Merge remote-tracking branches 'regulator/topic/discharge', 'regulator/topic/fan53555...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define CTX_LRI_HEADER_0                0x01
159 #define CTX_CONTEXT_CONTROL             0x02
160 #define CTX_RING_HEAD                   0x04
161 #define CTX_RING_TAIL                   0x06
162 #define CTX_RING_BUFFER_START           0x08
163 #define CTX_RING_BUFFER_CONTROL         0x0a
164 #define CTX_BB_HEAD_U                   0x0c
165 #define CTX_BB_HEAD_L                   0x0e
166 #define CTX_BB_STATE                    0x10
167 #define CTX_SECOND_BB_HEAD_U            0x12
168 #define CTX_SECOND_BB_HEAD_L            0x14
169 #define CTX_SECOND_BB_STATE             0x16
170 #define CTX_BB_PER_CTX_PTR              0x18
171 #define CTX_RCS_INDIRECT_CTX            0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
173 #define CTX_LRI_HEADER_1                0x21
174 #define CTX_CTX_TIMESTAMP               0x22
175 #define CTX_PDP3_UDW                    0x24
176 #define CTX_PDP3_LDW                    0x26
177 #define CTX_PDP2_UDW                    0x28
178 #define CTX_PDP2_LDW                    0x2a
179 #define CTX_PDP1_UDW                    0x2c
180 #define CTX_PDP1_LDW                    0x2e
181 #define CTX_PDP0_UDW                    0x30
182 #define CTX_PDP0_LDW                    0x32
183 #define CTX_LRI_HEADER_2                0x41
184 #define CTX_R_PWR_CLK_STATE             0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195         (reg_state)[(pos)+1] = (val); \
196 } while (0)
197
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
199         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
200         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202 } while (0)
203
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207 } while (0)
208
209 enum {
210         ADVANCED_CONTEXT = 0,
211         LEGACY_32B_CONTEXT,
212         ADVANCED_AD_CONTEXT,
213         LEGACY_64B_CONTEXT
214 };
215 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
217                 LEGACY_64B_CONTEXT :\
218                 LEGACY_32B_CONTEXT)
219 enum {
220         FAULT_AND_HANG = 0,
221         FAULT_AND_HALT, /* Debug only */
222         FAULT_AND_STREAM,
223         FAULT_AND_CONTINUE /* Unsupported */
224 };
225 #define GEN8_CTX_ID_SHIFT 32
226 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
227
228 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
229 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
230                 struct drm_i915_gem_object *default_ctx_obj);
231
232
233 /**
234  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235  * @dev: DRM device.
236  * @enable_execlists: value of i915.enable_execlists module parameter.
237  *
238  * Only certain platforms support Execlists (the prerequisites being
239  * support for Logical Ring Contexts and Aliasing PPGTT or better).
240  *
241  * Return: 1 if Execlists is supported and has to be enabled.
242  */
243 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244 {
245         WARN_ON(i915.enable_ppgtt == -1);
246
247         /* On platforms with execlist available, vGPU will only
248          * support execlist mode, no ring buffer mode.
249          */
250         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251                 return 1;
252
253         if (INTEL_INFO(dev)->gen >= 9)
254                 return 1;
255
256         if (enable_execlists == 0)
257                 return 0;
258
259         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260             i915.use_mmio_flip >= 0)
261                 return 1;
262
263         return 0;
264 }
265
266 /**
267  * intel_execlists_ctx_id() - get the Execlists Context ID
268  * @ctx_obj: Logical Ring Context backing object.
269  *
270  * Do not confuse with ctx->id! Unfortunately we have a name overload
271  * here: the old context ID we pass to userspace as a handler so that
272  * they can refer to a context, and the new context ID we pass to the
273  * ELSP so that the GPU can inform us of the context status via
274  * interrupts.
275  *
276  * Return: 20-bits globally unique context ID.
277  */
278 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
279 {
280         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
281                         LRC_PPHWSP_PN * PAGE_SIZE;
282
283         /* LRCA is required to be 4K aligned so the more significant 20 bits
284          * are globally unique */
285         return lrca >> 12;
286 }
287
288 static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
289 {
290         struct drm_device *dev = ring->dev;
291
292         return (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
293                 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
294                (ring->id == VCS || ring->id == VCS2);
295 }
296
297 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
298                                      struct intel_engine_cs *ring)
299 {
300         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
301         uint64_t desc;
302         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
303                         LRC_PPHWSP_PN * PAGE_SIZE;
304
305         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
306
307         desc = GEN8_CTX_VALID;
308         desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
309         if (IS_GEN8(ctx_obj->base.dev))
310                 desc |= GEN8_CTX_L3LLC_COHERENT;
311         desc |= GEN8_CTX_PRIVILEGE;
312         desc |= lrca;
313         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
314
315         /* TODO: WaDisableLiteRestore when we start using semaphore
316          * signalling between Command Streamers */
317         /* desc |= GEN8_CTX_FORCE_RESTORE; */
318
319         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
320         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
321         if (disable_lite_restore_wa(ring))
322                 desc |= GEN8_CTX_FORCE_RESTORE;
323
324         return desc;
325 }
326
327 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
328                                  struct drm_i915_gem_request *rq1)
329 {
330
331         struct intel_engine_cs *ring = rq0->ring;
332         struct drm_device *dev = ring->dev;
333         struct drm_i915_private *dev_priv = dev->dev_private;
334         uint64_t desc[2];
335
336         if (rq1) {
337                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
338                 rq1->elsp_submitted++;
339         } else {
340                 desc[1] = 0;
341         }
342
343         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
344         rq0->elsp_submitted++;
345
346         /* You must always write both descriptors in the order below. */
347         spin_lock(&dev_priv->uncore.lock);
348         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
349         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
350         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
351
352         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
353         /* The context is automatically loaded after the following */
354         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
355
356         /* ELSP is a wo register, use another nearby reg for posting */
357         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
358         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
359         spin_unlock(&dev_priv->uncore.lock);
360 }
361
362 static int execlists_update_context(struct drm_i915_gem_request *rq)
363 {
364         struct intel_engine_cs *ring = rq->ring;
365         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
366         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
367         struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
368         struct page *page;
369         uint32_t *reg_state;
370
371         BUG_ON(!ctx_obj);
372         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
373         WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
374
375         page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
376         reg_state = kmap_atomic(page);
377
378         reg_state[CTX_RING_TAIL+1] = rq->tail;
379         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
380
381         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
382                 /* True 32b PPGTT with dynamic page allocation: update PDP
383                  * registers and point the unallocated PDPs to scratch page.
384                  * PML4 is allocated during ppgtt init, so this is not needed
385                  * in 48-bit mode.
386                  */
387                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
388                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
389                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
390                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
391         }
392
393         kunmap_atomic(reg_state);
394
395         return 0;
396 }
397
398 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
399                                       struct drm_i915_gem_request *rq1)
400 {
401         execlists_update_context(rq0);
402
403         if (rq1)
404                 execlists_update_context(rq1);
405
406         execlists_elsp_write(rq0, rq1);
407 }
408
409 static void execlists_context_unqueue(struct intel_engine_cs *ring)
410 {
411         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
412         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
413
414         assert_spin_locked(&ring->execlist_lock);
415
416         /*
417          * If irqs are not active generate a warning as batches that finish
418          * without the irqs may get lost and a GPU Hang may occur.
419          */
420         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
421
422         if (list_empty(&ring->execlist_queue))
423                 return;
424
425         /* Try to read in pairs */
426         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
427                                  execlist_link) {
428                 if (!req0) {
429                         req0 = cursor;
430                 } else if (req0->ctx == cursor->ctx) {
431                         /* Same ctx: ignore first request, as second request
432                          * will update tail past first request's workload */
433                         cursor->elsp_submitted = req0->elsp_submitted;
434                         list_del(&req0->execlist_link);
435                         list_add_tail(&req0->execlist_link,
436                                 &ring->execlist_retired_req_list);
437                         req0 = cursor;
438                 } else {
439                         req1 = cursor;
440                         break;
441                 }
442         }
443
444         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
445                 /*
446                  * WaIdleLiteRestore: make sure we never cause a lite
447                  * restore with HEAD==TAIL
448                  */
449                 if (req0->elsp_submitted) {
450                         /*
451                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
452                          * as we resubmit the request. See gen8_emit_request()
453                          * for where we prepare the padding after the end of the
454                          * request.
455                          */
456                         struct intel_ringbuffer *ringbuf;
457
458                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
459                         req0->tail += 8;
460                         req0->tail &= ringbuf->size - 1;
461                 }
462         }
463
464         WARN_ON(req1 && req1->elsp_submitted);
465
466         execlists_submit_requests(req0, req1);
467 }
468
469 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
470                                            u32 request_id)
471 {
472         struct drm_i915_gem_request *head_req;
473
474         assert_spin_locked(&ring->execlist_lock);
475
476         head_req = list_first_entry_or_null(&ring->execlist_queue,
477                                             struct drm_i915_gem_request,
478                                             execlist_link);
479
480         if (head_req != NULL) {
481                 struct drm_i915_gem_object *ctx_obj =
482                                 head_req->ctx->engine[ring->id].state;
483                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
484                         WARN(head_req->elsp_submitted == 0,
485                              "Never submitted head request\n");
486
487                         if (--head_req->elsp_submitted <= 0) {
488                                 list_del(&head_req->execlist_link);
489                                 list_add_tail(&head_req->execlist_link,
490                                         &ring->execlist_retired_req_list);
491                                 return true;
492                         }
493                 }
494         }
495
496         return false;
497 }
498
499 /**
500  * intel_lrc_irq_handler() - handle Context Switch interrupts
501  * @ring: Engine Command Streamer to handle.
502  *
503  * Check the unread Context Status Buffers and manage the submission of new
504  * contexts to the ELSP accordingly.
505  */
506 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
507 {
508         struct drm_i915_private *dev_priv = ring->dev->dev_private;
509         u32 status_pointer;
510         u8 read_pointer;
511         u8 write_pointer;
512         u32 status = 0;
513         u32 status_id;
514         u32 submit_contexts = 0;
515
516         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
517
518         read_pointer = ring->next_context_status_buffer;
519         write_pointer = status_pointer & GEN8_CSB_PTR_MASK;
520         if (read_pointer > write_pointer)
521                 write_pointer += GEN8_CSB_ENTRIES;
522
523         spin_lock(&ring->execlist_lock);
524
525         while (read_pointer < write_pointer) {
526                 read_pointer++;
527                 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % GEN8_CSB_ENTRIES));
528                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % GEN8_CSB_ENTRIES));
529
530                 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
531                         continue;
532
533                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
534                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
535                                 if (execlists_check_remove_request(ring, status_id))
536                                         WARN(1, "Lite Restored request removed from queue\n");
537                         } else
538                                 WARN(1, "Preemption without Lite Restore\n");
539                 }
540
541                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
542                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
543                         if (execlists_check_remove_request(ring, status_id))
544                                 submit_contexts++;
545                 }
546         }
547
548         if (disable_lite_restore_wa(ring)) {
549                 /* Prevent a ctx to preempt itself */
550                 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
551                     (submit_contexts != 0))
552                         execlists_context_unqueue(ring);
553         } else if (submit_contexts != 0) {
554                 execlists_context_unqueue(ring);
555         }
556
557         spin_unlock(&ring->execlist_lock);
558
559         WARN(submit_contexts > 2, "More than two context complete events?\n");
560         ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
561
562         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
563                    _MASKED_FIELD(GEN8_CSB_PTR_MASK << 8,
564                                  ((u32)ring->next_context_status_buffer &
565                                   GEN8_CSB_PTR_MASK) << 8));
566 }
567
568 static int execlists_context_queue(struct drm_i915_gem_request *request)
569 {
570         struct intel_engine_cs *ring = request->ring;
571         struct drm_i915_gem_request *cursor;
572         int num_elements = 0;
573
574         if (request->ctx != ring->default_context)
575                 intel_lr_context_pin(request);
576
577         i915_gem_request_reference(request);
578
579         spin_lock_irq(&ring->execlist_lock);
580
581         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
582                 if (++num_elements > 2)
583                         break;
584
585         if (num_elements > 2) {
586                 struct drm_i915_gem_request *tail_req;
587
588                 tail_req = list_last_entry(&ring->execlist_queue,
589                                            struct drm_i915_gem_request,
590                                            execlist_link);
591
592                 if (request->ctx == tail_req->ctx) {
593                         WARN(tail_req->elsp_submitted != 0,
594                                 "More than 2 already-submitted reqs queued\n");
595                         list_del(&tail_req->execlist_link);
596                         list_add_tail(&tail_req->execlist_link,
597                                 &ring->execlist_retired_req_list);
598                 }
599         }
600
601         list_add_tail(&request->execlist_link, &ring->execlist_queue);
602         if (num_elements == 0)
603                 execlists_context_unqueue(ring);
604
605         spin_unlock_irq(&ring->execlist_lock);
606
607         return 0;
608 }
609
610 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
611 {
612         struct intel_engine_cs *ring = req->ring;
613         uint32_t flush_domains;
614         int ret;
615
616         flush_domains = 0;
617         if (ring->gpu_caches_dirty)
618                 flush_domains = I915_GEM_GPU_DOMAINS;
619
620         ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
621         if (ret)
622                 return ret;
623
624         ring->gpu_caches_dirty = false;
625         return 0;
626 }
627
628 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
629                                  struct list_head *vmas)
630 {
631         const unsigned other_rings = ~intel_ring_flag(req->ring);
632         struct i915_vma *vma;
633         uint32_t flush_domains = 0;
634         bool flush_chipset = false;
635         int ret;
636
637         list_for_each_entry(vma, vmas, exec_list) {
638                 struct drm_i915_gem_object *obj = vma->obj;
639
640                 if (obj->active & other_rings) {
641                         ret = i915_gem_object_sync(obj, req->ring, &req);
642                         if (ret)
643                                 return ret;
644                 }
645
646                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
647                         flush_chipset |= i915_gem_clflush_object(obj, false);
648
649                 flush_domains |= obj->base.write_domain;
650         }
651
652         if (flush_domains & I915_GEM_DOMAIN_GTT)
653                 wmb();
654
655         /* Unconditionally invalidate gpu caches and ensure that we do flush
656          * any residual writes from the previous batch.
657          */
658         return logical_ring_invalidate_all_caches(req);
659 }
660
661 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
662 {
663         int ret;
664
665         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
666
667         if (request->ctx != request->ring->default_context) {
668                 ret = intel_lr_context_pin(request);
669                 if (ret)
670                         return ret;
671         }
672
673         return 0;
674 }
675
676 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
677                                        int bytes)
678 {
679         struct intel_ringbuffer *ringbuf = req->ringbuf;
680         struct intel_engine_cs *ring = req->ring;
681         struct drm_i915_gem_request *target;
682         unsigned space;
683         int ret;
684
685         if (intel_ring_space(ringbuf) >= bytes)
686                 return 0;
687
688         /* The whole point of reserving space is to not wait! */
689         WARN_ON(ringbuf->reserved_in_use);
690
691         list_for_each_entry(target, &ring->request_list, list) {
692                 /*
693                  * The request queue is per-engine, so can contain requests
694                  * from multiple ringbuffers. Here, we must ignore any that
695                  * aren't from the ringbuffer we're considering.
696                  */
697                 if (target->ringbuf != ringbuf)
698                         continue;
699
700                 /* Would completion of this request free enough space? */
701                 space = __intel_ring_space(target->postfix, ringbuf->tail,
702                                            ringbuf->size);
703                 if (space >= bytes)
704                         break;
705         }
706
707         if (WARN_ON(&target->list == &ring->request_list))
708                 return -ENOSPC;
709
710         ret = i915_wait_request(target);
711         if (ret)
712                 return ret;
713
714         ringbuf->space = space;
715         return 0;
716 }
717
718 /*
719  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
720  * @request: Request to advance the logical ringbuffer of.
721  *
722  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
723  * really happens during submission is that the context and current tail will be placed
724  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
725  * point, the tail *inside* the context is updated and the ELSP written to.
726  */
727 static void
728 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
729 {
730         struct intel_engine_cs *ring = request->ring;
731         struct drm_i915_private *dev_priv = request->i915;
732
733         intel_logical_ring_advance(request->ringbuf);
734
735         request->tail = request->ringbuf->tail;
736
737         if (intel_ring_stopped(ring))
738                 return;
739
740         if (dev_priv->guc.execbuf_client)
741                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
742         else
743                 execlists_context_queue(request);
744 }
745
746 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
747 {
748         uint32_t __iomem *virt;
749         int rem = ringbuf->size - ringbuf->tail;
750
751         virt = ringbuf->virtual_start + ringbuf->tail;
752         rem /= 4;
753         while (rem--)
754                 iowrite32(MI_NOOP, virt++);
755
756         ringbuf->tail = 0;
757         intel_ring_update_space(ringbuf);
758 }
759
760 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
761 {
762         struct intel_ringbuffer *ringbuf = req->ringbuf;
763         int remain_usable = ringbuf->effective_size - ringbuf->tail;
764         int remain_actual = ringbuf->size - ringbuf->tail;
765         int ret, total_bytes, wait_bytes = 0;
766         bool need_wrap = false;
767
768         if (ringbuf->reserved_in_use)
769                 total_bytes = bytes;
770         else
771                 total_bytes = bytes + ringbuf->reserved_size;
772
773         if (unlikely(bytes > remain_usable)) {
774                 /*
775                  * Not enough space for the basic request. So need to flush
776                  * out the remainder and then wait for base + reserved.
777                  */
778                 wait_bytes = remain_actual + total_bytes;
779                 need_wrap = true;
780         } else {
781                 if (unlikely(total_bytes > remain_usable)) {
782                         /*
783                          * The base request will fit but the reserved space
784                          * falls off the end. So only need to to wait for the
785                          * reserved size after flushing out the remainder.
786                          */
787                         wait_bytes = remain_actual + ringbuf->reserved_size;
788                         need_wrap = true;
789                 } else if (total_bytes > ringbuf->space) {
790                         /* No wrapping required, just waiting. */
791                         wait_bytes = total_bytes;
792                 }
793         }
794
795         if (wait_bytes) {
796                 ret = logical_ring_wait_for_space(req, wait_bytes);
797                 if (unlikely(ret))
798                         return ret;
799
800                 if (need_wrap)
801                         __wrap_ring_buffer(ringbuf);
802         }
803
804         return 0;
805 }
806
807 /**
808  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
809  *
810  * @req: The request to start some new work for
811  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
812  *
813  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
814  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
815  * and also preallocates a request (every workload submission is still mediated through
816  * requests, same as it did with legacy ringbuffer submission).
817  *
818  * Return: non-zero if the ringbuffer is not ready to be written to.
819  */
820 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
821 {
822         struct drm_i915_private *dev_priv;
823         int ret;
824
825         WARN_ON(req == NULL);
826         dev_priv = req->ring->dev->dev_private;
827
828         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
829                                    dev_priv->mm.interruptible);
830         if (ret)
831                 return ret;
832
833         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
834         if (ret)
835                 return ret;
836
837         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
838         return 0;
839 }
840
841 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
842 {
843         /*
844          * The first call merely notes the reserve request and is common for
845          * all back ends. The subsequent localised _begin() call actually
846          * ensures that the reservation is available. Without the begin, if
847          * the request creator immediately submitted the request without
848          * adding any commands to it then there might not actually be
849          * sufficient room for the submission commands.
850          */
851         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
852
853         return intel_logical_ring_begin(request, 0);
854 }
855
856 /**
857  * execlists_submission() - submit a batchbuffer for execution, Execlists style
858  * @dev: DRM device.
859  * @file: DRM file.
860  * @ring: Engine Command Streamer to submit to.
861  * @ctx: Context to employ for this submission.
862  * @args: execbuffer call arguments.
863  * @vmas: list of vmas.
864  * @batch_obj: the batchbuffer to submit.
865  * @exec_start: batchbuffer start virtual address pointer.
866  * @dispatch_flags: translated execbuffer call flags.
867  *
868  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
869  * away the submission details of the execbuffer ioctl call.
870  *
871  * Return: non-zero if the submission fails.
872  */
873 int intel_execlists_submission(struct i915_execbuffer_params *params,
874                                struct drm_i915_gem_execbuffer2 *args,
875                                struct list_head *vmas)
876 {
877         struct drm_device       *dev = params->dev;
878         struct intel_engine_cs  *ring = params->ring;
879         struct drm_i915_private *dev_priv = dev->dev_private;
880         struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
881         u64 exec_start;
882         int instp_mode;
883         u32 instp_mask;
884         int ret;
885
886         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
887         instp_mask = I915_EXEC_CONSTANTS_MASK;
888         switch (instp_mode) {
889         case I915_EXEC_CONSTANTS_REL_GENERAL:
890         case I915_EXEC_CONSTANTS_ABSOLUTE:
891         case I915_EXEC_CONSTANTS_REL_SURFACE:
892                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
893                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
894                         return -EINVAL;
895                 }
896
897                 if (instp_mode != dev_priv->relative_constants_mode) {
898                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
899                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
900                                 return -EINVAL;
901                         }
902
903                         /* The HW changed the meaning on this bit on gen6 */
904                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
905                 }
906                 break;
907         default:
908                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
909                 return -EINVAL;
910         }
911
912         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
913                 DRM_DEBUG("sol reset is gen7 only\n");
914                 return -EINVAL;
915         }
916
917         ret = execlists_move_to_gpu(params->request, vmas);
918         if (ret)
919                 return ret;
920
921         if (ring == &dev_priv->ring[RCS] &&
922             instp_mode != dev_priv->relative_constants_mode) {
923                 ret = intel_logical_ring_begin(params->request, 4);
924                 if (ret)
925                         return ret;
926
927                 intel_logical_ring_emit(ringbuf, MI_NOOP);
928                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
929                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
930                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
931                 intel_logical_ring_advance(ringbuf);
932
933                 dev_priv->relative_constants_mode = instp_mode;
934         }
935
936         exec_start = params->batch_obj_vm_offset +
937                      args->batch_start_offset;
938
939         ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
940         if (ret)
941                 return ret;
942
943         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
944
945         i915_gem_execbuffer_move_to_active(vmas, params->request);
946         i915_gem_execbuffer_retire_commands(params);
947
948         return 0;
949 }
950
951 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
952 {
953         struct drm_i915_gem_request *req, *tmp;
954         struct list_head retired_list;
955
956         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
957         if (list_empty(&ring->execlist_retired_req_list))
958                 return;
959
960         INIT_LIST_HEAD(&retired_list);
961         spin_lock_irq(&ring->execlist_lock);
962         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
963         spin_unlock_irq(&ring->execlist_lock);
964
965         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
966                 struct intel_context *ctx = req->ctx;
967                 struct drm_i915_gem_object *ctx_obj =
968                                 ctx->engine[ring->id].state;
969
970                 if (ctx_obj && (ctx != ring->default_context))
971                         intel_lr_context_unpin(req);
972                 list_del(&req->execlist_link);
973                 i915_gem_request_unreference(req);
974         }
975 }
976
977 void intel_logical_ring_stop(struct intel_engine_cs *ring)
978 {
979         struct drm_i915_private *dev_priv = ring->dev->dev_private;
980         int ret;
981
982         if (!intel_ring_initialized(ring))
983                 return;
984
985         ret = intel_ring_idle(ring);
986         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
987                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
988                           ring->name, ret);
989
990         /* TODO: Is this correct with Execlists enabled? */
991         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
992         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
993                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
994                 return;
995         }
996         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
997 }
998
999 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1000 {
1001         struct intel_engine_cs *ring = req->ring;
1002         int ret;
1003
1004         if (!ring->gpu_caches_dirty)
1005                 return 0;
1006
1007         ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1008         if (ret)
1009                 return ret;
1010
1011         ring->gpu_caches_dirty = false;
1012         return 0;
1013 }
1014
1015 static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1016                 struct drm_i915_gem_object *ctx_obj,
1017                 struct intel_ringbuffer *ringbuf)
1018 {
1019         struct drm_device *dev = ring->dev;
1020         struct drm_i915_private *dev_priv = dev->dev_private;
1021         int ret = 0;
1022
1023         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1024         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1025                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1026         if (ret)
1027                 return ret;
1028
1029         ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1030         if (ret)
1031                 goto unpin_ctx_obj;
1032
1033         ctx_obj->dirty = true;
1034
1035         /* Invalidate GuC TLB. */
1036         if (i915.enable_guc_submission)
1037                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1038
1039         return ret;
1040
1041 unpin_ctx_obj:
1042         i915_gem_object_ggtt_unpin(ctx_obj);
1043
1044         return ret;
1045 }
1046
1047 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1048 {
1049         int ret = 0;
1050         struct intel_engine_cs *ring = rq->ring;
1051         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1052         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1053
1054         if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1055                 ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1056                 if (ret)
1057                         goto reset_pin_count;
1058         }
1059         return ret;
1060
1061 reset_pin_count:
1062         rq->ctx->engine[ring->id].pin_count = 0;
1063         return ret;
1064 }
1065
1066 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1067 {
1068         struct intel_engine_cs *ring = rq->ring;
1069         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1070         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1071
1072         if (ctx_obj) {
1073                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1074                 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1075                         intel_unpin_ringbuffer_obj(ringbuf);
1076                         i915_gem_object_ggtt_unpin(ctx_obj);
1077                 }
1078         }
1079 }
1080
1081 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1082 {
1083         int ret, i;
1084         struct intel_engine_cs *ring = req->ring;
1085         struct intel_ringbuffer *ringbuf = req->ringbuf;
1086         struct drm_device *dev = ring->dev;
1087         struct drm_i915_private *dev_priv = dev->dev_private;
1088         struct i915_workarounds *w = &dev_priv->workarounds;
1089
1090         if (WARN_ON_ONCE(w->count == 0))
1091                 return 0;
1092
1093         ring->gpu_caches_dirty = true;
1094         ret = logical_ring_flush_all_caches(req);
1095         if (ret)
1096                 return ret;
1097
1098         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1099         if (ret)
1100                 return ret;
1101
1102         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1103         for (i = 0; i < w->count; i++) {
1104                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1105                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1106         }
1107         intel_logical_ring_emit(ringbuf, MI_NOOP);
1108
1109         intel_logical_ring_advance(ringbuf);
1110
1111         ring->gpu_caches_dirty = true;
1112         ret = logical_ring_flush_all_caches(req);
1113         if (ret)
1114                 return ret;
1115
1116         return 0;
1117 }
1118
1119 #define wa_ctx_emit(batch, index, cmd)                                  \
1120         do {                                                            \
1121                 int __index = (index)++;                                \
1122                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1123                         return -ENOSPC;                                 \
1124                 }                                                       \
1125                 batch[__index] = (cmd);                                 \
1126         } while (0)
1127
1128 #define wa_ctx_emit_reg(batch, index, reg) \
1129         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1130
1131 /*
1132  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1133  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1134  * but there is a slight complication as this is applied in WA batch where the
1135  * values are only initialized once so we cannot take register value at the
1136  * beginning and reuse it further; hence we save its value to memory, upload a
1137  * constant value with bit21 set and then we restore it back with the saved value.
1138  * To simplify the WA, a constant value is formed by using the default value
1139  * of this register. This shouldn't be a problem because we are only modifying
1140  * it for a short period and this batch in non-premptible. We can ofcourse
1141  * use additional instructions that read the actual value of the register
1142  * at that time and set our bit of interest but it makes the WA complicated.
1143  *
1144  * This WA is also required for Gen9 so extracting as a function avoids
1145  * code duplication.
1146  */
1147 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1148                                                 uint32_t *const batch,
1149                                                 uint32_t index)
1150 {
1151         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1152
1153         /*
1154          * WaDisableLSQCROPERFforOCL:skl
1155          * This WA is implemented in skl_init_clock_gating() but since
1156          * this batch updates GEN8_L3SQCREG4 with default value we need to
1157          * set this bit here to retain the WA during flush.
1158          */
1159         if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1160                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1161
1162         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1163                                    MI_SRM_LRM_GLOBAL_GTT));
1164         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1165         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1166         wa_ctx_emit(batch, index, 0);
1167
1168         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1169         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1170         wa_ctx_emit(batch, index, l3sqc4_flush);
1171
1172         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1173         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1174                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1175         wa_ctx_emit(batch, index, 0);
1176         wa_ctx_emit(batch, index, 0);
1177         wa_ctx_emit(batch, index, 0);
1178         wa_ctx_emit(batch, index, 0);
1179
1180         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1181                                    MI_SRM_LRM_GLOBAL_GTT));
1182         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1183         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1184         wa_ctx_emit(batch, index, 0);
1185
1186         return index;
1187 }
1188
1189 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1190                                     uint32_t offset,
1191                                     uint32_t start_alignment)
1192 {
1193         return wa_ctx->offset = ALIGN(offset, start_alignment);
1194 }
1195
1196 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1197                              uint32_t offset,
1198                              uint32_t size_alignment)
1199 {
1200         wa_ctx->size = offset - wa_ctx->offset;
1201
1202         WARN(wa_ctx->size % size_alignment,
1203              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1204              wa_ctx->size, size_alignment);
1205         return 0;
1206 }
1207
1208 /**
1209  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1210  *
1211  * @ring: only applicable for RCS
1212  * @wa_ctx: structure representing wa_ctx
1213  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1214  *    with the offset value received as input.
1215  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1216  * @batch: page in which WA are loaded
1217  * @offset: This field specifies the start of the batch, it should be
1218  *  cache-aligned otherwise it is adjusted accordingly.
1219  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1220  *  initialized at the beginning and shared across all contexts but this field
1221  *  helps us to have multiple batches at different offsets and select them based
1222  *  on a criteria. At the moment this batch always start at the beginning of the page
1223  *  and at this point we don't have multiple wa_ctx batch buffers.
1224  *
1225  *  The number of WA applied are not known at the beginning; we use this field
1226  *  to return the no of DWORDS written.
1227  *
1228  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1229  *  so it adds NOOPs as padding to make it cacheline aligned.
1230  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1231  *  makes a complete batch buffer.
1232  *
1233  * Return: non-zero if we exceed the PAGE_SIZE limit.
1234  */
1235
1236 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1237                                     struct i915_wa_ctx_bb *wa_ctx,
1238                                     uint32_t *const batch,
1239                                     uint32_t *offset)
1240 {
1241         uint32_t scratch_addr;
1242         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1243
1244         /* WaDisableCtxRestoreArbitration:bdw,chv */
1245         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1246
1247         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1248         if (IS_BROADWELL(ring->dev)) {
1249                 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1250                 if (rc < 0)
1251                         return rc;
1252                 index = rc;
1253         }
1254
1255         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1256         /* Actual scratch location is at 128 bytes offset */
1257         scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1258
1259         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1260         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1261                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1262                                    PIPE_CONTROL_CS_STALL |
1263                                    PIPE_CONTROL_QW_WRITE));
1264         wa_ctx_emit(batch, index, scratch_addr);
1265         wa_ctx_emit(batch, index, 0);
1266         wa_ctx_emit(batch, index, 0);
1267         wa_ctx_emit(batch, index, 0);
1268
1269         /* Pad to end of cacheline */
1270         while (index % CACHELINE_DWORDS)
1271                 wa_ctx_emit(batch, index, MI_NOOP);
1272
1273         /*
1274          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1275          * execution depends on the length specified in terms of cache lines
1276          * in the register CTX_RCS_INDIRECT_CTX
1277          */
1278
1279         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1280 }
1281
1282 /**
1283  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1284  *
1285  * @ring: only applicable for RCS
1286  * @wa_ctx: structure representing wa_ctx
1287  *  offset: specifies start of the batch, should be cache-aligned.
1288  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1289  * @batch: page in which WA are loaded
1290  * @offset: This field specifies the start of this batch.
1291  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1292  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1293  *
1294  *   The number of DWORDS written are returned using this field.
1295  *
1296  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1297  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1298  */
1299 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1300                                struct i915_wa_ctx_bb *wa_ctx,
1301                                uint32_t *const batch,
1302                                uint32_t *offset)
1303 {
1304         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1305
1306         /* WaDisableCtxRestoreArbitration:bdw,chv */
1307         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1308
1309         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1310
1311         return wa_ctx_end(wa_ctx, *offset = index, 1);
1312 }
1313
1314 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1315                                     struct i915_wa_ctx_bb *wa_ctx,
1316                                     uint32_t *const batch,
1317                                     uint32_t *offset)
1318 {
1319         int ret;
1320         struct drm_device *dev = ring->dev;
1321         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1322
1323         /* WaDisableCtxRestoreArbitration:skl,bxt */
1324         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1325             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1326                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1327
1328         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1329         ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1330         if (ret < 0)
1331                 return ret;
1332         index = ret;
1333
1334         /* Pad to end of cacheline */
1335         while (index % CACHELINE_DWORDS)
1336                 wa_ctx_emit(batch, index, MI_NOOP);
1337
1338         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1339 }
1340
1341 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1342                                struct i915_wa_ctx_bb *wa_ctx,
1343                                uint32_t *const batch,
1344                                uint32_t *offset)
1345 {
1346         struct drm_device *dev = ring->dev;
1347         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1348
1349         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1350         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1351             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1352                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1353                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1354                 wa_ctx_emit(batch, index,
1355                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1356                 wa_ctx_emit(batch, index, MI_NOOP);
1357         }
1358
1359         /* WaDisableCtxRestoreArbitration:skl,bxt */
1360         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1361             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1362                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1363
1364         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1365
1366         return wa_ctx_end(wa_ctx, *offset = index, 1);
1367 }
1368
1369 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1370 {
1371         int ret;
1372
1373         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1374         if (!ring->wa_ctx.obj) {
1375                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1376                 return -ENOMEM;
1377         }
1378
1379         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1380         if (ret) {
1381                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1382                                  ret);
1383                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1384                 return ret;
1385         }
1386
1387         return 0;
1388 }
1389
1390 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1391 {
1392         if (ring->wa_ctx.obj) {
1393                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1394                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1395                 ring->wa_ctx.obj = NULL;
1396         }
1397 }
1398
1399 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1400 {
1401         int ret;
1402         uint32_t *batch;
1403         uint32_t offset;
1404         struct page *page;
1405         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1406
1407         WARN_ON(ring->id != RCS);
1408
1409         /* update this when WA for higher Gen are added */
1410         if (INTEL_INFO(ring->dev)->gen > 9) {
1411                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1412                           INTEL_INFO(ring->dev)->gen);
1413                 return 0;
1414         }
1415
1416         /* some WA perform writes to scratch page, ensure it is valid */
1417         if (ring->scratch.obj == NULL) {
1418                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1419                 return -EINVAL;
1420         }
1421
1422         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1423         if (ret) {
1424                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1425                 return ret;
1426         }
1427
1428         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1429         batch = kmap_atomic(page);
1430         offset = 0;
1431
1432         if (INTEL_INFO(ring->dev)->gen == 8) {
1433                 ret = gen8_init_indirectctx_bb(ring,
1434                                                &wa_ctx->indirect_ctx,
1435                                                batch,
1436                                                &offset);
1437                 if (ret)
1438                         goto out;
1439
1440                 ret = gen8_init_perctx_bb(ring,
1441                                           &wa_ctx->per_ctx,
1442                                           batch,
1443                                           &offset);
1444                 if (ret)
1445                         goto out;
1446         } else if (INTEL_INFO(ring->dev)->gen == 9) {
1447                 ret = gen9_init_indirectctx_bb(ring,
1448                                                &wa_ctx->indirect_ctx,
1449                                                batch,
1450                                                &offset);
1451                 if (ret)
1452                         goto out;
1453
1454                 ret = gen9_init_perctx_bb(ring,
1455                                           &wa_ctx->per_ctx,
1456                                           batch,
1457                                           &offset);
1458                 if (ret)
1459                         goto out;
1460         }
1461
1462 out:
1463         kunmap_atomic(batch);
1464         if (ret)
1465                 lrc_destroy_wa_ctx_obj(ring);
1466
1467         return ret;
1468 }
1469
1470 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1471 {
1472         struct drm_device *dev = ring->dev;
1473         struct drm_i915_private *dev_priv = dev->dev_private;
1474         u8 next_context_status_buffer_hw;
1475
1476         lrc_setup_hardware_status_page(ring,
1477                                 ring->default_context->engine[ring->id].state);
1478
1479         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1480         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1481
1482         I915_WRITE(RING_MODE_GEN7(ring),
1483                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1484                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1485         POSTING_READ(RING_MODE_GEN7(ring));
1486
1487         /*
1488          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1489          * zero, we need to read the write pointer from hardware and use its
1490          * value because "this register is power context save restored".
1491          * Effectively, these states have been observed:
1492          *
1493          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1494          * BDW  | CSB regs not reset       | CSB regs reset       |
1495          * CHT  | CSB regs not reset       | CSB regs not reset   |
1496          */
1497         next_context_status_buffer_hw = (I915_READ(RING_CONTEXT_STATUS_PTR(ring))
1498                                                    & GEN8_CSB_PTR_MASK);
1499
1500         /*
1501          * When the CSB registers are reset (also after power-up / gpu reset),
1502          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1503          * this special case, so the first element read is CSB[0].
1504          */
1505         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1506                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1507
1508         ring->next_context_status_buffer = next_context_status_buffer_hw;
1509         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1510
1511         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1512
1513         return 0;
1514 }
1515
1516 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1517 {
1518         struct drm_device *dev = ring->dev;
1519         struct drm_i915_private *dev_priv = dev->dev_private;
1520         int ret;
1521
1522         ret = gen8_init_common_ring(ring);
1523         if (ret)
1524                 return ret;
1525
1526         /* We need to disable the AsyncFlip performance optimisations in order
1527          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1528          * programmed to '1' on all products.
1529          *
1530          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1531          */
1532         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1533
1534         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1535
1536         return init_workarounds_ring(ring);
1537 }
1538
1539 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1540 {
1541         int ret;
1542
1543         ret = gen8_init_common_ring(ring);
1544         if (ret)
1545                 return ret;
1546
1547         return init_workarounds_ring(ring);
1548 }
1549
1550 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1551 {
1552         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1553         struct intel_engine_cs *ring = req->ring;
1554         struct intel_ringbuffer *ringbuf = req->ringbuf;
1555         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1556         int i, ret;
1557
1558         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1559         if (ret)
1560                 return ret;
1561
1562         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1563         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1564                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1565
1566                 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1567                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1568                 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1569                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1570         }
1571
1572         intel_logical_ring_emit(ringbuf, MI_NOOP);
1573         intel_logical_ring_advance(ringbuf);
1574
1575         return 0;
1576 }
1577
1578 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1579                               u64 offset, unsigned dispatch_flags)
1580 {
1581         struct intel_ringbuffer *ringbuf = req->ringbuf;
1582         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1583         int ret;
1584
1585         /* Don't rely in hw updating PDPs, specially in lite-restore.
1586          * Ideally, we should set Force PD Restore in ctx descriptor,
1587          * but we can't. Force Restore would be a second option, but
1588          * it is unsafe in case of lite-restore (because the ctx is
1589          * not idle). PML4 is allocated during ppgtt init so this is
1590          * not needed in 48-bit.*/
1591         if (req->ctx->ppgtt &&
1592             (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1593                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1594                     !intel_vgpu_active(req->i915->dev)) {
1595                         ret = intel_logical_ring_emit_pdps(req);
1596                         if (ret)
1597                                 return ret;
1598                 }
1599
1600                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1601         }
1602
1603         ret = intel_logical_ring_begin(req, 4);
1604         if (ret)
1605                 return ret;
1606
1607         /* FIXME(BDW): Address space and security selectors. */
1608         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1609                                 (ppgtt<<8) |
1610                                 (dispatch_flags & I915_DISPATCH_RS ?
1611                                  MI_BATCH_RESOURCE_STREAMER : 0));
1612         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1613         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1614         intel_logical_ring_emit(ringbuf, MI_NOOP);
1615         intel_logical_ring_advance(ringbuf);
1616
1617         return 0;
1618 }
1619
1620 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1621 {
1622         struct drm_device *dev = ring->dev;
1623         struct drm_i915_private *dev_priv = dev->dev_private;
1624         unsigned long flags;
1625
1626         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1627                 return false;
1628
1629         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1630         if (ring->irq_refcount++ == 0) {
1631                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1632                 POSTING_READ(RING_IMR(ring->mmio_base));
1633         }
1634         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1635
1636         return true;
1637 }
1638
1639 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1640 {
1641         struct drm_device *dev = ring->dev;
1642         struct drm_i915_private *dev_priv = dev->dev_private;
1643         unsigned long flags;
1644
1645         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1646         if (--ring->irq_refcount == 0) {
1647                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1648                 POSTING_READ(RING_IMR(ring->mmio_base));
1649         }
1650         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1651 }
1652
1653 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1654                            u32 invalidate_domains,
1655                            u32 unused)
1656 {
1657         struct intel_ringbuffer *ringbuf = request->ringbuf;
1658         struct intel_engine_cs *ring = ringbuf->ring;
1659         struct drm_device *dev = ring->dev;
1660         struct drm_i915_private *dev_priv = dev->dev_private;
1661         uint32_t cmd;
1662         int ret;
1663
1664         ret = intel_logical_ring_begin(request, 4);
1665         if (ret)
1666                 return ret;
1667
1668         cmd = MI_FLUSH_DW + 1;
1669
1670         /* We always require a command barrier so that subsequent
1671          * commands, such as breadcrumb interrupts, are strictly ordered
1672          * wrt the contents of the write cache being flushed to memory
1673          * (and thus being coherent from the CPU).
1674          */
1675         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1676
1677         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1678                 cmd |= MI_INVALIDATE_TLB;
1679                 if (ring == &dev_priv->ring[VCS])
1680                         cmd |= MI_INVALIDATE_BSD;
1681         }
1682
1683         intel_logical_ring_emit(ringbuf, cmd);
1684         intel_logical_ring_emit(ringbuf,
1685                                 I915_GEM_HWS_SCRATCH_ADDR |
1686                                 MI_FLUSH_DW_USE_GTT);
1687         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1688         intel_logical_ring_emit(ringbuf, 0); /* value */
1689         intel_logical_ring_advance(ringbuf);
1690
1691         return 0;
1692 }
1693
1694 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1695                                   u32 invalidate_domains,
1696                                   u32 flush_domains)
1697 {
1698         struct intel_ringbuffer *ringbuf = request->ringbuf;
1699         struct intel_engine_cs *ring = ringbuf->ring;
1700         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1701         bool vf_flush_wa;
1702         u32 flags = 0;
1703         int ret;
1704
1705         flags |= PIPE_CONTROL_CS_STALL;
1706
1707         if (flush_domains) {
1708                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1709                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1710                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1711                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1712         }
1713
1714         if (invalidate_domains) {
1715                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1716                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1717                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1718                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1719                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1720                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1721                 flags |= PIPE_CONTROL_QW_WRITE;
1722                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1723         }
1724
1725         /*
1726          * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1727          * control.
1728          */
1729         vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1730                       flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1731
1732         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1733         if (ret)
1734                 return ret;
1735
1736         if (vf_flush_wa) {
1737                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1738                 intel_logical_ring_emit(ringbuf, 0);
1739                 intel_logical_ring_emit(ringbuf, 0);
1740                 intel_logical_ring_emit(ringbuf, 0);
1741                 intel_logical_ring_emit(ringbuf, 0);
1742                 intel_logical_ring_emit(ringbuf, 0);
1743         }
1744
1745         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1746         intel_logical_ring_emit(ringbuf, flags);
1747         intel_logical_ring_emit(ringbuf, scratch_addr);
1748         intel_logical_ring_emit(ringbuf, 0);
1749         intel_logical_ring_emit(ringbuf, 0);
1750         intel_logical_ring_emit(ringbuf, 0);
1751         intel_logical_ring_advance(ringbuf);
1752
1753         return 0;
1754 }
1755
1756 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1757 {
1758         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1759 }
1760
1761 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1762 {
1763         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1764 }
1765
1766 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1767 {
1768
1769         /*
1770          * On BXT A steppings there is a HW coherency issue whereby the
1771          * MI_STORE_DATA_IMM storing the completed request's seqno
1772          * occasionally doesn't invalidate the CPU cache. Work around this by
1773          * clflushing the corresponding cacheline whenever the caller wants
1774          * the coherency to be guaranteed. Note that this cacheline is known
1775          * to be clean at this point, since we only write it in
1776          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1777          * this clflush in practice becomes an invalidate operation.
1778          */
1779
1780         if (!lazy_coherency)
1781                 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1782
1783         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1784 }
1785
1786 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1787 {
1788         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1789
1790         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1791         intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1792 }
1793
1794 static int gen8_emit_request(struct drm_i915_gem_request *request)
1795 {
1796         struct intel_ringbuffer *ringbuf = request->ringbuf;
1797         struct intel_engine_cs *ring = ringbuf->ring;
1798         u32 cmd;
1799         int ret;
1800
1801         /*
1802          * Reserve space for 2 NOOPs at the end of each request to be
1803          * used as a workaround for not being allowed to do lite
1804          * restore with HEAD==TAIL (WaIdleLiteRestore).
1805          */
1806         ret = intel_logical_ring_begin(request, 8);
1807         if (ret)
1808                 return ret;
1809
1810         cmd = MI_STORE_DWORD_IMM_GEN4;
1811         cmd |= MI_GLOBAL_GTT;
1812
1813         intel_logical_ring_emit(ringbuf, cmd);
1814         intel_logical_ring_emit(ringbuf,
1815                                 (ring->status_page.gfx_addr +
1816                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1817         intel_logical_ring_emit(ringbuf, 0);
1818         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1819         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1820         intel_logical_ring_emit(ringbuf, MI_NOOP);
1821         intel_logical_ring_advance_and_submit(request);
1822
1823         /*
1824          * Here we add two extra NOOPs as padding to avoid
1825          * lite restore of a context with HEAD==TAIL.
1826          */
1827         intel_logical_ring_emit(ringbuf, MI_NOOP);
1828         intel_logical_ring_emit(ringbuf, MI_NOOP);
1829         intel_logical_ring_advance(ringbuf);
1830
1831         return 0;
1832 }
1833
1834 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1835 {
1836         struct render_state so;
1837         int ret;
1838
1839         ret = i915_gem_render_state_prepare(req->ring, &so);
1840         if (ret)
1841                 return ret;
1842
1843         if (so.rodata == NULL)
1844                 return 0;
1845
1846         ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1847                                        I915_DISPATCH_SECURE);
1848         if (ret)
1849                 goto out;
1850
1851         ret = req->ring->emit_bb_start(req,
1852                                        (so.ggtt_offset + so.aux_batch_offset),
1853                                        I915_DISPATCH_SECURE);
1854         if (ret)
1855                 goto out;
1856
1857         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1858
1859 out:
1860         i915_gem_render_state_fini(&so);
1861         return ret;
1862 }
1863
1864 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1865 {
1866         int ret;
1867
1868         ret = intel_logical_ring_workarounds_emit(req);
1869         if (ret)
1870                 return ret;
1871
1872         ret = intel_rcs_context_init_mocs(req);
1873         /*
1874          * Failing to program the MOCS is non-fatal.The system will not
1875          * run at peak performance. So generate an error and carry on.
1876          */
1877         if (ret)
1878                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1879
1880         return intel_lr_context_render_state_init(req);
1881 }
1882
1883 /**
1884  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1885  *
1886  * @ring: Engine Command Streamer.
1887  *
1888  */
1889 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1890 {
1891         struct drm_i915_private *dev_priv;
1892
1893         if (!intel_ring_initialized(ring))
1894                 return;
1895
1896         dev_priv = ring->dev->dev_private;
1897
1898         if (ring->buffer) {
1899                 intel_logical_ring_stop(ring);
1900                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1901         }
1902
1903         if (ring->cleanup)
1904                 ring->cleanup(ring);
1905
1906         i915_cmd_parser_fini_ring(ring);
1907         i915_gem_batch_pool_fini(&ring->batch_pool);
1908
1909         if (ring->status_page.obj) {
1910                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1911                 ring->status_page.obj = NULL;
1912         }
1913
1914         lrc_destroy_wa_ctx_obj(ring);
1915         ring->dev = NULL;
1916 }
1917
1918 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1919 {
1920         int ret;
1921
1922         /* Intentionally left blank. */
1923         ring->buffer = NULL;
1924
1925         ring->dev = dev;
1926         INIT_LIST_HEAD(&ring->active_list);
1927         INIT_LIST_HEAD(&ring->request_list);
1928         i915_gem_batch_pool_init(dev, &ring->batch_pool);
1929         init_waitqueue_head(&ring->irq_queue);
1930
1931         INIT_LIST_HEAD(&ring->buffers);
1932         INIT_LIST_HEAD(&ring->execlist_queue);
1933         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1934         spin_lock_init(&ring->execlist_lock);
1935
1936         ret = i915_cmd_parser_init_ring(ring);
1937         if (ret)
1938                 goto error;
1939
1940         ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1941         if (ret)
1942                 goto error;
1943
1944         /* As this is the default context, always pin it */
1945         ret = intel_lr_context_do_pin(
1946                         ring,
1947                         ring->default_context->engine[ring->id].state,
1948                         ring->default_context->engine[ring->id].ringbuf);
1949         if (ret) {
1950                 DRM_ERROR(
1951                         "Failed to pin and map ringbuffer %s: %d\n",
1952                         ring->name, ret);
1953                 goto error;
1954         }
1955
1956         return 0;
1957
1958 error:
1959         intel_logical_ring_cleanup(ring);
1960         return ret;
1961 }
1962
1963 static int logical_render_ring_init(struct drm_device *dev)
1964 {
1965         struct drm_i915_private *dev_priv = dev->dev_private;
1966         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1967         int ret;
1968
1969         ring->name = "render ring";
1970         ring->id = RCS;
1971         ring->mmio_base = RENDER_RING_BASE;
1972         ring->irq_enable_mask =
1973                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1974         ring->irq_keep_mask =
1975                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1976         if (HAS_L3_DPF(dev))
1977                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1978
1979         if (INTEL_INFO(dev)->gen >= 9)
1980                 ring->init_hw = gen9_init_render_ring;
1981         else
1982                 ring->init_hw = gen8_init_render_ring;
1983         ring->init_context = gen8_init_rcs_context;
1984         ring->cleanup = intel_fini_pipe_control;
1985         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1986                 ring->get_seqno = bxt_a_get_seqno;
1987                 ring->set_seqno = bxt_a_set_seqno;
1988         } else {
1989                 ring->get_seqno = gen8_get_seqno;
1990                 ring->set_seqno = gen8_set_seqno;
1991         }
1992         ring->emit_request = gen8_emit_request;
1993         ring->emit_flush = gen8_emit_flush_render;
1994         ring->irq_get = gen8_logical_ring_get_irq;
1995         ring->irq_put = gen8_logical_ring_put_irq;
1996         ring->emit_bb_start = gen8_emit_bb_start;
1997
1998         ring->dev = dev;
1999
2000         ret = intel_init_pipe_control(ring);
2001         if (ret)
2002                 return ret;
2003
2004         ret = intel_init_workaround_bb(ring);
2005         if (ret) {
2006                 /*
2007                  * We continue even if we fail to initialize WA batch
2008                  * because we only expect rare glitches but nothing
2009                  * critical to prevent us from using GPU
2010                  */
2011                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2012                           ret);
2013         }
2014
2015         ret = logical_ring_init(dev, ring);
2016         if (ret) {
2017                 lrc_destroy_wa_ctx_obj(ring);
2018         }
2019
2020         return ret;
2021 }
2022
2023 static int logical_bsd_ring_init(struct drm_device *dev)
2024 {
2025         struct drm_i915_private *dev_priv = dev->dev_private;
2026         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2027
2028         ring->name = "bsd ring";
2029         ring->id = VCS;
2030         ring->mmio_base = GEN6_BSD_RING_BASE;
2031         ring->irq_enable_mask =
2032                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2033         ring->irq_keep_mask =
2034                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2035
2036         ring->init_hw = gen8_init_common_ring;
2037         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2038                 ring->get_seqno = bxt_a_get_seqno;
2039                 ring->set_seqno = bxt_a_set_seqno;
2040         } else {
2041                 ring->get_seqno = gen8_get_seqno;
2042                 ring->set_seqno = gen8_set_seqno;
2043         }
2044         ring->emit_request = gen8_emit_request;
2045         ring->emit_flush = gen8_emit_flush;
2046         ring->irq_get = gen8_logical_ring_get_irq;
2047         ring->irq_put = gen8_logical_ring_put_irq;
2048         ring->emit_bb_start = gen8_emit_bb_start;
2049
2050         return logical_ring_init(dev, ring);
2051 }
2052
2053 static int logical_bsd2_ring_init(struct drm_device *dev)
2054 {
2055         struct drm_i915_private *dev_priv = dev->dev_private;
2056         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2057
2058         ring->name = "bds2 ring";
2059         ring->id = VCS2;
2060         ring->mmio_base = GEN8_BSD2_RING_BASE;
2061         ring->irq_enable_mask =
2062                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2063         ring->irq_keep_mask =
2064                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2065
2066         ring->init_hw = gen8_init_common_ring;
2067         ring->get_seqno = gen8_get_seqno;
2068         ring->set_seqno = gen8_set_seqno;
2069         ring->emit_request = gen8_emit_request;
2070         ring->emit_flush = gen8_emit_flush;
2071         ring->irq_get = gen8_logical_ring_get_irq;
2072         ring->irq_put = gen8_logical_ring_put_irq;
2073         ring->emit_bb_start = gen8_emit_bb_start;
2074
2075         return logical_ring_init(dev, ring);
2076 }
2077
2078 static int logical_blt_ring_init(struct drm_device *dev)
2079 {
2080         struct drm_i915_private *dev_priv = dev->dev_private;
2081         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2082
2083         ring->name = "blitter ring";
2084         ring->id = BCS;
2085         ring->mmio_base = BLT_RING_BASE;
2086         ring->irq_enable_mask =
2087                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2088         ring->irq_keep_mask =
2089                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2090
2091         ring->init_hw = gen8_init_common_ring;
2092         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2093                 ring->get_seqno = bxt_a_get_seqno;
2094                 ring->set_seqno = bxt_a_set_seqno;
2095         } else {
2096                 ring->get_seqno = gen8_get_seqno;
2097                 ring->set_seqno = gen8_set_seqno;
2098         }
2099         ring->emit_request = gen8_emit_request;
2100         ring->emit_flush = gen8_emit_flush;
2101         ring->irq_get = gen8_logical_ring_get_irq;
2102         ring->irq_put = gen8_logical_ring_put_irq;
2103         ring->emit_bb_start = gen8_emit_bb_start;
2104
2105         return logical_ring_init(dev, ring);
2106 }
2107
2108 static int logical_vebox_ring_init(struct drm_device *dev)
2109 {
2110         struct drm_i915_private *dev_priv = dev->dev_private;
2111         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2112
2113         ring->name = "video enhancement ring";
2114         ring->id = VECS;
2115         ring->mmio_base = VEBOX_RING_BASE;
2116         ring->irq_enable_mask =
2117                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2118         ring->irq_keep_mask =
2119                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2120
2121         ring->init_hw = gen8_init_common_ring;
2122         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2123                 ring->get_seqno = bxt_a_get_seqno;
2124                 ring->set_seqno = bxt_a_set_seqno;
2125         } else {
2126                 ring->get_seqno = gen8_get_seqno;
2127                 ring->set_seqno = gen8_set_seqno;
2128         }
2129         ring->emit_request = gen8_emit_request;
2130         ring->emit_flush = gen8_emit_flush;
2131         ring->irq_get = gen8_logical_ring_get_irq;
2132         ring->irq_put = gen8_logical_ring_put_irq;
2133         ring->emit_bb_start = gen8_emit_bb_start;
2134
2135         return logical_ring_init(dev, ring);
2136 }
2137
2138 /**
2139  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2140  * @dev: DRM device.
2141  *
2142  * This function inits the engines for an Execlists submission style (the equivalent in the
2143  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2144  * those engines that are present in the hardware.
2145  *
2146  * Return: non-zero if the initialization failed.
2147  */
2148 int intel_logical_rings_init(struct drm_device *dev)
2149 {
2150         struct drm_i915_private *dev_priv = dev->dev_private;
2151         int ret;
2152
2153         ret = logical_render_ring_init(dev);
2154         if (ret)
2155                 return ret;
2156
2157         if (HAS_BSD(dev)) {
2158                 ret = logical_bsd_ring_init(dev);
2159                 if (ret)
2160                         goto cleanup_render_ring;
2161         }
2162
2163         if (HAS_BLT(dev)) {
2164                 ret = logical_blt_ring_init(dev);
2165                 if (ret)
2166                         goto cleanup_bsd_ring;
2167         }
2168
2169         if (HAS_VEBOX(dev)) {
2170                 ret = logical_vebox_ring_init(dev);
2171                 if (ret)
2172                         goto cleanup_blt_ring;
2173         }
2174
2175         if (HAS_BSD2(dev)) {
2176                 ret = logical_bsd2_ring_init(dev);
2177                 if (ret)
2178                         goto cleanup_vebox_ring;
2179         }
2180
2181         return 0;
2182
2183 cleanup_vebox_ring:
2184         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2185 cleanup_blt_ring:
2186         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2187 cleanup_bsd_ring:
2188         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2189 cleanup_render_ring:
2190         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2191
2192         return ret;
2193 }
2194
2195 static u32
2196 make_rpcs(struct drm_device *dev)
2197 {
2198         u32 rpcs = 0;
2199
2200         /*
2201          * No explicit RPCS request is needed to ensure full
2202          * slice/subslice/EU enablement prior to Gen9.
2203         */
2204         if (INTEL_INFO(dev)->gen < 9)
2205                 return 0;
2206
2207         /*
2208          * Starting in Gen9, render power gating can leave
2209          * slice/subslice/EU in a partially enabled state. We
2210          * must make an explicit request through RPCS for full
2211          * enablement.
2212         */
2213         if (INTEL_INFO(dev)->has_slice_pg) {
2214                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2215                 rpcs |= INTEL_INFO(dev)->slice_total <<
2216                         GEN8_RPCS_S_CNT_SHIFT;
2217                 rpcs |= GEN8_RPCS_ENABLE;
2218         }
2219
2220         if (INTEL_INFO(dev)->has_subslice_pg) {
2221                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2222                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2223                         GEN8_RPCS_SS_CNT_SHIFT;
2224                 rpcs |= GEN8_RPCS_ENABLE;
2225         }
2226
2227         if (INTEL_INFO(dev)->has_eu_pg) {
2228                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2229                         GEN8_RPCS_EU_MIN_SHIFT;
2230                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2231                         GEN8_RPCS_EU_MAX_SHIFT;
2232                 rpcs |= GEN8_RPCS_ENABLE;
2233         }
2234
2235         return rpcs;
2236 }
2237
2238 static int
2239 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2240                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2241 {
2242         struct drm_device *dev = ring->dev;
2243         struct drm_i915_private *dev_priv = dev->dev_private;
2244         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2245         struct page *page;
2246         uint32_t *reg_state;
2247         int ret;
2248
2249         if (!ppgtt)
2250                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2251
2252         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2253         if (ret) {
2254                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2255                 return ret;
2256         }
2257
2258         ret = i915_gem_object_get_pages(ctx_obj);
2259         if (ret) {
2260                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2261                 return ret;
2262         }
2263
2264         i915_gem_object_pin_pages(ctx_obj);
2265
2266         /* The second page of the context object contains some fields which must
2267          * be set up prior to the first execution. */
2268         page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2269         reg_state = kmap_atomic(page);
2270
2271         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2272          * commands followed by (reg, value) pairs. The values we are setting here are
2273          * only for the first context restore: on a subsequent save, the GPU will
2274          * recreate this batchbuffer with new values (including all the missing
2275          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2276         reg_state[CTX_LRI_HEADER_0] =
2277                 MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2278         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2279                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2280                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2281                                           CTX_CTRL_RS_CTX_ENABLE));
2282         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2283         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
2284         /* Ring buffer start address is not known until the buffer is pinned.
2285          * It is written to the context image in execlists_update_context()
2286          */
2287         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2288         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2289                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2290         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2291         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2292         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2293                        RING_BB_PPGTT);
2294         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2295         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2296         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
2297         if (ring->id == RCS) {
2298                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2299                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2300                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
2301                 if (ring->wa_ctx.obj) {
2302                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2303                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2304
2305                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2306                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2307                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2308
2309                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2310                                 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2311
2312                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2313                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2314                                 0x01;
2315                 }
2316         }
2317         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2318         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2319         /* PDP values well be assigned later if needed */
2320         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2321         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2322         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2323         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2324         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2325         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2326         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2327         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
2328
2329         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2330                 /* 64b PPGTT (48bit canonical)
2331                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2332                  * other PDP Descriptors are ignored.
2333                  */
2334                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2335         } else {
2336                 /* 32b PPGTT
2337                  * PDP*_DESCRIPTOR contains the base address of space supported.
2338                  * With dynamic page allocation, PDPs may not be allocated at
2339                  * this point. Point the unallocated PDPs to the scratch page
2340                  */
2341                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2342                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2343                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2344                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2345         }
2346
2347         if (ring->id == RCS) {
2348                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2349                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2350                                make_rpcs(dev));
2351         }
2352
2353         kunmap_atomic(reg_state);
2354         i915_gem_object_unpin_pages(ctx_obj);
2355
2356         return 0;
2357 }
2358
2359 /**
2360  * intel_lr_context_free() - free the LRC specific bits of a context
2361  * @ctx: the LR context to free.
2362  *
2363  * The real context freeing is done in i915_gem_context_free: this only
2364  * takes care of the bits that are LRC related: the per-engine backing
2365  * objects and the logical ringbuffer.
2366  */
2367 void intel_lr_context_free(struct intel_context *ctx)
2368 {
2369         int i;
2370
2371         for (i = 0; i < I915_NUM_RINGS; i++) {
2372                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2373
2374                 if (ctx_obj) {
2375                         struct intel_ringbuffer *ringbuf =
2376                                         ctx->engine[i].ringbuf;
2377                         struct intel_engine_cs *ring = ringbuf->ring;
2378
2379                         if (ctx == ring->default_context) {
2380                                 intel_unpin_ringbuffer_obj(ringbuf);
2381                                 i915_gem_object_ggtt_unpin(ctx_obj);
2382                         }
2383                         WARN_ON(ctx->engine[ring->id].pin_count);
2384                         intel_ringbuffer_free(ringbuf);
2385                         drm_gem_object_unreference(&ctx_obj->base);
2386                 }
2387         }
2388 }
2389
2390 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2391 {
2392         int ret = 0;
2393
2394         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2395
2396         switch (ring->id) {
2397         case RCS:
2398                 if (INTEL_INFO(ring->dev)->gen >= 9)
2399                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2400                 else
2401                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2402                 break;
2403         case VCS:
2404         case BCS:
2405         case VECS:
2406         case VCS2:
2407                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2408                 break;
2409         }
2410
2411         return ret;
2412 }
2413
2414 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2415                 struct drm_i915_gem_object *default_ctx_obj)
2416 {
2417         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2418         struct page *page;
2419
2420         /* The HWSP is part of the default context object in LRC mode. */
2421         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2422                         + LRC_PPHWSP_PN * PAGE_SIZE;
2423         page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2424         ring->status_page.page_addr = kmap(page);
2425         ring->status_page.obj = default_ctx_obj;
2426
2427         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2428                         (u32)ring->status_page.gfx_addr);
2429         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2430 }
2431
2432 /**
2433  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2434  * @ctx: LR context to create.
2435  * @ring: engine to be used with the context.
2436  *
2437  * This function can be called more than once, with different engines, if we plan
2438  * to use the context with them. The context backing objects and the ringbuffers
2439  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2440  * the creation is a deferred call: it's better to make sure first that we need to use
2441  * a given ring with the context.
2442  *
2443  * Return: non-zero on error.
2444  */
2445
2446 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2447                                      struct intel_engine_cs *ring)
2448 {
2449         struct drm_device *dev = ring->dev;
2450         struct drm_i915_gem_object *ctx_obj;
2451         uint32_t context_size;
2452         struct intel_ringbuffer *ringbuf;
2453         int ret;
2454
2455         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2456         WARN_ON(ctx->engine[ring->id].state);
2457
2458         context_size = round_up(get_lr_context_size(ring), 4096);
2459
2460         /* One extra page as the sharing data between driver and GuC */
2461         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2462
2463         ctx_obj = i915_gem_alloc_object(dev, context_size);
2464         if (!ctx_obj) {
2465                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2466                 return -ENOMEM;
2467         }
2468
2469         ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2470         if (IS_ERR(ringbuf)) {
2471                 ret = PTR_ERR(ringbuf);
2472                 goto error_deref_obj;
2473         }
2474
2475         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2476         if (ret) {
2477                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2478                 goto error_ringbuf;
2479         }
2480
2481         ctx->engine[ring->id].ringbuf = ringbuf;
2482         ctx->engine[ring->id].state = ctx_obj;
2483
2484         if (ctx != ring->default_context && ring->init_context) {
2485                 struct drm_i915_gem_request *req;
2486
2487                 ret = i915_gem_request_alloc(ring,
2488                         ctx, &req);
2489                 if (ret) {
2490                         DRM_ERROR("ring create req: %d\n",
2491                                 ret);
2492                         goto error_ringbuf;
2493                 }
2494
2495                 ret = ring->init_context(req);
2496                 if (ret) {
2497                         DRM_ERROR("ring init context: %d\n",
2498                                 ret);
2499                         i915_gem_request_cancel(req);
2500                         goto error_ringbuf;
2501                 }
2502                 i915_add_request_no_flush(req);
2503         }
2504         return 0;
2505
2506 error_ringbuf:
2507         intel_ringbuffer_free(ringbuf);
2508 error_deref_obj:
2509         drm_gem_object_unreference(&ctx_obj->base);
2510         ctx->engine[ring->id].ringbuf = NULL;
2511         ctx->engine[ring->id].state = NULL;
2512         return ret;
2513 }
2514
2515 void intel_lr_context_reset(struct drm_device *dev,
2516                         struct intel_context *ctx)
2517 {
2518         struct drm_i915_private *dev_priv = dev->dev_private;
2519         struct intel_engine_cs *ring;
2520         int i;
2521
2522         for_each_ring(ring, dev_priv, i) {
2523                 struct drm_i915_gem_object *ctx_obj =
2524                                 ctx->engine[ring->id].state;
2525                 struct intel_ringbuffer *ringbuf =
2526                                 ctx->engine[ring->id].ringbuf;
2527                 uint32_t *reg_state;
2528                 struct page *page;
2529
2530                 if (!ctx_obj)
2531                         continue;
2532
2533                 if (i915_gem_object_get_pages(ctx_obj)) {
2534                         WARN(1, "Failed get_pages for context obj\n");
2535                         continue;
2536                 }
2537                 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2538                 reg_state = kmap_atomic(page);
2539
2540                 reg_state[CTX_RING_HEAD+1] = 0;
2541                 reg_state[CTX_RING_TAIL+1] = 0;
2542
2543                 kunmap_atomic(reg_state);
2544
2545                 ringbuf->head = 0;
2546                 ringbuf->tail = 0;
2547         }
2548 }