                                         int pixel_size,
1079                                         bool enabled, bool scaled)
1080 {
1081         struct drm_device *dev = crtc->dev;
1082         struct drm_i915_private *dev_priv = dev->dev_private;
1083         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1084         enum pipe pipe = intel_crtc->pipe;
1085         int sprite = to_intel_plane(plane)->plane;
1086         bool cxsr_enabled;
1087         struct vlv_wm_values wm = dev_priv->wm.vlv;
1088
1089         if (enabled) {
1090                 wm.ddl[pipe].sprite[sprite] =
1091                         vlv_compute_drain_latency(crtc, plane);
1092
1093                 wm.pipe[pipe].sprite[sprite] =
1094                         vlv_compute_wm(intel_crtc,
1095                                        to_intel_plane(plane),
1096                                        vlv_get_fifo_size(dev, pipe, sprite+1));
1097         } else {
1098                 wm.ddl[pipe].sprite[sprite] = 0;
1099                 wm.pipe[pipe].sprite[sprite] = 0;
1100         }
1101
1102         cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
1103
1104         if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
1105                 return;
1106
1107         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: sprite %c=%d, "
1108                       "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
1109                       sprite_name(pipe, sprite),
1110                       wm.pipe[pipe].sprite[sprite],
1111                       wm.sr.plane, wm.sr.cursor);
1112
1113         if (!cxsr_enabled)
1114                 intel_set_memory_cxsr(dev_priv, false);
1115
1116         vlv_write_wm_values(intel_crtc, &wm);
1117
1118         if (cxsr_enabled)
1119                 intel_set_memory_cxsr(dev_priv, true);
1120 }
1121
1122 #define single_plane_enabled(mask) is_power_of_2(mask)
1123
1124 static void g4x_update_wm(struct drm_crtc *crtc)
1125 {
1126         struct drm_device *dev = crtc->dev;
1127         static const int sr_latency_ns = 12000;
1128         struct drm_i915_private *dev_priv = dev->dev_private;
1129         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1130         int plane_sr, cursor_sr;
1131         unsigned int enabled = 0;
1132         bool cxsr_enabled;
1133
1134         if (g4x_compute_wm0(dev, PIPE_A,
1135                             &g4x_wm_info, pessimal_latency_ns,
1136                             &g4x_cursor_wm_info, pessimal_latency_ns,
1137                             &planea_wm, &cursora_wm))
1138                 enabled |= 1 << PIPE_A;
1139
1140         if (g4x_compute_wm0(dev, PIPE_B,
1141                             &g4x_wm_info, pessimal_latency_ns,
1142                             &g4x_cursor_wm_info, pessimal_latency_ns,
1143                             &planeb_wm, &cursorb_wm))
1144                 enabled |= 1 << PIPE_B;
1145
1146         if (single_plane_enabled(enabled) &&
1147             g4x_compute_srwm(dev, ffs(enabled) - 1,
1148                              sr_latency_ns,
1149                              &g4x_wm_info,
1150                              &g4x_cursor_wm_info,
1151                              &plane_sr, &cursor_sr)) {
1152                 cxsr_enabled = true;
1153         } else {
1154                 cxsr_enabled = false;
1155                 intel_set_memory_cxsr(dev_priv, false);
1156                 plane_sr = cursor_sr = 0;
1157         }
1158
1159         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1160                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1161                       planea_wm, cursora_wm,
1162                       planeb_wm, cursorb_wm,
1163                       plane_sr, cursor_sr);
1164
1165         I915_WRITE(DSPFW1,
1166                    FW_WM(plane_sr, SR) |
1167                    FW_WM(cursorb_wm, CURSORB) |
1168                    FW_WM(planeb_wm, PLANEB) |
1169                    FW_WM(planea_wm, PLANEA));
1170         I915_WRITE(DSPFW2,
1171                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1172                    FW_WM(cursora_wm, CURSORA));
1173         /* HPLL off in SR has some issues on G4x... disable it */
1174         I915_WRITE(DSPFW3,
1175                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1176                    FW_WM(cursor_sr, CURSOR_SR));
1177
1178         if (cxsr_enabled)
1179                 intel_set_memory_cxsr(dev_priv, true);
1180 }
1181
1182 static void i965_update_wm(struct drm_crtc *unused_crtc)
1183 {
1184         struct drm_device *dev = unused_crtc->dev;
1185         struct drm_i915_private *dev_priv = dev->dev_private;
1186         struct drm_crtc *crtc;
1187         int srwm = 1;
1188         int cursor_sr = 16;
1189         bool cxsr_enabled;
1190
1191         /* Calc sr entries for one plane configs */
1192         crtc = single_enabled_crtc(dev);
1193         if (crtc) {
1194                 /* self-refresh has much higher latency */
1195                 static const int sr_latency_ns = 12000;
1196                 const struct drm_display_mode *adjusted_mode =
1197                         &to_intel_crtc(crtc)->config->base.adjusted_mode;
1198                 int clock = adjusted_mode->crtc_clock;
1199                 int htotal = adjusted_mode->crtc_htotal;
1200                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1201                 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1202                 unsigned long line_time_us;
1203                 int entries;
1204
1205                 line_time_us = max(htotal * 1000 / clock, 1);
1206
1207                 /* Use ns/us then divide to preserve precision */
1208                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1209                         pixel_size * hdisplay;
1210                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1211                 srwm = I965_FIFO_SIZE - entries;
1212                 if (srwm < 0)
1213                         srwm = 1;
1214                 srwm &= 0x1ff;
1215                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1216                               entries, srwm);
1217
1218                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1219                         pixel_size * crtc->cursor->state->crtc_w;
1220                 entries = DIV_ROUND_UP(entries,
1221                                           i965_cursor_wm_info.cacheline_size);
1222                 cursor_sr = i965_cursor_wm_info.fifo_size -
1223                         (entries + i965_cursor_wm_info.guard_size);
1224
1225                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1226                         cursor_sr = i965_cursor_wm_info.max_wm;
1227
1228                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1229                               "cursor %d\n", srwm, cursor_sr);
1230
1231                 cxsr_enabled = true;
1232         } else {
1233                 cxsr_enabled = false;
1234                 /* Turn off self refresh if both pipes are enabled */
1235                 intel_set_memory_cxsr(dev_priv, false);
1236         }
1237
1238         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1239                       srwm);
1240
1241         /* 965 has limitations... */
1242         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1243                    FW_WM(8, CURSORB) |
1244                    FW_WM(8, PLANEB) |
1245                    FW_WM(8, PLANEA));
1246         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1247                    FW_WM(8, PLANEC_OLD));
1248         /* update cursor SR watermark */
1249         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1250
1251         if (cxsr_enabled)
1252                 intel_set_memory_cxsr(dev_priv, true);
1253 }
1254
1255 #undef FW_WM
1256
1257 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1258 {
1259         struct drm_device *dev = unused_crtc->dev;
1260         struct drm_i915_private *dev_priv = dev->dev_private;
1261         const struct intel_watermark_params *wm_info;
1262         uint32_t fwater_lo;
1263         uint32_t fwater_hi;
1264         int cwm, srwm = 1;
1265         int fifo_size;
1266         int planea_wm, planeb_wm;
1267         struct drm_crtc *crtc, *enabled = NULL;
1268
1269         if (IS_I945GM(dev))
1270                 wm_info = &i945_wm_info;
1271         else if (!IS_GEN2(dev))
1272                 wm_info = &i915_wm_info;
1273         else
1274                 wm_info = &i830_a_wm_info;
1275
1276         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1277         crtc = intel_get_crtc_for_plane(dev, 0);
1278         if (intel_crtc_active(crtc)) {
1279                 const struct drm_display_mode *adjusted_mode;
1280                 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1281                 if (IS_GEN2(dev))
1282                         cpp = 4;
1283
1284                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1285                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1286                                                wm_info, fifo_size, cpp,
1287                                                pessimal_latency_ns);
1288                 enabled = crtc;
1289         } else {
1290                 planea_wm = fifo_size - wm_info->guard_size;
1291                 if (planea_wm > (long)wm_info->max_wm)
1292                         planea_wm = wm_info->max_wm;
1293         }
1294
1295         if (IS_GEN2(dev))
1296                 wm_info = &i830_bc_wm_info;
1297
1298         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1299         crtc = intel_get_crtc_for_plane(dev, 1);
1300         if (intel_crtc_active(crtc)) {
1301                 const struct drm_display_mode *adjusted_mode;
1302                 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1303                 if (IS_GEN2(dev))
1304                         cpp = 4;
1305
1306                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1307                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1308                                                wm_info, fifo_size, cpp,
1309                                                pessimal_latency_ns);
1310                 if (enabled == NULL)
1311                         enabled = crtc;
1312                 else
1313                         enabled = NULL;
1314         } else {
1315                 planeb_wm = fifo_size - wm_info->guard_size;
1316                 if (planeb_wm > (long)wm_info->max_wm)
1317                         planeb_wm = wm_info->max_wm;
1318         }
1319
1320         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1321
1322         if (IS_I915GM(dev) && enabled) {
1323                 struct drm_i915_gem_object *obj;
1324
1325                 obj = intel_fb_obj(enabled->primary->state->fb);
1326
1327                 /* self-refresh seems busted with untiled */
1328                 if (obj->tiling_mode == I915_TILING_NONE)
1329                         enabled = NULL;
1330         }
1331
1332         /*
1333          * Overlay gets an aggressive default since video jitter is bad.
1334          */
1335         cwm = 2;
1336
1337         /* Play safe and disable self-refresh before adjusting watermarks. */
1338         intel_set_memory_cxsr(dev_priv, false);
1339
1340         /* Calc sr entries for one plane configs */
1341         if (HAS_FW_BLC(dev) && enabled) {
1342                 /* self-refresh has much higher latency */
1343                 static const int sr_latency_ns = 6000;
1344                 const struct drm_display_mode *adjusted_mode =
1345                         &to_intel_crtc(enabled)->config->base.adjusted_mode;
1346                 int clock = adjusted_mode->crtc_clock;
1347                 int htotal = adjusted_mode->crtc_htotal;
1348                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1349                 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1350                 unsigned long line_time_us;
1351                 int entries;
1352
1353                 line_time_us = max(htotal * 1000 / clock, 1);
1354
1355                 /* Use ns/us then divide to preserve precision */
1356                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1357                         pixel_size * hdisplay;
1358                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1359                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1360                 srwm = wm_info->fifo_size - entries;
1361                 if (srwm < 0)
1362                         srwm = 1;
1363
1364                 if (IS_I945G(dev) || IS_I945GM(dev))
1365                         I915_WRITE(FW_BLC_SELF,
1366                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1367                 else if (IS_I915GM(dev))
1368                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1369         }
1370
1371         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1372                       planea_wm, planeb_wm, cwm, srwm);
1373
1374         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1375         fwater_hi = (cwm & 0x1f);
1376
1377         /* Set request length to 8 cachelines per fetch */
1378         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1379         fwater_hi = fwater_hi | (1 << 8);
1380
1381         I915_WRITE(FW_BLC, fwater_lo);
1382         I915_WRITE(FW_BLC2, fwater_hi);
1383
1384         if (enabled)
1385                 intel_set_memory_cxsr(dev_priv, true);
1386 }
1387
1388 static void i845_update_wm(struct drm_crtc *unused_crtc)
1389 {
1390         struct drm_device *dev = unused_crtc->dev;
1391         struct drm_i915_private *dev_priv = dev->dev_private;
1392         struct drm_crtc *crtc;
1393         const struct drm_display_mode *adjusted_mode;
1394         uint32_t fwater_lo;
1395         int planea_wm;
1396
1397         crtc = single_enabled_crtc(dev);
1398         if (crtc == NULL)
1399                 return;
1400
1401         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1402         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1403                                        &i845_wm_info,
1404                                        dev_priv->display.get_fifo_size(dev, 0),
1405                                        4, pessimal_latency_ns);
1406         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1407         fwater_lo |= (3<<8) | planea_wm;
1408
1409         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1410
1411         I915_WRITE(FW_BLC, fwater_lo);
1412 }
1413
1414 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1415                                     struct drm_crtc *crtc)
1416 {
1417         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1418         uint32_t pixel_rate;
1419
1420         pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
1421
1422         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1423          * adjust the pixel_rate here. */
1424
1425         if (intel_crtc->config->pch_pfit.enabled) {
1426                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1427                 uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
1428
1429                 pipe_w = intel_crtc->config->pipe_src_w;
1430                 pipe_h = intel_crtc->config->pipe_src_h;
1431                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1432                 pfit_h = pfit_size & 0xFFFF;
1433                 if (pipe_w < pfit_w)
1434                         pipe_w = pfit_w;
1435                 if (pipe_h < pfit_h)
1436                         pipe_h = pfit_h;
1437
1438                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1439                                      pfit_w * pfit_h);
1440         }
1441
1442         return pixel_rate;
1443 }
1444
1445 /* latency must be in 0.1us units. */
1446 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1447                                uint32_t latency)
1448 {
1449         uint64_t ret;
1450
1451         if (WARN(latency == 0, "Latency value missing\n"))
1452                 return UINT_MAX;
1453
1454         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1455         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1456
1457         return ret;
1458 }
1459
1460 /* latency must be in 0.1us units. */
1461 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1462                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1463                                uint32_t latency)
1464 {
1465         uint32_t ret;
1466
1467         if (WARN(latency == 0, "Latency value missing\n"))
1468                 return UINT_MAX;
1469
1470         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1471         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1472         ret = DIV_ROUND_UP(ret, 64) + 2;
1473         return ret;
1474 }
1475
1476 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1477                            uint8_t bytes_per_pixel)
1478 {
1479         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1480 }
1481
1482 struct skl_pipe_wm_parameters {
1483         bool active;
1484         uint32_t pipe_htotal;
1485         uint32_t pixel_rate; /* in KHz */
1486         struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1487         struct intel_plane_wm_parameters cursor;
1488 };
1489
1490 struct ilk_pipe_wm_parameters {
1491         bool active;
1492         uint32_t pipe_htotal;
1493         uint32_t pixel_rate;
1494         struct intel_plane_wm_parameters pri;
1495         struct intel_plane_wm_parameters spr;
1496         struct intel_plane_wm_parameters cur;
1497 };
1498
1499 struct ilk_wm_maximums {
1500         uint16_t pri;
1501         uint16_t spr;
1502         uint16_t cur;
1503         uint16_t fbc;
1504 };
1505
1506 /* used in computing the new watermarks state */
1507 struct intel_wm_config {
1508         unsigned int num_pipes_active;
1509         bool sprites_enabled;
1510         bool sprites_scaled;
1511 };
1512
1513 /*
1514  * For both WM_PIPE and WM_LP.
1515  * mem_value must be in 0.1us units.
1516  */
1517 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1518                                    uint32_t mem_value,
1519                                    bool is_lp)
1520 {
1521         uint32_t method1, method2;
1522
1523         if (!params->active || !params->pri.enabled)
1524                 return 0;
1525
1526         method1 = ilk_wm_method1(params->pixel_rate,
1527                                  params->pri.bytes_per_pixel,
1528                                  mem_value);
1529
1530         if (!is_lp)
1531                 return method1;
1532
1533         method2 = ilk_wm_method2(params->pixel_rate,
1534                                  params->pipe_htotal,
1535                                  params->pri.horiz_pixels,
1536                                  params->pri.bytes_per_pixel,
1537                                  mem_value);
1538
1539         return min(method1, method2);
1540 }
1541
1542 /*
1543  * For both WM_PIPE and WM_LP.
1544  * mem_value must be in 0.1us units.
1545  */
1546 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1547                                    uint32_t mem_value)
1548 {
1549         uint32_t method1, method2;
1550
1551         if (!params->active || !params->spr.enabled)
1552                 return 0;
1553
1554         method1 = ilk_wm_method1(params->pixel_rate,
1555                                  params->spr.bytes_per_pixel,
1556                                  mem_value);
1557         method2 = ilk_wm_method2(params->pixel_rate,
1558                                  params->pipe_htotal,
1559                                  params->spr.horiz_pixels,
1560                                  params->spr.bytes_per_pixel,
1561                                  mem_value);
1562         return min(method1, method2);
1563 }
1564
1565 /*
1566  * For both WM_PIPE and WM_LP.
1567  * mem_value must be in 0.1us units.
1568  */
1569 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1570                                    uint32_t mem_value)
1571 {
1572         if (!params->active || !params->cur.enabled)
1573                 return 0;
1574
1575         return ilk_wm_method2(params->pixel_rate,
1576                               params->pipe_htotal,
1577                               params->cur.horiz_pixels,
1578                               params->cur.bytes_per_pixel,
1579                               mem_value);
1580 }
1581
1582 /* Only for WM_LP. */
1583 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1584                                    uint32_t pri_val)
1585 {
1586         if (!params->active || !params->pri.enabled)
1587                 return 0;
1588
1589         return ilk_wm_fbc(pri_val,
1590                           params->pri.horiz_pixels,
1591                           params->pri.bytes_per_pixel);
1592 }
1593
1594 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1595 {
1596         if (INTEL_INFO(dev)->gen >= 8)
1597                 return 3072;
1598         else if (INTEL_INFO(dev)->gen >= 7)
1599                 return 768;
1600         else
1601                 return 512;
1602 }
1603
1604 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1605                                          int level, bool is_sprite)
1606 {
1607         if (INTEL_INFO(dev)->gen >= 8)
1608                 /* BDW primary/sprite plane watermarks */
1609                 return level == 0 ? 255 : 2047;
1610         else if (INTEL_INFO(dev)->gen >= 7)
1611                 /* IVB/HSW primary/sprite plane watermarks */
1612                 return level == 0 ? 127 : 1023;
1613         else if (!is_sprite)
1614                 /* ILK/SNB primary plane watermarks */
1615                 return level == 0 ? 127 : 511;
1616         else
1617                 /* ILK/SNB sprite plane watermarks */
1618                 return level == 0 ? 63 : 255;
1619 }
1620
1621 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1622                                           int level)
1623 {
1624         if (INTEL_INFO(dev)->gen >= 7)
1625                 return level == 0 ? 63 : 255;
1626         else
1627                 return level == 0 ? 31 : 63;
1628 }
1629
1630 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1631 {
1632         if (INTEL_INFO(dev)->gen >= 8)
1633                 return 31;
1634         else
1635                 return 15;
1636 }
1637
1638 /* Calculate the maximum primary/sprite plane watermark */
1639 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1640                                      int level,
1641                                      const struct intel_wm_config *config,
1642                                      enum intel_ddb_partitioning ddb_partitioning,
1643                                      bool is_sprite)
1644 {
1645         unsigned int fifo_size = ilk_display_fifo_size(dev);
1646
1647         /* if sprites aren't enabled, sprites get nothing */
1648         if (is_sprite && !config->sprites_enabled)
1649                 return 0;
1650
1651         /* HSW allows LP1+ watermarks even with multiple pipes */
1652         if (level == 0 || config->num_pipes_active > 1) {
1653                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1654
1655                 /*
1656                  * For some reason the non self refresh
1657                  * FIFO size is only half of the self
1658                  * refresh FIFO size on ILK/SNB.
1659                  */
1660                 if (INTEL_INFO(dev)->gen <= 6)
1661                         fifo_size /= 2;
1662         }
1663
1664         if (config->sprites_enabled) {
1665                 /* level 0 is always calculated with 1:1 split */
1666                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1667                         if (is_sprite)
1668                                 fifo_size *= 5;
1669                         fifo_size /= 6;
1670                 } else {
1671                         fifo_size /= 2;
1672                 }
1673         }
1674
1675         /* clamp to max that the registers can hold */
1676         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1677 }
1678
1679 /* Calculate the maximum cursor plane watermark */
1680 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1681                                       int level,
1682                                       const struct intel_wm_config *config)
1683 {
1684         /* HSW LP1+ watermarks w/ multiple pipes */
1685         if (level > 0 && config->num_pipes_active > 1)
1686                 return 64;
1687
1688         /* otherwise just report max that registers can hold */
1689         return ilk_cursor_wm_reg_max(dev, level);
1690 }
1691
1692 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1693                                     int level,
1694                                     const struct intel_wm_config *config,
1695                                     enum intel_ddb_partitioning ddb_partitioning,
1696                                     struct ilk_wm_maximums *max)
1697 {
1698         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1699         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1700         max->cur = ilk_cursor_wm_max(dev, level, config);
1701         max->fbc = ilk_fbc_wm_reg_max(dev);
1702 }
1703
1704 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1705                                         int level,
1706                                         struct ilk_wm_maximums *max)
1707 {
1708         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1709         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1710         max->cur = ilk_cursor_wm_reg_max(dev, level);
1711         max->fbc = ilk_fbc_wm_reg_max(dev);
1712 }
1713
1714 static bool ilk_validate_wm_level(int level,
1715                                   const struct ilk_wm_maximums *max,
1716                                   struct intel_wm_level *result)
1717 {
1718         bool ret;
1719
1720         /* already determined to be invalid? */
1721         if (!result->enable)
1722                 return false;
1723
1724         result->enable = result->pri_val <= max->pri &&
1725                          result->spr_val <= max->spr &&
1726                          result->cur_val <= max->cur;
1727
1728         ret = result->enable;
1729
1730         /*
1731          * HACK until we can pre-compute everything,
1732          * and thus fail gracefully if LP0 watermarks
1733          * are exceeded...
1734          */
1735         if (level == 0 && !result->enable) {
1736                 if (result->pri_val > max->pri)
1737                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1738                                       level, result->pri_val, max->pri);
1739                 if (result->spr_val > max->spr)
1740                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1741                                       level, result->spr_val, max->spr);
1742                 if (result->cur_val > max->cur)
1743                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1744                                       level, result->cur_val, max->cur);
1745
1746                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1747                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1748                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1749                 result->enable = true;
1750         }
1751
1752         return ret;
1753 }
1754
1755 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1756                                  int level,
1757                                  const struct ilk_pipe_wm_parameters *p,
1758                                  struct intel_wm_level *result)
1759 {
1760         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1761         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1762         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1763
1764         /* WM1+ latency values stored in 0.5us units */
1765         if (level > 0) {
1766                 pri_latency *= 5;
1767                 spr_latency *= 5;
1768                 cur_latency *= 5;
1769         }
1770
1771         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1772         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1773         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1774         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1775         result->enable = true;
1776 }
1777
1778 static uint32_t
1779 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1780 {
1781         struct drm_i915_private *dev_priv = dev->dev_private;
1782         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1783         struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1784         u32 linetime, ips_linetime;
1785
1786         if (!intel_crtc->active)
1787                 return 0;
1788
1789         /* The WM are computed with base on how long it takes to fill a single
1790          * row at the given clock rate, multiplied by 8.
1791          * */
1792         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1793                                      mode->crtc_clock);
1794         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1795                                          intel_ddi_get_cdclk_freq(dev_priv));
1796
1797         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
1798                PIPE_WM_LINETIME_TIME(linetime);
1799 }
1800
1801 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1802 {
1803         struct drm_i915_private *dev_priv = dev->dev_private;
1804
1805         if (IS_GEN9(dev)) {
1806                 uint32_t val;
1807                 int ret, i;
1808                 int level, max_level = ilk_wm_max_level(dev);
1809
1810                 /* read the first set of memory latencies[0:3] */
1811                 val = 0; /* data0 to be programmed to 0 for first set */
1812                 mutex_lock(&dev_priv->rps.hw_lock);
1813                 ret = sandybridge_pcode_read(dev_priv,
1814                                              GEN9_PCODE_READ_MEM_LATENCY,
1815                                              &val);
1816                 mutex_unlock(&dev_priv->rps.hw_lock);
1817
1818                 if (ret) {
1819                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1820                         return;
1821                 }
1822
1823                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1824                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1825                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1826                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1827                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1828                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1829                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1830
1831                 /* read the second set of memory latencies[4:7] */
1832                 val = 1; /* data0 to be programmed to 1 for second set */
1833                 mutex_lock(&dev_priv->rps.hw_lock);
1834                 ret = sandybridge_pcode_read(dev_priv,
1835                                              GEN9_PCODE_READ_MEM_LATENCY,
1836                                              &val);
1837                 mutex_unlock(&dev_priv->rps.hw_lock);
1838                 if (ret) {
1839                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1840                         return;
1841                 }
1842
1843                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1844                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1845                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1846                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1847                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1848                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1849                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1850
1851                 /*
1852                  * WaWmMemoryReadLatency:skl
1853                  *
1854                  * punit doesn't take into account the read latency so we need
1855                  * to add 2us to the various latency levels we retrieve from
1856                  * the punit.
1857                  *   - W0 is a bit special in that it's the only level that
1858                  *   can't be disabled if we want to have display working, so
1859                  *   we always add 2us there.
1860                  *   - For levels >=1, punit returns 0us latency when they are
1861                  *   disabled, so we respect that and don't add 2us then
1862                  *
1863                  * Additionally, if a level n (n > 1) has a 0us latency, all
1864                  * levels m (m >= n) need to be disabled. We make sure to
1865                  * sanitize the values out of the punit to satisfy this
1866                  * requirement.
1867                  */
1868                 wm[0] += 2;
1869                 for (level = 1; level <= max_level; level++)
1870                         if (wm[level] != 0)
1871                                 wm[level] += 2;
1872                         else {
1873                                 for (i = level + 1; i <= max_level; i++)
1874                                         wm[i] = 0;
1875
1876                                 break;
1877                         }
1878         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1879                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
1880
1881                 wm[0] = (sskpd >> 56) & 0xFF;
1882                 if (wm[0] == 0)
1883                         wm[0] = sskpd & 0xF;
1884                 wm[1] = (sskpd >> 4) & 0xFF;
1885                 wm[2] = (sskpd >> 12) & 0xFF;
1886                 wm[3] = (sskpd >> 20) & 0x1FF;
1887                 wm[4] = (sskpd >> 32) & 0x1FF;
1888         } else if (INTEL_INFO(dev)->gen >= 6) {
1889                 uint32_t sskpd = I915_READ(MCH_SSKPD);
1890
1891                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
1892                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
1893                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
1894                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1895         } else if (INTEL_INFO(dev)->gen >= 5) {
1896                 uint32_t mltr = I915_READ(MLTR_ILK);
1897
1898                 /* ILK primary LP0 latency is 700 ns */
1899                 wm[0] = 7;
1900                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
1901                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1902         }
1903 }
1904
1905 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
1906 {
1907         /* ILK sprite LP0 latency is 1300 ns */
1908         if (INTEL_INFO(dev)->gen == 5)
1909                 wm[0] = 13;
1910 }
1911
1912 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
1913 {
1914         /* ILK cursor LP0 latency is 1300 ns */
1915         if (INTEL_INFO(dev)->gen == 5)
1916                 wm[0] = 13;
1917
1918         /* WaDoubleCursorLP3Latency:ivb */
1919         if (IS_IVYBRIDGE(dev))
1920                 wm[3] *= 2;
1921 }
1922
1923 int ilk_wm_max_level(const struct drm_device *dev)
1924 {
1925         /* how many WM levels are we expecting */
1926         if (IS_GEN9(dev))
1927                 return 7;
1928         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1929                 return 4;
1930         else if (INTEL_INFO(dev)->gen >= 6)
1931                 return 3;
1932         else
1933                 return 2;
1934 }
1935
1936 static void intel_print_wm_latency(struct drm_device *dev,
1937                                    const char *name,
1938                                    const uint16_t wm[8])
1939 {
1940         int level, max_level = ilk_wm_max_level(dev);
1941
1942         for (level = 0; level <= max_level; level++) {
1943                 unsigned int latency = wm[level];
1944
1945                 if (latency == 0) {
1946                         DRM_ERROR("%s WM%d latency not provided\n",
1947                                   name, level);
1948                         continue;
1949                 }
1950
1951                 /*
1952                  * - latencies are in us on gen9.
1953                  * - before then, WM1+ latency values are in 0.5us units
1954                  */
1955                 if (IS_GEN9(dev))
1956                         latency *= 10;
1957                 else if (level > 0)
1958                         latency *= 5;
1959
1960                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
1961                               name, level, wm[level],
1962                               latency / 10, latency % 10);
1963         }
1964 }
1965
1966 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
1967                                     uint16_t wm[5], uint16_t min)
1968 {
1969         int level, max_level = ilk_wm_max_level(dev_priv->dev);
1970
1971         if (wm[0] >= min)
1972                 return false;
1973
1974         wm[0] = max(wm[0], min);
1975         for (level = 1; level <= max_level; level++)
1976                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
1977
1978         return true;
1979 }
1980
1981 static void snb_wm_latency_quirk(struct drm_device *dev)
1982 {
1983         struct drm_i915_private *dev_priv = dev->dev_private;
1984         bool changed;
1985
1986         /*
1987          * The BIOS provided WM memory latency values are often
1988          * inadequate for high resolution displays. Adjust them.
1989          */
1990         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
1991                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
1992                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
1993
1994         if (!changed)
1995                 return;
1996
1997         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
1998         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
1999         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2000         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2001 }
2002
2003 static void ilk_setup_wm_latency(struct drm_device *dev)
2004 {
2005         struct drm_i915_private *dev_priv = dev->dev_private;
2006
2007         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2008
2009         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2010                sizeof(dev_priv->wm.pri_latency));
2011         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2012                sizeof(dev_priv->wm.pri_latency));
2013
2014         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2015         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2016
2017         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2018         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2019         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2020
2021         if (IS_GEN6(dev))
2022                 snb_wm_latency_quirk(dev);
2023 }
2024
2025 static void skl_setup_wm_latency(struct drm_device *dev)
2026 {
2027         struct drm_i915_private *dev_priv = dev->dev_private;
2028
2029         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2030         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2031 }
2032
2033 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2034                                       struct ilk_pipe_wm_parameters *p)
2035 {
2036         struct drm_device *dev = crtc->dev;
2037         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2038         enum pipe pipe = intel_crtc->pipe;
2039         struct drm_plane *plane;
2040
2041         if (!intel_crtc->active)
2042                 return;
2043
2044         p->active = true;
2045         p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2046         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2047
2048         if (crtc->primary->state->fb)
2049                 p->pri.bytes_per_pixel =
2050                         crtc->primary->state->fb->bits_per_pixel / 8;
2051         else
2052                 p->pri.bytes_per_pixel = 4;
2053
2054         p->cur.bytes_per_pixel = 4;
2055         /*
2056          * TODO: for now, assume primary and cursor planes are always enabled.
2057          * Setting them to false makes the screen flicker.
2058          */
2059         p->pri.enabled = true;
2060         p->cur.enabled = true;
2061
2062         p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
2063         p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
2064
2065         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2066                 struct intel_plane *intel_plane = to_intel_plane(plane);
2067
2068                 if (intel_plane->pipe == pipe) {
2069                         p->spr = intel_plane->wm;
2070                         break;
2071                 }
2072         }
2073 }
2074
2075 static void ilk_compute_wm_config(struct drm_device *dev,
2076                                   struct intel_wm_config *config)
2077 {
2078         struct intel_crtc *intel_crtc;
2079
2080         /* Compute the currently _active_ config */
2081         for_each_intel_crtc(dev, intel_crtc) {
2082                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2083
2084                 if (!wm->pipe_enabled)
2085                         continue;
2086
2087                 config->sprites_enabled |= wm->sprites_enabled;
2088                 config->sprites_scaled |= wm->sprites_scaled;
2089                 config->num_pipes_active++;
2090         }
2091 }
2092
2093 /* Compute new watermarks for the pipe */
2094 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2095                                   const struct ilk_pipe_wm_parameters *params,
2096                                   struct intel_pipe_wm *pipe_wm)
2097 {
2098         struct drm_device *dev = crtc->dev;
2099         const struct drm_i915_private *dev_priv = dev->dev_private;
2100         int level, max_level = ilk_wm_max_level(dev);
2101         /* LP0 watermark maximums depend on this pipe alone */
2102         struct intel_wm_config config = {
2103                 .num_pipes_active = 1,
2104                 .sprites_enabled = params->spr.enabled,
2105                 .sprites_scaled = params->spr.scaled,
2106         };
2107         struct ilk_wm_maximums max;
2108
2109         pipe_wm->pipe_enabled = params->active;
2110         pipe_wm->sprites_enabled = params->spr.enabled;
2111         pipe_wm->sprites_scaled = params->spr.scaled;
2112
2113         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2114         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2115                 max_level = 1;
2116
2117         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2118         if (params->spr.scaled)
2119                 max_level = 0;
2120
2121         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2122
2123         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2124                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2125
2126         /* LP0 watermarks always use 1/2 DDB partitioning */
2127         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2128
2129         /* At least LP0 must be valid */
2130         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2131                 return false;
2132
2133         ilk_compute_wm_reg_maximums(dev, 1, &max);
2134
2135         for (level = 1; level <= max_level; level++) {
2136                 struct intel_wm_level wm = {};
2137
2138                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2139
2140                 /*
2141                  * Disable any watermark level that exceeds the
2142                  * register maximums since such watermarks are
2143                  * always invalid.
2144                  */
2145                 if (!ilk_validate_wm_level(level, &max, &wm))
2146                         break;
2147
2148                 pipe_wm->wm[level] = wm;
2149         }
2150
2151         return true;
2152 }
2153
2154 /*
2155  * Merge the watermarks from all active pipes for a specific level.
2156  */
2157 static void ilk_merge_wm_level(struct drm_device *dev,
2158                                int level,
2159                                struct intel_wm_level *ret_wm)
2160 {
2161         const struct intel_crtc *intel_crtc;
2162
2163         ret_wm->enable = true;
2164
2165         for_each_intel_crtc(dev, intel_crtc) {
2166                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2167                 const struct intel_wm_level *wm = &active->wm[level];
2168
2169                 if (!active->pipe_enabled)
2170                         continue;
2171
2172                 /*
2173                  * The watermark values may have been used in the past,
2174                  * so we must maintain them in the registers for some
2175                  * time even if the level is now disabled.
2176                  */
2177                 if (!wm->enable)
2178                         ret_wm->enable = false;
2179
2180                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2181                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2182                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2183                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2184         }
2185 }
2186
2187 /*
2188  * Merge all low power watermarks for all active pipes.
2189  */
2190 static void ilk_wm_merge(struct drm_device *dev,
2191                          const struct intel_wm_config *config,
2192                          const struct ilk_wm_maximums *max,
2193                          struct intel_pipe_wm *merged)
2194 {
2195         int level, max_level = ilk_wm_max_level(dev);
2196         int last_enabled_level = max_level;
2197
2198         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2199         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2200             config->num_pipes_active > 1)
2201                 return;
2202
2203         /* ILK: FBC WM must be disabled always */
2204         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2205
2206         /* merge each WM1+ level */
2207         for (level = 1; level <= max_level; level++) {
2208                 struct intel_wm_level *wm = &merged->wm[level];
2209
2210                 ilk_merge_wm_level(dev, level, wm);
2211
2212                 if (level > last_enabled_level)
2213                         wm->enable = false;
2214                 else if (!ilk_validate_wm_level(level, max, wm))
2215                         /* make sure all following levels get disabled */
2216                         last_enabled_level = level - 1;
2217
2218                 /*
2219                  * The spec says it is preferred to disable
2220                  * FBC WMs instead of disabling a WM level.
2221                  */
2222                 if (wm->fbc_val > max->fbc) {
2223                         if (wm->enable)
2224                                 merged->fbc_wm_enabled = false;
2225                         wm->fbc_val = 0;
2226                 }
2227         }
2228
2229         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2230         /*
2231          * FIXME this is racy. FBC might get enabled later.
2232          * What we should check here is whether FBC can be
2233          * enabled sometime later.
2234          */
2235         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2236                 for (level = 2; level <= max_level; level++) {
2237                         struct intel_wm_level *wm = &merged->wm[level];
2238
2239                         wm->enable = false;
2240                 }
2241         }
2242 }
2243
2244 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2245 {
2246         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2247         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2248 }
2249
2250 /* The value we need to program into the WM_LPx latency field */
2251 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2252 {
2253         struct drm_i915_private *dev_priv = dev->dev_private;
2254
2255         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2256                 return 2 * level;
2257         else
2258                 return dev_priv->wm.pri_latency[level];
2259 }
2260
2261 static void ilk_compute_wm_results(struct drm_device *dev,
2262                                    const struct intel_pipe_wm *merged,
2263                                    enum intel_ddb_partitioning partitioning,
2264                                    struct ilk_wm_values *results)
2265 {
2266         struct intel_crtc *intel_crtc;
2267         int level, wm_lp;
2268
2269         results->enable_fbc_wm = merged->fbc_wm_enabled;
2270         results->partitioning = partitioning;
2271
2272         /* LP1+ register values */
2273         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2274                 const struct intel_wm_level *r;
2275
2276                 level = ilk_wm_lp_to_level(wm_lp, merged);
2277
2278                 r = &merged->wm[level];
2279
2280                 /*
2281                  * Maintain the watermark values even if the level is
2282                  * disabled. Doing otherwise could cause underruns.
2283                  */
2284                 results->wm_lp[wm_lp - 1] =
2285                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2286                         (r->pri_val << WM1_LP_SR_SHIFT) |
2287                         r->cur_val;
2288
2289                 if (r->enable)
2290                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2291
2292                 if (INTEL_INFO(dev)->gen >= 8)
2293                         results->wm_lp[wm_lp - 1] |=
2294                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2295                 else
2296                         results->wm_lp[wm_lp - 1] |=
2297                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2298
2299                 /*
2300                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2301                  * level is disabled. Doing otherwise could cause underruns.
2302                  */
2303                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2304                         WARN_ON(wm_lp != 1);
2305                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2306                 } else
2307                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2308         }
2309
2310         /* LP0 register values */
2311         for_each_intel_crtc(dev, intel_crtc) {
2312                 enum pipe pipe = intel_crtc->pipe;
2313                 const struct intel_wm_level *r =
2314                         &intel_crtc->wm.active.wm[0];
2315
2316                 if (WARN_ON(!r->enable))
2317                         continue;
2318
2319                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2320
2321                 results->wm_pipe[pipe] =
2322                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2323                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2324                         r->cur_val;
2325         }
2326 }
2327
2328 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2329  * case both are at the same level. Prefer r1 in case they're the same. */
2330 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2331                                                   struct intel_pipe_wm *r1,
2332                                                   struct intel_pipe_wm *r2)
2333 {
2334         int level, max_level = ilk_wm_max_level(dev);
2335         int level1 = 0, level2 = 0;
2336
2337         for (level = 1; level <= max_level; level++) {
2338                 if (r1->wm[level].enable)
2339                         level1 = level;
2340                 if (r2->wm[level].enable)
2341                         level2 = level;
2342         }
2343
2344         if (level1 == level2) {
2345                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2346                         return r2;
2347                 else
2348                         return r1;
2349         } else if (level1 > level2) {
2350                 return r1;
2351         } else {
2352                 return r2;
2353         }
2354 }
2355
2356 /* dirty bits used to track which watermarks need changes */
2357 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2358 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2359 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2360 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2361 #define WM_DIRTY_FBC (1 << 24)
2362 #define WM_DIRTY_DDB (1 << 25)
2363
2364 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2365                                          const struct ilk_wm_values *old,
2366                                          const struct ilk_wm_values *new)
2367 {
2368         unsigned int dirty = 0;
2369         enum pipe pipe;
2370         int wm_lp;
2371
2372         for_each_pipe(dev_priv, pipe) {
2373                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2374                         dirty |= WM_DIRTY_LINETIME(pipe);
2375                         /* Must disable LP1+ watermarks too */
2376                         dirty |= WM_DIRTY_LP_ALL;
2377                 }
2378
2379                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2380                         dirty |= WM_DIRTY_PIPE(pipe);
2381                         /* Must disable LP1+ watermarks too */
2382                         dirty |= WM_DIRTY_LP_ALL;
2383                 }
2384         }
2385
2386         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2387                 dirty |= WM_DIRTY_FBC;
2388                 /* Must disable LP1+ watermarks too */
2389                 dirty |= WM_DIRTY_LP_ALL;
2390         }
2391
2392         if (old->partitioning != new->partitioning) {
2393                 dirty |= WM_DIRTY_DDB;
2394                 /* Must disable LP1+ watermarks too */
2395                 dirty |= WM_DIRTY_LP_ALL;
2396         }
2397
2398         /* LP1+ watermarks already deemed dirty, no need to continue */
2399         if (dirty & WM_DIRTY_LP_ALL)
2400                 return dirty;
2401
2402         /* Find the lowest numbered LP1+ watermark in need of an update... */
2403         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2404                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2405                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2406                         break;
2407         }
2408
2409         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2410         for (; wm_lp <= 3; wm_lp++)
2411                 dirty |= WM_DIRTY_LP(wm_lp);
2412
2413         return dirty;
2414 }
2415
2416 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2417                                unsigned int dirty)
2418 {
2419         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2420         bool changed = false;
2421
2422         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2423                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2424                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2425                 changed = true;
2426         }
2427         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2428                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2429                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2430                 changed = true;
2431         }
2432         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2433                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2434                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2435                 changed = true;
2436         }
2437
2438         /*
2439          * Don't touch WM1S_LP_EN here.
2440          * Doing so could cause underruns.
2441          */
2442
2443         return changed;
2444 }
2445
2446 /*
2447  * The spec says we shouldn't write when we don't need, because every write
2448  * causes WMs to be re-evaluated, expending some power.
2449  */
2450 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2451                                 struct ilk_wm_values *results)
2452 {
2453         struct drm_device *dev = dev_priv->dev;
2454         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2455         unsigned int dirty;
2456         uint32_t val;
2457
2458         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2459         if (!dirty)
2460                 return;
2461
2462         _ilk_disable_lp_wm(dev_priv, dirty);
2463
2464         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2465                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2466         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2467                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2468         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2469                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2470
2471         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2472                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2473         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2474                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2475         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2476                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2477
2478         if (dirty & WM_DIRTY_DDB) {
2479                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2480                         val = I915_READ(WM_MISC);
2481                         if (results->partitioning == INTEL_DDB_PART_1_2)
2482                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2483                         else
2484                                 val |= WM_MISC_DATA_PARTITION_5_6;
2485                         I915_WRITE(WM_MISC, val);
2486                 } else {
2487                         val = I915_READ(DISP_ARB_CTL2);
2488                         if (results->partitioning == INTEL_DDB_PART_1_2)
2489                                 val &= ~DISP_DATA_PARTITION_5_6;
2490                         else
2491                                 val |= DISP_DATA_PARTITION_5_6;
2492                         I915_WRITE(DISP_ARB_CTL2, val);
2493                 }
2494         }
2495
2496         if (dirty & WM_DIRTY_FBC) {
2497                 val = I915_READ(DISP_ARB_CTL);
2498                 if (results->enable_fbc_wm)
2499                         val &= ~DISP_FBC_WM_DIS;
2500                 else
2501                         val |= DISP_FBC_WM_DIS;
2502                 I915_WRITE(DISP_ARB_CTL, val);
2503         }
2504
2505         if (dirty & WM_DIRTY_LP(1) &&
2506             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2507                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2508
2509         if (INTEL_INFO(dev)->gen >= 7) {
2510                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2511                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2512                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2513                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2514         }
2515
2516         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2517                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2518         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2519                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2520         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2521                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2522
2523         dev_priv->wm.hw = *results;
2524 }
2525
2526 static bool ilk_disable_lp_wm(struct drm_device *dev)
2527 {
2528         struct drm_i915_private *dev_priv = dev->dev_private;
2529
2530         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2531 }
2532
2533 /*
2534  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2535  * different active planes.
2536  */
2537
2538 #define SKL_DDB_SIZE            896     /* in blocks */
2539
2540 static void
2541 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2542                                    struct drm_crtc *for_crtc,
2543                                    const struct intel_wm_config *config,
2544                                    const struct skl_pipe_wm_parameters *params,
2545                                    struct skl_ddb_entry *alloc /* out */)
2546 {
2547         struct drm_crtc *crtc;
2548         unsigned int pipe_size, ddb_size;
2549         int nth_active_pipe;
2550
2551         if (!params->active) {
2552                 alloc->start = 0;
2553                 alloc->end = 0;
2554                 return;
2555         }
2556
2557         ddb_size = SKL_DDB_SIZE;
2558
2559         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2560
2561         nth_active_pipe = 0;
2562         for_each_crtc(dev, crtc) {
2563                 if (!to_intel_crtc(crtc)->active)
2564                         continue;
2565
2566                 if (crtc == for_crtc)
2567                         break;
2568
2569                 nth_active_pipe++;
2570         }
2571
2572         pipe_size = ddb_size / config->num_pipes_active;
2573         alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2574         alloc->end = alloc->start + pipe_size;
2575 }
2576
2577 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2578 {
2579         if (config->num_pipes_active == 1)
2580                 return 32;
2581
2582         return 8;
2583 }
2584
2585 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2586 {
2587         entry->start = reg & 0x3ff;
2588         entry->end = (reg >> 16) & 0x3ff;
2589         if (entry->end)
2590                 entry->end += 1;
2591 }
2592
2593 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2594                           struct skl_ddb_allocation *ddb /* out */)
2595 {
2596         enum pipe pipe;
2597         int plane;
2598         u32 val;
2599
2600         for_each_pipe(dev_priv, pipe) {
2601                 for_each_plane(dev_priv, pipe, plane) {
2602                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2603                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2604                                                    val);
2605                 }
2606
2607                 val = I915_READ(CUR_BUF_CFG(pipe));
2608                 skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2609         }
2610 }
2611
2612 static unsigned int
2613 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
2614 {
2615         return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2616 }
2617
2618 /*
2619  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2620  * a 8192x4096@32bpp framebuffer:
2621  *   3 * 4096 * 8192  * 4 < 2^32
2622  */
2623 static unsigned int
2624 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2625                                  const struct skl_pipe_wm_parameters *params)
2626 {
2627         unsigned int total_data_rate = 0;
2628         int plane;
2629
2630         for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2631                 const struct intel_plane_wm_parameters *p;
2632
2633                 p = &params->plane[plane];
2634                 if (!p->enabled)
2635                         continue;
2636
2637                 total_data_rate += skl_plane_relative_data_rate(p);
2638         }
2639
2640         return total_data_rate;
2641 }
2642
2643 static void
2644 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2645                       const struct intel_wm_config *config,
2646                       const struct skl_pipe_wm_parameters *params,
2647                       struct skl_ddb_allocation *ddb /* out */)
2648 {
2649         struct drm_device *dev = crtc->dev;
2650         struct drm_i915_private *dev_priv = dev->dev_private;
2651         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2652         enum pipe pipe = intel_crtc->pipe;
2653         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2654         uint16_t alloc_size, start, cursor_blocks;
2655         uint16_t minimum[I915_MAX_PLANES];
2656         unsigned int total_data_rate;
2657         int plane;
2658
2659         skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2660         alloc_size = skl_ddb_entry_size(alloc);
2661         if (alloc_size == 0) {
2662                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2663                 memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2664                 return;
2665         }
2666
2667         cursor_blocks = skl_cursor_allocation(config);
2668         ddb->cursor[pipe].start = alloc->end - cursor_blocks;
2669         ddb->cursor[pipe].end = alloc->end;
2670
2671         alloc_size -= cursor_blocks;
2672         alloc->end -= cursor_blocks;
2673
2674         /* 1. Allocate the mininum required blocks for each active plane */
2675         for_each_plane(dev_priv, pipe, plane) {
2676                 const struct intel_plane_wm_parameters *p;
2677
2678                 p = &params->plane[plane];
2679                 if (!p->enabled)
2680                         continue;
2681
2682                 minimum[plane] = 8;
2683                 alloc_size -= minimum[plane];
2684         }
2685
2686         /*
2687          * 2. Distribute the remaining space in proportion to the amount of
2688          * data each plane needs to fetch from memory.
2689          *
2690          * FIXME: we may not allocate every single block here.
2691          */
2692         total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2693
2694         start = alloc->start;
2695         for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2696                 const struct intel_plane_wm_parameters *p;
2697                 unsigned int data_rate;
2698                 uint16_t plane_blocks;
2699
2700                 p = &params->plane[plane];
2701                 if (!p->enabled)
2702                         continue;
2703
2704                 data_rate = skl_plane_relative_data_rate(p);
2705
2706                 /*
2707                  * promote the expression to 64 bits to avoid overflowing, the
2708                  * result is < available as data_rate / total_data_rate < 1
2709                  */
2710                 plane_blocks = minimum[plane];
2711                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2712                                         total_data_rate);
2713
2714                 ddb->plane[pipe][plane].start = start;
2715                 ddb->plane[pipe][plane].end = start + plane_blocks;
2716
2717                 start += plane_blocks;
2718         }
2719
2720 }
2721
2722 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2723 {
2724         /* TODO: Take into account the scalers once we support them */
2725         return config->base.adjusted_mode.crtc_clock;
2726 }
2727
2728 /*
2729  * The max latency should be 257 (max the punit can code is 255 and we add 2us
2730  * for the read latency) and bytes_per_pixel should always be <= 8, so that
2731  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
2732  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
2733 */
2734 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2735                                uint32_t latency)
2736 {
2737         uint32_t wm_intermediate_val, ret;
2738
2739         if (latency == 0)
2740                 return UINT_MAX;
2741
2742         wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
2743         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
2744
2745         return ret;
2746 }
2747
2748 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2749                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2750                                uint64_t tiling, uint32_t latency)
2751 {
2752         uint32_t ret;
2753         uint32_t plane_bytes_per_line, plane_blocks_per_line;
2754         uint32_t wm_intermediate_val;
2755
2756         if (latency == 0)
2757                 return UINT_MAX;
2758
2759         plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
2760
2761         if (tiling == I915_FORMAT_MOD_Y_TILED ||
2762             tiling == I915_FORMAT_MOD_Yf_TILED) {
2763                 plane_bytes_per_line *= 4;
2764                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2765                 plane_blocks_per_line /= 4;
2766         } else {
2767                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2768         }
2769
2770         wm_intermediate_val = latency * pixel_rate;
2771         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
2772                                 plane_blocks_per_line;
2773
2774         return ret;
2775 }
2776
2777 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
2778                                        const struct intel_crtc *intel_crtc)
2779 {
2780         struct drm_device *dev = intel_crtc->base.dev;
2781         struct drm_i915_private *dev_priv = dev->dev_private;
2782         const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
2783         enum pipe pipe = intel_crtc->pipe;
2784
2785         if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
2786                    sizeof(new_ddb->plane[pipe])))
2787                 return true;
2788
2789         if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
2790                     sizeof(new_ddb->cursor[pipe])))
2791                 return true;
2792
2793         return false;
2794 }
2795
2796 static void skl_compute_wm_global_parameters(struct drm_device *dev,
2797                                              struct intel_wm_config *config)
2798 {
2799         struct drm_crtc *crtc;
2800         struct drm_plane *plane;
2801
2802         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2803                 config->num_pipes_active += to_intel_crtc(crtc)->active;
2804
2805         /* FIXME: I don't think we need those two global parameters on SKL */
2806         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2807                 struct intel_plane *intel_plane = to_intel_plane(plane);
2808
2809                 config->sprites_enabled |= intel_plane->wm.enabled;
2810                 config->sprites_scaled |= intel_plane->wm.scaled;
2811         }
2812 }
2813
2814 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
2815                                            struct skl_pipe_wm_parameters *p)
2816 {
2817         struct drm_device *dev = crtc->dev;
2818         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2819         enum pipe pipe = intel_crtc->pipe;
2820         struct drm_plane *plane;
2821         struct drm_framebuffer *fb;
2822         int i = 1; /* Index for sprite planes start */
2823
2824         p->active = intel_crtc->active;
2825         if (p->active) {
2826                 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2827                 p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2828
2829                 fb = crtc->primary->state->fb;
2830                 if (fb) {
2831                         p->plane[0].enabled = true;
2832                         p->plane[0].bytes_per_pixel = fb->bits_per_pixel / 8;
2833                         p->plane[0].tiling = fb->modifier[0];
2834                 } else {
2835                         p->plane[0].enabled = false;
2836                         p->plane[0].bytes_per_pixel = 0;
2837                         p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
2838                 }
2839                 p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
2840                 p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2841                 p->plane[0].rotation = crtc->primary->state->rotation;
2842
2843                 fb = crtc->cursor->state->fb;
2844                 if (fb) {
2845                         p->cursor.enabled = true;
2846                         p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
2847                         p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
2848                         p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
2849                 } else {
2850                         p->cursor.enabled = false;
2851                         p->cursor.bytes_per_pixel = 0;
2852                         p->cursor.horiz_pixels = 64;
2853                         p->cursor.vert_pixels = 64;
2854                 }
2855         }
2856
2857         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2858                 struct intel_plane *intel_plane = to_intel_plane(plane);
2859
2860                 if (intel_plane->pipe == pipe &&
2861                         plane->type == DRM_PLANE_TYPE_OVERLAY)
2862                         p->plane[i++] = intel_plane->wm;
2863         }
2864 }
2865
2866 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
2867                                  struct skl_pipe_wm_parameters *p,
2868                                  struct intel_plane_wm_parameters *p_params,
2869                                  uint16_t ddb_allocation,
2870                                  int level,
2871                                  uint16_t *out_blocks, /* out */
2872                                  uint8_t *out_lines /* out */)
2873 {
2874         uint32_t latency = dev_priv->wm.skl_latency[level];
2875         uint32_t method1, method2;
2876         uint32_t plane_bytes_per_line, plane_blocks_per_line;
2877         uint32_t res_blocks, res_lines;
2878         uint32_t selected_result;
2879
2880         if (latency == 0 || !p->active || !p_params->enabled)
2881                 return false;
2882
2883         method1 = skl_wm_method1(p->pixel_rate,
2884                                  p_params->bytes_per_pixel,
2885                                  latency);
2886         method2 = skl_wm_method2(p->pixel_rate,
2887                                  p->pipe_htotal,
2888                                  p_params->horiz_pixels,
2889                                  p_params->bytes_per_pixel,
2890                                  p_params->tiling,
2891                                  latency);
2892
2893         plane_bytes_per_line = p_params->horiz_pixels *
2894                                         p_params->bytes_per_pixel;
2895         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2896
2897         if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
2898             p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
2899                 uint32_t min_scanlines = 4;
2900                 uint32_t y_tile_minimum;
2901                 if (intel_rotation_90_or_270(p_params->rotation)) {
2902                         switch (p_params->bytes_per_pixel) {
2903                         case 1:
2904                                 min_scanlines = 16;
2905                                 break;
2906                         case 2:
2907                                 min_scanlines = 8;
2908                                 break;
2909                         case 8:
2910                                 WARN(1, "Unsupported pixel depth for rotation");
2911                         }
2912                 }
2913                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
2914                 selected_result = max(method2, y_tile_minimum);
2915         } else {
2916                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
2917                         selected_result = min(method1, method2);
2918                 else
2919                         selected_result = method1;
2920         }
2921
2922         res_blocks = selected_result + 1;
2923         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
2924
2925         if (level >= 1 && level <= 7) {
2926                 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
2927                     p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
2928                         res_lines += 4;
2929                 else
2930                         res_blocks++;
2931         }
2932
2933         if (res_blocks >= ddb_allocation || res_lines > 31)
2934                 return false;
2935
2936         *out_blocks = res_blocks;
2937         *out_lines = res_lines;
2938
2939         return true;
2940 }
2941
2942 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
2943                                  struct skl_ddb_allocation *ddb,
2944                                  struct skl_pipe_wm_parameters *p,
2945                                  enum pipe pipe,
2946                                  int level,
2947                                  int num_planes,
2948                                  struct skl_wm_level *result)
2949 {
2950         uint16_t ddb_blocks;
2951         int i;
2952
2953         for (i = 0; i < num_planes; i++) {
2954                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
2955
2956                 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
2957                                                 p, &p->plane[i],
2958                                                 ddb_blocks,
2959                                                 level,
2960                                                 &result->plane_res_b[i],
2961                                                 &result->plane_res_l[i]);
2962         }
2963
2964         ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
2965         result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
2966                                                  ddb_blocks, level,
2967                                                  &result->cursor_res_b,
2968                                                  &result->cursor_res_l);
2969 }
2970
2971 static uint32_t
2972 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
2973 {
2974         if (!to_intel_crtc(crtc)->active)
2975                 return 0;
2976
2977         return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
2978
2979 }
2980
2981 static void skl_compute_transition_wm(struct drm_crtc *crtc,
2982                                       struct skl_pipe_wm_parameters *params,
2983                                       struct skl_wm_level *trans_wm /* out */)
2984 {
2985         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2986         int i;
2987
2988         if (!params->active)
2989                 return;
2990
2991         /* Until we know more, just disable transition WMs */
2992         for (i = 0; i < intel_num_planes(intel_crtc); i++)
2993                 trans_wm->plane_en[i] = false;
2994         trans_wm->cursor_en = false;
2995 }
2996
2997 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
2998                                 struct skl_ddb_allocation *ddb,
2999                                 struct skl_pipe_wm_parameters *params,
3000                                 struct skl_pipe_wm *pipe_wm)
3001 {
3002         struct drm_device *dev = crtc->dev;
3003         const struct drm_i915_private *dev_priv = dev->dev_private;
3004         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3005         int level, max_level = ilk_wm_max_level(dev);
3006
3007         for (level = 0; level <= max_level; level++) {
3008                 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3009                                      level, intel_num_planes(intel_crtc),
3010                                      &pipe_wm->wm[level]);
3011         }
3012         pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3013
3014         skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3015 }
3016
3017 static void skl_compute_wm_results(struct drm_device *dev,
3018                                    struct skl_pipe_wm_parameters *p,
3019                                    struct skl_pipe_wm *p_wm,
3020                                    struct skl_wm_values *r,
3021                                    struct intel_crtc *intel_crtc)
3022 {
3023         int level, max_level = ilk_wm_max_level(dev);
3024         enum pipe pipe = intel_crtc->pipe;
3025         uint32_t temp;
3026         int i;
3027
3028         for (level = 0; level <= max_level; level++) {
3029                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3030                         temp = 0;
3031
3032                         temp |= p_wm->wm[level].plane_res_l[i] <<
3033                                         PLANE_WM_LINES_SHIFT;
3034                         temp |= p_wm->wm[level].plane_res_b[i];
3035                         if (p_wm->wm[level].plane_en[i])
3036                                 temp |= PLANE_WM_EN;
3037
3038                         r->plane[pipe][i][level] = temp;
3039                 }
3040
3041                 temp = 0;
3042
3043                 temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
3044                 temp |= p_wm->wm[level].cursor_res_b;
3045
3046                 if (p_wm->wm[level].cursor_en)
3047                         temp |= PLANE_WM_EN;
3048
3049                 r->cursor[pipe][level] = temp;
3050
3051         }
3052
3053         /* transition WMs */
3054         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3055                 temp = 0;
3056                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3057                 temp |= p_wm->trans_wm.plane_res_b[i];
3058                 if (p_wm->trans_wm.plane_en[i])
3059                         temp |= PLANE_WM_EN;
3060
3061                 r->plane_trans[pipe][i] = temp;
3062         }
3063
3064         temp = 0;
3065         temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
3066         temp |= p_wm->trans_wm.cursor_res_b;
3067         if (p_wm->trans_wm.cursor_en)
3068                 temp |= PLANE_WM_EN;
3069
3070         r->cursor_trans[pipe] = temp;
3071
3072         r->wm_linetime[pipe] = p_wm->linetime;
3073 }
3074
3075 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3076                                 const struct skl_ddb_entry *entry)
3077 {
3078         if (entry->end)
3079                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3080         else
3081                 I915_WRITE(reg, 0);
3082 }
3083
3084 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3085                                 const struct skl_wm_values *new)
3086 {
3087         struct drm_device *dev = dev_priv->dev;
3088         struct intel_crtc *crtc;
3089
3090         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3091                 int i, level, max_level = ilk_wm_max_level(dev);
3092                 enum pipe pipe = crtc->pipe;
3093
3094                 if (!new->dirty[pipe])
3095                         continue;
3096
3097                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3098
3099                 for (level = 0; level <= max_level; level++) {
3100                         for (i = 0; i < intel_num_planes(crtc); i++)
3101                                 I915_WRITE(PLANE_WM(pipe, i, level),
3102                                            new->plane[pipe][i][level]);
3103                         I915_WRITE(CUR_WM(pipe, level),
3104                                    new->cursor[pipe][level]);
3105                 }
3106                 for (i = 0; i < intel_num_planes(crtc); i++)
3107                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3108                                    new->plane_trans[pipe][i]);
3109                 I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
3110
3111                 for (i = 0; i < intel_num_planes(crtc); i++)
3112                         skl_ddb_entry_write(dev_priv,
3113                                             PLANE_BUF_CFG(pipe, i),
3114                                             &new->ddb.plane[pipe][i]);
3115
3116                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3117                                     &new->ddb.cursor[pipe]);
3118         }
3119 }
3120
3121 /*
3122  * When setting up a new DDB allocation arrangement, we need to correctly
3123  * sequence the times at which the new allocations for the pipes are taken into
3124  * account or we'll have pipes fetching from space previously allocated to
3125  * another pipe.
3126  *
3127  * Roughly the sequence looks like:
3128  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3129  *     overlapping with a previous light-up pipe (another way to put it is:
3130  *     pipes with their new allocation strickly included into their old ones).
3131  *  2. re-allocate the other pipes that get their allocation reduced
3132  *  3. allocate the pipes having their allocation increased
3133  *
3134  * Steps 1. and 2. are here to take care of the following case:
3135  * - Initially DDB looks like this:
3136  *     |   B    |   C    |
3137  * - enable pipe A.
3138  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3139  *   allocation
3140  *     |  A  |  B  |  C  |
3141  *
3142  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3143  */
3144
3145 static void
3146 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3147 {
3148         int plane;
3149
3150         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3151
3152         for_each_plane(dev_priv, pipe, plane) {
3153                 I915_WRITE(PLANE_SURF(pipe, plane),
3154                            I915_READ(PLANE_SURF(pipe, plane)));
3155         }
3156         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3157 }
3158
3159 static bool
3160 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3161                             const struct skl_ddb_allocation *new,
3162                             enum pipe pipe)
3163 {
3164         uint16_t old_size, new_size;
3165
3166         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3167         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3168
3169         return old_size != new_size &&
3170                new->pipe[pipe].start >= old->pipe[pipe].start &&
3171                new->pipe[pipe].end <= old->pipe[pipe].end;
3172 }
3173
3174 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3175                                 struct skl_wm_values *new_values)
3176 {
3177         struct drm_device *dev = dev_priv->dev;
3178         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3179         bool reallocated[I915_MAX_PIPES] = {false, false, false};
3180         struct intel_crtc *crtc;
3181         enum pipe pipe;
3182
3183         new_ddb = &new_values->ddb;
3184         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3185
3186         /*
3187          * First pass: flush the pipes with the new allocation contained into
3188          * the old space.
3189          *
3190          * We'll wait for the vblank on those pipes to ensure we can safely
3191          * re-allocate the freed space without this pipe fetching from it.
3192          */
3193         for_each_intel_crtc(dev, crtc) {
3194                 if (!crtc->active)
3195                         continue;
3196
3197                 pipe = crtc->pipe;
3198
3199                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3200                         continue;
3201
3202                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3203                 intel_wait_for_vblank(dev, pipe);
3204
3205                 reallocated[pipe] = true;
3206         }
3207
3208
3209         /*
3210          * Second pass: flush the pipes that are having their allocation
3211          * reduced, but overlapping with a previous allocation.
3212          *
3213          * Here as well we need to wait for the vblank to make sure the freed
3214          * space is not used anymore.
3215          */
3216         for_each_intel_crtc(dev, crtc) {
3217                 if (!crtc->active)
3218                         continue;
3219
3220                 pipe = crtc->pipe;
3221
3222                 if (reallocated[pipe])
3223                         continue;
3224
3225                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3226                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3227                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3228                         intel_wait_for_vblank(dev, pipe);
3229                         reallocated[pipe] = true;
3230                 }
3231         }
3232
3233         /*
3234          * Third pass: flush the pipes that got more space allocated.
3235          *
3236          * We don't need to actively wait for the update here, next vblank
3237          * will just get more DDB space with the correct WM values.
3238          */
3239         for_each_intel_crtc(dev, crtc) {
3240                 if (!crtc->active)
3241                         continue;
3242
3243                 pipe = crtc->pipe;
3244
3245                 /*
3246                  * At this point, only the pipes more space than before are
3247                  * left to re-allocate.
3248                  */
3249                 if (reallocated[pipe])
3250                         continue;
3251
3252                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3253         }
3254 }
3255
3256 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3257                                struct skl_pipe_wm_parameters *params,
3258                                struct intel_wm_config *config,
3259                                struct skl_ddb_allocation *ddb, /* out */
3260                                struct skl_pipe_wm *pipe_wm /* out */)
3261 {
3262         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3263
3264         skl_compute_wm_pipe_parameters(crtc, params);
3265         skl_allocate_pipe_ddb(crtc, config, params, ddb);
3266         skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3267
3268         if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3269                 return false;
3270
3271         intel_crtc->wm.skl_active = *pipe_wm;
3272         return true;
3273 }
3274
3275 static void skl_update_other_pipe_wm(struct drm_device *dev,
3276                                      struct drm_crtc *crtc,
3277                                      struct intel_wm_config *config,
3278                                      struct skl_wm_values *r)
3279 {
3280         struct intel_crtc *intel_crtc;
3281         struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3282
3283         /*
3284          * If the WM update hasn't changed the allocation for this_crtc (the
3285          * crtc we are currently computing the new WM values for), other
3286          * enabled crtcs will keep the same allocation and we don't need to
3287          * recompute anything for them.
3288          */
3289         if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3290                 return;
3291
3292         /*
3293          * Otherwise, because of this_crtc being freshly enabled/disabled, the
3294          * other active pipes need new DDB allocation and WM values.
3295          */
3296         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3297                                 base.head) {
3298                 struct skl_pipe_wm_parameters params = {};
3299                 struct skl_pipe_wm pipe_wm = {};
3300                 bool wm_changed;
3301
3302                 if (this_crtc->pipe == intel_crtc->pipe)
3303                         continue;
3304
3305                 if (!intel_crtc->active)
3306                         continue;
3307
3308                 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3309                                                 &params, config,
3310                                                 &r->ddb, &pipe_wm);
3311
3312                 /*
3313                  * If we end up re-computing the other pipe WM values, it's
3314                  * because it was really needed, so we expect the WM values to
3315                  * be different.
3316                  */
3317                 WARN_ON(!wm_changed);
3318
3319                 skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3320                 r->dirty[intel_crtc->pipe] = true;
3321         }
3322 }
3323
3324 static void skl_update_wm(struct drm_crtc *crtc)
3325 {
3326         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3327         struct drm_device *dev = crtc->dev;
3328         struct drm_i915_private *dev_priv = dev->dev_private;
3329         struct skl_pipe_wm_parameters params = {};
3330         struct skl_wm_values *results = &dev_priv->wm.skl_results;
3331         struct skl_pipe_wm pipe_wm = {};
3332         struct intel_wm_config config = {};
3333
3334         memset(results, 0, sizeof(*results));
3335
3336         skl_compute_wm_global_parameters(dev, &config);
3337
3338         if (!skl_update_pipe_wm(crtc, &params, &config,
3339                                 &results->ddb, &pipe_wm))
3340                 return;
3341
3342         skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3343         results->dirty[intel_crtc->pipe] = true;
3344
3345         skl_update_other_pipe_wm(dev, crtc, &config, results);
3346         skl_write_wm_values(dev_priv, results);
3347         skl_flush_wm_values(dev_priv, results);
3348
3349         /* store the new configuration */
3350         dev_priv->wm.skl_hw = *results;
3351 }
3352
3353 static void
3354 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3355                      uint32_t sprite_width, uint32_t sprite_height,
3356                      int pixel_size, bool enabled, bool scaled)
3357 {
3358         struct intel_plane *intel_plane = to_intel_plane(plane);
3359         struct drm_framebuffer *fb = plane->state->fb;
3360
3361         intel_plane->wm.enabled = enabled;
3362         intel_plane->wm.scaled = scaled;
3363         intel_plane->wm.horiz_pixels = sprite_width;
3364         intel_plane->wm.vert_pixels = sprite_height;
3365         intel_plane->wm.bytes_per_pixel = pixel_size;
3366         intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3367         /*
3368          * Framebuffer can be NULL on plane disable, but it does not
3369          * matter for watermarks if we assume no tiling in that case.
3370          */
3371         if (fb)
3372                 intel_plane->wm.tiling = fb->modifier[0];
3373         intel_plane->wm.rotation = plane->state->rotation;
3374
3375         skl_update_wm(crtc);
3376 }
3377
3378 static void ilk_update_wm(struct drm_crtc *crtc)
3379 {
3380         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3381         struct drm_device *dev = crtc->dev;
3382         struct drm_i915_private *dev_priv = dev->dev_private;
3383         struct ilk_wm_maximums max;
3384         struct ilk_pipe_wm_parameters params = {};
3385         struct ilk_wm_values results = {};
3386         enum intel_ddb_partitioning partitioning;
3387         struct intel_pipe_wm pipe_wm = {};
3388         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3389         struct intel_wm_config config = {};
3390
3391         ilk_compute_wm_parameters(crtc, &params);
3392
3393         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3394
3395         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3396                 return;
3397
3398         intel_crtc->wm.active = pipe_wm;
3399
3400         ilk_compute_wm_config(dev, &config);
3401
3402         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3403         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3404
3405         /* 5/6 split only in single pipe config on IVB+ */
3406         if (INTEL_INFO(dev)->gen >= 7 &&
3407             config.num_pipes_active == 1 && config.sprites_enabled) {
3408                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3409                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3410
3411                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3412         } else {
3413                 best_lp_wm = &lp_wm_1_2;
3414         }
3415
3416         partitioning = (best_lp_wm == &lp_wm_1_2) ?
3417                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3418
3419         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3420
3421         ilk_write_wm_values(dev_priv, &results);
3422 }
3423
3424 static void
3425 ilk_update_sprite_wm(struct drm_plane *plane,
3426                      struct drm_crtc *crtc,
3427                      uint32_t sprite_width, uint32_t sprite_height,
3428                      int pixel_size, bool enabled, bool scaled)
3429 {
3430         struct drm_device *dev = plane->dev;
3431         struct intel_plane *intel_plane = to_intel_plane(plane);
3432
3433         intel_plane->wm.enabled = enabled;
3434         intel_plane->wm.scaled = scaled;
3435         intel_plane->wm.horiz_pixels = sprite_width;
3436         intel_plane->wm.vert_pixels = sprite_width;
3437         intel_plane->wm.bytes_per_pixel = pixel_size;
3438
3439         /*
3440          * IVB workaround: must disable low power watermarks for at least
3441          * one frame before enabling scaling.  LP watermarks can be re-enabled
3442          * when scaling is disabled.
3443          *
3444          * WaCxSRDisabledForSpriteScaling:ivb
3445          */
3446         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3447                 intel_wait_for_vblank(dev, intel_plane->pipe);
3448
3449         ilk_update_wm(crtc);
3450 }
3451
3452 static void skl_pipe_wm_active_state(uint32_t val,
3453                                      struct skl_pipe_wm *active,
3454                                      bool is_transwm,
3455                                      bool is_cursor,
3456                                      int i,
3457                                      int level)
3458 {
3459         bool is_enabled = (val & PLANE_WM_EN) != 0;
3460
3461         if (!is_transwm) {
3462                 if (!is_cursor) {
3463                         active->wm[level].plane_en[i] = is_enabled;
3464                         active->wm[level].plane_res_b[i] =
3465                                         val & PLANE_WM_BLOCKS_MASK;
3466                         active->wm[level].plane_res_l[i] =
3467                                         (val >> PLANE_WM_LINES_SHIFT) &
3468                                                 PLANE_WM_LINES_MASK;
3469                 } else {
3470                         active->wm[level].cursor_en = is_enabled;
3471                         active->wm[level].cursor_res_b =
3472                                         val & PLANE_WM_BLOCKS_MASK;
3473                         active->wm[level].cursor_res_l =
3474                                         (val >> PLANE_WM_LINES_SHIFT) &
3475                                                 PLANE_WM_LINES_MASK;
3476                 }
3477         } else {
3478                 if (!is_cursor) {
3479                         active->trans_wm.plane_en[i] = is_enabled;
3480                         active->trans_wm.plane_res_b[i] =
3481                                         val & PLANE_WM_BLOCKS_MASK;
3482                         active->trans_wm.plane_res_l[i] =
3483                                         (val >> PLANE_WM_LINES_SHIFT) &
3484                                                 PLANE_WM_LINES_MASK;
3485                 } else {
3486                         active->trans_wm.cursor_en = is_enabled;
3487                         active->trans_wm.cursor_res_b =
3488                                         val & PLANE_WM_BLOCKS_MASK;
3489                         active->trans_wm.cursor_res_l =
3490                                         (val >> PLANE_WM_LINES_SHIFT) &
3491                                                 PLANE_WM_LINES_MASK;
3492                 }
3493         }
3494 }
3495
3496 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3497 {
3498         struct drm_device *dev = crtc->dev;
3499         struct drm_i915_private *dev_priv = dev->dev_private;
3500         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3501         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3502         struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3503         enum pipe pipe = intel_crtc->pipe;
3504         int level, i, max_level;
3505         uint32_t temp;
3506
3507         max_level = ilk_wm_max_level(dev);
3508
3509         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3510
3511         for (level = 0; level <= max_level; level++) {
3512                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3513                         hw->plane[pipe][i][level] =
3514                                         I915_READ(PLANE_WM(pipe, i, level));
3515                 hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3516         }
3517
3518         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3519                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3520         hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3521
3522         if (!intel_crtc->active)
3523                 return;
3524
3525         hw->dirty[pipe] = true;
3526
3527         active->linetime = hw->wm_linetime[pipe];
3528
3529         for (level = 0; level <= max_level; level++) {
3530                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3531                         temp = hw->plane[pipe][i][level];
3532                         skl_pipe_wm_active_state(temp, active, false,
3533                                                 false, i, level);
3534                 }
3535                 temp = hw->cursor[pipe][level];
3536                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3537         }
3538
3539         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3540                 temp = hw->plane_trans[pipe][i];
3541                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3542         }
3543
3544         temp = hw->cursor_trans[pipe];
3545         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3546 }
3547
3548 void skl_wm_get_hw_state(struct drm_device *dev)
3549 {
3550         struct drm_i915_private *dev_priv = dev->dev_private;
3551         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3552         struct drm_crtc *crtc;
3553
3554         skl_ddb_get_hw_state(dev_priv, ddb);
3555         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3556                 skl_pipe_wm_get_hw_state(crtc);
3557 }
3558
3559 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3560 {
3561         struct drm_device *dev = crtc->dev;
3562         struct drm_i915_private *dev_priv = dev->dev_private;
3563         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3564         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3565         struct intel_pipe_wm *active = &intel_crtc->wm.active;
3566         enum pipe pipe = intel_crtc->pipe;
3567         static const unsigned int wm0_pipe_reg[] = {
3568                 [PIPE_A] = WM0_PIPEA_ILK,
3569                 [PIPE_B] = WM0_PIPEB_ILK,
3570                 [PIPE_C] = WM0_PIPEC_IVB,
3571         };
3572
3573         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3574         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3575                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3576
3577         active->pipe_enabled = intel_crtc->active;
3578
3579         if (active->pipe_enabled) {
3580                 u32 tmp = hw->wm_pipe[pipe];
3581
3582                 /*
3583                  * For active pipes LP0 watermark is marked as
3584                  * enabled, and LP1+ watermaks as disabled since
3585                  * we can't really reverse compute them in case
3586                  * multiple pipes are active.
3587                  */
3588                 active->wm[0].enable = true;
3589                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3590                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3591                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3592                 active->linetime = hw->wm_linetime[pipe];
3593         } else {
3594                 int level, max_level = ilk_wm_max_level(dev);
3595
3596                 /*
3597                  * For inactive pipes, all watermark levels
3598                  * should be marked as enabled but zeroed,
3599                  * which is what we'd compute them to.
3600                  */
3601                 for (level = 0; level <= max_level; level++)
3602                         active->wm[level].enable = true;
3603         }
3604 }
3605
3606 void ilk_wm_get_hw_state(struct drm_device *dev)
3607 {
3608         struct drm_i915_private *dev_priv = dev->dev_private;
3609         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3610         struct drm_crtc *crtc;
3611
3612         for_each_crtc(dev, crtc)
3613                 ilk_pipe_wm_get_hw_state(crtc);
3614
3615         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3616         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3617         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3618
3619         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3620         if (INTEL_INFO(dev)->gen >= 7) {
3621                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3622                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3623         }
3624
3625         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3626                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3627                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3628         else if (IS_IVYBRIDGE(dev))
3629                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3630                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3631
3632         hw->enable_fbc_wm =
3633                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3634 }
3635
3636 /**
3637  * intel_update_watermarks - update FIFO watermark values based on current modes
3638  *
3639  * Calculate watermark values for the various WM regs based on current mode
3640  * and plane configuration.
3641  *
3642  * There are several cases to deal with here:
3643  *   - normal (i.e. non-self-refresh)
3644  *   - self-refresh (SR) mode
3645  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3646  *   - lines are small relative to FIFO size (buffer can hold more than 2
3647  *     lines), so need to account for TLB latency
3648  *
3649  *   The normal calculation is:
3650  *     watermark = dotclock * bytes per pixel * latency
3651  *   where latency is platform & configuration dependent (we assume pessimal
3652  *   values here).
3653  *
3654  *   The SR calculation is:
3655  *     watermark = (trunc(latency/line time)+1) * surface width *
3656  *       bytes per pixel
3657  *   where
3658  *     line time = htotal / dotclock
3659  *     surface width = hdisplay for normal plane and 64 for cursor
3660  *   and latency is assumed to be high, as above.
3661  *
3662  * The final value programmed to the register should always be rounded up,
3663  * and include an extra 2 entries to account for clock crossings.
3664  *
3665  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3666  * to set the non-SR watermarks to 8.
3667  */
3668 void intel_update_watermarks(struct drm_crtc *crtc)
3669 {
3670         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3671
3672         if (dev_priv->display.update_wm)
3673                 dev_priv->display.update_wm(crtc);
3674 }
3675
3676 void intel_update_sprite_watermarks(struct drm_plane *plane,
3677                                     struct drm_crtc *crtc,
3678                                     uint32_t sprite_width,
3679                                     uint32_t sprite_height,
3680                                     int pixel_size,
3681                                     bool enabled, bool scaled)
3682 {
3683         struct drm_i915_private *dev_priv = plane->dev->dev_private;
3684
3685         if (dev_priv->display.update_sprite_wm)
3686                 dev_priv->display.update_sprite_wm(plane, crtc,
3687                                                    sprite_width, sprite_height,
3688                                                    pixel_size, enabled, scaled);
3689 }
3690
3691 /**
3692  * Lock protecting IPS related data structures
3693  */
3694 DEFINE_SPINLOCK(mchdev_lock);
3695
3696 /* Global for IPS driver to get at the current i915 device. Protected by
3697  * mchdev_lock. */
3698 static struct drm_i915_private *i915_mch_dev;
3699
3700 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3701 {
3702         struct drm_i915_private *dev_priv = dev->dev_private;
3703         u16 rgvswctl;
3704
3705         assert_spin_locked(&mchdev_lock);
3706
3707         rgvswctl = I915_READ16(MEMSWCTL);
3708         if (rgvswctl & MEMCTL_CMD_STS) {
3709                 DRM_DEBUG("gpu busy, RCS change rejected\n");
3710                 return false; /* still busy with another command */
3711         }
3712
3713         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3714                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3715         I915_WRITE16(MEMSWCTL, rgvswctl);
3716         POSTING_READ16(MEMSWCTL);
3717
3718         rgvswctl |= MEMCTL_CMD_STS;
3719         I915_WRITE16(MEMSWCTL, rgvswctl);
3720
3721         return true;
3722 }
3723
3724 static void ironlake_enable_drps(struct drm_device *dev)
3725 {
3726         struct drm_i915_private *dev_priv = dev->dev_private;
3727         u32 rgvmodectl = I915_READ(MEMMODECTL);
3728         u8 fmax, fmin, fstart, vstart;
3729
3730         spin_lock_irq(&mchdev_lock);
3731
3732         /* Enable temp reporting */
3733         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3734         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3735
3736         /* 100ms RC evaluation intervals */
3737         I915_WRITE(RCUPEI, 100000);
3738         I915_WRITE(RCDNEI, 100000);
3739
3740         /* Set max/min thresholds to 90ms and 80ms respectively */
3741         I915_WRITE(RCBMAXAVG, 90000);
3742         I915_WRITE(RCBMINAVG, 80000);
3743
3744         I915_WRITE(MEMIHYST, 1);
3745
3746         /* Set up min, max, and cur for interrupt handling */
3747         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3748         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3749         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3750                 MEMMODE_FSTART_SHIFT;
3751
3752         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3753                 PXVFREQ_PX_SHIFT;
3754
3755         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3756         dev_priv->ips.fstart = fstart;
3757
3758         dev_priv->ips.max_delay = fstart;
3759         dev_priv->ips.min_delay = fmin;
3760         dev_priv->ips.cur_delay = fstart;
3761
3762         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3763                          fmax, fmin, fstart);
3764
3765         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3766
3767         /*
3768          * Interrupts will be enabled in ironlake_irq_postinstall
3769          */
3770
3771         I915_WRITE(VIDSTART, vstart);
3772         POSTING_READ(VIDSTART);
3773
3774         rgvmodectl |= MEMMODE_SWMODE_EN;
3775         I915_WRITE(MEMMODECTL, rgvmodectl);
3776
3777         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3778                 DRM_ERROR("stuck trying to change perf mode\n");
3779         mdelay(1);
3780
3781         ironlake_set_drps(dev, fstart);
3782
3783         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3784                 I915_READ(0x112e0);
3785         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3786         dev_priv->ips.last_count2 = I915_READ(0x112f4);
3787         dev_priv->ips.last_time2 = ktime_get_raw_ns();
3788
3789         spin_unlock_irq(&mchdev_lock);
3790 }
3791
3792 static void ironlake_disable_drps(struct drm_device *dev)
3793 {
3794         struct drm_i915_private *dev_priv = dev->dev_private;
3795         u16 rgvswctl;
3796
3797         spin_lock_irq(&mchdev_lock);
3798
3799         rgvswctl = I915_READ16(MEMSWCTL);
3800
3801         /* Ack interrupts, disable EFC interrupt */
3802         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3803         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3804         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3805         I915_WRITE(DEIIR, DE_PCU_EVENT);
3806         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3807
3808         /* Go back to the starting frequency */
3809         ironlake_set_drps(dev, dev_priv->ips.fstart);
3810         mdelay(1);
3811         rgvswctl |= MEMCTL_CMD_STS;
3812         I915_WRITE(MEMSWCTL, rgvswctl);
3813         mdelay(1);
3814
3815         spin_unlock_irq(&mchdev_lock);
3816 }
3817
3818 /* There's a funny hw issue where the hw returns all 0 when reading from
3819  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3820  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3821  * all limits and the gpu stuck at whatever frequency it is at atm).
3822  */
3823 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3824 {
3825         u32 limits;
3826
3827         /* Only set the down limit when we've reached the lowest level to avoid
3828          * getting more interrupts, otherwise leave this clear. This prevents a
3829          * race in the hw when coming out of rc6: There's a tiny window where
3830          * the hw runs at the minimal clock before selecting the desired
3831          * frequency, if the down threshold expires in that window we will not
3832          * receive a down interrupt. */
3833         if (IS_GEN9(dev_priv->dev)) {
3834                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
3835                 if (val <= dev_priv->rps.min_freq_softlimit)
3836                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
3837         } else {
3838                 limits = dev_priv->rps.max_freq_softlimit << 24;
3839                 if (val <= dev_priv->rps.min_freq_softlimit)
3840                         limits |= dev_priv->rps.min_freq_softlimit << 16;
3841         }
3842
3843         return limits;
3844 }
3845
3846 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3847 {
3848         int new_power;
3849         u32 threshold_up = 0, threshold_down = 0; /* in % */
3850         u32 ei_up = 0, ei_down = 0;
3851
3852         new_power = dev_priv->rps.power;
3853         switch (dev_priv->rps.power) {
3854         case LOW_POWER:
3855                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3856                         new_power = BETWEEN;
3857                 break;
3858
3859         case BETWEEN:
3860                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3861                         new_power = LOW_POWER;
3862                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3863                         new_power = HIGH_POWER;
3864                 break;
3865
3866         case HIGH_POWER:
3867                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3868                         new_power = BETWEEN;
3869                 break;
3870         }
3871         /* Max/min bins are special */
3872         if (val <= dev_priv->rps.min_freq_softlimit)
3873                 new_power = LOW_POWER;
3874         if (val >= dev_priv->rps.max_freq_softlimit)
3875                 new_power = HIGH_POWER;
3876         if (new_power == dev_priv->rps.power)
3877                 return;
3878
3879         /* Note the units here are not exactly 1us, but 1280ns. */
3880         switch (new_power) {
3881         case LOW_POWER:
3882                 /* Upclock if more than 95% busy over 16ms */
3883                 ei_up = 16000;
3884                 threshold_up = 95;
3885
3886                 /* Downclock if less than 85% busy over 32ms */
3887                 ei_down = 32000;
3888                 threshold_down = 85;
3889                 break;
3890
3891         case BETWEEN:
3892                 /* Upclock if more than 90% busy over 13ms */
3893                 ei_up = 13000;
3894                 threshold_up = 90;
3895
3896                 /* Downclock if less than 75% busy over 32ms */
3897                 ei_down = 32000;
3898                 threshold_down = 75;
3899                 break;
3900
3901         case HIGH_POWER:
3902                 /* Upclock if more than 85% busy over 10ms */
3903                 ei_up = 10000;
3904                 threshold_up = 85;
3905
3906                 /* Downclock if less than 60% busy over 32ms */
3907                 ei_down = 32000;
3908                 threshold_down = 60;
3909                 break;
3910         }
3911
3912         I915_WRITE(GEN6_RP_UP_EI,
3913                 GT_INTERVAL_FROM_US(dev_priv, ei_up));
3914         I915_WRITE(GEN6_RP_UP_THRESHOLD,
3915                 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
3916
3917         I915_WRITE(GEN6_RP_DOWN_EI,
3918                 GT_INTERVAL_FROM_US(dev_priv, ei_down));
3919         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
3920                 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
3921
3922          I915_WRITE(GEN6_RP_CONTROL,
3923                     GEN6_RP_MEDIA_TURBO |
3924                     GEN6_RP_MEDIA_HW_NORMAL_MODE |
3925                     GEN6_RP_MEDIA_IS_GFX |
3926                     GEN6_RP_ENABLE |
3927                     GEN6_RP_UP_BUSY_AVG |
3928                     GEN6_RP_DOWN_IDLE_AVG);
3929
3930         dev_priv->rps.power = new_power;
3931         dev_priv->rps.last_adj = 0;
3932 }
3933
3934 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3935 {
3936         u32 mask = 0;
3937
3938         if (val > dev_priv->rps.min_freq_softlimit)
3939                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3940         if (val < dev_priv->rps.max_freq_softlimit)
3941                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
3942
3943         mask &= dev_priv->pm_rps_events;
3944
3945         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
3946 }
3947
3948 /* gen6_set_rps is called to update the frequency request, but should also be
3949  * called when the range (min_delay and max_delay) is modified so that we can
3950  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3951 static void gen6_set_rps(struct drm_device *dev, u8 val)
3952 {
3953         struct drm_i915_private *dev_priv = dev->dev_private;
3954
3955         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3956         WARN_ON(val > dev_priv->rps.max_freq);
3957         WARN_ON(val < dev_priv->rps.min_freq);
3958
3959         /* min/max delay may still have been modified so be sure to
3960          * write the limits value.
3961          */
3962         if (val != dev_priv->rps.cur_freq) {
3963                 gen6_set_rps_thresholds(dev_priv, val);
3964
3965                 if (IS_GEN9(dev))
3966                         I915_WRITE(GEN6_RPNSWREQ,
3967                                    GEN9_FREQUENCY(val));
3968                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3969                         I915_WRITE(GEN6_RPNSWREQ,
3970                                    HSW_FREQUENCY(val));
3971                 else
3972                         I915_WRITE(GEN6_RPNSWREQ,
3973                                    GEN6_FREQUENCY(val) |
3974                                    GEN6_OFFSET(0) |
3975                                    GEN6_AGGRESSIVE_TURBO);
3976         }
3977
3978         /* Make sure we continue to get interrupts
3979          * until we hit the minimum or maximum frequencies.
3980          */
3981         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
3982         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3983
3984         POSTING_READ(GEN6_RPNSWREQ);
3985
3986         dev_priv->rps.cur_freq = val;
3987         trace_intel_gpu_freq_change(val * 50);
3988 }
3989
3990 static void valleyview_set_rps(struct drm_device *dev, u8 val)
3991 {
3992         struct drm_i915_private *dev_priv = dev->dev_private;
3993
3994         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3995         WARN_ON(val > dev_priv->rps.max_freq);
3996         WARN_ON(val < dev_priv->rps.min_freq);
3997
3998         if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
3999                       "Odd GPU freq value\n"))
4000                 val &= ~1;
4001
4002         if (val != dev_priv->rps.cur_freq)
4003                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4004
4005         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4006
4007         dev_priv->rps.cur_freq = val;
4008         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4009 }
4010
4011 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
4012  *
4013  * * If Gfx is Idle, then
4014  * 1. Mask Turbo interrupts
4015  * 2. Bring up Gfx clock
4016  * 3. Change the freq to Rpn and wait till P-Unit updates freq
4017  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
4018  * 5. Unmask Turbo interrupts
4019 */
4020 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4021 {
4022         struct drm_device *dev = dev_priv->dev;
4023         u32 val = dev_priv->rps.idle_freq;
4024
4025         /* CHV and latest VLV don't need to force the gfx clock */
4026         if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
4027                 valleyview_set_rps(dev_priv->dev, val);
4028                 return;
4029         }
4030
4031         /*
4032          * When we are idle.  Drop to min voltage state.
4033          */
4034
4035         if (dev_priv->rps.cur_freq <= val)
4036                 return;
4037
4038         /* Mask turbo interrupt so that they will not come in between */
4039         I915_WRITE(GEN6_PMINTRMSK,
4040                    gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4041
4042         vlv_force_gfx_clock(dev_priv, true);
4043
4044         dev_priv->rps.cur_freq = val;
4045
4046         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4047
4048         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
4049                                 & GENFREQSTATUS) == 0, 100))
4050                 DRM_ERROR("timed out waiting for Punit\n");
4051
4052         vlv_force_gfx_clock(dev_priv, false);
4053
4054         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4055 }
4056
4057 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4058 {
4059         mutex_lock(&dev_priv->rps.hw_lock);
4060         if (dev_priv->rps.enabled) {
4061                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4062                         gen6_rps_reset_ei(dev_priv);
4063                 I915_WRITE(GEN6_PMINTRMSK,
4064                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4065         }
4066         mutex_unlock(&dev_priv->rps.hw_lock);
4067 }
4068
4069 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4070 {
4071         struct drm_device *dev = dev_priv->dev;
4072
4073         mutex_lock(&dev_priv->rps.hw_lock);
4074         if (dev_priv->rps.enabled) {
4075                 if (IS_VALLEYVIEW(dev))
4076                         vlv_set_rps_idle(dev_priv);
4077                 else
4078                         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4079                 dev_priv->rps.last_adj = 0;
4080                 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4081         }
4082         mutex_unlock(&dev_priv->rps.hw_lock);
4083 }
4084
4085 void gen6_rps_boost(struct drm_i915_private *dev_priv)
4086 {
4087         u32 val;
4088
4089         mutex_lock(&dev_priv->rps.hw_lock);
4090         val = dev_priv->rps.max_freq_softlimit;
4091         if (dev_priv->rps.enabled &&
4092             dev_priv->mm.busy &&
4093             dev_priv->rps.cur_freq < val) {
4094                 intel_set_rps(dev_priv->dev, val);
4095                 dev_priv->rps.last_adj = 0;
4096         }
4097         mutex_unlock(&dev_priv->rps.hw_lock);
4098 }
4099
4100 void intel_set_rps(struct drm_device *dev, u8 val)
4101 {
4102         if (IS_VALLEYVIEW(dev))
4103                 valleyview_set_rps(dev, val);
4104         else
4105                 gen6_set_rps(dev, val);
4106 }
4107
4108 static void gen9_disable_rps(struct drm_device *dev)
4109 {
4110         struct drm_i915_private *dev_priv = dev->dev_private;
4111
4112         I915_WRITE(GEN6_RC_CONTROL, 0);
4113         I915_WRITE(GEN9_PG_ENABLE, 0);
4114 }
4115
4116 static void gen6_disable_rps(struct drm_device *dev)
4117 {
4118         struct drm_i915_private *dev_priv = dev->dev_private;
4119
4120         I915_WRITE(GEN6_RC_CONTROL, 0);
4121         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4122 }
4123
4124 static void cherryview_disable_rps(struct drm_device *dev)
4125 {
4126         struct drm_i915_private *dev_priv = dev->dev_private;
4127
4128         I915_WRITE(GEN6_RC_CONTROL, 0);
4129 }
4130
4131 static void valleyview_disable_rps(struct drm_device *dev)
4132 {
4133         struct drm_i915_private *dev_priv = dev->dev_private;
4134
4135         /* we're doing forcewake before Disabling RC6,
4136          * This what the BIOS expects when going into suspend */
4137         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4138
4139         I915_WRITE(GEN6_RC_CONTROL, 0);
4140
4141         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4142 }
4143
4144 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4145 {
4146         if (IS_VALLEYVIEW(dev)) {
4147                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4148                         mode = GEN6_RC_CTL_RC6_ENABLE;
4149                 else
4150                         mode = 0;
4151         }
4152         if (HAS_RC6p(dev))
4153                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4154                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4155                               (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4156                               (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4157
4158         else
4159                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4160                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4161 }
4162
4163 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4164 {
4165         /* No RC6 before Ironlake */
4166         if (INTEL_INFO(dev)->gen < 5)
4167                 return 0;
4168
4169         /* RC6 is only on Ironlake mobile not on desktop */
4170         if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
4171                 return 0;
4172
4173         /* Respect the kernel parameter if it is set */
4174         if (enable_rc6 >= 0) {
4175                 int mask;
4176
4177                 if (HAS_RC6p(dev))
4178                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4179                                INTEL_RC6pp_ENABLE;
4180                 else
4181                         mask = INTEL_RC6_ENABLE;
4182
4183                 if ((enable_rc6 & mask) != enable_rc6)
4184                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4185                                       enable_rc6 & mask, enable_rc6, mask);
4186
4187                 return enable_rc6 & mask;
4188         }
4189
4190         /* Disable RC6 on Ironlake */
4191         if (INTEL_INFO(dev)->gen == 5)
4192                 return 0;
4193
4194         if (IS_IVYBRIDGE(dev))
4195                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4196
4197         return INTEL_RC6_ENABLE;
4198 }
4199
4200 int intel_enable_rc6(const struct drm_device *dev)
4201 {
4202         return i915.enable_rc6;
4203 }
4204
4205 static void gen6_init_rps_frequencies(struct drm_device *dev)
4206 {
4207         struct drm_i915_private *dev_priv = dev->dev_private;
4208         uint32_t rp_state_cap;
4209         u32 ddcc_status = 0;
4210         int ret;
4211
4212         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4213         /* All of these values are in units of 50MHz */
4214         dev_priv->rps.cur_freq          = 0;
4215         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4216         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
4217         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
4218         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
4219         if (IS_SKYLAKE(dev)) {
4220                 /* Store the frequency values in 16.66 MHZ units, which is
4221                    the natural hardware unit for SKL */
4222                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4223                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4224                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4225         }
4226         /* hw_max = RP0 until we check for overclocking */
4227         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
4228
4229         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4230         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4231                 ret = sandybridge_pcode_read(dev_priv,
4232                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4233                                         &ddcc_status);
4234                 if (0 == ret)
4235                         dev_priv->rps.efficient_freq =
4236                                 clamp_t(u8,
4237                                         ((ddcc_status >> 8) & 0xff),
4238                                         dev_priv->rps.min_freq,
4239                                         dev_priv->rps.max_freq);
4240         }
4241
4242         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4243
4244         /* Preserve min/max settings in case of re-init */
4245         if (dev_priv->rps.max_freq_softlimit == 0)
4246                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4247
4248         if (dev_priv->rps.min_freq_softlimit == 0) {
4249                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4250                         dev_priv->rps.min_freq_softlimit =
4251                                 /* max(RPe, 450 MHz) */
4252                                 max(dev_priv->rps.efficient_freq, (u8) 9);
4253                 else
4254                         dev_priv->rps.min_freq_softlimit =
4255                                 dev_priv->rps.min_freq;
4256         }
4257 }
4258
4259 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4260 static void gen9_enable_rps(struct drm_device *dev)
4261 {
4262         struct drm_i915_private *dev_priv = dev->dev_private;
4263
4264         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4265
4266         gen6_init_rps_frequencies(dev);
4267
4268         /* Program defaults and thresholds for RPS*/
4269         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4270                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4271
4272         /* 1 second timeout*/
4273         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4274                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4275
4276         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4277
4278         /* Leaning on the below call to gen6_set_rps to program/setup the
4279          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4280          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4281         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4282         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4283
4284         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4285 }
4286
4287 static void gen9_enable_rc6(struct drm_device *dev)
4288 {
4289         struct drm_i915_private *dev_priv = dev->dev_private;
4290         struct intel_engine_cs *ring;
4291         uint32_t rc6_mask = 0;
4292         int unused;
4293
4294         /* 1a: Software RC state - RC0 */
4295         I915_WRITE(GEN6_RC_STATE, 0);
4296
4297         /* 1b: Get forcewake during program sequence. Although the driver
4298          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4299         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4300
4301         /* 2a: Disable RC states. */
4302         I915_WRITE(GEN6_RC_CONTROL, 0);
4303
4304         /* 2b: Program RC6 thresholds.*/
4305         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4306         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4307         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4308         for_each_ring(ring, dev_priv, unused)
4309                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4310         I915_WRITE(GEN6_RC_SLEEP, 0);
4311         I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4312
4313         /* 2c: Program Coarse Power Gating Policies. */
4314         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4315         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4316
4317         /* 3a: Enable RC6 */
4318         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4319                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4320         DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4321                         "on" : "off");
4322         I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4323                                    GEN6_RC_CTL_EI_MODE(1) |
4324                                    rc6_mask);
4325
4326         /* 3b: Enable Coarse Power Gating only when RC6 is enabled */
4327         I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? 3 : 0);
4328
4329         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4330
4331 }
4332
4333 static void gen8_enable_rps(struct drm_device *dev)
4334 {
4335         struct drm_i915_private *dev_priv = dev->dev_private;
4336         struct intel_engine_cs *ring;
4337         uint32_t rc6_mask = 0;
4338         int unused;
4339
4340         /* 1a: Software RC state - RC0 */
4341         I915_WRITE(GEN6_RC_STATE, 0);
4342
4343         /* 1c & 1d: Get forcewake during program sequence. Although the driver
4344          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4345         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4346
4347         /* 2a: Disable RC states. */
4348         I915_WRITE(GEN6_RC_CONTROL, 0);
4349
4350         /* Initialize rps frequencies */
4351         gen6_init_rps_frequencies(dev);
4352
4353         /* 2b: Program RC6 thresholds.*/
4354         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4355         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4356         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4357         for_each_ring(ring, dev_priv, unused)
4358                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4359         I915_WRITE(GEN6_RC_SLEEP, 0);
4360         if (IS_BROADWELL(dev))
4361                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4362         else
4363                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4364
4365         /* 3: Enable RC6 */
4366         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4367                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4368         intel_print_rc6_info(dev, rc6_mask);
4369         if (IS_BROADWELL(dev))
4370                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4371                                 GEN7_RC_CTL_TO_MODE |
4372                                 rc6_mask);
4373         else
4374                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4375                                 GEN6_RC_CTL_EI_MODE(1) |
4376                                 rc6_mask);
4377
4378         /* 4 Program defaults and thresholds for RPS*/
4379         I915_WRITE(GEN6_RPNSWREQ,
4380                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4381         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4382                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4383         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4384         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4385
4386         /* Docs recommend 900MHz, and 300 MHz respectively */
4387         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4388                    dev_priv->rps.max_freq_softlimit << 24 |
4389                    dev_priv->rps.min_freq_softlimit << 16);
4390
4391         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4392         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4393         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4394         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4395
4396         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4397
4398         /* 5: Enable RPS */
4399         I915_WRITE(GEN6_RP_CONTROL,
4400                    GEN6_RP_MEDIA_TURBO |
4401                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4402                    GEN6_RP_MEDIA_IS_GFX |
4403                    GEN6_RP_ENABLE |
4404                    GEN6_RP_UP_BUSY_AVG |
4405                    GEN6_RP_DOWN_IDLE_AVG);
4406
4407         /* 6: Ring frequency + overclocking (our driver does this later */
4408
4409         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4410         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4411
4412         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4413 }
4414
4415 static void gen6_enable_rps(struct drm_device *dev)
4416 {
4417         struct drm_i915_private *dev_priv = dev->dev_private;
4418         struct intel_engine_cs *ring;
4419         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4420         u32 gtfifodbg;
4421         int rc6_mode;
4422         int i, ret;
4423
4424         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4425
4426         /* Here begins a magic sequence of register writes to enable
4427          * auto-downclocking.
4428          *
4429          * Perhaps there might be some value in exposing these to
4430          * userspace...
4431          */
4432         I915_WRITE(GEN6_RC_STATE, 0);
4433
4434         /* Clear the DBG now so we don't confuse earlier errors */
4435         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4436                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4437                 I915_WRITE(GTFIFODBG, gtfifodbg);
4438         }
4439
4440         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4441
4442         /* Initialize rps frequencies */
4443         gen6_init_rps_frequencies(dev);
4444
4445         /* disable the counters and set deterministic thresholds */
4446         I915_WRITE(GEN6_RC_CONTROL, 0);
4447
4448         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4449         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4450         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4451         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4452         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4453
4454         for_each_ring(ring, dev_priv, i)
4455                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4456
4457         I915_WRITE(GEN6_RC_SLEEP, 0);
4458         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4459         if (IS_IVYBRIDGE(dev))
4460                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4461         else
4462                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4463         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4464         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4465
4466         /* Check if we are enabling RC6 */
4467         rc6_mode = intel_enable_rc6(dev_priv->dev);
4468         if (rc6_mode & INTEL_RC6_ENABLE)
4469                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4470
4471         /* We don't use those on Haswell */
4472         if (!IS_HASWELL(dev)) {
4473                 if (rc6_mode & INTEL_RC6p_ENABLE)
4474                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4475
4476                 if (rc6_mode & INTEL_RC6pp_ENABLE)
4477                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4478         }
4479
4480         intel_print_rc6_info(dev, rc6_mask);
4481
4482         I915_WRITE(GEN6_RC_CONTROL,
4483                    rc6_mask |
4484                    GEN6_RC_CTL_EI_MODE(1) |
4485                    GEN6_RC_CTL_HW_ENABLE);
4486
4487         /* Power down if completely idle for over 50ms */
4488         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4489         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4490
4491         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4492         if (ret)
4493                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4494
4495         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4496         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4497                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4498                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4499                                  (pcu_mbox & 0xff) * 50);
4500                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
4501         }
4502
4503         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4504         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4505
4506         rc6vids = 0;
4507         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4508         if (IS_GEN6(dev) && ret) {
4509                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4510         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4511                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4512                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4513                 rc6vids &= 0xffff00;
4514                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
4515                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4516                 if (ret)
4517                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4518         }
4519
4520         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4521 }
4522
4523 static void __gen6_update_ring_freq(struct drm_device *dev)
4524 {
4525         struct drm_i915_private *dev_priv = dev->dev_private;
4526         int min_freq = 15;
4527         unsigned int gpu_freq;
4528         unsigned int max_ia_freq, min_ring_freq;
4529         int scaling_factor = 180;
4530         struct cpufreq_policy *policy;
4531
4532         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4533
4534         policy = cpufreq_cpu_get(0);
4535         if (policy) {
4536                 max_ia_freq = policy->cpuinfo.max_freq;
4537                 cpufreq_cpu_put(policy);
4538         } else {
4539                 /*
4540                  * Default to measured freq if none found, PCU will ensure we
4541                  * don't go over
4542                  */
4543                 max_ia_freq = tsc_khz;
4544         }
4545
4546         /* Convert from kHz to MHz */
4547         max_ia_freq /= 1000;
4548
4549         min_ring_freq = I915_READ(DCLK) & 0xf;
4550         /* convert DDR frequency from units of 266.6MHz to bandwidth */
4551         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4552
4553         /*
4554          * For each potential GPU frequency, load a ring frequency we'd like
4555          * to use for memory access.  We do this by specifying the IA frequency
4556          * the PCU should use as a reference to determine the ring frequency.
4557          */
4558         for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4559              gpu_freq--) {
4560                 int diff = dev_priv->rps.max_freq - gpu_freq;
4561                 unsigned int ia_freq = 0, ring_freq = 0;
4562
4563                 if (INTEL_INFO(dev)->gen >= 8) {
4564                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
4565                         ring_freq = max(min_ring_freq, gpu_freq);
4566                 } else if (IS_HASWELL(dev)) {
4567                         ring_freq = mult_frac(gpu_freq, 5, 4);
4568                         ring_freq = max(min_ring_freq, ring_freq);
4569                         /* leave ia_freq as the default, chosen by cpufreq */
4570                 } else {
4571                         /* On older processors, there is no separate ring
4572                          * clock domain, so in order to boost the bandwidth
4573                          * of the ring, we need to upclock the CPU (ia_freq).
4574                          *
4575                          * For GPU frequencies less than 750MHz,
4576                          * just use the lowest ring freq.
4577                          */
4578                         if (gpu_freq < min_freq)
4579                                 ia_freq = 800;
4580                         else
4581                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4582                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4583                 }
4584
4585                 sandybridge_pcode_write(dev_priv,
4586                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4587                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4588                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4589                                         gpu_freq);
4590         }
4591 }
4592
4593 void gen6_update_ring_freq(struct drm_device *dev)
4594 {
4595         struct drm_i915_private *dev_priv = dev->dev_private;
4596
4597         if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
4598                 return;
4599
4600         mutex_lock(&dev_priv->rps.hw_lock);
4601         __gen6_update_ring_freq(dev);
4602         mutex_unlock(&dev_priv->rps.hw_lock);
4603 }
4604
4605 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4606 {
4607         struct drm_device *dev = dev_priv->dev;
4608         u32 val, rp0;
4609
4610         if (dev->pdev->revision >= 0x20) {
4611                 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4612
4613                 switch (INTEL_INFO(dev)->eu_total) {
4614                 case 8:
4615                                 /* (2 * 4) config */
4616                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
4617                                 break;
4618                 case 12:
4619                                 /* (2 * 6) config */
4620                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
4621                                 break;
4622                 case 16:
4623                                 /* (2 * 8) config */
4624                 default:
4625                                 /* Setting (2 * 8) Min RP0 for any other combination */
4626                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
4627                                 break;
4628                 }
4629                 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
4630         } else {
4631                 /* For pre-production hardware */
4632                 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4633                 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4634                        PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4635         }
4636         return rp0;
4637 }
4638
4639 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4640 {
4641         u32 val, rpe;
4642
4643         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
4644         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
4645
4646         return rpe;
4647 }
4648
4649 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
4650 {
4651         struct drm_device *dev = dev_priv->dev;
4652         u32 val, rp1;
4653
4654         if (dev->pdev->revision >= 0x20) {
4655                 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4656                 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
4657         } else {
4658                 /* For pre-production hardware */
4659                 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4660                 rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4661                        PUNIT_GPU_STATUS_MAX_FREQ_MASK);
4662         }
4663         return rp1;
4664 }
4665
4666 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4667 {
4668         struct drm_device *dev = dev_priv->dev;
4669         u32 val, rpn;
4670
4671         if (dev->pdev->revision >= 0x20) {
4672                 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
4673                 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
4674                        FB_GFX_FREQ_FUSE_MASK);
4675         } else { /* For pre-production hardware */
4676                 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4677                 rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
4678                        PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
4679         }
4680
4681         return rpn;
4682 }
4683
4684 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4685 {
4686         u32 val, rp1;
4687
4688         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4689
4690         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4691
4692         return rp1;
4693 }
4694
4695 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4696 {
4697         u32 val, rp0;
4698
4699         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4700
4701         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4702         /* Clamp to max */
4703         rp0 = min_t(u32, rp0, 0xea);
4704
4705         return rp0;
4706 }
4707
4708 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4709 {
4710         u32 val, rpe;
4711
4712         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4713         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4714         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4715         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4716
4717         return rpe;
4718 }
4719
4720 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4721 {
4722         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4723 }
4724
4725 /* Check that the pctx buffer wasn't move under us. */
4726 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4727 {
4728         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4729
4730         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4731                              dev_priv->vlv_pctx->stolen->start);
4732 }
4733
4734
4735 /* Check that the pcbr address is not empty. */
4736 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4737 {
4738         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4739
4740         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4741 }
4742
4743 static void cherryview_setup_pctx(struct drm_device *dev)
4744 {
4745         struct drm_i915_private *dev_priv = dev->dev_private;
4746         unsigned long pctx_paddr, paddr;
4747         struct i915_gtt *gtt = &dev_priv->gtt;
4748         u32 pcbr;
4749         int pctx_size = 32*1024;
4750
4751         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4752
4753         pcbr = I915_READ(VLV_PCBR);
4754         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4755                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4756                 paddr = (dev_priv->mm.stolen_base +
4757                          (gtt->stolen_size - pctx_size));
4758
4759                 pctx_paddr = (paddr & (~4095));
4760                 I915_WRITE(VLV_PCBR, pctx_paddr);
4761         }
4762
4763         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4764 }
4765
4766 static void valleyview_setup_pctx(struct drm_device *dev)
4767 {
4768         struct drm_i915_private *dev_priv = dev->dev_private;
4769         struct drm_i915_gem_object *pctx;
4770         unsigned long pctx_paddr;
4771         u32 pcbr;
4772         int pctx_size = 24*1024;
4773
4774         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4775
4776         pcbr = I915_READ(VLV_PCBR);
4777         if (pcbr) {
4778                 /* BIOS set it up already, grab the pre-alloc'd space */
4779                 int pcbr_offset;
4780
4781                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4782                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4783                                                                       pcbr_offset,
4784                                                                       I915_GTT_OFFSET_NONE,
4785                                                                       pctx_size);
4786                 goto out;
4787         }
4788
4789         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4790
4791         /*
4792          * From the Gunit register HAS:
4793          * The Gfx driver is expected to program this register and ensure
4794          * proper allocation within Gfx stolen memory.  For example, this
4795          * register should be programmed such than the PCBR range does not
4796          * overlap with other ranges, such as the frame buffer, protected
4797          * memory, or any other relevant ranges.
4798          */
4799         pctx = i915_gem_object_create_stolen(dev, pctx_size);
4800         if (!pctx) {
4801                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4802                 return;
4803         }
4804
4805         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4806         I915_WRITE(VLV_PCBR, pctx_paddr);
4807
4808 out:
4809         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4810         dev_priv->vlv_pctx = pctx;
4811 }
4812
4813 static void valleyview_cleanup_pctx(struct drm_device *dev)
4814 {
4815         struct drm_i915_private *dev_priv = dev->dev_private;
4816
4817         if (WARN_ON(!dev_priv->vlv_pctx))
4818                 return;
4819
4820         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4821         dev_priv->vlv_pctx = NULL;
4822 }
4823
4824 static void valleyview_init_gt_powersave(struct drm_device *dev)
4825 {
4826         struct drm_i915_private *dev_priv = dev->dev_private;
4827         u32 val;
4828
4829         valleyview_setup_pctx(dev);
4830
4831         mutex_lock(&dev_priv->rps.hw_lock);
4832
4833         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4834         switch ((val >> 6) & 3) {
4835         case 0:
4836         case 1:
4837                 dev_priv->mem_freq = 800;
4838                 break;
4839         case 2:
4840                 dev_priv->mem_freq = 1066;
4841                 break;
4842         case 3:
4843                 dev_priv->mem_freq = 1333;
4844                 break;
4845         }
4846         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4847
4848         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4849         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4850         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4851                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4852                          dev_priv->rps.max_freq);
4853
4854         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4855         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4856                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4857                          dev_priv->rps.efficient_freq);
4858
4859         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4860         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4861                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4862                          dev_priv->rps.rp1_freq);
4863
4864         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4865         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4866                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4867                          dev_priv->rps.min_freq);
4868
4869         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4870
4871         /* Preserve min/max settings in case of re-init */
4872         if (dev_priv->rps.max_freq_softlimit == 0)
4873                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4874
4875         if (dev_priv->rps.min_freq_softlimit == 0)
4876                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4877
4878         mutex_unlock(&dev_priv->rps.hw_lock);
4879 }
4880
4881 static void cherryview_init_gt_powersave(struct drm_device *dev)
4882 {
4883         struct drm_i915_private *dev_priv = dev->dev_private;
4884         u32 val;
4885
4886         cherryview_setup_pctx(dev);
4887
4888         mutex_lock(&dev_priv->rps.hw_lock);
4889
4890         mutex_lock(&dev_priv->dpio_lock);
4891         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
4892         mutex_unlock(&dev_priv->dpio_lock);
4893
4894         switch ((val >> 2) & 0x7) {
4895         case 0:
4896         case 1:
4897                 dev_priv->rps.cz_freq = 200;
4898                 dev_priv->mem_freq = 1600;
4899                 break;
4900         case 2:
4901                 dev_priv->rps.cz_freq = 267;
4902                 dev_priv->mem_freq = 1600;
4903                 break;
4904         case 3:
4905                 dev_priv->rps.cz_freq = 333;
4906                 dev_priv->mem_freq = 2000;
4907                 break;
4908         case 4:
4909                 dev_priv->rps.cz_freq = 320;
4910                 dev_priv->mem_freq = 1600;
4911                 break;
4912         case 5:
4913                 dev_priv->rps.cz_freq = 400;
4914                 dev_priv->mem_freq = 1600;
4915                 break;
4916         }
4917         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4918
4919         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4920         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4921         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4922                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4923                          dev_priv->rps.max_freq);
4924
4925         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4926         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4927                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4928                          dev_priv->rps.efficient_freq);
4929
4930         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4931         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4932                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4933                          dev_priv->rps.rp1_freq);
4934
4935         dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4936         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4937                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4938                          dev_priv->rps.min_freq);
4939
4940         WARN_ONCE((dev_priv->rps.max_freq |
4941                    dev_priv->rps.efficient_freq |
4942                    dev_priv->rps.rp1_freq |
4943                    dev_priv->rps.min_freq) & 1,
4944                   "Odd GPU freq values\n");
4945
4946         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4947
4948         /* Preserve min/max settings in case of re-init */
4949         if (dev_priv->rps.max_freq_softlimit == 0)
4950                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4951
4952         if (dev_priv->rps.min_freq_softlimit == 0)
4953                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4954
4955         mutex_unlock(&dev_priv->rps.hw_lock);
4956 }
4957
4958 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4959 {
4960         valleyview_cleanup_pctx(dev);
4961 }
4962
4963 static void cherryview_enable_rps(struct drm_device *dev)
4964 {
4965         struct drm_i915_private *dev_priv = dev->dev_private;
4966         struct intel_engine_cs *ring;
4967         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4968         int i;
4969
4970         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4971
4972         gtfifodbg = I915_READ(GTFIFODBG);
4973         if (gtfifodbg) {
4974                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4975                                  gtfifodbg);
4976                 I915_WRITE(GTFIFODBG, gtfifodbg);
4977         }
4978
4979         cherryview_check_pctx(dev_priv);
4980
4981         /* 1a & 1b: Get forcewake during program sequence. Although the driver
4982          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4983         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4984
4985         /*  Disable RC states. */
4986         I915_WRITE(GEN6_RC_CONTROL, 0);
4987
4988         /* 2a: Program RC6 thresholds.*/
4989         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4990         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4991         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4992
4993         for_each_ring(ring, dev_priv, i)
4994                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4995         I915_WRITE(GEN6_RC_SLEEP, 0);
4996
4997         /* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
4998         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4999
5000         /* allows RC6 residency counter to work */
5001         I915_WRITE(VLV_COUNTER_CONTROL,
5002                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5003                                       VLV_MEDIA_RC6_COUNT_EN |
5004                                       VLV_RENDER_RC6_COUNT_EN));
5005
5006         /* For now we assume BIOS is allocating and populating the PCBR  */
5007         pcbr = I915_READ(VLV_PCBR);
5008
5009         /* 3: Enable RC6 */
5010         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5011                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5012                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5013
5014         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5015
5016         /* 4 Program defaults and thresholds for RPS*/
5017         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5018         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5019         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5020         I915_WRITE(GEN6_RP_UP_EI, 66000);
5021         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5022
5023         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5024
5025         /* 5: Enable RPS */
5026         I915_WRITE(GEN6_RP_CONTROL,
5027                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5028                    GEN6_RP_MEDIA_IS_GFX |
5029                    GEN6_RP_ENABLE |
5030                    GEN6_RP_UP_BUSY_AVG |
5031                    GEN6_RP_DOWN_IDLE_AVG);
5032
5033         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5034
5035         /* RPS code assumes GPLL is used */
5036         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5037
5038         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5039         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5040
5041         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5042         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5043                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5044                          dev_priv->rps.cur_freq);
5045
5046         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5047                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5048                          dev_priv->rps.efficient_freq);
5049
5050         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5051
5052         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5053 }
5054
5055 static void valleyview_enable_rps(struct drm_device *dev)
5056 {
5057         struct drm_i915_private *dev_priv = dev->dev_private;
5058         struct intel_engine_cs *ring;
5059         u32 gtfifodbg, val, rc6_mode = 0;
5060         int i;
5061
5062         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5063
5064         valleyview_check_pctx(dev_priv);
5065
5066         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5067                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5068                                  gtfifodbg);
5069                 I915_WRITE(GTFIFODBG, gtfifodbg);
5070         }
5071
5072         /* If VLV, Forcewake all wells, else re-direct to regular path */
5073         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5074
5075         /*  Disable RC states. */
5076         I915_WRITE(GEN6_RC_CONTROL, 0);
5077
5078         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5079         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5080         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5081         I915_WRITE(GEN6_RP_UP_EI, 66000);
5082         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5083
5084         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5085
5086         I915_WRITE(GEN6_RP_CONTROL,
5087                    GEN6_RP_MEDIA_TURBO |
5088                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5089                    GEN6_RP_MEDIA_IS_GFX |
5090                    GEN6_RP_ENABLE |
5091                    GEN6_RP_UP_BUSY_AVG |
5092                    GEN6_RP_DOWN_IDLE_CONT);
5093
5094         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5095         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5096         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5097
5098         for_each_ring(ring, dev_priv, i)
5099                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5100
5101         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5102
5103         /* allows RC6 residency counter to work */
5104         I915_WRITE(VLV_COUNTER_CONTROL,
5105                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5106                                       VLV_RENDER_RC0_COUNT_EN |
5107                                       VLV_MEDIA_RC6_COUNT_EN |
5108                                       VLV_RENDER_RC6_COUNT_EN));
5109
5110         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5111                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5112
5113         intel_print_rc6_info(dev, rc6_mode);
5114
5115         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5116
5117         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5118
5119         /* RPS code assumes GPLL is used */
5120         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5121
5122         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5123         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5124
5125         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5126         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5127                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5128                          dev_priv->rps.cur_freq);
5129
5130         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5131                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5132                          dev_priv->rps.efficient_freq);
5133
5134         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5135
5136         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5137 }
5138
5139 static unsigned long intel_pxfreq(u32 vidfreq)
5140 {
5141         unsigned long freq;
5142         int div = (vidfreq & 0x3f0000) >> 16;
5143         int post = (vidfreq & 0x3000) >> 12;
5144         int pre = (vidfreq & 0x7);
5145
5146         if (!pre)
5147                 return 0;
5148
5149         freq = ((div * 133333) / ((1<<post) * pre));
5150
5151         return freq;
5152 }
5153
5154 static const struct cparams {
5155         u16 i;
5156         u16 t;
5157         u16 m;
5158         u16 c;
5159 } cparams[] = {
5160         { 1, 1333, 301, 28664 },
5161         { 1, 1066, 294, 24460 },
5162         { 1, 800, 294, 25192 },
5163         { 0, 1333, 276, 27605 },
5164         { 0, 1066, 276, 27605 },
5165         { 0, 800, 231, 23784 },
5166 };
5167
5168 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5169 {
5170         u64 total_count, diff, ret;
5171         u32 count1, count2, count3, m = 0, c = 0;
5172         unsigned long now = jiffies_to_msecs(jiffies), diff1;
5173         int i;
5174
5175         assert_spin_locked(&mchdev_lock);
5176
5177         diff1 = now - dev_priv->ips.last_time1;
5178
5179         /* Prevent division-by-zero if we are asking too fast.
5180          * Also, we don't get interesting results if we are polling
5181          * faster than once in 10ms, so just return the saved value
5182          * in such cases.
5183          */
5184         if (diff1 <= 10)
5185                 return dev_priv->ips.chipset_power;
5186
5187         count1 = I915_READ(DMIEC);
5188         count2 = I915_READ(DDREC);
5189         count3 = I915_READ(CSIEC);
5190
5191         total_count = count1 + count2 + count3;
5192
5193         /* FIXME: handle per-counter overflow */
5194         if (total_count < dev_priv->ips.last_count1) {
5195                 diff = ~0UL - dev_priv->ips.last_count1;
5196                 diff += total_count;
5197         } else {
5198                 diff = total_count - dev_priv->ips.last_count1;
5199         }
5200
5201         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5202                 if (cparams[i].i == dev_priv->ips.c_m &&
5203                     cparams[i].t == dev_priv->ips.r_t) {
5204                         m = cparams[i].m;
5205                         c = cparams[i].c;
5206                         break;
5207                 }
5208         }
5209
5210         diff = div_u64(diff, diff1);
5211         ret = ((m * diff) + c);
5212         ret = div_u64(ret, 10);
5213
5214         dev_priv->ips.last_count1 = total_count;
5215         dev_priv->ips.last_time1 = now;
5216
5217         dev_priv->ips.chipset_power = ret;
5218
5219         return ret;
5220 }
5221
5222 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5223 {
5224         struct drm_device *dev = dev_priv->dev;
5225         unsigned long val;
5226
5227         if (INTEL_INFO(dev)->gen != 5)
5228                 return 0;
5229
5230         spin_lock_irq(&mchdev_lock);
5231
5232         val = __i915_chipset_val(dev_priv);
5233
5234         spin_unlock_irq(&mchdev_lock);
5235
5236         return val;
5237 }
5238
5239 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5240 {
5241         unsigned long m, x, b;
5242         u32 tsfs;
5243
5244         tsfs = I915_READ(TSFS);
5245
5246         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5247         x = I915_READ8(TR1);
5248
5249         b = tsfs & TSFS_INTR_MASK;
5250
5251         return ((m * x) / 127) - b;
5252 }
5253
5254 static int _pxvid_to_vd(u8 pxvid)
5255 {
5256         if (pxvid == 0)
5257                 return 0;
5258
5259         if (pxvid >= 8 && pxvid < 31)
5260                 pxvid = 31;
5261
5262         return (pxvid + 2) * 125;
5263 }
5264
5265 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5266 {
5267         struct drm_device *dev = dev_priv->dev;
5268         const int vd = _pxvid_to_vd(pxvid);
5269         const int vm = vd - 1125;
5270
5271         if (INTEL_INFO(dev)->is_mobile)
5272                 return vm > 0 ? vm : 0;
5273
5274         return vd;
5275 }
5276
5277 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5278 {
5279         u64 now, diff, diffms;
5280         u32 count;
5281
5282         assert_spin_locked(&mchdev_lock);
5283
5284         now = ktime_get_raw_ns();
5285         diffms = now - dev_priv->ips.last_time2;
5286         do_div(diffms, NSEC_PER_MSEC);
5287
5288         /* Don't divide by 0 */
5289         if (!diffms)
5290                 return;
5291
5292         count = I915_READ(GFXEC);
5293
5294         if (count < dev_priv->ips.last_count2) {
5295                 diff = ~0UL - dev_priv->ips.last_count2;
5296                 diff += count;
5297         } else {
5298                 diff = count - dev_priv->ips.last_count2;
5299         }
5300
5301         dev_priv->ips.last_count2 = count;
5302         dev_priv->ips.last_time2 = now;
5303
5304         /* More magic constants... */
5305         diff = diff * 1181;
5306         diff = div_u64(diff, diffms * 10);
5307         dev_priv->ips.gfx_power = diff;
5308 }
5309
5310 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5311 {
5312         struct drm_device *dev = dev_priv->dev;
5313
5314         if (INTEL_INFO(dev)->gen != 5)
5315                 return;
5316
5317         spin_lock_irq(&mchdev_lock);
5318
5319         __i915_update_gfx_val(dev_priv);
5320
5321         spin_unlock_irq(&mchdev_lock);
5322 }
5323
5324 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5325 {
5326         unsigned long t, corr, state1, corr2, state2;
5327         u32 pxvid, ext_v;
5328
5329         assert_spin_locked(&mchdev_lock);
5330
5331         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5332         pxvid = (pxvid >> 24) & 0x7f;
5333         ext_v = pvid_to_extvid(dev_priv, pxvid);
5334
5335         state1 = ext_v;
5336
5337         t = i915_mch_val(dev_priv);
5338
5339         /* Revel in the empirically derived constants */
5340
5341         /* Correction factor in 1/100000 units */
5342         if (t > 80)
5343                 corr = ((t * 2349) + 135940);
5344         else if (t >= 50)
5345                 corr = ((t * 964) + 29317);
5346         else /* < 50 */
5347                 corr = ((t * 301) + 1004);
5348
5349         corr = corr * ((150142 * state1) / 10000 - 78642);
5350         corr /= 100000;
5351         corr2 = (corr * dev_priv->ips.corr);
5352
5353         state2 = (corr2 * state1) / 10000;
5354         state2 /= 100; /* convert to mW */
5355
5356         __i915_update_gfx_val(dev_priv);
5357
5358         return dev_priv->ips.gfx_power + state2;
5359 }
5360
5361 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5362 {
5363         struct drm_device *dev = dev_priv->dev;
5364         unsigned long val;
5365
5366         if (INTEL_INFO(dev)->gen != 5)
5367                 return 0;
5368
5369         spin_lock_irq(&mchdev_lock);
5370
5371         val = __i915_gfx_val(dev_priv);
5372
5373         spin_unlock_irq(&mchdev_lock);
5374
5375         return val;
5376 }
5377
5378 /**
5379  * i915_read_mch_val - return value for IPS use
5380  *
5381  * Calculate and return a value for the IPS driver to use when deciding whether
5382  * we have thermal and power headroom to increase CPU or GPU power budget.
5383  */
5384 unsigned long i915_read_mch_val(void)
5385 {
5386         struct drm_i915_private *dev_priv;
5387         unsigned long chipset_val, graphics_val, ret = 0;
5388
5389         spin_lock_irq(&mchdev_lock);
5390         if (!i915_mch_dev)
5391                 goto out_unlock;
5392         dev_priv = i915_mch_dev;
5393
5394         chipset_val = __i915_chipset_val(dev_priv);
5395         graphics_val = __i915_gfx_val(dev_priv);
5396
5397         ret = chipset_val + graphics_val;
5398
5399 out_unlock:
5400         spin_unlock_irq(&mchdev_lock);
5401
5402         return ret;
5403 }
5404 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5405
5406 /**
5407  * i915_gpu_raise - raise GPU frequency limit
5408  *
5409  * Raise the limit; IPS indicates we have thermal headroom.
5410  */
5411 bool i915_gpu_raise(void)
5412 {
5413         struct drm_i915_private *dev_priv;
5414         bool ret = true;
5415
5416         spin_lock_irq(&mchdev_lock);
5417         if (!i915_mch_dev) {
5418                 ret = false;
5419                 goto out_unlock;
5420         }
5421         dev_priv = i915_mch_dev;
5422
5423         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5424                 dev_priv->ips.max_delay--;
5425
5426 out_unlock:
5427         spin_unlock_irq(&mchdev_lock);
5428
5429         return ret;
5430 }
5431 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5432
5433 /**
5434  * i915_gpu_lower - lower GPU frequency limit
5435  *
5436  * IPS indicates we're close to a thermal limit, so throttle back the GPU
5437  * frequency maximum.
5438  */
5439 bool i915_gpu_lower(void)
5440 {
5441         struct drm_i915_private *dev_priv;
5442         bool ret = true;
5443
5444         spin_lock_irq(&mchdev_lock);
5445         if (!i915_mch_dev) {
5446                 ret = false;
5447                 goto out_unlock;
5448         }
5449         dev_priv = i915_mch_dev;
5450
5451         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5452                 dev_priv->ips.max_delay++;
5453
5454 out_unlock:
5455         spin_unlock_irq(&mchdev_lock);
5456
5457         return ret;
5458 }
5459 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5460
5461 /**
5462  * i915_gpu_busy - indicate GPU business to IPS
5463  *
5464  * Tell the IPS driver whether or not the GPU is busy.
5465  */
5466 bool i915_gpu_busy(void)
5467 {
5468         struct drm_i915_private *dev_priv;
5469         struct intel_engine_cs *ring;
5470         bool ret = false;
5471         int i;
5472
5473         spin_lock_irq(&mchdev_lock);
5474         if (!i915_mch_dev)
5475                 goto out_unlock;
5476         dev_priv = i915_mch_dev;
5477
5478         for_each_ring(ring, dev_priv, i)
5479                 ret |= !list_empty(&ring->request_list);
5480
5481 out_unlock:
5482         spin_unlock_irq(&mchdev_lock);
5483
5484         return ret;
5485 }
5486 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5487
5488 /**
5489  * i915_gpu_turbo_disable - disable graphics turbo
5490  *
5491  * Disable graphics turbo by resetting the max frequency and setting the
5492  * current frequency to the default.
5493  */
5494 bool i915_gpu_turbo_disable(void)
5495 {
5496         struct drm_i915_private *dev_priv;
5497         bool ret = true;
5498
5499         spin_lock_irq(&mchdev_lock);
5500         if (!i915_mch_dev) {
5501                 ret = false;
5502                 goto out_unlock;
5503         }
5504         dev_priv = i915_mch_dev;
5505
5506         dev_priv->ips.max_delay = dev_priv->ips.fstart;
5507
5508         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5509                 ret = false;
5510
5511 out_unlock:
5512         spin_unlock_irq(&mchdev_lock);
5513
5514         return ret;
5515 }
5516 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5517
5518 /**
5519  * Tells the intel_ips driver that the i915 driver is now loaded, if
5520  * IPS got loaded first.
5521  *
5522  * This awkward dance is so that neither module has to depend on the
5523  * other in order for IPS to do the appropriate communication of
5524  * GPU turbo limits to i915.
5525  */
5526 static void
5527 ips_ping_for_i915_load(void)
5528 {
5529         void (*link)(void);
5530
5531         link = symbol_get(ips_link_to_i915_driver);
5532         if (link) {
5533                 link();
5534                 symbol_put(ips_link_to_i915_driver);
5535         }
5536 }
5537
5538 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5539 {
5540         /* We only register the i915 ips part with intel-ips once everything is
5541          * set up, to avoid intel-ips sneaking in and reading bogus values. */
5542         spin_lock_irq(&mchdev_lock);
5543         i915_mch_dev = dev_priv;
5544         spin_unlock_irq(&mchdev_lock);
5545
5546         ips_ping_for_i915_load();
5547 }
5548
5549 void intel_gpu_ips_teardown(void)
5550 {
5551         spin_lock_irq(&mchdev_lock);
5552         i915_mch_dev = NULL;
5553         spin_unlock_irq(&mchdev_lock);
5554 }
5555
5556 static void intel_init_emon(struct drm_device *dev)
5557 {
5558         struct drm_i915_private *dev_priv = dev->dev_private;
5559         u32 lcfuse;
5560         u8 pxw[16];
5561         int i;
5562
5563         /* Disable to program */
5564         I915_WRITE(ECR, 0);
5565         POSTING_READ(ECR);
5566
5567         /* Program energy weights for various events */
5568         I915_WRITE(SDEW, 0x15040d00);
5569         I915_WRITE(CSIEW0, 0x007f0000);
5570         I915_WRITE(CSIEW1, 0x1e220004);
5571         I915_WRITE(CSIEW2, 0x04000004);
5572
5573         for (i = 0; i < 5; i++)
5574                 I915_WRITE(PEW + (i * 4), 0);
5575         for (i = 0; i < 3; i++)
5576                 I915_WRITE(DEW + (i * 4), 0);
5577
5578         /* Program P-state weights to account for frequency power adjustment */
5579         for (i = 0; i < 16; i++) {
5580                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5581                 unsigned long freq = intel_pxfreq(pxvidfreq);
5582                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5583                         PXVFREQ_PX_SHIFT;
5584                 unsigned long val;
5585
5586                 val = vid * vid;
5587                 val *= (freq / 1000);
5588                 val *= 255;
5589                 val /= (127*127*900);
5590                 if (val > 0xff)
5591                         DRM_ERROR("bad pxval: %ld\n", val);
5592                 pxw[i] = val;
5593         }
5594         /* Render standby states get 0 weight */
5595         pxw[14] = 0;
5596         pxw[15] = 0;
5597
5598         for (i = 0; i < 4; i++) {
5599                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5600                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5601                 I915_WRITE(PXW + (i * 4), val);
5602         }
5603
5604         /* Adjust magic regs to magic values (more experimental results) */
5605         I915_WRITE(OGW0, 0);
5606         I915_WRITE(OGW1, 0);
5607         I915_WRITE(EG0, 0x00007f00);
5608         I915_WRITE(EG1, 0x0000000e);
5609         I915_WRITE(EG2, 0x000e0000);
5610         I915_WRITE(EG3, 0x68000300);
5611         I915_WRITE(EG4, 0x42000000);
5612         I915_WRITE(EG5, 0x00140031);
5613         I915_WRITE(EG6, 0);
5614         I915_WRITE(EG7, 0);
5615
5616         for (i = 0; i < 8; i++)
5617                 I915_WRITE(PXWL + (i * 4), 0);
5618
5619         /* Enable PMON + select events */
5620         I915_WRITE(ECR, 0x80000019);
5621
5622         lcfuse = I915_READ(LCFUSE02);
5623
5624         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5625 }
5626
5627 void intel_init_gt_powersave(struct drm_device *dev)
5628 {
5629         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5630
5631         if (IS_CHERRYVIEW(dev))
5632                 cherryview_init_gt_powersave(dev);
5633         else if (IS_VALLEYVIEW(dev))
5634                 valleyview_init_gt_powersave(dev);
5635 }
5636
5637 void intel_cleanup_gt_powersave(struct drm_device *dev)
5638 {
5639         if (IS_CHERRYVIEW(dev))
5640                 return;
5641         else if (IS_VALLEYVIEW(dev))
5642                 valleyview_cleanup_gt_powersave(dev);
5643 }
5644
5645 static void gen6_suspend_rps(struct drm_device *dev)
5646 {
5647         struct drm_i915_private *dev_priv = dev->dev_private;
5648
5649         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5650
5651         gen6_disable_rps_interrupts(dev);
5652 }
5653
5654 /**
5655  * intel_suspend_gt_powersave - suspend PM work and helper threads
5656  * @dev: drm device
5657  *
5658  * We don't want to disable RC6 or other features here, we just want
5659  * to make sure any work we've queued has finished and won't bother
5660  * us while we're suspended.
5661  */
5662 void intel_suspend_gt_powersave(struct drm_device *dev)
5663 {
5664         struct drm_i915_private *dev_priv = dev->dev_private;
5665
5666         if (INTEL_INFO(dev)->gen < 6)
5667                 return;
5668
5669         gen6_suspend_rps(dev);
5670
5671         /* Force GPU to min freq during suspend */
5672         gen6_rps_idle(dev_priv);
5673 }
5674
5675 void intel_disable_gt_powersave(struct drm_device *dev)
5676 {
5677         struct drm_i915_private *dev_priv = dev->dev_private;
5678
5679         if (IS_IRONLAKE_M(dev)) {
5680                 ironlake_disable_drps(dev);
5681         } else if (INTEL_INFO(dev)->gen >= 6) {
5682                 intel_suspend_gt_powersave(dev);
5683
5684                 mutex_lock(&dev_priv->rps.hw_lock);
5685                 if (INTEL_INFO(dev)->gen >= 9)
5686                         gen9_disable_rps(dev);
5687                 else if (IS_CHERRYVIEW(dev))
5688                         cherryview_disable_rps(dev);
5689                 else if (IS_VALLEYVIEW(dev))
5690                         valleyview_disable_rps(dev);
5691                 else
5692                         gen6_disable_rps(dev);
5693
5694                 dev_priv->rps.enabled = false;
5695                 mutex_unlock(&dev_priv->rps.hw_lock);
5696         }
5697 }
5698
5699 static void intel_gen6_powersave_work(struct work_struct *work)
5700 {
5701         struct drm_i915_private *dev_priv =
5702                 container_of(work, struct drm_i915_private,
5703                              rps.delayed_resume_work.work);
5704         struct drm_device *dev = dev_priv->dev;
5705
5706         mutex_lock(&dev_priv->rps.hw_lock);
5707
5708         gen6_reset_rps_interrupts(dev);
5709
5710         if (IS_CHERRYVIEW(dev)) {
5711                 cherryview_enable_rps(dev);
5712         } else if (IS_VALLEYVIEW(dev)) {
5713                 valleyview_enable_rps(dev);
5714         } else if (INTEL_INFO(dev)->gen >= 9) {
5715                 gen9_enable_rc6(dev);
5716                 gen9_enable_rps(dev);
5717                 __gen6_update_ring_freq(dev);
5718         } else if (IS_BROADWELL(dev)) {
5719                 gen8_enable_rps(dev);
5720                 __gen6_update_ring_freq(dev);
5721         } else {
5722                 gen6_enable_rps(dev);
5723                 __gen6_update_ring_freq(dev);
5724         }
5725
5726         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
5727         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
5728
5729         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
5730         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
5731
5732         dev_priv->rps.enabled = true;
5733
5734         gen6_enable_rps_interrupts(dev);
5735
5736         mutex_unlock(&dev_priv->rps.hw_lock);
5737
5738         intel_runtime_pm_put(dev_priv);
5739 }
5740
5741 void intel_enable_gt_powersave(struct drm_device *dev)
5742 {
5743         struct drm_i915_private *dev_priv = dev->dev_private;
5744
5745         /* Powersaving is controlled by the host when inside a VM */
5746         if (intel_vgpu_active(dev))
5747                 return;
5748
5749         if (IS_IRONLAKE_M(dev)) {
5750                 mutex_lock(&dev->struct_mutex);
5751                 ironlake_enable_drps(dev);
5752                 intel_init_emon(dev);
5753                 mutex_unlock(&dev->struct_mutex);
5754         } else if (INTEL_INFO(dev)->gen >= 6) {
5755                 /*
5756                  * PCU communication is slow and this doesn't need to be
5757                  * done at any specific time, so do this out of our fast path
5758                  * to make resume and init faster.
5759                  *
5760                  * We depend on the HW RC6 power context save/restore
5761                  * mechanism when entering D3 through runtime PM suspend. So
5762                  * disable RPM until RPS/RC6 is properly setup. We can only
5763                  * get here via the driver load/system resume/runtime resume
5764                  * paths, so the _noresume version is enough (and in case of
5765                  * runtime resume it's necessary).
5766                  */
5767                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5768                                            round_jiffies_up_relative(HZ)))
5769                         intel_runtime_pm_get_noresume(dev_priv);
5770         }
5771 }
5772
5773 void intel_reset_gt_powersave(struct drm_device *dev)
5774 {
5775         struct drm_i915_private *dev_priv = dev->dev_private;
5776
5777         if (INTEL_INFO(dev)->gen < 6)
5778                 return;
5779
5780         gen6_suspend_rps(dev);
5781         dev_priv->rps.enabled = false;
5782 }
5783
5784 static void ibx_init_clock_gating(struct drm_device *dev)
5785 {
5786         struct drm_i915_private *dev_priv = dev->dev_private;
5787
5788         /*
5789          * On Ibex Peak and Cougar Point, we need to disable clock
5790          * gating for the panel power sequencer or it will fail to
5791          * start up when no ports are active.
5792          */
5793         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5794 }
5795
5796 static void g4x_disable_trickle_feed(struct drm_device *dev)
5797 {
5798         struct drm_i915_private *dev_priv = dev->dev_private;
5799         int pipe;
5800
5801         for_each_pipe(dev_priv, pipe) {
5802                 I915_WRITE(DSPCNTR(pipe),
5803                            I915_READ(DSPCNTR(pipe)) |
5804                            DISPPLANE_TRICKLE_FEED_DISABLE);
5805                 intel_flush_primary_plane(dev_priv, pipe);
5806         }
5807 }
5808
5809 static void ilk_init_lp_watermarks(struct drm_device *dev)
5810 {
5811         struct drm_i915_private *dev_priv = dev->dev_private;
5812
5813         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5814         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5815         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5816
5817         /*
5818          * Don't touch WM1S_LP_EN here.
5819          * Doing so could cause underruns.
5820          */
5821 }
5822
5823 static void ironlake_init_clock_gating(struct drm_device *dev)
5824 {
5825         struct drm_i915_private *dev_priv = dev->dev_private;
5826         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5827
5828         /*
5829          * Required for FBC
5830          * WaFbcDisableDpfcClockGating:ilk
5831          */
5832         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5833                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5834                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5835
5836         I915_WRITE(PCH_3DCGDIS0,
5837                    MARIUNIT_CLOCK_GATE_DISABLE |
5838                    SVSMUNIT_CLOCK_GATE_DISABLE);
5839         I915_WRITE(PCH_3DCGDIS1,
5840                    VFMUNIT_CLOCK_GATE_DISABLE);
5841
5842         /*
5843          * According to the spec the following bits should be set in
5844          * order to enable memory self-refresh
5845          * The bit 22/21 of 0x42004
5846          * The bit 5 of 0x42020
5847          * The bit 15 of 0x45000
5848          */
5849         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5850                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
5851                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5852         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5853         I915_WRITE(DISP_ARB_CTL,
5854                    (I915_READ(DISP_ARB_CTL) |
5855                     DISP_FBC_WM_DIS));
5856
5857         ilk_init_lp_watermarks(dev);
5858
5859         /*
5860          * Based on the document from hardware guys the following bits
5861          * should be set unconditionally in order to enable FBC.
5862          * The bit 22 of 0x42000
5863          * The bit 22 of 0x42004
5864          * The bit 7,8,9 of 0x42020.
5865          */
5866         if (IS_IRONLAKE_M(dev)) {
5867                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5868                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5869                            I915_READ(ILK_DISPLAY_CHICKEN1) |
5870                            ILK_FBCQ_DIS);
5871                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5872                            I915_READ(ILK_DISPLAY_CHICKEN2) |
5873                            ILK_DPARB_GATE);
5874         }
5875
5876         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5877
5878         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5879                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5880                    ILK_ELPIN_409_SELECT);
5881         I915_WRITE(_3D_CHICKEN2,
5882                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5883                    _3D_CHICKEN2_WM_READ_PIPELINED);
5884
5885         /* WaDisableRenderCachePipelinedFlush:ilk */
5886         I915_WRITE(CACHE_MODE_0,
5887                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5888
5889         /* WaDisable_RenderCache_OperationalFlush:ilk */
5890         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5891
5892         g4x_disable_trickle_feed(dev);
5893
5894         ibx_init_clock_gating(dev);
5895 }
5896
5897 static void cpt_init_clock_gating(struct drm_device *dev)
5898 {
5899         struct drm_i915_private *dev_priv = dev->dev_private;
5900         int pipe;
5901         uint32_t val;
5902
5903         /*
5904          * On Ibex Peak and Cougar Point, we need to disable clock
5905          * gating for the panel power sequencer or it will fail to
5906          * start up when no ports are active.
5907          */
5908         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5909                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5910                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
5911         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5912                    DPLS_EDP_PPS_FIX_DIS);
5913         /* The below fixes the weird display corruption, a few pixels shifted
5914          * downward, on (only) LVDS of some HP laptops with IVY.
5915          */
5916         for_each_pipe(dev_priv, pipe) {
5917                 val = I915_READ(TRANS_CHICKEN2(pipe));
5918                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5919                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5920                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5921                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5922                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5923                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5924                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5925                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5926         }
5927         /* WADP0ClockGatingDisable */
5928         for_each_pipe(dev_priv, pipe) {
5929                 I915_WRITE(TRANS_CHICKEN1(pipe),
5930                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5931         }
5932 }
5933
5934 static void gen6_check_mch_setup(struct drm_device *dev)
5935 {
5936         struct drm_i915_private *dev_priv = dev->dev_private;
5937         uint32_t tmp;
5938
5939         tmp = I915_READ(MCH_SSKPD);
5940         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5941                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5942                               tmp);
5943 }
5944
5945 static void gen6_init_clock_gating(struct drm_device *dev)
5946 {
5947         struct drm_i915_private *dev_priv = dev->dev_private;
5948         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5949
5950         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5951
5952         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5953                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5954                    ILK_ELPIN_409_SELECT);
5955
5956         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5957         I915_WRITE(_3D_CHICKEN,
5958                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5959
5960         /* WaDisable_RenderCache_OperationalFlush:snb */
5961         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5962
5963         /*
5964          * BSpec recoomends 8x4 when MSAA is used,
5965          * however in practice 16x4 seems fastest.
5966          *
5967          * Note that PS/WM thread counts depend on the WIZ hashing
5968          * disable bit, which we don't touch here, but it's good
5969          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5970          */
5971         I915_WRITE(GEN6_GT_MODE,
5972                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5973
5974         ilk_init_lp_watermarks(dev);
5975
5976         I915_WRITE(CACHE_MODE_0,
5977                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5978
5979         I915_WRITE(GEN6_UCGCTL1,
5980                    I915_READ(GEN6_UCGCTL1) |
5981                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5982                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5983
5984         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5985          * gating disable must be set.  Failure to set it results in
5986          * flickering pixels due to Z write ordering failures after
5987          * some amount of runtime in the Mesa "fire" demo, and Unigine
5988          * Sanctuary and Tropics, and apparently anything else with
5989          * alpha test or pixel discard.
5990          *
5991          * According to the spec, bit 11 (RCCUNIT) must also be set,
5992          * but we didn't debug actual testcases to find it out.
5993          *
5994          * WaDisableRCCUnitClockGating:snb
5995          * WaDisableRCPBUnitClockGating:snb
5996          */
5997         I915_WRITE(GEN6_UCGCTL2,
5998                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5999                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6000
6001         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6002         I915_WRITE(_3D_CHICKEN3,
6003                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6004
6005         /*
6006          * Bspec says:
6007          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6008          * 3DSTATE_SF number of SF output attributes is more than 16."
6009          */
6010         I915_WRITE(_3D_CHICKEN3,
6011                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6012
6013         /*
6014          * According to the spec the following bits should be
6015          * set in order to enable memory self-refresh and fbc:
6016          * The bit21 and bit22 of 0x42000
6017          * The bit21 and bit22 of 0x42004
6018          * The bit5 and bit7 of 0x42020
6019          * The bit14 of 0x70180
6020          * The bit14 of 0x71180
6021          *
6022          * WaFbcAsynchFlipDisableFbcQueue:snb
6023          */
6024         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6025                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6026                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6027         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6028                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6029                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6030         I915_WRITE(ILK_DSPCLK_GATE_D,
6031                    I915_READ(ILK_DSPCLK_GATE_D) |
6032                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6033                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6034
6035         g4x_disable_trickle_feed(dev);
6036
6037         cpt_init_clock_gating(dev);
6038
6039         gen6_check_mch_setup(dev);
6040 }
6041
6042 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6043 {
6044         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6045
6046         /*
6047          * WaVSThreadDispatchOverride:ivb,vlv
6048          *
6049          * This actually overrides the dispatch
6050          * mode for all thread types.
6051          */
6052         reg &= ~GEN7_FF_SCHED_MASK;
6053         reg |= GEN7_FF_TS_SCHED_HW;
6054         reg |= GEN7_FF_VS_SCHED_HW;
6055         reg |= GEN7_FF_DS_SCHED_HW;
6056
6057         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6058 }
6059
6060 static void lpt_init_clock_gating(struct drm_device *dev)
6061 {
6062         struct drm_i915_private *dev_priv = dev->dev_private;
6063
6064         /*
6065          * TODO: this bit should only be enabled when really needed, then
6066          * disabled when not needed anymore in order to save power.
6067          */
6068         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
6069                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6070                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6071                            PCH_LP_PARTITION_LEVEL_DISABLE);
6072
6073         /* WADPOClockGatingDisable:hsw */
6074         I915_WRITE(_TRANSA_CHICKEN1,
6075                    I915_READ(_TRANSA_CHICKEN1) |
6076                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6077 }
6078
6079 static void lpt_suspend_hw(struct drm_device *dev)
6080 {
6081         struct drm_i915_private *dev_priv = dev->dev_private;
6082
6083         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6084                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6085
6086                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6087                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6088         }
6089 }
6090
6091 static void broadwell_init_clock_gating(struct drm_device *dev)
6092 {
6093         struct drm_i915_private *dev_priv = dev->dev_private;
6094         enum pipe pipe;
6095
6096         I915_WRITE(WM3_LP_ILK, 0);
6097         I915_WRITE(WM2_LP_ILK, 0);
6098         I915_WRITE(WM1_LP_ILK, 0);
6099
6100         /* WaSwitchSolVfFArbitrationPriority:bdw */
6101         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6102
6103         /* WaPsrDPAMaskVBlankInSRD:bdw */
6104         I915_WRITE(CHICKEN_PAR1_1,
6105                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6106
6107         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6108         for_each_pipe(dev_priv, pipe) {
6109                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6110                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
6111                            BDW_DPRS_MASK_VBLANK_SRD);
6112         }
6113
6114         /* WaVSRefCountFullforceMissDisable:bdw */
6115         /* WaDSRefCountFullforceMissDisable:bdw */
6116         I915_WRITE(GEN7_FF_THREAD_MODE,
6117                    I915_READ(GEN7_FF_THREAD_MODE) &
6118                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6119
6120         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6121                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6122
6123         /* WaDisableSDEUnitClockGating:bdw */
6124         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6125                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6126
6127         lpt_init_clock_gating(dev);
6128 }
6129
6130 static void haswell_init_clock_gating(struct drm_device *dev)
6131 {
6132         struct drm_i915_private *dev_priv = dev->dev_private;
6133
6134         ilk_init_lp_watermarks(dev);
6135
6136         /* L3 caching of data atomics doesn't work -- disable it. */
6137         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6138         I915_WRITE(HSW_ROW_CHICKEN3,
6139                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6140
6141         /* This is required by WaCatErrorRejectionIssue:hsw */
6142         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6143                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6144                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6145
6146         /* WaVSRefCountFullforceMissDisable:hsw */
6147         I915_WRITE(GEN7_FF_THREAD_MODE,
6148                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6149
6150         /* WaDisable_RenderCache_OperationalFlush:hsw */
6151         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6152
6153         /* enable HiZ Raw Stall Optimization */
6154         I915_WRITE(CACHE_MODE_0_GEN7,
6155                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6156
6157         /* WaDisable4x2SubspanOptimization:hsw */
6158         I915_WRITE(CACHE_MODE_1,
6159                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6160
6161         /*
6162          * BSpec recommends 8x4 when MSAA is used,
6163          * however in practice 16x4 seems fastest.
6164          *
6165          * Note that PS/WM thread counts depend on the WIZ hashing
6166          * disable bit, which we don't touch here, but it's good
6167          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6168          */
6169         I915_WRITE(GEN7_GT_MODE,
6170                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6171
6172         /* WaSampleCChickenBitEnable:hsw */
6173         I915_WRITE(HALF_SLICE_CHICKEN3,
6174                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6175
6176         /* WaSwitchSolVfFArbitrationPriority:hsw */
6177         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6178
6179         /* WaRsPkgCStateDisplayPMReq:hsw */
6180         I915_WRITE(CHICKEN_PAR1_1,
6181                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6182
6183         lpt_init_clock_gating(dev);
6184 }
6185
6186 static void ivybridge_init_clock_gating(struct drm_device *dev)
6187 {
6188         struct drm_i915_private *dev_priv = dev->dev_private;
6189         uint32_t snpcr;
6190
6191         ilk_init_lp_watermarks(dev);
6192
6193         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6194
6195         /* WaDisableEarlyCull:ivb */
6196         I915_WRITE(_3D_CHICKEN3,
6197                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6198
6199         /* WaDisableBackToBackFlipFix:ivb */
6200         I915_WRITE(IVB_CHICKEN3,
6201                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6202                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6203
6204         /* WaDisablePSDDualDispatchEnable:ivb */
6205         if (IS_IVB_GT1(dev))
6206                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6207                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6208
6209         /* WaDisable_RenderCache_OperationalFlush:ivb */
6210         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6211
6212         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6213         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6214                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6215
6216         /* WaApplyL3ControlAndL3ChickenMode:ivb */
6217         I915_WRITE(GEN7_L3CNTLREG1,
6218                         GEN7_WA_FOR_GEN7_L3_CONTROL);
6219         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6220                    GEN7_WA_L3_CHICKEN_MODE);
6221         if (IS_IVB_GT1(dev))
6222                 I915_WRITE(GEN7_ROW_CHICKEN2,
6223                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6224         else {
6225                 /* must write both registers */
6226                 I915_WRITE(GEN7_ROW_CHICKEN2,
6227                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6228                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6229                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6230         }
6231
6232         /* WaForceL3Serialization:ivb */
6233         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6234                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6235
6236         /*
6237          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6238          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6239          */
6240         I915_WRITE(GEN6_UCGCTL2,
6241                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6242
6243         /* This is required by WaCatErrorRejectionIssue:ivb */
6244         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6245                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6246                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6247
6248         g4x_disable_trickle_feed(dev);
6249
6250         gen7_setup_fixed_func_scheduler(dev_priv);
6251
6252         if (0) { /* causes HiZ corruption on ivb:gt1 */
6253                 /* enable HiZ Raw Stall Optimization */
6254                 I915_WRITE(CACHE_MODE_0_GEN7,
6255                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6256         }
6257
6258         /* WaDisable4x2SubspanOptimization:ivb */
6259         I915_WRITE(CACHE_MODE_1,
6260                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6261
6262         /*
6263          * BSpec recommends 8x4 when MSAA is used,
6264          * however in practice 16x4 seems fastest.
6265          *
6266          * Note that PS/WM thread counts depend on the WIZ hashing
6267          * disable bit, which we don't touch here, but it's good
6268          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6269          */
6270         I915_WRITE(GEN7_GT_MODE,
6271                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6272
6273         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6274         snpcr &= ~GEN6_MBC_SNPCR_MASK;
6275         snpcr |= GEN6_MBC_SNPCR_MED;
6276         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6277
6278         if (!HAS_PCH_NOP(dev))
6279                 cpt_init_clock_gating(dev);
6280
6281         gen6_check_mch_setup(dev);
6282 }
6283
6284 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6285 {
6286         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6287
6288         /*
6289          * Disable trickle feed and enable pnd deadline calculation
6290          */
6291         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6292         I915_WRITE(CBR1_VLV, 0);
6293 }
6294
6295 static void valleyview_init_clock_gating(struct drm_device *dev)
6296 {
6297         struct drm_i915_private *dev_priv = dev->dev_private;
6298
6299         vlv_init_display_clock_gating(dev_priv);
6300
6301         /* WaDisableEarlyCull:vlv */
6302         I915_WRITE(_3D_CHICKEN3,
6303                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6304
6305         /* WaDisableBackToBackFlipFix:vlv */
6306         I915_WRITE(IVB_CHICKEN3,
6307                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6308                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6309
6310         /* WaPsdDispatchEnable:vlv */
6311         /* WaDisablePSDDualDispatchEnable:vlv */
6312         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6313                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6314                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6315
6316         /* WaDisable_RenderCache_OperationalFlush:vlv */
6317         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6318
6319         /* WaForceL3Serialization:vlv */
6320         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6321                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6322
6323         /* WaDisableDopClockGating:vlv */
6324         I915_WRITE(GEN7_ROW_CHICKEN2,
6325                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6326
6327         /* This is required by WaCatErrorRejectionIssue:vlv */
6328         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6329                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6330                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6331
6332         gen7_setup_fixed_func_scheduler(dev_priv);
6333
6334         /*
6335          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6336          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6337          */
6338         I915_WRITE(GEN6_UCGCTL2,
6339                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6340
6341         /* WaDisableL3Bank2xClockGate:vlv
6342          * Disabling L3 clock gating- MMIO 940c[25] = 1
6343          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6344         I915_WRITE(GEN7_UCGCTL4,
6345                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6346
6347         /*
6348          * BSpec says this must be set, even though
6349          * WaDisable4x2SubspanOptimization isn't listed for VLV.
6350          */
6351         I915_WRITE(CACHE_MODE_1,
6352                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6353
6354         /*
6355          * BSpec recommends 8x4 when MSAA is used,
6356          * however in practice 16x4 seems fastest.
6357          *
6358          * Note that PS/WM thread counts depend on the WIZ hashing
6359          * disable bit, which we don't touch here, but it's good
6360          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6361          */
6362         I915_WRITE(GEN7_GT_MODE,
6363                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6364
6365         /*
6366          * WaIncreaseL3CreditsForVLVB0:vlv
6367          * This is the hardware default actually.
6368          */
6369         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6370
6371         /*
6372          * WaDisableVLVClockGating_VBIIssue:vlv
6373          * Disable clock gating on th GCFG unit to prevent a delay
6374          * in the reporting of vblank events.
6375          */
6376         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6377 }
6378
6379 static void cherryview_init_clock_gating(struct drm_device *dev)
6380 {
6381         struct drm_i915_private *dev_priv = dev->dev_private;
6382
6383         vlv_init_display_clock_gating(dev_priv);
6384
6385         /* WaVSRefCountFullforceMissDisable:chv */
6386         /* WaDSRefCountFullforceMissDisable:chv */
6387         I915_WRITE(GEN7_FF_THREAD_MODE,
6388                    I915_READ(GEN7_FF_THREAD_MODE) &
6389                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6390
6391         /* WaDisableSemaphoreAndSyncFlipWait:chv */
6392         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6393                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6394
6395         /* WaDisableCSUnitClockGating:chv */
6396         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6397                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6398
6399         /* WaDisableSDEUnitClockGating:chv */
6400         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6401                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6402 }
6403
6404 static void g4x_init_clock_gating(struct drm_device *dev)
6405 {
6406         struct drm_i915_private *dev_priv = dev->dev_private;
6407         uint32_t dspclk_gate;
6408
6409         I915_WRITE(RENCLK_GATE_D1, 0);
6410         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6411                    GS_UNIT_CLOCK_GATE_DISABLE |
6412                    CL_UNIT_CLOCK_GATE_DISABLE);
6413         I915_WRITE(RAMCLK_GATE_D, 0);
6414         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6415                 OVRUNIT_CLOCK_GATE_DISABLE |
6416                 OVCUNIT_CLOCK_GATE_DISABLE;
6417         if (IS_GM45(dev))
6418                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6419         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6420
6421         /* WaDisableRenderCachePipelinedFlush */
6422         I915_WRITE(CACHE_MODE_0,
6423                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6424
6425         /* WaDisable_RenderCache_OperationalFlush:g4x */
6426         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6427
6428         g4x_disable_trickle_feed(dev);
6429 }
6430
6431 static void crestline_init_clock_gating(struct drm_device *dev)
6432 {
6433         struct drm_i915_private *dev_priv = dev->dev_private;
6434
6435         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6436         I915_WRITE(RENCLK_GATE_D2, 0);
6437         I915_WRITE(DSPCLK_GATE_D, 0);
6438         I915_WRITE(RAMCLK_GATE_D, 0);
6439         I915_WRITE16(DEUC, 0);
6440         I915_WRITE(MI_ARB_STATE,
6441                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6442
6443         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6444         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6445 }
6446
6447 static void broadwater_init_clock_gating(struct drm_device *dev)
6448 {
6449         struct drm_i915_private *dev_priv = dev->dev_private;
6450
6451         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6452                    I965_RCC_CLOCK_GATE_DISABLE |
6453                    I965_RCPB_CLOCK_GATE_DISABLE |
6454                    I965_ISC_CLOCK_GATE_DISABLE |
6455                    I965_FBC_CLOCK_GATE_DISABLE);
6456         I915_WRITE(RENCLK_GATE_D2, 0);
6457         I915_WRITE(MI_ARB_STATE,
6458                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6459
6460         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6461         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6462 }
6463
6464 static void gen3_init_clock_gating(struct drm_device *dev)
6465 {
6466         struct drm_i915_private *dev_priv = dev->dev_private;
6467         u32 dstate = I915_READ(D_STATE);
6468
6469         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6470                 DSTATE_DOT_CLOCK_GATING;
6471         I915_WRITE(D_STATE, dstate);
6472
6473         if (IS_PINEVIEW(dev))
6474                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6475
6476         /* IIR "flip pending" means done if this bit is set */
6477         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6478
6479         /* interrupts should cause a wake up from C3 */
6480         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6481
6482         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6483         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6484
6485         I915_WRITE(MI_ARB_STATE,
6486                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6487 }
6488
6489 static void i85x_init_clock_gating(struct drm_device *dev)
6490 {
6491         struct drm_i915_private *dev_priv = dev->dev_private;
6492
6493         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6494
6495         /* interrupts should cause a wake up from C3 */
6496         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6497                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6498
6499         I915_WRITE(MEM_MODE,
6500                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6501 }
6502
6503 static void i830_init_clock_gating(struct drm_device *dev)
6504 {
6505         struct drm_i915_private *dev_priv = dev->dev_private;
6506
6507         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6508
6509         I915_WRITE(MEM_MODE,
6510                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6511                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6512 }
6513
6514 void intel_init_clock_gating(struct drm_device *dev)
6515 {
6516         struct drm_i915_private *dev_priv = dev->dev_private;
6517
6518         if (dev_priv->display.init_clock_gating)
6519                 dev_priv->display.init_clock_gating(dev);
6520 }
6521
6522 void intel_suspend_hw(struct drm_device *dev)
6523 {
6524         if (HAS_PCH_LPT(dev))
6525                 lpt_suspend_hw(dev);
6526 }
6527
6528 /* Set up chip specific power management-related functions */
6529 void intel_init_pm(struct drm_device *dev)
6530 {
6531         struct drm_i915_private *dev_priv = dev->dev_private;
6532
6533         intel_fbc_init(dev_priv);
6534
6535         /* For cxsr */
6536         if (IS_PINEVIEW(dev))
6537                 i915_pineview_get_mem_freq(dev);
6538         else if (IS_GEN5(dev))
6539                 i915_ironlake_get_mem_freq(dev);
6540
6541         /* For FIFO watermark updates */
6542         if (INTEL_INFO(dev)->gen >= 9) {
6543                 skl_setup_wm_latency(dev);
6544
6545                 dev_priv->display.init_clock_gating = skl_init_clock_gating;
6546                 dev_priv->display.update_wm = skl_update_wm;
6547                 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6548         } else if (HAS_PCH_SPLIT(dev)) {
6549                 ilk_setup_wm_latency(dev);
6550
6551                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6552                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6553                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6554                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6555                         dev_priv->display.update_wm = ilk_update_wm;
6556                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6557                 } else {
6558                         DRM_DEBUG_KMS("Failed to read display plane latency. "
6559                                       "Disable CxSR\n");
6560                 }
6561
6562                 if (IS_GEN5(dev))
6563                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6564                 else if (IS_GEN6(dev))
6565                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6566                 else if (IS_IVYBRIDGE(dev))
6567                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6568                 else if (IS_HASWELL(dev))
6569                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6570                 else if (INTEL_INFO(dev)->gen == 8)
6571                         dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6572         } else if (IS_CHERRYVIEW(dev)) {
6573                 dev_priv->display.update_wm = valleyview_update_wm;
6574                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6575                 dev_priv->display.init_clock_gating =
6576                         cherryview_init_clock_gating;
6577         } else if (IS_VALLEYVIEW(dev)) {
6578                 dev_priv->display.update_wm = valleyview_update_wm;
6579                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6580                 dev_priv->display.init_clock_gating =
6581                         valleyview_init_clock_gating;
6582         } else if (IS_PINEVIEW(dev)) {
6583                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6584                                             dev_priv->is_ddr3,
6585                                             dev_priv->fsb_freq,
6586                                             dev_priv->mem_freq)) {
6587                         DRM_INFO("failed to find known CxSR latency "
6588                                  "(found ddr%s fsb freq %d, mem freq %d), "
6589                                  "disabling CxSR\n",
6590                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
6591                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6592                         /* Disable CxSR and never update its watermark again */
6593                         intel_set_memory_cxsr(dev_priv, false);
6594                         dev_priv->display.update_wm = NULL;
6595                 } else
6596                         dev_priv->display.update_wm = pineview_update_wm;
6597                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6598         } else if (IS_G4X(dev)) {
6599                 dev_priv->display.update_wm = g4x_update_wm;
6600                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6601         } else if (IS_GEN4(dev)) {
6602                 dev_priv->display.update_wm = i965_update_wm;
6603                 if (IS_CRESTLINE(dev))
6604                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6605                 else if (IS_BROADWATER(dev))
6606                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6607         } else if (IS_GEN3(dev)) {
6608                 dev_priv->display.update_wm = i9xx_update_wm;
6609                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6610                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6611         } else if (IS_GEN2(dev)) {
6612                 if (INTEL_INFO(dev)->num_pipes == 1) {
6613                         dev_priv->display.update_wm = i845_update_wm;
6614                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6615                 } else {
6616                         dev_priv->display.update_wm = i9xx_update_wm;
6617                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6618                 }
6619
6620                 if (IS_I85X(dev) || IS_I865G(dev))
6621                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6622                 else
6623                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
6624         } else {
6625                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6626         }
6627 }
6628
6629 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
6630 {
6631         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6632
6633         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6634                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6635                 return -EAGAIN;
6636         }
6637
6638         I915_WRITE(GEN6_PCODE_DATA, *val);
6639         I915_WRITE(GEN6_PCODE_DATA1, 0);
6640         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6641
6642         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6643                      500)) {
6644                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6645                 return -ETIMEDOUT;
6646         }
6647
6648         *val = I915_READ(GEN6_PCODE_DATA);
6649         I915_WRITE(GEN6_PCODE_DATA, 0);
6650
6651         return 0;
6652 }
6653
6654 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
6655 {
6656         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6657
6658         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6659                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6660                 return -EAGAIN;
6661         }
6662
6663         I915_WRITE(GEN6_PCODE_DATA, val);
6664         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6665
6666         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6667                      500)) {
6668                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6669                 return -ETIMEDOUT;
6670         }
6671
6672         I915_WRITE(GEN6_PCODE_DATA, 0);
6673
6674         return 0;
6675 }
6676
6677 static int vlv_gpu_freq_div(unsigned int czclk_freq)
6678 {
6679         switch (czclk_freq) {
6680         case 200:
6681                 return 10;
6682         case 267:
6683                 return 12;
6684         case 320:
6685         case 333:
6686                 return 16;
6687         case 400:
6688                 return 20;
6689         default:
6690                 return -1;
6691         }
6692 }
6693
6694 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
6695 {
6696         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6697
6698         div = vlv_gpu_freq_div(czclk_freq);
6699         if (div < 0)
6700                 return div;
6701
6702         return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6703 }
6704
6705 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6706 {
6707         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6708
6709         mul = vlv_gpu_freq_div(czclk_freq);
6710         if (mul < 0)
6711                 return mul;
6712
6713         return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6714 }
6715
6716 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6717 {
6718         int div, czclk_freq = dev_priv->rps.cz_freq;
6719
6720         div = vlv_gpu_freq_div(czclk_freq) / 2;
6721         if (div < 0)
6722                 return div;
6723
6724         return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6725 }
6726
6727 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6728 {
6729         int mul, czclk_freq = dev_priv->rps.cz_freq;
6730
6731         mul = vlv_gpu_freq_div(czclk_freq) / 2;
6732         if (mul < 0)
6733                 return mul;
6734
6735         /* CHV needs even values */
6736         return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6737 }
6738
6739 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
6740 {
6741         if (IS_GEN9(dev_priv->dev))
6742                 return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
6743         else if (IS_CHERRYVIEW(dev_priv->dev))
6744                 return chv_gpu_freq(dev_priv, val);
6745         else if (IS_VALLEYVIEW(dev_priv->dev))
6746                 return byt_gpu_freq(dev_priv, val);
6747         else
6748                 return val * GT_FREQUENCY_MULTIPLIER;
6749 }
6750
6751 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
6752 {
6753         if (IS_GEN9(dev_priv->dev))
6754                 return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
6755         else if (IS_CHERRYVIEW(dev_priv->dev))
6756                 return chv_freq_opcode(dev_priv, val);
6757         else if (IS_VALLEYVIEW(dev_priv->dev))
6758                 return byt_freq_opcode(dev_priv, val);
6759         else
6760                 return val / GT_FREQUENCY_MULTIPLIER;
6761 }
6762
6763 void intel_pm_setup(struct drm_device *dev)
6764 {
6765         struct drm_i915_private *dev_priv = dev->dev_private;
6766
6767         mutex_init(&dev_priv->rps.hw_lock);
6768
6769         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6770                           intel_gen6_powersave_work);
6771
6772         dev_priv->pm.suspended = false;
6773 }