Merge remote-tracking branches 'asoc/fix/msm8916', 'asoc/fix/nau8825', 'asoc/fix...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
35
36 /**
37  * DOC: RC6
38  *
39  * RC6 is a special power stage which allows the GPU to enter an very
40  * low-voltage mode when idle, using down to 0V while at this stage.  This
41  * stage is entered automatically when the GPU is idle when RC6 support is
42  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
43  *
44  * There are different RC6 modes available in Intel GPU, which differentiate
45  * among each other with the latency required to enter and leave RC6 and
46  * voltage consumed by the GPU in different states.
47  *
48  * The combination of the following flags define which states GPU is allowed
49  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50  * RC6pp is deepest RC6. Their support by hardware varies according to the
51  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52  * which brings the most power savings; deeper states save more power, but
53  * require higher latency to switch to and wake up.
54  */
55 #define INTEL_RC6_ENABLE                        (1<<0)
56 #define INTEL_RC6p_ENABLE                       (1<<1)
57 #define INTEL_RC6pp_ENABLE                      (1<<2)
58
59 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60 {
61         if (HAS_LLC(dev_priv)) {
62                 /*
63                  * WaCompressedResourceDisplayNewHashMode:skl,kbl
64                  * Display WA#0390: skl,kbl
65                  *
66                  * Must match Sampler, Pixel Back End, and Media. See
67                  * WaCompressedResourceSamplerPbeMediaNewHashMode.
68                  */
69                 I915_WRITE(CHICKEN_PAR1_1,
70                            I915_READ(CHICKEN_PAR1_1) |
71                            SKL_DE_COMPRESSED_HASH_MODE);
72         }
73
74         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
75         I915_WRITE(CHICKEN_PAR1_1,
76                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
77
78         I915_WRITE(GEN8_CONFIG0,
79                    I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
80
81         /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
82         I915_WRITE(GEN8_CHICKEN_DCPR_1,
83                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
84
85         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
86         /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
87         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
88                    DISP_FBC_WM_DIS |
89                    DISP_FBC_MEMORY_WAKE);
90
91         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
92         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
93                    ILK_DPFC_DISABLE_DUMMY0);
94
95         if (IS_SKYLAKE(dev_priv)) {
96                 /* WaDisableDopClockGating */
97                 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
98                            & ~GEN7_DOP_CLOCK_GATE_ENABLE);
99         }
100 }
101
102 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
103 {
104         gen9_init_clock_gating(dev_priv);
105
106         /* WaDisableSDEUnitClockGating:bxt */
107         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
108                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
109
110         /*
111          * FIXME:
112          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
113          */
114         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
115                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
116
117         /*
118          * Wa: Backlight PWM may stop in the asserted state, causing backlight
119          * to stay fully on.
120          */
121         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
122                    PWM1_GATING_DIS | PWM2_GATING_DIS);
123 }
124
125 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
126 {
127         gen9_init_clock_gating(dev_priv);
128
129         /*
130          * WaDisablePWMClockGating:glk
131          * Backlight PWM may stop in the asserted state, causing backlight
132          * to stay fully on.
133          */
134         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
135                    PWM1_GATING_DIS | PWM2_GATING_DIS);
136
137         /* WaDDIIOTimeout:glk */
138         if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
139                 u32 val = I915_READ(CHICKEN_MISC_2);
140                 val &= ~(GLK_CL0_PWR_DOWN |
141                          GLK_CL1_PWR_DOWN |
142                          GLK_CL2_PWR_DOWN);
143                 I915_WRITE(CHICKEN_MISC_2, val);
144         }
145
146 }
147
148 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
149 {
150         u32 tmp;
151
152         tmp = I915_READ(CLKCFG);
153
154         switch (tmp & CLKCFG_FSB_MASK) {
155         case CLKCFG_FSB_533:
156                 dev_priv->fsb_freq = 533; /* 133*4 */
157                 break;
158         case CLKCFG_FSB_800:
159                 dev_priv->fsb_freq = 800; /* 200*4 */
160                 break;
161         case CLKCFG_FSB_667:
162                 dev_priv->fsb_freq =  667; /* 167*4 */
163                 break;
164         case CLKCFG_FSB_400:
165                 dev_priv->fsb_freq = 400; /* 100*4 */
166                 break;
167         }
168
169         switch (tmp & CLKCFG_MEM_MASK) {
170         case CLKCFG_MEM_533:
171                 dev_priv->mem_freq = 533;
172                 break;
173         case CLKCFG_MEM_667:
174                 dev_priv->mem_freq = 667;
175                 break;
176         case CLKCFG_MEM_800:
177                 dev_priv->mem_freq = 800;
178                 break;
179         }
180
181         /* detect pineview DDR3 setting */
182         tmp = I915_READ(CSHRDDR3CTL);
183         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
184 }
185
186 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
187 {
188         u16 ddrpll, csipll;
189
190         ddrpll = I915_READ16(DDRMPLL1);
191         csipll = I915_READ16(CSIPLL0);
192
193         switch (ddrpll & 0xff) {
194         case 0xc:
195                 dev_priv->mem_freq = 800;
196                 break;
197         case 0x10:
198                 dev_priv->mem_freq = 1066;
199                 break;
200         case 0x14:
201                 dev_priv->mem_freq = 1333;
202                 break;
203         case 0x18:
204                 dev_priv->mem_freq = 1600;
205                 break;
206         default:
207                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
208                                  ddrpll & 0xff);
209                 dev_priv->mem_freq = 0;
210                 break;
211         }
212
213         dev_priv->ips.r_t = dev_priv->mem_freq;
214
215         switch (csipll & 0x3ff) {
216         case 0x00c:
217                 dev_priv->fsb_freq = 3200;
218                 break;
219         case 0x00e:
220                 dev_priv->fsb_freq = 3733;
221                 break;
222         case 0x010:
223                 dev_priv->fsb_freq = 4266;
224                 break;
225         case 0x012:
226                 dev_priv->fsb_freq = 4800;
227                 break;
228         case 0x014:
229                 dev_priv->fsb_freq = 5333;
230                 break;
231         case 0x016:
232                 dev_priv->fsb_freq = 5866;
233                 break;
234         case 0x018:
235                 dev_priv->fsb_freq = 6400;
236                 break;
237         default:
238                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
239                                  csipll & 0x3ff);
240                 dev_priv->fsb_freq = 0;
241                 break;
242         }
243
244         if (dev_priv->fsb_freq == 3200) {
245                 dev_priv->ips.c_m = 0;
246         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
247                 dev_priv->ips.c_m = 1;
248         } else {
249                 dev_priv->ips.c_m = 2;
250         }
251 }
252
253 static const struct cxsr_latency cxsr_latency_table[] = {
254         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
255         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
256         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
257         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
258         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
259
260         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
261         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
262         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
263         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
264         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
265
266         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
267         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
268         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
269         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
270         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
271
272         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
273         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
274         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
275         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
276         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
277
278         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
279         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
280         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
281         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
282         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
283
284         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
285         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
286         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
287         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
288         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
289 };
290
291 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
292                                                          bool is_ddr3,
293                                                          int fsb,
294                                                          int mem)
295 {
296         const struct cxsr_latency *latency;
297         int i;
298
299         if (fsb == 0 || mem == 0)
300                 return NULL;
301
302         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
303                 latency = &cxsr_latency_table[i];
304                 if (is_desktop == latency->is_desktop &&
305                     is_ddr3 == latency->is_ddr3 &&
306                     fsb == latency->fsb_freq && mem == latency->mem_freq)
307                         return latency;
308         }
309
310         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
311
312         return NULL;
313 }
314
315 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
316 {
317         u32 val;
318
319         mutex_lock(&dev_priv->pcu_lock);
320
321         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
322         if (enable)
323                 val &= ~FORCE_DDR_HIGH_FREQ;
324         else
325                 val |= FORCE_DDR_HIGH_FREQ;
326         val &= ~FORCE_DDR_LOW_FREQ;
327         val |= FORCE_DDR_FREQ_REQ_ACK;
328         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
329
330         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
331                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
332                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
333
334         mutex_unlock(&dev_priv->pcu_lock);
335 }
336
337 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
338 {
339         u32 val;
340
341         mutex_lock(&dev_priv->pcu_lock);
342
343         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
344         if (enable)
345                 val |= DSP_MAXFIFO_PM5_ENABLE;
346         else
347                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
348         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
349
350         mutex_unlock(&dev_priv->pcu_lock);
351 }
352
353 #define FW_WM(value, plane) \
354         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
355
356 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
357 {
358         bool was_enabled;
359         u32 val;
360
361         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
362                 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
363                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
364                 POSTING_READ(FW_BLC_SELF_VLV);
365         } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
366                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
367                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
368                 POSTING_READ(FW_BLC_SELF);
369         } else if (IS_PINEVIEW(dev_priv)) {
370                 val = I915_READ(DSPFW3);
371                 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
372                 if (enable)
373                         val |= PINEVIEW_SELF_REFRESH_EN;
374                 else
375                         val &= ~PINEVIEW_SELF_REFRESH_EN;
376                 I915_WRITE(DSPFW3, val);
377                 POSTING_READ(DSPFW3);
378         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
379                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
380                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
381                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
382                 I915_WRITE(FW_BLC_SELF, val);
383                 POSTING_READ(FW_BLC_SELF);
384         } else if (IS_I915GM(dev_priv)) {
385                 /*
386                  * FIXME can't find a bit like this for 915G, and
387                  * and yet it does have the related watermark in
388                  * FW_BLC_SELF. What's going on?
389                  */
390                 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
391                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
392                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
393                 I915_WRITE(INSTPM, val);
394                 POSTING_READ(INSTPM);
395         } else {
396                 return false;
397         }
398
399         trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
400
401         DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
402                       enableddisabled(enable),
403                       enableddisabled(was_enabled));
404
405         return was_enabled;
406 }
407
408 /**
409  * intel_set_memory_cxsr - Configure CxSR state
410  * @dev_priv: i915 device
411  * @enable: Allow vs. disallow CxSR
412  *
413  * Allow or disallow the system to enter a special CxSR
414  * (C-state self refresh) state. What typically happens in CxSR mode
415  * is that several display FIFOs may get combined into a single larger
416  * FIFO for a particular plane (so called max FIFO mode) to allow the
417  * system to defer memory fetches longer, and the memory will enter
418  * self refresh.
419  *
420  * Note that enabling CxSR does not guarantee that the system enter
421  * this special mode, nor does it guarantee that the system stays
422  * in that mode once entered. So this just allows/disallows the system
423  * to autonomously utilize the CxSR mode. Other factors such as core
424  * C-states will affect when/if the system actually enters/exits the
425  * CxSR mode.
426  *
427  * Note that on VLV/CHV this actually only controls the max FIFO mode,
428  * and the system is free to enter/exit memory self refresh at any time
429  * even when the use of CxSR has been disallowed.
430  *
431  * While the system is actually in the CxSR/max FIFO mode, some plane
432  * control registers will not get latched on vblank. Thus in order to
433  * guarantee the system will respond to changes in the plane registers
434  * we must always disallow CxSR prior to making changes to those registers.
435  * Unfortunately the system will re-evaluate the CxSR conditions at
436  * frame start which happens after vblank start (which is when the plane
437  * registers would get latched), so we can't proceed with the plane update
438  * during the same frame where we disallowed CxSR.
439  *
440  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
441  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
442  * the hardware w.r.t. HPLL SR when writing to plane registers.
443  * Disallowing just CxSR is sufficient.
444  */
445 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
446 {
447         bool ret;
448
449         mutex_lock(&dev_priv->wm.wm_mutex);
450         ret = _intel_set_memory_cxsr(dev_priv, enable);
451         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
452                 dev_priv->wm.vlv.cxsr = enable;
453         else if (IS_G4X(dev_priv))
454                 dev_priv->wm.g4x.cxsr = enable;
455         mutex_unlock(&dev_priv->wm.wm_mutex);
456
457         return ret;
458 }
459
460 /*
461  * Latency for FIFO fetches is dependent on several factors:
462  *   - memory configuration (speed, channels)
463  *   - chipset
464  *   - current MCH state
465  * It can be fairly high in some situations, so here we assume a fairly
466  * pessimal value.  It's a tradeoff between extra memory fetches (if we
467  * set this value too high, the FIFO will fetch frequently to stay full)
468  * and power consumption (set it too low to save power and we might see
469  * FIFO underruns and display "flicker").
470  *
471  * A value of 5us seems to be a good balance; safe for very low end
472  * platforms but not overly aggressive on lower latency configs.
473  */
474 static const int pessimal_latency_ns = 5000;
475
476 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
477         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
478
479 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
480 {
481         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
482         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
483         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
484         enum pipe pipe = crtc->pipe;
485         int sprite0_start, sprite1_start;
486
487         switch (pipe) {
488                 uint32_t dsparb, dsparb2, dsparb3;
489         case PIPE_A:
490                 dsparb = I915_READ(DSPARB);
491                 dsparb2 = I915_READ(DSPARB2);
492                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
493                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
494                 break;
495         case PIPE_B:
496                 dsparb = I915_READ(DSPARB);
497                 dsparb2 = I915_READ(DSPARB2);
498                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
499                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
500                 break;
501         case PIPE_C:
502                 dsparb2 = I915_READ(DSPARB2);
503                 dsparb3 = I915_READ(DSPARB3);
504                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
505                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
506                 break;
507         default:
508                 MISSING_CASE(pipe);
509                 return;
510         }
511
512         fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
513         fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
514         fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
515         fifo_state->plane[PLANE_CURSOR] = 63;
516 }
517
518 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
519 {
520         uint32_t dsparb = I915_READ(DSPARB);
521         int size;
522
523         size = dsparb & 0x7f;
524         if (plane)
525                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
526
527         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
528                       plane ? "B" : "A", size);
529
530         return size;
531 }
532
533 static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
534 {
535         uint32_t dsparb = I915_READ(DSPARB);
536         int size;
537
538         size = dsparb & 0x1ff;
539         if (plane)
540                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
541         size >>= 1; /* Convert to cachelines */
542
543         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
544                       plane ? "B" : "A", size);
545
546         return size;
547 }
548
549 static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
550 {
551         uint32_t dsparb = I915_READ(DSPARB);
552         int size;
553
554         size = dsparb & 0x7f;
555         size >>= 2; /* Convert to cachelines */
556
557         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
558                       plane ? "B" : "A",
559                       size);
560
561         return size;
562 }
563
564 /* Pineview has different values for various configs */
565 static const struct intel_watermark_params pineview_display_wm = {
566         .fifo_size = PINEVIEW_DISPLAY_FIFO,
567         .max_wm = PINEVIEW_MAX_WM,
568         .default_wm = PINEVIEW_DFT_WM,
569         .guard_size = PINEVIEW_GUARD_WM,
570         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
571 };
572 static const struct intel_watermark_params pineview_display_hplloff_wm = {
573         .fifo_size = PINEVIEW_DISPLAY_FIFO,
574         .max_wm = PINEVIEW_MAX_WM,
575         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
576         .guard_size = PINEVIEW_GUARD_WM,
577         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
578 };
579 static const struct intel_watermark_params pineview_cursor_wm = {
580         .fifo_size = PINEVIEW_CURSOR_FIFO,
581         .max_wm = PINEVIEW_CURSOR_MAX_WM,
582         .default_wm = PINEVIEW_CURSOR_DFT_WM,
583         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
584         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
585 };
586 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
587         .fifo_size = PINEVIEW_CURSOR_FIFO,
588         .max_wm = PINEVIEW_CURSOR_MAX_WM,
589         .default_wm = PINEVIEW_CURSOR_DFT_WM,
590         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
591         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
592 };
593 static const struct intel_watermark_params i965_cursor_wm_info = {
594         .fifo_size = I965_CURSOR_FIFO,
595         .max_wm = I965_CURSOR_MAX_WM,
596         .default_wm = I965_CURSOR_DFT_WM,
597         .guard_size = 2,
598         .cacheline_size = I915_FIFO_LINE_SIZE,
599 };
600 static const struct intel_watermark_params i945_wm_info = {
601         .fifo_size = I945_FIFO_SIZE,
602         .max_wm = I915_MAX_WM,
603         .default_wm = 1,
604         .guard_size = 2,
605         .cacheline_size = I915_FIFO_LINE_SIZE,
606 };
607 static const struct intel_watermark_params i915_wm_info = {
608         .fifo_size = I915_FIFO_SIZE,
609         .max_wm = I915_MAX_WM,
610         .default_wm = 1,
611         .guard_size = 2,
612         .cacheline_size = I915_FIFO_LINE_SIZE,
613 };
614 static const struct intel_watermark_params i830_a_wm_info = {
615         .fifo_size = I855GM_FIFO_SIZE,
616         .max_wm = I915_MAX_WM,
617         .default_wm = 1,
618         .guard_size = 2,
619         .cacheline_size = I830_FIFO_LINE_SIZE,
620 };
621 static const struct intel_watermark_params i830_bc_wm_info = {
622         .fifo_size = I855GM_FIFO_SIZE,
623         .max_wm = I915_MAX_WM/2,
624         .default_wm = 1,
625         .guard_size = 2,
626         .cacheline_size = I830_FIFO_LINE_SIZE,
627 };
628 static const struct intel_watermark_params i845_wm_info = {
629         .fifo_size = I830_FIFO_SIZE,
630         .max_wm = I915_MAX_WM,
631         .default_wm = 1,
632         .guard_size = 2,
633         .cacheline_size = I830_FIFO_LINE_SIZE,
634 };
635
636 /**
637  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
638  * @pixel_rate: Pipe pixel rate in kHz
639  * @cpp: Plane bytes per pixel
640  * @latency: Memory wakeup latency in 0.1us units
641  *
642  * Compute the watermark using the method 1 or "small buffer"
643  * formula. The caller may additonally add extra cachelines
644  * to account for TLB misses and clock crossings.
645  *
646  * This method is concerned with the short term drain rate
647  * of the FIFO, ie. it does not account for blanking periods
648  * which would effectively reduce the average drain rate across
649  * a longer period. The name "small" refers to the fact the
650  * FIFO is relatively small compared to the amount of data
651  * fetched.
652  *
653  * The FIFO level vs. time graph might look something like:
654  *
655  *   |\   |\
656  *   | \  | \
657  * __---__---__ (- plane active, _ blanking)
658  * -> time
659  *
660  * or perhaps like this:
661  *
662  *   |\|\  |\|\
663  * __----__----__ (- plane active, _ blanking)
664  * -> time
665  *
666  * Returns:
667  * The watermark in bytes
668  */
669 static unsigned int intel_wm_method1(unsigned int pixel_rate,
670                                      unsigned int cpp,
671                                      unsigned int latency)
672 {
673         uint64_t ret;
674
675         ret = (uint64_t) pixel_rate * cpp * latency;
676         ret = DIV_ROUND_UP_ULL(ret, 10000);
677
678         return ret;
679 }
680
681 /**
682  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
683  * @pixel_rate: Pipe pixel rate in kHz
684  * @htotal: Pipe horizontal total
685  * @width: Plane width in pixels
686  * @cpp: Plane bytes per pixel
687  * @latency: Memory wakeup latency in 0.1us units
688  *
689  * Compute the watermark using the method 2 or "large buffer"
690  * formula. The caller may additonally add extra cachelines
691  * to account for TLB misses and clock crossings.
692  *
693  * This method is concerned with the long term drain rate
694  * of the FIFO, ie. it does account for blanking periods
695  * which effectively reduce the average drain rate across
696  * a longer period. The name "large" refers to the fact the
697  * FIFO is relatively large compared to the amount of data
698  * fetched.
699  *
700  * The FIFO level vs. time graph might look something like:
701  *
702  *    |\___       |\___
703  *    |    \___   |    \___
704  *    |        \  |        \
705  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
706  * -> time
707  *
708  * Returns:
709  * The watermark in bytes
710  */
711 static unsigned int intel_wm_method2(unsigned int pixel_rate,
712                                      unsigned int htotal,
713                                      unsigned int width,
714                                      unsigned int cpp,
715                                      unsigned int latency)
716 {
717         unsigned int ret;
718
719         /*
720          * FIXME remove once all users are computing
721          * watermarks in the correct place.
722          */
723         if (WARN_ON_ONCE(htotal == 0))
724                 htotal = 1;
725
726         ret = (latency * pixel_rate) / (htotal * 10000);
727         ret = (ret + 1) * width * cpp;
728
729         return ret;
730 }
731
732 /**
733  * intel_calculate_wm - calculate watermark level
734  * @pixel_rate: pixel clock
735  * @wm: chip FIFO params
736  * @cpp: bytes per pixel
737  * @latency_ns: memory latency for the platform
738  *
739  * Calculate the watermark level (the level at which the display plane will
740  * start fetching from memory again).  Each chip has a different display
741  * FIFO size and allocation, so the caller needs to figure that out and pass
742  * in the correct intel_watermark_params structure.
743  *
744  * As the pixel clock runs, the FIFO will be drained at a rate that depends
745  * on the pixel size.  When it reaches the watermark level, it'll start
746  * fetching FIFO line sized based chunks from memory until the FIFO fills
747  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
748  * will occur, and a display engine hang could result.
749  */
750 static unsigned int intel_calculate_wm(int pixel_rate,
751                                        const struct intel_watermark_params *wm,
752                                        int fifo_size, int cpp,
753                                        unsigned int latency_ns)
754 {
755         int entries, wm_size;
756
757         /*
758          * Note: we need to make sure we don't overflow for various clock &
759          * latency values.
760          * clocks go from a few thousand to several hundred thousand.
761          * latency is usually a few thousand
762          */
763         entries = intel_wm_method1(pixel_rate, cpp,
764                                    latency_ns / 100);
765         entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
766                 wm->guard_size;
767         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
768
769         wm_size = fifo_size - entries;
770         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
771
772         /* Don't promote wm_size to unsigned... */
773         if (wm_size > wm->max_wm)
774                 wm_size = wm->max_wm;
775         if (wm_size <= 0)
776                 wm_size = wm->default_wm;
777
778         /*
779          * Bspec seems to indicate that the value shouldn't be lower than
780          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
781          * Lets go for 8 which is the burst size since certain platforms
782          * already use a hardcoded 8 (which is what the spec says should be
783          * done).
784          */
785         if (wm_size <= 8)
786                 wm_size = 8;
787
788         return wm_size;
789 }
790
791 static bool is_disabling(int old, int new, int threshold)
792 {
793         return old >= threshold && new < threshold;
794 }
795
796 static bool is_enabling(int old, int new, int threshold)
797 {
798         return old < threshold && new >= threshold;
799 }
800
801 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
802 {
803         return dev_priv->wm.max_level + 1;
804 }
805
806 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
807                                    const struct intel_plane_state *plane_state)
808 {
809         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
810
811         /* FIXME check the 'enable' instead */
812         if (!crtc_state->base.active)
813                 return false;
814
815         /*
816          * Treat cursor with fb as always visible since cursor updates
817          * can happen faster than the vrefresh rate, and the current
818          * watermark code doesn't handle that correctly. Cursor updates
819          * which set/clear the fb or change the cursor size are going
820          * to get throttled by intel_legacy_cursor_update() to work
821          * around this problem with the watermark code.
822          */
823         if (plane->id == PLANE_CURSOR)
824                 return plane_state->base.fb != NULL;
825         else
826                 return plane_state->base.visible;
827 }
828
829 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
830 {
831         struct intel_crtc *crtc, *enabled = NULL;
832
833         for_each_intel_crtc(&dev_priv->drm, crtc) {
834                 if (intel_crtc_active(crtc)) {
835                         if (enabled)
836                                 return NULL;
837                         enabled = crtc;
838                 }
839         }
840
841         return enabled;
842 }
843
844 static void pineview_update_wm(struct intel_crtc *unused_crtc)
845 {
846         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
847         struct intel_crtc *crtc;
848         const struct cxsr_latency *latency;
849         u32 reg;
850         unsigned int wm;
851
852         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
853                                          dev_priv->is_ddr3,
854                                          dev_priv->fsb_freq,
855                                          dev_priv->mem_freq);
856         if (!latency) {
857                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
858                 intel_set_memory_cxsr(dev_priv, false);
859                 return;
860         }
861
862         crtc = single_enabled_crtc(dev_priv);
863         if (crtc) {
864                 const struct drm_display_mode *adjusted_mode =
865                         &crtc->config->base.adjusted_mode;
866                 const struct drm_framebuffer *fb =
867                         crtc->base.primary->state->fb;
868                 int cpp = fb->format->cpp[0];
869                 int clock = adjusted_mode->crtc_clock;
870
871                 /* Display SR */
872                 wm = intel_calculate_wm(clock, &pineview_display_wm,
873                                         pineview_display_wm.fifo_size,
874                                         cpp, latency->display_sr);
875                 reg = I915_READ(DSPFW1);
876                 reg &= ~DSPFW_SR_MASK;
877                 reg |= FW_WM(wm, SR);
878                 I915_WRITE(DSPFW1, reg);
879                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
880
881                 /* cursor SR */
882                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
883                                         pineview_display_wm.fifo_size,
884                                         4, latency->cursor_sr);
885                 reg = I915_READ(DSPFW3);
886                 reg &= ~DSPFW_CURSOR_SR_MASK;
887                 reg |= FW_WM(wm, CURSOR_SR);
888                 I915_WRITE(DSPFW3, reg);
889
890                 /* Display HPLL off SR */
891                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
892                                         pineview_display_hplloff_wm.fifo_size,
893                                         cpp, latency->display_hpll_disable);
894                 reg = I915_READ(DSPFW3);
895                 reg &= ~DSPFW_HPLL_SR_MASK;
896                 reg |= FW_WM(wm, HPLL_SR);
897                 I915_WRITE(DSPFW3, reg);
898
899                 /* cursor HPLL off SR */
900                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
901                                         pineview_display_hplloff_wm.fifo_size,
902                                         4, latency->cursor_hpll_disable);
903                 reg = I915_READ(DSPFW3);
904                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
905                 reg |= FW_WM(wm, HPLL_CURSOR);
906                 I915_WRITE(DSPFW3, reg);
907                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
908
909                 intel_set_memory_cxsr(dev_priv, true);
910         } else {
911                 intel_set_memory_cxsr(dev_priv, false);
912         }
913 }
914
915 /*
916  * Documentation says:
917  * "If the line size is small, the TLB fetches can get in the way of the
918  *  data fetches, causing some lag in the pixel data return which is not
919  *  accounted for in the above formulas. The following adjustment only
920  *  needs to be applied if eight whole lines fit in the buffer at once.
921  *  The WM is adjusted upwards by the difference between the FIFO size
922  *  and the size of 8 whole lines. This adjustment is always performed
923  *  in the actual pixel depth regardless of whether FBC is enabled or not."
924  */
925 static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
926 {
927         int tlb_miss = fifo_size * 64 - width * cpp * 8;
928
929         return max(0, tlb_miss);
930 }
931
932 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
933                                 const struct g4x_wm_values *wm)
934 {
935         enum pipe pipe;
936
937         for_each_pipe(dev_priv, pipe)
938                 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
939
940         I915_WRITE(DSPFW1,
941                    FW_WM(wm->sr.plane, SR) |
942                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
943                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
944                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
945         I915_WRITE(DSPFW2,
946                    (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
947                    FW_WM(wm->sr.fbc, FBC_SR) |
948                    FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
949                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
950                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
951                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
952         I915_WRITE(DSPFW3,
953                    (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
954                    FW_WM(wm->sr.cursor, CURSOR_SR) |
955                    FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
956                    FW_WM(wm->hpll.plane, HPLL_SR));
957
958         POSTING_READ(DSPFW1);
959 }
960
961 #define FW_WM_VLV(value, plane) \
962         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
963
964 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
965                                 const struct vlv_wm_values *wm)
966 {
967         enum pipe pipe;
968
969         for_each_pipe(dev_priv, pipe) {
970                 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
971
972                 I915_WRITE(VLV_DDL(pipe),
973                            (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
974                            (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
975                            (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
976                            (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
977         }
978
979         /*
980          * Zero the (unused) WM1 watermarks, and also clear all the
981          * high order bits so that there are no out of bounds values
982          * present in the registers during the reprogramming.
983          */
984         I915_WRITE(DSPHOWM, 0);
985         I915_WRITE(DSPHOWM1, 0);
986         I915_WRITE(DSPFW4, 0);
987         I915_WRITE(DSPFW5, 0);
988         I915_WRITE(DSPFW6, 0);
989
990         I915_WRITE(DSPFW1,
991                    FW_WM(wm->sr.plane, SR) |
992                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
993                    FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
994                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
995         I915_WRITE(DSPFW2,
996                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
997                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
998                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
999         I915_WRITE(DSPFW3,
1000                    FW_WM(wm->sr.cursor, CURSOR_SR));
1001
1002         if (IS_CHERRYVIEW(dev_priv)) {
1003                 I915_WRITE(DSPFW7_CHV,
1004                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1005                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1006                 I915_WRITE(DSPFW8_CHV,
1007                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1008                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1009                 I915_WRITE(DSPFW9_CHV,
1010                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1011                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1012                 I915_WRITE(DSPHOWM,
1013                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1014                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1015                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1016                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1017                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1018                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1019                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1020                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1021                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1022                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1023         } else {
1024                 I915_WRITE(DSPFW7,
1025                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1026                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1027                 I915_WRITE(DSPHOWM,
1028                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1029                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1030                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1031                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1032                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1033                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1034                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1035         }
1036
1037         POSTING_READ(DSPFW1);
1038 }
1039
1040 #undef FW_WM_VLV
1041
1042 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1043 {
1044         /* all latencies in usec */
1045         dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1046         dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1047         dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1048
1049         dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1050 }
1051
1052 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1053 {
1054         /*
1055          * DSPCNTR[13] supposedly controls whether the
1056          * primary plane can use the FIFO space otherwise
1057          * reserved for the sprite plane. It's not 100% clear
1058          * what the actual FIFO size is, but it looks like we
1059          * can happily set both primary and sprite watermarks
1060          * up to 127 cachelines. So that would seem to mean
1061          * that either DSPCNTR[13] doesn't do anything, or that
1062          * the total FIFO is >= 256 cachelines in size. Either
1063          * way, we don't seem to have to worry about this
1064          * repartitioning as the maximum watermark value the
1065          * register can hold for each plane is lower than the
1066          * minimum FIFO size.
1067          */
1068         switch (plane_id) {
1069         case PLANE_CURSOR:
1070                 return 63;
1071         case PLANE_PRIMARY:
1072                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1073         case PLANE_SPRITE0:
1074                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1075         default:
1076                 MISSING_CASE(plane_id);
1077                 return 0;
1078         }
1079 }
1080
1081 static int g4x_fbc_fifo_size(int level)
1082 {
1083         switch (level) {
1084         case G4X_WM_LEVEL_SR:
1085                 return 7;
1086         case G4X_WM_LEVEL_HPLL:
1087                 return 15;
1088         default:
1089                 MISSING_CASE(level);
1090                 return 0;
1091         }
1092 }
1093
1094 static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1095                                const struct intel_plane_state *plane_state,
1096                                int level)
1097 {
1098         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1099         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1100         const struct drm_display_mode *adjusted_mode =
1101                 &crtc_state->base.adjusted_mode;
1102         int clock, htotal, cpp, width, wm;
1103         int latency = dev_priv->wm.pri_latency[level] * 10;
1104
1105         if (latency == 0)
1106                 return USHRT_MAX;
1107
1108         if (!intel_wm_plane_visible(crtc_state, plane_state))
1109                 return 0;
1110
1111         /*
1112          * Not 100% sure which way ELK should go here as the
1113          * spec only says CL/CTG should assume 32bpp and BW
1114          * doesn't need to. But as these things followed the
1115          * mobile vs. desktop lines on gen3 as well, let's
1116          * assume ELK doesn't need this.
1117          *
1118          * The spec also fails to list such a restriction for
1119          * the HPLL watermark, which seems a little strange.
1120          * Let's use 32bpp for the HPLL watermark as well.
1121          */
1122         if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1123             level != G4X_WM_LEVEL_NORMAL)
1124                 cpp = 4;
1125         else
1126                 cpp = plane_state->base.fb->format->cpp[0];
1127
1128         clock = adjusted_mode->crtc_clock;
1129         htotal = adjusted_mode->crtc_htotal;
1130
1131         if (plane->id == PLANE_CURSOR)
1132                 width = plane_state->base.crtc_w;
1133         else
1134                 width = drm_rect_width(&plane_state->base.dst);
1135
1136         if (plane->id == PLANE_CURSOR) {
1137                 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1138         } else if (plane->id == PLANE_PRIMARY &&
1139                    level == G4X_WM_LEVEL_NORMAL) {
1140                 wm = intel_wm_method1(clock, cpp, latency);
1141         } else {
1142                 int small, large;
1143
1144                 small = intel_wm_method1(clock, cpp, latency);
1145                 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1146
1147                 wm = min(small, large);
1148         }
1149
1150         wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1151                               width, cpp);
1152
1153         wm = DIV_ROUND_UP(wm, 64) + 2;
1154
1155         return min_t(int, wm, USHRT_MAX);
1156 }
1157
1158 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1159                                  int level, enum plane_id plane_id, u16 value)
1160 {
1161         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1162         bool dirty = false;
1163
1164         for (; level < intel_wm_num_levels(dev_priv); level++) {
1165                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1166
1167                 dirty |= raw->plane[plane_id] != value;
1168                 raw->plane[plane_id] = value;
1169         }
1170
1171         return dirty;
1172 }
1173
1174 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1175                                int level, u16 value)
1176 {
1177         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1178         bool dirty = false;
1179
1180         /* NORMAL level doesn't have an FBC watermark */
1181         level = max(level, G4X_WM_LEVEL_SR);
1182
1183         for (; level < intel_wm_num_levels(dev_priv); level++) {
1184                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1185
1186                 dirty |= raw->fbc != value;
1187                 raw->fbc = value;
1188         }
1189
1190         return dirty;
1191 }
1192
1193 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1194                                    const struct intel_plane_state *pstate,
1195                                    uint32_t pri_val);
1196
1197 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1198                                      const struct intel_plane_state *plane_state)
1199 {
1200         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1201         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1202         enum plane_id plane_id = plane->id;
1203         bool dirty = false;
1204         int level;
1205
1206         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1207                 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1208                 if (plane_id == PLANE_PRIMARY)
1209                         dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1210                 goto out;
1211         }
1212
1213         for (level = 0; level < num_levels; level++) {
1214                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1215                 int wm, max_wm;
1216
1217                 wm = g4x_compute_wm(crtc_state, plane_state, level);
1218                 max_wm = g4x_plane_fifo_size(plane_id, level);
1219
1220                 if (wm > max_wm)
1221                         break;
1222
1223                 dirty |= raw->plane[plane_id] != wm;
1224                 raw->plane[plane_id] = wm;
1225
1226                 if (plane_id != PLANE_PRIMARY ||
1227                     level == G4X_WM_LEVEL_NORMAL)
1228                         continue;
1229
1230                 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1231                                         raw->plane[plane_id]);
1232                 max_wm = g4x_fbc_fifo_size(level);
1233
1234                 /*
1235                  * FBC wm is not mandatory as we
1236                  * can always just disable its use.
1237                  */
1238                 if (wm > max_wm)
1239                         wm = USHRT_MAX;
1240
1241                 dirty |= raw->fbc != wm;
1242                 raw->fbc = wm;
1243         }
1244
1245         /* mark watermarks as invalid */
1246         dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1247
1248         if (plane_id == PLANE_PRIMARY)
1249                 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1250
1251  out:
1252         if (dirty) {
1253                 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1254                               plane->base.name,
1255                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1256                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1257                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1258
1259                 if (plane_id == PLANE_PRIMARY)
1260                         DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1261                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1262                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1263         }
1264
1265         return dirty;
1266 }
1267
1268 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1269                                       enum plane_id plane_id, int level)
1270 {
1271         const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1272
1273         return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1274 }
1275
1276 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1277                                      int level)
1278 {
1279         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1280
1281         if (level > dev_priv->wm.max_level)
1282                 return false;
1283
1284         return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1285                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1286                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1287 }
1288
1289 /* mark all levels starting from 'level' as invalid */
1290 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1291                                struct g4x_wm_state *wm_state, int level)
1292 {
1293         if (level <= G4X_WM_LEVEL_NORMAL) {
1294                 enum plane_id plane_id;
1295
1296                 for_each_plane_id_on_crtc(crtc, plane_id)
1297                         wm_state->wm.plane[plane_id] = USHRT_MAX;
1298         }
1299
1300         if (level <= G4X_WM_LEVEL_SR) {
1301                 wm_state->cxsr = false;
1302                 wm_state->sr.cursor = USHRT_MAX;
1303                 wm_state->sr.plane = USHRT_MAX;
1304                 wm_state->sr.fbc = USHRT_MAX;
1305         }
1306
1307         if (level <= G4X_WM_LEVEL_HPLL) {
1308                 wm_state->hpll_en = false;
1309                 wm_state->hpll.cursor = USHRT_MAX;
1310                 wm_state->hpll.plane = USHRT_MAX;
1311                 wm_state->hpll.fbc = USHRT_MAX;
1312         }
1313 }
1314
1315 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1316 {
1317         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1318         struct intel_atomic_state *state =
1319                 to_intel_atomic_state(crtc_state->base.state);
1320         struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1321         int num_active_planes = hweight32(crtc_state->active_planes &
1322                                           ~BIT(PLANE_CURSOR));
1323         const struct g4x_pipe_wm *raw;
1324         const struct intel_plane_state *old_plane_state;
1325         const struct intel_plane_state *new_plane_state;
1326         struct intel_plane *plane;
1327         enum plane_id plane_id;
1328         int i, level;
1329         unsigned int dirty = 0;
1330
1331         for_each_oldnew_intel_plane_in_state(state, plane,
1332                                              old_plane_state,
1333                                              new_plane_state, i) {
1334                 if (new_plane_state->base.crtc != &crtc->base &&
1335                     old_plane_state->base.crtc != &crtc->base)
1336                         continue;
1337
1338                 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1339                         dirty |= BIT(plane->id);
1340         }
1341
1342         if (!dirty)
1343                 return 0;
1344
1345         level = G4X_WM_LEVEL_NORMAL;
1346         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1347                 goto out;
1348
1349         raw = &crtc_state->wm.g4x.raw[level];
1350         for_each_plane_id_on_crtc(crtc, plane_id)
1351                 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1352
1353         level = G4X_WM_LEVEL_SR;
1354
1355         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1356                 goto out;
1357
1358         raw = &crtc_state->wm.g4x.raw[level];
1359         wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1360         wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1361         wm_state->sr.fbc = raw->fbc;
1362
1363         wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1364
1365         level = G4X_WM_LEVEL_HPLL;
1366
1367         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1368                 goto out;
1369
1370         raw = &crtc_state->wm.g4x.raw[level];
1371         wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1372         wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1373         wm_state->hpll.fbc = raw->fbc;
1374
1375         wm_state->hpll_en = wm_state->cxsr;
1376
1377         level++;
1378
1379  out:
1380         if (level == G4X_WM_LEVEL_NORMAL)
1381                 return -EINVAL;
1382
1383         /* invalidate the higher levels */
1384         g4x_invalidate_wms(crtc, wm_state, level);
1385
1386         /*
1387          * Determine if the FBC watermark(s) can be used. IF
1388          * this isn't the case we prefer to disable the FBC
1389          ( watermark(s) rather than disable the SR/HPLL
1390          * level(s) entirely.
1391          */
1392         wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1393
1394         if (level >= G4X_WM_LEVEL_SR &&
1395             wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1396                 wm_state->fbc_en = false;
1397         else if (level >= G4X_WM_LEVEL_HPLL &&
1398                  wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1399                 wm_state->fbc_en = false;
1400
1401         return 0;
1402 }
1403
1404 static int g4x_compute_intermediate_wm(struct drm_device *dev,
1405                                        struct intel_crtc *crtc,
1406                                        struct intel_crtc_state *crtc_state)
1407 {
1408         struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
1409         const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
1410         const struct g4x_wm_state *active = &crtc->wm.active.g4x;
1411         enum plane_id plane_id;
1412
1413         intermediate->cxsr = optimal->cxsr && active->cxsr &&
1414                 !crtc_state->disable_cxsr;
1415         intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1416                 !crtc_state->disable_cxsr;
1417         intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1418
1419         for_each_plane_id_on_crtc(crtc, plane_id) {
1420                 intermediate->wm.plane[plane_id] =
1421                         max(optimal->wm.plane[plane_id],
1422                             active->wm.plane[plane_id]);
1423
1424                 WARN_ON(intermediate->wm.plane[plane_id] >
1425                         g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1426         }
1427
1428         intermediate->sr.plane = max(optimal->sr.plane,
1429                                      active->sr.plane);
1430         intermediate->sr.cursor = max(optimal->sr.cursor,
1431                                       active->sr.cursor);
1432         intermediate->sr.fbc = max(optimal->sr.fbc,
1433                                    active->sr.fbc);
1434
1435         intermediate->hpll.plane = max(optimal->hpll.plane,
1436                                        active->hpll.plane);
1437         intermediate->hpll.cursor = max(optimal->hpll.cursor,
1438                                         active->hpll.cursor);
1439         intermediate->hpll.fbc = max(optimal->hpll.fbc,
1440                                      active->hpll.fbc);
1441
1442         WARN_ON((intermediate->sr.plane >
1443                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1444                  intermediate->sr.cursor >
1445                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1446                 intermediate->cxsr);
1447         WARN_ON((intermediate->sr.plane >
1448                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1449                  intermediate->sr.cursor >
1450                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1451                 intermediate->hpll_en);
1452
1453         WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1454                 intermediate->fbc_en && intermediate->cxsr);
1455         WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1456                 intermediate->fbc_en && intermediate->hpll_en);
1457
1458         /*
1459          * If our intermediate WM are identical to the final WM, then we can
1460          * omit the post-vblank programming; only update if it's different.
1461          */
1462         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1463                 crtc_state->wm.need_postvbl_update = true;
1464
1465         return 0;
1466 }
1467
1468 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1469                          struct g4x_wm_values *wm)
1470 {
1471         struct intel_crtc *crtc;
1472         int num_active_crtcs = 0;
1473
1474         wm->cxsr = true;
1475         wm->hpll_en = true;
1476         wm->fbc_en = true;
1477
1478         for_each_intel_crtc(&dev_priv->drm, crtc) {
1479                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1480
1481                 if (!crtc->active)
1482                         continue;
1483
1484                 if (!wm_state->cxsr)
1485                         wm->cxsr = false;
1486                 if (!wm_state->hpll_en)
1487                         wm->hpll_en = false;
1488                 if (!wm_state->fbc_en)
1489                         wm->fbc_en = false;
1490
1491                 num_active_crtcs++;
1492         }
1493
1494         if (num_active_crtcs != 1) {
1495                 wm->cxsr = false;
1496                 wm->hpll_en = false;
1497                 wm->fbc_en = false;
1498         }
1499
1500         for_each_intel_crtc(&dev_priv->drm, crtc) {
1501                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1502                 enum pipe pipe = crtc->pipe;
1503
1504                 wm->pipe[pipe] = wm_state->wm;
1505                 if (crtc->active && wm->cxsr)
1506                         wm->sr = wm_state->sr;
1507                 if (crtc->active && wm->hpll_en)
1508                         wm->hpll = wm_state->hpll;
1509         }
1510 }
1511
1512 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1513 {
1514         struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1515         struct g4x_wm_values new_wm = {};
1516
1517         g4x_merge_wm(dev_priv, &new_wm);
1518
1519         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1520                 return;
1521
1522         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1523                 _intel_set_memory_cxsr(dev_priv, false);
1524
1525         g4x_write_wm_values(dev_priv, &new_wm);
1526
1527         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1528                 _intel_set_memory_cxsr(dev_priv, true);
1529
1530         *old_wm = new_wm;
1531 }
1532
1533 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1534                                    struct intel_crtc_state *crtc_state)
1535 {
1536         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1537         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1538
1539         mutex_lock(&dev_priv->wm.wm_mutex);
1540         crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1541         g4x_program_watermarks(dev_priv);
1542         mutex_unlock(&dev_priv->wm.wm_mutex);
1543 }
1544
1545 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1546                                     struct intel_crtc_state *crtc_state)
1547 {
1548         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1549         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1550
1551         if (!crtc_state->wm.need_postvbl_update)
1552                 return;
1553
1554         mutex_lock(&dev_priv->wm.wm_mutex);
1555         intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1556         g4x_program_watermarks(dev_priv);
1557         mutex_unlock(&dev_priv->wm.wm_mutex);
1558 }
1559
1560 /* latency must be in 0.1us units. */
1561 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1562                                    unsigned int htotal,
1563                                    unsigned int width,
1564                                    unsigned int cpp,
1565                                    unsigned int latency)
1566 {
1567         unsigned int ret;
1568
1569         ret = intel_wm_method2(pixel_rate, htotal,
1570                                width, cpp, latency);
1571         ret = DIV_ROUND_UP(ret, 64);
1572
1573         return ret;
1574 }
1575
1576 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1577 {
1578         /* all latencies in usec */
1579         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1580
1581         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1582
1583         if (IS_CHERRYVIEW(dev_priv)) {
1584                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1585                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1586
1587                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1588         }
1589 }
1590
1591 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1592                                      const struct intel_plane_state *plane_state,
1593                                      int level)
1594 {
1595         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1596         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1597         const struct drm_display_mode *adjusted_mode =
1598                 &crtc_state->base.adjusted_mode;
1599         int clock, htotal, cpp, width, wm;
1600
1601         if (dev_priv->wm.pri_latency[level] == 0)
1602                 return USHRT_MAX;
1603
1604         if (!intel_wm_plane_visible(crtc_state, plane_state))
1605                 return 0;
1606
1607         cpp = plane_state->base.fb->format->cpp[0];
1608         clock = adjusted_mode->crtc_clock;
1609         htotal = adjusted_mode->crtc_htotal;
1610         width = crtc_state->pipe_src_w;
1611
1612         if (plane->id == PLANE_CURSOR) {
1613                 /*
1614                  * FIXME the formula gives values that are
1615                  * too big for the cursor FIFO, and hence we
1616                  * would never be able to use cursors. For
1617                  * now just hardcode the watermark.
1618                  */
1619                 wm = 63;
1620         } else {
1621                 wm = vlv_wm_method2(clock, htotal, width, cpp,
1622                                     dev_priv->wm.pri_latency[level] * 10);
1623         }
1624
1625         return min_t(int, wm, USHRT_MAX);
1626 }
1627
1628 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1629 {
1630         return (active_planes & (BIT(PLANE_SPRITE0) |
1631                                  BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1632 }
1633
1634 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1635 {
1636         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1637         const struct g4x_pipe_wm *raw =
1638                 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1639         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1640         unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1641         int num_active_planes = hweight32(active_planes);
1642         const int fifo_size = 511;
1643         int fifo_extra, fifo_left = fifo_size;
1644         int sprite0_fifo_extra = 0;
1645         unsigned int total_rate;
1646         enum plane_id plane_id;
1647
1648         /*
1649          * When enabling sprite0 after sprite1 has already been enabled
1650          * we tend to get an underrun unless sprite0 already has some
1651          * FIFO space allcoated. Hence we always allocate at least one
1652          * cacheline for sprite0 whenever sprite1 is enabled.
1653          *
1654          * All other plane enable sequences appear immune to this problem.
1655          */
1656         if (vlv_need_sprite0_fifo_workaround(active_planes))
1657                 sprite0_fifo_extra = 1;
1658
1659         total_rate = raw->plane[PLANE_PRIMARY] +
1660                 raw->plane[PLANE_SPRITE0] +
1661                 raw->plane[PLANE_SPRITE1] +
1662                 sprite0_fifo_extra;
1663
1664         if (total_rate > fifo_size)
1665                 return -EINVAL;
1666
1667         if (total_rate == 0)
1668                 total_rate = 1;
1669
1670         for_each_plane_id_on_crtc(crtc, plane_id) {
1671                 unsigned int rate;
1672
1673                 if ((active_planes & BIT(plane_id)) == 0) {
1674                         fifo_state->plane[plane_id] = 0;
1675                         continue;
1676                 }
1677
1678                 rate = raw->plane[plane_id];
1679                 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1680                 fifo_left -= fifo_state->plane[plane_id];
1681         }
1682
1683         fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1684         fifo_left -= sprite0_fifo_extra;
1685
1686         fifo_state->plane[PLANE_CURSOR] = 63;
1687
1688         fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1689
1690         /* spread the remainder evenly */
1691         for_each_plane_id_on_crtc(crtc, plane_id) {
1692                 int plane_extra;
1693
1694                 if (fifo_left == 0)
1695                         break;
1696
1697                 if ((active_planes & BIT(plane_id)) == 0)
1698                         continue;
1699
1700                 plane_extra = min(fifo_extra, fifo_left);
1701                 fifo_state->plane[plane_id] += plane_extra;
1702                 fifo_left -= plane_extra;
1703         }
1704
1705         WARN_ON(active_planes != 0 && fifo_left != 0);
1706
1707         /* give it all to the first plane if none are active */
1708         if (active_planes == 0) {
1709                 WARN_ON(fifo_left != fifo_size);
1710                 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1711         }
1712
1713         return 0;
1714 }
1715
1716 /* mark all levels starting from 'level' as invalid */
1717 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1718                                struct vlv_wm_state *wm_state, int level)
1719 {
1720         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1721
1722         for (; level < intel_wm_num_levels(dev_priv); level++) {
1723                 enum plane_id plane_id;
1724
1725                 for_each_plane_id_on_crtc(crtc, plane_id)
1726                         wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1727
1728                 wm_state->sr[level].cursor = USHRT_MAX;
1729                 wm_state->sr[level].plane = USHRT_MAX;
1730         }
1731 }
1732
1733 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1734 {
1735         if (wm > fifo_size)
1736                 return USHRT_MAX;
1737         else
1738                 return fifo_size - wm;
1739 }
1740
1741 /*
1742  * Starting from 'level' set all higher
1743  * levels to 'value' in the "raw" watermarks.
1744  */
1745 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1746                                  int level, enum plane_id plane_id, u16 value)
1747 {
1748         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1749         int num_levels = intel_wm_num_levels(dev_priv);
1750         bool dirty = false;
1751
1752         for (; level < num_levels; level++) {
1753                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1754
1755                 dirty |= raw->plane[plane_id] != value;
1756                 raw->plane[plane_id] = value;
1757         }
1758
1759         return dirty;
1760 }
1761
1762 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1763                                      const struct intel_plane_state *plane_state)
1764 {
1765         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1766         enum plane_id plane_id = plane->id;
1767         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1768         int level;
1769         bool dirty = false;
1770
1771         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1772                 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1773                 goto out;
1774         }
1775
1776         for (level = 0; level < num_levels; level++) {
1777                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1778                 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1779                 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1780
1781                 if (wm > max_wm)
1782                         break;
1783
1784                 dirty |= raw->plane[plane_id] != wm;
1785                 raw->plane[plane_id] = wm;
1786         }
1787
1788         /* mark all higher levels as invalid */
1789         dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1790
1791 out:
1792         if (dirty)
1793                 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1794                               plane->base.name,
1795                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1796                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1797                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1798
1799         return dirty;
1800 }
1801
1802 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1803                                       enum plane_id plane_id, int level)
1804 {
1805         const struct g4x_pipe_wm *raw =
1806                 &crtc_state->wm.vlv.raw[level];
1807         const struct vlv_fifo_state *fifo_state =
1808                 &crtc_state->wm.vlv.fifo_state;
1809
1810         return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1811 }
1812
1813 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1814 {
1815         return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1816                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1817                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1818                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1819 }
1820
1821 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1822 {
1823         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1824         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1825         struct intel_atomic_state *state =
1826                 to_intel_atomic_state(crtc_state->base.state);
1827         struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1828         const struct vlv_fifo_state *fifo_state =
1829                 &crtc_state->wm.vlv.fifo_state;
1830         int num_active_planes = hweight32(crtc_state->active_planes &
1831                                           ~BIT(PLANE_CURSOR));
1832         bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1833         const struct intel_plane_state *old_plane_state;
1834         const struct intel_plane_state *new_plane_state;
1835         struct intel_plane *plane;
1836         enum plane_id plane_id;
1837         int level, ret, i;
1838         unsigned int dirty = 0;
1839
1840         for_each_oldnew_intel_plane_in_state(state, plane,
1841                                              old_plane_state,
1842                                              new_plane_state, i) {
1843                 if (new_plane_state->base.crtc != &crtc->base &&
1844                     old_plane_state->base.crtc != &crtc->base)
1845                         continue;
1846
1847                 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1848                         dirty |= BIT(plane->id);
1849         }
1850
1851         /*
1852          * DSPARB registers may have been reset due to the
1853          * power well being turned off. Make sure we restore
1854          * them to a consistent state even if no primary/sprite
1855          * planes are initially active.
1856          */
1857         if (needs_modeset)
1858                 crtc_state->fifo_changed = true;
1859
1860         if (!dirty)
1861                 return 0;
1862
1863         /* cursor changes don't warrant a FIFO recompute */
1864         if (dirty & ~BIT(PLANE_CURSOR)) {
1865                 const struct intel_crtc_state *old_crtc_state =
1866                         intel_atomic_get_old_crtc_state(state, crtc);
1867                 const struct vlv_fifo_state *old_fifo_state =
1868                         &old_crtc_state->wm.vlv.fifo_state;
1869
1870                 ret = vlv_compute_fifo(crtc_state);
1871                 if (ret)
1872                         return ret;
1873
1874                 if (needs_modeset ||
1875                     memcmp(old_fifo_state, fifo_state,
1876                            sizeof(*fifo_state)) != 0)
1877                         crtc_state->fifo_changed = true;
1878         }
1879
1880         /* initially allow all levels */
1881         wm_state->num_levels = intel_wm_num_levels(dev_priv);
1882         /*
1883          * Note that enabling cxsr with no primary/sprite planes
1884          * enabled can wedge the pipe. Hence we only allow cxsr
1885          * with exactly one enabled primary/sprite plane.
1886          */
1887         wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1888
1889         for (level = 0; level < wm_state->num_levels; level++) {
1890                 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1891                 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1892
1893                 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1894                         break;
1895
1896                 for_each_plane_id_on_crtc(crtc, plane_id) {
1897                         wm_state->wm[level].plane[plane_id] =
1898                                 vlv_invert_wm_value(raw->plane[plane_id],
1899                                                     fifo_state->plane[plane_id]);
1900                 }
1901
1902                 wm_state->sr[level].plane =
1903                         vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1904                                                  raw->plane[PLANE_SPRITE0],
1905                                                  raw->plane[PLANE_SPRITE1]),
1906                                             sr_fifo_size);
1907
1908                 wm_state->sr[level].cursor =
1909                         vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1910                                             63);
1911         }
1912
1913         if (level == 0)
1914                 return -EINVAL;
1915
1916         /* limit to only levels we can actually handle */
1917         wm_state->num_levels = level;
1918
1919         /* invalidate the higher levels */
1920         vlv_invalidate_wms(crtc, wm_state, level);
1921
1922         return 0;
1923 }
1924
1925 #define VLV_FIFO(plane, value) \
1926         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1927
1928 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1929                                    struct intel_crtc_state *crtc_state)
1930 {
1931         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1932         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1933         const struct vlv_fifo_state *fifo_state =
1934                 &crtc_state->wm.vlv.fifo_state;
1935         int sprite0_start, sprite1_start, fifo_size;
1936
1937         if (!crtc_state->fifo_changed)
1938                 return;
1939
1940         sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1941         sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1942         fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1943
1944         WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1945         WARN_ON(fifo_size != 511);
1946
1947         trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1948
1949         /*
1950          * uncore.lock serves a double purpose here. It allows us to
1951          * use the less expensive I915_{READ,WRITE}_FW() functions, and
1952          * it protects the DSPARB registers from getting clobbered by
1953          * parallel updates from multiple pipes.
1954          *
1955          * intel_pipe_update_start() has already disabled interrupts
1956          * for us, so a plain spin_lock() is sufficient here.
1957          */
1958         spin_lock(&dev_priv->uncore.lock);
1959
1960         switch (crtc->pipe) {
1961                 uint32_t dsparb, dsparb2, dsparb3;
1962         case PIPE_A:
1963                 dsparb = I915_READ_FW(DSPARB);
1964                 dsparb2 = I915_READ_FW(DSPARB2);
1965
1966                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1967                             VLV_FIFO(SPRITEB, 0xff));
1968                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1969                            VLV_FIFO(SPRITEB, sprite1_start));
1970
1971                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1972                              VLV_FIFO(SPRITEB_HI, 0x1));
1973                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1974                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1975
1976                 I915_WRITE_FW(DSPARB, dsparb);
1977                 I915_WRITE_FW(DSPARB2, dsparb2);
1978                 break;
1979         case PIPE_B:
1980                 dsparb = I915_READ_FW(DSPARB);
1981                 dsparb2 = I915_READ_FW(DSPARB2);
1982
1983                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1984                             VLV_FIFO(SPRITED, 0xff));
1985                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1986                            VLV_FIFO(SPRITED, sprite1_start));
1987
1988                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1989                              VLV_FIFO(SPRITED_HI, 0xff));
1990                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1991                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1992
1993                 I915_WRITE_FW(DSPARB, dsparb);
1994                 I915_WRITE_FW(DSPARB2, dsparb2);
1995                 break;
1996         case PIPE_C:
1997                 dsparb3 = I915_READ_FW(DSPARB3);
1998                 dsparb2 = I915_READ_FW(DSPARB2);
1999
2000                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2001                              VLV_FIFO(SPRITEF, 0xff));
2002                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2003                             VLV_FIFO(SPRITEF, sprite1_start));
2004
2005                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2006                              VLV_FIFO(SPRITEF_HI, 0xff));
2007                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2008                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2009
2010                 I915_WRITE_FW(DSPARB3, dsparb3);
2011                 I915_WRITE_FW(DSPARB2, dsparb2);
2012                 break;
2013         default:
2014                 break;
2015         }
2016
2017         POSTING_READ_FW(DSPARB);
2018
2019         spin_unlock(&dev_priv->uncore.lock);
2020 }
2021
2022 #undef VLV_FIFO
2023
2024 static int vlv_compute_intermediate_wm(struct drm_device *dev,
2025                                        struct intel_crtc *crtc,
2026                                        struct intel_crtc_state *crtc_state)
2027 {
2028         struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
2029         const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
2030         const struct vlv_wm_state *active = &crtc->wm.active.vlv;
2031         int level;
2032
2033         intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2034         intermediate->cxsr = optimal->cxsr && active->cxsr &&
2035                 !crtc_state->disable_cxsr;
2036
2037         for (level = 0; level < intermediate->num_levels; level++) {
2038                 enum plane_id plane_id;
2039
2040                 for_each_plane_id_on_crtc(crtc, plane_id) {
2041                         intermediate->wm[level].plane[plane_id] =
2042                                 min(optimal->wm[level].plane[plane_id],
2043                                     active->wm[level].plane[plane_id]);
2044                 }
2045
2046                 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2047                                                     active->sr[level].plane);
2048                 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2049                                                      active->sr[level].cursor);
2050         }
2051
2052         vlv_invalidate_wms(crtc, intermediate, level);
2053
2054         /*
2055          * If our intermediate WM are identical to the final WM, then we can
2056          * omit the post-vblank programming; only update if it's different.
2057          */
2058         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2059                 crtc_state->wm.need_postvbl_update = true;
2060
2061         return 0;
2062 }
2063
2064 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2065                          struct vlv_wm_values *wm)
2066 {
2067         struct intel_crtc *crtc;
2068         int num_active_crtcs = 0;
2069
2070         wm->level = dev_priv->wm.max_level;
2071         wm->cxsr = true;
2072
2073         for_each_intel_crtc(&dev_priv->drm, crtc) {
2074                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2075
2076                 if (!crtc->active)
2077                         continue;
2078
2079                 if (!wm_state->cxsr)
2080                         wm->cxsr = false;
2081
2082                 num_active_crtcs++;
2083                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2084         }
2085
2086         if (num_active_crtcs != 1)
2087                 wm->cxsr = false;
2088
2089         if (num_active_crtcs > 1)
2090                 wm->level = VLV_WM_LEVEL_PM2;
2091
2092         for_each_intel_crtc(&dev_priv->drm, crtc) {
2093                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2094                 enum pipe pipe = crtc->pipe;
2095
2096                 wm->pipe[pipe] = wm_state->wm[wm->level];
2097                 if (crtc->active && wm->cxsr)
2098                         wm->sr = wm_state->sr[wm->level];
2099
2100                 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2101                 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2102                 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2103                 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2104         }
2105 }
2106
2107 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2108 {
2109         struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2110         struct vlv_wm_values new_wm = {};
2111
2112         vlv_merge_wm(dev_priv, &new_wm);
2113
2114         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2115                 return;
2116
2117         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2118                 chv_set_memory_dvfs(dev_priv, false);
2119
2120         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2121                 chv_set_memory_pm5(dev_priv, false);
2122
2123         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2124                 _intel_set_memory_cxsr(dev_priv, false);
2125
2126         vlv_write_wm_values(dev_priv, &new_wm);
2127
2128         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2129                 _intel_set_memory_cxsr(dev_priv, true);
2130
2131         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2132                 chv_set_memory_pm5(dev_priv, true);
2133
2134         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2135                 chv_set_memory_dvfs(dev_priv, true);
2136
2137         *old_wm = new_wm;
2138 }
2139
2140 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2141                                    struct intel_crtc_state *crtc_state)
2142 {
2143         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2144         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2145
2146         mutex_lock(&dev_priv->wm.wm_mutex);
2147         crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2148         vlv_program_watermarks(dev_priv);
2149         mutex_unlock(&dev_priv->wm.wm_mutex);
2150 }
2151
2152 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2153                                     struct intel_crtc_state *crtc_state)
2154 {
2155         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2156         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2157
2158         if (!crtc_state->wm.need_postvbl_update)
2159                 return;
2160
2161         mutex_lock(&dev_priv->wm.wm_mutex);
2162         intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2163         vlv_program_watermarks(dev_priv);
2164         mutex_unlock(&dev_priv->wm.wm_mutex);
2165 }
2166
2167 static void i965_update_wm(struct intel_crtc *unused_crtc)
2168 {
2169         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2170         struct intel_crtc *crtc;
2171         int srwm = 1;
2172         int cursor_sr = 16;
2173         bool cxsr_enabled;
2174
2175         /* Calc sr entries for one plane configs */
2176         crtc = single_enabled_crtc(dev_priv);
2177         if (crtc) {
2178                 /* self-refresh has much higher latency */
2179                 static const int sr_latency_ns = 12000;
2180                 const struct drm_display_mode *adjusted_mode =
2181                         &crtc->config->base.adjusted_mode;
2182                 const struct drm_framebuffer *fb =
2183                         crtc->base.primary->state->fb;
2184                 int clock = adjusted_mode->crtc_clock;
2185                 int htotal = adjusted_mode->crtc_htotal;
2186                 int hdisplay = crtc->config->pipe_src_w;
2187                 int cpp = fb->format->cpp[0];
2188                 int entries;
2189
2190                 entries = intel_wm_method2(clock, htotal,
2191                                            hdisplay, cpp, sr_latency_ns / 100);
2192                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2193                 srwm = I965_FIFO_SIZE - entries;
2194                 if (srwm < 0)
2195                         srwm = 1;
2196                 srwm &= 0x1ff;
2197                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2198                               entries, srwm);
2199
2200                 entries = intel_wm_method2(clock, htotal,
2201                                            crtc->base.cursor->state->crtc_w, 4,
2202                                            sr_latency_ns / 100);
2203                 entries = DIV_ROUND_UP(entries,
2204                                        i965_cursor_wm_info.cacheline_size) +
2205                         i965_cursor_wm_info.guard_size;
2206
2207                 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2208                 if (cursor_sr > i965_cursor_wm_info.max_wm)
2209                         cursor_sr = i965_cursor_wm_info.max_wm;
2210
2211                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2212                               "cursor %d\n", srwm, cursor_sr);
2213
2214                 cxsr_enabled = true;
2215         } else {
2216                 cxsr_enabled = false;
2217                 /* Turn off self refresh if both pipes are enabled */
2218                 intel_set_memory_cxsr(dev_priv, false);
2219         }
2220
2221         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2222                       srwm);
2223
2224         /* 965 has limitations... */
2225         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2226                    FW_WM(8, CURSORB) |
2227                    FW_WM(8, PLANEB) |
2228                    FW_WM(8, PLANEA));
2229         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2230                    FW_WM(8, PLANEC_OLD));
2231         /* update cursor SR watermark */
2232         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2233
2234         if (cxsr_enabled)
2235                 intel_set_memory_cxsr(dev_priv, true);
2236 }
2237
2238 #undef FW_WM
2239
2240 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2241 {
2242         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2243         const struct intel_watermark_params *wm_info;
2244         uint32_t fwater_lo;
2245         uint32_t fwater_hi;
2246         int cwm, srwm = 1;
2247         int fifo_size;
2248         int planea_wm, planeb_wm;
2249         struct intel_crtc *crtc, *enabled = NULL;
2250
2251         if (IS_I945GM(dev_priv))
2252                 wm_info = &i945_wm_info;
2253         else if (!IS_GEN2(dev_priv))
2254                 wm_info = &i915_wm_info;
2255         else
2256                 wm_info = &i830_a_wm_info;
2257
2258         fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
2259         crtc = intel_get_crtc_for_plane(dev_priv, 0);
2260         if (intel_crtc_active(crtc)) {
2261                 const struct drm_display_mode *adjusted_mode =
2262                         &crtc->config->base.adjusted_mode;
2263                 const struct drm_framebuffer *fb =
2264                         crtc->base.primary->state->fb;
2265                 int cpp;
2266
2267                 if (IS_GEN2(dev_priv))
2268                         cpp = 4;
2269                 else
2270                         cpp = fb->format->cpp[0];
2271
2272                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2273                                                wm_info, fifo_size, cpp,
2274                                                pessimal_latency_ns);
2275                 enabled = crtc;
2276         } else {
2277                 planea_wm = fifo_size - wm_info->guard_size;
2278                 if (planea_wm > (long)wm_info->max_wm)
2279                         planea_wm = wm_info->max_wm;
2280         }
2281
2282         if (IS_GEN2(dev_priv))
2283                 wm_info = &i830_bc_wm_info;
2284
2285         fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
2286         crtc = intel_get_crtc_for_plane(dev_priv, 1);
2287         if (intel_crtc_active(crtc)) {
2288                 const struct drm_display_mode *adjusted_mode =
2289                         &crtc->config->base.adjusted_mode;
2290                 const struct drm_framebuffer *fb =
2291                         crtc->base.primary->state->fb;
2292                 int cpp;
2293
2294                 if (IS_GEN2(dev_priv))
2295                         cpp = 4;
2296                 else
2297                         cpp = fb->format->cpp[0];
2298
2299                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2300                                                wm_info, fifo_size, cpp,
2301                                                pessimal_latency_ns);
2302                 if (enabled == NULL)
2303                         enabled = crtc;
2304                 else
2305                         enabled = NULL;
2306         } else {
2307                 planeb_wm = fifo_size - wm_info->guard_size;
2308                 if (planeb_wm > (long)wm_info->max_wm)
2309                         planeb_wm = wm_info->max_wm;
2310         }
2311
2312         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2313
2314         if (IS_I915GM(dev_priv) && enabled) {
2315                 struct drm_i915_gem_object *obj;
2316
2317                 obj = intel_fb_obj(enabled->base.primary->state->fb);
2318
2319                 /* self-refresh seems busted with untiled */
2320                 if (!i915_gem_object_is_tiled(obj))
2321                         enabled = NULL;
2322         }
2323
2324         /*
2325          * Overlay gets an aggressive default since video jitter is bad.
2326          */
2327         cwm = 2;
2328
2329         /* Play safe and disable self-refresh before adjusting watermarks. */
2330         intel_set_memory_cxsr(dev_priv, false);
2331
2332         /* Calc sr entries for one plane configs */
2333         if (HAS_FW_BLC(dev_priv) && enabled) {
2334                 /* self-refresh has much higher latency */
2335                 static const int sr_latency_ns = 6000;
2336                 const struct drm_display_mode *adjusted_mode =
2337                         &enabled->config->base.adjusted_mode;
2338                 const struct drm_framebuffer *fb =
2339                         enabled->base.primary->state->fb;
2340                 int clock = adjusted_mode->crtc_clock;
2341                 int htotal = adjusted_mode->crtc_htotal;
2342                 int hdisplay = enabled->config->pipe_src_w;
2343                 int cpp;
2344                 int entries;
2345
2346                 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2347                         cpp = 4;
2348                 else
2349                         cpp = fb->format->cpp[0];
2350
2351                 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2352                                            sr_latency_ns / 100);
2353                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2354                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2355                 srwm = wm_info->fifo_size - entries;
2356                 if (srwm < 0)
2357                         srwm = 1;
2358
2359                 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2360                         I915_WRITE(FW_BLC_SELF,
2361                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2362                 else
2363                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2364         }
2365
2366         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2367                       planea_wm, planeb_wm, cwm, srwm);
2368
2369         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2370         fwater_hi = (cwm & 0x1f);
2371
2372         /* Set request length to 8 cachelines per fetch */
2373         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2374         fwater_hi = fwater_hi | (1 << 8);
2375
2376         I915_WRITE(FW_BLC, fwater_lo);
2377         I915_WRITE(FW_BLC2, fwater_hi);
2378
2379         if (enabled)
2380                 intel_set_memory_cxsr(dev_priv, true);
2381 }
2382
2383 static void i845_update_wm(struct intel_crtc *unused_crtc)
2384 {
2385         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2386         struct intel_crtc *crtc;
2387         const struct drm_display_mode *adjusted_mode;
2388         uint32_t fwater_lo;
2389         int planea_wm;
2390
2391         crtc = single_enabled_crtc(dev_priv);
2392         if (crtc == NULL)
2393                 return;
2394
2395         adjusted_mode = &crtc->config->base.adjusted_mode;
2396         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2397                                        &i845_wm_info,
2398                                        dev_priv->display.get_fifo_size(dev_priv, 0),
2399                                        4, pessimal_latency_ns);
2400         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2401         fwater_lo |= (3<<8) | planea_wm;
2402
2403         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2404
2405         I915_WRITE(FW_BLC, fwater_lo);
2406 }
2407
2408 /* latency must be in 0.1us units. */
2409 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2410                                    unsigned int cpp,
2411                                    unsigned int latency)
2412 {
2413         unsigned int ret;
2414
2415         ret = intel_wm_method1(pixel_rate, cpp, latency);
2416         ret = DIV_ROUND_UP(ret, 64) + 2;
2417
2418         return ret;
2419 }
2420
2421 /* latency must be in 0.1us units. */
2422 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2423                                    unsigned int htotal,
2424                                    unsigned int width,
2425                                    unsigned int cpp,
2426                                    unsigned int latency)
2427 {
2428         unsigned int ret;
2429
2430         ret = intel_wm_method2(pixel_rate, htotal,
2431                                width, cpp, latency);
2432         ret = DIV_ROUND_UP(ret, 64) + 2;
2433
2434         return ret;
2435 }
2436
2437 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2438                            uint8_t cpp)
2439 {
2440         /*
2441          * Neither of these should be possible since this function shouldn't be
2442          * called if the CRTC is off or the plane is invisible.  But let's be
2443          * extra paranoid to avoid a potential divide-by-zero if we screw up
2444          * elsewhere in the driver.
2445          */
2446         if (WARN_ON(!cpp))
2447                 return 0;
2448         if (WARN_ON(!horiz_pixels))
2449                 return 0;
2450
2451         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2452 }
2453
2454 struct ilk_wm_maximums {
2455         uint16_t pri;
2456         uint16_t spr;
2457         uint16_t cur;
2458         uint16_t fbc;
2459 };
2460
2461 /*
2462  * For both WM_PIPE and WM_LP.
2463  * mem_value must be in 0.1us units.
2464  */
2465 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2466                                    const struct intel_plane_state *pstate,
2467                                    uint32_t mem_value,
2468                                    bool is_lp)
2469 {
2470         uint32_t method1, method2;
2471         int cpp;
2472
2473         if (!intel_wm_plane_visible(cstate, pstate))
2474                 return 0;
2475
2476         cpp = pstate->base.fb->format->cpp[0];
2477
2478         method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2479
2480         if (!is_lp)
2481                 return method1;
2482
2483         method2 = ilk_wm_method2(cstate->pixel_rate,
2484                                  cstate->base.adjusted_mode.crtc_htotal,
2485                                  drm_rect_width(&pstate->base.dst),
2486                                  cpp, mem_value);
2487
2488         return min(method1, method2);
2489 }
2490
2491 /*
2492  * For both WM_PIPE and WM_LP.
2493  * mem_value must be in 0.1us units.
2494  */
2495 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2496                                    const struct intel_plane_state *pstate,
2497                                    uint32_t mem_value)
2498 {
2499         uint32_t method1, method2;
2500         int cpp;
2501
2502         if (!intel_wm_plane_visible(cstate, pstate))
2503                 return 0;
2504
2505         cpp = pstate->base.fb->format->cpp[0];
2506
2507         method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2508         method2 = ilk_wm_method2(cstate->pixel_rate,
2509                                  cstate->base.adjusted_mode.crtc_htotal,
2510                                  drm_rect_width(&pstate->base.dst),
2511                                  cpp, mem_value);
2512         return min(method1, method2);
2513 }
2514
2515 /*
2516  * For both WM_PIPE and WM_LP.
2517  * mem_value must be in 0.1us units.
2518  */
2519 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2520                                    const struct intel_plane_state *pstate,
2521                                    uint32_t mem_value)
2522 {
2523         int cpp;
2524
2525         if (!intel_wm_plane_visible(cstate, pstate))
2526                 return 0;
2527
2528         cpp = pstate->base.fb->format->cpp[0];
2529
2530         return ilk_wm_method2(cstate->pixel_rate,
2531                               cstate->base.adjusted_mode.crtc_htotal,
2532                               pstate->base.crtc_w, cpp, mem_value);
2533 }
2534
2535 /* Only for WM_LP. */
2536 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2537                                    const struct intel_plane_state *pstate,
2538                                    uint32_t pri_val)
2539 {
2540         int cpp;
2541
2542         if (!intel_wm_plane_visible(cstate, pstate))
2543                 return 0;
2544
2545         cpp = pstate->base.fb->format->cpp[0];
2546
2547         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2548 }
2549
2550 static unsigned int
2551 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2552 {
2553         if (INTEL_GEN(dev_priv) >= 8)
2554                 return 3072;
2555         else if (INTEL_GEN(dev_priv) >= 7)
2556                 return 768;
2557         else
2558                 return 512;
2559 }
2560
2561 static unsigned int
2562 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2563                      int level, bool is_sprite)
2564 {
2565         if (INTEL_GEN(dev_priv) >= 8)
2566                 /* BDW primary/sprite plane watermarks */
2567                 return level == 0 ? 255 : 2047;
2568         else if (INTEL_GEN(dev_priv) >= 7)
2569                 /* IVB/HSW primary/sprite plane watermarks */
2570                 return level == 0 ? 127 : 1023;
2571         else if (!is_sprite)
2572                 /* ILK/SNB primary plane watermarks */
2573                 return level == 0 ? 127 : 511;
2574         else
2575                 /* ILK/SNB sprite plane watermarks */
2576                 return level == 0 ? 63 : 255;
2577 }
2578
2579 static unsigned int
2580 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2581 {
2582         if (INTEL_GEN(dev_priv) >= 7)
2583                 return level == 0 ? 63 : 255;
2584         else
2585                 return level == 0 ? 31 : 63;
2586 }
2587
2588 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2589 {
2590         if (INTEL_GEN(dev_priv) >= 8)
2591                 return 31;
2592         else
2593                 return 15;
2594 }
2595
2596 /* Calculate the maximum primary/sprite plane watermark */
2597 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2598                                      int level,
2599                                      const struct intel_wm_config *config,
2600                                      enum intel_ddb_partitioning ddb_partitioning,
2601                                      bool is_sprite)
2602 {
2603         struct drm_i915_private *dev_priv = to_i915(dev);
2604         unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2605
2606         /* if sprites aren't enabled, sprites get nothing */
2607         if (is_sprite && !config->sprites_enabled)
2608                 return 0;
2609
2610         /* HSW allows LP1+ watermarks even with multiple pipes */
2611         if (level == 0 || config->num_pipes_active > 1) {
2612                 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2613
2614                 /*
2615                  * For some reason the non self refresh
2616                  * FIFO size is only half of the self
2617                  * refresh FIFO size on ILK/SNB.
2618                  */
2619                 if (INTEL_GEN(dev_priv) <= 6)
2620                         fifo_size /= 2;
2621         }
2622
2623         if (config->sprites_enabled) {
2624                 /* level 0 is always calculated with 1:1 split */
2625                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2626                         if (is_sprite)
2627                                 fifo_size *= 5;
2628                         fifo_size /= 6;
2629                 } else {
2630                         fifo_size /= 2;
2631                 }
2632         }
2633
2634         /* clamp to max that the registers can hold */
2635         return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2636 }
2637
2638 /* Calculate the maximum cursor plane watermark */
2639 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2640                                       int level,
2641                                       const struct intel_wm_config *config)
2642 {
2643         /* HSW LP1+ watermarks w/ multiple pipes */
2644         if (level > 0 && config->num_pipes_active > 1)
2645                 return 64;
2646
2647         /* otherwise just report max that registers can hold */
2648         return ilk_cursor_wm_reg_max(to_i915(dev), level);
2649 }
2650
2651 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2652                                     int level,
2653                                     const struct intel_wm_config *config,
2654                                     enum intel_ddb_partitioning ddb_partitioning,
2655                                     struct ilk_wm_maximums *max)
2656 {
2657         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2658         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2659         max->cur = ilk_cursor_wm_max(dev, level, config);
2660         max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2661 }
2662
2663 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2664                                         int level,
2665                                         struct ilk_wm_maximums *max)
2666 {
2667         max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2668         max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2669         max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2670         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2671 }
2672
2673 static bool ilk_validate_wm_level(int level,
2674                                   const struct ilk_wm_maximums *max,
2675                                   struct intel_wm_level *result)
2676 {
2677         bool ret;
2678
2679         /* already determined to be invalid? */
2680         if (!result->enable)
2681                 return false;
2682
2683         result->enable = result->pri_val <= max->pri &&
2684                          result->spr_val <= max->spr &&
2685                          result->cur_val <= max->cur;
2686
2687         ret = result->enable;
2688
2689         /*
2690          * HACK until we can pre-compute everything,
2691          * and thus fail gracefully if LP0 watermarks
2692          * are exceeded...
2693          */
2694         if (level == 0 && !result->enable) {
2695                 if (result->pri_val > max->pri)
2696                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2697                                       level, result->pri_val, max->pri);
2698                 if (result->spr_val > max->spr)
2699                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2700                                       level, result->spr_val, max->spr);
2701                 if (result->cur_val > max->cur)
2702                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2703                                       level, result->cur_val, max->cur);
2704
2705                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2706                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2707                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2708                 result->enable = true;
2709         }
2710
2711         return ret;
2712 }
2713
2714 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2715                                  const struct intel_crtc *intel_crtc,
2716                                  int level,
2717                                  struct intel_crtc_state *cstate,
2718                                  const struct intel_plane_state *pristate,
2719                                  const struct intel_plane_state *sprstate,
2720                                  const struct intel_plane_state *curstate,
2721                                  struct intel_wm_level *result)
2722 {
2723         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2724         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2725         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2726
2727         /* WM1+ latency values stored in 0.5us units */
2728         if (level > 0) {
2729                 pri_latency *= 5;
2730                 spr_latency *= 5;
2731                 cur_latency *= 5;
2732         }
2733
2734         if (pristate) {
2735                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2736                                                      pri_latency, level);
2737                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2738         }
2739
2740         if (sprstate)
2741                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2742
2743         if (curstate)
2744                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2745
2746         result->enable = true;
2747 }
2748
2749 static uint32_t
2750 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2751 {
2752         const struct intel_atomic_state *intel_state =
2753                 to_intel_atomic_state(cstate->base.state);
2754         const struct drm_display_mode *adjusted_mode =
2755                 &cstate->base.adjusted_mode;
2756         u32 linetime, ips_linetime;
2757
2758         if (!cstate->base.active)
2759                 return 0;
2760         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2761                 return 0;
2762         if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2763                 return 0;
2764
2765         /* The WM are computed with base on how long it takes to fill a single
2766          * row at the given clock rate, multiplied by 8.
2767          * */
2768         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2769                                      adjusted_mode->crtc_clock);
2770         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2771                                          intel_state->cdclk.logical.cdclk);
2772
2773         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2774                PIPE_WM_LINETIME_TIME(linetime);
2775 }
2776
2777 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2778                                   uint16_t wm[8])
2779 {
2780         if (INTEL_GEN(dev_priv) >= 9) {
2781                 uint32_t val;
2782                 int ret, i;
2783                 int level, max_level = ilk_wm_max_level(dev_priv);
2784
2785                 /* read the first set of memory latencies[0:3] */
2786                 val = 0; /* data0 to be programmed to 0 for first set */
2787                 mutex_lock(&dev_priv->pcu_lock);
2788                 ret = sandybridge_pcode_read(dev_priv,
2789                                              GEN9_PCODE_READ_MEM_LATENCY,
2790                                              &val);
2791                 mutex_unlock(&dev_priv->pcu_lock);
2792
2793                 if (ret) {
2794                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2795                         return;
2796                 }
2797
2798                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2799                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2800                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2801                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2802                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2803                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2804                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2805
2806                 /* read the second set of memory latencies[4:7] */
2807                 val = 1; /* data0 to be programmed to 1 for second set */
2808                 mutex_lock(&dev_priv->pcu_lock);
2809                 ret = sandybridge_pcode_read(dev_priv,
2810                                              GEN9_PCODE_READ_MEM_LATENCY,
2811                                              &val);
2812                 mutex_unlock(&dev_priv->pcu_lock);
2813                 if (ret) {
2814                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2815                         return;
2816                 }
2817
2818                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2819                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2820                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2821                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2822                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2823                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2824                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2825
2826                 /*
2827                  * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2828                  * need to be disabled. We make sure to sanitize the values out
2829                  * of the punit to satisfy this requirement.
2830                  */
2831                 for (level = 1; level <= max_level; level++) {
2832                         if (wm[level] == 0) {
2833                                 for (i = level + 1; i <= max_level; i++)
2834                                         wm[i] = 0;
2835                                 break;
2836                         }
2837                 }
2838
2839                 /*
2840                  * WaWmMemoryReadLatency:skl+,glk
2841                  *
2842                  * punit doesn't take into account the read latency so we need
2843                  * to add 2us to the various latency levels we retrieve from the
2844                  * punit when level 0 response data us 0us.
2845                  */
2846                 if (wm[0] == 0) {
2847                         wm[0] += 2;
2848                         for (level = 1; level <= max_level; level++) {
2849                                 if (wm[level] == 0)
2850                                         break;
2851                                 wm[level] += 2;
2852                         }
2853                 }
2854
2855         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2856                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2857
2858                 wm[0] = (sskpd >> 56) & 0xFF;
2859                 if (wm[0] == 0)
2860                         wm[0] = sskpd & 0xF;
2861                 wm[1] = (sskpd >> 4) & 0xFF;
2862                 wm[2] = (sskpd >> 12) & 0xFF;
2863                 wm[3] = (sskpd >> 20) & 0x1FF;
2864                 wm[4] = (sskpd >> 32) & 0x1FF;
2865         } else if (INTEL_GEN(dev_priv) >= 6) {
2866                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2867
2868                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2869                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2870                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2871                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2872         } else if (INTEL_GEN(dev_priv) >= 5) {
2873                 uint32_t mltr = I915_READ(MLTR_ILK);
2874
2875                 /* ILK primary LP0 latency is 700 ns */
2876                 wm[0] = 7;
2877                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2878                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2879         } else {
2880                 MISSING_CASE(INTEL_DEVID(dev_priv));
2881         }
2882 }
2883
2884 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2885                                        uint16_t wm[5])
2886 {
2887         /* ILK sprite LP0 latency is 1300 ns */
2888         if (IS_GEN5(dev_priv))
2889                 wm[0] = 13;
2890 }
2891
2892 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2893                                        uint16_t wm[5])
2894 {
2895         /* ILK cursor LP0 latency is 1300 ns */
2896         if (IS_GEN5(dev_priv))
2897                 wm[0] = 13;
2898
2899         /* WaDoubleCursorLP3Latency:ivb */
2900         if (IS_IVYBRIDGE(dev_priv))
2901                 wm[3] *= 2;
2902 }
2903
2904 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2905 {
2906         /* how many WM levels are we expecting */
2907         if (INTEL_GEN(dev_priv) >= 9)
2908                 return 7;
2909         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2910                 return 4;
2911         else if (INTEL_GEN(dev_priv) >= 6)
2912                 return 3;
2913         else
2914                 return 2;
2915 }
2916
2917 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2918                                    const char *name,
2919                                    const uint16_t wm[8])
2920 {
2921         int level, max_level = ilk_wm_max_level(dev_priv);
2922
2923         for (level = 0; level <= max_level; level++) {
2924                 unsigned int latency = wm[level];
2925
2926                 if (latency == 0) {
2927                         DRM_ERROR("%s WM%d latency not provided\n",
2928                                   name, level);
2929                         continue;
2930                 }
2931
2932                 /*
2933                  * - latencies are in us on gen9.
2934                  * - before then, WM1+ latency values are in 0.5us units
2935                  */
2936                 if (INTEL_GEN(dev_priv) >= 9)
2937                         latency *= 10;
2938                 else if (level > 0)
2939                         latency *= 5;
2940
2941                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2942                               name, level, wm[level],
2943                               latency / 10, latency % 10);
2944         }
2945 }
2946
2947 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2948                                     uint16_t wm[5], uint16_t min)
2949 {
2950         int level, max_level = ilk_wm_max_level(dev_priv);
2951
2952         if (wm[0] >= min)
2953                 return false;
2954
2955         wm[0] = max(wm[0], min);
2956         for (level = 1; level <= max_level; level++)
2957                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2958
2959         return true;
2960 }
2961
2962 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2963 {
2964         bool changed;
2965
2966         /*
2967          * The BIOS provided WM memory latency values are often
2968          * inadequate for high resolution displays. Adjust them.
2969          */
2970         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2971                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2972                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2973
2974         if (!changed)
2975                 return;
2976
2977         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2978         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2979         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2980         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2981 }
2982
2983 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2984 {
2985         intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2986
2987         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2988                sizeof(dev_priv->wm.pri_latency));
2989         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2990                sizeof(dev_priv->wm.pri_latency));
2991
2992         intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2993         intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2994
2995         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2996         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2997         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2998
2999         if (IS_GEN6(dev_priv))
3000                 snb_wm_latency_quirk(dev_priv);
3001 }
3002
3003 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3004 {
3005         intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3006         intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3007 }
3008
3009 static bool ilk_validate_pipe_wm(struct drm_device *dev,
3010                                  struct intel_pipe_wm *pipe_wm)
3011 {
3012         /* LP0 watermark maximums depend on this pipe alone */
3013         const struct intel_wm_config config = {
3014                 .num_pipes_active = 1,
3015                 .sprites_enabled = pipe_wm->sprites_enabled,
3016                 .sprites_scaled = pipe_wm->sprites_scaled,
3017         };
3018         struct ilk_wm_maximums max;
3019
3020         /* LP0 watermarks always use 1/2 DDB partitioning */
3021         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
3022
3023         /* At least LP0 must be valid */
3024         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3025                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3026                 return false;
3027         }
3028
3029         return true;
3030 }
3031
3032 /* Compute new watermarks for the pipe */
3033 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3034 {
3035         struct drm_atomic_state *state = cstate->base.state;
3036         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3037         struct intel_pipe_wm *pipe_wm;
3038         struct drm_device *dev = state->dev;
3039         const struct drm_i915_private *dev_priv = to_i915(dev);
3040         struct drm_plane *plane;
3041         const struct drm_plane_state *plane_state;
3042         const struct intel_plane_state *pristate = NULL;
3043         const struct intel_plane_state *sprstate = NULL;
3044         const struct intel_plane_state *curstate = NULL;
3045         int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3046         struct ilk_wm_maximums max;
3047
3048         pipe_wm = &cstate->wm.ilk.optimal;
3049
3050         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
3051                 const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3052
3053                 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3054                         pristate = ps;
3055                 else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3056                         sprstate = ps;
3057                 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3058                         curstate = ps;
3059         }
3060
3061         pipe_wm->pipe_enabled = cstate->base.active;
3062         if (sprstate) {
3063                 pipe_wm->sprites_enabled = sprstate->base.visible;
3064                 pipe_wm->sprites_scaled = sprstate->base.visible &&
3065                         (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3066                          drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3067         }
3068
3069         usable_level = max_level;
3070
3071         /* ILK/SNB: LP2+ watermarks only w/o sprites */
3072         if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3073                 usable_level = 1;
3074
3075         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3076         if (pipe_wm->sprites_scaled)
3077                 usable_level = 0;
3078
3079         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3080         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3081                              pristate, sprstate, curstate, &pipe_wm->wm[0]);
3082
3083         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3084                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3085
3086         if (!ilk_validate_pipe_wm(dev, pipe_wm))
3087                 return -EINVAL;
3088
3089         ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3090
3091         for (level = 1; level <= usable_level; level++) {
3092                 struct intel_wm_level *wm = &pipe_wm->wm[level];
3093
3094                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3095                                      pristate, sprstate, curstate, wm);
3096
3097                 /*
3098                  * Disable any watermark level that exceeds the
3099                  * register maximums since such watermarks are
3100                  * always invalid.
3101                  */
3102                 if (!ilk_validate_wm_level(level, &max, wm)) {
3103                         memset(wm, 0, sizeof(*wm));
3104                         break;
3105                 }
3106         }
3107
3108         return 0;
3109 }
3110
3111 /*
3112  * Build a set of 'intermediate' watermark values that satisfy both the old
3113  * state and the new state.  These can be programmed to the hardware
3114  * immediately.
3115  */
3116 static int ilk_compute_intermediate_wm(struct drm_device *dev,
3117                                        struct intel_crtc *intel_crtc,
3118                                        struct intel_crtc_state *newstate)
3119 {
3120         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3121         struct intel_atomic_state *intel_state =
3122                 to_intel_atomic_state(newstate->base.state);
3123         const struct intel_crtc_state *oldstate =
3124                 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3125         const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3126         int level, max_level = ilk_wm_max_level(to_i915(dev));
3127
3128         /*
3129          * Start with the final, target watermarks, then combine with the
3130          * currently active watermarks to get values that are safe both before
3131          * and after the vblank.
3132          */
3133         *a = newstate->wm.ilk.optimal;
3134         if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
3135                 return 0;
3136
3137         a->pipe_enabled |= b->pipe_enabled;
3138         a->sprites_enabled |= b->sprites_enabled;
3139         a->sprites_scaled |= b->sprites_scaled;
3140
3141         for (level = 0; level <= max_level; level++) {
3142                 struct intel_wm_level *a_wm = &a->wm[level];
3143                 const struct intel_wm_level *b_wm = &b->wm[level];
3144
3145                 a_wm->enable &= b_wm->enable;
3146                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3147                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3148                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3149                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3150         }
3151
3152         /*
3153          * We need to make sure that these merged watermark values are
3154          * actually a valid configuration themselves.  If they're not,
3155          * there's no safe way to transition from the old state to
3156          * the new state, so we need to fail the atomic transaction.
3157          */
3158         if (!ilk_validate_pipe_wm(dev, a))
3159                 return -EINVAL;
3160
3161         /*
3162          * If our intermediate WM are identical to the final WM, then we can
3163          * omit the post-vblank programming; only update if it's different.
3164          */
3165         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3166                 newstate->wm.need_postvbl_update = true;
3167
3168         return 0;
3169 }
3170
3171 /*
3172  * Merge the watermarks from all active pipes for a specific level.
3173  */
3174 static void ilk_merge_wm_level(struct drm_device *dev,
3175                                int level,
3176                                struct intel_wm_level *ret_wm)
3177 {
3178         const struct intel_crtc *intel_crtc;
3179
3180         ret_wm->enable = true;
3181
3182         for_each_intel_crtc(dev, intel_crtc) {
3183                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3184                 const struct intel_wm_level *wm = &active->wm[level];
3185
3186                 if (!active->pipe_enabled)
3187                         continue;
3188
3189                 /*
3190                  * The watermark values may have been used in the past,
3191                  * so we must maintain them in the registers for some
3192                  * time even if the level is now disabled.
3193                  */
3194                 if (!wm->enable)
3195                         ret_wm->enable = false;
3196
3197                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3198                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3199                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3200                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3201         }
3202 }
3203
3204 /*
3205  * Merge all low power watermarks for all active pipes.
3206  */
3207 static void ilk_wm_merge(struct drm_device *dev,
3208                          const struct intel_wm_config *config,
3209                          const struct ilk_wm_maximums *max,
3210                          struct intel_pipe_wm *merged)
3211 {
3212         struct drm_i915_private *dev_priv = to_i915(dev);
3213         int level, max_level = ilk_wm_max_level(dev_priv);
3214         int last_enabled_level = max_level;
3215
3216         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3217         if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3218             config->num_pipes_active > 1)
3219                 last_enabled_level = 0;
3220
3221         /* ILK: FBC WM must be disabled always */
3222         merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3223
3224         /* merge each WM1+ level */
3225         for (level = 1; level <= max_level; level++) {
3226                 struct intel_wm_level *wm = &merged->wm[level];
3227
3228                 ilk_merge_wm_level(dev, level, wm);
3229
3230                 if (level > last_enabled_level)
3231                         wm->enable = false;
3232                 else if (!ilk_validate_wm_level(level, max, wm))
3233                         /* make sure all following levels get disabled */
3234                         last_enabled_level = level - 1;
3235
3236                 /*
3237                  * The spec says it is preferred to disable
3238                  * FBC WMs instead of disabling a WM level.
3239                  */
3240                 if (wm->fbc_val > max->fbc) {
3241                         if (wm->enable)
3242                                 merged->fbc_wm_enabled = false;
3243                         wm->fbc_val = 0;
3244                 }
3245         }
3246
3247         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3248         /*
3249          * FIXME this is racy. FBC might get enabled later.
3250          * What we should check here is whether FBC can be
3251          * enabled sometime later.
3252          */
3253         if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3254             intel_fbc_is_active(dev_priv)) {
3255                 for (level = 2; level <= max_level; level++) {
3256                         struct intel_wm_level *wm = &merged->wm[level];
3257
3258                         wm->enable = false;
3259                 }
3260         }
3261 }
3262
3263 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3264 {
3265         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3266         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3267 }
3268
3269 /* The value we need to program into the WM_LPx latency field */
3270 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3271 {
3272         struct drm_i915_private *dev_priv = to_i915(dev);
3273
3274         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3275                 return 2 * level;
3276         else
3277                 return dev_priv->wm.pri_latency[level];
3278 }
3279
3280 static void ilk_compute_wm_results(struct drm_device *dev,
3281                                    const struct intel_pipe_wm *merged,
3282                                    enum intel_ddb_partitioning partitioning,
3283                                    struct ilk_wm_values *results)
3284 {
3285         struct drm_i915_private *dev_priv = to_i915(dev);
3286         struct intel_crtc *intel_crtc;
3287         int level, wm_lp;
3288
3289         results->enable_fbc_wm = merged->fbc_wm_enabled;
3290         results->partitioning = partitioning;
3291
3292         /* LP1+ register values */
3293         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3294                 const struct intel_wm_level *r;
3295
3296                 level = ilk_wm_lp_to_level(wm_lp, merged);
3297
3298                 r = &merged->wm[level];
3299
3300                 /*
3301                  * Maintain the watermark values even if the level is
3302                  * disabled. Doing otherwise could cause underruns.
3303                  */
3304                 results->wm_lp[wm_lp - 1] =
3305                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3306                         (r->pri_val << WM1_LP_SR_SHIFT) |
3307                         r->cur_val;
3308
3309                 if (r->enable)
3310                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3311
3312                 if (INTEL_GEN(dev_priv) >= 8)
3313                         results->wm_lp[wm_lp - 1] |=
3314                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3315                 else
3316                         results->wm_lp[wm_lp - 1] |=
3317                                 r->fbc_val << WM1_LP_FBC_SHIFT;
3318
3319                 /*
3320                  * Always set WM1S_LP_EN when spr_val != 0, even if the
3321                  * level is disabled. Doing otherwise could cause underruns.
3322                  */
3323                 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3324                         WARN_ON(wm_lp != 1);
3325                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3326                 } else
3327                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3328         }
3329
3330         /* LP0 register values */
3331         for_each_intel_crtc(dev, intel_crtc) {
3332                 enum pipe pipe = intel_crtc->pipe;
3333                 const struct intel_wm_level *r =
3334                         &intel_crtc->wm.active.ilk.wm[0];
3335
3336                 if (WARN_ON(!r->enable))
3337                         continue;
3338
3339                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3340
3341                 results->wm_pipe[pipe] =
3342                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3343                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3344                         r->cur_val;
3345         }
3346 }
3347
3348 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3349  * case both are at the same level. Prefer r1 in case they're the same. */
3350 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3351                                                   struct intel_pipe_wm *r1,
3352                                                   struct intel_pipe_wm *r2)
3353 {
3354         int level, max_level = ilk_wm_max_level(to_i915(dev));
3355         int level1 = 0, level2 = 0;
3356
3357         for (level = 1; level <= max_level; level++) {
3358                 if (r1->wm[level].enable)
3359                         level1 = level;
3360                 if (r2->wm[level].enable)
3361                         level2 = level;
3362         }
3363
3364         if (level1 == level2) {
3365                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3366                         return r2;
3367                 else
3368                         return r1;
3369         } else if (level1 > level2) {
3370                 return r1;
3371         } else {
3372                 return r2;
3373         }
3374 }
3375
3376 /* dirty bits used to track which watermarks need changes */
3377 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3378 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3379 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3380 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3381 #define WM_DIRTY_FBC (1 << 24)
3382 #define WM_DIRTY_DDB (1 << 25)
3383
3384 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3385                                          const struct ilk_wm_values *old,
3386                                          const struct ilk_wm_values *new)
3387 {
3388         unsigned int dirty = 0;
3389         enum pipe pipe;
3390         int wm_lp;
3391
3392         for_each_pipe(dev_priv, pipe) {
3393                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3394                         dirty |= WM_DIRTY_LINETIME(pipe);
3395                         /* Must disable LP1+ watermarks too */
3396                         dirty |= WM_DIRTY_LP_ALL;
3397                 }
3398
3399                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3400                         dirty |= WM_DIRTY_PIPE(pipe);
3401                         /* Must disable LP1+ watermarks too */
3402                         dirty |= WM_DIRTY_LP_ALL;
3403                 }
3404         }
3405
3406         if (old->enable_fbc_wm != new->enable_fbc_wm) {
3407                 dirty |= WM_DIRTY_FBC;
3408                 /* Must disable LP1+ watermarks too */
3409                 dirty |= WM_DIRTY_LP_ALL;
3410         }
3411
3412         if (old->partitioning != new->partitioning) {
3413                 dirty |= WM_DIRTY_DDB;
3414                 /* Must disable LP1+ watermarks too */
3415                 dirty |= WM_DIRTY_LP_ALL;
3416         }
3417
3418         /* LP1+ watermarks already deemed dirty, no need to continue */
3419         if (dirty & WM_DIRTY_LP_ALL)
3420                 return dirty;
3421
3422         /* Find the lowest numbered LP1+ watermark in need of an update... */
3423         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3424                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3425                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3426                         break;
3427         }
3428
3429         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3430         for (; wm_lp <= 3; wm_lp++)
3431                 dirty |= WM_DIRTY_LP(wm_lp);
3432
3433         return dirty;
3434 }
3435
3436 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3437                                unsigned int dirty)
3438 {
3439         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3440         bool changed = false;
3441
3442         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3443                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3444                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3445                 changed = true;
3446         }
3447         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3448                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3449                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3450                 changed = true;
3451         }
3452         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3453                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3454                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3455                 changed = true;
3456         }
3457
3458         /*
3459          * Don't touch WM1S_LP_EN here.
3460          * Doing so could cause underruns.
3461          */
3462
3463         return changed;
3464 }
3465
3466 /*
3467  * The spec says we shouldn't write when we don't need, because every write
3468  * causes WMs to be re-evaluated, expending some power.
3469  */
3470 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3471                                 struct ilk_wm_values *results)
3472 {
3473         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3474         unsigned int dirty;
3475         uint32_t val;
3476
3477         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3478         if (!dirty)
3479                 return;
3480
3481         _ilk_disable_lp_wm(dev_priv, dirty);
3482
3483         if (dirty & WM_DIRTY_PIPE(PIPE_A))
3484                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3485         if (dirty & WM_DIRTY_PIPE(PIPE_B))
3486                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3487         if (dirty & WM_DIRTY_PIPE(PIPE_C))
3488                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3489
3490         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3491                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3492         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3493                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3494         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3495                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3496
3497         if (dirty & WM_DIRTY_DDB) {
3498                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3499                         val = I915_READ(WM_MISC);
3500                         if (results->partitioning == INTEL_DDB_PART_1_2)
3501                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
3502                         else
3503                                 val |= WM_MISC_DATA_PARTITION_5_6;
3504                         I915_WRITE(WM_MISC, val);
3505                 } else {
3506                         val = I915_READ(DISP_ARB_CTL2);
3507                         if (results->partitioning == INTEL_DDB_PART_1_2)
3508                                 val &= ~DISP_DATA_PARTITION_5_6;
3509                         else
3510                                 val |= DISP_DATA_PARTITION_5_6;
3511                         I915_WRITE(DISP_ARB_CTL2, val);
3512                 }
3513         }
3514
3515         if (dirty & WM_DIRTY_FBC) {
3516                 val = I915_READ(DISP_ARB_CTL);
3517                 if (results->enable_fbc_wm)
3518                         val &= ~DISP_FBC_WM_DIS;
3519                 else
3520                         val |= DISP_FBC_WM_DIS;
3521                 I915_WRITE(DISP_ARB_CTL, val);
3522         }
3523
3524         if (dirty & WM_DIRTY_LP(1) &&
3525             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3526                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3527
3528         if (INTEL_GEN(dev_priv) >= 7) {
3529                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3530                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3531                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3532                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3533         }
3534
3535         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3536                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3537         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3538                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3539         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3540                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3541
3542         dev_priv->wm.hw = *results;
3543 }
3544
3545 bool ilk_disable_lp_wm(struct drm_device *dev)
3546 {
3547         struct drm_i915_private *dev_priv = to_i915(dev);
3548
3549         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3550 }
3551
3552 /*
3553  * FIXME: We still don't have the proper code detect if we need to apply the WA,
3554  * so assume we'll always need it in order to avoid underruns.
3555  */
3556 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3557 {
3558         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3559
3560         if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3561                 return true;
3562
3563         return false;
3564 }
3565
3566 static bool
3567 intel_has_sagv(struct drm_i915_private *dev_priv)
3568 {
3569         if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
3570             IS_CANNONLAKE(dev_priv))
3571                 return true;
3572
3573         if (IS_SKYLAKE(dev_priv) &&
3574             dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3575                 return true;
3576
3577         return false;
3578 }
3579
3580 /*
3581  * SAGV dynamically adjusts the system agent voltage and clock frequencies
3582  * depending on power and performance requirements. The display engine access
3583  * to system memory is blocked during the adjustment time. Because of the
3584  * blocking time, having this enabled can cause full system hangs and/or pipe
3585  * underruns if we don't meet all of the following requirements:
3586  *
3587  *  - <= 1 pipe enabled
3588  *  - All planes can enable watermarks for latencies >= SAGV engine block time
3589  *  - We're not using an interlaced display configuration
3590  */
3591 int
3592 intel_enable_sagv(struct drm_i915_private *dev_priv)
3593 {
3594         int ret;
3595
3596         if (!intel_has_sagv(dev_priv))
3597                 return 0;
3598
3599         if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3600                 return 0;
3601
3602         DRM_DEBUG_KMS("Enabling the SAGV\n");
3603         mutex_lock(&dev_priv->pcu_lock);
3604
3605         ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3606                                       GEN9_SAGV_ENABLE);
3607
3608         /* We don't need to wait for the SAGV when enabling */
3609         mutex_unlock(&dev_priv->pcu_lock);
3610
3611         /*
3612          * Some skl systems, pre-release machines in particular,
3613          * don't actually have an SAGV.
3614          */
3615         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3616                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3617                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3618                 return 0;
3619         } else if (ret < 0) {
3620                 DRM_ERROR("Failed to enable the SAGV\n");
3621                 return ret;
3622         }
3623
3624         dev_priv->sagv_status = I915_SAGV_ENABLED;
3625         return 0;
3626 }
3627
3628 int
3629 intel_disable_sagv(struct drm_i915_private *dev_priv)
3630 {
3631         int ret;
3632
3633         if (!intel_has_sagv(dev_priv))
3634                 return 0;
3635
3636         if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3637                 return 0;
3638
3639         DRM_DEBUG_KMS("Disabling the SAGV\n");
3640         mutex_lock(&dev_priv->pcu_lock);
3641
3642         /* bspec says to keep retrying for at least 1 ms */
3643         ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3644                                 GEN9_SAGV_DISABLE,
3645                                 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3646                                 1);
3647         mutex_unlock(&dev_priv->pcu_lock);
3648
3649         /*
3650          * Some skl systems, pre-release machines in particular,
3651          * don't actually have an SAGV.
3652          */
3653         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3654                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3655                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3656                 return 0;
3657         } else if (ret < 0) {
3658                 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3659                 return ret;
3660         }
3661
3662         dev_priv->sagv_status = I915_SAGV_DISABLED;
3663         return 0;
3664 }
3665
3666 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3667 {
3668         struct drm_device *dev = state->dev;
3669         struct drm_i915_private *dev_priv = to_i915(dev);
3670         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3671         struct intel_crtc *crtc;
3672         struct intel_plane *plane;
3673         struct intel_crtc_state *cstate;
3674         enum pipe pipe;
3675         int level, latency;
3676         int sagv_block_time_us = IS_GEN9(dev_priv) ? 30 : 20;
3677
3678         if (!intel_has_sagv(dev_priv))
3679                 return false;
3680
3681         /*
3682          * SKL+ workaround: bspec recommends we disable the SAGV when we have
3683          * more then one pipe enabled
3684          *
3685          * If there are no active CRTCs, no additional checks need be performed
3686          */
3687         if (hweight32(intel_state->active_crtcs) == 0)
3688                 return true;
3689         else if (hweight32(intel_state->active_crtcs) > 1)
3690                 return false;
3691
3692         /* Since we're now guaranteed to only have one active CRTC... */
3693         pipe = ffs(intel_state->active_crtcs) - 1;
3694         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3695         cstate = to_intel_crtc_state(crtc->base.state);
3696
3697         if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3698                 return false;
3699
3700         for_each_intel_plane_on_crtc(dev, crtc, plane) {
3701                 struct skl_plane_wm *wm =
3702                         &cstate->wm.skl.optimal.planes[plane->id];
3703
3704                 /* Skip this plane if it's not enabled */
3705                 if (!wm->wm[0].plane_en)
3706                         continue;
3707
3708                 /* Find the highest enabled wm level for this plane */
3709                 for (level = ilk_wm_max_level(dev_priv);
3710                      !wm->wm[level].plane_en; --level)
3711                      { }
3712
3713                 latency = dev_priv->wm.skl_latency[level];
3714
3715                 if (skl_needs_memory_bw_wa(intel_state) &&
3716                     plane->base.state->fb->modifier ==
3717                     I915_FORMAT_MOD_X_TILED)
3718                         latency += 15;
3719
3720                 /*
3721                  * If any of the planes on this pipe don't enable wm levels that
3722                  * incur memory latencies higher than sagv_block_time_us we
3723                  * can't enable the SAGV.
3724                  */
3725                 if (latency < sagv_block_time_us)
3726                         return false;
3727         }
3728
3729         return true;
3730 }
3731
3732 static void
3733 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3734                                    const struct intel_crtc_state *cstate,
3735                                    struct skl_ddb_entry *alloc, /* out */
3736                                    int *num_active /* out */)
3737 {
3738         struct drm_atomic_state *state = cstate->base.state;
3739         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3740         struct drm_i915_private *dev_priv = to_i915(dev);
3741         struct drm_crtc *for_crtc = cstate->base.crtc;
3742         unsigned int pipe_size, ddb_size;
3743         int nth_active_pipe;
3744
3745         if (WARN_ON(!state) || !cstate->base.active) {
3746                 alloc->start = 0;
3747                 alloc->end = 0;
3748                 *num_active = hweight32(dev_priv->active_crtcs);
3749                 return;
3750         }
3751
3752         if (intel_state->active_pipe_changes)
3753                 *num_active = hweight32(intel_state->active_crtcs);
3754         else
3755                 *num_active = hweight32(dev_priv->active_crtcs);
3756
3757         ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3758         WARN_ON(ddb_size == 0);
3759
3760         ddb_size -= 4; /* 4 blocks for bypass path allocation */
3761
3762         /*
3763          * If the state doesn't change the active CRTC's, then there's
3764          * no need to recalculate; the existing pipe allocation limits
3765          * should remain unchanged.  Note that we're safe from racing
3766          * commits since any racing commit that changes the active CRTC
3767          * list would need to grab _all_ crtc locks, including the one
3768          * we currently hold.
3769          */
3770         if (!intel_state->active_pipe_changes) {
3771                 /*
3772                  * alloc may be cleared by clear_intel_crtc_state,
3773                  * copy from old state to be sure
3774                  */
3775                 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3776                 return;
3777         }
3778
3779         nth_active_pipe = hweight32(intel_state->active_crtcs &
3780                                     (drm_crtc_mask(for_crtc) - 1));
3781         pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3782         alloc->start = nth_active_pipe * ddb_size / *num_active;
3783         alloc->end = alloc->start + pipe_size;
3784 }
3785
3786 static unsigned int skl_cursor_allocation(int num_active)
3787 {
3788         if (num_active == 1)
3789                 return 32;
3790
3791         return 8;
3792 }
3793
3794 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3795 {
3796         entry->start = reg & 0x3ff;
3797         entry->end = (reg >> 16) & 0x3ff;
3798         if (entry->end)
3799                 entry->end += 1;
3800 }
3801
3802 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3803                           struct skl_ddb_allocation *ddb /* out */)
3804 {
3805         struct intel_crtc *crtc;
3806
3807         memset(ddb, 0, sizeof(*ddb));
3808
3809         for_each_intel_crtc(&dev_priv->drm, crtc) {
3810                 enum intel_display_power_domain power_domain;
3811                 enum plane_id plane_id;
3812                 enum pipe pipe = crtc->pipe;
3813
3814                 power_domain = POWER_DOMAIN_PIPE(pipe);
3815                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3816                         continue;
3817
3818                 for_each_plane_id_on_crtc(crtc, plane_id) {
3819                         u32 val;
3820
3821                         if (plane_id != PLANE_CURSOR)
3822                                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3823                         else
3824                                 val = I915_READ(CUR_BUF_CFG(pipe));
3825
3826                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
3827                 }
3828
3829                 intel_display_power_put(dev_priv, power_domain);
3830         }
3831 }
3832
3833 /*
3834  * Determines the downscale amount of a plane for the purposes of watermark calculations.
3835  * The bspec defines downscale amount as:
3836  *
3837  * """
3838  * Horizontal down scale amount = maximum[1, Horizontal source size /
3839  *                                           Horizontal destination size]
3840  * Vertical down scale amount = maximum[1, Vertical source size /
3841  *                                         Vertical destination size]
3842  * Total down scale amount = Horizontal down scale amount *
3843  *                           Vertical down scale amount
3844  * """
3845  *
3846  * Return value is provided in 16.16 fixed point form to retain fractional part.
3847  * Caller should take care of dividing & rounding off the value.
3848  */
3849 static uint_fixed_16_16_t
3850 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
3851                            const struct intel_plane_state *pstate)
3852 {
3853         struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3854         uint32_t src_w, src_h, dst_w, dst_h;
3855         uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3856         uint_fixed_16_16_t downscale_h, downscale_w;
3857
3858         if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3859                 return u32_to_fixed16(0);
3860
3861         /* n.b., src is 16.16 fixed point, dst is whole integer */
3862         if (plane->id == PLANE_CURSOR) {
3863                 /*
3864                  * Cursors only support 0/180 degree rotation,
3865                  * hence no need to account for rotation here.
3866                  */
3867                 src_w = pstate->base.src_w >> 16;
3868                 src_h = pstate->base.src_h >> 16;
3869                 dst_w = pstate->base.crtc_w;
3870                 dst_h = pstate->base.crtc_h;
3871         } else {
3872                 /*
3873                  * Src coordinates are already rotated by 270 degrees for
3874                  * the 90/270 degree plane rotation cases (to match the
3875                  * GTT mapping), hence no need to account for rotation here.
3876                  */
3877                 src_w = drm_rect_width(&pstate->base.src) >> 16;
3878                 src_h = drm_rect_height(&pstate->base.src) >> 16;
3879                 dst_w = drm_rect_width(&pstate->base.dst);
3880                 dst_h = drm_rect_height(&pstate->base.dst);
3881         }
3882
3883         fp_w_ratio = div_fixed16(src_w, dst_w);
3884         fp_h_ratio = div_fixed16(src_h, dst_h);
3885         downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
3886         downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3887
3888         return mul_fixed16(downscale_w, downscale_h);
3889 }
3890
3891 static uint_fixed_16_16_t
3892 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
3893 {
3894         uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
3895
3896         if (!crtc_state->base.enable)
3897                 return pipe_downscale;
3898
3899         if (crtc_state->pch_pfit.enabled) {
3900                 uint32_t src_w, src_h, dst_w, dst_h;
3901                 uint32_t pfit_size = crtc_state->pch_pfit.size;
3902                 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3903                 uint_fixed_16_16_t downscale_h, downscale_w;
3904
3905                 src_w = crtc_state->pipe_src_w;
3906                 src_h = crtc_state->pipe_src_h;
3907                 dst_w = pfit_size >> 16;
3908                 dst_h = pfit_size & 0xffff;
3909
3910                 if (!dst_w || !dst_h)
3911                         return pipe_downscale;
3912
3913                 fp_w_ratio = div_fixed16(src_w, dst_w);
3914                 fp_h_ratio = div_fixed16(src_h, dst_h);
3915                 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
3916                 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3917
3918                 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
3919         }
3920
3921         return pipe_downscale;
3922 }
3923
3924 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
3925                                   struct intel_crtc_state *cstate)
3926 {
3927         struct drm_crtc_state *crtc_state = &cstate->base;
3928         struct drm_atomic_state *state = crtc_state->state;
3929         struct drm_plane *plane;
3930         const struct drm_plane_state *pstate;
3931         struct intel_plane_state *intel_pstate;
3932         int crtc_clock, dotclk;
3933         uint32_t pipe_max_pixel_rate;
3934         uint_fixed_16_16_t pipe_downscale;
3935         uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
3936
3937         if (!cstate->base.enable)
3938                 return 0;
3939
3940         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
3941                 uint_fixed_16_16_t plane_downscale;
3942                 uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
3943                 int bpp;
3944
3945                 if (!intel_wm_plane_visible(cstate,
3946                                             to_intel_plane_state(pstate)))
3947                         continue;
3948
3949                 if (WARN_ON(!pstate->fb))
3950                         return -EINVAL;
3951
3952                 intel_pstate = to_intel_plane_state(pstate);
3953                 plane_downscale = skl_plane_downscale_amount(cstate,
3954                                                              intel_pstate);
3955                 bpp = pstate->fb->format->cpp[0] * 8;
3956                 if (bpp == 64)
3957                         plane_downscale = mul_fixed16(plane_downscale,
3958                                                       fp_9_div_8);
3959
3960                 max_downscale = max_fixed16(plane_downscale, max_downscale);
3961         }
3962         pipe_downscale = skl_pipe_downscale_amount(cstate);
3963
3964         pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
3965
3966         crtc_clock = crtc_state->adjusted_mode.crtc_clock;
3967         dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
3968
3969         if (IS_GEMINILAKE(to_i915(intel_crtc->base.dev)))
3970                 dotclk *= 2;
3971
3972         pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
3973
3974         if (pipe_max_pixel_rate < crtc_clock) {
3975                 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
3976                 return -EINVAL;
3977         }
3978
3979         return 0;
3980 }
3981
3982 static unsigned int
3983 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3984                              const struct drm_plane_state *pstate,
3985                              int y)
3986 {
3987         struct intel_plane *plane = to_intel_plane(pstate->plane);
3988         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3989         uint32_t data_rate;
3990         uint32_t width = 0, height = 0;
3991         struct drm_framebuffer *fb;
3992         u32 format;
3993         uint_fixed_16_16_t down_scale_amount;
3994
3995         if (!intel_pstate->base.visible)
3996                 return 0;
3997
3998         fb = pstate->fb;
3999         format = fb->format->format;
4000
4001         if (plane->id == PLANE_CURSOR)
4002                 return 0;
4003         if (y && format != DRM_FORMAT_NV12)
4004                 return 0;
4005
4006         /*
4007          * Src coordinates are already rotated by 270 degrees for
4008          * the 90/270 degree plane rotation cases (to match the
4009          * GTT mapping), hence no need to account for rotation here.
4010          */
4011         width = drm_rect_width(&intel_pstate->base.src) >> 16;
4012         height = drm_rect_height(&intel_pstate->base.src) >> 16;
4013
4014         /* for planar format */
4015         if (format == DRM_FORMAT_NV12) {
4016                 if (y)  /* y-plane data rate */
4017                         data_rate = width * height *
4018                                 fb->format->cpp[0];
4019                 else    /* uv-plane data rate */
4020                         data_rate = (width / 2) * (height / 2) *
4021                                 fb->format->cpp[1];
4022         } else {
4023                 /* for packed formats */
4024                 data_rate = width * height * fb->format->cpp[0];
4025         }
4026
4027         down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4028
4029         return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4030 }
4031
4032 /*
4033  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
4034  * a 8192x4096@32bpp framebuffer:
4035  *   3 * 4096 * 8192  * 4 < 2^32
4036  */
4037 static unsigned int
4038 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4039                                  unsigned *plane_data_rate,
4040                                  unsigned *plane_y_data_rate)
4041 {
4042         struct drm_crtc_state *cstate = &intel_cstate->base;
4043         struct drm_atomic_state *state = cstate->state;
4044         struct drm_plane *plane;
4045         const struct drm_plane_state *pstate;
4046         unsigned int total_data_rate = 0;
4047
4048         if (WARN_ON(!state))
4049                 return 0;
4050
4051         /* Calculate and cache data rate for each plane */
4052         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4053                 enum plane_id plane_id = to_intel_plane(plane)->id;
4054                 unsigned int rate;
4055
4056                 /* packed/uv */
4057                 rate = skl_plane_relative_data_rate(intel_cstate,
4058                                                     pstate, 0);
4059                 plane_data_rate[plane_id] = rate;
4060
4061                 total_data_rate += rate;
4062
4063                 /* y-plane */
4064                 rate = skl_plane_relative_data_rate(intel_cstate,
4065                                                     pstate, 1);
4066                 plane_y_data_rate[plane_id] = rate;
4067
4068                 total_data_rate += rate;
4069         }
4070
4071         return total_data_rate;
4072 }
4073
4074 static uint16_t
4075 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
4076                   const int y)
4077 {
4078         struct drm_framebuffer *fb = pstate->fb;
4079         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4080         uint32_t src_w, src_h;
4081         uint32_t min_scanlines = 8;
4082         uint8_t plane_bpp;
4083
4084         if (WARN_ON(!fb))
4085                 return 0;
4086
4087         /* For packed formats, no y-plane, return 0 */
4088         if (y && fb->format->format != DRM_FORMAT_NV12)
4089                 return 0;
4090
4091         /* For Non Y-tile return 8-blocks */
4092         if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4093             fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
4094             fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
4095             fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4096                 return 8;
4097
4098         /*
4099          * Src coordinates are already rotated by 270 degrees for
4100          * the 90/270 degree plane rotation cases (to match the
4101          * GTT mapping), hence no need to account for rotation here.
4102          */
4103         src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
4104         src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4105
4106         /* Halve UV plane width and height for NV12 */
4107         if (fb->format->format == DRM_FORMAT_NV12 && !y) {
4108                 src_w /= 2;
4109                 src_h /= 2;
4110         }
4111
4112         if (fb->format->format == DRM_FORMAT_NV12 && !y)
4113                 plane_bpp = fb->format->cpp[1];
4114         else
4115                 plane_bpp = fb->format->cpp[0];
4116
4117         if (drm_rotation_90_or_270(pstate->rotation)) {
4118                 switch (plane_bpp) {
4119                 case 1:
4120                         min_scanlines = 32;
4121                         break;
4122                 case 2:
4123                         min_scanlines = 16;
4124                         break;
4125                 case 4:
4126                         min_scanlines = 8;
4127                         break;
4128                 case 8:
4129                         min_scanlines = 4;
4130                         break;
4131                 default:
4132                         WARN(1, "Unsupported pixel depth %u for rotation",
4133                              plane_bpp);
4134                         min_scanlines = 32;
4135                 }
4136         }
4137
4138         return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4139 }
4140
4141 static void
4142 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4143                  uint16_t *minimum, uint16_t *y_minimum)
4144 {
4145         const struct drm_plane_state *pstate;
4146         struct drm_plane *plane;
4147
4148         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4149                 enum plane_id plane_id = to_intel_plane(plane)->id;
4150
4151                 if (plane_id == PLANE_CURSOR)
4152                         continue;
4153
4154                 if (!pstate->visible)
4155                         continue;
4156
4157                 minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4158                 y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4159         }
4160
4161         minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4162 }
4163
4164 static int
4165 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4166                       struct skl_ddb_allocation *ddb /* out */)
4167 {
4168         struct drm_atomic_state *state = cstate->base.state;
4169         struct drm_crtc *crtc = cstate->base.crtc;
4170         struct drm_device *dev = crtc->dev;
4171         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4172         enum pipe pipe = intel_crtc->pipe;
4173         struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4174         uint16_t alloc_size, start;
4175         uint16_t minimum[I915_MAX_PLANES] = {};
4176         uint16_t y_minimum[I915_MAX_PLANES] = {};
4177         unsigned int total_data_rate;
4178         enum plane_id plane_id;
4179         int num_active;
4180         unsigned plane_data_rate[I915_MAX_PLANES] = {};
4181         unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
4182         uint16_t total_min_blocks = 0;
4183
4184         /* Clear the partitioning for disabled planes. */
4185         memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4186         memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
4187
4188         if (WARN_ON(!state))
4189                 return 0;
4190
4191         if (!cstate->base.active) {
4192                 alloc->start = alloc->end = 0;
4193                 return 0;
4194         }
4195
4196         skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
4197         alloc_size = skl_ddb_entry_size(alloc);
4198         if (alloc_size == 0)
4199                 return 0;
4200
4201         skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
4202
4203         /*
4204          * 1. Allocate the mininum required blocks for each active plane
4205          * and allocate the cursor, it doesn't require extra allocation
4206          * proportional to the data rate.
4207          */
4208
4209         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4210                 total_min_blocks += minimum[plane_id];
4211                 total_min_blocks += y_minimum[plane_id];
4212         }
4213
4214         if (total_min_blocks > alloc_size) {
4215                 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4216                 DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
4217                                                         alloc_size);
4218                 return -EINVAL;
4219         }
4220
4221         alloc_size -= total_min_blocks;
4222         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4223         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
4224
4225         /*
4226          * 2. Distribute the remaining space in proportion to the amount of
4227          * data each plane needs to fetch from memory.
4228          *
4229          * FIXME: we may not allocate every single block here.
4230          */
4231         total_data_rate = skl_get_total_relative_data_rate(cstate,
4232                                                            plane_data_rate,
4233                                                            plane_y_data_rate);
4234         if (total_data_rate == 0)
4235                 return 0;
4236
4237         start = alloc->start;
4238         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4239                 unsigned int data_rate, y_data_rate;
4240                 uint16_t plane_blocks, y_plane_blocks = 0;
4241
4242                 if (plane_id == PLANE_CURSOR)
4243                         continue;
4244
4245                 data_rate = plane_data_rate[plane_id];
4246
4247                 /*
4248                  * allocation for (packed formats) or (uv-plane part of planar format):
4249                  * promote the expression to 64 bits to avoid overflowing, the
4250                  * result is < available as data_rate / total_data_rate < 1
4251                  */
4252                 plane_blocks = minimum[plane_id];
4253                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
4254                                         total_data_rate);
4255
4256                 /* Leave disabled planes at (0,0) */
4257                 if (data_rate) {
4258                         ddb->plane[pipe][plane_id].start = start;
4259                         ddb->plane[pipe][plane_id].end = start + plane_blocks;
4260                 }
4261
4262                 start += plane_blocks;
4263
4264                 /*
4265                  * allocation for y_plane part of planar format:
4266                  */
4267                 y_data_rate = plane_y_data_rate[plane_id];
4268
4269                 y_plane_blocks = y_minimum[plane_id];
4270                 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
4271                                         total_data_rate);
4272
4273                 if (y_data_rate) {
4274                         ddb->y_plane[pipe][plane_id].start = start;
4275                         ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
4276                 }
4277
4278                 start += y_plane_blocks;
4279         }
4280
4281         return 0;
4282 }
4283
4284 /*
4285  * The max latency should be 257 (max the punit can code is 255 and we add 2us
4286  * for the read latency) and cpp should always be <= 8, so that
4287  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4288  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4289 */
4290 static uint_fixed_16_16_t
4291 skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4292                uint8_t cpp, uint32_t latency)
4293 {
4294         uint32_t wm_intermediate_val;
4295         uint_fixed_16_16_t ret;
4296
4297         if (latency == 0)
4298                 return FP_16_16_MAX;
4299
4300         wm_intermediate_val = latency * pixel_rate * cpp;
4301         ret = div_fixed16(wm_intermediate_val, 1000 * 512);
4302
4303         if (INTEL_GEN(dev_priv) >= 10)
4304                 ret = add_fixed16_u32(ret, 1);
4305
4306         return ret;
4307 }
4308
4309 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4310                         uint32_t pipe_htotal,
4311                         uint32_t latency,
4312                         uint_fixed_16_16_t plane_blocks_per_line)
4313 {
4314         uint32_t wm_intermediate_val;
4315         uint_fixed_16_16_t ret;
4316
4317         if (latency == 0)
4318                 return FP_16_16_MAX;
4319
4320         wm_intermediate_val = latency * pixel_rate;
4321         wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4322                                            pipe_htotal * 1000);
4323         ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4324         return ret;
4325 }
4326
4327 static uint_fixed_16_16_t
4328 intel_get_linetime_us(struct intel_crtc_state *cstate)
4329 {
4330         uint32_t pixel_rate;
4331         uint32_t crtc_htotal;
4332         uint_fixed_16_16_t linetime_us;
4333
4334         if (!cstate->base.active)
4335                 return u32_to_fixed16(0);
4336
4337         pixel_rate = cstate->pixel_rate;
4338
4339         if (WARN_ON(pixel_rate == 0))
4340                 return u32_to_fixed16(0);
4341
4342         crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4343         linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4344
4345         return linetime_us;
4346 }
4347
4348 static uint32_t
4349 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4350                               const struct intel_plane_state *pstate)
4351 {
4352         uint64_t adjusted_pixel_rate;
4353         uint_fixed_16_16_t downscale_amount;
4354
4355         /* Shouldn't reach here on disabled planes... */
4356         if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4357                 return 0;
4358
4359         /*
4360          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4361          * with additional adjustments for plane-specific scaling.
4362          */
4363         adjusted_pixel_rate = cstate->pixel_rate;
4364         downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4365
4366         return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4367                                             downscale_amount);
4368 }
4369
4370 static int
4371 skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
4372                             struct intel_crtc_state *cstate,
4373                             const struct intel_plane_state *intel_pstate,
4374                             struct skl_wm_params *wp)
4375 {
4376         struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4377         const struct drm_plane_state *pstate = &intel_pstate->base;
4378         const struct drm_framebuffer *fb = pstate->fb;
4379         uint32_t interm_pbpl;
4380         struct intel_atomic_state *state =
4381                 to_intel_atomic_state(cstate->base.state);
4382         bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4383
4384         if (!intel_wm_plane_visible(cstate, intel_pstate))
4385                 return 0;
4386
4387         wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4388                       fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
4389                       fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4390                       fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4391         wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4392         wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4393                          fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4394
4395         if (plane->id == PLANE_CURSOR) {
4396                 wp->width = intel_pstate->base.crtc_w;
4397         } else {
4398                 /*
4399                  * Src coordinates are already rotated by 270 degrees for
4400                  * the 90/270 degree plane rotation cases (to match the
4401                  * GTT mapping), hence no need to account for rotation here.
4402                  */
4403                 wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4404         }
4405
4406         wp->cpp = (fb->format->format == DRM_FORMAT_NV12) ? fb->format->cpp[1] :
4407                                                             fb->format->cpp[0];
4408         wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
4409                                                              intel_pstate);
4410
4411         if (drm_rotation_90_or_270(pstate->rotation)) {
4412
4413                 switch (wp->cpp) {
4414                 case 1:
4415                         wp->y_min_scanlines = 16;
4416                         break;
4417                 case 2:
4418                         wp->y_min_scanlines = 8;
4419                         break;
4420                 case 4:
4421                         wp->y_min_scanlines = 4;
4422                         break;
4423                 default:
4424                         MISSING_CASE(wp->cpp);
4425                         return -EINVAL;
4426                 }
4427         } else {
4428                 wp->y_min_scanlines = 4;
4429         }
4430
4431         if (apply_memory_bw_wa)
4432                 wp->y_min_scanlines *= 2;
4433
4434         wp->plane_bytes_per_line = wp->width * wp->cpp;
4435         if (wp->y_tiled) {
4436                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4437                                            wp->y_min_scanlines, 512);
4438
4439                 if (INTEL_GEN(dev_priv) >= 10)
4440                         interm_pbpl++;
4441
4442                 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4443                                                         wp->y_min_scanlines);
4444         } else if (wp->x_tiled && IS_GEN9(dev_priv)) {
4445                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, 512);
4446                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4447         } else {
4448                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, 512) + 1;
4449                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4450         }
4451
4452         wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4453                                              wp->plane_blocks_per_line);
4454         wp->linetime_us = fixed16_to_u32_round_up(
4455                                         intel_get_linetime_us(cstate));
4456
4457         return 0;
4458 }
4459
4460 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
4461                                 struct intel_crtc_state *cstate,
4462                                 const struct intel_plane_state *intel_pstate,
4463                                 uint16_t ddb_allocation,
4464                                 int level,
4465                                 const struct skl_wm_params *wp,
4466                                 uint16_t *out_blocks, /* out */
4467                                 uint8_t *out_lines, /* out */
4468                                 bool *enabled /* out */)
4469 {
4470         const struct drm_plane_state *pstate = &intel_pstate->base;
4471         uint32_t latency = dev_priv->wm.skl_latency[level];
4472         uint_fixed_16_16_t method1, method2;
4473         uint_fixed_16_16_t selected_result;
4474         uint32_t res_blocks, res_lines;
4475         struct intel_atomic_state *state =
4476                 to_intel_atomic_state(cstate->base.state);
4477         bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4478
4479         if (latency == 0 ||
4480             !intel_wm_plane_visible(cstate, intel_pstate)) {
4481                 *enabled = false;
4482                 return 0;
4483         }
4484
4485         /* Display WA #1141: kbl,cfl */
4486         if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
4487             IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4488             dev_priv->ipc_enabled)
4489                 latency += 4;
4490
4491         if (apply_memory_bw_wa && wp->x_tiled)
4492                 latency += 15;
4493
4494         method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4495                                  wp->cpp, latency);
4496         method2 = skl_wm_method2(wp->plane_pixel_rate,
4497                                  cstate->base.adjusted_mode.crtc_htotal,
4498                                  latency,
4499                                  wp->plane_blocks_per_line);
4500
4501         if (wp->y_tiled) {
4502                 selected_result = max_fixed16(method2, wp->y_tile_minimum);
4503         } else {
4504                 if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4505                      512 < 1) && (wp->plane_bytes_per_line / 512 < 1))
4506                         selected_result = method2;
4507                 else if (ddb_allocation >=
4508                          fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4509                         selected_result = min_fixed16(method1, method2);
4510                 else if (latency >= wp->linetime_us)
4511                         selected_result = min_fixed16(method1, method2);
4512                 else
4513                         selected_result = method1;
4514         }
4515
4516         res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4517         res_lines = div_round_up_fixed16(selected_result,
4518                                          wp->plane_blocks_per_line);
4519
4520         /* Display WA #1125: skl,bxt,kbl,glk */
4521         if (level == 0 && wp->rc_surface)
4522                 res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4523
4524         /* Display WA #1126: skl,bxt,kbl,glk */
4525         if (level >= 1 && level <= 7) {
4526                 if (wp->y_tiled) {
4527                         res_blocks += fixed16_to_u32_round_up(
4528                                                         wp->y_tile_minimum);
4529                         res_lines += wp->y_min_scanlines;
4530                 } else {
4531                         res_blocks++;
4532                 }
4533         }
4534
4535         if (res_blocks >= ddb_allocation || res_lines > 31) {
4536                 *enabled = false;
4537
4538                 /*
4539                  * If there are no valid level 0 watermarks, then we can't
4540                  * support this display configuration.
4541                  */
4542                 if (level) {
4543                         return 0;
4544                 } else {
4545                         struct drm_plane *plane = pstate->plane;
4546
4547                         DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4548                         DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4549                                       plane->base.id, plane->name,
4550                                       res_blocks, ddb_allocation, res_lines);
4551                         return -EINVAL;
4552                 }
4553         }
4554
4555         *out_blocks = res_blocks;
4556         *out_lines = res_lines;
4557         *enabled = true;
4558
4559         return 0;
4560 }
4561
4562 static int
4563 skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4564                       struct skl_ddb_allocation *ddb,
4565                       struct intel_crtc_state *cstate,
4566                       const struct intel_plane_state *intel_pstate,
4567                       const struct skl_wm_params *wm_params,
4568                       struct skl_plane_wm *wm)
4569 {
4570         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4571         struct drm_plane *plane = intel_pstate->base.plane;
4572         struct intel_plane *intel_plane = to_intel_plane(plane);
4573         uint16_t ddb_blocks;
4574         enum pipe pipe = intel_crtc->pipe;
4575         int level, max_level = ilk_wm_max_level(dev_priv);
4576         int ret;
4577
4578         if (WARN_ON(!intel_pstate->base.fb))
4579                 return -EINVAL;
4580
4581         ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
4582
4583         for (level = 0; level <= max_level; level++) {
4584                 struct skl_wm_level *result = &wm->wm[level];
4585
4586                 ret = skl_compute_plane_wm(dev_priv,
4587                                            cstate,
4588                                            intel_pstate,
4589                                            ddb_blocks,
4590                                            level,
4591                                            wm_params,
4592                                            &result->plane_res_b,
4593                                            &result->plane_res_l,
4594                                            &result->plane_en);
4595                 if (ret)
4596                         return ret;
4597         }
4598
4599         return 0;
4600 }
4601
4602 static uint32_t
4603 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4604 {
4605         struct drm_atomic_state *state = cstate->base.state;
4606         struct drm_i915_private *dev_priv = to_i915(state->dev);
4607         uint_fixed_16_16_t linetime_us;
4608         uint32_t linetime_wm;
4609
4610         linetime_us = intel_get_linetime_us(cstate);
4611
4612         if (is_fixed16_zero(linetime_us))
4613                 return 0;
4614
4615         linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4616
4617         /* Display WA #1135: bxt:ALL GLK:ALL */
4618         if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
4619             dev_priv->ipc_enabled)
4620                 linetime_wm /= 2;
4621
4622         return linetime_wm;
4623 }
4624
4625 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4626                                       struct skl_wm_params *wp,
4627                                       struct skl_wm_level *wm_l0,
4628                                       uint16_t ddb_allocation,
4629                                       struct skl_wm_level *trans_wm /* out */)
4630 {
4631         struct drm_device *dev = cstate->base.crtc->dev;
4632         const struct drm_i915_private *dev_priv = to_i915(dev);
4633         uint16_t trans_min, trans_y_tile_min;
4634         const uint16_t trans_amount = 10; /* This is configurable amount */
4635         uint16_t trans_offset_b, res_blocks;
4636
4637         if (!cstate->base.active)
4638                 goto exit;
4639
4640         /* Transition WM are not recommended by HW team for GEN9 */
4641         if (INTEL_GEN(dev_priv) <= 9)
4642                 goto exit;
4643
4644         /* Transition WM don't make any sense if ipc is disabled */
4645         if (!dev_priv->ipc_enabled)
4646                 goto exit;
4647
4648         if (INTEL_GEN(dev_priv) >= 10)
4649                 trans_min = 4;
4650
4651         trans_offset_b = trans_min + trans_amount;
4652
4653         if (wp->y_tiled) {
4654                 trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
4655                                                         wp->y_tile_minimum);
4656                 res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
4657                                 trans_offset_b;
4658         } else {
4659                 res_blocks = wm_l0->plane_res_b + trans_offset_b;
4660
4661                 /* WA BUG:1938466 add one block for non y-tile planes */
4662                 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4663                         res_blocks += 1;
4664
4665         }
4666
4667         res_blocks += 1;
4668
4669         if (res_blocks < ddb_allocation) {
4670                 trans_wm->plane_res_b = res_blocks;
4671                 trans_wm->plane_en = true;
4672                 return;
4673         }
4674
4675 exit:
4676         trans_wm->plane_en = false;
4677 }
4678
4679 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4680                              struct skl_ddb_allocation *ddb,
4681                              struct skl_pipe_wm *pipe_wm)
4682 {
4683         struct drm_device *dev = cstate->base.crtc->dev;
4684         struct drm_crtc_state *crtc_state = &cstate->base;
4685         const struct drm_i915_private *dev_priv = to_i915(dev);
4686         struct drm_plane *plane;
4687         const struct drm_plane_state *pstate;
4688         struct skl_plane_wm *wm;
4689         int ret;
4690
4691         /*
4692          * We'll only calculate watermarks for planes that are actually
4693          * enabled, so make sure all other planes are set as disabled.
4694          */
4695         memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4696
4697         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4698                 const struct intel_plane_state *intel_pstate =
4699                                                 to_intel_plane_state(pstate);
4700                 enum plane_id plane_id = to_intel_plane(plane)->id;
4701                 struct skl_wm_params wm_params;
4702                 enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
4703                 uint16_t ddb_blocks;
4704
4705                 wm = &pipe_wm->planes[plane_id];
4706                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4707                 memset(&wm_params, 0, sizeof(struct skl_wm_params));
4708
4709                 ret = skl_compute_plane_wm_params(dev_priv, cstate,
4710                                                   intel_pstate, &wm_params);
4711                 if (ret)
4712                         return ret;
4713
4714                 ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4715                                             intel_pstate, &wm_params, wm);
4716                 if (ret)
4717                         return ret;
4718                 skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
4719                                           ddb_blocks, &wm->trans_wm);
4720         }
4721         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4722
4723         return 0;
4724 }
4725
4726 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4727                                 i915_reg_t reg,
4728                                 const struct skl_ddb_entry *entry)
4729 {
4730         if (entry->end)
4731                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4732         else
4733                 I915_WRITE(reg, 0);
4734 }
4735
4736 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4737                                i915_reg_t reg,
4738                                const struct skl_wm_level *level)
4739 {
4740         uint32_t val = 0;
4741
4742         if (level->plane_en) {
4743                 val |= PLANE_WM_EN;
4744                 val |= level->plane_res_b;
4745                 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4746         }
4747
4748         I915_WRITE(reg, val);
4749 }
4750
4751 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
4752                                const struct skl_plane_wm *wm,
4753                                const struct skl_ddb_allocation *ddb,
4754                                enum plane_id plane_id)
4755 {
4756         struct drm_crtc *crtc = &intel_crtc->base;
4757         struct drm_device *dev = crtc->dev;
4758         struct drm_i915_private *dev_priv = to_i915(dev);
4759         int level, max_level = ilk_wm_max_level(dev_priv);
4760         enum pipe pipe = intel_crtc->pipe;
4761
4762         for (level = 0; level <= max_level; level++) {
4763                 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4764                                    &wm->wm[level]);
4765         }
4766         skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4767                            &wm->trans_wm);
4768
4769         skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4770                             &ddb->plane[pipe][plane_id]);
4771         skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
4772                             &ddb->y_plane[pipe][plane_id]);
4773 }
4774
4775 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
4776                                 const struct skl_plane_wm *wm,
4777                                 const struct skl_ddb_allocation *ddb)
4778 {
4779         struct drm_crtc *crtc = &intel_crtc->base;
4780         struct drm_device *dev = crtc->dev;
4781         struct drm_i915_private *dev_priv = to_i915(dev);
4782         int level, max_level = ilk_wm_max_level(dev_priv);
4783         enum pipe pipe = intel_crtc->pipe;
4784
4785         for (level = 0; level <= max_level; level++) {
4786                 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
4787                                    &wm->wm[level]);
4788         }
4789         skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4790
4791         skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4792                             &ddb->plane[pipe][PLANE_CURSOR]);
4793 }
4794
4795 bool skl_wm_level_equals(const struct skl_wm_level *l1,
4796                          const struct skl_wm_level *l2)
4797 {
4798         if (l1->plane_en != l2->plane_en)
4799                 return false;
4800
4801         /* If both planes aren't enabled, the rest shouldn't matter */
4802         if (!l1->plane_en)
4803                 return true;
4804
4805         return (l1->plane_res_l == l2->plane_res_l &&
4806                 l1->plane_res_b == l2->plane_res_b);
4807 }
4808
4809 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
4810                                            const struct skl_ddb_entry *b)
4811 {
4812         return a->start < b->end && b->start < a->end;
4813 }
4814
4815 bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
4816                                  const struct skl_ddb_entry **entries,
4817                                  const struct skl_ddb_entry *ddb,
4818                                  int ignore)
4819 {
4820         enum pipe pipe;
4821
4822         for_each_pipe(dev_priv, pipe) {
4823                 if (pipe != ignore && entries[pipe] &&
4824                     skl_ddb_entries_overlap(ddb, entries[pipe]))
4825                         return true;
4826         }
4827
4828         return false;
4829 }
4830
4831 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4832                               const struct skl_pipe_wm *old_pipe_wm,
4833                               struct skl_pipe_wm *pipe_wm, /* out */
4834                               struct skl_ddb_allocation *ddb, /* out */
4835                               bool *changed /* out */)
4836 {
4837         struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4838         int ret;
4839
4840         ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
4841         if (ret)
4842                 return ret;
4843
4844         if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4845                 *changed = false;
4846         else
4847                 *changed = true;
4848
4849         return 0;
4850 }
4851
4852 static uint32_t
4853 pipes_modified(struct drm_atomic_state *state)
4854 {
4855         struct drm_crtc *crtc;
4856         struct drm_crtc_state *cstate;
4857         uint32_t i, ret = 0;
4858
4859         for_each_new_crtc_in_state(state, crtc, cstate, i)
4860                 ret |= drm_crtc_mask(crtc);
4861
4862         return ret;
4863 }
4864
4865 static int
4866 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
4867 {
4868         struct drm_atomic_state *state = cstate->base.state;
4869         struct drm_device *dev = state->dev;
4870         struct drm_crtc *crtc = cstate->base.crtc;
4871         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4872         struct drm_i915_private *dev_priv = to_i915(dev);
4873         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4874         struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4875         struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
4876         struct drm_plane_state *plane_state;
4877         struct drm_plane *plane;
4878         enum pipe pipe = intel_crtc->pipe;
4879
4880         WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
4881
4882         drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4883                 enum plane_id plane_id = to_intel_plane(plane)->id;
4884
4885                 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
4886                                         &new_ddb->plane[pipe][plane_id]) &&
4887                     skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
4888                                         &new_ddb->y_plane[pipe][plane_id]))
4889                         continue;
4890
4891                 plane_state = drm_atomic_get_plane_state(state, plane);
4892                 if (IS_ERR(plane_state))
4893                         return PTR_ERR(plane_state);
4894         }
4895
4896         return 0;
4897 }
4898
4899 static int
4900 skl_compute_ddb(struct drm_atomic_state *state)
4901 {
4902         struct drm_device *dev = state->dev;
4903         struct drm_i915_private *dev_priv = to_i915(dev);
4904         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4905         struct intel_crtc *intel_crtc;
4906         struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4907         uint32_t realloc_pipes = pipes_modified(state);
4908         int ret;
4909
4910         /*
4911          * If this is our first atomic update following hardware readout,
4912          * we can't trust the DDB that the BIOS programmed for us.  Let's
4913          * pretend that all pipes switched active status so that we'll
4914          * ensure a full DDB recompute.
4915          */
4916         if (dev_priv->wm.distrust_bios_wm) {
4917                 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4918                                        state->acquire_ctx);
4919                 if (ret)
4920                         return ret;
4921
4922                 intel_state->active_pipe_changes = ~0;
4923
4924                 /*
4925                  * We usually only initialize intel_state->active_crtcs if we
4926                  * we're doing a modeset; make sure this field is always
4927                  * initialized during the sanitization process that happens
4928                  * on the first commit too.
4929                  */
4930                 if (!intel_state->modeset)
4931                         intel_state->active_crtcs = dev_priv->active_crtcs;
4932         }
4933
4934         /*
4935          * If the modeset changes which CRTC's are active, we need to
4936          * recompute the DDB allocation for *all* active pipes, even
4937          * those that weren't otherwise being modified in any way by this
4938          * atomic commit.  Due to the shrinking of the per-pipe allocations
4939          * when new active CRTC's are added, it's possible for a pipe that
4940          * we were already using and aren't changing at all here to suddenly
4941          * become invalid if its DDB needs exceeds its new allocation.
4942          *
4943          * Note that if we wind up doing a full DDB recompute, we can't let
4944          * any other display updates race with this transaction, so we need
4945          * to grab the lock on *all* CRTC's.
4946          */
4947         if (intel_state->active_pipe_changes) {
4948                 realloc_pipes = ~0;
4949                 intel_state->wm_results.dirty_pipes = ~0;
4950         }
4951
4952         /*
4953          * We're not recomputing for the pipes not included in the commit, so
4954          * make sure we start with the current state.
4955          */
4956         memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4957
4958         for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4959                 struct intel_crtc_state *cstate;
4960
4961                 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4962                 if (IS_ERR(cstate))
4963                         return PTR_ERR(cstate);
4964
4965                 ret = skl_allocate_pipe_ddb(cstate, ddb);
4966                 if (ret)
4967                         return ret;
4968
4969                 ret = skl_ddb_add_affected_planes(cstate);
4970                 if (ret)
4971                         return ret;
4972         }
4973
4974         return 0;
4975 }
4976
4977 static void
4978 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4979                      struct skl_wm_values *src,
4980                      enum pipe pipe)
4981 {
4982         memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4983                sizeof(dst->ddb.y_plane[pipe]));
4984         memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4985                sizeof(dst->ddb.plane[pipe]));
4986 }
4987
4988 static void
4989 skl_print_wm_changes(const struct drm_atomic_state *state)
4990 {
4991         const struct drm_device *dev = state->dev;
4992         const struct drm_i915_private *dev_priv = to_i915(dev);
4993         const struct intel_atomic_state *intel_state =
4994                 to_intel_atomic_state(state);
4995         const struct drm_crtc *crtc;
4996         const struct drm_crtc_state *cstate;
4997         const struct intel_plane *intel_plane;
4998         const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
4999         const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5000         int i;
5001
5002         for_each_new_crtc_in_state(state, crtc, cstate, i) {
5003                 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5004                 enum pipe pipe = intel_crtc->pipe;
5005
5006                 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5007                         enum plane_id plane_id = intel_plane->id;
5008                         const struct skl_ddb_entry *old, *new;
5009
5010                         old = &old_ddb->plane[pipe][plane_id];
5011                         new = &new_ddb->plane[pipe][plane_id];
5012
5013                         if (skl_ddb_entry_equal(old, new))
5014                                 continue;
5015
5016                         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
5017                                          intel_plane->base.base.id,
5018                                          intel_plane->base.name,
5019                                          old->start, old->end,
5020                                          new->start, new->end);
5021                 }
5022         }
5023 }
5024
5025 static int
5026 skl_compute_wm(struct drm_atomic_state *state)
5027 {
5028         struct drm_crtc *crtc;
5029         struct drm_crtc_state *cstate;
5030         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5031         struct skl_wm_values *results = &intel_state->wm_results;
5032         struct drm_device *dev = state->dev;
5033         struct skl_pipe_wm *pipe_wm;
5034         bool changed = false;
5035         int ret, i;
5036
5037         /*
5038          * When we distrust bios wm we always need to recompute to set the
5039          * expected DDB allocations for each CRTC.
5040          */
5041         if (to_i915(dev)->wm.distrust_bios_wm)
5042                 changed = true;
5043
5044         /*
5045          * If this transaction isn't actually touching any CRTC's, don't
5046          * bother with watermark calculation.  Note that if we pass this
5047          * test, we're guaranteed to hold at least one CRTC state mutex,
5048          * which means we can safely use values like dev_priv->active_crtcs
5049          * since any racing commits that want to update them would need to
5050          * hold _all_ CRTC state mutexes.
5051          */
5052         for_each_new_crtc_in_state(state, crtc, cstate, i)
5053                 changed = true;
5054
5055         if (!changed)
5056                 return 0;
5057
5058         /* Clear all dirty flags */
5059         results->dirty_pipes = 0;
5060
5061         ret = skl_compute_ddb(state);
5062         if (ret)
5063                 return ret;
5064
5065         /*
5066          * Calculate WM's for all pipes that are part of this transaction.
5067          * Note that the DDB allocation above may have added more CRTC's that
5068          * weren't otherwise being modified (and set bits in dirty_pipes) if
5069          * pipe allocations had to change.
5070          *
5071          * FIXME:  Now that we're doing this in the atomic check phase, we
5072          * should allow skl_update_pipe_wm() to return failure in cases where
5073          * no suitable watermark values can be found.
5074          */
5075         for_each_new_crtc_in_state(state, crtc, cstate, i) {
5076                 struct intel_crtc_state *intel_cstate =
5077                         to_intel_crtc_state(cstate);
5078                 const struct skl_pipe_wm *old_pipe_wm =
5079                         &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5080
5081                 pipe_wm = &intel_cstate->wm.skl.optimal;
5082                 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
5083                                          &results->ddb, &changed);
5084                 if (ret)
5085                         return ret;
5086
5087                 if (changed)
5088                         results->dirty_pipes |= drm_crtc_mask(crtc);
5089
5090                 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
5091                         /* This pipe's WM's did not change */
5092                         continue;
5093
5094                 intel_cstate->update_wm_pre = true;
5095         }
5096
5097         skl_print_wm_changes(state);
5098
5099         return 0;
5100 }
5101
5102 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5103                                       struct intel_crtc_state *cstate)
5104 {
5105         struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5106         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5107         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5108         const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5109         enum pipe pipe = crtc->pipe;
5110         enum plane_id plane_id;
5111
5112         if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5113                 return;
5114
5115         I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5116
5117         for_each_plane_id_on_crtc(crtc, plane_id) {
5118                 if (plane_id != PLANE_CURSOR)
5119                         skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
5120                                            ddb, plane_id);
5121                 else
5122                         skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
5123                                             ddb);
5124         }
5125 }
5126
5127 static void skl_initial_wm(struct intel_atomic_state *state,
5128                            struct intel_crtc_state *cstate)
5129 {
5130         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5131         struct drm_device *dev = intel_crtc->base.dev;
5132         struct drm_i915_private *dev_priv = to_i915(dev);
5133         struct skl_wm_values *results = &state->wm_results;
5134         struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
5135         enum pipe pipe = intel_crtc->pipe;
5136
5137         if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5138                 return;
5139
5140         mutex_lock(&dev_priv->wm.wm_mutex);
5141
5142         if (cstate->base.active_changed)
5143                 skl_atomic_update_crtc_wm(state, cstate);
5144
5145         skl_copy_wm_for_pipe(hw_vals, results, pipe);
5146
5147         mutex_unlock(&dev_priv->wm.wm_mutex);
5148 }
5149
5150 static void ilk_compute_wm_config(struct drm_device *dev,
5151                                   struct intel_wm_config *config)
5152 {
5153         struct intel_crtc *crtc;
5154
5155         /* Compute the currently _active_ config */
5156         for_each_intel_crtc(dev, crtc) {
5157                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5158
5159                 if (!wm->pipe_enabled)
5160                         continue;
5161
5162                 config->sprites_enabled |= wm->sprites_enabled;
5163                 config->sprites_scaled |= wm->sprites_scaled;
5164                 config->num_pipes_active++;
5165         }
5166 }
5167
5168 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5169 {
5170         struct drm_device *dev = &dev_priv->drm;
5171         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5172         struct ilk_wm_maximums max;
5173         struct intel_wm_config config = {};
5174         struct ilk_wm_values results = {};
5175         enum intel_ddb_partitioning partitioning;
5176
5177         ilk_compute_wm_config(dev, &config);
5178
5179         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
5180         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5181
5182         /* 5/6 split only in single pipe config on IVB+ */
5183         if (INTEL_GEN(dev_priv) >= 7 &&
5184             config.num_pipes_active == 1 && config.sprites_enabled) {
5185                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
5186                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5187
5188                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5189         } else {
5190                 best_lp_wm = &lp_wm_1_2;
5191         }
5192
5193         partitioning = (best_lp_wm == &lp_wm_1_2) ?
5194                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5195
5196         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5197
5198         ilk_write_wm_values(dev_priv, &results);
5199 }
5200
5201 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5202                                    struct intel_crtc_state *cstate)
5203 {
5204         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5205         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5206
5207         mutex_lock(&dev_priv->wm.wm_mutex);
5208         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5209         ilk_program_watermarks(dev_priv);
5210         mutex_unlock(&dev_priv->wm.wm_mutex);
5211 }
5212
5213 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5214                                     struct intel_crtc_state *cstate)
5215 {
5216         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5217         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5218
5219         mutex_lock(&dev_priv->wm.wm_mutex);
5220         if (cstate->wm.need_postvbl_update) {
5221                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5222                 ilk_program_watermarks(dev_priv);
5223         }
5224         mutex_unlock(&dev_priv->wm.wm_mutex);
5225 }
5226
5227 static inline void skl_wm_level_from_reg_val(uint32_t val,
5228                                              struct skl_wm_level *level)
5229 {
5230         level->plane_en = val & PLANE_WM_EN;
5231         level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5232         level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5233                 PLANE_WM_LINES_MASK;
5234 }
5235
5236 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
5237                               struct skl_pipe_wm *out)
5238 {
5239         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5240         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5241         enum pipe pipe = intel_crtc->pipe;
5242         int level, max_level;
5243         enum plane_id plane_id;
5244         uint32_t val;
5245
5246         max_level = ilk_wm_max_level(dev_priv);
5247
5248         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5249                 struct skl_plane_wm *wm = &out->planes[plane_id];
5250
5251                 for (level = 0; level <= max_level; level++) {
5252                         if (plane_id != PLANE_CURSOR)
5253                                 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5254                         else
5255                                 val = I915_READ(CUR_WM(pipe, level));
5256
5257                         skl_wm_level_from_reg_val(val, &wm->wm[level]);
5258                 }
5259
5260                 if (plane_id != PLANE_CURSOR)
5261                         val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5262                 else
5263                         val = I915_READ(CUR_WM_TRANS(pipe));
5264
5265                 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5266         }
5267
5268         if (!intel_crtc->active)
5269                 return;
5270
5271         out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5272 }
5273
5274 void skl_wm_get_hw_state(struct drm_device *dev)
5275 {
5276         struct drm_i915_private *dev_priv = to_i915(dev);
5277         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
5278         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5279         struct drm_crtc *crtc;
5280         struct intel_crtc *intel_crtc;
5281         struct intel_crtc_state *cstate;
5282
5283         skl_ddb_get_hw_state(dev_priv, ddb);
5284         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5285                 intel_crtc = to_intel_crtc(crtc);
5286                 cstate = to_intel_crtc_state(crtc->state);
5287
5288                 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5289
5290                 if (intel_crtc->active)
5291                         hw->dirty_pipes |= drm_crtc_mask(crtc);
5292         }
5293
5294         if (dev_priv->active_crtcs) {
5295                 /* Fully recompute DDB on first atomic commit */
5296                 dev_priv->wm.distrust_bios_wm = true;
5297         } else {
5298                 /* Easy/common case; just sanitize DDB now if everything off */
5299                 memset(ddb, 0, sizeof(*ddb));
5300         }
5301 }
5302
5303 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5304 {
5305         struct drm_device *dev = crtc->dev;
5306         struct drm_i915_private *dev_priv = to_i915(dev);
5307         struct ilk_wm_values *hw = &dev_priv->wm.hw;
5308         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5309         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5310         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5311         enum pipe pipe = intel_crtc->pipe;
5312         static const i915_reg_t wm0_pipe_reg[] = {
5313                 [PIPE_A] = WM0_PIPEA_ILK,
5314                 [PIPE_B] = WM0_PIPEB_ILK,
5315                 [PIPE_C] = WM0_PIPEC_IVB,
5316         };
5317
5318         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5319         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5320                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5321
5322         memset(active, 0, sizeof(*active));
5323
5324         active->pipe_enabled = intel_crtc->active;
5325
5326         if (active->pipe_enabled) {
5327                 u32 tmp = hw->wm_pipe[pipe];
5328
5329                 /*
5330                  * For active pipes LP0 watermark is marked as
5331                  * enabled, and LP1+ watermaks as disabled since
5332                  * we can't really reverse compute them in case
5333                  * multiple pipes are active.
5334                  */
5335                 active->wm[0].enable = true;
5336                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5337                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5338                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5339                 active->linetime = hw->wm_linetime[pipe];
5340         } else {
5341                 int level, max_level = ilk_wm_max_level(dev_priv);
5342
5343                 /*
5344                  * For inactive pipes, all watermark levels
5345                  * should be marked as enabled but zeroed,
5346                  * which is what we'd compute them to.
5347                  */
5348                 for (level = 0; level <= max_level; level++)
5349                         active->wm[level].enable = true;
5350         }
5351
5352         intel_crtc->wm.active.ilk = *active;
5353 }
5354
5355 #define _FW_WM(value, plane) \
5356         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5357 #define _FW_WM_VLV(value, plane) \
5358         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5359
5360 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5361                                struct g4x_wm_values *wm)
5362 {
5363         uint32_t tmp;
5364
5365         tmp = I915_READ(DSPFW1);
5366         wm->sr.plane = _FW_WM(tmp, SR);
5367         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5368         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5369         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5370
5371         tmp = I915_READ(DSPFW2);
5372         wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5373         wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5374         wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5375         wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5376         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5377         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5378
5379         tmp = I915_READ(DSPFW3);
5380         wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5381         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5382         wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5383         wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5384 }
5385
5386 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5387                                struct vlv_wm_values *wm)
5388 {
5389         enum pipe pipe;
5390         uint32_t tmp;
5391
5392         for_each_pipe(dev_priv, pipe) {
5393                 tmp = I915_READ(VLV_DDL(pipe));
5394
5395                 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5396                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5397                 wm->ddl[pipe].plane[PLANE_CURSOR] =
5398                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5399                 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5400                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5401                 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5402                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5403         }
5404
5405         tmp = I915_READ(DSPFW1);
5406         wm->sr.plane = _FW_WM(tmp, SR);
5407         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5408         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5409         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5410
5411         tmp = I915_READ(DSPFW2);
5412         wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5413         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5414         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5415
5416         tmp = I915_READ(DSPFW3);
5417         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5418
5419         if (IS_CHERRYVIEW(dev_priv)) {
5420                 tmp = I915_READ(DSPFW7_CHV);
5421                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5422                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5423
5424                 tmp = I915_READ(DSPFW8_CHV);
5425                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5426                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5427
5428                 tmp = I915_READ(DSPFW9_CHV);
5429                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5430                 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5431
5432                 tmp = I915_READ(DSPHOWM);
5433                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5434                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5435                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5436                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5437                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5438                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5439                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5440                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5441                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5442                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5443         } else {
5444                 tmp = I915_READ(DSPFW7);
5445                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5446                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5447
5448                 tmp = I915_READ(DSPHOWM);
5449                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5450                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5451                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5452                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5453                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5454                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5455                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5456         }
5457 }
5458
5459 #undef _FW_WM
5460 #undef _FW_WM_VLV
5461
5462 void g4x_wm_get_hw_state(struct drm_device *dev)
5463 {
5464         struct drm_i915_private *dev_priv = to_i915(dev);
5465         struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5466         struct intel_crtc *crtc;
5467
5468         g4x_read_wm_values(dev_priv, wm);
5469
5470         wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5471
5472         for_each_intel_crtc(dev, crtc) {
5473                 struct intel_crtc_state *crtc_state =
5474                         to_intel_crtc_state(crtc->base.state);
5475                 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5476                 struct g4x_pipe_wm *raw;
5477                 enum pipe pipe = crtc->pipe;
5478                 enum plane_id plane_id;
5479                 int level, max_level;
5480
5481                 active->cxsr = wm->cxsr;
5482                 active->hpll_en = wm->hpll_en;
5483                 active->fbc_en = wm->fbc_en;
5484
5485                 active->sr = wm->sr;
5486                 active->hpll = wm->hpll;
5487
5488                 for_each_plane_id_on_crtc(crtc, plane_id) {
5489                         active->wm.plane[plane_id] =
5490                                 wm->pipe[pipe].plane[plane_id];
5491                 }
5492
5493                 if (wm->cxsr && wm->hpll_en)
5494                         max_level = G4X_WM_LEVEL_HPLL;
5495                 else if (wm->cxsr)
5496                         max_level = G4X_WM_LEVEL_SR;
5497                 else
5498                         max_level = G4X_WM_LEVEL_NORMAL;
5499
5500                 level = G4X_WM_LEVEL_NORMAL;
5501                 raw = &crtc_state->wm.g4x.raw[level];
5502                 for_each_plane_id_on_crtc(crtc, plane_id)
5503                         raw->plane[plane_id] = active->wm.plane[plane_id];
5504
5505                 if (++level > max_level)
5506                         goto out;
5507
5508                 raw = &crtc_state->wm.g4x.raw[level];
5509                 raw->plane[PLANE_PRIMARY] = active->sr.plane;
5510                 raw->plane[PLANE_CURSOR] = active->sr.cursor;
5511                 raw->plane[PLANE_SPRITE0] = 0;
5512                 raw->fbc = active->sr.fbc;
5513
5514                 if (++level > max_level)
5515                         goto out;
5516
5517                 raw = &crtc_state->wm.g4x.raw[level];
5518                 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5519                 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5520                 raw->plane[PLANE_SPRITE0] = 0;
5521                 raw->fbc = active->hpll.fbc;
5522
5523         out:
5524                 for_each_plane_id_on_crtc(crtc, plane_id)
5525                         g4x_raw_plane_wm_set(crtc_state, level,
5526                                              plane_id, USHRT_MAX);
5527                 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5528
5529                 crtc_state->wm.g4x.optimal = *active;
5530                 crtc_state->wm.g4x.intermediate = *active;
5531
5532                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5533                               pipe_name(pipe),
5534                               wm->pipe[pipe].plane[PLANE_PRIMARY],
5535                               wm->pipe[pipe].plane[PLANE_CURSOR],
5536                               wm->pipe[pipe].plane[PLANE_SPRITE0]);
5537         }
5538
5539         DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5540                       wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5541         DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5542                       wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5543         DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5544                       yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5545 }
5546
5547 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5548 {
5549         struct intel_plane *plane;
5550         struct intel_crtc *crtc;
5551
5552         mutex_lock(&dev_priv->wm.wm_mutex);
5553
5554         for_each_intel_plane(&dev_priv->drm, plane) {
5555                 struct intel_crtc *crtc =
5556                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5557                 struct intel_crtc_state *crtc_state =
5558                         to_intel_crtc_state(crtc->base.state);
5559                 struct intel_plane_state *plane_state =
5560                         to_intel_plane_state(plane->base.state);
5561                 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5562                 enum plane_id plane_id = plane->id;
5563                 int level;
5564
5565                 if (plane_state->base.visible)
5566                         continue;
5567
5568                 for (level = 0; level < 3; level++) {
5569                         struct g4x_pipe_wm *raw =
5570                                 &crtc_state->wm.g4x.raw[level];
5571
5572                         raw->plane[plane_id] = 0;
5573                         wm_state->wm.plane[plane_id] = 0;
5574                 }
5575
5576                 if (plane_id == PLANE_PRIMARY) {
5577                         for (level = 0; level < 3; level++) {
5578                                 struct g4x_pipe_wm *raw =
5579                                         &crtc_state->wm.g4x.raw[level];
5580                                 raw->fbc = 0;
5581                         }
5582
5583                         wm_state->sr.fbc = 0;
5584                         wm_state->hpll.fbc = 0;
5585                         wm_state->fbc_en = false;
5586                 }
5587         }
5588
5589         for_each_intel_crtc(&dev_priv->drm, crtc) {
5590                 struct intel_crtc_state *crtc_state =
5591                         to_intel_crtc_state(crtc->base.state);
5592
5593                 crtc_state->wm.g4x.intermediate =
5594                         crtc_state->wm.g4x.optimal;
5595                 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5596         }
5597
5598         g4x_program_watermarks(dev_priv);
5599
5600         mutex_unlock(&dev_priv->wm.wm_mutex);
5601 }
5602
5603 void vlv_wm_get_hw_state(struct drm_device *dev)
5604 {
5605         struct drm_i915_private *dev_priv = to_i915(dev);
5606         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5607         struct intel_crtc *crtc;
5608         u32 val;
5609
5610         vlv_read_wm_values(dev_priv, wm);
5611
5612         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5613         wm->level = VLV_WM_LEVEL_PM2;
5614
5615         if (IS_CHERRYVIEW(dev_priv)) {
5616                 mutex_lock(&dev_priv->pcu_lock);
5617
5618                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5619                 if (val & DSP_MAXFIFO_PM5_ENABLE)
5620                         wm->level = VLV_WM_LEVEL_PM5;
5621
5622                 /*
5623                  * If DDR DVFS is disabled in the BIOS, Punit
5624                  * will never ack the request. So if that happens
5625                  * assume we don't have to enable/disable DDR DVFS
5626                  * dynamically. To test that just set the REQ_ACK
5627                  * bit to poke the Punit, but don't change the
5628                  * HIGH/LOW bits so that we don't actually change
5629                  * the current state.
5630                  */
5631                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5632                 val |= FORCE_DDR_FREQ_REQ_ACK;
5633                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
5634
5635                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
5636                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
5637                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
5638                                       "assuming DDR DVFS is disabled\n");
5639                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
5640                 } else {
5641                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5642                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
5643                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
5644                 }
5645
5646                 mutex_unlock(&dev_priv->pcu_lock);
5647         }
5648
5649         for_each_intel_crtc(dev, crtc) {
5650                 struct intel_crtc_state *crtc_state =
5651                         to_intel_crtc_state(crtc->base.state);
5652                 struct vlv_wm_state *active = &crtc->wm.active.vlv;
5653                 const struct vlv_fifo_state *fifo_state =
5654                         &crtc_state->wm.vlv.fifo_state;
5655                 enum pipe pipe = crtc->pipe;
5656                 enum plane_id plane_id;
5657                 int level;
5658
5659                 vlv_get_fifo_size(crtc_state);
5660
5661                 active->num_levels = wm->level + 1;
5662                 active->cxsr = wm->cxsr;
5663
5664                 for (level = 0; level < active->num_levels; level++) {
5665                         struct g4x_pipe_wm *raw =
5666                                 &crtc_state->wm.vlv.raw[level];
5667
5668                         active->sr[level].plane = wm->sr.plane;
5669                         active->sr[level].cursor = wm->sr.cursor;
5670
5671                         for_each_plane_id_on_crtc(crtc, plane_id) {
5672                                 active->wm[level].plane[plane_id] =
5673                                         wm->pipe[pipe].plane[plane_id];
5674
5675                                 raw->plane[plane_id] =
5676                                         vlv_invert_wm_value(active->wm[level].plane[plane_id],
5677                                                             fifo_state->plane[plane_id]);
5678                         }
5679                 }
5680
5681                 for_each_plane_id_on_crtc(crtc, plane_id)
5682                         vlv_raw_plane_wm_set(crtc_state, level,
5683                                              plane_id, USHRT_MAX);
5684                 vlv_invalidate_wms(crtc, active, level);
5685
5686                 crtc_state->wm.vlv.optimal = *active;
5687                 crtc_state->wm.vlv.intermediate = *active;
5688
5689                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5690                               pipe_name(pipe),
5691                               wm->pipe[pipe].plane[PLANE_PRIMARY],
5692                               wm->pipe[pipe].plane[PLANE_CURSOR],
5693                               wm->pipe[pipe].plane[PLANE_SPRITE0],
5694                               wm->pipe[pipe].plane[PLANE_SPRITE1]);
5695         }
5696
5697         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
5698                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
5699 }
5700
5701 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
5702 {
5703         struct intel_plane *plane;
5704         struct intel_crtc *crtc;
5705
5706         mutex_lock(&dev_priv->wm.wm_mutex);
5707
5708         for_each_intel_plane(&dev_priv->drm, plane) {
5709                 struct intel_crtc *crtc =
5710                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5711                 struct intel_crtc_state *crtc_state =
5712                         to_intel_crtc_state(crtc->base.state);
5713                 struct intel_plane_state *plane_state =
5714                         to_intel_plane_state(plane->base.state);
5715                 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
5716                 const struct vlv_fifo_state *fifo_state =
5717                         &crtc_state->wm.vlv.fifo_state;
5718                 enum plane_id plane_id = plane->id;
5719                 int level;
5720
5721                 if (plane_state->base.visible)
5722                         continue;
5723
5724                 for (level = 0; level < wm_state->num_levels; level++) {
5725                         struct g4x_pipe_wm *raw =
5726                                 &crtc_state->wm.vlv.raw[level];
5727
5728                         raw->plane[plane_id] = 0;
5729
5730                         wm_state->wm[level].plane[plane_id] =
5731                                 vlv_invert_wm_value(raw->plane[plane_id],
5732                                                     fifo_state->plane[plane_id]);
5733                 }
5734         }
5735
5736         for_each_intel_crtc(&dev_priv->drm, crtc) {
5737                 struct intel_crtc_state *crtc_state =
5738                         to_intel_crtc_state(crtc->base.state);
5739
5740                 crtc_state->wm.vlv.intermediate =
5741                         crtc_state->wm.vlv.optimal;
5742                 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
5743         }
5744
5745         vlv_program_watermarks(dev_priv);
5746
5747         mutex_unlock(&dev_priv->wm.wm_mutex);
5748 }
5749
5750 /*
5751  * FIXME should probably kill this and improve
5752  * the real watermark readout/sanitation instead
5753  */
5754 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
5755 {
5756         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5757         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5758         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5759
5760         /*
5761          * Don't touch WM1S_LP_EN here.
5762          * Doing so could cause underruns.
5763          */
5764 }
5765
5766 void ilk_wm_get_hw_state(struct drm_device *dev)
5767 {
5768         struct drm_i915_private *dev_priv = to_i915(dev);
5769         struct ilk_wm_values *hw = &dev_priv->wm.hw;
5770         struct drm_crtc *crtc;
5771
5772         ilk_init_lp_watermarks(dev_priv);
5773
5774         for_each_crtc(dev, crtc)
5775                 ilk_pipe_wm_get_hw_state(crtc);
5776
5777         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
5778         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
5779         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
5780
5781         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5782         if (INTEL_GEN(dev_priv) >= 7) {
5783                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
5784                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
5785         }
5786
5787         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5788                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
5789                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5790         else if (IS_IVYBRIDGE(dev_priv))
5791                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
5792                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5793
5794         hw->enable_fbc_wm =
5795                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
5796 }
5797
5798 /**
5799  * intel_update_watermarks - update FIFO watermark values based on current modes
5800  *
5801  * Calculate watermark values for the various WM regs based on current mode
5802  * and plane configuration.
5803  *
5804  * There are several cases to deal with here:
5805  *   - normal (i.e. non-self-refresh)
5806  *   - self-refresh (SR) mode
5807  *   - lines are large relative to FIFO size (buffer can hold up to 2)
5808  *   - lines are small relative to FIFO size (buffer can hold more than 2
5809  *     lines), so need to account for TLB latency
5810  *
5811  *   The normal calculation is:
5812  *     watermark = dotclock * bytes per pixel * latency
5813  *   where latency is platform & configuration dependent (we assume pessimal
5814  *   values here).
5815  *
5816  *   The SR calculation is:
5817  *     watermark = (trunc(latency/line time)+1) * surface width *
5818  *       bytes per pixel
5819  *   where
5820  *     line time = htotal / dotclock
5821  *     surface width = hdisplay for normal plane and 64 for cursor
5822  *   and latency is assumed to be high, as above.
5823  *
5824  * The final value programmed to the register should always be rounded up,
5825  * and include an extra 2 entries to account for clock crossings.
5826  *
5827  * We don't use the sprite, so we can ignore that.  And on Crestline we have
5828  * to set the non-SR watermarks to 8.
5829  */
5830 void intel_update_watermarks(struct intel_crtc *crtc)
5831 {
5832         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5833
5834         if (dev_priv->display.update_wm)
5835                 dev_priv->display.update_wm(crtc);
5836 }
5837
5838 void intel_enable_ipc(struct drm_i915_private *dev_priv)
5839 {
5840         u32 val;
5841
5842         /* Display WA #0477 WaDisableIPC: skl */
5843         if (IS_SKYLAKE(dev_priv)) {
5844                 dev_priv->ipc_enabled = false;
5845                 return;
5846         }
5847
5848         val = I915_READ(DISP_ARB_CTL2);
5849
5850         if (dev_priv->ipc_enabled)
5851                 val |= DISP_IPC_ENABLE;
5852         else
5853                 val &= ~DISP_IPC_ENABLE;
5854
5855         I915_WRITE(DISP_ARB_CTL2, val);
5856 }
5857
5858 void intel_init_ipc(struct drm_i915_private *dev_priv)
5859 {
5860         dev_priv->ipc_enabled = false;
5861         if (!HAS_IPC(dev_priv))
5862                 return;
5863
5864         dev_priv->ipc_enabled = true;
5865         intel_enable_ipc(dev_priv);
5866 }
5867
5868 /*
5869  * Lock protecting IPS related data structures
5870  */
5871 DEFINE_SPINLOCK(mchdev_lock);
5872
5873 /* Global for IPS driver to get at the current i915 device. Protected by
5874  * mchdev_lock. */
5875 static struct drm_i915_private *i915_mch_dev;
5876
5877 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
5878 {
5879         u16 rgvswctl;
5880
5881         lockdep_assert_held(&mchdev_lock);
5882
5883         rgvswctl = I915_READ16(MEMSWCTL);
5884         if (rgvswctl & MEMCTL_CMD_STS) {
5885                 DRM_DEBUG("gpu busy, RCS change rejected\n");
5886                 return false; /* still busy with another command */
5887         }
5888
5889         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5890                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5891         I915_WRITE16(MEMSWCTL, rgvswctl);
5892         POSTING_READ16(MEMSWCTL);
5893
5894         rgvswctl |= MEMCTL_CMD_STS;
5895         I915_WRITE16(MEMSWCTL, rgvswctl);
5896
5897         return true;
5898 }
5899
5900 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5901 {
5902         u32 rgvmodectl;
5903         u8 fmax, fmin, fstart, vstart;
5904
5905         spin_lock_irq(&mchdev_lock);
5906
5907         rgvmodectl = I915_READ(MEMMODECTL);
5908
5909         /* Enable temp reporting */
5910         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5911         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5912
5913         /* 100ms RC evaluation intervals */
5914         I915_WRITE(RCUPEI, 100000);
5915         I915_WRITE(RCDNEI, 100000);
5916
5917         /* Set max/min thresholds to 90ms and 80ms respectively */
5918         I915_WRITE(RCBMAXAVG, 90000);
5919         I915_WRITE(RCBMINAVG, 80000);
5920
5921         I915_WRITE(MEMIHYST, 1);
5922
5923         /* Set up min, max, and cur for interrupt handling */
5924         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5925         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5926         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5927                 MEMMODE_FSTART_SHIFT;
5928
5929         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5930                 PXVFREQ_PX_SHIFT;
5931
5932         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
5933         dev_priv->ips.fstart = fstart;
5934
5935         dev_priv->ips.max_delay = fstart;
5936         dev_priv->ips.min_delay = fmin;
5937         dev_priv->ips.cur_delay = fstart;
5938
5939         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
5940                          fmax, fmin, fstart);
5941
5942         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5943
5944         /*
5945          * Interrupts will be enabled in ironlake_irq_postinstall
5946          */
5947
5948         I915_WRITE(VIDSTART, vstart);
5949         POSTING_READ(VIDSTART);
5950
5951         rgvmodectl |= MEMMODE_SWMODE_EN;
5952         I915_WRITE(MEMMODECTL, rgvmodectl);
5953
5954         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5955                 DRM_ERROR("stuck trying to change perf mode\n");
5956         mdelay(1);
5957
5958         ironlake_set_drps(dev_priv, fstart);
5959
5960         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
5961                 I915_READ(DDREC) + I915_READ(CSIEC);
5962         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5963         dev_priv->ips.last_count2 = I915_READ(GFXEC);
5964         dev_priv->ips.last_time2 = ktime_get_raw_ns();
5965
5966         spin_unlock_irq(&mchdev_lock);
5967 }
5968
5969 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5970 {
5971         u16 rgvswctl;
5972
5973         spin_lock_irq(&mchdev_lock);
5974
5975         rgvswctl = I915_READ16(MEMSWCTL);
5976
5977         /* Ack interrupts, disable EFC interrupt */
5978         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5979         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5980         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5981         I915_WRITE(DEIIR, DE_PCU_EVENT);
5982         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5983
5984         /* Go back to the starting frequency */
5985         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5986         mdelay(1);
5987         rgvswctl |= MEMCTL_CMD_STS;
5988         I915_WRITE(MEMSWCTL, rgvswctl);
5989         mdelay(1);
5990
5991         spin_unlock_irq(&mchdev_lock);
5992 }
5993
5994 /* There's a funny hw issue where the hw returns all 0 when reading from
5995  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
5996  * ourselves, instead of doing a rmw cycle (which might result in us clearing
5997  * all limits and the gpu stuck at whatever frequency it is at atm).
5998  */
5999 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6000 {
6001         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6002         u32 limits;
6003
6004         /* Only set the down limit when we've reached the lowest level to avoid
6005          * getting more interrupts, otherwise leave this clear. This prevents a
6006          * race in the hw when coming out of rc6: There's a tiny window where
6007          * the hw runs at the minimal clock before selecting the desired
6008          * frequency, if the down threshold expires in that window we will not
6009          * receive a down interrupt. */
6010         if (INTEL_GEN(dev_priv) >= 9) {
6011                 limits = (rps->max_freq_softlimit) << 23;
6012                 if (val <= rps->min_freq_softlimit)
6013                         limits |= (rps->min_freq_softlimit) << 14;
6014         } else {
6015                 limits = rps->max_freq_softlimit << 24;
6016                 if (val <= rps->min_freq_softlimit)
6017                         limits |= rps->min_freq_softlimit << 16;
6018         }
6019
6020         return limits;
6021 }
6022
6023 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6024 {
6025         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6026         int new_power;
6027         u32 threshold_up = 0, threshold_down = 0; /* in % */
6028         u32 ei_up = 0, ei_down = 0;
6029
6030         new_power = rps->power;
6031         switch (rps->power) {
6032         case LOW_POWER:
6033                 if (val > rps->efficient_freq + 1 &&
6034                     val > rps->cur_freq)
6035                         new_power = BETWEEN;
6036                 break;
6037
6038         case BETWEEN:
6039                 if (val <= rps->efficient_freq &&
6040                     val < rps->cur_freq)
6041                         new_power = LOW_POWER;
6042                 else if (val >= rps->rp0_freq &&
6043                          val > rps->cur_freq)
6044                         new_power = HIGH_POWER;
6045                 break;
6046
6047         case HIGH_POWER:
6048                 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6049                     val < rps->cur_freq)
6050                         new_power = BETWEEN;
6051                 break;
6052         }
6053         /* Max/min bins are special */
6054         if (val <= rps->min_freq_softlimit)
6055                 new_power = LOW_POWER;
6056         if (val >= rps->max_freq_softlimit)
6057                 new_power = HIGH_POWER;
6058         if (new_power == rps->power)
6059                 return;
6060
6061         /* Note the units here are not exactly 1us, but 1280ns. */
6062         switch (new_power) {
6063         case LOW_POWER:
6064                 /* Upclock if more than 95% busy over 16ms */
6065                 ei_up = 16000;
6066                 threshold_up = 95;
6067
6068                 /* Downclock if less than 85% busy over 32ms */
6069                 ei_down = 32000;
6070                 threshold_down = 85;
6071                 break;
6072
6073         case BETWEEN:
6074                 /* Upclock if more than 90% busy over 13ms */
6075                 ei_up = 13000;
6076                 threshold_up = 90;
6077
6078                 /* Downclock if less than 75% busy over 32ms */
6079                 ei_down = 32000;
6080                 threshold_down = 75;
6081                 break;
6082
6083         case HIGH_POWER:
6084                 /* Upclock if more than 85% busy over 10ms */
6085                 ei_up = 10000;
6086                 threshold_up = 85;
6087
6088                 /* Downclock if less than 60% busy over 32ms */
6089                 ei_down = 32000;
6090                 threshold_down = 60;
6091                 break;
6092         }
6093
6094         /* When byt can survive without system hang with dynamic
6095          * sw freq adjustments, this restriction can be lifted.
6096          */
6097         if (IS_VALLEYVIEW(dev_priv))
6098                 goto skip_hw_write;
6099
6100         I915_WRITE(GEN6_RP_UP_EI,
6101                    GT_INTERVAL_FROM_US(dev_priv, ei_up));
6102         I915_WRITE(GEN6_RP_UP_THRESHOLD,
6103                    GT_INTERVAL_FROM_US(dev_priv,
6104                                        ei_up * threshold_up / 100));
6105
6106         I915_WRITE(GEN6_RP_DOWN_EI,
6107                    GT_INTERVAL_FROM_US(dev_priv, ei_down));
6108         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6109                    GT_INTERVAL_FROM_US(dev_priv,
6110                                        ei_down * threshold_down / 100));
6111
6112         I915_WRITE(GEN6_RP_CONTROL,
6113                    GEN6_RP_MEDIA_TURBO |
6114                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6115                    GEN6_RP_MEDIA_IS_GFX |
6116                    GEN6_RP_ENABLE |
6117                    GEN6_RP_UP_BUSY_AVG |
6118                    GEN6_RP_DOWN_IDLE_AVG);
6119
6120 skip_hw_write:
6121         rps->power = new_power;
6122         rps->up_threshold = threshold_up;
6123         rps->down_threshold = threshold_down;
6124         rps->last_adj = 0;
6125 }
6126
6127 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6128 {
6129         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6130         u32 mask = 0;
6131
6132         /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6133         if (val > rps->min_freq_softlimit)
6134                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6135         if (val < rps->max_freq_softlimit)
6136                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6137
6138         mask &= dev_priv->pm_rps_events;
6139
6140         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6141 }
6142
6143 /* gen6_set_rps is called to update the frequency request, but should also be
6144  * called when the range (min_delay and max_delay) is modified so that we can
6145  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6146 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6147 {
6148         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6149
6150         /* min/max delay may still have been modified so be sure to
6151          * write the limits value.
6152          */
6153         if (val != rps->cur_freq) {
6154                 gen6_set_rps_thresholds(dev_priv, val);
6155
6156                 if (INTEL_GEN(dev_priv) >= 9)
6157                         I915_WRITE(GEN6_RPNSWREQ,
6158                                    GEN9_FREQUENCY(val));
6159                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6160                         I915_WRITE(GEN6_RPNSWREQ,
6161                                    HSW_FREQUENCY(val));
6162                 else
6163                         I915_WRITE(GEN6_RPNSWREQ,
6164                                    GEN6_FREQUENCY(val) |
6165                                    GEN6_OFFSET(0) |
6166                                    GEN6_AGGRESSIVE_TURBO);
6167         }
6168
6169         /* Make sure we continue to get interrupts
6170          * until we hit the minimum or maximum frequencies.
6171          */
6172         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6173         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6174
6175         rps->cur_freq = val;
6176         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6177
6178         return 0;
6179 }
6180
6181 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6182 {
6183         int err;
6184
6185         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6186                       "Odd GPU freq value\n"))
6187                 val &= ~1;
6188
6189         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6190
6191         if (val != dev_priv->gt_pm.rps.cur_freq) {
6192                 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6193                 if (err)
6194                         return err;
6195
6196                 gen6_set_rps_thresholds(dev_priv, val);
6197         }
6198
6199         dev_priv->gt_pm.rps.cur_freq = val;
6200         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6201
6202         return 0;
6203 }
6204
6205 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6206  *
6207  * * If Gfx is Idle, then
6208  * 1. Forcewake Media well.
6209  * 2. Request idle freq.
6210  * 3. Release Forcewake of Media well.
6211 */
6212 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6213 {
6214         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6215         u32 val = rps->idle_freq;
6216         int err;
6217
6218         if (rps->cur_freq <= val)
6219                 return;
6220
6221         /* The punit delays the write of the frequency and voltage until it
6222          * determines the GPU is awake. During normal usage we don't want to
6223          * waste power changing the frequency if the GPU is sleeping (rc6).
6224          * However, the GPU and driver is now idle and we do not want to delay
6225          * switching to minimum voltage (reducing power whilst idle) as we do
6226          * not expect to be woken in the near future and so must flush the
6227          * change by waking the device.
6228          *
6229          * We choose to take the media powerwell (either would do to trick the
6230          * punit into committing the voltage change) as that takes a lot less
6231          * power than the render powerwell.
6232          */
6233         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6234         err = valleyview_set_rps(dev_priv, val);
6235         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6236
6237         if (err)
6238                 DRM_ERROR("Failed to set RPS for idle\n");
6239 }
6240
6241 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6242 {
6243         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6244
6245         mutex_lock(&dev_priv->pcu_lock);
6246         if (rps->enabled) {
6247                 u8 freq;
6248
6249                 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6250                         gen6_rps_reset_ei(dev_priv);
6251                 I915_WRITE(GEN6_PMINTRMSK,
6252                            gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6253
6254                 gen6_enable_rps_interrupts(dev_priv);
6255
6256                 /* Use the user's desired frequency as a guide, but for better
6257                  * performance, jump directly to RPe as our starting frequency.
6258                  */
6259                 freq = max(rps->cur_freq,
6260                            rps->efficient_freq);
6261
6262                 if (intel_set_rps(dev_priv,
6263                                   clamp(freq,
6264                                         rps->min_freq_softlimit,
6265                                         rps->max_freq_softlimit)))
6266                         DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6267         }
6268         mutex_unlock(&dev_priv->pcu_lock);
6269 }
6270
6271 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6272 {
6273         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6274
6275         /* Flush our bottom-half so that it does not race with us
6276          * setting the idle frequency and so that it is bounded by
6277          * our rpm wakeref. And then disable the interrupts to stop any
6278          * futher RPS reclocking whilst we are asleep.
6279          */
6280         gen6_disable_rps_interrupts(dev_priv);
6281
6282         mutex_lock(&dev_priv->pcu_lock);
6283         if (rps->enabled) {
6284                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6285                         vlv_set_rps_idle(dev_priv);
6286                 else
6287                         gen6_set_rps(dev_priv, rps->idle_freq);
6288                 rps->last_adj = 0;
6289                 I915_WRITE(GEN6_PMINTRMSK,
6290                            gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6291         }
6292         mutex_unlock(&dev_priv->pcu_lock);
6293 }
6294
6295 void gen6_rps_boost(struct drm_i915_gem_request *rq,
6296                     struct intel_rps_client *rps_client)
6297 {
6298         struct intel_rps *rps = &rq->i915->gt_pm.rps;
6299         unsigned long flags;
6300         bool boost;
6301
6302         /* This is intentionally racy! We peek at the state here, then
6303          * validate inside the RPS worker.
6304          */
6305         if (!rps->enabled)
6306                 return;
6307
6308         boost = false;
6309         spin_lock_irqsave(&rq->lock, flags);
6310         if (!rq->waitboost && !i915_gem_request_completed(rq)) {
6311                 atomic_inc(&rps->num_waiters);
6312                 rq->waitboost = true;
6313                 boost = true;
6314         }
6315         spin_unlock_irqrestore(&rq->lock, flags);
6316         if (!boost)
6317                 return;
6318
6319         if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6320                 schedule_work(&rps->work);
6321
6322         atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6323 }
6324
6325 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6326 {
6327         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6328         int err;
6329
6330         lockdep_assert_held(&dev_priv->pcu_lock);
6331         GEM_BUG_ON(val > rps->max_freq);
6332         GEM_BUG_ON(val < rps->min_freq);
6333
6334         if (!rps->enabled) {
6335                 rps->cur_freq = val;
6336                 return 0;
6337         }
6338
6339         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6340                 err = valleyview_set_rps(dev_priv, val);
6341         else
6342                 err = gen6_set_rps(dev_priv, val);
6343
6344         return err;
6345 }
6346
6347 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6348 {
6349         I915_WRITE(GEN6_RC_CONTROL, 0);
6350         I915_WRITE(GEN9_PG_ENABLE, 0);
6351 }
6352
6353 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6354 {
6355         I915_WRITE(GEN6_RP_CONTROL, 0);
6356 }
6357
6358 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6359 {
6360         I915_WRITE(GEN6_RC_CONTROL, 0);
6361 }
6362
6363 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6364 {
6365         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6366         I915_WRITE(GEN6_RP_CONTROL, 0);
6367 }
6368
6369 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6370 {
6371         I915_WRITE(GEN6_RC_CONTROL, 0);
6372 }
6373
6374 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6375 {
6376         I915_WRITE(GEN6_RP_CONTROL, 0);
6377 }
6378
6379 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6380 {
6381         /* We're doing forcewake before Disabling RC6,
6382          * This what the BIOS expects when going into suspend */
6383         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6384
6385         I915_WRITE(GEN6_RC_CONTROL, 0);
6386
6387         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6388 }
6389
6390 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6391 {
6392         I915_WRITE(GEN6_RP_CONTROL, 0);
6393 }
6394
6395 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
6396 {
6397         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6398                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
6399                         mode = GEN6_RC_CTL_RC6_ENABLE;
6400                 else
6401                         mode = 0;
6402         }
6403         if (HAS_RC6p(dev_priv))
6404                 DRM_DEBUG_DRIVER("Enabling RC6 states: "
6405                                  "RC6 %s RC6p %s RC6pp %s\n",
6406                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
6407                                  onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
6408                                  onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
6409
6410         else
6411                 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
6412                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
6413 }
6414
6415 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6416 {
6417         struct i915_ggtt *ggtt = &dev_priv->ggtt;
6418         bool enable_rc6 = true;
6419         unsigned long rc6_ctx_base;
6420         u32 rc_ctl;
6421         int rc_sw_target;
6422
6423         rc_ctl = I915_READ(GEN6_RC_CONTROL);
6424         rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6425                        RC_SW_TARGET_STATE_SHIFT;
6426         DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6427                          "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6428                          onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6429                          onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6430                          rc_sw_target);
6431
6432         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6433                 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6434                 enable_rc6 = false;
6435         }
6436
6437         /*
6438          * The exact context size is not known for BXT, so assume a page size
6439          * for this check.
6440          */
6441         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6442         if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
6443               (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
6444                                         ggtt->stolen_reserved_size))) {
6445                 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6446                 enable_rc6 = false;
6447         }
6448
6449         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6450               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6451               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6452               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6453                 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6454                 enable_rc6 = false;
6455         }
6456
6457         if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6458             !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6459             !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6460                 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6461                 enable_rc6 = false;
6462         }
6463
6464         if (!I915_READ(GEN6_GFXPAUSE)) {
6465                 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6466                 enable_rc6 = false;
6467         }
6468
6469         if (!I915_READ(GEN8_MISC_CTRL0)) {
6470                 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6471                 enable_rc6 = false;
6472         }
6473
6474         return enable_rc6;
6475 }
6476
6477 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
6478 {
6479         /* No RC6 before Ironlake and code is gone for ilk. */
6480         if (INTEL_INFO(dev_priv)->gen < 6)
6481                 return 0;
6482
6483         if (!enable_rc6)
6484                 return 0;
6485
6486         if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
6487                 DRM_INFO("RC6 disabled by BIOS\n");
6488                 return 0;
6489         }
6490
6491         /* Respect the kernel parameter if it is set */
6492         if (enable_rc6 >= 0) {
6493                 int mask;
6494
6495                 if (HAS_RC6p(dev_priv))
6496                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
6497                                INTEL_RC6pp_ENABLE;
6498                 else
6499                         mask = INTEL_RC6_ENABLE;
6500
6501                 if ((enable_rc6 & mask) != enable_rc6)
6502                         DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
6503                                          "(requested %d, valid %d)\n",
6504                                          enable_rc6 & mask, enable_rc6, mask);
6505
6506                 return enable_rc6 & mask;
6507         }
6508
6509         if (IS_IVYBRIDGE(dev_priv))
6510                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
6511
6512         return INTEL_RC6_ENABLE;
6513 }
6514
6515 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6516 {
6517         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6518
6519         /* All of these values are in units of 50MHz */
6520
6521         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
6522         if (IS_GEN9_LP(dev_priv)) {
6523                 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6524                 rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
6525                 rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
6526                 rps->min_freq = (rp_state_cap >>  0) & 0xff;
6527         } else {
6528                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6529                 rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
6530                 rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
6531                 rps->min_freq = (rp_state_cap >> 16) & 0xff;
6532         }
6533         /* hw_max = RP0 until we check for overclocking */
6534         rps->max_freq = rps->rp0_freq;
6535
6536         rps->efficient_freq = rps->rp1_freq;
6537         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6538             IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6539                 u32 ddcc_status = 0;
6540
6541                 if (sandybridge_pcode_read(dev_priv,
6542                                            HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6543                                            &ddcc_status) == 0)
6544                         rps->efficient_freq =
6545                                 clamp_t(u8,
6546                                         ((ddcc_status >> 8) & 0xff),
6547                                         rps->min_freq,
6548                                         rps->max_freq);
6549         }
6550
6551         if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6552                 /* Store the frequency values in 16.66 MHZ units, which is
6553                  * the natural hardware unit for SKL
6554                  */
6555                 rps->rp0_freq *= GEN9_FREQ_SCALER;
6556                 rps->rp1_freq *= GEN9_FREQ_SCALER;
6557                 rps->min_freq *= GEN9_FREQ_SCALER;
6558                 rps->max_freq *= GEN9_FREQ_SCALER;
6559                 rps->efficient_freq *= GEN9_FREQ_SCALER;
6560         }
6561 }
6562
6563 static void reset_rps(struct drm_i915_private *dev_priv,
6564                       int (*set)(struct drm_i915_private *, u8))
6565 {
6566         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6567         u8 freq = rps->cur_freq;
6568
6569         /* force a reset */
6570         rps->power = -1;
6571         rps->cur_freq = -1;
6572
6573         if (set(dev_priv, freq))
6574                 DRM_ERROR("Failed to reset RPS to initial values\n");
6575 }
6576
6577 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
6578 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
6579 {
6580         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6581
6582         /* Program defaults and thresholds for RPS*/
6583         I915_WRITE(GEN6_RC_VIDEO_FREQ,
6584                 GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6585
6586         /* 1 second timeout*/
6587         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6588                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
6589
6590         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
6591
6592         /* Leaning on the below call to gen6_set_rps to program/setup the
6593          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6594          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6595         reset_rps(dev_priv, gen6_set_rps);
6596
6597         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6598 }
6599
6600 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
6601 {
6602         struct intel_engine_cs *engine;
6603         enum intel_engine_id id;
6604         u32 rc6_mode, rc6_mask = 0;
6605
6606         /* 1a: Software RC state - RC0 */
6607         I915_WRITE(GEN6_RC_STATE, 0);
6608
6609         /* 1b: Get forcewake during program sequence. Although the driver
6610          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6611         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6612
6613         /* 2a: Disable RC states. */
6614         I915_WRITE(GEN6_RC_CONTROL, 0);
6615
6616         /* 2b: Program RC6 thresholds.*/
6617
6618         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
6619         if (IS_SKYLAKE(dev_priv))
6620                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6621         else
6622                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
6623         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6624         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6625         for_each_engine(engine, dev_priv, id)
6626                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6627
6628         if (HAS_GUC(dev_priv))
6629                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
6630
6631         I915_WRITE(GEN6_RC_SLEEP, 0);
6632
6633         /* 2c: Program Coarse Power Gating Policies. */
6634         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
6635         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
6636
6637         /* 3a: Enable RC6 */
6638         if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
6639                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6640         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
6641         I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
6642
6643         /* WaRsUseTimeoutMode:cnl (pre-prod) */
6644         if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
6645                 rc6_mode = GEN7_RC_CTL_TO_MODE;
6646         else
6647                 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
6648
6649         I915_WRITE(GEN6_RC_CONTROL,
6650                    GEN6_RC_CTL_HW_ENABLE | rc6_mode | rc6_mask);
6651
6652         /*
6653          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6654          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
6655          */
6656         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6657                 I915_WRITE(GEN9_PG_ENABLE, 0);
6658         else
6659                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
6660                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
6661
6662         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6663 }
6664
6665 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6666 {
6667         struct intel_engine_cs *engine;
6668         enum intel_engine_id id;
6669         uint32_t rc6_mask = 0;
6670
6671         /* 1a: Software RC state - RC0 */
6672         I915_WRITE(GEN6_RC_STATE, 0);
6673
6674         /* 1b: Get forcewake during program sequence. Although the driver
6675          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6676         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6677
6678         /* 2a: Disable RC states. */
6679         I915_WRITE(GEN6_RC_CONTROL, 0);
6680
6681         /* 2b: Program RC6 thresholds.*/
6682         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6683         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6684         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6685         for_each_engine(engine, dev_priv, id)
6686                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6687         I915_WRITE(GEN6_RC_SLEEP, 0);
6688         I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6689
6690         /* 3: Enable RC6 */
6691         if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
6692                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6693         intel_print_rc6_info(dev_priv, rc6_mask);
6694
6695         I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
6696                         GEN7_RC_CTL_TO_MODE |
6697                         rc6_mask);
6698
6699         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6700 }
6701
6702 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6703 {
6704         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6705
6706         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6707
6708         /* 1 Program defaults and thresholds for RPS*/
6709         I915_WRITE(GEN6_RPNSWREQ,
6710                    HSW_FREQUENCY(rps->rp1_freq));
6711         I915_WRITE(GEN6_RC_VIDEO_FREQ,
6712                    HSW_FREQUENCY(rps->rp1_freq));
6713         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
6714         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
6715
6716         /* Docs recommend 900MHz, and 300 MHz respectively */
6717         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6718                    rps->max_freq_softlimit << 24 |
6719                    rps->min_freq_softlimit << 16);
6720
6721         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
6722         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
6723         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
6724         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
6725
6726         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6727
6728         /* 2: Enable RPS */
6729         I915_WRITE(GEN6_RP_CONTROL,
6730                    GEN6_RP_MEDIA_TURBO |
6731                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6732                    GEN6_RP_MEDIA_IS_GFX |
6733                    GEN6_RP_ENABLE |
6734                    GEN6_RP_UP_BUSY_AVG |
6735                    GEN6_RP_DOWN_IDLE_AVG);
6736
6737         reset_rps(dev_priv, gen6_set_rps);
6738
6739         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6740 }
6741
6742 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
6743 {
6744         struct intel_engine_cs *engine;
6745         enum intel_engine_id id;
6746         u32 rc6vids, rc6_mask = 0;
6747         u32 gtfifodbg;
6748         int rc6_mode;
6749         int ret;
6750
6751         I915_WRITE(GEN6_RC_STATE, 0);
6752
6753         /* Clear the DBG now so we don't confuse earlier errors */
6754         gtfifodbg = I915_READ(GTFIFODBG);
6755         if (gtfifodbg) {
6756                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
6757                 I915_WRITE(GTFIFODBG, gtfifodbg);
6758         }
6759
6760         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6761
6762         /* disable the counters and set deterministic thresholds */
6763         I915_WRITE(GEN6_RC_CONTROL, 0);
6764
6765         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
6766         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
6767         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
6768         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6769         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6770
6771         for_each_engine(engine, dev_priv, id)
6772                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6773
6774         I915_WRITE(GEN6_RC_SLEEP, 0);
6775         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6776         if (IS_IVYBRIDGE(dev_priv))
6777                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
6778         else
6779                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6780         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
6781         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
6782
6783         /* Check if we are enabling RC6 */
6784         rc6_mode = intel_rc6_enabled();
6785         if (rc6_mode & INTEL_RC6_ENABLE)
6786                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
6787
6788         /* We don't use those on Haswell */
6789         if (!IS_HASWELL(dev_priv)) {
6790                 if (rc6_mode & INTEL_RC6p_ENABLE)
6791                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
6792
6793                 if (rc6_mode & INTEL_RC6pp_ENABLE)
6794                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
6795         }
6796
6797         intel_print_rc6_info(dev_priv, rc6_mask);
6798
6799         I915_WRITE(GEN6_RC_CONTROL,
6800                    rc6_mask |
6801                    GEN6_RC_CTL_EI_MODE(1) |
6802                    GEN6_RC_CTL_HW_ENABLE);
6803
6804         rc6vids = 0;
6805         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
6806         if (IS_GEN6(dev_priv) && ret) {
6807                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
6808         } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
6809                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
6810                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
6811                 rc6vids &= 0xffff00;
6812                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
6813                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
6814                 if (ret)
6815                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
6816         }
6817
6818         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6819 }
6820
6821 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
6822 {
6823         /* Here begins a magic sequence of register writes to enable
6824          * auto-downclocking.
6825          *
6826          * Perhaps there might be some value in exposing these to
6827          * userspace...
6828          */
6829         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6830
6831         /* Power down if completely idle for over 50ms */
6832         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
6833         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6834
6835         reset_rps(dev_priv, gen6_set_rps);
6836
6837         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6838 }
6839
6840 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
6841 {
6842         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6843         int min_freq = 15;
6844         unsigned int gpu_freq;
6845         unsigned int max_ia_freq, min_ring_freq;
6846         unsigned int max_gpu_freq, min_gpu_freq;
6847         int scaling_factor = 180;
6848         struct cpufreq_policy *policy;
6849
6850         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
6851
6852         policy = cpufreq_cpu_get(0);
6853         if (policy) {
6854                 max_ia_freq = policy->cpuinfo.max_freq;
6855                 cpufreq_cpu_put(policy);
6856         } else {
6857                 /*
6858                  * Default to measured freq if none found, PCU will ensure we
6859                  * don't go over
6860                  */
6861                 max_ia_freq = tsc_khz;
6862         }
6863
6864         /* Convert from kHz to MHz */
6865         max_ia_freq /= 1000;
6866
6867         min_ring_freq = I915_READ(DCLK) & 0xf;
6868         /* convert DDR frequency from units of 266.6MHz to bandwidth */
6869         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
6870
6871         if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6872                 /* Convert GT frequency to 50 HZ units */
6873                 min_gpu_freq = rps->min_freq / GEN9_FREQ_SCALER;
6874                 max_gpu_freq = rps->max_freq / GEN9_FREQ_SCALER;
6875         } else {
6876                 min_gpu_freq = rps->min_freq;
6877                 max_gpu_freq = rps->max_freq;
6878         }
6879
6880         /*
6881          * For each potential GPU frequency, load a ring frequency we'd like
6882          * to use for memory access.  We do this by specifying the IA frequency
6883          * the PCU should use as a reference to determine the ring frequency.
6884          */
6885         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
6886                 int diff = max_gpu_freq - gpu_freq;
6887                 unsigned int ia_freq = 0, ring_freq = 0;
6888
6889                 if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6890                         /*
6891                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
6892                          * No floor required for ring frequency on SKL.
6893                          */
6894                         ring_freq = gpu_freq;
6895                 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
6896                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
6897                         ring_freq = max(min_ring_freq, gpu_freq);
6898                 } else if (IS_HASWELL(dev_priv)) {
6899                         ring_freq = mult_frac(gpu_freq, 5, 4);
6900                         ring_freq = max(min_ring_freq, ring_freq);
6901                         /* leave ia_freq as the default, chosen by cpufreq */
6902                 } else {
6903                         /* On older processors, there is no separate ring
6904                          * clock domain, so in order to boost the bandwidth
6905                          * of the ring, we need to upclock the CPU (ia_freq).
6906                          *
6907                          * For GPU frequencies less than 750MHz,
6908                          * just use the lowest ring freq.
6909                          */
6910                         if (gpu_freq < min_freq)
6911                                 ia_freq = 800;
6912                         else
6913                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
6914                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
6915                 }
6916
6917                 sandybridge_pcode_write(dev_priv,
6918                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6919                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
6920                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
6921                                         gpu_freq);
6922         }
6923 }
6924
6925 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6926 {
6927         u32 val, rp0;
6928
6929         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6930
6931         switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6932         case 8:
6933                 /* (2 * 4) config */
6934                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
6935                 break;
6936         case 12:
6937                 /* (2 * 6) config */
6938                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
6939                 break;
6940         case 16:
6941                 /* (2 * 8) config */
6942         default:
6943                 /* Setting (2 * 8) Min RP0 for any other combination */
6944                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
6945                 break;
6946         }
6947
6948         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
6949
6950         return rp0;
6951 }
6952
6953 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6954 {
6955         u32 val, rpe;
6956
6957         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
6958         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
6959
6960         return rpe;
6961 }
6962
6963 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
6964 {
6965         u32 val, rp1;
6966
6967         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6968         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
6969
6970         return rp1;
6971 }
6972
6973 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
6974 {
6975         u32 val, rpn;
6976
6977         val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
6978         rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
6979                        FB_GFX_FREQ_FUSE_MASK);
6980
6981         return rpn;
6982 }
6983
6984 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
6985 {
6986         u32 val, rp1;
6987
6988         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6989
6990         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
6991
6992         return rp1;
6993 }
6994
6995 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6996 {
6997         u32 val, rp0;
6998
6999         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7000
7001         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7002         /* Clamp to max */
7003         rp0 = min_t(u32, rp0, 0xea);
7004
7005         return rp0;
7006 }
7007
7008 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7009 {
7010         u32 val, rpe;
7011
7012         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7013         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7014         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7015         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7016
7017         return rpe;
7018 }
7019
7020 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7021 {
7022         u32 val;
7023
7024         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7025         /*
7026          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7027          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7028          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7029          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7030          * to make sure it matches what Punit accepts.
7031          */
7032         return max_t(u32, val, 0xc0);
7033 }
7034
7035 /* Check that the pctx buffer wasn't move under us. */
7036 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7037 {
7038         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7039
7040         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
7041                              dev_priv->vlv_pctx->stolen->start);
7042 }
7043
7044
7045 /* Check that the pcbr address is not empty. */
7046 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7047 {
7048         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7049
7050         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7051 }
7052
7053 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7054 {
7055         struct i915_ggtt *ggtt = &dev_priv->ggtt;
7056         unsigned long pctx_paddr, paddr;
7057         u32 pcbr;
7058         int pctx_size = 32*1024;
7059
7060         pcbr = I915_READ(VLV_PCBR);
7061         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7062                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7063                 paddr = (dev_priv->mm.stolen_base +
7064                          (ggtt->stolen_size - pctx_size));
7065
7066                 pctx_paddr = (paddr & (~4095));
7067                 I915_WRITE(VLV_PCBR, pctx_paddr);
7068         }
7069
7070         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7071 }
7072
7073 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7074 {
7075         struct drm_i915_gem_object *pctx;
7076         unsigned long pctx_paddr;
7077         u32 pcbr;
7078         int pctx_size = 24*1024;
7079
7080         pcbr = I915_READ(VLV_PCBR);
7081         if (pcbr) {
7082                 /* BIOS set it up already, grab the pre-alloc'd space */
7083                 int pcbr_offset;
7084
7085                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
7086                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7087                                                                       pcbr_offset,
7088                                                                       I915_GTT_OFFSET_NONE,
7089                                                                       pctx_size);
7090                 goto out;
7091         }
7092
7093         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7094
7095         /*
7096          * From the Gunit register HAS:
7097          * The Gfx driver is expected to program this register and ensure
7098          * proper allocation within Gfx stolen memory.  For example, this
7099          * register should be programmed such than the PCBR range does not
7100          * overlap with other ranges, such as the frame buffer, protected
7101          * memory, or any other relevant ranges.
7102          */
7103         pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7104         if (!pctx) {
7105                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7106                 goto out;
7107         }
7108
7109         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
7110         I915_WRITE(VLV_PCBR, pctx_paddr);
7111
7112 out:
7113         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7114         dev_priv->vlv_pctx = pctx;
7115 }
7116
7117 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7118 {
7119         if (WARN_ON(!dev_priv->vlv_pctx))
7120                 return;
7121
7122         i915_gem_object_put(dev_priv->vlv_pctx);
7123         dev_priv->vlv_pctx = NULL;
7124 }
7125
7126 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7127 {
7128         dev_priv->gt_pm.rps.gpll_ref_freq =
7129                 vlv_get_cck_clock(dev_priv, "GPLL ref",
7130                                   CCK_GPLL_CLOCK_CONTROL,
7131                                   dev_priv->czclk_freq);
7132
7133         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7134                          dev_priv->gt_pm.rps.gpll_ref_freq);
7135 }
7136
7137 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7138 {
7139         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7140         u32 val;
7141
7142         valleyview_setup_pctx(dev_priv);
7143
7144         vlv_init_gpll_ref_freq(dev_priv);
7145
7146         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7147         switch ((val >> 6) & 3) {
7148         case 0:
7149         case 1:
7150                 dev_priv->mem_freq = 800;
7151                 break;
7152         case 2:
7153                 dev_priv->mem_freq = 1066;
7154                 break;
7155         case 3:
7156                 dev_priv->mem_freq = 1333;
7157                 break;
7158         }
7159         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7160
7161         rps->max_freq = valleyview_rps_max_freq(dev_priv);
7162         rps->rp0_freq = rps->max_freq;
7163         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7164                          intel_gpu_freq(dev_priv, rps->max_freq),
7165                          rps->max_freq);
7166
7167         rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7168         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7169                          intel_gpu_freq(dev_priv, rps->efficient_freq),
7170                          rps->efficient_freq);
7171
7172         rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7173         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7174                          intel_gpu_freq(dev_priv, rps->rp1_freq),
7175                          rps->rp1_freq);
7176
7177         rps->min_freq = valleyview_rps_min_freq(dev_priv);
7178         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7179                          intel_gpu_freq(dev_priv, rps->min_freq),
7180                          rps->min_freq);
7181 }
7182
7183 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7184 {
7185         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7186         u32 val;
7187
7188         cherryview_setup_pctx(dev_priv);
7189
7190         vlv_init_gpll_ref_freq(dev_priv);
7191
7192         mutex_lock(&dev_priv->sb_lock);
7193         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7194         mutex_unlock(&dev_priv->sb_lock);
7195
7196         switch ((val >> 2) & 0x7) {
7197         case 3:
7198                 dev_priv->mem_freq = 2000;
7199                 break;
7200         default:
7201                 dev_priv->mem_freq = 1600;
7202                 break;
7203         }
7204         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7205
7206         rps->max_freq = cherryview_rps_max_freq(dev_priv);
7207         rps->rp0_freq = rps->max_freq;
7208         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7209                          intel_gpu_freq(dev_priv, rps->max_freq),
7210                          rps->max_freq);
7211
7212         rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7213         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7214                          intel_gpu_freq(dev_priv, rps->efficient_freq),
7215                          rps->efficient_freq);
7216
7217         rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7218         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7219                          intel_gpu_freq(dev_priv, rps->rp1_freq),
7220                          rps->rp1_freq);
7221
7222         rps->min_freq = cherryview_rps_min_freq(dev_priv);
7223         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7224                          intel_gpu_freq(dev_priv, rps->min_freq),
7225                          rps->min_freq);
7226
7227         WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7228                    rps->min_freq) & 1,
7229                   "Odd GPU freq values\n");
7230 }
7231
7232 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7233 {
7234         valleyview_cleanup_pctx(dev_priv);
7235 }
7236
7237 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7238 {
7239         struct intel_engine_cs *engine;
7240         enum intel_engine_id id;
7241         u32 gtfifodbg, rc6_mode = 0, pcbr;
7242
7243         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7244                                              GT_FIFO_FREE_ENTRIES_CHV);
7245         if (gtfifodbg) {
7246                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7247                                  gtfifodbg);
7248                 I915_WRITE(GTFIFODBG, gtfifodbg);
7249         }
7250
7251         cherryview_check_pctx(dev_priv);
7252
7253         /* 1a & 1b: Get forcewake during program sequence. Although the driver
7254          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7255         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7256
7257         /*  Disable RC states. */
7258         I915_WRITE(GEN6_RC_CONTROL, 0);
7259
7260         /* 2a: Program RC6 thresholds.*/
7261         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7262         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7263         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7264
7265         for_each_engine(engine, dev_priv, id)
7266                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7267         I915_WRITE(GEN6_RC_SLEEP, 0);
7268
7269         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7270         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7271
7272         /* Allows RC6 residency counter to work */
7273         I915_WRITE(VLV_COUNTER_CONTROL,
7274                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7275                                       VLV_MEDIA_RC6_COUNT_EN |
7276                                       VLV_RENDER_RC6_COUNT_EN));
7277
7278         /* For now we assume BIOS is allocating and populating the PCBR  */
7279         pcbr = I915_READ(VLV_PCBR);
7280
7281         /* 3: Enable RC6 */
7282         if ((intel_rc6_enabled() & INTEL_RC6_ENABLE) &&
7283             (pcbr >> VLV_PCBR_ADDR_SHIFT))
7284                 rc6_mode = GEN7_RC_CTL_TO_MODE;
7285
7286         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7287
7288         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7289 }
7290
7291 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7292 {
7293         u32 val;
7294
7295         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7296
7297         /* 1: Program defaults and thresholds for RPS*/
7298         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7299         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7300         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7301         I915_WRITE(GEN6_RP_UP_EI, 66000);
7302         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7303
7304         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7305
7306         /* 2: Enable RPS */
7307         I915_WRITE(GEN6_RP_CONTROL,
7308                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7309                    GEN6_RP_MEDIA_IS_GFX |
7310                    GEN6_RP_ENABLE |
7311                    GEN6_RP_UP_BUSY_AVG |
7312                    GEN6_RP_DOWN_IDLE_AVG);
7313
7314         /* Setting Fixed Bias */
7315         val = VLV_OVERRIDE_EN |
7316                   VLV_SOC_TDP_EN |
7317                   CHV_BIAS_CPU_50_SOC_50;
7318         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7319
7320         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7321
7322         /* RPS code assumes GPLL is used */
7323         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7324
7325         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7326         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7327
7328         reset_rps(dev_priv, valleyview_set_rps);
7329
7330         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7331 }
7332
7333 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7334 {
7335         struct intel_engine_cs *engine;
7336         enum intel_engine_id id;
7337         u32 gtfifodbg, rc6_mode = 0;
7338
7339         valleyview_check_pctx(dev_priv);
7340
7341         gtfifodbg = I915_READ(GTFIFODBG);
7342         if (gtfifodbg) {
7343                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7344                                  gtfifodbg);
7345                 I915_WRITE(GTFIFODBG, gtfifodbg);
7346         }
7347
7348         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7349
7350         /*  Disable RC states. */
7351         I915_WRITE(GEN6_RC_CONTROL, 0);
7352
7353         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7354         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7355         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7356
7357         for_each_engine(engine, dev_priv, id)
7358                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7359
7360         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7361
7362         /* Allows RC6 residency counter to work */
7363         I915_WRITE(VLV_COUNTER_CONTROL,
7364                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7365                                       VLV_MEDIA_RC0_COUNT_EN |
7366                                       VLV_RENDER_RC0_COUNT_EN |
7367                                       VLV_MEDIA_RC6_COUNT_EN |
7368                                       VLV_RENDER_RC6_COUNT_EN));
7369
7370         if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
7371                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
7372
7373         intel_print_rc6_info(dev_priv, rc6_mode);
7374
7375         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7376
7377         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7378 }
7379
7380 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7381 {
7382         u32 val;
7383
7384         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7385
7386         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7387         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7388         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7389         I915_WRITE(GEN6_RP_UP_EI, 66000);
7390         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7391
7392         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7393
7394         I915_WRITE(GEN6_RP_CONTROL,
7395                    GEN6_RP_MEDIA_TURBO |
7396                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7397                    GEN6_RP_MEDIA_IS_GFX |
7398                    GEN6_RP_ENABLE |
7399                    GEN6_RP_UP_BUSY_AVG |
7400                    GEN6_RP_DOWN_IDLE_CONT);
7401
7402         /* Setting Fixed Bias */
7403         val = VLV_OVERRIDE_EN |
7404                   VLV_SOC_TDP_EN |
7405                   VLV_BIAS_CPU_125_SOC_875;
7406         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7407
7408         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7409
7410         /* RPS code assumes GPLL is used */
7411         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7412
7413         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7414         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7415
7416         reset_rps(dev_priv, valleyview_set_rps);
7417
7418         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7419 }
7420
7421 static unsigned long intel_pxfreq(u32 vidfreq)
7422 {
7423         unsigned long freq;
7424         int div = (vidfreq & 0x3f0000) >> 16;
7425         int post = (vidfreq & 0x3000) >> 12;
7426         int pre = (vidfreq & 0x7);
7427
7428         if (!pre)
7429                 return 0;
7430
7431         freq = ((div * 133333) / ((1<<post) * pre));
7432
7433         return freq;
7434 }
7435
7436 static const struct cparams {
7437         u16 i;
7438         u16 t;
7439         u16 m;
7440         u16 c;
7441 } cparams[] = {
7442         { 1, 1333, 301, 28664 },
7443         { 1, 1066, 294, 24460 },
7444         { 1, 800, 294, 25192 },
7445         { 0, 1333, 276, 27605 },
7446         { 0, 1066, 276, 27605 },
7447         { 0, 800, 231, 23784 },
7448 };
7449
7450 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7451 {
7452         u64 total_count, diff, ret;
7453         u32 count1, count2, count3, m = 0, c = 0;
7454         unsigned long now = jiffies_to_msecs(jiffies), diff1;
7455         int i;
7456
7457         lockdep_assert_held(&mchdev_lock);
7458
7459         diff1 = now - dev_priv->ips.last_time1;
7460
7461         /* Prevent division-by-zero if we are asking too fast.
7462          * Also, we don't get interesting results if we are polling
7463          * faster than once in 10ms, so just return the saved value
7464          * in such cases.
7465          */
7466         if (diff1 <= 10)
7467                 return dev_priv->ips.chipset_power;
7468
7469         count1 = I915_READ(DMIEC);
7470         count2 = I915_READ(DDREC);
7471         count3 = I915_READ(CSIEC);
7472
7473         total_count = count1 + count2 + count3;
7474
7475         /* FIXME: handle per-counter overflow */
7476         if (total_count < dev_priv->ips.last_count1) {
7477                 diff = ~0UL - dev_priv->ips.last_count1;
7478                 diff += total_count;
7479         } else {
7480                 diff = total_count - dev_priv->ips.last_count1;
7481         }
7482
7483         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7484                 if (cparams[i].i == dev_priv->ips.c_m &&
7485                     cparams[i].t == dev_priv->ips.r_t) {
7486                         m = cparams[i].m;
7487                         c = cparams[i].c;
7488                         break;
7489                 }
7490         }
7491
7492         diff = div_u64(diff, diff1);
7493         ret = ((m * diff) + c);
7494         ret = div_u64(ret, 10);
7495
7496         dev_priv->ips.last_count1 = total_count;
7497         dev_priv->ips.last_time1 = now;
7498
7499         dev_priv->ips.chipset_power = ret;
7500
7501         return ret;
7502 }
7503
7504 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7505 {
7506         unsigned long val;
7507
7508         if (INTEL_INFO(dev_priv)->gen != 5)
7509                 return 0;
7510
7511         spin_lock_irq(&mchdev_lock);
7512
7513         val = __i915_chipset_val(dev_priv);
7514
7515         spin_unlock_irq(&mchdev_lock);
7516
7517         return val;
7518 }
7519
7520 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7521 {
7522         unsigned long m, x, b;
7523         u32 tsfs;
7524
7525         tsfs = I915_READ(TSFS);
7526
7527         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7528         x = I915_READ8(TR1);
7529
7530         b = tsfs & TSFS_INTR_MASK;
7531
7532         return ((m * x) / 127) - b;
7533 }
7534
7535 static int _pxvid_to_vd(u8 pxvid)
7536 {
7537         if (pxvid == 0)
7538                 return 0;
7539
7540         if (pxvid >= 8 && pxvid < 31)
7541                 pxvid = 31;
7542
7543         return (pxvid + 2) * 125;
7544 }
7545
7546 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7547 {
7548         const int vd = _pxvid_to_vd(pxvid);
7549         const int vm = vd - 1125;
7550
7551         if (INTEL_INFO(dev_priv)->is_mobile)
7552                 return vm > 0 ? vm : 0;
7553
7554         return vd;
7555 }
7556
7557 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7558 {
7559         u64 now, diff, diffms;
7560         u32 count;
7561
7562         lockdep_assert_held(&mchdev_lock);
7563
7564         now = ktime_get_raw_ns();
7565         diffms = now - dev_priv->ips.last_time2;
7566         do_div(diffms, NSEC_PER_MSEC);
7567
7568         /* Don't divide by 0 */
7569         if (!diffms)
7570                 return;
7571
7572         count = I915_READ(GFXEC);
7573
7574         if (count < dev_priv->ips.last_count2) {
7575                 diff = ~0UL - dev_priv->ips.last_count2;
7576                 diff += count;
7577         } else {
7578                 diff = count - dev_priv->ips.last_count2;
7579         }
7580
7581         dev_priv->ips.last_count2 = count;
7582         dev_priv->ips.last_time2 = now;
7583
7584         /* More magic constants... */
7585         diff = diff * 1181;
7586         diff = div_u64(diff, diffms * 10);
7587         dev_priv->ips.gfx_power = diff;
7588 }
7589
7590 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7591 {
7592         if (INTEL_INFO(dev_priv)->gen != 5)
7593                 return;
7594
7595         spin_lock_irq(&mchdev_lock);
7596
7597         __i915_update_gfx_val(dev_priv);
7598
7599         spin_unlock_irq(&mchdev_lock);
7600 }
7601
7602 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7603 {
7604         unsigned long t, corr, state1, corr2, state2;
7605         u32 pxvid, ext_v;
7606
7607         lockdep_assert_held(&mchdev_lock);
7608
7609         pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7610         pxvid = (pxvid >> 24) & 0x7f;
7611         ext_v = pvid_to_extvid(dev_priv, pxvid);
7612
7613         state1 = ext_v;
7614
7615         t = i915_mch_val(dev_priv);
7616
7617         /* Revel in the empirically derived constants */
7618
7619         /* Correction factor in 1/100000 units */
7620         if (t > 80)
7621                 corr = ((t * 2349) + 135940);
7622         else if (t >= 50)
7623                 corr = ((t * 964) + 29317);
7624         else /* < 50 */
7625                 corr = ((t * 301) + 1004);
7626
7627         corr = corr * ((150142 * state1) / 10000 - 78642);
7628         corr /= 100000;
7629         corr2 = (corr * dev_priv->ips.corr);
7630
7631         state2 = (corr2 * state1) / 10000;
7632         state2 /= 100; /* convert to mW */
7633
7634         __i915_update_gfx_val(dev_priv);
7635
7636         return dev_priv->ips.gfx_power + state2;
7637 }
7638
7639 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
7640 {
7641         unsigned long val;
7642
7643         if (INTEL_INFO(dev_priv)->gen != 5)
7644                 return 0;
7645
7646         spin_lock_irq(&mchdev_lock);
7647
7648         val = __i915_gfx_val(dev_priv);
7649
7650         spin_unlock_irq(&mchdev_lock);
7651
7652         return val;
7653 }
7654
7655 /**
7656  * i915_read_mch_val - return value for IPS use
7657  *
7658  * Calculate and return a value for the IPS driver to use when deciding whether
7659  * we have thermal and power headroom to increase CPU or GPU power budget.
7660  */
7661 unsigned long i915_read_mch_val(void)
7662 {
7663         struct drm_i915_private *dev_priv;
7664         unsigned long chipset_val, graphics_val, ret = 0;
7665
7666         spin_lock_irq(&mchdev_lock);
7667         if (!i915_mch_dev)
7668                 goto out_unlock;
7669         dev_priv = i915_mch_dev;
7670
7671         chipset_val = __i915_chipset_val(dev_priv);
7672         graphics_val = __i915_gfx_val(dev_priv);
7673
7674         ret = chipset_val + graphics_val;
7675
7676 out_unlock:
7677         spin_unlock_irq(&mchdev_lock);
7678
7679         return ret;
7680 }
7681 EXPORT_SYMBOL_GPL(i915_read_mch_val);
7682
7683 /**
7684  * i915_gpu_raise - raise GPU frequency limit
7685  *
7686  * Raise the limit; IPS indicates we have thermal headroom.
7687  */
7688 bool i915_gpu_raise(void)
7689 {
7690         struct drm_i915_private *dev_priv;
7691         bool ret = true;
7692
7693         spin_lock_irq(&mchdev_lock);
7694         if (!i915_mch_dev) {
7695                 ret = false;
7696                 goto out_unlock;
7697         }
7698         dev_priv = i915_mch_dev;
7699
7700         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
7701                 dev_priv->ips.max_delay--;
7702
7703 out_unlock:
7704         spin_unlock_irq(&mchdev_lock);
7705
7706         return ret;
7707 }
7708 EXPORT_SYMBOL_GPL(i915_gpu_raise);
7709
7710 /**
7711  * i915_gpu_lower - lower GPU frequency limit
7712  *
7713  * IPS indicates we're close to a thermal limit, so throttle back the GPU
7714  * frequency maximum.
7715  */
7716 bool i915_gpu_lower(void)
7717 {
7718         struct drm_i915_private *dev_priv;
7719         bool ret = true;
7720
7721         spin_lock_irq(&mchdev_lock);
7722         if (!i915_mch_dev) {
7723                 ret = false;
7724                 goto out_unlock;
7725         }
7726         dev_priv = i915_mch_dev;
7727
7728         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
7729                 dev_priv->ips.max_delay++;
7730
7731 out_unlock:
7732         spin_unlock_irq(&mchdev_lock);
7733
7734         return ret;
7735 }
7736 EXPORT_SYMBOL_GPL(i915_gpu_lower);
7737
7738 /**
7739  * i915_gpu_busy - indicate GPU business to IPS
7740  *
7741  * Tell the IPS driver whether or not the GPU is busy.
7742  */
7743 bool i915_gpu_busy(void)
7744 {
7745         bool ret = false;
7746
7747         spin_lock_irq(&mchdev_lock);
7748         if (i915_mch_dev)
7749                 ret = i915_mch_dev->gt.awake;
7750         spin_unlock_irq(&mchdev_lock);
7751
7752         return ret;
7753 }
7754 EXPORT_SYMBOL_GPL(i915_gpu_busy);
7755
7756 /**
7757  * i915_gpu_turbo_disable - disable graphics turbo
7758  *
7759  * Disable graphics turbo by resetting the max frequency and setting the
7760  * current frequency to the default.
7761  */
7762 bool i915_gpu_turbo_disable(void)
7763 {
7764         struct drm_i915_private *dev_priv;
7765         bool ret = true;
7766
7767         spin_lock_irq(&mchdev_lock);
7768         if (!i915_mch_dev) {
7769                 ret = false;
7770                 goto out_unlock;
7771         }
7772         dev_priv = i915_mch_dev;
7773
7774         dev_priv->ips.max_delay = dev_priv->ips.fstart;
7775
7776         if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
7777                 ret = false;
7778
7779 out_unlock:
7780         spin_unlock_irq(&mchdev_lock);
7781
7782         return ret;
7783 }
7784 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
7785
7786 /**
7787  * Tells the intel_ips driver that the i915 driver is now loaded, if
7788  * IPS got loaded first.
7789  *
7790  * This awkward dance is so that neither module has to depend on the
7791  * other in order for IPS to do the appropriate communication of
7792  * GPU turbo limits to i915.
7793  */
7794 static void
7795 ips_ping_for_i915_load(void)
7796 {
7797         void (*link)(void);
7798
7799         link = symbol_get(ips_link_to_i915_driver);
7800         if (link) {
7801                 link();
7802                 symbol_put(ips_link_to_i915_driver);
7803         }
7804 }
7805
7806 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
7807 {
7808         /* We only register the i915 ips part with intel-ips once everything is
7809          * set up, to avoid intel-ips sneaking in and reading bogus values. */
7810         spin_lock_irq(&mchdev_lock);
7811         i915_mch_dev = dev_priv;
7812         spin_unlock_irq(&mchdev_lock);
7813
7814         ips_ping_for_i915_load();
7815 }
7816
7817 void intel_gpu_ips_teardown(void)
7818 {
7819         spin_lock_irq(&mchdev_lock);
7820         i915_mch_dev = NULL;
7821         spin_unlock_irq(&mchdev_lock);
7822 }
7823
7824 static void intel_init_emon(struct drm_i915_private *dev_priv)
7825 {
7826         u32 lcfuse;
7827         u8 pxw[16];
7828         int i;
7829
7830         /* Disable to program */
7831         I915_WRITE(ECR, 0);
7832         POSTING_READ(ECR);
7833
7834         /* Program energy weights for various events */
7835         I915_WRITE(SDEW, 0x15040d00);
7836         I915_WRITE(CSIEW0, 0x007f0000);
7837         I915_WRITE(CSIEW1, 0x1e220004);
7838         I915_WRITE(CSIEW2, 0x04000004);
7839
7840         for (i = 0; i < 5; i++)
7841                 I915_WRITE(PEW(i), 0);
7842         for (i = 0; i < 3; i++)
7843                 I915_WRITE(DEW(i), 0);
7844
7845         /* Program P-state weights to account for frequency power adjustment */
7846         for (i = 0; i < 16; i++) {
7847                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
7848                 unsigned long freq = intel_pxfreq(pxvidfreq);
7849                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7850                         PXVFREQ_PX_SHIFT;
7851                 unsigned long val;
7852
7853                 val = vid * vid;
7854                 val *= (freq / 1000);
7855                 val *= 255;
7856                 val /= (127*127*900);
7857                 if (val > 0xff)
7858                         DRM_ERROR("bad pxval: %ld\n", val);
7859                 pxw[i] = val;
7860         }
7861         /* Render standby states get 0 weight */
7862         pxw[14] = 0;
7863         pxw[15] = 0;
7864
7865         for (i = 0; i < 4; i++) {
7866                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7867                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7868                 I915_WRITE(PXW(i), val);
7869         }
7870
7871         /* Adjust magic regs to magic values (more experimental results) */
7872         I915_WRITE(OGW0, 0);
7873         I915_WRITE(OGW1, 0);
7874         I915_WRITE(EG0, 0x00007f00);
7875         I915_WRITE(EG1, 0x0000000e);
7876         I915_WRITE(EG2, 0x000e0000);
7877         I915_WRITE(EG3, 0x68000300);
7878         I915_WRITE(EG4, 0x42000000);
7879         I915_WRITE(EG5, 0x00140031);
7880         I915_WRITE(EG6, 0);
7881         I915_WRITE(EG7, 0);
7882
7883         for (i = 0; i < 8; i++)
7884                 I915_WRITE(PXWL(i), 0);
7885
7886         /* Enable PMON + select events */
7887         I915_WRITE(ECR, 0x80000019);
7888
7889         lcfuse = I915_READ(LCFUSE02);
7890
7891         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7892 }
7893
7894 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7895 {
7896         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7897
7898         /*
7899          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
7900          * requirement.
7901          */
7902         if (!i915_modparams.enable_rc6) {
7903                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
7904                 intel_runtime_pm_get(dev_priv);
7905         }
7906
7907         mutex_lock(&dev_priv->drm.struct_mutex);
7908         mutex_lock(&dev_priv->pcu_lock);
7909
7910         /* Initialize RPS limits (for userspace) */
7911         if (IS_CHERRYVIEW(dev_priv))
7912                 cherryview_init_gt_powersave(dev_priv);
7913         else if (IS_VALLEYVIEW(dev_priv))
7914                 valleyview_init_gt_powersave(dev_priv);
7915         else if (INTEL_GEN(dev_priv) >= 6)
7916                 gen6_init_rps_frequencies(dev_priv);
7917
7918         /* Derive initial user preferences/limits from the hardware limits */
7919         rps->idle_freq = rps->min_freq;
7920         rps->cur_freq = rps->idle_freq;
7921
7922         rps->max_freq_softlimit = rps->max_freq;
7923         rps->min_freq_softlimit = rps->min_freq;
7924
7925         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7926                 rps->min_freq_softlimit =
7927                         max_t(int,
7928                               rps->efficient_freq,
7929                               intel_freq_opcode(dev_priv, 450));
7930
7931         /* After setting max-softlimit, find the overclock max freq */
7932         if (IS_GEN6(dev_priv) ||
7933             IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
7934                 u32 params = 0;
7935
7936                 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
7937                 if (params & BIT(31)) { /* OC supported */
7938                         DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
7939                                          (rps->max_freq & 0xff) * 50,
7940                                          (params & 0xff) * 50);
7941                         rps->max_freq = params & 0xff;
7942                 }
7943         }
7944
7945         /* Finally allow us to boost to max by default */
7946         rps->boost_freq = rps->max_freq;
7947
7948         mutex_unlock(&dev_priv->pcu_lock);
7949         mutex_unlock(&dev_priv->drm.struct_mutex);
7950
7951         intel_autoenable_gt_powersave(dev_priv);
7952 }
7953
7954 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7955 {
7956         if (IS_VALLEYVIEW(dev_priv))
7957                 valleyview_cleanup_gt_powersave(dev_priv);
7958
7959         if (!i915_modparams.enable_rc6)
7960                 intel_runtime_pm_put(dev_priv);
7961 }
7962
7963 /**
7964  * intel_suspend_gt_powersave - suspend PM work and helper threads
7965  * @dev_priv: i915 device
7966  *
7967  * We don't want to disable RC6 or other features here, we just want
7968  * to make sure any work we've queued has finished and won't bother
7969  * us while we're suspended.
7970  */
7971 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
7972 {
7973         if (INTEL_GEN(dev_priv) < 6)
7974                 return;
7975
7976         if (cancel_delayed_work_sync(&dev_priv->gt_pm.autoenable_work))
7977                 intel_runtime_pm_put(dev_priv);
7978
7979         /* gen6_rps_idle() will be called later to disable interrupts */
7980 }
7981
7982 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
7983 {
7984         dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
7985         dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
7986         intel_disable_gt_powersave(dev_priv);
7987
7988         gen6_reset_rps_interrupts(dev_priv);
7989 }
7990
7991 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
7992 {
7993         lockdep_assert_held(&i915->pcu_lock);
7994
7995         if (!i915->gt_pm.llc_pstate.enabled)
7996                 return;
7997
7998         /* Currently there is no HW configuration to be done to disable. */
7999
8000         i915->gt_pm.llc_pstate.enabled = false;
8001 }
8002
8003 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8004 {
8005         lockdep_assert_held(&dev_priv->pcu_lock);
8006
8007         if (!dev_priv->gt_pm.rc6.enabled)
8008                 return;
8009
8010         if (INTEL_GEN(dev_priv) >= 9)
8011                 gen9_disable_rc6(dev_priv);
8012         else if (IS_CHERRYVIEW(dev_priv))
8013                 cherryview_disable_rc6(dev_priv);
8014         else if (IS_VALLEYVIEW(dev_priv))
8015                 valleyview_disable_rc6(dev_priv);
8016         else if (INTEL_GEN(dev_priv) >= 6)
8017                 gen6_disable_rc6(dev_priv);
8018
8019         dev_priv->gt_pm.rc6.enabled = false;
8020 }
8021
8022 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8023 {
8024         lockdep_assert_held(&dev_priv->pcu_lock);
8025
8026         if (!dev_priv->gt_pm.rps.enabled)
8027                 return;
8028
8029         if (INTEL_GEN(dev_priv) >= 9)
8030                 gen9_disable_rps(dev_priv);
8031         else if (IS_CHERRYVIEW(dev_priv))
8032                 cherryview_disable_rps(dev_priv);
8033         else if (IS_VALLEYVIEW(dev_priv))
8034                 valleyview_disable_rps(dev_priv);
8035         else if (INTEL_GEN(dev_priv) >= 6)
8036                 gen6_disable_rps(dev_priv);
8037         else if (IS_IRONLAKE_M(dev_priv))
8038                 ironlake_disable_drps(dev_priv);
8039
8040         dev_priv->gt_pm.rps.enabled = false;
8041 }
8042
8043 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8044 {
8045         mutex_lock(&dev_priv->pcu_lock);
8046
8047         intel_disable_rc6(dev_priv);
8048         intel_disable_rps(dev_priv);
8049         if (HAS_LLC(dev_priv))
8050                 intel_disable_llc_pstate(dev_priv);
8051
8052         mutex_unlock(&dev_priv->pcu_lock);
8053 }
8054
8055 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8056 {
8057         lockdep_assert_held(&i915->pcu_lock);
8058
8059         if (i915->gt_pm.llc_pstate.enabled)
8060                 return;
8061
8062         gen6_update_ring_freq(i915);
8063
8064         i915->gt_pm.llc_pstate.enabled = true;
8065 }
8066
8067 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8068 {
8069         lockdep_assert_held(&dev_priv->pcu_lock);
8070
8071         if (dev_priv->gt_pm.rc6.enabled)
8072                 return;
8073
8074         if (IS_CHERRYVIEW(dev_priv))
8075                 cherryview_enable_rc6(dev_priv);
8076         else if (IS_VALLEYVIEW(dev_priv))
8077                 valleyview_enable_rc6(dev_priv);
8078         else if (INTEL_GEN(dev_priv) >= 9)
8079                 gen9_enable_rc6(dev_priv);
8080         else if (IS_BROADWELL(dev_priv))
8081                 gen8_enable_rc6(dev_priv);
8082         else if (INTEL_GEN(dev_priv) >= 6)
8083                 gen6_enable_rc6(dev_priv);
8084
8085         dev_priv->gt_pm.rc6.enabled = true;
8086 }
8087
8088 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8089 {
8090         struct intel_rps *rps = &dev_priv->gt_pm.rps;
8091
8092         lockdep_assert_held(&dev_priv->pcu_lock);
8093
8094         if (rps->enabled)
8095                 return;
8096
8097         if (IS_CHERRYVIEW(dev_priv)) {
8098                 cherryview_enable_rps(dev_priv);
8099         } else if (IS_VALLEYVIEW(dev_priv)) {
8100                 valleyview_enable_rps(dev_priv);
8101         } else if (INTEL_GEN(dev_priv) >= 9) {
8102                 gen9_enable_rps(dev_priv);
8103         } else if (IS_BROADWELL(dev_priv)) {
8104                 gen8_enable_rps(dev_priv);
8105         } else if (INTEL_GEN(dev_priv) >= 6) {
8106                 gen6_enable_rps(dev_priv);
8107         } else if (IS_IRONLAKE_M(dev_priv)) {
8108                 ironlake_enable_drps(dev_priv);
8109                 intel_init_emon(dev_priv);
8110         }
8111
8112         WARN_ON(rps->max_freq < rps->min_freq);
8113         WARN_ON(rps->idle_freq > rps->max_freq);
8114
8115         WARN_ON(rps->efficient_freq < rps->min_freq);
8116         WARN_ON(rps->efficient_freq > rps->max_freq);
8117
8118         rps->enabled = true;
8119 }
8120
8121 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8122 {
8123         /* Powersaving is controlled by the host when inside a VM */
8124         if (intel_vgpu_active(dev_priv))
8125                 return;
8126
8127         mutex_lock(&dev_priv->pcu_lock);
8128
8129         intel_enable_rc6(dev_priv);
8130         intel_enable_rps(dev_priv);
8131         if (HAS_LLC(dev_priv))
8132                 intel_enable_llc_pstate(dev_priv);
8133
8134         mutex_unlock(&dev_priv->pcu_lock);
8135 }
8136
8137 static void __intel_autoenable_gt_powersave(struct work_struct *work)
8138 {
8139         struct drm_i915_private *dev_priv =
8140                 container_of(work,
8141                              typeof(*dev_priv),
8142                              gt_pm.autoenable_work.work);
8143         struct intel_engine_cs *rcs;
8144         struct drm_i915_gem_request *req;
8145
8146         rcs = dev_priv->engine[RCS];
8147         if (rcs->last_retired_context)
8148                 goto out;
8149
8150         if (!rcs->init_context)
8151                 goto out;
8152
8153         mutex_lock(&dev_priv->drm.struct_mutex);
8154
8155         req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
8156         if (IS_ERR(req))
8157                 goto unlock;
8158
8159         if (!i915_modparams.enable_execlists && i915_switch_context(req) == 0)
8160                 rcs->init_context(req);
8161
8162         /* Mark the device busy, calling intel_enable_gt_powersave() */
8163         i915_add_request(req);
8164
8165 unlock:
8166         mutex_unlock(&dev_priv->drm.struct_mutex);
8167 out:
8168         intel_runtime_pm_put(dev_priv);
8169 }
8170
8171 void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
8172 {
8173         if (IS_IRONLAKE_M(dev_priv)) {
8174                 ironlake_enable_drps(dev_priv);
8175                 intel_init_emon(dev_priv);
8176         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
8177                 /*
8178                  * PCU communication is slow and this doesn't need to be
8179                  * done at any specific time, so do this out of our fast path
8180                  * to make resume and init faster.
8181                  *
8182                  * We depend on the HW RC6 power context save/restore
8183                  * mechanism when entering D3 through runtime PM suspend. So
8184                  * disable RPM until RPS/RC6 is properly setup. We can only
8185                  * get here via the driver load/system resume/runtime resume
8186                  * paths, so the _noresume version is enough (and in case of
8187                  * runtime resume it's necessary).
8188                  */
8189                 if (queue_delayed_work(dev_priv->wq,
8190                                        &dev_priv->gt_pm.autoenable_work,
8191                                        round_jiffies_up_relative(HZ)))
8192                         intel_runtime_pm_get_noresume(dev_priv);
8193         }
8194 }
8195
8196 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8197 {
8198         /*
8199          * On Ibex Peak and Cougar Point, we need to disable clock
8200          * gating for the panel power sequencer or it will fail to
8201          * start up when no ports are active.
8202          */
8203         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8204 }
8205
8206 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8207 {
8208         enum pipe pipe;
8209
8210         for_each_pipe(dev_priv, pipe) {
8211                 I915_WRITE(DSPCNTR(pipe),
8212                            I915_READ(DSPCNTR(pipe)) |
8213                            DISPPLANE_TRICKLE_FEED_DISABLE);
8214
8215                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8216                 POSTING_READ(DSPSURF(pipe));
8217         }
8218 }
8219
8220 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8221 {
8222         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8223
8224         /*
8225          * Required for FBC
8226          * WaFbcDisableDpfcClockGating:ilk
8227          */
8228         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8229                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8230                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8231
8232         I915_WRITE(PCH_3DCGDIS0,
8233                    MARIUNIT_CLOCK_GATE_DISABLE |
8234                    SVSMUNIT_CLOCK_GATE_DISABLE);
8235         I915_WRITE(PCH_3DCGDIS1,
8236                    VFMUNIT_CLOCK_GATE_DISABLE);
8237
8238         /*
8239          * According to the spec the following bits should be set in
8240          * order to enable memory self-refresh
8241          * The bit 22/21 of 0x42004
8242          * The bit 5 of 0x42020
8243          * The bit 15 of 0x45000
8244          */
8245         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8246                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
8247                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8248         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8249         I915_WRITE(DISP_ARB_CTL,
8250                    (I915_READ(DISP_ARB_CTL) |
8251                     DISP_FBC_WM_DIS));
8252
8253         /*
8254          * Based on the document from hardware guys the following bits
8255          * should be set unconditionally in order to enable FBC.
8256          * The bit 22 of 0x42000
8257          * The bit 22 of 0x42004
8258          * The bit 7,8,9 of 0x42020.
8259          */
8260         if (IS_IRONLAKE_M(dev_priv)) {
8261                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8262                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8263                            I915_READ(ILK_DISPLAY_CHICKEN1) |
8264                            ILK_FBCQ_DIS);
8265                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8266                            I915_READ(ILK_DISPLAY_CHICKEN2) |
8267                            ILK_DPARB_GATE);
8268         }
8269
8270         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8271
8272         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8273                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8274                    ILK_ELPIN_409_SELECT);
8275         I915_WRITE(_3D_CHICKEN2,
8276                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8277                    _3D_CHICKEN2_WM_READ_PIPELINED);
8278
8279         /* WaDisableRenderCachePipelinedFlush:ilk */
8280         I915_WRITE(CACHE_MODE_0,
8281                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8282
8283         /* WaDisable_RenderCache_OperationalFlush:ilk */
8284         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8285
8286         g4x_disable_trickle_feed(dev_priv);
8287
8288         ibx_init_clock_gating(dev_priv);
8289 }
8290
8291 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8292 {
8293         int pipe;
8294         uint32_t val;
8295
8296         /*
8297          * On Ibex Peak and Cougar Point, we need to disable clock
8298          * gating for the panel power sequencer or it will fail to
8299          * start up when no ports are active.
8300          */
8301         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8302                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8303                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
8304         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8305                    DPLS_EDP_PPS_FIX_DIS);
8306         /* The below fixes the weird display corruption, a few pixels shifted
8307          * downward, on (only) LVDS of some HP laptops with IVY.
8308          */
8309         for_each_pipe(dev_priv, pipe) {
8310                 val = I915_READ(TRANS_CHICKEN2(pipe));
8311                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8312                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8313                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
8314                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8315                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8316                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8317                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8318                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
8319         }
8320         /* WADP0ClockGatingDisable */
8321         for_each_pipe(dev_priv, pipe) {
8322                 I915_WRITE(TRANS_CHICKEN1(pipe),
8323                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8324         }
8325 }
8326
8327 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8328 {
8329         uint32_t tmp;
8330
8331         tmp = I915_READ(MCH_SSKPD);
8332         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8333                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8334                               tmp);
8335 }
8336
8337 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8338 {
8339         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8340
8341         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8342
8343         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8344                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8345                    ILK_ELPIN_409_SELECT);
8346
8347         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8348         I915_WRITE(_3D_CHICKEN,
8349                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8350
8351         /* WaDisable_RenderCache_OperationalFlush:snb */
8352         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8353
8354         /*
8355          * BSpec recoomends 8x4 when MSAA is used,
8356          * however in practice 16x4 seems fastest.
8357          *
8358          * Note that PS/WM thread counts depend on the WIZ hashing
8359          * disable bit, which we don't touch here, but it's good
8360          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8361          */
8362         I915_WRITE(GEN6_GT_MODE,
8363                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8364
8365         I915_WRITE(CACHE_MODE_0,
8366                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8367
8368         I915_WRITE(GEN6_UCGCTL1,
8369                    I915_READ(GEN6_UCGCTL1) |
8370                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8371                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8372
8373         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8374          * gating disable must be set.  Failure to set it results in
8375          * flickering pixels due to Z write ordering failures after
8376          * some amount of runtime in the Mesa "fire" demo, and Unigine
8377          * Sanctuary and Tropics, and apparently anything else with
8378          * alpha test or pixel discard.
8379          *
8380          * According to the spec, bit 11 (RCCUNIT) must also be set,
8381          * but we didn't debug actual testcases to find it out.
8382          *
8383          * WaDisableRCCUnitClockGating:snb
8384          * WaDisableRCPBUnitClockGating:snb
8385          */
8386         I915_WRITE(GEN6_UCGCTL2,
8387                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8388                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8389
8390         /* WaStripsFansDisableFastClipPerformanceFix:snb */
8391         I915_WRITE(_3D_CHICKEN3,
8392                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8393
8394         /*
8395          * Bspec says:
8396          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8397          * 3DSTATE_SF number of SF output attributes is more than 16."
8398          */
8399         I915_WRITE(_3D_CHICKEN3,
8400                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8401
8402         /*
8403          * According to the spec the following bits should be
8404          * set in order to enable memory self-refresh and fbc:
8405          * The bit21 and bit22 of 0x42000
8406          * The bit21 and bit22 of 0x42004
8407          * The bit5 and bit7 of 0x42020
8408          * The bit14 of 0x70180
8409          * The bit14 of 0x71180
8410          *
8411          * WaFbcAsynchFlipDisableFbcQueue:snb
8412          */
8413         I915_WRITE(ILK_DISPLAY_CHICKEN1,
8414                    I915_READ(ILK_DISPLAY_CHICKEN1) |
8415                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8416         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8417                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8418                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8419         I915_WRITE(ILK_DSPCLK_GATE_D,
8420                    I915_READ(ILK_DSPCLK_GATE_D) |
8421                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
8422                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8423
8424         g4x_disable_trickle_feed(dev_priv);
8425
8426         cpt_init_clock_gating(dev_priv);
8427
8428         gen6_check_mch_setup(dev_priv);
8429 }
8430
8431 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8432 {
8433         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8434
8435         /*
8436          * WaVSThreadDispatchOverride:ivb,vlv
8437          *
8438          * This actually overrides the dispatch
8439          * mode for all thread types.
8440          */
8441         reg &= ~GEN7_FF_SCHED_MASK;
8442         reg |= GEN7_FF_TS_SCHED_HW;
8443         reg |= GEN7_FF_VS_SCHED_HW;
8444         reg |= GEN7_FF_DS_SCHED_HW;
8445
8446         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8447 }
8448
8449 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8450 {
8451         /*
8452          * TODO: this bit should only be enabled when really needed, then
8453          * disabled when not needed anymore in order to save power.
8454          */
8455         if (HAS_PCH_LPT_LP(dev_priv))
8456                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
8457                            I915_READ(SOUTH_DSPCLK_GATE_D) |
8458                            PCH_LP_PARTITION_LEVEL_DISABLE);
8459
8460         /* WADPOClockGatingDisable:hsw */
8461         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8462                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8463                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8464 }
8465
8466 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8467 {
8468         if (HAS_PCH_LPT_LP(dev_priv)) {
8469                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8470
8471                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8472                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8473         }
8474 }
8475
8476 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8477                                    int general_prio_credits,
8478                                    int high_prio_credits)
8479 {
8480         u32 misccpctl;
8481         u32 val;
8482
8483         /* WaTempDisableDOPClkGating:bdw */
8484         misccpctl = I915_READ(GEN7_MISCCPCTL);
8485         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8486
8487         val = I915_READ(GEN8_L3SQCREG1);
8488         val &= ~L3_PRIO_CREDITS_MASK;
8489         val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
8490         val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
8491         I915_WRITE(GEN8_L3SQCREG1, val);
8492
8493         /*
8494          * Wait at least 100 clocks before re-enabling clock gating.
8495          * See the definition of L3SQCREG1 in BSpec.
8496          */
8497         POSTING_READ(GEN8_L3SQCREG1);
8498         udelay(1);
8499         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8500 }
8501
8502 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
8503 {
8504         if (!HAS_PCH_CNP(dev_priv))
8505                 return;
8506
8507         /* Wa #1181 */
8508         I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
8509                    CNP_PWM_CGE_GATING_DISABLE);
8510 }
8511
8512 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8513 {
8514         cnp_init_clock_gating(dev_priv);
8515
8516         /* This is not an Wa. Enable for better image quality */
8517         I915_WRITE(_3D_CHICKEN3,
8518                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
8519
8520         /* WaEnableChickenDCPR:cnl */
8521         I915_WRITE(GEN8_CHICKEN_DCPR_1,
8522                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
8523
8524         /* WaFbcWakeMemOn:cnl */
8525         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
8526                    DISP_FBC_MEMORY_WAKE);
8527
8528         /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
8529         if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8530                 I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE,
8531                            I915_READ(SLICE_UNIT_LEVEL_CLKGATE) |
8532                            SARBUNIT_CLKGATE_DIS);
8533 }
8534
8535 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
8536 {
8537         cnp_init_clock_gating(dev_priv);
8538         gen9_init_clock_gating(dev_priv);
8539
8540         /* WaFbcNukeOnHostModify:cfl */
8541         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8542                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8543 }
8544
8545 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8546 {
8547         gen9_init_clock_gating(dev_priv);
8548
8549         /* WaDisableSDEUnitClockGating:kbl */
8550         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8551                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8552                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8553
8554         /* WaDisableGamClockGating:kbl */
8555         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8556                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8557                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8558
8559         /* WaFbcNukeOnHostModify:kbl */
8560         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8561                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8562 }
8563
8564 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8565 {
8566         gen9_init_clock_gating(dev_priv);
8567
8568         /* WAC6entrylatency:skl */
8569         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8570                    FBC_LLC_FULLY_OPEN);
8571
8572         /* WaFbcNukeOnHostModify:skl */
8573         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8574                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8575 }
8576
8577 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
8578 {
8579         /* The GTT cache must be disabled if the system is using 2M pages. */
8580         bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
8581                                                  I915_GTT_PAGE_SIZE_2M);
8582         enum pipe pipe;
8583
8584         /* WaSwitchSolVfFArbitrationPriority:bdw */
8585         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8586
8587         /* WaPsrDPAMaskVBlankInSRD:bdw */
8588         I915_WRITE(CHICKEN_PAR1_1,
8589                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8590
8591         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8592         for_each_pipe(dev_priv, pipe) {
8593                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
8594                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
8595                            BDW_DPRS_MASK_VBLANK_SRD);
8596         }
8597
8598         /* WaVSRefCountFullforceMissDisable:bdw */
8599         /* WaDSRefCountFullforceMissDisable:bdw */
8600         I915_WRITE(GEN7_FF_THREAD_MODE,
8601                    I915_READ(GEN7_FF_THREAD_MODE) &
8602                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8603
8604         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8605                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8606
8607         /* WaDisableSDEUnitClockGating:bdw */
8608         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8609                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8610
8611         /* WaProgramL3SqcReg1Default:bdw */
8612         gen8_set_l3sqc_credits(dev_priv, 30, 2);
8613
8614         /* WaGttCachingOffByDefault:bdw */
8615         I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8616
8617         /* WaKVMNotificationOnConfigChange:bdw */
8618         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8619                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8620
8621         lpt_init_clock_gating(dev_priv);
8622
8623         /* WaDisableDopClockGating:bdw
8624          *
8625          * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8626          * clock gating.
8627          */
8628         I915_WRITE(GEN6_UCGCTL1,
8629                    I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
8630 }
8631
8632 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8633 {
8634         /* L3 caching of data atomics doesn't work -- disable it. */
8635         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
8636         I915_WRITE(HSW_ROW_CHICKEN3,
8637                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
8638
8639         /* This is required by WaCatErrorRejectionIssue:hsw */
8640         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8641                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8642                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8643
8644         /* WaVSRefCountFullforceMissDisable:hsw */
8645         I915_WRITE(GEN7_FF_THREAD_MODE,
8646                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8647
8648         /* WaDisable_RenderCache_OperationalFlush:hsw */
8649         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8650
8651         /* enable HiZ Raw Stall Optimization */
8652         I915_WRITE(CACHE_MODE_0_GEN7,
8653                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8654
8655         /* WaDisable4x2SubspanOptimization:hsw */
8656         I915_WRITE(CACHE_MODE_1,
8657                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8658
8659         /*
8660          * BSpec recommends 8x4 when MSAA is used,
8661          * however in practice 16x4 seems fastest.
8662          *
8663          * Note that PS/WM thread counts depend on the WIZ hashing
8664          * disable bit, which we don't touch here, but it's good
8665          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8666          */
8667         I915_WRITE(GEN7_GT_MODE,
8668                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8669
8670         /* WaSampleCChickenBitEnable:hsw */
8671         I915_WRITE(HALF_SLICE_CHICKEN3,
8672                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
8673
8674         /* WaSwitchSolVfFArbitrationPriority:hsw */
8675         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8676
8677         lpt_init_clock_gating(dev_priv);
8678 }
8679
8680 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8681 {
8682         uint32_t snpcr;
8683
8684         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8685
8686         /* WaDisableEarlyCull:ivb */
8687         I915_WRITE(_3D_CHICKEN3,
8688                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8689
8690         /* WaDisableBackToBackFlipFix:ivb */
8691         I915_WRITE(IVB_CHICKEN3,
8692                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8693                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
8694
8695         /* WaDisablePSDDualDispatchEnable:ivb */
8696         if (IS_IVB_GT1(dev_priv))
8697                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8698                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8699
8700         /* WaDisable_RenderCache_OperationalFlush:ivb */
8701         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8702
8703         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8704         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8705                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8706
8707         /* WaApplyL3ControlAndL3ChickenMode:ivb */
8708         I915_WRITE(GEN7_L3CNTLREG1,
8709                         GEN7_WA_FOR_GEN7_L3_CONTROL);
8710         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8711                    GEN7_WA_L3_CHICKEN_MODE);
8712         if (IS_IVB_GT1(dev_priv))
8713                 I915_WRITE(GEN7_ROW_CHICKEN2,
8714                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8715         else {
8716                 /* must write both registers */
8717                 I915_WRITE(GEN7_ROW_CHICKEN2,
8718                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8719                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
8720                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8721         }
8722
8723         /* WaForceL3Serialization:ivb */
8724         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8725                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8726
8727         /*
8728          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8729          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8730          */
8731         I915_WRITE(GEN6_UCGCTL2,
8732                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8733
8734         /* This is required by WaCatErrorRejectionIssue:ivb */
8735         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8736                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8737                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8738
8739         g4x_disable_trickle_feed(dev_priv);
8740
8741         gen7_setup_fixed_func_scheduler(dev_priv);
8742
8743         if (0) { /* causes HiZ corruption on ivb:gt1 */
8744                 /* enable HiZ Raw Stall Optimization */
8745                 I915_WRITE(CACHE_MODE_0_GEN7,
8746                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8747         }
8748
8749         /* WaDisable4x2SubspanOptimization:ivb */
8750         I915_WRITE(CACHE_MODE_1,
8751                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8752
8753         /*
8754          * BSpec recommends 8x4 when MSAA is used,
8755          * however in practice 16x4 seems fastest.
8756          *
8757          * Note that PS/WM thread counts depend on the WIZ hashing
8758          * disable bit, which we don't touch here, but it's good
8759          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8760          */
8761         I915_WRITE(GEN7_GT_MODE,
8762                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8763
8764         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
8765         snpcr &= ~GEN6_MBC_SNPCR_MASK;
8766         snpcr |= GEN6_MBC_SNPCR_MED;
8767         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8768
8769         if (!HAS_PCH_NOP(dev_priv))
8770                 cpt_init_clock_gating(dev_priv);
8771
8772         gen6_check_mch_setup(dev_priv);
8773 }
8774
8775 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8776 {
8777         /* WaDisableEarlyCull:vlv */
8778         I915_WRITE(_3D_CHICKEN3,
8779                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8780
8781         /* WaDisableBackToBackFlipFix:vlv */
8782         I915_WRITE(IVB_CHICKEN3,
8783                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8784                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
8785
8786         /* WaPsdDispatchEnable:vlv */
8787         /* WaDisablePSDDualDispatchEnable:vlv */
8788         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8789                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
8790                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8791
8792         /* WaDisable_RenderCache_OperationalFlush:vlv */
8793         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8794
8795         /* WaForceL3Serialization:vlv */
8796         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8797                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8798
8799         /* WaDisableDopClockGating:vlv */
8800         I915_WRITE(GEN7_ROW_CHICKEN2,
8801                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8802
8803         /* This is required by WaCatErrorRejectionIssue:vlv */
8804         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8805                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8806                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8807
8808         gen7_setup_fixed_func_scheduler(dev_priv);
8809
8810         /*
8811          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8812          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8813          */
8814         I915_WRITE(GEN6_UCGCTL2,
8815                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8816
8817         /* WaDisableL3Bank2xClockGate:vlv
8818          * Disabling L3 clock gating- MMIO 940c[25] = 1
8819          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
8820         I915_WRITE(GEN7_UCGCTL4,
8821                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8822
8823         /*
8824          * BSpec says this must be set, even though
8825          * WaDisable4x2SubspanOptimization isn't listed for VLV.
8826          */
8827         I915_WRITE(CACHE_MODE_1,
8828                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8829
8830         /*
8831          * BSpec recommends 8x4 when MSAA is used,
8832          * however in practice 16x4 seems fastest.
8833          *
8834          * Note that PS/WM thread counts depend on the WIZ hashing
8835          * disable bit, which we don't touch here, but it's good
8836          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8837          */
8838         I915_WRITE(GEN7_GT_MODE,
8839                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8840
8841         /*
8842          * WaIncreaseL3CreditsForVLVB0:vlv
8843          * This is the hardware default actually.
8844          */
8845         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
8846
8847         /*
8848          * WaDisableVLVClockGating_VBIIssue:vlv
8849          * Disable clock gating on th GCFG unit to prevent a delay
8850          * in the reporting of vblank events.
8851          */
8852         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8853 }
8854
8855 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
8856 {
8857         /* WaVSRefCountFullforceMissDisable:chv */
8858         /* WaDSRefCountFullforceMissDisable:chv */
8859         I915_WRITE(GEN7_FF_THREAD_MODE,
8860                    I915_READ(GEN7_FF_THREAD_MODE) &
8861                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8862
8863         /* WaDisableSemaphoreAndSyncFlipWait:chv */
8864         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8865                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8866
8867         /* WaDisableCSUnitClockGating:chv */
8868         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8869                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8870
8871         /* WaDisableSDEUnitClockGating:chv */
8872         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8873                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8874
8875         /*
8876          * WaProgramL3SqcReg1Default:chv
8877          * See gfxspecs/Related Documents/Performance Guide/
8878          * LSQC Setting Recommendations.
8879          */
8880         gen8_set_l3sqc_credits(dev_priv, 38, 2);
8881
8882         /*
8883          * GTT cache may not work with big pages, so if those
8884          * are ever enabled GTT cache may need to be disabled.
8885          */
8886         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8887 }
8888
8889 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8890 {
8891         uint32_t dspclk_gate;
8892
8893         I915_WRITE(RENCLK_GATE_D1, 0);
8894         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8895                    GS_UNIT_CLOCK_GATE_DISABLE |
8896                    CL_UNIT_CLOCK_GATE_DISABLE);
8897         I915_WRITE(RAMCLK_GATE_D, 0);
8898         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8899                 OVRUNIT_CLOCK_GATE_DISABLE |
8900                 OVCUNIT_CLOCK_GATE_DISABLE;
8901         if (IS_GM45(dev_priv))
8902                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8903         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8904
8905         /* WaDisableRenderCachePipelinedFlush */
8906         I915_WRITE(CACHE_MODE_0,
8907                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8908
8909         /* WaDisable_RenderCache_OperationalFlush:g4x */
8910         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8911
8912         g4x_disable_trickle_feed(dev_priv);
8913 }
8914
8915 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
8916 {
8917         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8918         I915_WRITE(RENCLK_GATE_D2, 0);
8919         I915_WRITE(DSPCLK_GATE_D, 0);
8920         I915_WRITE(RAMCLK_GATE_D, 0);
8921         I915_WRITE16(DEUC, 0);
8922         I915_WRITE(MI_ARB_STATE,
8923                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8924
8925         /* WaDisable_RenderCache_OperationalFlush:gen4 */
8926         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8927 }
8928
8929 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
8930 {
8931         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8932                    I965_RCC_CLOCK_GATE_DISABLE |
8933                    I965_RCPB_CLOCK_GATE_DISABLE |
8934                    I965_ISC_CLOCK_GATE_DISABLE |
8935                    I965_FBC_CLOCK_GATE_DISABLE);
8936         I915_WRITE(RENCLK_GATE_D2, 0);
8937         I915_WRITE(MI_ARB_STATE,
8938                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8939
8940         /* WaDisable_RenderCache_OperationalFlush:gen4 */
8941         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8942 }
8943
8944 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8945 {
8946         u32 dstate = I915_READ(D_STATE);
8947
8948         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8949                 DSTATE_DOT_CLOCK_GATING;
8950         I915_WRITE(D_STATE, dstate);
8951
8952         if (IS_PINEVIEW(dev_priv))
8953                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8954
8955         /* IIR "flip pending" means done if this bit is set */
8956         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8957
8958         /* interrupts should cause a wake up from C3 */
8959         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8960
8961         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
8962         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8963
8964         I915_WRITE(MI_ARB_STATE,
8965                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8966 }
8967
8968 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8969 {
8970         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8971
8972         /* interrupts should cause a wake up from C3 */
8973         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
8974                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8975
8976         I915_WRITE(MEM_MODE,
8977                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8978 }
8979
8980 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8981 {
8982         I915_WRITE(MEM_MODE,
8983                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
8984                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8985 }
8986
8987 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8988 {
8989         dev_priv->display.init_clock_gating(dev_priv);
8990 }
8991
8992 void intel_suspend_hw(struct drm_i915_private *dev_priv)
8993 {
8994         if (HAS_PCH_LPT(dev_priv))
8995                 lpt_suspend_hw(dev_priv);
8996 }
8997
8998 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
8999 {
9000         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9001 }
9002
9003 /**
9004  * intel_init_clock_gating_hooks - setup the clock gating hooks
9005  * @dev_priv: device private
9006  *
9007  * Setup the hooks that configure which clocks of a given platform can be
9008  * gated and also apply various GT and display specific workarounds for these
9009  * platforms. Note that some GT specific workarounds are applied separately
9010  * when GPU contexts or batchbuffers start their execution.
9011  */
9012 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9013 {
9014         if (IS_CANNONLAKE(dev_priv))
9015                 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9016         else if (IS_COFFEELAKE(dev_priv))
9017                 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9018         else if (IS_SKYLAKE(dev_priv))
9019                 dev_priv->display.init_clock_gating = skl_init_clock_gating;
9020         else if (IS_KABYLAKE(dev_priv))
9021                 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9022         else if (IS_BROXTON(dev_priv))
9023                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9024         else if (IS_GEMINILAKE(dev_priv))
9025                 dev_priv->display.init_clock_gating = glk_init_clock_gating;
9026         else if (IS_BROADWELL(dev_priv))
9027                 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9028         else if (IS_CHERRYVIEW(dev_priv))
9029                 dev_priv->display.init_clock_gating = chv_init_clock_gating;
9030         else if (IS_HASWELL(dev_priv))
9031                 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9032         else if (IS_IVYBRIDGE(dev_priv))
9033                 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9034         else if (IS_VALLEYVIEW(dev_priv))
9035                 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9036         else if (IS_GEN6(dev_priv))
9037                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9038         else if (IS_GEN5(dev_priv))
9039                 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9040         else if (IS_G4X(dev_priv))
9041                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9042         else if (IS_I965GM(dev_priv))
9043                 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9044         else if (IS_I965G(dev_priv))
9045                 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9046         else if (IS_GEN3(dev_priv))
9047                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9048         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9049                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9050         else if (IS_GEN2(dev_priv))
9051                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9052         else {
9053                 MISSING_CASE(INTEL_DEVID(dev_priv));
9054                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
9055         }
9056 }
9057
9058 /* Set up chip specific power management-related functions */
9059 void intel_init_pm(struct drm_i915_private *dev_priv)
9060 {
9061         intel_fbc_init(dev_priv);
9062
9063         /* For cxsr */
9064         if (IS_PINEVIEW(dev_priv))
9065                 i915_pineview_get_mem_freq(dev_priv);
9066         else if (IS_GEN5(dev_priv))
9067                 i915_ironlake_get_mem_freq(dev_priv);
9068
9069         /* For FIFO watermark updates */
9070         if (INTEL_GEN(dev_priv) >= 9) {
9071                 skl_setup_wm_latency(dev_priv);
9072                 dev_priv->display.initial_watermarks = skl_initial_wm;
9073                 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9074                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
9075         } else if (HAS_PCH_SPLIT(dev_priv)) {
9076                 ilk_setup_wm_latency(dev_priv);
9077
9078                 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9079                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9080                     (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9081                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9082                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9083                         dev_priv->display.compute_intermediate_wm =
9084                                 ilk_compute_intermediate_wm;
9085                         dev_priv->display.initial_watermarks =
9086                                 ilk_initial_watermarks;
9087                         dev_priv->display.optimize_watermarks =
9088                                 ilk_optimize_watermarks;
9089                 } else {
9090                         DRM_DEBUG_KMS("Failed to read display plane latency. "
9091                                       "Disable CxSR\n");
9092                 }
9093         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9094                 vlv_setup_wm_latency(dev_priv);
9095                 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9096                 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9097                 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9098                 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9099                 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9100         } else if (IS_G4X(dev_priv)) {
9101                 g4x_setup_wm_latency(dev_priv);
9102                 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9103                 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9104                 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9105                 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9106         } else if (IS_PINEVIEW(dev_priv)) {
9107                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9108                                             dev_priv->is_ddr3,
9109                                             dev_priv->fsb_freq,
9110                                             dev_priv->mem_freq)) {
9111                         DRM_INFO("failed to find known CxSR latency "
9112                                  "(found ddr%s fsb freq %d, mem freq %d), "
9113                                  "disabling CxSR\n",
9114                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
9115                                  dev_priv->fsb_freq, dev_priv->mem_freq);
9116                         /* Disable CxSR and never update its watermark again */
9117                         intel_set_memory_cxsr(dev_priv, false);
9118                         dev_priv->display.update_wm = NULL;
9119                 } else
9120                         dev_priv->display.update_wm = pineview_update_wm;
9121         } else if (IS_GEN4(dev_priv)) {
9122                 dev_priv->display.update_wm = i965_update_wm;
9123         } else if (IS_GEN3(dev_priv)) {
9124                 dev_priv->display.update_wm = i9xx_update_wm;
9125                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9126         } else if (IS_GEN2(dev_priv)) {
9127                 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9128                         dev_priv->display.update_wm = i845_update_wm;
9129                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
9130                 } else {
9131                         dev_priv->display.update_wm = i9xx_update_wm;
9132                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
9133                 }
9134         } else {
9135                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9136         }
9137 }
9138
9139 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
9140 {
9141         uint32_t flags =
9142                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9143
9144         switch (flags) {
9145         case GEN6_PCODE_SUCCESS:
9146                 return 0;
9147         case GEN6_PCODE_UNIMPLEMENTED_CMD:
9148                 return -ENODEV;
9149         case GEN6_PCODE_ILLEGAL_CMD:
9150                 return -ENXIO;
9151         case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9152         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9153                 return -EOVERFLOW;
9154         case GEN6_PCODE_TIMEOUT:
9155                 return -ETIMEDOUT;
9156         default:
9157                 MISSING_CASE(flags);
9158                 return 0;
9159         }
9160 }
9161
9162 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
9163 {
9164         uint32_t flags =
9165                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9166
9167         switch (flags) {
9168         case GEN6_PCODE_SUCCESS:
9169                 return 0;
9170         case GEN6_PCODE_ILLEGAL_CMD:
9171                 return -ENXIO;
9172         case GEN7_PCODE_TIMEOUT:
9173                 return -ETIMEDOUT;
9174         case GEN7_PCODE_ILLEGAL_DATA:
9175                 return -EINVAL;
9176         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9177                 return -EOVERFLOW;
9178         default:
9179                 MISSING_CASE(flags);
9180                 return 0;
9181         }
9182 }
9183
9184 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
9185 {
9186         int status;
9187
9188         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9189
9190         /* GEN6_PCODE_* are outside of the forcewake domain, we can
9191          * use te fw I915_READ variants to reduce the amount of work
9192          * required when reading/writing.
9193          */
9194
9195         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9196                 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
9197                                  mbox, __builtin_return_address(0));
9198                 return -EAGAIN;
9199         }
9200
9201         I915_WRITE_FW(GEN6_PCODE_DATA, *val);
9202         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9203         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9204
9205         if (__intel_wait_for_register_fw(dev_priv,
9206                                          GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9207                                          500, 0, NULL)) {
9208                 DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
9209                           mbox, __builtin_return_address(0));
9210                 return -ETIMEDOUT;
9211         }
9212
9213         *val = I915_READ_FW(GEN6_PCODE_DATA);
9214         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9215
9216         if (INTEL_GEN(dev_priv) > 6)
9217                 status = gen7_check_mailbox_status(dev_priv);
9218         else
9219                 status = gen6_check_mailbox_status(dev_priv);
9220
9221         if (status) {
9222                 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
9223                                  mbox, __builtin_return_address(0), status);
9224                 return status;
9225         }
9226
9227         return 0;
9228 }
9229
9230 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
9231                             u32 mbox, u32 val)
9232 {
9233         int status;
9234
9235         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9236
9237         /* GEN6_PCODE_* are outside of the forcewake domain, we can
9238          * use te fw I915_READ variants to reduce the amount of work
9239          * required when reading/writing.
9240          */
9241
9242         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9243                 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
9244                                  val, mbox, __builtin_return_address(0));
9245                 return -EAGAIN;
9246         }
9247
9248         I915_WRITE_FW(GEN6_PCODE_DATA, val);
9249         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9250         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9251
9252         if (__intel_wait_for_register_fw(dev_priv,
9253                                          GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9254                                          500, 0, NULL)) {
9255                 DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
9256                           val, mbox, __builtin_return_address(0));
9257                 return -ETIMEDOUT;
9258         }
9259
9260         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9261
9262         if (INTEL_GEN(dev_priv) > 6)
9263                 status = gen7_check_mailbox_status(dev_priv);
9264         else
9265                 status = gen6_check_mailbox_status(dev_priv);
9266
9267         if (status) {
9268                 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
9269                                  val, mbox, __builtin_return_address(0), status);
9270                 return status;
9271         }
9272
9273         return 0;
9274 }
9275
9276 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
9277                                   u32 request, u32 reply_mask, u32 reply,
9278                                   u32 *status)
9279 {
9280         u32 val = request;
9281
9282         *status = sandybridge_pcode_read(dev_priv, mbox, &val);
9283
9284         return *status || ((val & reply_mask) == reply);
9285 }
9286
9287 /**
9288  * skl_pcode_request - send PCODE request until acknowledgment
9289  * @dev_priv: device private
9290  * @mbox: PCODE mailbox ID the request is targeted for
9291  * @request: request ID
9292  * @reply_mask: mask used to check for request acknowledgment
9293  * @reply: value used to check for request acknowledgment
9294  * @timeout_base_ms: timeout for polling with preemption enabled
9295  *
9296  * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9297  * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9298  * The request is acknowledged once the PCODE reply dword equals @reply after
9299  * applying @reply_mask. Polling is first attempted with preemption enabled
9300  * for @timeout_base_ms and if this times out for another 50 ms with
9301  * preemption disabled.
9302  *
9303  * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
9304  * other error as reported by PCODE.
9305  */
9306 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
9307                       u32 reply_mask, u32 reply, int timeout_base_ms)
9308 {
9309         u32 status;
9310         int ret;
9311
9312         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9313
9314 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9315                                    &status)
9316
9317         /*
9318          * Prime the PCODE by doing a request first. Normally it guarantees
9319          * that a subsequent request, at most @timeout_base_ms later, succeeds.
9320          * _wait_for() doesn't guarantee when its passed condition is evaluated
9321          * first, so send the first request explicitly.
9322          */
9323         if (COND) {
9324                 ret = 0;
9325                 goto out;
9326         }
9327         ret = _wait_for(COND, timeout_base_ms * 1000, 10);
9328         if (!ret)
9329                 goto out;
9330
9331         /*
9332          * The above can time out if the number of requests was low (2 in the
9333          * worst case) _and_ PCODE was busy for some reason even after a
9334          * (queued) request and @timeout_base_ms delay. As a workaround retry
9335          * the poll with preemption disabled to maximize the number of
9336          * requests. Increase the timeout from @timeout_base_ms to 50ms to
9337          * account for interrupts that could reduce the number of these
9338          * requests, and for any quirks of the PCODE firmware that delays
9339          * the request completion.
9340          */
9341         DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9342         WARN_ON_ONCE(timeout_base_ms > 3);
9343         preempt_disable();
9344         ret = wait_for_atomic(COND, 50);
9345         preempt_enable();
9346
9347 out:
9348         return ret ? ret : status;
9349 #undef COND
9350 }
9351
9352 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9353 {
9354         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9355
9356         /*
9357          * N = val - 0xb7
9358          * Slow = Fast = GPLL ref * N
9359          */
9360         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9361 }
9362
9363 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9364 {
9365         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9366
9367         return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9368 }
9369
9370 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9371 {
9372         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9373
9374         /*
9375          * N = val / 2
9376          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9377          */
9378         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9379 }
9380
9381 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9382 {
9383         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9384
9385         /* CHV needs even values */
9386         return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9387 }
9388
9389 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9390 {
9391         if (INTEL_GEN(dev_priv) >= 9)
9392                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9393                                          GEN9_FREQ_SCALER);
9394         else if (IS_CHERRYVIEW(dev_priv))
9395                 return chv_gpu_freq(dev_priv, val);
9396         else if (IS_VALLEYVIEW(dev_priv))
9397                 return byt_gpu_freq(dev_priv, val);
9398         else
9399                 return val * GT_FREQUENCY_MULTIPLIER;
9400 }
9401
9402 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9403 {
9404         if (INTEL_GEN(dev_priv) >= 9)
9405                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9406                                          GT_FREQUENCY_MULTIPLIER);
9407         else if (IS_CHERRYVIEW(dev_priv))
9408                 return chv_freq_opcode(dev_priv, val);
9409         else if (IS_VALLEYVIEW(dev_priv))
9410                 return byt_freq_opcode(dev_priv, val);
9411         else
9412                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9413 }
9414
9415 void intel_pm_setup(struct drm_i915_private *dev_priv)
9416 {
9417         mutex_init(&dev_priv->pcu_lock);
9418
9419         INIT_DELAYED_WORK(&dev_priv->gt_pm.autoenable_work,
9420                           __intel_autoenable_gt_powersave);
9421         atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9422
9423         dev_priv->runtime_pm.suspended = false;
9424         atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9425 }
9426
9427 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9428                              const i915_reg_t reg)
9429 {
9430         u32 lower, upper, tmp;
9431         int loop = 2;
9432
9433         /* The register accessed do not need forcewake. We borrow
9434          * uncore lock to prevent concurrent access to range reg.
9435          */
9436         spin_lock_irq(&dev_priv->uncore.lock);
9437
9438         /* vlv and chv residency counters are 40 bits in width.
9439          * With a control bit, we can choose between upper or lower
9440          * 32bit window into this counter.
9441          *
9442          * Although we always use the counter in high-range mode elsewhere,
9443          * userspace may attempt to read the value before rc6 is initialised,
9444          * before we have set the default VLV_COUNTER_CONTROL value. So always
9445          * set the high bit to be safe.
9446          */
9447         I915_WRITE_FW(VLV_COUNTER_CONTROL,
9448                       _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9449         upper = I915_READ_FW(reg);
9450         do {
9451                 tmp = upper;
9452
9453                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9454                               _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9455                 lower = I915_READ_FW(reg);
9456
9457                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9458                               _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9459                 upper = I915_READ_FW(reg);
9460         } while (upper != tmp && --loop);
9461
9462         /* Everywhere else we always use VLV_COUNTER_CONTROL with the
9463          * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9464          * now.
9465          */
9466
9467         spin_unlock_irq(&dev_priv->uncore.lock);
9468
9469         return lower | (u64)upper << 8;
9470 }
9471
9472 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
9473                            const i915_reg_t reg)
9474 {
9475         u64 time_hw, units, div;
9476
9477         if (!intel_rc6_enabled())
9478                 return 0;
9479
9480         intel_runtime_pm_get(dev_priv);
9481
9482         /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9483         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9484                 units = 1000;
9485                 div = dev_priv->czclk_freq;
9486
9487                 time_hw = vlv_residency_raw(dev_priv, reg);
9488         } else if (IS_GEN9_LP(dev_priv)) {
9489                 units = 1000;
9490                 div = 1200;             /* 833.33ns */
9491
9492                 time_hw = I915_READ(reg);
9493         } else {
9494                 units = 128000; /* 1.28us */
9495                 div = 100000;
9496
9497                 time_hw = I915_READ(reg);
9498         }
9499
9500         intel_runtime_pm_put(dev_priv);
9501         return DIV_ROUND_UP_ULL(time_hw * units, div);
9502 }