Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define RING_EXECLIST_QFULL             (1 << 0x2)
142 #define RING_EXECLIST1_VALID            (1 << 0x3)
143 #define RING_EXECLIST0_VALID            (1 << 0x4)
144 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
145 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
146 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
147
148 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
149 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
150 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
151 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
152 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
153 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
154
155 #define GEN8_CTX_STATUS_COMPLETED_MASK \
156          (GEN8_CTX_STATUS_ACTIVE_IDLE | \
157           GEN8_CTX_STATUS_PREEMPTED | \
158           GEN8_CTX_STATUS_ELEMENT_SWITCH)
159
160 #define CTX_LRI_HEADER_0                0x01
161 #define CTX_CONTEXT_CONTROL             0x02
162 #define CTX_RING_HEAD                   0x04
163 #define CTX_RING_TAIL                   0x06
164 #define CTX_RING_BUFFER_START           0x08
165 #define CTX_RING_BUFFER_CONTROL         0x0a
166 #define CTX_BB_HEAD_U                   0x0c
167 #define CTX_BB_HEAD_L                   0x0e
168 #define CTX_BB_STATE                    0x10
169 #define CTX_SECOND_BB_HEAD_U            0x12
170 #define CTX_SECOND_BB_HEAD_L            0x14
171 #define CTX_SECOND_BB_STATE             0x16
172 #define CTX_BB_PER_CTX_PTR              0x18
173 #define CTX_RCS_INDIRECT_CTX            0x1a
174 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
175 #define CTX_LRI_HEADER_1                0x21
176 #define CTX_CTX_TIMESTAMP               0x22
177 #define CTX_PDP3_UDW                    0x24
178 #define CTX_PDP3_LDW                    0x26
179 #define CTX_PDP2_UDW                    0x28
180 #define CTX_PDP2_LDW                    0x2a
181 #define CTX_PDP1_UDW                    0x2c
182 #define CTX_PDP1_LDW                    0x2e
183 #define CTX_PDP0_UDW                    0x30
184 #define CTX_PDP0_LDW                    0x32
185 #define CTX_LRI_HEADER_2                0x41
186 #define CTX_R_PWR_CLK_STATE             0x42
187 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
188
189 #define CTX_REG(reg_state, pos, reg, val) do { \
190         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191         (reg_state)[(pos)+1] = (val); \
192 } while (0)
193
194 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
195         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
196         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 } while (0)
199
200 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
202         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203 } while (0)
204
205 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
206 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
207 #define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT       0x19
208
209 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
210 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
211 #define WA_TAIL_DWORDS 2
212 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
213 #define PREEMPT_ID 0x1
214
215 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
216                                             struct intel_engine_cs *engine);
217 static void execlists_init_reg_state(u32 *reg_state,
218                                      struct i915_gem_context *ctx,
219                                      struct intel_engine_cs *engine,
220                                      struct intel_ring *ring);
221
222 /**
223  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
224  * @dev_priv: i915 device private
225  * @enable_execlists: value of i915.enable_execlists module parameter.
226  *
227  * Only certain platforms support Execlists (the prerequisites being
228  * support for Logical Ring Contexts and Aliasing PPGTT or better).
229  *
230  * Return: 1 if Execlists is supported and has to be enabled.
231  */
232 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
233 {
234         /* On platforms with execlist available, vGPU will only
235          * support execlist mode, no ring buffer mode.
236          */
237         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
238                 return 1;
239
240         if (INTEL_GEN(dev_priv) >= 9)
241                 return 1;
242
243         if (enable_execlists == 0)
244                 return 0;
245
246         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
247             USES_PPGTT(dev_priv))
248                 return 1;
249
250         return 0;
251 }
252
253 /**
254  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
255  *                                        descriptor for a pinned context
256  * @ctx: Context to work on
257  * @engine: Engine the descriptor will be used with
258  *
259  * The context descriptor encodes various attributes of a context,
260  * including its GTT address and some flags. Because it's fairly
261  * expensive to calculate, we'll just do it once and cache the result,
262  * which remains valid until the context is unpinned.
263  *
264  * This is what a descriptor looks like, from LSB to MSB::
265  *
266  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
267  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
268  *      bits 32-52:    ctx ID, a globally unique tag
269  *      bits 53-54:    mbz, reserved for use by hardware
270  *      bits 55-63:    group ID, currently unused and set to 0
271  */
272 static void
273 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
274                                    struct intel_engine_cs *engine)
275 {
276         struct intel_context *ce = &ctx->engine[engine->id];
277         u64 desc;
278
279         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
280
281         desc = ctx->desc_template;                              /* bits  0-11 */
282         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
283                                                                 /* bits 12-31 */
284         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
285
286         ce->lrc_desc = desc;
287 }
288
289 static struct i915_priolist *
290 lookup_priolist(struct intel_engine_cs *engine,
291                 struct i915_priotree *pt,
292                 int prio)
293 {
294         struct intel_engine_execlists * const execlists = &engine->execlists;
295         struct i915_priolist *p;
296         struct rb_node **parent, *rb;
297         bool first = true;
298
299         if (unlikely(execlists->no_priolist))
300                 prio = I915_PRIORITY_NORMAL;
301
302 find_priolist:
303         /* most positive priority is scheduled first, equal priorities fifo */
304         rb = NULL;
305         parent = &execlists->queue.rb_node;
306         while (*parent) {
307                 rb = *parent;
308                 p = rb_entry(rb, typeof(*p), node);
309                 if (prio > p->priority) {
310                         parent = &rb->rb_left;
311                 } else if (prio < p->priority) {
312                         parent = &rb->rb_right;
313                         first = false;
314                 } else {
315                         return p;
316                 }
317         }
318
319         if (prio == I915_PRIORITY_NORMAL) {
320                 p = &execlists->default_priolist;
321         } else {
322                 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
323                 /* Convert an allocation failure to a priority bump */
324                 if (unlikely(!p)) {
325                         prio = I915_PRIORITY_NORMAL; /* recurses just once */
326
327                         /* To maintain ordering with all rendering, after an
328                          * allocation failure we have to disable all scheduling.
329                          * Requests will then be executed in fifo, and schedule
330                          * will ensure that dependencies are emitted in fifo.
331                          * There will be still some reordering with existing
332                          * requests, so if userspace lied about their
333                          * dependencies that reordering may be visible.
334                          */
335                         execlists->no_priolist = true;
336                         goto find_priolist;
337                 }
338         }
339
340         p->priority = prio;
341         INIT_LIST_HEAD(&p->requests);
342         rb_link_node(&p->node, rb, parent);
343         rb_insert_color(&p->node, &execlists->queue);
344
345         if (first)
346                 execlists->first = &p->node;
347
348         return ptr_pack_bits(p, first, 1);
349 }
350
351 static void unwind_wa_tail(struct drm_i915_gem_request *rq)
352 {
353         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
354         assert_ring_tail_valid(rq->ring, rq->tail);
355 }
356
357 static void unwind_incomplete_requests(struct intel_engine_cs *engine)
358 {
359         struct drm_i915_gem_request *rq, *rn;
360         struct i915_priolist *uninitialized_var(p);
361         int last_prio = I915_PRIORITY_INVALID;
362
363         lockdep_assert_held(&engine->timeline->lock);
364
365         list_for_each_entry_safe_reverse(rq, rn,
366                                          &engine->timeline->requests,
367                                          link) {
368                 if (i915_gem_request_completed(rq))
369                         return;
370
371                 __i915_gem_request_unsubmit(rq);
372                 unwind_wa_tail(rq);
373
374                 GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
375                 if (rq->priotree.priority != last_prio) {
376                         p = lookup_priolist(engine,
377                                             &rq->priotree,
378                                             rq->priotree.priority);
379                         p = ptr_mask_bits(p, 1);
380
381                         last_prio = rq->priotree.priority;
382                 }
383
384                 list_add(&rq->priotree.link, &p->requests);
385         }
386 }
387
388 static inline void
389 execlists_context_status_change(struct drm_i915_gem_request *rq,
390                                 unsigned long status)
391 {
392         /*
393          * Only used when GVT-g is enabled now. When GVT-g is disabled,
394          * The compiler should eliminate this function as dead-code.
395          */
396         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
397                 return;
398
399         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
400                                    status, rq);
401 }
402
403 static void
404 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
405 {
406         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
407         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
408         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
409         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
410 }
411
412 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
413 {
414         struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
415         struct i915_hw_ppgtt *ppgtt =
416                 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
417         u32 *reg_state = ce->lrc_reg_state;
418
419         reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
420
421         /* True 32b PPGTT with dynamic page allocation: update PDP
422          * registers and point the unallocated PDPs to scratch page.
423          * PML4 is allocated during ppgtt init, so this is not needed
424          * in 48-bit mode.
425          */
426         if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
427                 execlists_update_context_pdps(ppgtt, reg_state);
428
429         return ce->lrc_desc;
430 }
431
432 static inline void elsp_write(u64 desc, u32 __iomem *elsp)
433 {
434         writel(upper_32_bits(desc), elsp);
435         writel(lower_32_bits(desc), elsp);
436 }
437
438 static void execlists_submit_ports(struct intel_engine_cs *engine)
439 {
440         struct execlist_port *port = engine->execlists.port;
441         u32 __iomem *elsp =
442                 engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
443         unsigned int n;
444
445         for (n = execlists_num_ports(&engine->execlists); n--; ) {
446                 struct drm_i915_gem_request *rq;
447                 unsigned int count;
448                 u64 desc;
449
450                 rq = port_unpack(&port[n], &count);
451                 if (rq) {
452                         GEM_BUG_ON(count > !n);
453                         if (!count++)
454                                 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
455                         port_set(&port[n], port_pack(rq, count));
456                         desc = execlists_update_context(rq);
457                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
458                 } else {
459                         GEM_BUG_ON(!n);
460                         desc = 0;
461                 }
462
463                 elsp_write(desc, elsp);
464         }
465 }
466
467 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
468 {
469         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
470                 i915_gem_context_force_single_submission(ctx));
471 }
472
473 static bool can_merge_ctx(const struct i915_gem_context *prev,
474                           const struct i915_gem_context *next)
475 {
476         if (prev != next)
477                 return false;
478
479         if (ctx_single_port_submission(prev))
480                 return false;
481
482         return true;
483 }
484
485 static void port_assign(struct execlist_port *port,
486                         struct drm_i915_gem_request *rq)
487 {
488         GEM_BUG_ON(rq == port_request(port));
489
490         if (port_isset(port))
491                 i915_gem_request_put(port_request(port));
492
493         port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
494 }
495
496 static void inject_preempt_context(struct intel_engine_cs *engine)
497 {
498         struct intel_context *ce =
499                 &engine->i915->preempt_context->engine[engine->id];
500         u32 __iomem *elsp =
501                 engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
502         unsigned int n;
503
504         GEM_BUG_ON(engine->i915->preempt_context->hw_id != PREEMPT_ID);
505         GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));
506
507         memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
508         ce->ring->tail += WA_TAIL_BYTES;
509         ce->ring->tail &= (ce->ring->size - 1);
510         ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;
511
512         for (n = execlists_num_ports(&engine->execlists); --n; )
513                 elsp_write(0, elsp);
514
515         elsp_write(ce->lrc_desc, elsp);
516 }
517
518 static bool can_preempt(struct intel_engine_cs *engine)
519 {
520         return INTEL_INFO(engine->i915)->has_logical_ring_preemption;
521 }
522
523 static void execlists_dequeue(struct intel_engine_cs *engine)
524 {
525         struct intel_engine_execlists * const execlists = &engine->execlists;
526         struct execlist_port *port = execlists->port;
527         const struct execlist_port * const last_port =
528                 &execlists->port[execlists->port_mask];
529         struct drm_i915_gem_request *last = port_request(port);
530         struct rb_node *rb;
531         bool submit = false;
532
533         /* Hardware submission is through 2 ports. Conceptually each port
534          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
535          * static for a context, and unique to each, so we only execute
536          * requests belonging to a single context from each ring. RING_HEAD
537          * is maintained by the CS in the context image, it marks the place
538          * where it got up to last time, and through RING_TAIL we tell the CS
539          * where we want to execute up to this time.
540          *
541          * In this list the requests are in order of execution. Consecutive
542          * requests from the same context are adjacent in the ringbuffer. We
543          * can combine these requests into a single RING_TAIL update:
544          *
545          *              RING_HEAD...req1...req2
546          *                                    ^- RING_TAIL
547          * since to execute req2 the CS must first execute req1.
548          *
549          * Our goal then is to point each port to the end of a consecutive
550          * sequence of requests as being the most optimal (fewest wake ups
551          * and context switches) submission.
552          */
553
554         spin_lock_irq(&engine->timeline->lock);
555         rb = execlists->first;
556         GEM_BUG_ON(rb_first(&execlists->queue) != rb);
557         if (!rb)
558                 goto unlock;
559
560         if (last) {
561                 /*
562                  * Don't resubmit or switch until all outstanding
563                  * preemptions (lite-restore) are seen. Then we
564                  * know the next preemption status we see corresponds
565                  * to this ELSP update.
566                  */
567                 if (port_count(&port[0]) > 1)
568                         goto unlock;
569
570                 if (can_preempt(engine) &&
571                     rb_entry(rb, struct i915_priolist, node)->priority >
572                     max(last->priotree.priority, 0)) {
573                         /*
574                          * Switch to our empty preempt context so
575                          * the state of the GPU is known (idle).
576                          */
577                         inject_preempt_context(engine);
578                         execlists_set_active(execlists,
579                                              EXECLISTS_ACTIVE_PREEMPT);
580                         goto unlock;
581                 } else {
582                         /*
583                          * In theory, we could coalesce more requests onto
584                          * the second port (the first port is active, with
585                          * no preemptions pending). However, that means we
586                          * then have to deal with the possible lite-restore
587                          * of the second port (as we submit the ELSP, there
588                          * may be a context-switch) but also we may complete
589                          * the resubmission before the context-switch. Ergo,
590                          * coalescing onto the second port will cause a
591                          * preemption event, but we cannot predict whether
592                          * that will affect port[0] or port[1].
593                          *
594                          * If the second port is already active, we can wait
595                          * until the next context-switch before contemplating
596                          * new requests. The GPU will be busy and we should be
597                          * able to resubmit the new ELSP before it idles,
598                          * avoiding pipeline bubbles (momentary pauses where
599                          * the driver is unable to keep up the supply of new
600                          * work).
601                          */
602                         if (port_count(&port[1]))
603                                 goto unlock;
604
605                         /* WaIdleLiteRestore:bdw,skl
606                          * Apply the wa NOOPs to prevent
607                          * ring:HEAD == req:TAIL as we resubmit the
608                          * request. See gen8_emit_breadcrumb() for
609                          * where we prepare the padding after the
610                          * end of the request.
611                          */
612                         last->tail = last->wa_tail;
613                 }
614         }
615
616         do {
617                 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
618                 struct drm_i915_gem_request *rq, *rn;
619
620                 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
621                         /*
622                          * Can we combine this request with the current port?
623                          * It has to be the same context/ringbuffer and not
624                          * have any exceptions (e.g. GVT saying never to
625                          * combine contexts).
626                          *
627                          * If we can combine the requests, we can execute both
628                          * by updating the RING_TAIL to point to the end of the
629                          * second request, and so we never need to tell the
630                          * hardware about the first.
631                          */
632                         if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
633                                 /*
634                                  * If we are on the second port and cannot
635                                  * combine this request with the last, then we
636                                  * are done.
637                                  */
638                                 if (port == last_port) {
639                                         __list_del_many(&p->requests,
640                                                         &rq->priotree.link);
641                                         goto done;
642                                 }
643
644                                 /*
645                                  * If GVT overrides us we only ever submit
646                                  * port[0], leaving port[1] empty. Note that we
647                                  * also have to be careful that we don't queue
648                                  * the same context (even though a different
649                                  * request) to the second port.
650                                  */
651                                 if (ctx_single_port_submission(last->ctx) ||
652                                     ctx_single_port_submission(rq->ctx)) {
653                                         __list_del_many(&p->requests,
654                                                         &rq->priotree.link);
655                                         goto done;
656                                 }
657
658                                 GEM_BUG_ON(last->ctx == rq->ctx);
659
660                                 if (submit)
661                                         port_assign(port, last);
662                                 port++;
663
664                                 GEM_BUG_ON(port_isset(port));
665                         }
666
667                         INIT_LIST_HEAD(&rq->priotree.link);
668                         __i915_gem_request_submit(rq);
669                         trace_i915_gem_request_in(rq, port_index(port, execlists));
670                         last = rq;
671                         submit = true;
672                 }
673
674                 rb = rb_next(rb);
675                 rb_erase(&p->node, &execlists->queue);
676                 INIT_LIST_HEAD(&p->requests);
677                 if (p->priority != I915_PRIORITY_NORMAL)
678                         kmem_cache_free(engine->i915->priorities, p);
679         } while (rb);
680 done:
681         execlists->first = rb;
682         if (submit)
683                 port_assign(port, last);
684 unlock:
685         spin_unlock_irq(&engine->timeline->lock);
686
687         if (submit) {
688                 execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
689                 execlists_submit_ports(engine);
690         }
691 }
692
693 static void
694 execlist_cancel_port_requests(struct intel_engine_execlists *execlists)
695 {
696         struct execlist_port *port = execlists->port;
697         unsigned int num_ports = execlists_num_ports(execlists);
698
699         while (num_ports-- && port_isset(port)) {
700                 struct drm_i915_gem_request *rq = port_request(port);
701
702                 GEM_BUG_ON(!execlists->active);
703                 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
704                 i915_gem_request_put(rq);
705
706                 memset(port, 0, sizeof(*port));
707                 port++;
708         }
709 }
710
711 static void execlists_cancel_requests(struct intel_engine_cs *engine)
712 {
713         struct intel_engine_execlists * const execlists = &engine->execlists;
714         struct drm_i915_gem_request *rq, *rn;
715         struct rb_node *rb;
716         unsigned long flags;
717
718         spin_lock_irqsave(&engine->timeline->lock, flags);
719
720         /* Cancel the requests on the HW and clear the ELSP tracker. */
721         execlist_cancel_port_requests(execlists);
722
723         /* Mark all executing requests as skipped. */
724         list_for_each_entry(rq, &engine->timeline->requests, link) {
725                 GEM_BUG_ON(!rq->global_seqno);
726                 if (!i915_gem_request_completed(rq))
727                         dma_fence_set_error(&rq->fence, -EIO);
728         }
729
730         /* Flush the queued requests to the timeline list (for retiring). */
731         rb = execlists->first;
732         while (rb) {
733                 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
734
735                 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
736                         INIT_LIST_HEAD(&rq->priotree.link);
737
738                         dma_fence_set_error(&rq->fence, -EIO);
739                         __i915_gem_request_submit(rq);
740                 }
741
742                 rb = rb_next(rb);
743                 rb_erase(&p->node, &execlists->queue);
744                 INIT_LIST_HEAD(&p->requests);
745                 if (p->priority != I915_PRIORITY_NORMAL)
746                         kmem_cache_free(engine->i915->priorities, p);
747         }
748
749         /* Remaining _unready_ requests will be nop'ed when submitted */
750
751
752         execlists->queue = RB_ROOT;
753         execlists->first = NULL;
754         GEM_BUG_ON(port_isset(execlists->port));
755
756         /*
757          * The port is checked prior to scheduling a tasklet, but
758          * just in case we have suspended the tasklet to do the
759          * wedging make sure that when it wakes, it decides there
760          * is no work to do by clearing the irq_posted bit.
761          */
762         clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
763
764         spin_unlock_irqrestore(&engine->timeline->lock, flags);
765 }
766
767 /*
768  * Check the unread Context Status Buffers and manage the submission of new
769  * contexts to the ELSP accordingly.
770  */
771 static void intel_lrc_irq_handler(unsigned long data)
772 {
773         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
774         struct intel_engine_execlists * const execlists = &engine->execlists;
775         struct execlist_port * const port = execlists->port;
776         struct drm_i915_private *dev_priv = engine->i915;
777
778         /* We can skip acquiring intel_runtime_pm_get() here as it was taken
779          * on our behalf by the request (see i915_gem_mark_busy()) and it will
780          * not be relinquished until the device is idle (see
781          * i915_gem_idle_work_handler()). As a precaution, we make sure
782          * that all ELSP are drained i.e. we have processed the CSB,
783          * before allowing ourselves to idle and calling intel_runtime_pm_put().
784          */
785         GEM_BUG_ON(!dev_priv->gt.awake);
786
787         intel_uncore_forcewake_get(dev_priv, execlists->fw_domains);
788
789         /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
790          * imposing the cost of a locked atomic transaction when submitting a
791          * new request (outside of the context-switch interrupt).
792          */
793         while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
794                 /* The HWSP contains a (cacheable) mirror of the CSB */
795                 const u32 *buf =
796                         &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
797                 unsigned int head, tail;
798
799                 if (unlikely(execlists->csb_use_mmio)) {
800                         buf = (u32 * __force)
801                                 (dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
802                         execlists->csb_head = -1; /* force mmio read of CSB ptrs */
803                 }
804
805                 /* The write will be ordered by the uncached read (itself
806                  * a memory barrier), so we do not need another in the form
807                  * of a locked instruction. The race between the interrupt
808                  * handler and the split test/clear is harmless as we order
809                  * our clear before the CSB read. If the interrupt arrived
810                  * first between the test and the clear, we read the updated
811                  * CSB and clear the bit. If the interrupt arrives as we read
812                  * the CSB or later (i.e. after we had cleared the bit) the bit
813                  * is set and we do a new loop.
814                  */
815                 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
816                 if (unlikely(execlists->csb_head == -1)) { /* following a reset */
817                         head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
818                         tail = GEN8_CSB_WRITE_PTR(head);
819                         head = GEN8_CSB_READ_PTR(head);
820                         execlists->csb_head = head;
821                 } else {
822                         const int write_idx =
823                                 intel_hws_csb_write_index(dev_priv) -
824                                 I915_HWS_CSB_BUF0_INDEX;
825
826                         head = execlists->csb_head;
827                         tail = READ_ONCE(buf[write_idx]);
828                 }
829
830                 while (head != tail) {
831                         struct drm_i915_gem_request *rq;
832                         unsigned int status;
833                         unsigned int count;
834
835                         if (++head == GEN8_CSB_ENTRIES)
836                                 head = 0;
837
838                         /* We are flying near dragons again.
839                          *
840                          * We hold a reference to the request in execlist_port[]
841                          * but no more than that. We are operating in softirq
842                          * context and so cannot hold any mutex or sleep. That
843                          * prevents us stopping the requests we are processing
844                          * in port[] from being retired simultaneously (the
845                          * breadcrumb will be complete before we see the
846                          * context-switch). As we only hold the reference to the
847                          * request, any pointer chasing underneath the request
848                          * is subject to a potential use-after-free. Thus we
849                          * store all of the bookkeeping within port[] as
850                          * required, and avoid using unguarded pointers beneath
851                          * request itself. The same applies to the atomic
852                          * status notifier.
853                          */
854
855                         status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
856                         if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
857                                 continue;
858
859                         if (status & GEN8_CTX_STATUS_ACTIVE_IDLE &&
860                             buf[2*head + 1] == PREEMPT_ID) {
861                                 execlist_cancel_port_requests(execlists);
862
863                                 spin_lock_irq(&engine->timeline->lock);
864                                 unwind_incomplete_requests(engine);
865                                 spin_unlock_irq(&engine->timeline->lock);
866
867                                 GEM_BUG_ON(!execlists_is_active(execlists,
868                                                                 EXECLISTS_ACTIVE_PREEMPT));
869                                 execlists_clear_active(execlists,
870                                                        EXECLISTS_ACTIVE_PREEMPT);
871                                 continue;
872                         }
873
874                         if (status & GEN8_CTX_STATUS_PREEMPTED &&
875                             execlists_is_active(execlists,
876                                                 EXECLISTS_ACTIVE_PREEMPT))
877                                 continue;
878
879                         GEM_BUG_ON(!execlists_is_active(execlists,
880                                                         EXECLISTS_ACTIVE_USER));
881
882                         /* Check the context/desc id for this event matches */
883                         GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
884
885                         rq = port_unpack(port, &count);
886                         GEM_BUG_ON(count == 0);
887                         if (--count == 0) {
888                                 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
889                                 GEM_BUG_ON(!i915_gem_request_completed(rq));
890                                 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
891
892                                 trace_i915_gem_request_out(rq);
893                                 i915_gem_request_put(rq);
894
895                                 execlists_port_complete(execlists, port);
896                         } else {
897                                 port_set(port, port_pack(rq, count));
898                         }
899
900                         /* After the final element, the hw should be idle */
901                         GEM_BUG_ON(port_count(port) == 0 &&
902                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
903                         if (port_count(port) == 0)
904                                 execlists_clear_active(execlists,
905                                                        EXECLISTS_ACTIVE_USER);
906                 }
907
908                 if (head != execlists->csb_head) {
909                         execlists->csb_head = head;
910                         writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
911                                dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
912                 }
913         }
914
915         if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
916                 execlists_dequeue(engine);
917
918         intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
919 }
920
921 static void insert_request(struct intel_engine_cs *engine,
922                            struct i915_priotree *pt,
923                            int prio)
924 {
925         struct i915_priolist *p = lookup_priolist(engine, pt, prio);
926
927         list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
928         if (ptr_unmask_bits(p, 1))
929                 tasklet_hi_schedule(&engine->execlists.irq_tasklet);
930 }
931
932 static void execlists_submit_request(struct drm_i915_gem_request *request)
933 {
934         struct intel_engine_cs *engine = request->engine;
935         unsigned long flags;
936
937         /* Will be called from irq-context when using foreign fences. */
938         spin_lock_irqsave(&engine->timeline->lock, flags);
939
940         insert_request(engine, &request->priotree, request->priotree.priority);
941
942         GEM_BUG_ON(!engine->execlists.first);
943         GEM_BUG_ON(list_empty(&request->priotree.link));
944
945         spin_unlock_irqrestore(&engine->timeline->lock, flags);
946 }
947
948 static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
949 {
950         return container_of(pt, struct drm_i915_gem_request, priotree);
951 }
952
953 static struct intel_engine_cs *
954 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
955 {
956         struct intel_engine_cs *engine = pt_to_request(pt)->engine;
957
958         GEM_BUG_ON(!locked);
959
960         if (engine != locked) {
961                 spin_unlock(&locked->timeline->lock);
962                 spin_lock(&engine->timeline->lock);
963         }
964
965         return engine;
966 }
967
968 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
969 {
970         struct intel_engine_cs *engine;
971         struct i915_dependency *dep, *p;
972         struct i915_dependency stack;
973         LIST_HEAD(dfs);
974
975         GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
976
977         if (i915_gem_request_completed(request))
978                 return;
979
980         if (prio <= READ_ONCE(request->priotree.priority))
981                 return;
982
983         /* Need BKL in order to use the temporary link inside i915_dependency */
984         lockdep_assert_held(&request->i915->drm.struct_mutex);
985
986         stack.signaler = &request->priotree;
987         list_add(&stack.dfs_link, &dfs);
988
989         /* Recursively bump all dependent priorities to match the new request.
990          *
991          * A naive approach would be to use recursion:
992          * static void update_priorities(struct i915_priotree *pt, prio) {
993          *      list_for_each_entry(dep, &pt->signalers_list, signal_link)
994          *              update_priorities(dep->signal, prio)
995          *      insert_request(pt);
996          * }
997          * but that may have unlimited recursion depth and so runs a very
998          * real risk of overunning the kernel stack. Instead, we build
999          * a flat list of all dependencies starting with the current request.
1000          * As we walk the list of dependencies, we add all of its dependencies
1001          * to the end of the list (this may include an already visited
1002          * request) and continue to walk onwards onto the new dependencies. The
1003          * end result is a topological list of requests in reverse order, the
1004          * last element in the list is the request we must execute first.
1005          */
1006         list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
1007                 struct i915_priotree *pt = dep->signaler;
1008
1009                 /* Within an engine, there can be no cycle, but we may
1010                  * refer to the same dependency chain multiple times
1011                  * (redundant dependencies are not eliminated) and across
1012                  * engines.
1013                  */
1014                 list_for_each_entry(p, &pt->signalers_list, signal_link) {
1015                         if (i915_gem_request_completed(pt_to_request(p->signaler)))
1016                                 continue;
1017
1018                         GEM_BUG_ON(p->signaler->priority < pt->priority);
1019                         if (prio > READ_ONCE(p->signaler->priority))
1020                                 list_move_tail(&p->dfs_link, &dfs);
1021                 }
1022
1023                 list_safe_reset_next(dep, p, dfs_link);
1024         }
1025
1026         /* If we didn't need to bump any existing priorities, and we haven't
1027          * yet submitted this request (i.e. there is no potential race with
1028          * execlists_submit_request()), we can set our own priority and skip
1029          * acquiring the engine locks.
1030          */
1031         if (request->priotree.priority == I915_PRIORITY_INVALID) {
1032                 GEM_BUG_ON(!list_empty(&request->priotree.link));
1033                 request->priotree.priority = prio;
1034                 if (stack.dfs_link.next == stack.dfs_link.prev)
1035                         return;
1036                 __list_del_entry(&stack.dfs_link);
1037         }
1038
1039         engine = request->engine;
1040         spin_lock_irq(&engine->timeline->lock);
1041
1042         /* Fifo and depth-first replacement ensure our deps execute before us */
1043         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1044                 struct i915_priotree *pt = dep->signaler;
1045
1046                 INIT_LIST_HEAD(&dep->dfs_link);
1047
1048                 engine = pt_lock_engine(pt, engine);
1049
1050                 if (prio <= pt->priority)
1051                         continue;
1052
1053                 pt->priority = prio;
1054                 if (!list_empty(&pt->link)) {
1055                         __list_del_entry(&pt->link);
1056                         insert_request(engine, pt, prio);
1057                 }
1058         }
1059
1060         spin_unlock_irq(&engine->timeline->lock);
1061 }
1062
1063 static struct intel_ring *
1064 execlists_context_pin(struct intel_engine_cs *engine,
1065                       struct i915_gem_context *ctx)
1066 {
1067         struct intel_context *ce = &ctx->engine[engine->id];
1068         unsigned int flags;
1069         void *vaddr;
1070         int ret;
1071
1072         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1073
1074         if (likely(ce->pin_count++))
1075                 goto out;
1076         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1077
1078         if (!ce->state) {
1079                 ret = execlists_context_deferred_alloc(ctx, engine);
1080                 if (ret)
1081                         goto err;
1082         }
1083         GEM_BUG_ON(!ce->state);
1084
1085         flags = PIN_GLOBAL | PIN_HIGH;
1086         if (ctx->ggtt_offset_bias)
1087                 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1088
1089         ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1090         if (ret)
1091                 goto err;
1092
1093         vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1094         if (IS_ERR(vaddr)) {
1095                 ret = PTR_ERR(vaddr);
1096                 goto unpin_vma;
1097         }
1098
1099         ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1100         if (ret)
1101                 goto unpin_map;
1102
1103         intel_lr_context_descriptor_update(ctx, engine);
1104
1105         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1106         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1107                 i915_ggtt_offset(ce->ring->vma);
1108
1109         ce->state->obj->mm.dirty = true;
1110         ce->state->obj->pin_global++;
1111
1112         i915_gem_context_get(ctx);
1113 out:
1114         return ce->ring;
1115
1116 unpin_map:
1117         i915_gem_object_unpin_map(ce->state->obj);
1118 unpin_vma:
1119         __i915_vma_unpin(ce->state);
1120 err:
1121         ce->pin_count = 0;
1122         return ERR_PTR(ret);
1123 }
1124
1125 static void execlists_context_unpin(struct intel_engine_cs *engine,
1126                                     struct i915_gem_context *ctx)
1127 {
1128         struct intel_context *ce = &ctx->engine[engine->id];
1129
1130         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1131         GEM_BUG_ON(ce->pin_count == 0);
1132
1133         if (--ce->pin_count)
1134                 return;
1135
1136         intel_ring_unpin(ce->ring);
1137
1138         ce->state->obj->pin_global--;
1139         i915_gem_object_unpin_map(ce->state->obj);
1140         i915_vma_unpin(ce->state);
1141
1142         i915_gem_context_put(ctx);
1143 }
1144
1145 static int execlists_request_alloc(struct drm_i915_gem_request *request)
1146 {
1147         struct intel_engine_cs *engine = request->engine;
1148         struct intel_context *ce = &request->ctx->engine[engine->id];
1149         u32 *cs;
1150         int ret;
1151
1152         GEM_BUG_ON(!ce->pin_count);
1153
1154         /* Flush enough space to reduce the likelihood of waiting after
1155          * we start building the request - in which case we will just
1156          * have to repeat work.
1157          */
1158         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1159
1160         cs = intel_ring_begin(request, 0);
1161         if (IS_ERR(cs))
1162                 return PTR_ERR(cs);
1163
1164         if (!ce->initialised) {
1165                 ret = engine->init_context(request);
1166                 if (ret)
1167                         return ret;
1168
1169                 ce->initialised = true;
1170         }
1171
1172         /* Note that after this point, we have committed to using
1173          * this request as it is being used to both track the
1174          * state of engine initialisation and liveness of the
1175          * golden renderstate above. Think twice before you try
1176          * to cancel/unwind this request now.
1177          */
1178
1179         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1180         return 0;
1181 }
1182
1183 /*
1184  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1185  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1186  * but there is a slight complication as this is applied in WA batch where the
1187  * values are only initialized once so we cannot take register value at the
1188  * beginning and reuse it further; hence we save its value to memory, upload a
1189  * constant value with bit21 set and then we restore it back with the saved value.
1190  * To simplify the WA, a constant value is formed by using the default value
1191  * of this register. This shouldn't be a problem because we are only modifying
1192  * it for a short period and this batch in non-premptible. We can ofcourse
1193  * use additional instructions that read the actual value of the register
1194  * at that time and set our bit of interest but it makes the WA complicated.
1195  *
1196  * This WA is also required for Gen9 so extracting as a function avoids
1197  * code duplication.
1198  */
1199 static u32 *
1200 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1201 {
1202         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1203         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1204         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1205         *batch++ = 0;
1206
1207         *batch++ = MI_LOAD_REGISTER_IMM(1);
1208         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1209         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1210
1211         batch = gen8_emit_pipe_control(batch,
1212                                        PIPE_CONTROL_CS_STALL |
1213                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1214                                        0);
1215
1216         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1217         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1218         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1219         *batch++ = 0;
1220
1221         return batch;
1222 }
1223
1224 /*
1225  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1226  * initialized at the beginning and shared across all contexts but this field
1227  * helps us to have multiple batches at different offsets and select them based
1228  * on a criteria. At the moment this batch always start at the beginning of the page
1229  * and at this point we don't have multiple wa_ctx batch buffers.
1230  *
1231  * The number of WA applied are not known at the beginning; we use this field
1232  * to return the no of DWORDS written.
1233  *
1234  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1235  * so it adds NOOPs as padding to make it cacheline aligned.
1236  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1237  * makes a complete batch buffer.
1238  */
1239 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1240 {
1241         /* WaDisableCtxRestoreArbitration:bdw,chv */
1242         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1243
1244         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1245         if (IS_BROADWELL(engine->i915))
1246                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1247
1248         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1249         /* Actual scratch location is at 128 bytes offset */
1250         batch = gen8_emit_pipe_control(batch,
1251                                        PIPE_CONTROL_FLUSH_L3 |
1252                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1253                                        PIPE_CONTROL_CS_STALL |
1254                                        PIPE_CONTROL_QW_WRITE,
1255                                        i915_ggtt_offset(engine->scratch) +
1256                                        2 * CACHELINE_BYTES);
1257
1258         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1259
1260         /* Pad to end of cacheline */
1261         while ((unsigned long)batch % CACHELINE_BYTES)
1262                 *batch++ = MI_NOOP;
1263
1264         /*
1265          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1266          * execution depends on the length specified in terms of cache lines
1267          * in the register CTX_RCS_INDIRECT_CTX
1268          */
1269
1270         return batch;
1271 }
1272
1273 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1274 {
1275         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1276
1277         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1278         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1279
1280         /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1281         *batch++ = MI_LOAD_REGISTER_IMM(1);
1282         *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1283         *batch++ = _MASKED_BIT_DISABLE(
1284                         GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1285         *batch++ = MI_NOOP;
1286
1287         /* WaClearSlmSpaceAtContextSwitch:kbl */
1288         /* Actual scratch location is at 128 bytes offset */
1289         if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1290                 batch = gen8_emit_pipe_control(batch,
1291                                                PIPE_CONTROL_FLUSH_L3 |
1292                                                PIPE_CONTROL_GLOBAL_GTT_IVB |
1293                                                PIPE_CONTROL_CS_STALL |
1294                                                PIPE_CONTROL_QW_WRITE,
1295                                                i915_ggtt_offset(engine->scratch)
1296                                                + 2 * CACHELINE_BYTES);
1297         }
1298
1299         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1300         if (HAS_POOLED_EU(engine->i915)) {
1301                 /*
1302                  * EU pool configuration is setup along with golden context
1303                  * during context initialization. This value depends on
1304                  * device type (2x6 or 3x6) and needs to be updated based
1305                  * on which subslice is disabled especially for 2x6
1306                  * devices, however it is safe to load default
1307                  * configuration of 3x6 device instead of masking off
1308                  * corresponding bits because HW ignores bits of a disabled
1309                  * subslice and drops down to appropriate config. Please
1310                  * see render_state_setup() in i915_gem_render_state.c for
1311                  * possible configurations, to avoid duplication they are
1312                  * not shown here again.
1313                  */
1314                 *batch++ = GEN9_MEDIA_POOL_STATE;
1315                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1316                 *batch++ = 0x00777000;
1317                 *batch++ = 0;
1318                 *batch++ = 0;
1319                 *batch++ = 0;
1320         }
1321
1322         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1323
1324         /* Pad to end of cacheline */
1325         while ((unsigned long)batch % CACHELINE_BYTES)
1326                 *batch++ = MI_NOOP;
1327
1328         return batch;
1329 }
1330
1331 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1332
1333 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1334 {
1335         struct drm_i915_gem_object *obj;
1336         struct i915_vma *vma;
1337         int err;
1338
1339         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1340         if (IS_ERR(obj))
1341                 return PTR_ERR(obj);
1342
1343         vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1344         if (IS_ERR(vma)) {
1345                 err = PTR_ERR(vma);
1346                 goto err;
1347         }
1348
1349         err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1350         if (err)
1351                 goto err;
1352
1353         engine->wa_ctx.vma = vma;
1354         return 0;
1355
1356 err:
1357         i915_gem_object_put(obj);
1358         return err;
1359 }
1360
1361 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1362 {
1363         i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1364 }
1365
1366 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1367
1368 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1369 {
1370         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1371         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1372                                             &wa_ctx->per_ctx };
1373         wa_bb_func_t wa_bb_fn[2];
1374         struct page *page;
1375         void *batch, *batch_ptr;
1376         unsigned int i;
1377         int ret;
1378
1379         if (WARN_ON(engine->id != RCS || !engine->scratch))
1380                 return -EINVAL;
1381
1382         switch (INTEL_GEN(engine->i915)) {
1383         case 10:
1384                 return 0;
1385         case 9:
1386                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1387                 wa_bb_fn[1] = NULL;
1388                 break;
1389         case 8:
1390                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1391                 wa_bb_fn[1] = NULL;
1392                 break;
1393         default:
1394                 MISSING_CASE(INTEL_GEN(engine->i915));
1395                 return 0;
1396         }
1397
1398         ret = lrc_setup_wa_ctx(engine);
1399         if (ret) {
1400                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1401                 return ret;
1402         }
1403
1404         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1405         batch = batch_ptr = kmap_atomic(page);
1406
1407         /*
1408          * Emit the two workaround batch buffers, recording the offset from the
1409          * start of the workaround batch buffer object for each and their
1410          * respective sizes.
1411          */
1412         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1413                 wa_bb[i]->offset = batch_ptr - batch;
1414                 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1415                         ret = -EINVAL;
1416                         break;
1417                 }
1418                 if (wa_bb_fn[i])
1419                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1420                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1421         }
1422
1423         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1424
1425         kunmap_atomic(batch);
1426         if (ret)
1427                 lrc_destroy_wa_ctx(engine);
1428
1429         return ret;
1430 }
1431
1432 static u8 gtiir[] = {
1433         [RCS] = 0,
1434         [BCS] = 0,
1435         [VCS] = 1,
1436         [VCS2] = 1,
1437         [VECS] = 3,
1438 };
1439
1440 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1441 {
1442         struct drm_i915_private *dev_priv = engine->i915;
1443         struct intel_engine_execlists * const execlists = &engine->execlists;
1444         int ret;
1445
1446         ret = intel_mocs_init_engine(engine);
1447         if (ret)
1448                 return ret;
1449
1450         intel_engine_reset_breadcrumbs(engine);
1451         intel_engine_init_hangcheck(engine);
1452
1453         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1454         I915_WRITE(RING_MODE_GEN7(engine),
1455                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1456         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1457                    engine->status_page.ggtt_offset);
1458         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1459
1460         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1461
1462         GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
1463
1464         /*
1465          * Clear any pending interrupt state.
1466          *
1467          * We do it twice out of paranoia that some of the IIR are double
1468          * buffered, and if we only reset it once there may still be
1469          * an interrupt pending.
1470          */
1471         I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1472                    GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1473         I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1474                    GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1475         clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1476         execlists->csb_head = -1;
1477         execlists->active = 0;
1478
1479         /* After a GPU reset, we may have requests to replay */
1480         if (!i915_modparams.enable_guc_submission && execlists->first)
1481                 tasklet_schedule(&execlists->irq_tasklet);
1482
1483         return 0;
1484 }
1485
1486 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1487 {
1488         struct drm_i915_private *dev_priv = engine->i915;
1489         int ret;
1490
1491         ret = gen8_init_common_ring(engine);
1492         if (ret)
1493                 return ret;
1494
1495         /* We need to disable the AsyncFlip performance optimisations in order
1496          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1497          * programmed to '1' on all products.
1498          *
1499          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1500          */
1501         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1502
1503         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1504
1505         return init_workarounds_ring(engine);
1506 }
1507
1508 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1509 {
1510         int ret;
1511
1512         ret = gen8_init_common_ring(engine);
1513         if (ret)
1514                 return ret;
1515
1516         return init_workarounds_ring(engine);
1517 }
1518
1519 static void reset_common_ring(struct intel_engine_cs *engine,
1520                               struct drm_i915_gem_request *request)
1521 {
1522         struct intel_engine_execlists * const execlists = &engine->execlists;
1523         struct intel_context *ce;
1524         unsigned long flags;
1525
1526         spin_lock_irqsave(&engine->timeline->lock, flags);
1527
1528         /*
1529          * Catch up with any missed context-switch interrupts.
1530          *
1531          * Ideally we would just read the remaining CSB entries now that we
1532          * know the gpu is idle. However, the CSB registers are sometimes^W
1533          * often trashed across a GPU reset! Instead we have to rely on
1534          * guessing the missed context-switch events by looking at what
1535          * requests were completed.
1536          */
1537         execlist_cancel_port_requests(execlists);
1538
1539         /* Push back any incomplete requests for replay after the reset. */
1540         unwind_incomplete_requests(engine);
1541
1542         spin_unlock_irqrestore(&engine->timeline->lock, flags);
1543
1544         /* If the request was innocent, we leave the request in the ELSP
1545          * and will try to replay it on restarting. The context image may
1546          * have been corrupted by the reset, in which case we may have
1547          * to service a new GPU hang, but more likely we can continue on
1548          * without impact.
1549          *
1550          * If the request was guilty, we presume the context is corrupt
1551          * and have to at least restore the RING register in the context
1552          * image back to the expected values to skip over the guilty request.
1553          */
1554         if (!request || request->fence.error != -EIO)
1555                 return;
1556
1557         /* We want a simple context + ring to execute the breadcrumb update.
1558          * We cannot rely on the context being intact across the GPU hang,
1559          * so clear it and rebuild just what we need for the breadcrumb.
1560          * All pending requests for this context will be zapped, and any
1561          * future request will be after userspace has had the opportunity
1562          * to recreate its own state.
1563          */
1564         ce = &request->ctx->engine[engine->id];
1565         execlists_init_reg_state(ce->lrc_reg_state,
1566                                  request->ctx, engine, ce->ring);
1567
1568         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1569         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1570                 i915_ggtt_offset(ce->ring->vma);
1571         ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1572
1573         request->ring->head = request->postfix;
1574         intel_ring_update_space(request->ring);
1575
1576         /* Reset WaIdleLiteRestore:bdw,skl as well */
1577         unwind_wa_tail(request);
1578 }
1579
1580 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1581 {
1582         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1583         struct intel_engine_cs *engine = req->engine;
1584         const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1585         u32 *cs;
1586         int i;
1587
1588         cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1589         if (IS_ERR(cs))
1590                 return PTR_ERR(cs);
1591
1592         *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1593         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1594                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1595
1596                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1597                 *cs++ = upper_32_bits(pd_daddr);
1598                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1599                 *cs++ = lower_32_bits(pd_daddr);
1600         }
1601
1602         *cs++ = MI_NOOP;
1603         intel_ring_advance(req, cs);
1604
1605         return 0;
1606 }
1607
1608 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1609                               u64 offset, u32 len,
1610                               const unsigned int flags)
1611 {
1612         u32 *cs;
1613         int ret;
1614
1615         /* Don't rely in hw updating PDPs, specially in lite-restore.
1616          * Ideally, we should set Force PD Restore in ctx descriptor,
1617          * but we can't. Force Restore would be a second option, but
1618          * it is unsafe in case of lite-restore (because the ctx is
1619          * not idle). PML4 is allocated during ppgtt init so this is
1620          * not needed in 48-bit.*/
1621         if (req->ctx->ppgtt &&
1622             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1623             !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1624             !intel_vgpu_active(req->i915)) {
1625                 ret = intel_logical_ring_emit_pdps(req);
1626                 if (ret)
1627                         return ret;
1628
1629                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1630         }
1631
1632         cs = intel_ring_begin(req, 4);
1633         if (IS_ERR(cs))
1634                 return PTR_ERR(cs);
1635
1636         /*
1637          * WaDisableCtxRestoreArbitration:bdw,chv
1638          *
1639          * We don't need to perform MI_ARB_ENABLE as often as we do (in
1640          * particular all the gen that do not need the w/a at all!), if we
1641          * took care to make sure that on every switch into this context
1642          * (both ordinary and for preemption) that arbitrartion was enabled
1643          * we would be fine. However, there doesn't seem to be a downside to
1644          * being paranoid and making sure it is set before each batch and
1645          * every context-switch.
1646          *
1647          * Note that if we fail to enable arbitration before the request
1648          * is complete, then we do not see the context-switch interrupt and
1649          * the engine hangs (with RING_HEAD == RING_TAIL).
1650          *
1651          * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1652          */
1653         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1654
1655         /* FIXME(BDW): Address space and security selectors. */
1656         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1657                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1658                 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1659         *cs++ = lower_32_bits(offset);
1660         *cs++ = upper_32_bits(offset);
1661         intel_ring_advance(req, cs);
1662
1663         return 0;
1664 }
1665
1666 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1667 {
1668         struct drm_i915_private *dev_priv = engine->i915;
1669         I915_WRITE_IMR(engine,
1670                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1671         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1672 }
1673
1674 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1675 {
1676         struct drm_i915_private *dev_priv = engine->i915;
1677         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1678 }
1679
1680 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1681 {
1682         u32 cmd, *cs;
1683
1684         cs = intel_ring_begin(request, 4);
1685         if (IS_ERR(cs))
1686                 return PTR_ERR(cs);
1687
1688         cmd = MI_FLUSH_DW + 1;
1689
1690         /* We always require a command barrier so that subsequent
1691          * commands, such as breadcrumb interrupts, are strictly ordered
1692          * wrt the contents of the write cache being flushed to memory
1693          * (and thus being coherent from the CPU).
1694          */
1695         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1696
1697         if (mode & EMIT_INVALIDATE) {
1698                 cmd |= MI_INVALIDATE_TLB;
1699                 if (request->engine->id == VCS)
1700                         cmd |= MI_INVALIDATE_BSD;
1701         }
1702
1703         *cs++ = cmd;
1704         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1705         *cs++ = 0; /* upper addr */
1706         *cs++ = 0; /* value */
1707         intel_ring_advance(request, cs);
1708
1709         return 0;
1710 }
1711
1712 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1713                                   u32 mode)
1714 {
1715         struct intel_engine_cs *engine = request->engine;
1716         u32 scratch_addr =
1717                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1718         bool vf_flush_wa = false, dc_flush_wa = false;
1719         u32 *cs, flags = 0;
1720         int len;
1721
1722         flags |= PIPE_CONTROL_CS_STALL;
1723
1724         if (mode & EMIT_FLUSH) {
1725                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1726                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1727                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1728                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1729         }
1730
1731         if (mode & EMIT_INVALIDATE) {
1732                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1733                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1734                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1735                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1736                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1737                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1738                 flags |= PIPE_CONTROL_QW_WRITE;
1739                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1740
1741                 /*
1742                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1743                  * pipe control.
1744                  */
1745                 if (IS_GEN9(request->i915))
1746                         vf_flush_wa = true;
1747
1748                 /* WaForGAMHang:kbl */
1749                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1750                         dc_flush_wa = true;
1751         }
1752
1753         len = 6;
1754
1755         if (vf_flush_wa)
1756                 len += 6;
1757
1758         if (dc_flush_wa)
1759                 len += 12;
1760
1761         cs = intel_ring_begin(request, len);
1762         if (IS_ERR(cs))
1763                 return PTR_ERR(cs);
1764
1765         if (vf_flush_wa)
1766                 cs = gen8_emit_pipe_control(cs, 0, 0);
1767
1768         if (dc_flush_wa)
1769                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1770                                             0);
1771
1772         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1773
1774         if (dc_flush_wa)
1775                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1776
1777         intel_ring_advance(request, cs);
1778
1779         return 0;
1780 }
1781
1782 /*
1783  * Reserve space for 2 NOOPs at the end of each request to be
1784  * used as a workaround for not being allowed to do lite
1785  * restore with HEAD==TAIL (WaIdleLiteRestore).
1786  */
1787 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1788 {
1789         /* Ensure there's always at least one preemption point per-request. */
1790         *cs++ = MI_ARB_CHECK;
1791         *cs++ = MI_NOOP;
1792         request->wa_tail = intel_ring_offset(request, cs);
1793 }
1794
1795 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
1796 {
1797         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1798         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1799
1800         *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1801         *cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1802         *cs++ = 0;
1803         *cs++ = request->global_seqno;
1804         *cs++ = MI_USER_INTERRUPT;
1805         *cs++ = MI_NOOP;
1806         request->tail = intel_ring_offset(request, cs);
1807         assert_ring_tail_valid(request->ring, request->tail);
1808
1809         gen8_emit_wa_tail(request, cs);
1810 }
1811 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1812
1813 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1814                                         u32 *cs)
1815 {
1816         /* We're using qword write, seqno should be aligned to 8 bytes. */
1817         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1818
1819         /* w/a for post sync ops following a GPGPU operation we
1820          * need a prior CS_STALL, which is emitted by the flush
1821          * following the batch.
1822          */
1823         *cs++ = GFX_OP_PIPE_CONTROL(6);
1824         *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1825                 PIPE_CONTROL_QW_WRITE;
1826         *cs++ = intel_hws_seqno_address(request->engine);
1827         *cs++ = 0;
1828         *cs++ = request->global_seqno;
1829         /* We're thrashing one dword of HWS. */
1830         *cs++ = 0;
1831         *cs++ = MI_USER_INTERRUPT;
1832         *cs++ = MI_NOOP;
1833         request->tail = intel_ring_offset(request, cs);
1834         assert_ring_tail_valid(request->ring, request->tail);
1835
1836         gen8_emit_wa_tail(request, cs);
1837 }
1838 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1839
1840 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1841 {
1842         int ret;
1843
1844         ret = intel_ring_workarounds_emit(req);
1845         if (ret)
1846                 return ret;
1847
1848         ret = intel_rcs_context_init_mocs(req);
1849         /*
1850          * Failing to program the MOCS is non-fatal.The system will not
1851          * run at peak performance. So generate an error and carry on.
1852          */
1853         if (ret)
1854                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1855
1856         return i915_gem_render_state_emit(req);
1857 }
1858
1859 /**
1860  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1861  * @engine: Engine Command Streamer.
1862  */
1863 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1864 {
1865         struct drm_i915_private *dev_priv;
1866
1867         /*
1868          * Tasklet cannot be active at this point due intel_mark_active/idle
1869          * so this is just for documentation.
1870          */
1871         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->execlists.irq_tasklet.state)))
1872                 tasklet_kill(&engine->execlists.irq_tasklet);
1873
1874         dev_priv = engine->i915;
1875
1876         if (engine->buffer) {
1877                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1878         }
1879
1880         if (engine->cleanup)
1881                 engine->cleanup(engine);
1882
1883         intel_engine_cleanup_common(engine);
1884
1885         lrc_destroy_wa_ctx(engine);
1886         engine->i915 = NULL;
1887         dev_priv->engine[engine->id] = NULL;
1888         kfree(engine);
1889 }
1890
1891 static void execlists_set_default_submission(struct intel_engine_cs *engine)
1892 {
1893         engine->submit_request = execlists_submit_request;
1894         engine->cancel_requests = execlists_cancel_requests;
1895         engine->schedule = execlists_schedule;
1896         engine->execlists.irq_tasklet.func = intel_lrc_irq_handler;
1897 }
1898
1899 static void
1900 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1901 {
1902         /* Default vfuncs which can be overriden by each engine. */
1903         engine->init_hw = gen8_init_common_ring;
1904         engine->reset_hw = reset_common_ring;
1905
1906         engine->context_pin = execlists_context_pin;
1907         engine->context_unpin = execlists_context_unpin;
1908
1909         engine->request_alloc = execlists_request_alloc;
1910
1911         engine->emit_flush = gen8_emit_flush;
1912         engine->emit_breadcrumb = gen8_emit_breadcrumb;
1913         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1914
1915         engine->set_default_submission = execlists_set_default_submission;
1916
1917         engine->irq_enable = gen8_logical_ring_enable_irq;
1918         engine->irq_disable = gen8_logical_ring_disable_irq;
1919         engine->emit_bb_start = gen8_emit_bb_start;
1920 }
1921
1922 static inline void
1923 logical_ring_default_irqs(struct intel_engine_cs *engine)
1924 {
1925         unsigned shift = engine->irq_shift;
1926         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1927         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1928 }
1929
1930 static void
1931 logical_ring_setup(struct intel_engine_cs *engine)
1932 {
1933         struct drm_i915_private *dev_priv = engine->i915;
1934         enum forcewake_domains fw_domains;
1935
1936         intel_engine_setup_common(engine);
1937
1938         /* Intentionally left blank. */
1939         engine->buffer = NULL;
1940
1941         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1942                                                     RING_ELSP(engine),
1943                                                     FW_REG_WRITE);
1944
1945         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1946                                                      RING_CONTEXT_STATUS_PTR(engine),
1947                                                      FW_REG_READ | FW_REG_WRITE);
1948
1949         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1950                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
1951                                                      FW_REG_READ);
1952
1953         engine->execlists.fw_domains = fw_domains;
1954
1955         tasklet_init(&engine->execlists.irq_tasklet,
1956                      intel_lrc_irq_handler, (unsigned long)engine);
1957
1958         logical_ring_default_vfuncs(engine);
1959         logical_ring_default_irqs(engine);
1960 }
1961
1962 static int logical_ring_init(struct intel_engine_cs *engine)
1963 {
1964         int ret;
1965
1966         ret = intel_engine_init_common(engine);
1967         if (ret)
1968                 goto error;
1969
1970         return 0;
1971
1972 error:
1973         intel_logical_ring_cleanup(engine);
1974         return ret;
1975 }
1976
1977 int logical_render_ring_init(struct intel_engine_cs *engine)
1978 {
1979         struct drm_i915_private *dev_priv = engine->i915;
1980         int ret;
1981
1982         logical_ring_setup(engine);
1983
1984         if (HAS_L3_DPF(dev_priv))
1985                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1986
1987         /* Override some for render ring. */
1988         if (INTEL_GEN(dev_priv) >= 9)
1989                 engine->init_hw = gen9_init_render_ring;
1990         else
1991                 engine->init_hw = gen8_init_render_ring;
1992         engine->init_context = gen8_init_rcs_context;
1993         engine->emit_flush = gen8_emit_flush_render;
1994         engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1995         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1996
1997         ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1998         if (ret)
1999                 return ret;
2000
2001         ret = intel_init_workaround_bb(engine);
2002         if (ret) {
2003                 /*
2004                  * We continue even if we fail to initialize WA batch
2005                  * because we only expect rare glitches but nothing
2006                  * critical to prevent us from using GPU
2007                  */
2008                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2009                           ret);
2010         }
2011
2012         return logical_ring_init(engine);
2013 }
2014
2015 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2016 {
2017         logical_ring_setup(engine);
2018
2019         return logical_ring_init(engine);
2020 }
2021
2022 static u32
2023 make_rpcs(struct drm_i915_private *dev_priv)
2024 {
2025         u32 rpcs = 0;
2026
2027         /*
2028          * No explicit RPCS request is needed to ensure full
2029          * slice/subslice/EU enablement prior to Gen9.
2030         */
2031         if (INTEL_GEN(dev_priv) < 9)
2032                 return 0;
2033
2034         /*
2035          * Starting in Gen9, render power gating can leave
2036          * slice/subslice/EU in a partially enabled state. We
2037          * must make an explicit request through RPCS for full
2038          * enablement.
2039         */
2040         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2041                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2042                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2043                         GEN8_RPCS_S_CNT_SHIFT;
2044                 rpcs |= GEN8_RPCS_ENABLE;
2045         }
2046
2047         if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2048                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2049                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2050                         GEN8_RPCS_SS_CNT_SHIFT;
2051                 rpcs |= GEN8_RPCS_ENABLE;
2052         }
2053
2054         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2055                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2056                         GEN8_RPCS_EU_MIN_SHIFT;
2057                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2058                         GEN8_RPCS_EU_MAX_SHIFT;
2059                 rpcs |= GEN8_RPCS_ENABLE;
2060         }
2061
2062         return rpcs;
2063 }
2064
2065 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2066 {
2067         u32 indirect_ctx_offset;
2068
2069         switch (INTEL_GEN(engine->i915)) {
2070         default:
2071                 MISSING_CASE(INTEL_GEN(engine->i915));
2072                 /* fall through */
2073         case 10:
2074                 indirect_ctx_offset =
2075                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2076                 break;
2077         case 9:
2078                 indirect_ctx_offset =
2079                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2080                 break;
2081         case 8:
2082                 indirect_ctx_offset =
2083                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2084                 break;
2085         }
2086
2087         return indirect_ctx_offset;
2088 }
2089
2090 static void execlists_init_reg_state(u32 *regs,
2091                                      struct i915_gem_context *ctx,
2092                                      struct intel_engine_cs *engine,
2093                                      struct intel_ring *ring)
2094 {
2095         struct drm_i915_private *dev_priv = engine->i915;
2096         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2097         u32 base = engine->mmio_base;
2098         bool rcs = engine->id == RCS;
2099
2100         /* A context is actually a big batch buffer with several
2101          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2102          * values we are setting here are only for the first context restore:
2103          * on a subsequent save, the GPU will recreate this batchbuffer with new
2104          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2105          * we are not initializing here).
2106          */
2107         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2108                                  MI_LRI_FORCE_POSTED;
2109
2110         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2111                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2112                                    CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2113                                    (HAS_RESOURCE_STREAMER(dev_priv) ?
2114                                    CTX_CTRL_RS_CTX_ENABLE : 0)));
2115         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2116         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2117         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2118         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2119                 RING_CTL_SIZE(ring->size) | RING_VALID);
2120         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2121         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2122         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2123         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2124         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2125         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2126         if (rcs) {
2127                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2128
2129                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2130                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2131                         RING_INDIRECT_CTX_OFFSET(base), 0);
2132                 if (wa_ctx->indirect_ctx.size) {
2133                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2134
2135                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2136                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2137                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2138
2139                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2140                                 intel_lr_indirect_ctx_offset(engine) << 6;
2141                 }
2142
2143                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2144                 if (wa_ctx->per_ctx.size) {
2145                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2146
2147                         regs[CTX_BB_PER_CTX_PTR + 1] =
2148                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2149                 }
2150         }
2151
2152         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2153
2154         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2155         /* PDP values well be assigned later if needed */
2156         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2157         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2158         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2159         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2160         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2161         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2162         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2163         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2164
2165         if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2166                 /* 64b PPGTT (48bit canonical)
2167                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2168                  * other PDP Descriptors are ignored.
2169                  */
2170                 ASSIGN_CTX_PML4(ppgtt, regs);
2171         }
2172
2173         if (rcs) {
2174                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2175                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2176                         make_rpcs(dev_priv));
2177
2178                 i915_oa_init_reg_state(engine, ctx, regs);
2179         }
2180 }
2181
2182 static int
2183 populate_lr_context(struct i915_gem_context *ctx,
2184                     struct drm_i915_gem_object *ctx_obj,
2185                     struct intel_engine_cs *engine,
2186                     struct intel_ring *ring)
2187 {
2188         void *vaddr;
2189         int ret;
2190
2191         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2192         if (ret) {
2193                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2194                 return ret;
2195         }
2196
2197         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2198         if (IS_ERR(vaddr)) {
2199                 ret = PTR_ERR(vaddr);
2200                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2201                 return ret;
2202         }
2203         ctx_obj->mm.dirty = true;
2204
2205         /* The second page of the context object contains some fields which must
2206          * be set up prior to the first execution. */
2207
2208         execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2209                                  ctx, engine, ring);
2210
2211         i915_gem_object_unpin_map(ctx_obj);
2212
2213         return 0;
2214 }
2215
2216 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2217                                             struct intel_engine_cs *engine)
2218 {
2219         struct drm_i915_gem_object *ctx_obj;
2220         struct intel_context *ce = &ctx->engine[engine->id];
2221         struct i915_vma *vma;
2222         uint32_t context_size;
2223         struct intel_ring *ring;
2224         int ret;
2225
2226         WARN_ON(ce->state);
2227
2228         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2229
2230         /*
2231          * Before the actual start of the context image, we insert a few pages
2232          * for our own use and for sharing with the GuC.
2233          */
2234         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2235
2236         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2237         if (IS_ERR(ctx_obj)) {
2238                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2239                 return PTR_ERR(ctx_obj);
2240         }
2241
2242         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2243         if (IS_ERR(vma)) {
2244                 ret = PTR_ERR(vma);
2245                 goto error_deref_obj;
2246         }
2247
2248         ring = intel_engine_create_ring(engine, ctx->ring_size);
2249         if (IS_ERR(ring)) {
2250                 ret = PTR_ERR(ring);
2251                 goto error_deref_obj;
2252         }
2253
2254         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2255         if (ret) {
2256                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2257                 goto error_ring_free;
2258         }
2259
2260         ce->ring = ring;
2261         ce->state = vma;
2262         ce->initialised |= engine->init_context == NULL;
2263
2264         return 0;
2265
2266 error_ring_free:
2267         intel_ring_free(ring);
2268 error_deref_obj:
2269         i915_gem_object_put(ctx_obj);
2270         return ret;
2271 }
2272
2273 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2274 {
2275         struct intel_engine_cs *engine;
2276         struct i915_gem_context *ctx;
2277         enum intel_engine_id id;
2278
2279         /* Because we emit WA_TAIL_DWORDS there may be a disparity
2280          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2281          * that stored in context. As we only write new commands from
2282          * ce->ring->tail onwards, everything before that is junk. If the GPU
2283          * starts reading from its RING_HEAD from the context, it may try to
2284          * execute that junk and die.
2285          *
2286          * So to avoid that we reset the context images upon resume. For
2287          * simplicity, we just zero everything out.
2288          */
2289         list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2290                 for_each_engine(engine, dev_priv, id) {
2291                         struct intel_context *ce = &ctx->engine[engine->id];
2292                         u32 *reg;
2293
2294                         if (!ce->state)
2295                                 continue;
2296
2297                         reg = i915_gem_object_pin_map(ce->state->obj,
2298                                                       I915_MAP_WB);
2299                         if (WARN_ON(IS_ERR(reg)))
2300                                 continue;
2301
2302                         reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2303                         reg[CTX_RING_HEAD+1] = 0;
2304                         reg[CTX_RING_TAIL+1] = 0;
2305
2306                         ce->state->obj->mm.dirty = true;
2307                         i915_gem_object_unpin_map(ce->state->obj);
2308
2309                         intel_ring_reset(ce->ring, 0);
2310                 }
2311         }
2312 }