Merge commit '9f12600fe425bc28f0ccba034a77783c09c15af4' into for-linus
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48                                 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50                                    struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53                           int x, int y, struct drm_framebuffer *old_fb);
54 static int intel_framebuffer_init(struct drm_device *dev,
55                                   struct intel_framebuffer *ifb,
56                                   struct drm_mode_fb_cmd2 *mode_cmd,
57                                   struct drm_i915_gem_object *obj);
58
59 typedef struct {
60         int     min, max;
61 } intel_range_t;
62
63 typedef struct {
64         int     dot_limit;
65         int     p2_slow, p2_fast;
66 } intel_p2_t;
67
68 typedef struct intel_limit intel_limit_t;
69 struct intel_limit {
70         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
71         intel_p2_t          p2;
72 };
73
74 int
75 intel_pch_rawclk(struct drm_device *dev)
76 {
77         struct drm_i915_private *dev_priv = dev->dev_private;
78
79         WARN_ON(!HAS_PCH_SPLIT(dev));
80
81         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
82 }
83
84 static inline u32 /* units of 100MHz */
85 intel_fdi_link_freq(struct drm_device *dev)
86 {
87         if (IS_GEN5(dev)) {
88                 struct drm_i915_private *dev_priv = dev->dev_private;
89                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
90         } else
91                 return 27;
92 }
93
94 static const intel_limit_t intel_limits_i8xx_dac = {
95         .dot = { .min = 25000, .max = 350000 },
96         .vco = { .min = 908000, .max = 1512000 },
97         .n = { .min = 2, .max = 16 },
98         .m = { .min = 96, .max = 140 },
99         .m1 = { .min = 18, .max = 26 },
100         .m2 = { .min = 6, .max = 16 },
101         .p = { .min = 4, .max = 128 },
102         .p1 = { .min = 2, .max = 33 },
103         .p2 = { .dot_limit = 165000,
104                 .p2_slow = 4, .p2_fast = 2 },
105 };
106
107 static const intel_limit_t intel_limits_i8xx_dvo = {
108         .dot = { .min = 25000, .max = 350000 },
109         .vco = { .min = 908000, .max = 1512000 },
110         .n = { .min = 2, .max = 16 },
111         .m = { .min = 96, .max = 140 },
112         .m1 = { .min = 18, .max = 26 },
113         .m2 = { .min = 6, .max = 16 },
114         .p = { .min = 4, .max = 128 },
115         .p1 = { .min = 2, .max = 33 },
116         .p2 = { .dot_limit = 165000,
117                 .p2_slow = 4, .p2_fast = 4 },
118 };
119
120 static const intel_limit_t intel_limits_i8xx_lvds = {
121         .dot = { .min = 25000, .max = 350000 },
122         .vco = { .min = 908000, .max = 1512000 },
123         .n = { .min = 2, .max = 16 },
124         .m = { .min = 96, .max = 140 },
125         .m1 = { .min = 18, .max = 26 },
126         .m2 = { .min = 6, .max = 16 },
127         .p = { .min = 4, .max = 128 },
128         .p1 = { .min = 1, .max = 6 },
129         .p2 = { .dot_limit = 165000,
130                 .p2_slow = 14, .p2_fast = 7 },
131 };
132
133 static const intel_limit_t intel_limits_i9xx_sdvo = {
134         .dot = { .min = 20000, .max = 400000 },
135         .vco = { .min = 1400000, .max = 2800000 },
136         .n = { .min = 1, .max = 6 },
137         .m = { .min = 70, .max = 120 },
138         .m1 = { .min = 8, .max = 18 },
139         .m2 = { .min = 3, .max = 7 },
140         .p = { .min = 5, .max = 80 },
141         .p1 = { .min = 1, .max = 8 },
142         .p2 = { .dot_limit = 200000,
143                 .p2_slow = 10, .p2_fast = 5 },
144 };
145
146 static const intel_limit_t intel_limits_i9xx_lvds = {
147         .dot = { .min = 20000, .max = 400000 },
148         .vco = { .min = 1400000, .max = 2800000 },
149         .n = { .min = 1, .max = 6 },
150         .m = { .min = 70, .max = 120 },
151         .m1 = { .min = 8, .max = 18 },
152         .m2 = { .min = 3, .max = 7 },
153         .p = { .min = 7, .max = 98 },
154         .p1 = { .min = 1, .max = 8 },
155         .p2 = { .dot_limit = 112000,
156                 .p2_slow = 14, .p2_fast = 7 },
157 };
158
159
160 static const intel_limit_t intel_limits_g4x_sdvo = {
161         .dot = { .min = 25000, .max = 270000 },
162         .vco = { .min = 1750000, .max = 3500000},
163         .n = { .min = 1, .max = 4 },
164         .m = { .min = 104, .max = 138 },
165         .m1 = { .min = 17, .max = 23 },
166         .m2 = { .min = 5, .max = 11 },
167         .p = { .min = 10, .max = 30 },
168         .p1 = { .min = 1, .max = 3},
169         .p2 = { .dot_limit = 270000,
170                 .p2_slow = 10,
171                 .p2_fast = 10
172         },
173 };
174
175 static const intel_limit_t intel_limits_g4x_hdmi = {
176         .dot = { .min = 22000, .max = 400000 },
177         .vco = { .min = 1750000, .max = 3500000},
178         .n = { .min = 1, .max = 4 },
179         .m = { .min = 104, .max = 138 },
180         .m1 = { .min = 16, .max = 23 },
181         .m2 = { .min = 5, .max = 11 },
182         .p = { .min = 5, .max = 80 },
183         .p1 = { .min = 1, .max = 8},
184         .p2 = { .dot_limit = 165000,
185                 .p2_slow = 10, .p2_fast = 5 },
186 };
187
188 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
189         .dot = { .min = 20000, .max = 115000 },
190         .vco = { .min = 1750000, .max = 3500000 },
191         .n = { .min = 1, .max = 3 },
192         .m = { .min = 104, .max = 138 },
193         .m1 = { .min = 17, .max = 23 },
194         .m2 = { .min = 5, .max = 11 },
195         .p = { .min = 28, .max = 112 },
196         .p1 = { .min = 2, .max = 8 },
197         .p2 = { .dot_limit = 0,
198                 .p2_slow = 14, .p2_fast = 14
199         },
200 };
201
202 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
203         .dot = { .min = 80000, .max = 224000 },
204         .vco = { .min = 1750000, .max = 3500000 },
205         .n = { .min = 1, .max = 3 },
206         .m = { .min = 104, .max = 138 },
207         .m1 = { .min = 17, .max = 23 },
208         .m2 = { .min = 5, .max = 11 },
209         .p = { .min = 14, .max = 42 },
210         .p1 = { .min = 2, .max = 6 },
211         .p2 = { .dot_limit = 0,
212                 .p2_slow = 7, .p2_fast = 7
213         },
214 };
215
216 static const intel_limit_t intel_limits_pineview_sdvo = {
217         .dot = { .min = 20000, .max = 400000},
218         .vco = { .min = 1700000, .max = 3500000 },
219         /* Pineview's Ncounter is a ring counter */
220         .n = { .min = 3, .max = 6 },
221         .m = { .min = 2, .max = 256 },
222         /* Pineview only has one combined m divider, which we treat as m2. */
223         .m1 = { .min = 0, .max = 0 },
224         .m2 = { .min = 0, .max = 254 },
225         .p = { .min = 5, .max = 80 },
226         .p1 = { .min = 1, .max = 8 },
227         .p2 = { .dot_limit = 200000,
228                 .p2_slow = 10, .p2_fast = 5 },
229 };
230
231 static const intel_limit_t intel_limits_pineview_lvds = {
232         .dot = { .min = 20000, .max = 400000 },
233         .vco = { .min = 1700000, .max = 3500000 },
234         .n = { .min = 3, .max = 6 },
235         .m = { .min = 2, .max = 256 },
236         .m1 = { .min = 0, .max = 0 },
237         .m2 = { .min = 0, .max = 254 },
238         .p = { .min = 7, .max = 112 },
239         .p1 = { .min = 1, .max = 8 },
240         .p2 = { .dot_limit = 112000,
241                 .p2_slow = 14, .p2_fast = 14 },
242 };
243
244 /* Ironlake / Sandybridge
245  *
246  * We calculate clock using (register_value + 2) for N/M1/M2, so here
247  * the range value for them is (actual_value - 2).
248  */
249 static const intel_limit_t intel_limits_ironlake_dac = {
250         .dot = { .min = 25000, .max = 350000 },
251         .vco = { .min = 1760000, .max = 3510000 },
252         .n = { .min = 1, .max = 5 },
253         .m = { .min = 79, .max = 127 },
254         .m1 = { .min = 12, .max = 22 },
255         .m2 = { .min = 5, .max = 9 },
256         .p = { .min = 5, .max = 80 },
257         .p1 = { .min = 1, .max = 8 },
258         .p2 = { .dot_limit = 225000,
259                 .p2_slow = 10, .p2_fast = 5 },
260 };
261
262 static const intel_limit_t intel_limits_ironlake_single_lvds = {
263         .dot = { .min = 25000, .max = 350000 },
264         .vco = { .min = 1760000, .max = 3510000 },
265         .n = { .min = 1, .max = 3 },
266         .m = { .min = 79, .max = 118 },
267         .m1 = { .min = 12, .max = 22 },
268         .m2 = { .min = 5, .max = 9 },
269         .p = { .min = 28, .max = 112 },
270         .p1 = { .min = 2, .max = 8 },
271         .p2 = { .dot_limit = 225000,
272                 .p2_slow = 14, .p2_fast = 14 },
273 };
274
275 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
276         .dot = { .min = 25000, .max = 350000 },
277         .vco = { .min = 1760000, .max = 3510000 },
278         .n = { .min = 1, .max = 3 },
279         .m = { .min = 79, .max = 127 },
280         .m1 = { .min = 12, .max = 22 },
281         .m2 = { .min = 5, .max = 9 },
282         .p = { .min = 14, .max = 56 },
283         .p1 = { .min = 2, .max = 8 },
284         .p2 = { .dot_limit = 225000,
285                 .p2_slow = 7, .p2_fast = 7 },
286 };
287
288 /* LVDS 100mhz refclk limits. */
289 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
290         .dot = { .min = 25000, .max = 350000 },
291         .vco = { .min = 1760000, .max = 3510000 },
292         .n = { .min = 1, .max = 2 },
293         .m = { .min = 79, .max = 126 },
294         .m1 = { .min = 12, .max = 22 },
295         .m2 = { .min = 5, .max = 9 },
296         .p = { .min = 28, .max = 112 },
297         .p1 = { .min = 2, .max = 8 },
298         .p2 = { .dot_limit = 225000,
299                 .p2_slow = 14, .p2_fast = 14 },
300 };
301
302 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
303         .dot = { .min = 25000, .max = 350000 },
304         .vco = { .min = 1760000, .max = 3510000 },
305         .n = { .min = 1, .max = 3 },
306         .m = { .min = 79, .max = 126 },
307         .m1 = { .min = 12, .max = 22 },
308         .m2 = { .min = 5, .max = 9 },
309         .p = { .min = 14, .max = 42 },
310         .p1 = { .min = 2, .max = 6 },
311         .p2 = { .dot_limit = 225000,
312                 .p2_slow = 7, .p2_fast = 7 },
313 };
314
315 static const intel_limit_t intel_limits_vlv = {
316          /*
317           * These are the data rate limits (measured in fast clocks)
318           * since those are the strictest limits we have. The fast
319           * clock and actual rate limits are more relaxed, so checking
320           * them would make no difference.
321           */
322         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
323         .vco = { .min = 4000000, .max = 6000000 },
324         .n = { .min = 1, .max = 7 },
325         .m1 = { .min = 2, .max = 3 },
326         .m2 = { .min = 11, .max = 156 },
327         .p1 = { .min = 2, .max = 3 },
328         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
329 };
330
331 static void vlv_clock(int refclk, intel_clock_t *clock)
332 {
333         clock->m = clock->m1 * clock->m2;
334         clock->p = clock->p1 * clock->p2;
335         if (WARN_ON(clock->n == 0 || clock->p == 0))
336                 return;
337         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
338         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
339 }
340
341 /**
342  * Returns whether any output on the specified pipe is of the specified type
343  */
344 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
345 {
346         struct drm_device *dev = crtc->dev;
347         struct intel_encoder *encoder;
348
349         for_each_encoder_on_crtc(dev, crtc, encoder)
350                 if (encoder->type == type)
351                         return true;
352
353         return false;
354 }
355
356 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
357                                                 int refclk)
358 {
359         struct drm_device *dev = crtc->dev;
360         const intel_limit_t *limit;
361
362         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
363                 if (intel_is_dual_link_lvds(dev)) {
364                         if (refclk == 100000)
365                                 limit = &intel_limits_ironlake_dual_lvds_100m;
366                         else
367                                 limit = &intel_limits_ironlake_dual_lvds;
368                 } else {
369                         if (refclk == 100000)
370                                 limit = &intel_limits_ironlake_single_lvds_100m;
371                         else
372                                 limit = &intel_limits_ironlake_single_lvds;
373                 }
374         } else
375                 limit = &intel_limits_ironlake_dac;
376
377         return limit;
378 }
379
380 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
381 {
382         struct drm_device *dev = crtc->dev;
383         const intel_limit_t *limit;
384
385         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
386                 if (intel_is_dual_link_lvds(dev))
387                         limit = &intel_limits_g4x_dual_channel_lvds;
388                 else
389                         limit = &intel_limits_g4x_single_channel_lvds;
390         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
391                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
392                 limit = &intel_limits_g4x_hdmi;
393         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
394                 limit = &intel_limits_g4x_sdvo;
395         } else /* The option is for other outputs */
396                 limit = &intel_limits_i9xx_sdvo;
397
398         return limit;
399 }
400
401 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
402 {
403         struct drm_device *dev = crtc->dev;
404         const intel_limit_t *limit;
405
406         if (HAS_PCH_SPLIT(dev))
407                 limit = intel_ironlake_limit(crtc, refclk);
408         else if (IS_G4X(dev)) {
409                 limit = intel_g4x_limit(crtc);
410         } else if (IS_PINEVIEW(dev)) {
411                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
412                         limit = &intel_limits_pineview_lvds;
413                 else
414                         limit = &intel_limits_pineview_sdvo;
415         } else if (IS_VALLEYVIEW(dev)) {
416                 limit = &intel_limits_vlv;
417         } else if (!IS_GEN2(dev)) {
418                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
419                         limit = &intel_limits_i9xx_lvds;
420                 else
421                         limit = &intel_limits_i9xx_sdvo;
422         } else {
423                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
424                         limit = &intel_limits_i8xx_lvds;
425                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
426                         limit = &intel_limits_i8xx_dvo;
427                 else
428                         limit = &intel_limits_i8xx_dac;
429         }
430         return limit;
431 }
432
433 /* m1 is reserved as 0 in Pineview, n is a ring counter */
434 static void pineview_clock(int refclk, intel_clock_t *clock)
435 {
436         clock->m = clock->m2 + 2;
437         clock->p = clock->p1 * clock->p2;
438         if (WARN_ON(clock->n == 0 || clock->p == 0))
439                 return;
440         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
441         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
442 }
443
444 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
445 {
446         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
447 }
448
449 static void i9xx_clock(int refclk, intel_clock_t *clock)
450 {
451         clock->m = i9xx_dpll_compute_m(clock);
452         clock->p = clock->p1 * clock->p2;
453         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
454                 return;
455         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
456         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
457 }
458
459 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
460 /**
461  * Returns whether the given set of divisors are valid for a given refclk with
462  * the given connectors.
463  */
464
465 static bool intel_PLL_is_valid(struct drm_device *dev,
466                                const intel_limit_t *limit,
467                                const intel_clock_t *clock)
468 {
469         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
470                 INTELPllInvalid("n out of range\n");
471         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
472                 INTELPllInvalid("p1 out of range\n");
473         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
474                 INTELPllInvalid("m2 out of range\n");
475         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
476                 INTELPllInvalid("m1 out of range\n");
477
478         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
479                 if (clock->m1 <= clock->m2)
480                         INTELPllInvalid("m1 <= m2\n");
481
482         if (!IS_VALLEYVIEW(dev)) {
483                 if (clock->p < limit->p.min || limit->p.max < clock->p)
484                         INTELPllInvalid("p out of range\n");
485                 if (clock->m < limit->m.min || limit->m.max < clock->m)
486                         INTELPllInvalid("m out of range\n");
487         }
488
489         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
490                 INTELPllInvalid("vco out of range\n");
491         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
492          * connector, etc., rather than just a single range.
493          */
494         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
495                 INTELPllInvalid("dot out of range\n");
496
497         return true;
498 }
499
500 static bool
501 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
502                     int target, int refclk, intel_clock_t *match_clock,
503                     intel_clock_t *best_clock)
504 {
505         struct drm_device *dev = crtc->dev;
506         intel_clock_t clock;
507         int err = target;
508
509         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
510                 /*
511                  * For LVDS just rely on its current settings for dual-channel.
512                  * We haven't figured out how to reliably set up different
513                  * single/dual channel state, if we even can.
514                  */
515                 if (intel_is_dual_link_lvds(dev))
516                         clock.p2 = limit->p2.p2_fast;
517                 else
518                         clock.p2 = limit->p2.p2_slow;
519         } else {
520                 if (target < limit->p2.dot_limit)
521                         clock.p2 = limit->p2.p2_slow;
522                 else
523                         clock.p2 = limit->p2.p2_fast;
524         }
525
526         memset(best_clock, 0, sizeof(*best_clock));
527
528         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
529              clock.m1++) {
530                 for (clock.m2 = limit->m2.min;
531                      clock.m2 <= limit->m2.max; clock.m2++) {
532                         if (clock.m2 >= clock.m1)
533                                 break;
534                         for (clock.n = limit->n.min;
535                              clock.n <= limit->n.max; clock.n++) {
536                                 for (clock.p1 = limit->p1.min;
537                                         clock.p1 <= limit->p1.max; clock.p1++) {
538                                         int this_err;
539
540                                         i9xx_clock(refclk, &clock);
541                                         if (!intel_PLL_is_valid(dev, limit,
542                                                                 &clock))
543                                                 continue;
544                                         if (match_clock &&
545                                             clock.p != match_clock->p)
546                                                 continue;
547
548                                         this_err = abs(clock.dot - target);
549                                         if (this_err < err) {
550                                                 *best_clock = clock;
551                                                 err = this_err;
552                                         }
553                                 }
554                         }
555                 }
556         }
557
558         return (err != target);
559 }
560
561 static bool
562 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
563                    int target, int refclk, intel_clock_t *match_clock,
564                    intel_clock_t *best_clock)
565 {
566         struct drm_device *dev = crtc->dev;
567         intel_clock_t clock;
568         int err = target;
569
570         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
571                 /*
572                  * For LVDS just rely on its current settings for dual-channel.
573                  * We haven't figured out how to reliably set up different
574                  * single/dual channel state, if we even can.
575                  */
576                 if (intel_is_dual_link_lvds(dev))
577                         clock.p2 = limit->p2.p2_fast;
578                 else
579                         clock.p2 = limit->p2.p2_slow;
580         } else {
581                 if (target < limit->p2.dot_limit)
582                         clock.p2 = limit->p2.p2_slow;
583                 else
584                         clock.p2 = limit->p2.p2_fast;
585         }
586
587         memset(best_clock, 0, sizeof(*best_clock));
588
589         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
590              clock.m1++) {
591                 for (clock.m2 = limit->m2.min;
592                      clock.m2 <= limit->m2.max; clock.m2++) {
593                         for (clock.n = limit->n.min;
594                              clock.n <= limit->n.max; clock.n++) {
595                                 for (clock.p1 = limit->p1.min;
596                                         clock.p1 <= limit->p1.max; clock.p1++) {
597                                         int this_err;
598
599                                         pineview_clock(refclk, &clock);
600                                         if (!intel_PLL_is_valid(dev, limit,
601                                                                 &clock))
602                                                 continue;
603                                         if (match_clock &&
604                                             clock.p != match_clock->p)
605                                                 continue;
606
607                                         this_err = abs(clock.dot - target);
608                                         if (this_err < err) {
609                                                 *best_clock = clock;
610                                                 err = this_err;
611                                         }
612                                 }
613                         }
614                 }
615         }
616
617         return (err != target);
618 }
619
620 static bool
621 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
622                    int target, int refclk, intel_clock_t *match_clock,
623                    intel_clock_t *best_clock)
624 {
625         struct drm_device *dev = crtc->dev;
626         intel_clock_t clock;
627         int max_n;
628         bool found;
629         /* approximately equals target * 0.00585 */
630         int err_most = (target >> 8) + (target >> 9);
631         found = false;
632
633         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
634                 if (intel_is_dual_link_lvds(dev))
635                         clock.p2 = limit->p2.p2_fast;
636                 else
637                         clock.p2 = limit->p2.p2_slow;
638         } else {
639                 if (target < limit->p2.dot_limit)
640                         clock.p2 = limit->p2.p2_slow;
641                 else
642                         clock.p2 = limit->p2.p2_fast;
643         }
644
645         memset(best_clock, 0, sizeof(*best_clock));
646         max_n = limit->n.max;
647         /* based on hardware requirement, prefer smaller n to precision */
648         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
649                 /* based on hardware requirement, prefere larger m1,m2 */
650                 for (clock.m1 = limit->m1.max;
651                      clock.m1 >= limit->m1.min; clock.m1--) {
652                         for (clock.m2 = limit->m2.max;
653                              clock.m2 >= limit->m2.min; clock.m2--) {
654                                 for (clock.p1 = limit->p1.max;
655                                      clock.p1 >= limit->p1.min; clock.p1--) {
656                                         int this_err;
657
658                                         i9xx_clock(refclk, &clock);
659                                         if (!intel_PLL_is_valid(dev, limit,
660                                                                 &clock))
661                                                 continue;
662
663                                         this_err = abs(clock.dot - target);
664                                         if (this_err < err_most) {
665                                                 *best_clock = clock;
666                                                 err_most = this_err;
667                                                 max_n = clock.n;
668                                                 found = true;
669                                         }
670                                 }
671                         }
672                 }
673         }
674         return found;
675 }
676
677 static bool
678 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
679                    int target, int refclk, intel_clock_t *match_clock,
680                    intel_clock_t *best_clock)
681 {
682         struct drm_device *dev = crtc->dev;
683         intel_clock_t clock;
684         unsigned int bestppm = 1000000;
685         /* min update 19.2 MHz */
686         int max_n = min(limit->n.max, refclk / 19200);
687         bool found = false;
688
689         target *= 5; /* fast clock */
690
691         memset(best_clock, 0, sizeof(*best_clock));
692
693         /* based on hardware requirement, prefer smaller n to precision */
694         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
695                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
696                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
697                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
698                                 clock.p = clock.p1 * clock.p2;
699                                 /* based on hardware requirement, prefer bigger m1,m2 values */
700                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
701                                         unsigned int ppm, diff;
702
703                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
704                                                                      refclk * clock.m1);
705
706                                         vlv_clock(refclk, &clock);
707
708                                         if (!intel_PLL_is_valid(dev, limit,
709                                                                 &clock))
710                                                 continue;
711
712                                         diff = abs(clock.dot - target);
713                                         ppm = div_u64(1000000ULL * diff, target);
714
715                                         if (ppm < 100 && clock.p > best_clock->p) {
716                                                 bestppm = 0;
717                                                 *best_clock = clock;
718                                                 found = true;
719                                         }
720
721                                         if (bestppm >= 10 && ppm < bestppm - 10) {
722                                                 bestppm = ppm;
723                                                 *best_clock = clock;
724                                                 found = true;
725                                         }
726                                 }
727                         }
728                 }
729         }
730
731         return found;
732 }
733
734 bool intel_crtc_active(struct drm_crtc *crtc)
735 {
736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
737
738         /* Be paranoid as we can arrive here with only partial
739          * state retrieved from the hardware during setup.
740          *
741          * We can ditch the adjusted_mode.crtc_clock check as soon
742          * as Haswell has gained clock readout/fastboot support.
743          *
744          * We can ditch the crtc->primary->fb check as soon as we can
745          * properly reconstruct framebuffers.
746          */
747         return intel_crtc->active && crtc->primary->fb &&
748                 intel_crtc->config.adjusted_mode.crtc_clock;
749 }
750
751 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
752                                              enum pipe pipe)
753 {
754         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
755         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756
757         return intel_crtc->config.cpu_transcoder;
758 }
759
760 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
761 {
762         struct drm_i915_private *dev_priv = dev->dev_private;
763         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
764
765         frame = I915_READ(frame_reg);
766
767         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
768                 DRM_DEBUG_KMS("vblank wait timed out\n");
769 }
770
771 /**
772  * intel_wait_for_vblank - wait for vblank on a given pipe
773  * @dev: drm device
774  * @pipe: pipe to wait for
775  *
776  * Wait for vblank to occur on a given pipe.  Needed for various bits of
777  * mode setting code.
778  */
779 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
780 {
781         struct drm_i915_private *dev_priv = dev->dev_private;
782         int pipestat_reg = PIPESTAT(pipe);
783
784         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
785                 g4x_wait_for_vblank(dev, pipe);
786                 return;
787         }
788
789         /* Clear existing vblank status. Note this will clear any other
790          * sticky status fields as well.
791          *
792          * This races with i915_driver_irq_handler() with the result
793          * that either function could miss a vblank event.  Here it is not
794          * fatal, as we will either wait upon the next vblank interrupt or
795          * timeout.  Generally speaking intel_wait_for_vblank() is only
796          * called during modeset at which time the GPU should be idle and
797          * should *not* be performing page flips and thus not waiting on
798          * vblanks...
799          * Currently, the result of us stealing a vblank from the irq
800          * handler is that a single frame will be skipped during swapbuffers.
801          */
802         I915_WRITE(pipestat_reg,
803                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
804
805         /* Wait for vblank interrupt bit to set */
806         if (wait_for(I915_READ(pipestat_reg) &
807                      PIPE_VBLANK_INTERRUPT_STATUS,
808                      50))
809                 DRM_DEBUG_KMS("vblank wait timed out\n");
810 }
811
812 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
813 {
814         struct drm_i915_private *dev_priv = dev->dev_private;
815         u32 reg = PIPEDSL(pipe);
816         u32 line1, line2;
817         u32 line_mask;
818
819         if (IS_GEN2(dev))
820                 line_mask = DSL_LINEMASK_GEN2;
821         else
822                 line_mask = DSL_LINEMASK_GEN3;
823
824         line1 = I915_READ(reg) & line_mask;
825         mdelay(5);
826         line2 = I915_READ(reg) & line_mask;
827
828         return line1 == line2;
829 }
830
831 /*
832  * intel_wait_for_pipe_off - wait for pipe to turn off
833  * @dev: drm device
834  * @pipe: pipe to wait for
835  *
836  * After disabling a pipe, we can't wait for vblank in the usual way,
837  * spinning on the vblank interrupt status bit, since we won't actually
838  * see an interrupt when the pipe is disabled.
839  *
840  * On Gen4 and above:
841  *   wait for the pipe register state bit to turn off
842  *
843  * Otherwise:
844  *   wait for the display line value to settle (it usually
845  *   ends up stopping at the start of the next frame).
846  *
847  */
848 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
849 {
850         struct drm_i915_private *dev_priv = dev->dev_private;
851         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
852                                                                       pipe);
853
854         if (INTEL_INFO(dev)->gen >= 4) {
855                 int reg = PIPECONF(cpu_transcoder);
856
857                 /* Wait for the Pipe State to go off */
858                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
859                              100))
860                         WARN(1, "pipe_off wait timed out\n");
861         } else {
862                 /* Wait for the display line to settle */
863                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
864                         WARN(1, "pipe_off wait timed out\n");
865         }
866 }
867
868 /*
869  * ibx_digital_port_connected - is the specified port connected?
870  * @dev_priv: i915 private structure
871  * @port: the port to test
872  *
873  * Returns true if @port is connected, false otherwise.
874  */
875 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
876                                 struct intel_digital_port *port)
877 {
878         u32 bit;
879
880         if (HAS_PCH_IBX(dev_priv->dev)) {
881                 switch(port->port) {
882                 case PORT_B:
883                         bit = SDE_PORTB_HOTPLUG;
884                         break;
885                 case PORT_C:
886                         bit = SDE_PORTC_HOTPLUG;
887                         break;
888                 case PORT_D:
889                         bit = SDE_PORTD_HOTPLUG;
890                         break;
891                 default:
892                         return true;
893                 }
894         } else {
895                 switch(port->port) {
896                 case PORT_B:
897                         bit = SDE_PORTB_HOTPLUG_CPT;
898                         break;
899                 case PORT_C:
900                         bit = SDE_PORTC_HOTPLUG_CPT;
901                         break;
902                 case PORT_D:
903                         bit = SDE_PORTD_HOTPLUG_CPT;
904                         break;
905                 default:
906                         return true;
907                 }
908         }
909
910         return I915_READ(SDEISR) & bit;
911 }
912
913 static const char *state_string(bool enabled)
914 {
915         return enabled ? "on" : "off";
916 }
917
918 /* Only for pre-ILK configs */
919 void assert_pll(struct drm_i915_private *dev_priv,
920                 enum pipe pipe, bool state)
921 {
922         int reg;
923         u32 val;
924         bool cur_state;
925
926         reg = DPLL(pipe);
927         val = I915_READ(reg);
928         cur_state = !!(val & DPLL_VCO_ENABLE);
929         WARN(cur_state != state,
930              "PLL state assertion failure (expected %s, current %s)\n",
931              state_string(state), state_string(cur_state));
932 }
933
934 /* XXX: the dsi pll is shared between MIPI DSI ports */
935 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
936 {
937         u32 val;
938         bool cur_state;
939
940         mutex_lock(&dev_priv->dpio_lock);
941         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
942         mutex_unlock(&dev_priv->dpio_lock);
943
944         cur_state = val & DSI_PLL_VCO_EN;
945         WARN(cur_state != state,
946              "DSI PLL state assertion failure (expected %s, current %s)\n",
947              state_string(state), state_string(cur_state));
948 }
949 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
950 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
951
952 struct intel_shared_dpll *
953 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
954 {
955         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
956
957         if (crtc->config.shared_dpll < 0)
958                 return NULL;
959
960         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
961 }
962
963 /* For ILK+ */
964 void assert_shared_dpll(struct drm_i915_private *dev_priv,
965                         struct intel_shared_dpll *pll,
966                         bool state)
967 {
968         bool cur_state;
969         struct intel_dpll_hw_state hw_state;
970
971         if (HAS_PCH_LPT(dev_priv->dev)) {
972                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
973                 return;
974         }
975
976         if (WARN (!pll,
977                   "asserting DPLL %s with no DPLL\n", state_string(state)))
978                 return;
979
980         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
981         WARN(cur_state != state,
982              "%s assertion failure (expected %s, current %s)\n",
983              pll->name, state_string(state), state_string(cur_state));
984 }
985
986 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
987                           enum pipe pipe, bool state)
988 {
989         int reg;
990         u32 val;
991         bool cur_state;
992         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
993                                                                       pipe);
994
995         if (HAS_DDI(dev_priv->dev)) {
996                 /* DDI does not have a specific FDI_TX register */
997                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
998                 val = I915_READ(reg);
999                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1000         } else {
1001                 reg = FDI_TX_CTL(pipe);
1002                 val = I915_READ(reg);
1003                 cur_state = !!(val & FDI_TX_ENABLE);
1004         }
1005         WARN(cur_state != state,
1006              "FDI TX state assertion failure (expected %s, current %s)\n",
1007              state_string(state), state_string(cur_state));
1008 }
1009 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1010 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1011
1012 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1013                           enum pipe pipe, bool state)
1014 {
1015         int reg;
1016         u32 val;
1017         bool cur_state;
1018
1019         reg = FDI_RX_CTL(pipe);
1020         val = I915_READ(reg);
1021         cur_state = !!(val & FDI_RX_ENABLE);
1022         WARN(cur_state != state,
1023              "FDI RX state assertion failure (expected %s, current %s)\n",
1024              state_string(state), state_string(cur_state));
1025 }
1026 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1027 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1028
1029 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1030                                       enum pipe pipe)
1031 {
1032         int reg;
1033         u32 val;
1034
1035         /* ILK FDI PLL is always enabled */
1036         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1037                 return;
1038
1039         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1040         if (HAS_DDI(dev_priv->dev))
1041                 return;
1042
1043         reg = FDI_TX_CTL(pipe);
1044         val = I915_READ(reg);
1045         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1046 }
1047
1048 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1049                        enum pipe pipe, bool state)
1050 {
1051         int reg;
1052         u32 val;
1053         bool cur_state;
1054
1055         reg = FDI_RX_CTL(pipe);
1056         val = I915_READ(reg);
1057         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1058         WARN(cur_state != state,
1059              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1060              state_string(state), state_string(cur_state));
1061 }
1062
1063 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1064                                   enum pipe pipe)
1065 {
1066         int pp_reg, lvds_reg;
1067         u32 val;
1068         enum pipe panel_pipe = PIPE_A;
1069         bool locked = true;
1070
1071         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1072                 pp_reg = PCH_PP_CONTROL;
1073                 lvds_reg = PCH_LVDS;
1074         } else {
1075                 pp_reg = PP_CONTROL;
1076                 lvds_reg = LVDS;
1077         }
1078
1079         val = I915_READ(pp_reg);
1080         if (!(val & PANEL_POWER_ON) ||
1081             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1082                 locked = false;
1083
1084         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1085                 panel_pipe = PIPE_B;
1086
1087         WARN(panel_pipe == pipe && locked,
1088              "panel assertion failure, pipe %c regs locked\n",
1089              pipe_name(pipe));
1090 }
1091
1092 static void assert_cursor(struct drm_i915_private *dev_priv,
1093                           enum pipe pipe, bool state)
1094 {
1095         struct drm_device *dev = dev_priv->dev;
1096         bool cur_state;
1097
1098         if (IS_845G(dev) || IS_I865G(dev))
1099                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1100         else if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev))
1101                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1102         else
1103                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1104
1105         WARN(cur_state != state,
1106              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1107              pipe_name(pipe), state_string(state), state_string(cur_state));
1108 }
1109 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1110 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1111
1112 void assert_pipe(struct drm_i915_private *dev_priv,
1113                  enum pipe pipe, bool state)
1114 {
1115         int reg;
1116         u32 val;
1117         bool cur_state;
1118         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1119                                                                       pipe);
1120
1121         /* if we need the pipe A quirk it must be always on */
1122         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1123                 state = true;
1124
1125         if (!intel_display_power_enabled(dev_priv,
1126                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1127                 cur_state = false;
1128         } else {
1129                 reg = PIPECONF(cpu_transcoder);
1130                 val = I915_READ(reg);
1131                 cur_state = !!(val & PIPECONF_ENABLE);
1132         }
1133
1134         WARN(cur_state != state,
1135              "pipe %c assertion failure (expected %s, current %s)\n",
1136              pipe_name(pipe), state_string(state), state_string(cur_state));
1137 }
1138
1139 static void assert_plane(struct drm_i915_private *dev_priv,
1140                          enum plane plane, bool state)
1141 {
1142         int reg;
1143         u32 val;
1144         bool cur_state;
1145
1146         reg = DSPCNTR(plane);
1147         val = I915_READ(reg);
1148         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1149         WARN(cur_state != state,
1150              "plane %c assertion failure (expected %s, current %s)\n",
1151              plane_name(plane), state_string(state), state_string(cur_state));
1152 }
1153
1154 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1155 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1156
1157 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1158                                    enum pipe pipe)
1159 {
1160         struct drm_device *dev = dev_priv->dev;
1161         int reg, i;
1162         u32 val;
1163         int cur_pipe;
1164
1165         /* Primary planes are fixed to pipes on gen4+ */
1166         if (INTEL_INFO(dev)->gen >= 4) {
1167                 reg = DSPCNTR(pipe);
1168                 val = I915_READ(reg);
1169                 WARN(val & DISPLAY_PLANE_ENABLE,
1170                      "plane %c assertion failure, should be disabled but not\n",
1171                      plane_name(pipe));
1172                 return;
1173         }
1174
1175         /* Need to check both planes against the pipe */
1176         for_each_pipe(i) {
1177                 reg = DSPCNTR(i);
1178                 val = I915_READ(reg);
1179                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1180                         DISPPLANE_SEL_PIPE_SHIFT;
1181                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1182                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1183                      plane_name(i), pipe_name(pipe));
1184         }
1185 }
1186
1187 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1188                                     enum pipe pipe)
1189 {
1190         struct drm_device *dev = dev_priv->dev;
1191         int reg, sprite;
1192         u32 val;
1193
1194         if (IS_VALLEYVIEW(dev)) {
1195                 for_each_sprite(pipe, sprite) {
1196                         reg = SPCNTR(pipe, sprite);
1197                         val = I915_READ(reg);
1198                         WARN(val & SP_ENABLE,
1199                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1200                              sprite_name(pipe, sprite), pipe_name(pipe));
1201                 }
1202         } else if (INTEL_INFO(dev)->gen >= 7) {
1203                 reg = SPRCTL(pipe);
1204                 val = I915_READ(reg);
1205                 WARN(val & SPRITE_ENABLE,
1206                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1207                      plane_name(pipe), pipe_name(pipe));
1208         } else if (INTEL_INFO(dev)->gen >= 5) {
1209                 reg = DVSCNTR(pipe);
1210                 val = I915_READ(reg);
1211                 WARN(val & DVS_ENABLE,
1212                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1213                      plane_name(pipe), pipe_name(pipe));
1214         }
1215 }
1216
1217 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1218 {
1219         u32 val;
1220         bool enabled;
1221
1222         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1223
1224         val = I915_READ(PCH_DREF_CONTROL);
1225         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1226                             DREF_SUPERSPREAD_SOURCE_MASK));
1227         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1228 }
1229
1230 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1231                                            enum pipe pipe)
1232 {
1233         int reg;
1234         u32 val;
1235         bool enabled;
1236
1237         reg = PCH_TRANSCONF(pipe);
1238         val = I915_READ(reg);
1239         enabled = !!(val & TRANS_ENABLE);
1240         WARN(enabled,
1241              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1242              pipe_name(pipe));
1243 }
1244
1245 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1246                             enum pipe pipe, u32 port_sel, u32 val)
1247 {
1248         if ((val & DP_PORT_EN) == 0)
1249                 return false;
1250
1251         if (HAS_PCH_CPT(dev_priv->dev)) {
1252                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1253                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1254                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1255                         return false;
1256         } else {
1257                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1258                         return false;
1259         }
1260         return true;
1261 }
1262
1263 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1264                               enum pipe pipe, u32 val)
1265 {
1266         if ((val & SDVO_ENABLE) == 0)
1267                 return false;
1268
1269         if (HAS_PCH_CPT(dev_priv->dev)) {
1270                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1271                         return false;
1272         } else {
1273                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1274                         return false;
1275         }
1276         return true;
1277 }
1278
1279 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1280                               enum pipe pipe, u32 val)
1281 {
1282         if ((val & LVDS_PORT_EN) == 0)
1283                 return false;
1284
1285         if (HAS_PCH_CPT(dev_priv->dev)) {
1286                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1287                         return false;
1288         } else {
1289                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1290                         return false;
1291         }
1292         return true;
1293 }
1294
1295 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1296                               enum pipe pipe, u32 val)
1297 {
1298         if ((val & ADPA_DAC_ENABLE) == 0)
1299                 return false;
1300         if (HAS_PCH_CPT(dev_priv->dev)) {
1301                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1302                         return false;
1303         } else {
1304                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1305                         return false;
1306         }
1307         return true;
1308 }
1309
1310 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1311                                    enum pipe pipe, int reg, u32 port_sel)
1312 {
1313         u32 val = I915_READ(reg);
1314         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1315              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1316              reg, pipe_name(pipe));
1317
1318         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1319              && (val & DP_PIPEB_SELECT),
1320              "IBX PCH dp port still using transcoder B\n");
1321 }
1322
1323 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1324                                      enum pipe pipe, int reg)
1325 {
1326         u32 val = I915_READ(reg);
1327         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1328              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1329              reg, pipe_name(pipe));
1330
1331         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1332              && (val & SDVO_PIPE_B_SELECT),
1333              "IBX PCH hdmi port still using transcoder B\n");
1334 }
1335
1336 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1337                                       enum pipe pipe)
1338 {
1339         int reg;
1340         u32 val;
1341
1342         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1343         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1344         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1345
1346         reg = PCH_ADPA;
1347         val = I915_READ(reg);
1348         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1349              "PCH VGA enabled on transcoder %c, should be disabled\n",
1350              pipe_name(pipe));
1351
1352         reg = PCH_LVDS;
1353         val = I915_READ(reg);
1354         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1355              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1356              pipe_name(pipe));
1357
1358         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1359         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1360         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1361 }
1362
1363 static void intel_init_dpio(struct drm_device *dev)
1364 {
1365         struct drm_i915_private *dev_priv = dev->dev_private;
1366
1367         if (!IS_VALLEYVIEW(dev))
1368                 return;
1369
1370         DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1371 }
1372
1373 static void intel_reset_dpio(struct drm_device *dev)
1374 {
1375         struct drm_i915_private *dev_priv = dev->dev_private;
1376
1377         if (!IS_VALLEYVIEW(dev))
1378                 return;
1379
1380         /*
1381          * Enable the CRI clock source so we can get at the display and the
1382          * reference clock for VGA hotplug / manual detection.
1383          */
1384         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
1385                    DPLL_REFA_CLK_ENABLE_VLV |
1386                    DPLL_INTEGRATED_CRI_CLK_VLV);
1387
1388         /*
1389          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1390          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
1391          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
1392          *   b. The other bits such as sfr settings / modesel may all be set
1393          *      to 0.
1394          *
1395          * This should only be done on init and resume from S3 with both
1396          * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1397          */
1398         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1399 }
1400
1401 static void vlv_enable_pll(struct intel_crtc *crtc)
1402 {
1403         struct drm_device *dev = crtc->base.dev;
1404         struct drm_i915_private *dev_priv = dev->dev_private;
1405         int reg = DPLL(crtc->pipe);
1406         u32 dpll = crtc->config.dpll_hw_state.dpll;
1407
1408         assert_pipe_disabled(dev_priv, crtc->pipe);
1409
1410         /* No really, not for ILK+ */
1411         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1412
1413         /* PLL is protected by panel, make sure we can write it */
1414         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1415                 assert_panel_unlocked(dev_priv, crtc->pipe);
1416
1417         I915_WRITE(reg, dpll);
1418         POSTING_READ(reg);
1419         udelay(150);
1420
1421         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1422                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1423
1424         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1425         POSTING_READ(DPLL_MD(crtc->pipe));
1426
1427         /* We do this three times for luck */
1428         I915_WRITE(reg, dpll);
1429         POSTING_READ(reg);
1430         udelay(150); /* wait for warmup */
1431         I915_WRITE(reg, dpll);
1432         POSTING_READ(reg);
1433         udelay(150); /* wait for warmup */
1434         I915_WRITE(reg, dpll);
1435         POSTING_READ(reg);
1436         udelay(150); /* wait for warmup */
1437 }
1438
1439 static void i9xx_enable_pll(struct intel_crtc *crtc)
1440 {
1441         struct drm_device *dev = crtc->base.dev;
1442         struct drm_i915_private *dev_priv = dev->dev_private;
1443         int reg = DPLL(crtc->pipe);
1444         u32 dpll = crtc->config.dpll_hw_state.dpll;
1445
1446         assert_pipe_disabled(dev_priv, crtc->pipe);
1447
1448         /* No really, not for ILK+ */
1449         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1450
1451         /* PLL is protected by panel, make sure we can write it */
1452         if (IS_MOBILE(dev) && !IS_I830(dev))
1453                 assert_panel_unlocked(dev_priv, crtc->pipe);
1454
1455         I915_WRITE(reg, dpll);
1456
1457         /* Wait for the clocks to stabilize. */
1458         POSTING_READ(reg);
1459         udelay(150);
1460
1461         if (INTEL_INFO(dev)->gen >= 4) {
1462                 I915_WRITE(DPLL_MD(crtc->pipe),
1463                            crtc->config.dpll_hw_state.dpll_md);
1464         } else {
1465                 /* The pixel multiplier can only be updated once the
1466                  * DPLL is enabled and the clocks are stable.
1467                  *
1468                  * So write it again.
1469                  */
1470                 I915_WRITE(reg, dpll);
1471         }
1472
1473         /* We do this three times for luck */
1474         I915_WRITE(reg, dpll);
1475         POSTING_READ(reg);
1476         udelay(150); /* wait for warmup */
1477         I915_WRITE(reg, dpll);
1478         POSTING_READ(reg);
1479         udelay(150); /* wait for warmup */
1480         I915_WRITE(reg, dpll);
1481         POSTING_READ(reg);
1482         udelay(150); /* wait for warmup */
1483 }
1484
1485 /**
1486  * i9xx_disable_pll - disable a PLL
1487  * @dev_priv: i915 private structure
1488  * @pipe: pipe PLL to disable
1489  *
1490  * Disable the PLL for @pipe, making sure the pipe is off first.
1491  *
1492  * Note!  This is for pre-ILK only.
1493  */
1494 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1495 {
1496         /* Don't disable pipe A or pipe A PLLs if needed */
1497         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1498                 return;
1499
1500         /* Make sure the pipe isn't still relying on us */
1501         assert_pipe_disabled(dev_priv, pipe);
1502
1503         I915_WRITE(DPLL(pipe), 0);
1504         POSTING_READ(DPLL(pipe));
1505 }
1506
1507 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1508 {
1509         u32 val = 0;
1510
1511         /* Make sure the pipe isn't still relying on us */
1512         assert_pipe_disabled(dev_priv, pipe);
1513
1514         /*
1515          * Leave integrated clock source and reference clock enabled for pipe B.
1516          * The latter is needed for VGA hotplug / manual detection.
1517          */
1518         if (pipe == PIPE_B)
1519                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1520         I915_WRITE(DPLL(pipe), val);
1521         POSTING_READ(DPLL(pipe));
1522 }
1523
1524 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1525                 struct intel_digital_port *dport)
1526 {
1527         u32 port_mask;
1528
1529         switch (dport->port) {
1530         case PORT_B:
1531                 port_mask = DPLL_PORTB_READY_MASK;
1532                 break;
1533         case PORT_C:
1534                 port_mask = DPLL_PORTC_READY_MASK;
1535                 break;
1536         default:
1537                 BUG();
1538         }
1539
1540         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1541                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1542                      port_name(dport->port), I915_READ(DPLL(0)));
1543 }
1544
1545 /**
1546  * ironlake_enable_shared_dpll - enable PCH PLL
1547  * @dev_priv: i915 private structure
1548  * @pipe: pipe PLL to enable
1549  *
1550  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1551  * drives the transcoder clock.
1552  */
1553 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1554 {
1555         struct drm_device *dev = crtc->base.dev;
1556         struct drm_i915_private *dev_priv = dev->dev_private;
1557         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1558
1559         /* PCH PLLs only available on ILK, SNB and IVB */
1560         BUG_ON(INTEL_INFO(dev)->gen < 5);
1561         if (WARN_ON(pll == NULL))
1562                 return;
1563
1564         if (WARN_ON(pll->refcount == 0))
1565                 return;
1566
1567         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1568                       pll->name, pll->active, pll->on,
1569                       crtc->base.base.id);
1570
1571         if (pll->active++) {
1572                 WARN_ON(!pll->on);
1573                 assert_shared_dpll_enabled(dev_priv, pll);
1574                 return;
1575         }
1576         WARN_ON(pll->on);
1577
1578         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1579         pll->enable(dev_priv, pll);
1580         pll->on = true;
1581 }
1582
1583 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1584 {
1585         struct drm_device *dev = crtc->base.dev;
1586         struct drm_i915_private *dev_priv = dev->dev_private;
1587         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1588
1589         /* PCH only available on ILK+ */
1590         BUG_ON(INTEL_INFO(dev)->gen < 5);
1591         if (WARN_ON(pll == NULL))
1592                return;
1593
1594         if (WARN_ON(pll->refcount == 0))
1595                 return;
1596
1597         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1598                       pll->name, pll->active, pll->on,
1599                       crtc->base.base.id);
1600
1601         if (WARN_ON(pll->active == 0)) {
1602                 assert_shared_dpll_disabled(dev_priv, pll);
1603                 return;
1604         }
1605
1606         assert_shared_dpll_enabled(dev_priv, pll);
1607         WARN_ON(!pll->on);
1608         if (--pll->active)
1609                 return;
1610
1611         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1612         pll->disable(dev_priv, pll);
1613         pll->on = false;
1614 }
1615
1616 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1617                                            enum pipe pipe)
1618 {
1619         struct drm_device *dev = dev_priv->dev;
1620         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1621         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1622         uint32_t reg, val, pipeconf_val;
1623
1624         /* PCH only available on ILK+ */
1625         BUG_ON(INTEL_INFO(dev)->gen < 5);
1626
1627         /* Make sure PCH DPLL is enabled */
1628         assert_shared_dpll_enabled(dev_priv,
1629                                    intel_crtc_to_shared_dpll(intel_crtc));
1630
1631         /* FDI must be feeding us bits for PCH ports */
1632         assert_fdi_tx_enabled(dev_priv, pipe);
1633         assert_fdi_rx_enabled(dev_priv, pipe);
1634
1635         if (HAS_PCH_CPT(dev)) {
1636                 /* Workaround: Set the timing override bit before enabling the
1637                  * pch transcoder. */
1638                 reg = TRANS_CHICKEN2(pipe);
1639                 val = I915_READ(reg);
1640                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1641                 I915_WRITE(reg, val);
1642         }
1643
1644         reg = PCH_TRANSCONF(pipe);
1645         val = I915_READ(reg);
1646         pipeconf_val = I915_READ(PIPECONF(pipe));
1647
1648         if (HAS_PCH_IBX(dev_priv->dev)) {
1649                 /*
1650                  * make the BPC in transcoder be consistent with
1651                  * that in pipeconf reg.
1652                  */
1653                 val &= ~PIPECONF_BPC_MASK;
1654                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1655         }
1656
1657         val &= ~TRANS_INTERLACE_MASK;
1658         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1659                 if (HAS_PCH_IBX(dev_priv->dev) &&
1660                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1661                         val |= TRANS_LEGACY_INTERLACED_ILK;
1662                 else
1663                         val |= TRANS_INTERLACED;
1664         else
1665                 val |= TRANS_PROGRESSIVE;
1666
1667         I915_WRITE(reg, val | TRANS_ENABLE);
1668         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1669                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1670 }
1671
1672 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1673                                       enum transcoder cpu_transcoder)
1674 {
1675         u32 val, pipeconf_val;
1676
1677         /* PCH only available on ILK+ */
1678         BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1679
1680         /* FDI must be feeding us bits for PCH ports */
1681         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1682         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1683
1684         /* Workaround: set timing override bit. */
1685         val = I915_READ(_TRANSA_CHICKEN2);
1686         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1687         I915_WRITE(_TRANSA_CHICKEN2, val);
1688
1689         val = TRANS_ENABLE;
1690         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1691
1692         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1693             PIPECONF_INTERLACED_ILK)
1694                 val |= TRANS_INTERLACED;
1695         else
1696                 val |= TRANS_PROGRESSIVE;
1697
1698         I915_WRITE(LPT_TRANSCONF, val);
1699         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1700                 DRM_ERROR("Failed to enable PCH transcoder\n");
1701 }
1702
1703 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1704                                             enum pipe pipe)
1705 {
1706         struct drm_device *dev = dev_priv->dev;
1707         uint32_t reg, val;
1708
1709         /* FDI relies on the transcoder */
1710         assert_fdi_tx_disabled(dev_priv, pipe);
1711         assert_fdi_rx_disabled(dev_priv, pipe);
1712
1713         /* Ports must be off as well */
1714         assert_pch_ports_disabled(dev_priv, pipe);
1715
1716         reg = PCH_TRANSCONF(pipe);
1717         val = I915_READ(reg);
1718         val &= ~TRANS_ENABLE;
1719         I915_WRITE(reg, val);
1720         /* wait for PCH transcoder off, transcoder state */
1721         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1722                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1723
1724         if (!HAS_PCH_IBX(dev)) {
1725                 /* Workaround: Clear the timing override chicken bit again. */
1726                 reg = TRANS_CHICKEN2(pipe);
1727                 val = I915_READ(reg);
1728                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1729                 I915_WRITE(reg, val);
1730         }
1731 }
1732
1733 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1734 {
1735         u32 val;
1736
1737         val = I915_READ(LPT_TRANSCONF);
1738         val &= ~TRANS_ENABLE;
1739         I915_WRITE(LPT_TRANSCONF, val);
1740         /* wait for PCH transcoder off, transcoder state */
1741         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1742                 DRM_ERROR("Failed to disable PCH transcoder\n");
1743
1744         /* Workaround: clear timing override bit. */
1745         val = I915_READ(_TRANSA_CHICKEN2);
1746         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1747         I915_WRITE(_TRANSA_CHICKEN2, val);
1748 }
1749
1750 /**
1751  * intel_enable_pipe - enable a pipe, asserting requirements
1752  * @crtc: crtc responsible for the pipe
1753  *
1754  * Enable @crtc's pipe, making sure that various hardware specific requirements
1755  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1756  */
1757 static void intel_enable_pipe(struct intel_crtc *crtc)
1758 {
1759         struct drm_device *dev = crtc->base.dev;
1760         struct drm_i915_private *dev_priv = dev->dev_private;
1761         enum pipe pipe = crtc->pipe;
1762         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1763                                                                       pipe);
1764         enum pipe pch_transcoder;
1765         int reg;
1766         u32 val;
1767
1768         assert_planes_disabled(dev_priv, pipe);
1769         assert_cursor_disabled(dev_priv, pipe);
1770         assert_sprites_disabled(dev_priv, pipe);
1771
1772         if (HAS_PCH_LPT(dev_priv->dev))
1773                 pch_transcoder = TRANSCODER_A;
1774         else
1775                 pch_transcoder = pipe;
1776
1777         /*
1778          * A pipe without a PLL won't actually be able to drive bits from
1779          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1780          * need the check.
1781          */
1782         if (!HAS_PCH_SPLIT(dev_priv->dev))
1783                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
1784                         assert_dsi_pll_enabled(dev_priv);
1785                 else
1786                         assert_pll_enabled(dev_priv, pipe);
1787         else {
1788                 if (crtc->config.has_pch_encoder) {
1789                         /* if driving the PCH, we need FDI enabled */
1790                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1791                         assert_fdi_tx_pll_enabled(dev_priv,
1792                                                   (enum pipe) cpu_transcoder);
1793                 }
1794                 /* FIXME: assert CPU port conditions for SNB+ */
1795         }
1796
1797         reg = PIPECONF(cpu_transcoder);
1798         val = I915_READ(reg);
1799         if (val & PIPECONF_ENABLE) {
1800                 WARN_ON(!(pipe == PIPE_A &&
1801                           dev_priv->quirks & QUIRK_PIPEA_FORCE));
1802                 return;
1803         }
1804
1805         I915_WRITE(reg, val | PIPECONF_ENABLE);
1806         POSTING_READ(reg);
1807
1808         /*
1809          * There's no guarantee the pipe will really start running now. It
1810          * depends on the Gen, the output type and the relative order between
1811          * pipe and plane enabling. Avoid waiting on HSW+ since it's not
1812          * necessary.
1813          * TODO: audit the previous gens.
1814          */
1815         if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
1816                 intel_wait_for_vblank(dev_priv->dev, pipe);
1817 }
1818
1819 /**
1820  * intel_disable_pipe - disable a pipe, asserting requirements
1821  * @dev_priv: i915 private structure
1822  * @pipe: pipe to disable
1823  *
1824  * Disable @pipe, making sure that various hardware specific requirements
1825  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1826  *
1827  * @pipe should be %PIPE_A or %PIPE_B.
1828  *
1829  * Will wait until the pipe has shut down before returning.
1830  */
1831 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1832                                enum pipe pipe)
1833 {
1834         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1835                                                                       pipe);
1836         int reg;
1837         u32 val;
1838
1839         /*
1840          * Make sure planes won't keep trying to pump pixels to us,
1841          * or we might hang the display.
1842          */
1843         assert_planes_disabled(dev_priv, pipe);
1844         assert_cursor_disabled(dev_priv, pipe);
1845         assert_sprites_disabled(dev_priv, pipe);
1846
1847         /* Don't disable pipe A or pipe A PLLs if needed */
1848         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1849                 return;
1850
1851         reg = PIPECONF(cpu_transcoder);
1852         val = I915_READ(reg);
1853         if ((val & PIPECONF_ENABLE) == 0)
1854                 return;
1855
1856         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1857         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1858 }
1859
1860 /*
1861  * Plane regs are double buffered, going from enabled->disabled needs a
1862  * trigger in order to latch.  The display address reg provides this.
1863  */
1864 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
1865                                enum plane plane)
1866 {
1867         struct drm_device *dev = dev_priv->dev;
1868         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1869
1870         I915_WRITE(reg, I915_READ(reg));
1871         POSTING_READ(reg);
1872 }
1873
1874 /**
1875  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
1876  * @dev_priv: i915 private structure
1877  * @plane: plane to enable
1878  * @pipe: pipe being fed
1879  *
1880  * Enable @plane on @pipe, making sure that @pipe is running first.
1881  */
1882 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
1883                                           enum plane plane, enum pipe pipe)
1884 {
1885         struct intel_crtc *intel_crtc =
1886                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1887         int reg;
1888         u32 val;
1889
1890         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1891         assert_pipe_enabled(dev_priv, pipe);
1892
1893         WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
1894
1895         intel_crtc->primary_enabled = true;
1896
1897         reg = DSPCNTR(plane);
1898         val = I915_READ(reg);
1899         if (val & DISPLAY_PLANE_ENABLE)
1900                 return;
1901
1902         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1903         intel_flush_primary_plane(dev_priv, plane);
1904         intel_wait_for_vblank(dev_priv->dev, pipe);
1905 }
1906
1907 /**
1908  * intel_disable_primary_hw_plane - disable the primary hardware plane
1909  * @dev_priv: i915 private structure
1910  * @plane: plane to disable
1911  * @pipe: pipe consuming the data
1912  *
1913  * Disable @plane; should be an independent operation.
1914  */
1915 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
1916                                            enum plane plane, enum pipe pipe)
1917 {
1918         struct intel_crtc *intel_crtc =
1919                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1920         int reg;
1921         u32 val;
1922
1923         WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
1924
1925         intel_crtc->primary_enabled = false;
1926
1927         reg = DSPCNTR(plane);
1928         val = I915_READ(reg);
1929         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1930                 return;
1931
1932         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1933         intel_flush_primary_plane(dev_priv, plane);
1934         intel_wait_for_vblank(dev_priv->dev, pipe);
1935 }
1936
1937 static bool need_vtd_wa(struct drm_device *dev)
1938 {
1939 #ifdef CONFIG_INTEL_IOMMU
1940         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1941                 return true;
1942 #endif
1943         return false;
1944 }
1945
1946 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
1947 {
1948         int tile_height;
1949
1950         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
1951         return ALIGN(height, tile_height);
1952 }
1953
1954 int
1955 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1956                            struct drm_i915_gem_object *obj,
1957                            struct intel_ring_buffer *pipelined)
1958 {
1959         struct drm_i915_private *dev_priv = dev->dev_private;
1960         u32 alignment;
1961         int ret;
1962
1963         switch (obj->tiling_mode) {
1964         case I915_TILING_NONE:
1965                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1966                         alignment = 128 * 1024;
1967                 else if (INTEL_INFO(dev)->gen >= 4)
1968                         alignment = 4 * 1024;
1969                 else
1970                         alignment = 64 * 1024;
1971                 break;
1972         case I915_TILING_X:
1973                 /* pin() will align the object as required by fence */
1974                 alignment = 0;
1975                 break;
1976         case I915_TILING_Y:
1977                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
1978                 return -EINVAL;
1979         default:
1980                 BUG();
1981         }
1982
1983         /* Note that the w/a also requires 64 PTE of padding following the
1984          * bo. We currently fill all unused PTE with the shadow page and so
1985          * we should always have valid PTE following the scanout preventing
1986          * the VT-d warning.
1987          */
1988         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1989                 alignment = 256 * 1024;
1990
1991         dev_priv->mm.interruptible = false;
1992         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1993         if (ret)
1994                 goto err_interruptible;
1995
1996         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1997          * fence, whereas 965+ only requires a fence if using
1998          * framebuffer compression.  For simplicity, we always install
1999          * a fence as the cost is not that onerous.
2000          */
2001         ret = i915_gem_object_get_fence(obj);
2002         if (ret)
2003                 goto err_unpin;
2004
2005         i915_gem_object_pin_fence(obj);
2006
2007         dev_priv->mm.interruptible = true;
2008         return 0;
2009
2010 err_unpin:
2011         i915_gem_object_unpin_from_display_plane(obj);
2012 err_interruptible:
2013         dev_priv->mm.interruptible = true;
2014         return ret;
2015 }
2016
2017 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2018 {
2019         i915_gem_object_unpin_fence(obj);
2020         i915_gem_object_unpin_from_display_plane(obj);
2021 }
2022
2023 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2024  * is assumed to be a power-of-two. */
2025 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2026                                              unsigned int tiling_mode,
2027                                              unsigned int cpp,
2028                                              unsigned int pitch)
2029 {
2030         if (tiling_mode != I915_TILING_NONE) {
2031                 unsigned int tile_rows, tiles;
2032
2033                 tile_rows = *y / 8;
2034                 *y %= 8;
2035
2036                 tiles = *x / (512/cpp);
2037                 *x %= 512/cpp;
2038
2039                 return tile_rows * pitch * 8 + tiles * 4096;
2040         } else {
2041                 unsigned int offset;
2042
2043                 offset = *y * pitch + *x * cpp;
2044                 *y = 0;
2045                 *x = (offset & 4095) / cpp;
2046                 return offset & -4096;
2047         }
2048 }
2049
2050 int intel_format_to_fourcc(int format)
2051 {
2052         switch (format) {
2053         case DISPPLANE_8BPP:
2054                 return DRM_FORMAT_C8;
2055         case DISPPLANE_BGRX555:
2056                 return DRM_FORMAT_XRGB1555;
2057         case DISPPLANE_BGRX565:
2058                 return DRM_FORMAT_RGB565;
2059         default:
2060         case DISPPLANE_BGRX888:
2061                 return DRM_FORMAT_XRGB8888;
2062         case DISPPLANE_RGBX888:
2063                 return DRM_FORMAT_XBGR8888;
2064         case DISPPLANE_BGRX101010:
2065                 return DRM_FORMAT_XRGB2101010;
2066         case DISPPLANE_RGBX101010:
2067                 return DRM_FORMAT_XBGR2101010;
2068         }
2069 }
2070
2071 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2072                                   struct intel_plane_config *plane_config)
2073 {
2074         struct drm_device *dev = crtc->base.dev;
2075         struct drm_i915_gem_object *obj = NULL;
2076         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2077         u32 base = plane_config->base;
2078
2079         if (plane_config->size == 0)
2080                 return false;
2081
2082         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2083                                                              plane_config->size);
2084         if (!obj)
2085                 return false;
2086
2087         if (plane_config->tiled) {
2088                 obj->tiling_mode = I915_TILING_X;
2089                 obj->stride = crtc->base.primary->fb->pitches[0];
2090         }
2091
2092         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2093         mode_cmd.width = crtc->base.primary->fb->width;
2094         mode_cmd.height = crtc->base.primary->fb->height;
2095         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2096
2097         mutex_lock(&dev->struct_mutex);
2098
2099         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2100                                    &mode_cmd, obj)) {
2101                 DRM_DEBUG_KMS("intel fb init failed\n");
2102                 goto out_unref_obj;
2103         }
2104
2105         mutex_unlock(&dev->struct_mutex);
2106
2107         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2108         return true;
2109
2110 out_unref_obj:
2111         drm_gem_object_unreference(&obj->base);
2112         mutex_unlock(&dev->struct_mutex);
2113         return false;
2114 }
2115
2116 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2117                                  struct intel_plane_config *plane_config)
2118 {
2119         struct drm_device *dev = intel_crtc->base.dev;
2120         struct drm_crtc *c;
2121         struct intel_crtc *i;
2122         struct intel_framebuffer *fb;
2123
2124         if (!intel_crtc->base.primary->fb)
2125                 return;
2126
2127         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2128                 return;
2129
2130         kfree(intel_crtc->base.primary->fb);
2131         intel_crtc->base.primary->fb = NULL;
2132
2133         /*
2134          * Failed to alloc the obj, check to see if we should share
2135          * an fb with another CRTC instead
2136          */
2137         list_for_each_entry(c, &dev->mode_config.crtc_list, head) {
2138                 i = to_intel_crtc(c);
2139
2140                 if (c == &intel_crtc->base)
2141                         continue;
2142
2143                 if (!i->active || !c->primary->fb)
2144                         continue;
2145
2146                 fb = to_intel_framebuffer(c->primary->fb);
2147                 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
2148                         drm_framebuffer_reference(c->primary->fb);
2149                         intel_crtc->base.primary->fb = c->primary->fb;
2150                         break;
2151                 }
2152         }
2153 }
2154
2155 static int i9xx_update_primary_plane(struct drm_crtc *crtc,
2156                                      struct drm_framebuffer *fb,
2157                                      int x, int y)
2158 {
2159         struct drm_device *dev = crtc->dev;
2160         struct drm_i915_private *dev_priv = dev->dev_private;
2161         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2162         struct intel_framebuffer *intel_fb;
2163         struct drm_i915_gem_object *obj;
2164         int plane = intel_crtc->plane;
2165         unsigned long linear_offset;
2166         u32 dspcntr;
2167         u32 reg;
2168
2169         switch (plane) {
2170         case 0:
2171         case 1:
2172                 break;
2173         default:
2174                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2175                 return -EINVAL;
2176         }
2177
2178         intel_fb = to_intel_framebuffer(fb);
2179         obj = intel_fb->obj;
2180
2181         reg = DSPCNTR(plane);
2182         dspcntr = I915_READ(reg);
2183         /* Mask out pixel format bits in case we change it */
2184         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2185         switch (fb->pixel_format) {
2186         case DRM_FORMAT_C8:
2187                 dspcntr |= DISPPLANE_8BPP;
2188                 break;
2189         case DRM_FORMAT_XRGB1555:
2190         case DRM_FORMAT_ARGB1555:
2191                 dspcntr |= DISPPLANE_BGRX555;
2192                 break;
2193         case DRM_FORMAT_RGB565:
2194                 dspcntr |= DISPPLANE_BGRX565;
2195                 break;
2196         case DRM_FORMAT_XRGB8888:
2197         case DRM_FORMAT_ARGB8888:
2198                 dspcntr |= DISPPLANE_BGRX888;
2199                 break;
2200         case DRM_FORMAT_XBGR8888:
2201         case DRM_FORMAT_ABGR8888:
2202                 dspcntr |= DISPPLANE_RGBX888;
2203                 break;
2204         case DRM_FORMAT_XRGB2101010:
2205         case DRM_FORMAT_ARGB2101010:
2206                 dspcntr |= DISPPLANE_BGRX101010;
2207                 break;
2208         case DRM_FORMAT_XBGR2101010:
2209         case DRM_FORMAT_ABGR2101010:
2210                 dspcntr |= DISPPLANE_RGBX101010;
2211                 break;
2212         default:
2213                 BUG();
2214         }
2215
2216         if (INTEL_INFO(dev)->gen >= 4) {
2217                 if (obj->tiling_mode != I915_TILING_NONE)
2218                         dspcntr |= DISPPLANE_TILED;
2219                 else
2220                         dspcntr &= ~DISPPLANE_TILED;
2221         }
2222
2223         if (IS_G4X(dev))
2224                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2225
2226         I915_WRITE(reg, dspcntr);
2227
2228         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2229
2230         if (INTEL_INFO(dev)->gen >= 4) {
2231                 intel_crtc->dspaddr_offset =
2232                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2233                                                        fb->bits_per_pixel / 8,
2234                                                        fb->pitches[0]);
2235                 linear_offset -= intel_crtc->dspaddr_offset;
2236         } else {
2237                 intel_crtc->dspaddr_offset = linear_offset;
2238         }
2239
2240         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2241                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2242                       fb->pitches[0]);
2243         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2244         if (INTEL_INFO(dev)->gen >= 4) {
2245                 I915_WRITE(DSPSURF(plane),
2246                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2247                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2248                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2249         } else
2250                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2251         POSTING_READ(reg);
2252
2253         return 0;
2254 }
2255
2256 static int ironlake_update_primary_plane(struct drm_crtc *crtc,
2257                                          struct drm_framebuffer *fb,
2258                                          int x, int y)
2259 {
2260         struct drm_device *dev = crtc->dev;
2261         struct drm_i915_private *dev_priv = dev->dev_private;
2262         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2263         struct intel_framebuffer *intel_fb;
2264         struct drm_i915_gem_object *obj;
2265         int plane = intel_crtc->plane;
2266         unsigned long linear_offset;
2267         u32 dspcntr;
2268         u32 reg;
2269
2270         switch (plane) {
2271         case 0:
2272         case 1:
2273         case 2:
2274                 break;
2275         default:
2276                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2277                 return -EINVAL;
2278         }
2279
2280         intel_fb = to_intel_framebuffer(fb);
2281         obj = intel_fb->obj;
2282
2283         reg = DSPCNTR(plane);
2284         dspcntr = I915_READ(reg);
2285         /* Mask out pixel format bits in case we change it */
2286         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2287         switch (fb->pixel_format) {
2288         case DRM_FORMAT_C8:
2289                 dspcntr |= DISPPLANE_8BPP;
2290                 break;
2291         case DRM_FORMAT_RGB565:
2292                 dspcntr |= DISPPLANE_BGRX565;
2293                 break;
2294         case DRM_FORMAT_XRGB8888:
2295         case DRM_FORMAT_ARGB8888:
2296                 dspcntr |= DISPPLANE_BGRX888;
2297                 break;
2298         case DRM_FORMAT_XBGR8888:
2299         case DRM_FORMAT_ABGR8888:
2300                 dspcntr |= DISPPLANE_RGBX888;
2301                 break;
2302         case DRM_FORMAT_XRGB2101010:
2303         case DRM_FORMAT_ARGB2101010:
2304                 dspcntr |= DISPPLANE_BGRX101010;
2305                 break;
2306         case DRM_FORMAT_XBGR2101010:
2307         case DRM_FORMAT_ABGR2101010:
2308                 dspcntr |= DISPPLANE_RGBX101010;
2309                 break;
2310         default:
2311                 BUG();
2312         }
2313
2314         if (obj->tiling_mode != I915_TILING_NONE)
2315                 dspcntr |= DISPPLANE_TILED;
2316         else
2317                 dspcntr &= ~DISPPLANE_TILED;
2318
2319         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2320                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2321         else
2322                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2323
2324         I915_WRITE(reg, dspcntr);
2325
2326         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2327         intel_crtc->dspaddr_offset =
2328                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2329                                                fb->bits_per_pixel / 8,
2330                                                fb->pitches[0]);
2331         linear_offset -= intel_crtc->dspaddr_offset;
2332
2333         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2334                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2335                       fb->pitches[0]);
2336         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2337         I915_WRITE(DSPSURF(plane),
2338                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2339         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2340                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2341         } else {
2342                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2343                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2344         }
2345         POSTING_READ(reg);
2346
2347         return 0;
2348 }
2349
2350 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2351 static int
2352 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2353                            int x, int y, enum mode_set_atomic state)
2354 {
2355         struct drm_device *dev = crtc->dev;
2356         struct drm_i915_private *dev_priv = dev->dev_private;
2357
2358         if (dev_priv->display.disable_fbc)
2359                 dev_priv->display.disable_fbc(dev);
2360         intel_increase_pllclock(crtc);
2361
2362         return dev_priv->display.update_primary_plane(crtc, fb, x, y);
2363 }
2364
2365 void intel_display_handle_reset(struct drm_device *dev)
2366 {
2367         struct drm_i915_private *dev_priv = dev->dev_private;
2368         struct drm_crtc *crtc;
2369
2370         /*
2371          * Flips in the rings have been nuked by the reset,
2372          * so complete all pending flips so that user space
2373          * will get its events and not get stuck.
2374          *
2375          * Also update the base address of all primary
2376          * planes to the the last fb to make sure we're
2377          * showing the correct fb after a reset.
2378          *
2379          * Need to make two loops over the crtcs so that we
2380          * don't try to grab a crtc mutex before the
2381          * pending_flip_queue really got woken up.
2382          */
2383
2384         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2385                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2386                 enum plane plane = intel_crtc->plane;
2387
2388                 intel_prepare_page_flip(dev, plane);
2389                 intel_finish_page_flip_plane(dev, plane);
2390         }
2391
2392         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2393                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2394
2395                 mutex_lock(&crtc->mutex);
2396                 /*
2397                  * FIXME: Once we have proper support for primary planes (and
2398                  * disabling them without disabling the entire crtc) allow again
2399                  * a NULL crtc->primary->fb.
2400                  */
2401                 if (intel_crtc->active && crtc->primary->fb)
2402                         dev_priv->display.update_primary_plane(crtc,
2403                                                                crtc->primary->fb,
2404                                                                crtc->x,
2405                                                                crtc->y);
2406                 mutex_unlock(&crtc->mutex);
2407         }
2408 }
2409
2410 static int
2411 intel_finish_fb(struct drm_framebuffer *old_fb)
2412 {
2413         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2414         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2415         bool was_interruptible = dev_priv->mm.interruptible;
2416         int ret;
2417
2418         /* Big Hammer, we also need to ensure that any pending
2419          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2420          * current scanout is retired before unpinning the old
2421          * framebuffer.
2422          *
2423          * This should only fail upon a hung GPU, in which case we
2424          * can safely continue.
2425          */
2426         dev_priv->mm.interruptible = false;
2427         ret = i915_gem_object_finish_gpu(obj);
2428         dev_priv->mm.interruptible = was_interruptible;
2429
2430         return ret;
2431 }
2432
2433 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2434 {
2435         struct drm_device *dev = crtc->dev;
2436         struct drm_i915_private *dev_priv = dev->dev_private;
2437         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2438         unsigned long flags;
2439         bool pending;
2440
2441         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2442             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2443                 return false;
2444
2445         spin_lock_irqsave(&dev->event_lock, flags);
2446         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2447         spin_unlock_irqrestore(&dev->event_lock, flags);
2448
2449         return pending;
2450 }
2451
2452 static int
2453 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2454                     struct drm_framebuffer *fb)
2455 {
2456         struct drm_device *dev = crtc->dev;
2457         struct drm_i915_private *dev_priv = dev->dev_private;
2458         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2459         struct drm_framebuffer *old_fb;
2460         int ret;
2461
2462         if (intel_crtc_has_pending_flip(crtc)) {
2463                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2464                 return -EBUSY;
2465         }
2466
2467         /* no fb bound */
2468         if (!fb) {
2469                 DRM_ERROR("No FB bound\n");
2470                 return 0;
2471         }
2472
2473         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2474                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2475                           plane_name(intel_crtc->plane),
2476                           INTEL_INFO(dev)->num_pipes);
2477                 return -EINVAL;
2478         }
2479
2480         mutex_lock(&dev->struct_mutex);
2481         ret = intel_pin_and_fence_fb_obj(dev,
2482                                          to_intel_framebuffer(fb)->obj,
2483                                          NULL);
2484         mutex_unlock(&dev->struct_mutex);
2485         if (ret != 0) {
2486                 DRM_ERROR("pin & fence failed\n");
2487                 return ret;
2488         }
2489
2490         /*
2491          * Update pipe size and adjust fitter if needed: the reason for this is
2492          * that in compute_mode_changes we check the native mode (not the pfit
2493          * mode) to see if we can flip rather than do a full mode set. In the
2494          * fastboot case, we'll flip, but if we don't update the pipesrc and
2495          * pfit state, we'll end up with a big fb scanned out into the wrong
2496          * sized surface.
2497          *
2498          * To fix this properly, we need to hoist the checks up into
2499          * compute_mode_changes (or above), check the actual pfit state and
2500          * whether the platform allows pfit disable with pipe active, and only
2501          * then update the pipesrc and pfit state, even on the flip path.
2502          */
2503         if (i915.fastboot) {
2504                 const struct drm_display_mode *adjusted_mode =
2505                         &intel_crtc->config.adjusted_mode;
2506
2507                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2508                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2509                            (adjusted_mode->crtc_vdisplay - 1));
2510                 if (!intel_crtc->config.pch_pfit.enabled &&
2511                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2512                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2513                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2514                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2515                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2516                 }
2517                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2518                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2519         }
2520
2521         ret = dev_priv->display.update_primary_plane(crtc, fb, x, y);
2522         if (ret) {
2523                 mutex_lock(&dev->struct_mutex);
2524                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2525                 mutex_unlock(&dev->struct_mutex);
2526                 DRM_ERROR("failed to update base address\n");
2527                 return ret;
2528         }
2529
2530         old_fb = crtc->primary->fb;
2531         crtc->primary->fb = fb;
2532         crtc->x = x;
2533         crtc->y = y;
2534
2535         if (old_fb) {
2536                 if (intel_crtc->active && old_fb != fb)
2537                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2538                 mutex_lock(&dev->struct_mutex);
2539                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2540                 mutex_unlock(&dev->struct_mutex);
2541         }
2542
2543         mutex_lock(&dev->struct_mutex);
2544         intel_update_fbc(dev);
2545         intel_edp_psr_update(dev);
2546         mutex_unlock(&dev->struct_mutex);
2547
2548         return 0;
2549 }
2550
2551 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2552 {
2553         struct drm_device *dev = crtc->dev;
2554         struct drm_i915_private *dev_priv = dev->dev_private;
2555         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2556         int pipe = intel_crtc->pipe;
2557         u32 reg, temp;
2558
2559         /* enable normal train */
2560         reg = FDI_TX_CTL(pipe);
2561         temp = I915_READ(reg);
2562         if (IS_IVYBRIDGE(dev)) {
2563                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2564                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2565         } else {
2566                 temp &= ~FDI_LINK_TRAIN_NONE;
2567                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2568         }
2569         I915_WRITE(reg, temp);
2570
2571         reg = FDI_RX_CTL(pipe);
2572         temp = I915_READ(reg);
2573         if (HAS_PCH_CPT(dev)) {
2574                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2575                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2576         } else {
2577                 temp &= ~FDI_LINK_TRAIN_NONE;
2578                 temp |= FDI_LINK_TRAIN_NONE;
2579         }
2580         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2581
2582         /* wait one idle pattern time */
2583         POSTING_READ(reg);
2584         udelay(1000);
2585
2586         /* IVB wants error correction enabled */
2587         if (IS_IVYBRIDGE(dev))
2588                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2589                            FDI_FE_ERRC_ENABLE);
2590 }
2591
2592 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2593 {
2594         return crtc->base.enabled && crtc->active &&
2595                 crtc->config.has_pch_encoder;
2596 }
2597
2598 static void ivb_modeset_global_resources(struct drm_device *dev)
2599 {
2600         struct drm_i915_private *dev_priv = dev->dev_private;
2601         struct intel_crtc *pipe_B_crtc =
2602                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2603         struct intel_crtc *pipe_C_crtc =
2604                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2605         uint32_t temp;
2606
2607         /*
2608          * When everything is off disable fdi C so that we could enable fdi B
2609          * with all lanes. Note that we don't care about enabled pipes without
2610          * an enabled pch encoder.
2611          */
2612         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2613             !pipe_has_enabled_pch(pipe_C_crtc)) {
2614                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2615                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2616
2617                 temp = I915_READ(SOUTH_CHICKEN1);
2618                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2619                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2620                 I915_WRITE(SOUTH_CHICKEN1, temp);
2621         }
2622 }
2623
2624 /* The FDI link training functions for ILK/Ibexpeak. */
2625 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2626 {
2627         struct drm_device *dev = crtc->dev;
2628         struct drm_i915_private *dev_priv = dev->dev_private;
2629         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2630         int pipe = intel_crtc->pipe;
2631         int plane = intel_crtc->plane;
2632         u32 reg, temp, tries;
2633
2634         /* FDI needs bits from pipe & plane first */
2635         assert_pipe_enabled(dev_priv, pipe);
2636         assert_plane_enabled(dev_priv, plane);
2637
2638         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2639            for train result */
2640         reg = FDI_RX_IMR(pipe);
2641         temp = I915_READ(reg);
2642         temp &= ~FDI_RX_SYMBOL_LOCK;
2643         temp &= ~FDI_RX_BIT_LOCK;
2644         I915_WRITE(reg, temp);
2645         I915_READ(reg);
2646         udelay(150);
2647
2648         /* enable CPU FDI TX and PCH FDI RX */
2649         reg = FDI_TX_CTL(pipe);
2650         temp = I915_READ(reg);
2651         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2652         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2653         temp &= ~FDI_LINK_TRAIN_NONE;
2654         temp |= FDI_LINK_TRAIN_PATTERN_1;
2655         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2656
2657         reg = FDI_RX_CTL(pipe);
2658         temp = I915_READ(reg);
2659         temp &= ~FDI_LINK_TRAIN_NONE;
2660         temp |= FDI_LINK_TRAIN_PATTERN_1;
2661         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2662
2663         POSTING_READ(reg);
2664         udelay(150);
2665
2666         /* Ironlake workaround, enable clock pointer after FDI enable*/
2667         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2668         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2669                    FDI_RX_PHASE_SYNC_POINTER_EN);
2670
2671         reg = FDI_RX_IIR(pipe);
2672         for (tries = 0; tries < 5; tries++) {
2673                 temp = I915_READ(reg);
2674                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2675
2676                 if ((temp & FDI_RX_BIT_LOCK)) {
2677                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2678                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2679                         break;
2680                 }
2681         }
2682         if (tries == 5)
2683                 DRM_ERROR("FDI train 1 fail!\n");
2684
2685         /* Train 2 */
2686         reg = FDI_TX_CTL(pipe);
2687         temp = I915_READ(reg);
2688         temp &= ~FDI_LINK_TRAIN_NONE;
2689         temp |= FDI_LINK_TRAIN_PATTERN_2;
2690         I915_WRITE(reg, temp);
2691
2692         reg = FDI_RX_CTL(pipe);
2693         temp = I915_READ(reg);
2694         temp &= ~FDI_LINK_TRAIN_NONE;
2695         temp |= FDI_LINK_TRAIN_PATTERN_2;
2696         I915_WRITE(reg, temp);
2697
2698         POSTING_READ(reg);
2699         udelay(150);
2700
2701         reg = FDI_RX_IIR(pipe);
2702         for (tries = 0; tries < 5; tries++) {
2703                 temp = I915_READ(reg);
2704                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2705
2706                 if (temp & FDI_RX_SYMBOL_LOCK) {
2707                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2708                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2709                         break;
2710                 }
2711         }
2712         if (tries == 5)
2713                 DRM_ERROR("FDI train 2 fail!\n");
2714
2715         DRM_DEBUG_KMS("FDI train done\n");
2716
2717 }
2718
2719 static const int snb_b_fdi_train_param[] = {
2720         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2721         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2722         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2723         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2724 };
2725
2726 /* The FDI link training functions for SNB/Cougarpoint. */
2727 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2728 {
2729         struct drm_device *dev = crtc->dev;
2730         struct drm_i915_private *dev_priv = dev->dev_private;
2731         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2732         int pipe = intel_crtc->pipe;
2733         u32 reg, temp, i, retry;
2734
2735         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2736            for train result */
2737         reg = FDI_RX_IMR(pipe);
2738         temp = I915_READ(reg);
2739         temp &= ~FDI_RX_SYMBOL_LOCK;
2740         temp &= ~FDI_RX_BIT_LOCK;
2741         I915_WRITE(reg, temp);
2742
2743         POSTING_READ(reg);
2744         udelay(150);
2745
2746         /* enable CPU FDI TX and PCH FDI RX */
2747         reg = FDI_TX_CTL(pipe);
2748         temp = I915_READ(reg);
2749         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2750         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2751         temp &= ~FDI_LINK_TRAIN_NONE;
2752         temp |= FDI_LINK_TRAIN_PATTERN_1;
2753         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2754         /* SNB-B */
2755         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2756         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2757
2758         I915_WRITE(FDI_RX_MISC(pipe),
2759                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2760
2761         reg = FDI_RX_CTL(pipe);
2762         temp = I915_READ(reg);
2763         if (HAS_PCH_CPT(dev)) {
2764                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2765                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2766         } else {
2767                 temp &= ~FDI_LINK_TRAIN_NONE;
2768                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2769         }
2770         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2771
2772         POSTING_READ(reg);
2773         udelay(150);
2774
2775         for (i = 0; i < 4; i++) {
2776                 reg = FDI_TX_CTL(pipe);
2777                 temp = I915_READ(reg);
2778                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2779                 temp |= snb_b_fdi_train_param[i];
2780                 I915_WRITE(reg, temp);
2781
2782                 POSTING_READ(reg);
2783                 udelay(500);
2784
2785                 for (retry = 0; retry < 5; retry++) {
2786                         reg = FDI_RX_IIR(pipe);
2787                         temp = I915_READ(reg);
2788                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2789                         if (temp & FDI_RX_BIT_LOCK) {
2790                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2791                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2792                                 break;
2793                         }
2794                         udelay(50);
2795                 }
2796                 if (retry < 5)
2797                         break;
2798         }
2799         if (i == 4)
2800                 DRM_ERROR("FDI train 1 fail!\n");
2801
2802         /* Train 2 */
2803         reg = FDI_TX_CTL(pipe);
2804         temp = I915_READ(reg);
2805         temp &= ~FDI_LINK_TRAIN_NONE;
2806         temp |= FDI_LINK_TRAIN_PATTERN_2;
2807         if (IS_GEN6(dev)) {
2808                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2809                 /* SNB-B */
2810                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2811         }
2812         I915_WRITE(reg, temp);
2813
2814         reg = FDI_RX_CTL(pipe);
2815         temp = I915_READ(reg);
2816         if (HAS_PCH_CPT(dev)) {
2817                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2818                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2819         } else {
2820                 temp &= ~FDI_LINK_TRAIN_NONE;
2821                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2822         }
2823         I915_WRITE(reg, temp);
2824
2825         POSTING_READ(reg);
2826         udelay(150);
2827
2828         for (i = 0; i < 4; i++) {
2829                 reg = FDI_TX_CTL(pipe);
2830                 temp = I915_READ(reg);
2831                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2832                 temp |= snb_b_fdi_train_param[i];
2833                 I915_WRITE(reg, temp);
2834
2835                 POSTING_READ(reg);
2836                 udelay(500);
2837
2838                 for (retry = 0; retry < 5; retry++) {
2839                         reg = FDI_RX_IIR(pipe);
2840                         temp = I915_READ(reg);
2841                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2842                         if (temp & FDI_RX_SYMBOL_LOCK) {
2843                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2844                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2845                                 break;
2846                         }
2847                         udelay(50);
2848                 }
2849                 if (retry < 5)
2850                         break;
2851         }
2852         if (i == 4)
2853                 DRM_ERROR("FDI train 2 fail!\n");
2854
2855         DRM_DEBUG_KMS("FDI train done.\n");
2856 }
2857
2858 /* Manual link training for Ivy Bridge A0 parts */
2859 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2860 {
2861         struct drm_device *dev = crtc->dev;
2862         struct drm_i915_private *dev_priv = dev->dev_private;
2863         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2864         int pipe = intel_crtc->pipe;
2865         u32 reg, temp, i, j;
2866
2867         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2868            for train result */
2869         reg = FDI_RX_IMR(pipe);
2870         temp = I915_READ(reg);
2871         temp &= ~FDI_RX_SYMBOL_LOCK;
2872         temp &= ~FDI_RX_BIT_LOCK;
2873         I915_WRITE(reg, temp);
2874
2875         POSTING_READ(reg);
2876         udelay(150);
2877
2878         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2879                       I915_READ(FDI_RX_IIR(pipe)));
2880
2881         /* Try each vswing and preemphasis setting twice before moving on */
2882         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2883                 /* disable first in case we need to retry */
2884                 reg = FDI_TX_CTL(pipe);
2885                 temp = I915_READ(reg);
2886                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2887                 temp &= ~FDI_TX_ENABLE;
2888                 I915_WRITE(reg, temp);
2889
2890                 reg = FDI_RX_CTL(pipe);
2891                 temp = I915_READ(reg);
2892                 temp &= ~FDI_LINK_TRAIN_AUTO;
2893                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2894                 temp &= ~FDI_RX_ENABLE;
2895                 I915_WRITE(reg, temp);
2896
2897                 /* enable CPU FDI TX and PCH FDI RX */
2898                 reg = FDI_TX_CTL(pipe);
2899                 temp = I915_READ(reg);
2900                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2901                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2902                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2903                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2904                 temp |= snb_b_fdi_train_param[j/2];
2905                 temp |= FDI_COMPOSITE_SYNC;
2906                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2907
2908                 I915_WRITE(FDI_RX_MISC(pipe),
2909                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2910
2911                 reg = FDI_RX_CTL(pipe);
2912                 temp = I915_READ(reg);
2913                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2914                 temp |= FDI_COMPOSITE_SYNC;
2915                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2916
2917                 POSTING_READ(reg);
2918                 udelay(1); /* should be 0.5us */
2919
2920                 for (i = 0; i < 4; i++) {
2921                         reg = FDI_RX_IIR(pipe);
2922                         temp = I915_READ(reg);
2923                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2924
2925                         if (temp & FDI_RX_BIT_LOCK ||
2926                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2927                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2928                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2929                                               i);
2930                                 break;
2931                         }
2932                         udelay(1); /* should be 0.5us */
2933                 }
2934                 if (i == 4) {
2935                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2936                         continue;
2937                 }
2938
2939                 /* Train 2 */
2940                 reg = FDI_TX_CTL(pipe);
2941                 temp = I915_READ(reg);
2942                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2943                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2944                 I915_WRITE(reg, temp);
2945
2946                 reg = FDI_RX_CTL(pipe);
2947                 temp = I915_READ(reg);
2948                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2949                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2950                 I915_WRITE(reg, temp);
2951
2952                 POSTING_READ(reg);
2953                 udelay(2); /* should be 1.5us */
2954
2955                 for (i = 0; i < 4; i++) {
2956                         reg = FDI_RX_IIR(pipe);
2957                         temp = I915_READ(reg);
2958                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2959
2960                         if (temp & FDI_RX_SYMBOL_LOCK ||
2961                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2962                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2963                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2964                                               i);
2965                                 goto train_done;
2966                         }
2967                         udelay(2); /* should be 1.5us */
2968                 }
2969                 if (i == 4)
2970                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2971         }
2972
2973 train_done:
2974         DRM_DEBUG_KMS("FDI train done.\n");
2975 }
2976
2977 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2978 {
2979         struct drm_device *dev = intel_crtc->base.dev;
2980         struct drm_i915_private *dev_priv = dev->dev_private;
2981         int pipe = intel_crtc->pipe;
2982         u32 reg, temp;
2983
2984
2985         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2986         reg = FDI_RX_CTL(pipe);
2987         temp = I915_READ(reg);
2988         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2989         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2990         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2991         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2992
2993         POSTING_READ(reg);
2994         udelay(200);
2995
2996         /* Switch from Rawclk to PCDclk */
2997         temp = I915_READ(reg);
2998         I915_WRITE(reg, temp | FDI_PCDCLK);
2999
3000         POSTING_READ(reg);
3001         udelay(200);
3002
3003         /* Enable CPU FDI TX PLL, always on for Ironlake */
3004         reg = FDI_TX_CTL(pipe);
3005         temp = I915_READ(reg);
3006         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3007                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3008
3009                 POSTING_READ(reg);
3010                 udelay(100);
3011         }
3012 }
3013
3014 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3015 {
3016         struct drm_device *dev = intel_crtc->base.dev;
3017         struct drm_i915_private *dev_priv = dev->dev_private;
3018         int pipe = intel_crtc->pipe;
3019         u32 reg, temp;
3020
3021         /* Switch from PCDclk to Rawclk */
3022         reg = FDI_RX_CTL(pipe);
3023         temp = I915_READ(reg);
3024         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3025
3026         /* Disable CPU FDI TX PLL */
3027         reg = FDI_TX_CTL(pipe);
3028         temp = I915_READ(reg);
3029         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3030
3031         POSTING_READ(reg);
3032         udelay(100);
3033
3034         reg = FDI_RX_CTL(pipe);
3035         temp = I915_READ(reg);
3036         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3037
3038         /* Wait for the clocks to turn off. */
3039         POSTING_READ(reg);
3040         udelay(100);
3041 }
3042
3043 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3044 {
3045         struct drm_device *dev = crtc->dev;
3046         struct drm_i915_private *dev_priv = dev->dev_private;
3047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3048         int pipe = intel_crtc->pipe;
3049         u32 reg, temp;
3050
3051         /* disable CPU FDI tx and PCH FDI rx */
3052         reg = FDI_TX_CTL(pipe);
3053         temp = I915_READ(reg);
3054         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3055         POSTING_READ(reg);
3056
3057         reg = FDI_RX_CTL(pipe);
3058         temp = I915_READ(reg);
3059         temp &= ~(0x7 << 16);
3060         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3061         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3062
3063         POSTING_READ(reg);
3064         udelay(100);
3065
3066         /* Ironlake workaround, disable clock pointer after downing FDI */
3067         if (HAS_PCH_IBX(dev)) {
3068                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3069         }
3070
3071         /* still set train pattern 1 */
3072         reg = FDI_TX_CTL(pipe);
3073         temp = I915_READ(reg);
3074         temp &= ~FDI_LINK_TRAIN_NONE;
3075         temp |= FDI_LINK_TRAIN_PATTERN_1;
3076         I915_WRITE(reg, temp);
3077
3078         reg = FDI_RX_CTL(pipe);
3079         temp = I915_READ(reg);
3080         if (HAS_PCH_CPT(dev)) {
3081                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3082                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3083         } else {
3084                 temp &= ~FDI_LINK_TRAIN_NONE;
3085                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3086         }
3087         /* BPC in FDI rx is consistent with that in PIPECONF */
3088         temp &= ~(0x07 << 16);
3089         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3090         I915_WRITE(reg, temp);
3091
3092         POSTING_READ(reg);
3093         udelay(100);
3094 }
3095
3096 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3097 {
3098         struct intel_crtc *crtc;
3099
3100         /* Note that we don't need to be called with mode_config.lock here
3101          * as our list of CRTC objects is static for the lifetime of the
3102          * device and so cannot disappear as we iterate. Similarly, we can
3103          * happily treat the predicates as racy, atomic checks as userspace
3104          * cannot claim and pin a new fb without at least acquring the
3105          * struct_mutex and so serialising with us.
3106          */
3107         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3108                 if (atomic_read(&crtc->unpin_work_count) == 0)
3109                         continue;
3110
3111                 if (crtc->unpin_work)
3112                         intel_wait_for_vblank(dev, crtc->pipe);
3113
3114                 return true;
3115         }
3116
3117         return false;
3118 }
3119
3120 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3121 {
3122         struct drm_device *dev = crtc->dev;
3123         struct drm_i915_private *dev_priv = dev->dev_private;
3124
3125         if (crtc->primary->fb == NULL)
3126                 return;
3127
3128         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3129
3130         wait_event(dev_priv->pending_flip_queue,
3131                    !intel_crtc_has_pending_flip(crtc));
3132
3133         mutex_lock(&dev->struct_mutex);
3134         intel_finish_fb(crtc->primary->fb);
3135         mutex_unlock(&dev->struct_mutex);
3136 }
3137
3138 /* Program iCLKIP clock to the desired frequency */
3139 static void lpt_program_iclkip(struct drm_crtc *crtc)
3140 {
3141         struct drm_device *dev = crtc->dev;
3142         struct drm_i915_private *dev_priv = dev->dev_private;
3143         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3144         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3145         u32 temp;
3146
3147         mutex_lock(&dev_priv->dpio_lock);
3148
3149         /* It is necessary to ungate the pixclk gate prior to programming
3150          * the divisors, and gate it back when it is done.
3151          */
3152         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3153
3154         /* Disable SSCCTL */
3155         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3156                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3157                                 SBI_SSCCTL_DISABLE,
3158                         SBI_ICLK);
3159
3160         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3161         if (clock == 20000) {
3162                 auxdiv = 1;
3163                 divsel = 0x41;
3164                 phaseinc = 0x20;
3165         } else {
3166                 /* The iCLK virtual clock root frequency is in MHz,
3167                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3168                  * divisors, it is necessary to divide one by another, so we
3169                  * convert the virtual clock precision to KHz here for higher
3170                  * precision.
3171                  */
3172                 u32 iclk_virtual_root_freq = 172800 * 1000;
3173                 u32 iclk_pi_range = 64;
3174                 u32 desired_divisor, msb_divisor_value, pi_value;
3175
3176                 desired_divisor = (iclk_virtual_root_freq / clock);
3177                 msb_divisor_value = desired_divisor / iclk_pi_range;
3178                 pi_value = desired_divisor % iclk_pi_range;
3179
3180                 auxdiv = 0;
3181                 divsel = msb_divisor_value - 2;
3182                 phaseinc = pi_value;
3183         }
3184
3185         /* This should not happen with any sane values */
3186         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3187                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3188         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3189                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3190
3191         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3192                         clock,
3193                         auxdiv,
3194                         divsel,
3195                         phasedir,
3196                         phaseinc);
3197
3198         /* Program SSCDIVINTPHASE6 */
3199         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3200         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3201         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3202         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3203         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3204         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3205         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3206         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3207
3208         /* Program SSCAUXDIV */
3209         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3210         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3211         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3212         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3213
3214         /* Enable modulator and associated divider */
3215         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3216         temp &= ~SBI_SSCCTL_DISABLE;
3217         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3218
3219         /* Wait for initialization time */
3220         udelay(24);
3221
3222         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3223
3224         mutex_unlock(&dev_priv->dpio_lock);
3225 }
3226
3227 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3228                                                 enum pipe pch_transcoder)
3229 {
3230         struct drm_device *dev = crtc->base.dev;
3231         struct drm_i915_private *dev_priv = dev->dev_private;
3232         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3233
3234         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3235                    I915_READ(HTOTAL(cpu_transcoder)));
3236         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3237                    I915_READ(HBLANK(cpu_transcoder)));
3238         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3239                    I915_READ(HSYNC(cpu_transcoder)));
3240
3241         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3242                    I915_READ(VTOTAL(cpu_transcoder)));
3243         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3244                    I915_READ(VBLANK(cpu_transcoder)));
3245         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3246                    I915_READ(VSYNC(cpu_transcoder)));
3247         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3248                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3249 }
3250
3251 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3252 {
3253         struct drm_i915_private *dev_priv = dev->dev_private;
3254         uint32_t temp;
3255
3256         temp = I915_READ(SOUTH_CHICKEN1);
3257         if (temp & FDI_BC_BIFURCATION_SELECT)
3258                 return;
3259
3260         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3261         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3262
3263         temp |= FDI_BC_BIFURCATION_SELECT;
3264         DRM_DEBUG_KMS("enabling fdi C rx\n");
3265         I915_WRITE(SOUTH_CHICKEN1, temp);
3266         POSTING_READ(SOUTH_CHICKEN1);
3267 }
3268
3269 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3270 {
3271         struct drm_device *dev = intel_crtc->base.dev;
3272         struct drm_i915_private *dev_priv = dev->dev_private;
3273
3274         switch (intel_crtc->pipe) {
3275         case PIPE_A:
3276                 break;
3277         case PIPE_B:
3278                 if (intel_crtc->config.fdi_lanes > 2)
3279                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3280                 else
3281                         cpt_enable_fdi_bc_bifurcation(dev);
3282
3283                 break;
3284         case PIPE_C:
3285                 cpt_enable_fdi_bc_bifurcation(dev);
3286
3287                 break;
3288         default:
3289                 BUG();
3290         }
3291 }
3292
3293 /*
3294  * Enable PCH resources required for PCH ports:
3295  *   - PCH PLLs
3296  *   - FDI training & RX/TX
3297  *   - update transcoder timings
3298  *   - DP transcoding bits
3299  *   - transcoder
3300  */
3301 static void ironlake_pch_enable(struct drm_crtc *crtc)
3302 {
3303         struct drm_device *dev = crtc->dev;
3304         struct drm_i915_private *dev_priv = dev->dev_private;
3305         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3306         int pipe = intel_crtc->pipe;
3307         u32 reg, temp;
3308
3309         assert_pch_transcoder_disabled(dev_priv, pipe);
3310
3311         if (IS_IVYBRIDGE(dev))
3312                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3313
3314         /* Write the TU size bits before fdi link training, so that error
3315          * detection works. */
3316         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3317                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3318
3319         /* For PCH output, training FDI link */
3320         dev_priv->display.fdi_link_train(crtc);
3321
3322         /* We need to program the right clock selection before writing the pixel
3323          * mutliplier into the DPLL. */
3324         if (HAS_PCH_CPT(dev)) {
3325                 u32 sel;
3326
3327                 temp = I915_READ(PCH_DPLL_SEL);
3328                 temp |= TRANS_DPLL_ENABLE(pipe);
3329                 sel = TRANS_DPLLB_SEL(pipe);
3330                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3331                         temp |= sel;
3332                 else
3333                         temp &= ~sel;
3334                 I915_WRITE(PCH_DPLL_SEL, temp);
3335         }
3336
3337         /* XXX: pch pll's can be enabled any time before we enable the PCH
3338          * transcoder, and we actually should do this to not upset any PCH
3339          * transcoder that already use the clock when we share it.
3340          *
3341          * Note that enable_shared_dpll tries to do the right thing, but
3342          * get_shared_dpll unconditionally resets the pll - we need that to have
3343          * the right LVDS enable sequence. */
3344         ironlake_enable_shared_dpll(intel_crtc);
3345
3346         /* set transcoder timing, panel must allow it */
3347         assert_panel_unlocked(dev_priv, pipe);
3348         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3349
3350         intel_fdi_normal_train(crtc);
3351
3352         /* For PCH DP, enable TRANS_DP_CTL */
3353         if (HAS_PCH_CPT(dev) &&
3354             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3355              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3356                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3357                 reg = TRANS_DP_CTL(pipe);
3358                 temp = I915_READ(reg);
3359                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3360                           TRANS_DP_SYNC_MASK |
3361                           TRANS_DP_BPC_MASK);
3362                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3363                          TRANS_DP_ENH_FRAMING);
3364                 temp |= bpc << 9; /* same format but at 11:9 */
3365
3366                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3367                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3368                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3369                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3370
3371                 switch (intel_trans_dp_port_sel(crtc)) {
3372                 case PCH_DP_B:
3373                         temp |= TRANS_DP_PORT_SEL_B;
3374                         break;
3375                 case PCH_DP_C:
3376                         temp |= TRANS_DP_PORT_SEL_C;
3377                         break;
3378                 case PCH_DP_D:
3379                         temp |= TRANS_DP_PORT_SEL_D;
3380                         break;
3381                 default:
3382                         BUG();
3383                 }
3384
3385                 I915_WRITE(reg, temp);
3386         }
3387
3388         ironlake_enable_pch_transcoder(dev_priv, pipe);
3389 }
3390
3391 static void lpt_pch_enable(struct drm_crtc *crtc)
3392 {
3393         struct drm_device *dev = crtc->dev;
3394         struct drm_i915_private *dev_priv = dev->dev_private;
3395         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3396         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3397
3398         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3399
3400         lpt_program_iclkip(crtc);
3401
3402         /* Set transcoder timing. */
3403         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3404
3405         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3406 }
3407
3408 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3409 {
3410         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3411
3412         if (pll == NULL)
3413                 return;
3414
3415         if (pll->refcount == 0) {
3416                 WARN(1, "bad %s refcount\n", pll->name);
3417                 return;
3418         }
3419
3420         if (--pll->refcount == 0) {
3421                 WARN_ON(pll->on);
3422                 WARN_ON(pll->active);
3423         }
3424
3425         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3426 }
3427
3428 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3429 {
3430         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3431         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3432         enum intel_dpll_id i;
3433
3434         if (pll) {
3435                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3436                               crtc->base.base.id, pll->name);
3437                 intel_put_shared_dpll(crtc);
3438         }
3439
3440         if (HAS_PCH_IBX(dev_priv->dev)) {
3441                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3442                 i = (enum intel_dpll_id) crtc->pipe;
3443                 pll = &dev_priv->shared_dplls[i];
3444
3445                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3446                               crtc->base.base.id, pll->name);
3447
3448                 goto found;
3449         }
3450
3451         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3452                 pll = &dev_priv->shared_dplls[i];
3453
3454                 /* Only want to check enabled timings first */
3455                 if (pll->refcount == 0)
3456                         continue;
3457
3458                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3459                            sizeof(pll->hw_state)) == 0) {
3460                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3461                                       crtc->base.base.id,
3462                                       pll->name, pll->refcount, pll->active);
3463
3464                         goto found;
3465                 }
3466         }
3467
3468         /* Ok no matching timings, maybe there's a free one? */
3469         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3470                 pll = &dev_priv->shared_dplls[i];
3471                 if (pll->refcount == 0) {
3472                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3473                                       crtc->base.base.id, pll->name);
3474                         goto found;
3475                 }
3476         }
3477
3478         return NULL;
3479
3480 found:
3481         crtc->config.shared_dpll = i;
3482         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3483                          pipe_name(crtc->pipe));
3484
3485         if (pll->active == 0) {
3486                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3487                        sizeof(pll->hw_state));
3488
3489                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3490                 WARN_ON(pll->on);
3491                 assert_shared_dpll_disabled(dev_priv, pll);
3492
3493                 pll->mode_set(dev_priv, pll);
3494         }
3495         pll->refcount++;
3496
3497         return pll;
3498 }
3499
3500 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3501 {
3502         struct drm_i915_private *dev_priv = dev->dev_private;
3503         int dslreg = PIPEDSL(pipe);
3504         u32 temp;
3505
3506         temp = I915_READ(dslreg);
3507         udelay(500);
3508         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3509                 if (wait_for(I915_READ(dslreg) != temp, 5))
3510                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3511         }
3512 }
3513
3514 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3515 {
3516         struct drm_device *dev = crtc->base.dev;
3517         struct drm_i915_private *dev_priv = dev->dev_private;
3518         int pipe = crtc->pipe;
3519
3520         if (crtc->config.pch_pfit.enabled) {
3521                 /* Force use of hard-coded filter coefficients
3522                  * as some pre-programmed values are broken,
3523                  * e.g. x201.
3524                  */
3525                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3526                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3527                                                  PF_PIPE_SEL_IVB(pipe));
3528                 else
3529                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3530                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3531                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3532         }
3533 }
3534
3535 static void intel_enable_planes(struct drm_crtc *crtc)
3536 {
3537         struct drm_device *dev = crtc->dev;
3538         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3539         struct drm_plane *plane;
3540         struct intel_plane *intel_plane;
3541
3542         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3543                 intel_plane = to_intel_plane(plane);
3544                 if (intel_plane->pipe == pipe)
3545                         intel_plane_restore(&intel_plane->base);
3546         }
3547 }
3548
3549 static void intel_disable_planes(struct drm_crtc *crtc)
3550 {
3551         struct drm_device *dev = crtc->dev;
3552         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3553         struct drm_plane *plane;
3554         struct intel_plane *intel_plane;
3555
3556         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3557                 intel_plane = to_intel_plane(plane);
3558                 if (intel_plane->pipe == pipe)
3559                         intel_plane_disable(&intel_plane->base);
3560         }
3561 }
3562
3563 void hsw_enable_ips(struct intel_crtc *crtc)
3564 {
3565         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3566
3567         if (!crtc->config.ips_enabled)
3568                 return;
3569
3570         /* We can only enable IPS after we enable a plane and wait for a vblank.
3571          * We guarantee that the plane is enabled by calling intel_enable_ips
3572          * only after intel_enable_plane. And intel_enable_plane already waits
3573          * for a vblank, so all we need to do here is to enable the IPS bit. */
3574         assert_plane_enabled(dev_priv, crtc->plane);
3575         if (IS_BROADWELL(crtc->base.dev)) {
3576                 mutex_lock(&dev_priv->rps.hw_lock);
3577                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3578                 mutex_unlock(&dev_priv->rps.hw_lock);
3579                 /* Quoting Art Runyan: "its not safe to expect any particular
3580                  * value in IPS_CTL bit 31 after enabling IPS through the
3581                  * mailbox." Moreover, the mailbox may return a bogus state,
3582                  * so we need to just enable it and continue on.
3583                  */
3584         } else {
3585                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3586                 /* The bit only becomes 1 in the next vblank, so this wait here
3587                  * is essentially intel_wait_for_vblank. If we don't have this
3588                  * and don't wait for vblanks until the end of crtc_enable, then
3589                  * the HW state readout code will complain that the expected
3590                  * IPS_CTL value is not the one we read. */
3591                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3592                         DRM_ERROR("Timed out waiting for IPS enable\n");
3593         }
3594 }
3595
3596 void hsw_disable_ips(struct intel_crtc *crtc)
3597 {
3598         struct drm_device *dev = crtc->base.dev;
3599         struct drm_i915_private *dev_priv = dev->dev_private;
3600
3601         if (!crtc->config.ips_enabled)
3602                 return;
3603
3604         assert_plane_enabled(dev_priv, crtc->plane);
3605         if (IS_BROADWELL(crtc->base.dev)) {
3606                 mutex_lock(&dev_priv->rps.hw_lock);
3607                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3608                 mutex_unlock(&dev_priv->rps.hw_lock);
3609         } else {
3610                 I915_WRITE(IPS_CTL, 0);
3611                 POSTING_READ(IPS_CTL);
3612         }
3613
3614         /* We need to wait for a vblank before we can disable the plane. */
3615         intel_wait_for_vblank(dev, crtc->pipe);
3616 }
3617
3618 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3619 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3620 {
3621         struct drm_device *dev = crtc->dev;
3622         struct drm_i915_private *dev_priv = dev->dev_private;
3623         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3624         enum pipe pipe = intel_crtc->pipe;
3625         int palreg = PALETTE(pipe);
3626         int i;
3627         bool reenable_ips = false;
3628
3629         /* The clocks have to be on to load the palette. */
3630         if (!crtc->enabled || !intel_crtc->active)
3631                 return;
3632
3633         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3634                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3635                         assert_dsi_pll_enabled(dev_priv);
3636                 else
3637                         assert_pll_enabled(dev_priv, pipe);
3638         }
3639
3640         /* use legacy palette for Ironlake */
3641         if (HAS_PCH_SPLIT(dev))
3642                 palreg = LGC_PALETTE(pipe);
3643
3644         /* Workaround : Do not read or write the pipe palette/gamma data while
3645          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3646          */
3647         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3648             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3649              GAMMA_MODE_MODE_SPLIT)) {
3650                 hsw_disable_ips(intel_crtc);
3651                 reenable_ips = true;
3652         }
3653
3654         for (i = 0; i < 256; i++) {
3655                 I915_WRITE(palreg + 4 * i,
3656                            (intel_crtc->lut_r[i] << 16) |
3657                            (intel_crtc->lut_g[i] << 8) |
3658                            intel_crtc->lut_b[i]);
3659         }
3660
3661         if (reenable_ips)
3662                 hsw_enable_ips(intel_crtc);
3663 }
3664
3665 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3666 {
3667         struct drm_device *dev = crtc->dev;
3668         struct drm_i915_private *dev_priv = dev->dev_private;
3669         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3670         struct intel_encoder *encoder;
3671         int pipe = intel_crtc->pipe;
3672         int plane = intel_crtc->plane;
3673
3674         WARN_ON(!crtc->enabled);
3675
3676         if (intel_crtc->active)
3677                 return;
3678
3679         intel_crtc->active = true;
3680
3681         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3682         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3683
3684         for_each_encoder_on_crtc(dev, crtc, encoder)
3685                 if (encoder->pre_enable)
3686                         encoder->pre_enable(encoder);
3687
3688         if (intel_crtc->config.has_pch_encoder) {
3689                 /* Note: FDI PLL enabling _must_ be done before we enable the
3690                  * cpu pipes, hence this is separate from all the other fdi/pch
3691                  * enabling. */
3692                 ironlake_fdi_pll_enable(intel_crtc);
3693         } else {
3694                 assert_fdi_tx_disabled(dev_priv, pipe);
3695                 assert_fdi_rx_disabled(dev_priv, pipe);
3696         }
3697
3698         ironlake_pfit_enable(intel_crtc);
3699
3700         /*
3701          * On ILK+ LUT must be loaded before the pipe is running but with
3702          * clocks enabled
3703          */
3704         intel_crtc_load_lut(crtc);
3705
3706         intel_update_watermarks(crtc);
3707         intel_enable_pipe(intel_crtc);
3708         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3709         intel_enable_planes(crtc);
3710         intel_crtc_update_cursor(crtc, true);
3711
3712         if (intel_crtc->config.has_pch_encoder)
3713                 ironlake_pch_enable(crtc);
3714
3715         mutex_lock(&dev->struct_mutex);
3716         intel_update_fbc(dev);
3717         mutex_unlock(&dev->struct_mutex);
3718
3719         for_each_encoder_on_crtc(dev, crtc, encoder)
3720                 encoder->enable(encoder);
3721
3722         if (HAS_PCH_CPT(dev))
3723                 cpt_verify_modeset(dev, intel_crtc->pipe);
3724
3725         /*
3726          * There seems to be a race in PCH platform hw (at least on some
3727          * outputs) where an enabled pipe still completes any pageflip right
3728          * away (as if the pipe is off) instead of waiting for vblank. As soon
3729          * as the first vblank happend, everything works as expected. Hence just
3730          * wait for one vblank before returning to avoid strange things
3731          * happening.
3732          */
3733         intel_wait_for_vblank(dev, intel_crtc->pipe);
3734 }
3735
3736 /* IPS only exists on ULT machines and is tied to pipe A. */
3737 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3738 {
3739         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3740 }
3741
3742 static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
3743 {
3744         struct drm_device *dev = crtc->dev;
3745         struct drm_i915_private *dev_priv = dev->dev_private;
3746         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3747         int pipe = intel_crtc->pipe;
3748         int plane = intel_crtc->plane;
3749
3750         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3751         intel_enable_planes(crtc);
3752         intel_crtc_update_cursor(crtc, true);
3753
3754         hsw_enable_ips(intel_crtc);
3755
3756         mutex_lock(&dev->struct_mutex);
3757         intel_update_fbc(dev);
3758         mutex_unlock(&dev->struct_mutex);
3759 }
3760
3761 static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
3762 {
3763         struct drm_device *dev = crtc->dev;
3764         struct drm_i915_private *dev_priv = dev->dev_private;
3765         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3766         int pipe = intel_crtc->pipe;
3767         int plane = intel_crtc->plane;
3768
3769         intel_crtc_wait_for_pending_flips(crtc);
3770         drm_vblank_off(dev, pipe);
3771
3772         /* FBC must be disabled before disabling the plane on HSW. */
3773         if (dev_priv->fbc.plane == plane)
3774                 intel_disable_fbc(dev);
3775
3776         hsw_disable_ips(intel_crtc);
3777
3778         intel_crtc_update_cursor(crtc, false);
3779         intel_disable_planes(crtc);
3780         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3781 }
3782
3783 /*
3784  * This implements the workaround described in the "notes" section of the mode
3785  * set sequence documentation. When going from no pipes or single pipe to
3786  * multiple pipes, and planes are enabled after the pipe, we need to wait at
3787  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3788  */
3789 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3790 {
3791         struct drm_device *dev = crtc->base.dev;
3792         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3793
3794         /* We want to get the other_active_crtc only if there's only 1 other
3795          * active crtc. */
3796         list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3797                 if (!crtc_it->active || crtc_it == crtc)
3798                         continue;
3799
3800                 if (other_active_crtc)
3801                         return;
3802
3803                 other_active_crtc = crtc_it;
3804         }
3805         if (!other_active_crtc)
3806                 return;
3807
3808         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3809         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3810 }
3811
3812 static void haswell_crtc_enable(struct drm_crtc *crtc)
3813 {
3814         struct drm_device *dev = crtc->dev;
3815         struct drm_i915_private *dev_priv = dev->dev_private;
3816         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3817         struct intel_encoder *encoder;
3818         int pipe = intel_crtc->pipe;
3819
3820         WARN_ON(!crtc->enabled);
3821
3822         if (intel_crtc->active)
3823                 return;
3824
3825         intel_crtc->active = true;
3826
3827         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3828         if (intel_crtc->config.has_pch_encoder)
3829                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3830
3831         if (intel_crtc->config.has_pch_encoder)
3832                 dev_priv->display.fdi_link_train(crtc);
3833
3834         for_each_encoder_on_crtc(dev, crtc, encoder)
3835                 if (encoder->pre_enable)
3836                         encoder->pre_enable(encoder);
3837
3838         intel_ddi_enable_pipe_clock(intel_crtc);
3839
3840         ironlake_pfit_enable(intel_crtc);
3841
3842         /*
3843          * On ILK+ LUT must be loaded before the pipe is running but with
3844          * clocks enabled
3845          */
3846         intel_crtc_load_lut(crtc);
3847
3848         intel_ddi_set_pipe_settings(crtc);
3849         intel_ddi_enable_transcoder_func(crtc);
3850
3851         intel_update_watermarks(crtc);
3852         intel_enable_pipe(intel_crtc);
3853
3854         if (intel_crtc->config.has_pch_encoder)
3855                 lpt_pch_enable(crtc);
3856
3857         for_each_encoder_on_crtc(dev, crtc, encoder) {
3858                 encoder->enable(encoder);
3859                 intel_opregion_notify_encoder(encoder, true);
3860         }
3861
3862         /* If we change the relative order between pipe/planes enabling, we need
3863          * to change the workaround. */
3864         haswell_mode_set_planes_workaround(intel_crtc);
3865         haswell_crtc_enable_planes(crtc);
3866 }
3867
3868 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3869 {
3870         struct drm_device *dev = crtc->base.dev;
3871         struct drm_i915_private *dev_priv = dev->dev_private;
3872         int pipe = crtc->pipe;
3873
3874         /* To avoid upsetting the power well on haswell only disable the pfit if
3875          * it's in use. The hw state code will make sure we get this right. */
3876         if (crtc->config.pch_pfit.enabled) {
3877                 I915_WRITE(PF_CTL(pipe), 0);
3878                 I915_WRITE(PF_WIN_POS(pipe), 0);
3879                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3880         }
3881 }
3882
3883 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3884 {
3885         struct drm_device *dev = crtc->dev;
3886         struct drm_i915_private *dev_priv = dev->dev_private;
3887         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3888         struct intel_encoder *encoder;
3889         int pipe = intel_crtc->pipe;
3890         int plane = intel_crtc->plane;
3891         u32 reg, temp;
3892
3893
3894         if (!intel_crtc->active)
3895                 return;
3896
3897         for_each_encoder_on_crtc(dev, crtc, encoder)
3898                 encoder->disable(encoder);
3899
3900         intel_crtc_wait_for_pending_flips(crtc);
3901         drm_vblank_off(dev, pipe);
3902
3903         if (dev_priv->fbc.plane == plane)
3904                 intel_disable_fbc(dev);
3905
3906         intel_crtc_update_cursor(crtc, false);
3907         intel_disable_planes(crtc);
3908         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3909
3910         if (intel_crtc->config.has_pch_encoder)
3911                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3912
3913         intel_disable_pipe(dev_priv, pipe);
3914
3915         ironlake_pfit_disable(intel_crtc);
3916
3917         for_each_encoder_on_crtc(dev, crtc, encoder)
3918                 if (encoder->post_disable)
3919                         encoder->post_disable(encoder);
3920
3921         if (intel_crtc->config.has_pch_encoder) {
3922                 ironlake_fdi_disable(crtc);
3923
3924                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3925                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3926
3927                 if (HAS_PCH_CPT(dev)) {
3928                         /* disable TRANS_DP_CTL */
3929                         reg = TRANS_DP_CTL(pipe);
3930                         temp = I915_READ(reg);
3931                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3932                                   TRANS_DP_PORT_SEL_MASK);
3933                         temp |= TRANS_DP_PORT_SEL_NONE;
3934                         I915_WRITE(reg, temp);
3935
3936                         /* disable DPLL_SEL */
3937                         temp = I915_READ(PCH_DPLL_SEL);
3938                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3939                         I915_WRITE(PCH_DPLL_SEL, temp);
3940                 }
3941
3942                 /* disable PCH DPLL */
3943                 intel_disable_shared_dpll(intel_crtc);
3944
3945                 ironlake_fdi_pll_disable(intel_crtc);
3946         }
3947
3948         intel_crtc->active = false;
3949         intel_update_watermarks(crtc);
3950
3951         mutex_lock(&dev->struct_mutex);
3952         intel_update_fbc(dev);
3953         mutex_unlock(&dev->struct_mutex);
3954 }
3955
3956 static void haswell_crtc_disable(struct drm_crtc *crtc)
3957 {
3958         struct drm_device *dev = crtc->dev;
3959         struct drm_i915_private *dev_priv = dev->dev_private;
3960         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3961         struct intel_encoder *encoder;
3962         int pipe = intel_crtc->pipe;
3963         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3964
3965         if (!intel_crtc->active)
3966                 return;
3967
3968         haswell_crtc_disable_planes(crtc);
3969
3970         for_each_encoder_on_crtc(dev, crtc, encoder) {
3971                 intel_opregion_notify_encoder(encoder, false);
3972                 encoder->disable(encoder);
3973         }
3974
3975         if (intel_crtc->config.has_pch_encoder)
3976                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3977         intel_disable_pipe(dev_priv, pipe);
3978
3979         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3980
3981         ironlake_pfit_disable(intel_crtc);
3982
3983         intel_ddi_disable_pipe_clock(intel_crtc);
3984
3985         for_each_encoder_on_crtc(dev, crtc, encoder)
3986                 if (encoder->post_disable)
3987                         encoder->post_disable(encoder);
3988
3989         if (intel_crtc->config.has_pch_encoder) {
3990                 lpt_disable_pch_transcoder(dev_priv);
3991                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3992                 intel_ddi_fdi_disable(crtc);
3993         }
3994
3995         intel_crtc->active = false;
3996         intel_update_watermarks(crtc);
3997
3998         mutex_lock(&dev->struct_mutex);
3999         intel_update_fbc(dev);
4000         mutex_unlock(&dev->struct_mutex);
4001 }
4002
4003 static void ironlake_crtc_off(struct drm_crtc *crtc)
4004 {
4005         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4006         intel_put_shared_dpll(intel_crtc);
4007 }
4008
4009 static void haswell_crtc_off(struct drm_crtc *crtc)
4010 {
4011         intel_ddi_put_crtc_pll(crtc);
4012 }
4013
4014 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4015 {
4016         if (!enable && intel_crtc->overlay) {
4017                 struct drm_device *dev = intel_crtc->base.dev;
4018                 struct drm_i915_private *dev_priv = dev->dev_private;
4019
4020                 mutex_lock(&dev->struct_mutex);
4021                 dev_priv->mm.interruptible = false;
4022                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4023                 dev_priv->mm.interruptible = true;
4024                 mutex_unlock(&dev->struct_mutex);
4025         }
4026
4027         /* Let userspace switch the overlay on again. In most cases userspace
4028          * has to recompute where to put it anyway.
4029          */
4030 }
4031
4032 /**
4033  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
4034  * cursor plane briefly if not already running after enabling the display
4035  * plane.
4036  * This workaround avoids occasional blank screens when self refresh is
4037  * enabled.
4038  */
4039 static void
4040 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
4041 {
4042         u32 cntl = I915_READ(CURCNTR(pipe));
4043
4044         if ((cntl & CURSOR_MODE) == 0) {
4045                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
4046
4047                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
4048                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
4049                 intel_wait_for_vblank(dev_priv->dev, pipe);
4050                 I915_WRITE(CURCNTR(pipe), cntl);
4051                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
4052                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
4053         }
4054 }
4055
4056 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4057 {
4058         struct drm_device *dev = crtc->base.dev;
4059         struct drm_i915_private *dev_priv = dev->dev_private;
4060         struct intel_crtc_config *pipe_config = &crtc->config;
4061
4062         if (!crtc->config.gmch_pfit.control)
4063                 return;
4064
4065         /*
4066          * The panel fitter should only be adjusted whilst the pipe is disabled,
4067          * according to register description and PRM.
4068          */
4069         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4070         assert_pipe_disabled(dev_priv, crtc->pipe);
4071
4072         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4073         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4074
4075         /* Border color in case we don't scale up to the full screen. Black by
4076          * default, change to something else for debugging. */
4077         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4078 }
4079
4080 #define for_each_power_domain(domain, mask)                             \
4081         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4082                 if ((1 << (domain)) & (mask))
4083
4084 enum intel_display_power_domain
4085 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4086 {
4087         struct drm_device *dev = intel_encoder->base.dev;
4088         struct intel_digital_port *intel_dig_port;
4089
4090         switch (intel_encoder->type) {
4091         case INTEL_OUTPUT_UNKNOWN:
4092                 /* Only DDI platforms should ever use this output type */
4093                 WARN_ON_ONCE(!HAS_DDI(dev));
4094         case INTEL_OUTPUT_DISPLAYPORT:
4095         case INTEL_OUTPUT_HDMI:
4096         case INTEL_OUTPUT_EDP:
4097                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4098                 switch (intel_dig_port->port) {
4099                 case PORT_A:
4100                         return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4101                 case PORT_B:
4102                         return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4103                 case PORT_C:
4104                         return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4105                 case PORT_D:
4106                         return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4107                 default:
4108                         WARN_ON_ONCE(1);
4109                         return POWER_DOMAIN_PORT_OTHER;
4110                 }
4111         case INTEL_OUTPUT_ANALOG:
4112                 return POWER_DOMAIN_PORT_CRT;
4113         case INTEL_OUTPUT_DSI:
4114                 return POWER_DOMAIN_PORT_DSI;
4115         default:
4116                 return POWER_DOMAIN_PORT_OTHER;
4117         }
4118 }
4119
4120 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4121 {
4122         struct drm_device *dev = crtc->dev;
4123         struct intel_encoder *intel_encoder;
4124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4125         enum pipe pipe = intel_crtc->pipe;
4126         bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
4127         unsigned long mask;
4128         enum transcoder transcoder;
4129
4130         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4131
4132         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4133         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4134         if (pfit_enabled)
4135                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4136
4137         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4138                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4139
4140         return mask;
4141 }
4142
4143 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4144                                   bool enable)
4145 {
4146         if (dev_priv->power_domains.init_power_on == enable)
4147                 return;
4148
4149         if (enable)
4150                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4151         else
4152                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4153
4154         dev_priv->power_domains.init_power_on = enable;
4155 }
4156
4157 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4158 {
4159         struct drm_i915_private *dev_priv = dev->dev_private;
4160         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4161         struct intel_crtc *crtc;
4162
4163         /*
4164          * First get all needed power domains, then put all unneeded, to avoid
4165          * any unnecessary toggling of the power wells.
4166          */
4167         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
4168                 enum intel_display_power_domain domain;
4169
4170                 if (!crtc->base.enabled)
4171                         continue;
4172
4173                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4174
4175                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4176                         intel_display_power_get(dev_priv, domain);
4177         }
4178
4179         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
4180                 enum intel_display_power_domain domain;
4181
4182                 for_each_power_domain(domain, crtc->enabled_power_domains)
4183                         intel_display_power_put(dev_priv, domain);
4184
4185                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4186         }
4187
4188         intel_display_set_init_power(dev_priv, false);
4189 }
4190
4191 int valleyview_get_vco(struct drm_i915_private *dev_priv)
4192 {
4193         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4194
4195         /* Obtain SKU information */
4196         mutex_lock(&dev_priv->dpio_lock);
4197         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4198                 CCK_FUSE_HPLL_FREQ_MASK;
4199         mutex_unlock(&dev_priv->dpio_lock);
4200
4201         return vco_freq[hpll_freq];
4202 }
4203
4204 /* Adjust CDclk dividers to allow high res or save power if possible */
4205 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4206 {
4207         struct drm_i915_private *dev_priv = dev->dev_private;
4208         u32 val, cmd;
4209
4210         if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
4211                 cmd = 2;
4212         else if (cdclk == 266)
4213                 cmd = 1;
4214         else
4215                 cmd = 0;
4216
4217         mutex_lock(&dev_priv->rps.hw_lock);
4218         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4219         val &= ~DSPFREQGUAR_MASK;
4220         val |= (cmd << DSPFREQGUAR_SHIFT);
4221         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4222         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4223                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4224                      50)) {
4225                 DRM_ERROR("timed out waiting for CDclk change\n");
4226         }
4227         mutex_unlock(&dev_priv->rps.hw_lock);
4228
4229         if (cdclk == 400) {
4230                 u32 divider, vco;
4231
4232                 vco = valleyview_get_vco(dev_priv);
4233                 divider = ((vco << 1) / cdclk) - 1;
4234
4235                 mutex_lock(&dev_priv->dpio_lock);
4236                 /* adjust cdclk divider */
4237                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4238                 val &= ~0xf;
4239                 val |= divider;
4240                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4241                 mutex_unlock(&dev_priv->dpio_lock);
4242         }
4243
4244         mutex_lock(&dev_priv->dpio_lock);
4245         /* adjust self-refresh exit latency value */
4246         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4247         val &= ~0x7f;
4248
4249         /*
4250          * For high bandwidth configs, we set a higher latency in the bunit
4251          * so that the core display fetch happens in time to avoid underruns.
4252          */
4253         if (cdclk == 400)
4254                 val |= 4500 / 250; /* 4.5 usec */
4255         else
4256                 val |= 3000 / 250; /* 3.0 usec */
4257         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4258         mutex_unlock(&dev_priv->dpio_lock);
4259
4260         /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4261         intel_i2c_reset(dev);
4262 }
4263
4264 static int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4265 {
4266         int cur_cdclk, vco;
4267         int divider;
4268
4269         vco = valleyview_get_vco(dev_priv);
4270
4271         mutex_lock(&dev_priv->dpio_lock);
4272         divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4273         mutex_unlock(&dev_priv->dpio_lock);
4274
4275         divider &= 0xf;
4276
4277         cur_cdclk = (vco << 1) / (divider + 1);
4278
4279         return cur_cdclk;
4280 }
4281
4282 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4283                                  int max_pixclk)
4284 {
4285         int cur_cdclk;
4286
4287         cur_cdclk = valleyview_cur_cdclk(dev_priv);
4288
4289         /*
4290          * Really only a few cases to deal with, as only 4 CDclks are supported:
4291          *   200MHz
4292          *   267MHz
4293          *   320MHz
4294          *   400MHz
4295          * So we check to see whether we're above 90% of the lower bin and
4296          * adjust if needed.
4297          */
4298         if (max_pixclk > 288000) {
4299                 return 400;
4300         } else if (max_pixclk > 240000) {
4301                 return 320;
4302         } else
4303                 return 266;
4304         /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4305 }
4306
4307 /* compute the max pixel clock for new configuration */
4308 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4309 {
4310         struct drm_device *dev = dev_priv->dev;
4311         struct intel_crtc *intel_crtc;
4312         int max_pixclk = 0;
4313
4314         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4315                             base.head) {
4316                 if (intel_crtc->new_enabled)
4317                         max_pixclk = max(max_pixclk,
4318                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4319         }
4320
4321         return max_pixclk;
4322 }
4323
4324 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4325                                             unsigned *prepare_pipes)
4326 {
4327         struct drm_i915_private *dev_priv = dev->dev_private;
4328         struct intel_crtc *intel_crtc;
4329         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4330         int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4331
4332         if (valleyview_calc_cdclk(dev_priv, max_pixclk) == cur_cdclk)
4333                 return;
4334
4335         /* disable/enable all currently active pipes while we change cdclk */
4336         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4337                             base.head)
4338                 if (intel_crtc->base.enabled)
4339                         *prepare_pipes |= (1 << intel_crtc->pipe);
4340 }
4341
4342 static void valleyview_modeset_global_resources(struct drm_device *dev)
4343 {
4344         struct drm_i915_private *dev_priv = dev->dev_private;
4345         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4346         int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4347         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4348
4349         if (req_cdclk != cur_cdclk)
4350                 valleyview_set_cdclk(dev, req_cdclk);
4351         modeset_update_crtc_power_domains(dev);
4352 }
4353
4354 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4355 {
4356         struct drm_device *dev = crtc->dev;
4357         struct drm_i915_private *dev_priv = dev->dev_private;
4358         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4359         struct intel_encoder *encoder;
4360         int pipe = intel_crtc->pipe;
4361         int plane = intel_crtc->plane;
4362         bool is_dsi;
4363
4364         WARN_ON(!crtc->enabled);
4365
4366         if (intel_crtc->active)
4367                 return;
4368
4369         intel_crtc->active = true;
4370
4371         for_each_encoder_on_crtc(dev, crtc, encoder)
4372                 if (encoder->pre_pll_enable)
4373                         encoder->pre_pll_enable(encoder);
4374
4375         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4376
4377         if (!is_dsi)
4378                 vlv_enable_pll(intel_crtc);
4379
4380         for_each_encoder_on_crtc(dev, crtc, encoder)
4381                 if (encoder->pre_enable)
4382                         encoder->pre_enable(encoder);
4383
4384         i9xx_pfit_enable(intel_crtc);
4385
4386         intel_crtc_load_lut(crtc);
4387
4388         intel_update_watermarks(crtc);
4389         intel_enable_pipe(intel_crtc);
4390         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4391         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
4392         intel_enable_planes(crtc);
4393         intel_crtc_update_cursor(crtc, true);
4394
4395         intel_update_fbc(dev);
4396
4397         for_each_encoder_on_crtc(dev, crtc, encoder)
4398                 encoder->enable(encoder);
4399 }
4400
4401 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4402 {
4403         struct drm_device *dev = crtc->dev;
4404         struct drm_i915_private *dev_priv = dev->dev_private;
4405         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4406         struct intel_encoder *encoder;
4407         int pipe = intel_crtc->pipe;
4408         int plane = intel_crtc->plane;
4409
4410         WARN_ON(!crtc->enabled);
4411
4412         if (intel_crtc->active)
4413                 return;
4414
4415         intel_crtc->active = true;
4416
4417         for_each_encoder_on_crtc(dev, crtc, encoder)
4418                 if (encoder->pre_enable)
4419                         encoder->pre_enable(encoder);
4420
4421         i9xx_enable_pll(intel_crtc);
4422
4423         i9xx_pfit_enable(intel_crtc);
4424
4425         intel_crtc_load_lut(crtc);
4426
4427         intel_update_watermarks(crtc);
4428         intel_enable_pipe(intel_crtc);
4429         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4430         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
4431         intel_enable_planes(crtc);
4432         /* The fixup needs to happen before cursor is enabled */
4433         if (IS_G4X(dev))
4434                 g4x_fixup_plane(dev_priv, pipe);
4435         intel_crtc_update_cursor(crtc, true);
4436
4437         /* Give the overlay scaler a chance to enable if it's on this pipe */
4438         intel_crtc_dpms_overlay(intel_crtc, true);
4439
4440         intel_update_fbc(dev);
4441
4442         for_each_encoder_on_crtc(dev, crtc, encoder)
4443                 encoder->enable(encoder);
4444 }
4445
4446 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4447 {
4448         struct drm_device *dev = crtc->base.dev;
4449         struct drm_i915_private *dev_priv = dev->dev_private;
4450
4451         if (!crtc->config.gmch_pfit.control)
4452                 return;
4453
4454         assert_pipe_disabled(dev_priv, crtc->pipe);
4455
4456         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4457                          I915_READ(PFIT_CONTROL));
4458         I915_WRITE(PFIT_CONTROL, 0);
4459 }
4460
4461 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4462 {
4463         struct drm_device *dev = crtc->dev;
4464         struct drm_i915_private *dev_priv = dev->dev_private;
4465         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4466         struct intel_encoder *encoder;
4467         int pipe = intel_crtc->pipe;
4468         int plane = intel_crtc->plane;
4469
4470         if (!intel_crtc->active)
4471                 return;
4472
4473         for_each_encoder_on_crtc(dev, crtc, encoder)
4474                 encoder->disable(encoder);
4475
4476         /* Give the overlay scaler a chance to disable if it's on this pipe */
4477         intel_crtc_wait_for_pending_flips(crtc);
4478         drm_vblank_off(dev, pipe);
4479
4480         if (dev_priv->fbc.plane == plane)
4481                 intel_disable_fbc(dev);
4482
4483         intel_crtc_dpms_overlay(intel_crtc, false);
4484         intel_crtc_update_cursor(crtc, false);
4485         intel_disable_planes(crtc);
4486         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
4487
4488         intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4489         intel_disable_pipe(dev_priv, pipe);
4490
4491         i9xx_pfit_disable(intel_crtc);
4492
4493         for_each_encoder_on_crtc(dev, crtc, encoder)
4494                 if (encoder->post_disable)
4495                         encoder->post_disable(encoder);
4496
4497         if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4498                 vlv_disable_pll(dev_priv, pipe);
4499         else if (!IS_VALLEYVIEW(dev))
4500                 i9xx_disable_pll(dev_priv, pipe);
4501
4502         intel_crtc->active = false;
4503         intel_update_watermarks(crtc);
4504
4505         intel_update_fbc(dev);
4506 }
4507
4508 static void i9xx_crtc_off(struct drm_crtc *crtc)
4509 {
4510 }
4511
4512 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4513                                     bool enabled)
4514 {
4515         struct drm_device *dev = crtc->dev;
4516         struct drm_i915_master_private *master_priv;
4517         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4518         int pipe = intel_crtc->pipe;
4519
4520         if (!dev->primary->master)
4521                 return;
4522
4523         master_priv = dev->primary->master->driver_priv;
4524         if (!master_priv->sarea_priv)
4525                 return;
4526
4527         switch (pipe) {
4528         case 0:
4529                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4530                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4531                 break;
4532         case 1:
4533                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4534                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4535                 break;
4536         default:
4537                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4538                 break;
4539         }
4540 }
4541
4542 /**
4543  * Sets the power management mode of the pipe and plane.
4544  */
4545 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4546 {
4547         struct drm_device *dev = crtc->dev;
4548         struct drm_i915_private *dev_priv = dev->dev_private;
4549         struct intel_encoder *intel_encoder;
4550         bool enable = false;
4551
4552         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4553                 enable |= intel_encoder->connectors_active;
4554
4555         if (enable)
4556                 dev_priv->display.crtc_enable(crtc);
4557         else
4558                 dev_priv->display.crtc_disable(crtc);
4559
4560         intel_crtc_update_sarea(crtc, enable);
4561 }
4562
4563 static void intel_crtc_disable(struct drm_crtc *crtc)
4564 {
4565         struct drm_device *dev = crtc->dev;
4566         struct drm_connector *connector;
4567         struct drm_i915_private *dev_priv = dev->dev_private;
4568         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4569
4570         /* crtc should still be enabled when we disable it. */
4571         WARN_ON(!crtc->enabled);
4572
4573         dev_priv->display.crtc_disable(crtc);
4574         intel_crtc->eld_vld = false;
4575         intel_crtc_update_sarea(crtc, false);
4576         dev_priv->display.off(crtc);
4577
4578         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4579         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4580         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4581
4582         if (crtc->primary->fb) {
4583                 mutex_lock(&dev->struct_mutex);
4584                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->primary->fb)->obj);
4585                 mutex_unlock(&dev->struct_mutex);
4586                 crtc->primary->fb = NULL;
4587         }
4588
4589         /* Update computed state. */
4590         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4591                 if (!connector->encoder || !connector->encoder->crtc)
4592                         continue;
4593
4594                 if (connector->encoder->crtc != crtc)
4595                         continue;
4596
4597                 connector->dpms = DRM_MODE_DPMS_OFF;
4598                 to_intel_encoder(connector->encoder)->connectors_active = false;
4599         }
4600 }
4601
4602 void intel_encoder_destroy(struct drm_encoder *encoder)
4603 {
4604         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4605
4606         drm_encoder_cleanup(encoder);
4607         kfree(intel_encoder);
4608 }
4609
4610 /* Simple dpms helper for encoders with just one connector, no cloning and only
4611  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4612  * state of the entire output pipe. */
4613 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4614 {
4615         if (mode == DRM_MODE_DPMS_ON) {
4616                 encoder->connectors_active = true;
4617
4618                 intel_crtc_update_dpms(encoder->base.crtc);
4619         } else {
4620                 encoder->connectors_active = false;
4621
4622                 intel_crtc_update_dpms(encoder->base.crtc);
4623         }
4624 }
4625
4626 /* Cross check the actual hw state with our own modeset state tracking (and it's
4627  * internal consistency). */
4628 static void intel_connector_check_state(struct intel_connector *connector)
4629 {
4630         if (connector->get_hw_state(connector)) {
4631                 struct intel_encoder *encoder = connector->encoder;
4632                 struct drm_crtc *crtc;
4633                 bool encoder_enabled;
4634                 enum pipe pipe;
4635
4636                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4637                               connector->base.base.id,
4638                               drm_get_connector_name(&connector->base));
4639
4640                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4641                      "wrong connector dpms state\n");
4642                 WARN(connector->base.encoder != &encoder->base,
4643                      "active connector not linked to encoder\n");
4644                 WARN(!encoder->connectors_active,
4645                      "encoder->connectors_active not set\n");
4646
4647                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4648                 WARN(!encoder_enabled, "encoder not enabled\n");
4649                 if (WARN_ON(!encoder->base.crtc))
4650                         return;
4651
4652                 crtc = encoder->base.crtc;
4653
4654                 WARN(!crtc->enabled, "crtc not enabled\n");
4655                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4656                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4657                      "encoder active on the wrong pipe\n");
4658         }
4659 }
4660
4661 /* Even simpler default implementation, if there's really no special case to
4662  * consider. */
4663 void intel_connector_dpms(struct drm_connector *connector, int mode)
4664 {
4665         /* All the simple cases only support two dpms states. */
4666         if (mode != DRM_MODE_DPMS_ON)
4667                 mode = DRM_MODE_DPMS_OFF;
4668
4669         if (mode == connector->dpms)
4670                 return;
4671
4672         connector->dpms = mode;
4673
4674         /* Only need to change hw state when actually enabled */
4675         if (connector->encoder)
4676                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4677
4678         intel_modeset_check_state(connector->dev);
4679 }
4680
4681 /* Simple connector->get_hw_state implementation for encoders that support only
4682  * one connector and no cloning and hence the encoder state determines the state
4683  * of the connector. */
4684 bool intel_connector_get_hw_state(struct intel_connector *connector)
4685 {
4686         enum pipe pipe = 0;
4687         struct intel_encoder *encoder = connector->encoder;
4688
4689         return encoder->get_hw_state(encoder, &pipe);
4690 }
4691
4692 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4693                                      struct intel_crtc_config *pipe_config)
4694 {
4695         struct drm_i915_private *dev_priv = dev->dev_private;
4696         struct intel_crtc *pipe_B_crtc =
4697                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4698
4699         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4700                       pipe_name(pipe), pipe_config->fdi_lanes);
4701         if (pipe_config->fdi_lanes > 4) {
4702                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4703                               pipe_name(pipe), pipe_config->fdi_lanes);
4704                 return false;
4705         }
4706
4707         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4708                 if (pipe_config->fdi_lanes > 2) {
4709                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4710                                       pipe_config->fdi_lanes);
4711                         return false;
4712                 } else {
4713                         return true;
4714                 }
4715         }
4716
4717         if (INTEL_INFO(dev)->num_pipes == 2)
4718                 return true;
4719
4720         /* Ivybridge 3 pipe is really complicated */
4721         switch (pipe) {
4722         case PIPE_A:
4723                 return true;
4724         case PIPE_B:
4725                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4726                     pipe_config->fdi_lanes > 2) {
4727                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4728                                       pipe_name(pipe), pipe_config->fdi_lanes);
4729                         return false;
4730                 }
4731                 return true;
4732         case PIPE_C:
4733                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4734                     pipe_B_crtc->config.fdi_lanes <= 2) {
4735                         if (pipe_config->fdi_lanes > 2) {
4736                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4737                                               pipe_name(pipe), pipe_config->fdi_lanes);
4738                                 return false;
4739                         }
4740                 } else {
4741                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4742                         return false;
4743                 }
4744                 return true;
4745         default:
4746                 BUG();
4747         }
4748 }
4749
4750 #define RETRY 1
4751 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4752                                        struct intel_crtc_config *pipe_config)
4753 {
4754         struct drm_device *dev = intel_crtc->base.dev;
4755         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4756         int lane, link_bw, fdi_dotclock;
4757         bool setup_ok, needs_recompute = false;
4758
4759 retry:
4760         /* FDI is a binary signal running at ~2.7GHz, encoding
4761          * each output octet as 10 bits. The actual frequency
4762          * is stored as a divider into a 100MHz clock, and the
4763          * mode pixel clock is stored in units of 1KHz.
4764          * Hence the bw of each lane in terms of the mode signal
4765          * is:
4766          */
4767         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4768
4769         fdi_dotclock = adjusted_mode->crtc_clock;
4770
4771         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4772                                            pipe_config->pipe_bpp);
4773
4774         pipe_config->fdi_lanes = lane;
4775
4776         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4777                                link_bw, &pipe_config->fdi_m_n);
4778
4779         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4780                                             intel_crtc->pipe, pipe_config);
4781         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4782                 pipe_config->pipe_bpp -= 2*3;
4783                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4784                               pipe_config->pipe_bpp);
4785                 needs_recompute = true;
4786                 pipe_config->bw_constrained = true;
4787
4788                 goto retry;
4789         }
4790
4791         if (needs_recompute)
4792                 return RETRY;
4793
4794         return setup_ok ? 0 : -EINVAL;
4795 }
4796
4797 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4798                                    struct intel_crtc_config *pipe_config)
4799 {
4800         pipe_config->ips_enabled = i915.enable_ips &&
4801                                    hsw_crtc_supports_ips(crtc) &&
4802                                    pipe_config->pipe_bpp <= 24;
4803 }
4804
4805 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4806                                      struct intel_crtc_config *pipe_config)
4807 {
4808         struct drm_device *dev = crtc->base.dev;
4809         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4810
4811         /* FIXME should check pixel clock limits on all platforms */
4812         if (INTEL_INFO(dev)->gen < 4) {
4813                 struct drm_i915_private *dev_priv = dev->dev_private;
4814                 int clock_limit =
4815                         dev_priv->display.get_display_clock_speed(dev);
4816
4817                 /*
4818                  * Enable pixel doubling when the dot clock
4819                  * is > 90% of the (display) core speed.
4820                  *
4821                  * GDG double wide on either pipe,
4822                  * otherwise pipe A only.
4823                  */
4824                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4825                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4826                         clock_limit *= 2;
4827                         pipe_config->double_wide = true;
4828                 }
4829
4830                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4831                         return -EINVAL;
4832         }
4833
4834         /*
4835          * Pipe horizontal size must be even in:
4836          * - DVO ganged mode
4837          * - LVDS dual channel mode
4838          * - Double wide pipe
4839          */
4840         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4841              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4842                 pipe_config->pipe_src_w &= ~1;
4843
4844         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4845          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4846          */
4847         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4848                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4849                 return -EINVAL;
4850
4851         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4852                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4853         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4854                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4855                  * for lvds. */
4856                 pipe_config->pipe_bpp = 8*3;
4857         }
4858
4859         if (HAS_IPS(dev))
4860                 hsw_compute_ips_config(crtc, pipe_config);
4861
4862         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4863          * clock survives for now. */
4864         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4865                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4866
4867         if (pipe_config->has_pch_encoder)
4868                 return ironlake_fdi_compute_config(crtc, pipe_config);
4869
4870         return 0;
4871 }
4872
4873 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4874 {
4875         return 400000; /* FIXME */
4876 }
4877
4878 static int i945_get_display_clock_speed(struct drm_device *dev)
4879 {
4880         return 400000;
4881 }
4882
4883 static int i915_get_display_clock_speed(struct drm_device *dev)
4884 {
4885         return 333000;
4886 }
4887
4888 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4889 {
4890         return 200000;
4891 }
4892
4893 static int pnv_get_display_clock_speed(struct drm_device *dev)
4894 {
4895         u16 gcfgc = 0;
4896
4897         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4898
4899         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4900         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4901                 return 267000;
4902         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4903                 return 333000;
4904         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4905                 return 444000;
4906         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4907                 return 200000;
4908         default:
4909                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4910         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4911                 return 133000;
4912         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4913                 return 167000;
4914         }
4915 }
4916
4917 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4918 {
4919         u16 gcfgc = 0;
4920
4921         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4922
4923         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4924                 return 133000;
4925         else {
4926                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4927                 case GC_DISPLAY_CLOCK_333_MHZ:
4928                         return 333000;
4929                 default:
4930                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4931                         return 190000;
4932                 }
4933         }
4934 }
4935
4936 static int i865_get_display_clock_speed(struct drm_device *dev)
4937 {
4938         return 266000;
4939 }
4940
4941 static int i855_get_display_clock_speed(struct drm_device *dev)
4942 {
4943         u16 hpllcc = 0;
4944         /* Assume that the hardware is in the high speed state.  This
4945          * should be the default.
4946          */
4947         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4948         case GC_CLOCK_133_200:
4949         case GC_CLOCK_100_200:
4950                 return 200000;
4951         case GC_CLOCK_166_250:
4952                 return 250000;
4953         case GC_CLOCK_100_133:
4954                 return 133000;
4955         }
4956
4957         /* Shouldn't happen */
4958         return 0;
4959 }
4960
4961 static int i830_get_display_clock_speed(struct drm_device *dev)
4962 {
4963         return 133000;
4964 }
4965
4966 static void
4967 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4968 {
4969         while (*num > DATA_LINK_M_N_MASK ||
4970                *den > DATA_LINK_M_N_MASK) {
4971                 *num >>= 1;
4972                 *den >>= 1;
4973         }
4974 }
4975
4976 static void compute_m_n(unsigned int m, unsigned int n,
4977                         uint32_t *ret_m, uint32_t *ret_n)
4978 {
4979         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4980         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4981         intel_reduce_m_n_ratio(ret_m, ret_n);
4982 }
4983
4984 void
4985 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4986                        int pixel_clock, int link_clock,
4987                        struct intel_link_m_n *m_n)
4988 {
4989         m_n->tu = 64;
4990
4991         compute_m_n(bits_per_pixel * pixel_clock,
4992                     link_clock * nlanes * 8,
4993                     &m_n->gmch_m, &m_n->gmch_n);
4994
4995         compute_m_n(pixel_clock, link_clock,
4996                     &m_n->link_m, &m_n->link_n);
4997 }
4998
4999 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5000 {
5001         if (i915.panel_use_ssc >= 0)
5002                 return i915.panel_use_ssc != 0;
5003         return dev_priv->vbt.lvds_use_ssc
5004                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5005 }
5006
5007 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5008 {
5009         struct drm_device *dev = crtc->dev;
5010         struct drm_i915_private *dev_priv = dev->dev_private;
5011         int refclk;
5012
5013         if (IS_VALLEYVIEW(dev)) {
5014                 refclk = 100000;
5015         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5016             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5017                 refclk = dev_priv->vbt.lvds_ssc_freq;
5018                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5019         } else if (!IS_GEN2(dev)) {
5020                 refclk = 96000;
5021         } else {
5022                 refclk = 48000;
5023         }
5024
5025         return refclk;
5026 }
5027
5028 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5029 {
5030         return (1 << dpll->n) << 16 | dpll->m2;
5031 }
5032
5033 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5034 {
5035         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5036 }
5037
5038 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5039                                      intel_clock_t *reduced_clock)
5040 {
5041         struct drm_device *dev = crtc->base.dev;
5042         struct drm_i915_private *dev_priv = dev->dev_private;
5043         int pipe = crtc->pipe;
5044         u32 fp, fp2 = 0;
5045
5046         if (IS_PINEVIEW(dev)) {
5047                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5048                 if (reduced_clock)
5049                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5050         } else {
5051                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5052                 if (reduced_clock)
5053                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5054         }
5055
5056         I915_WRITE(FP0(pipe), fp);
5057         crtc->config.dpll_hw_state.fp0 = fp;
5058
5059         crtc->lowfreq_avail = false;
5060         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5061             reduced_clock && i915.powersave) {
5062                 I915_WRITE(FP1(pipe), fp2);
5063                 crtc->config.dpll_hw_state.fp1 = fp2;
5064                 crtc->lowfreq_avail = true;
5065         } else {
5066                 I915_WRITE(FP1(pipe), fp);
5067                 crtc->config.dpll_hw_state.fp1 = fp;
5068         }
5069 }
5070
5071 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5072                 pipe)
5073 {
5074         u32 reg_val;
5075
5076         /*
5077          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5078          * and set it to a reasonable value instead.
5079          */
5080         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5081         reg_val &= 0xffffff00;
5082         reg_val |= 0x00000030;
5083         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5084
5085         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5086         reg_val &= 0x8cffffff;
5087         reg_val = 0x8c000000;
5088         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5089
5090         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5091         reg_val &= 0xffffff00;
5092         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5093
5094         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5095         reg_val &= 0x00ffffff;
5096         reg_val |= 0xb0000000;
5097         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5098 }
5099
5100 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5101                                          struct intel_link_m_n *m_n)
5102 {
5103         struct drm_device *dev = crtc->base.dev;
5104         struct drm_i915_private *dev_priv = dev->dev_private;
5105         int pipe = crtc->pipe;
5106
5107         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5108         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5109         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5110         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5111 }
5112
5113 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5114                                          struct intel_link_m_n *m_n)
5115 {
5116         struct drm_device *dev = crtc->base.dev;
5117         struct drm_i915_private *dev_priv = dev->dev_private;
5118         int pipe = crtc->pipe;
5119         enum transcoder transcoder = crtc->config.cpu_transcoder;
5120
5121         if (INTEL_INFO(dev)->gen >= 5) {
5122                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5123                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5124                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5125                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5126         } else {
5127                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5128                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5129                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5130                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5131         }
5132 }
5133
5134 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5135 {
5136         if (crtc->config.has_pch_encoder)
5137                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5138         else
5139                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5140 }
5141
5142 static void vlv_update_pll(struct intel_crtc *crtc)
5143 {
5144         struct drm_device *dev = crtc->base.dev;
5145         struct drm_i915_private *dev_priv = dev->dev_private;
5146         int pipe = crtc->pipe;
5147         u32 dpll, mdiv;
5148         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5149         u32 coreclk, reg_val, dpll_md;
5150
5151         mutex_lock(&dev_priv->dpio_lock);
5152
5153         bestn = crtc->config.dpll.n;
5154         bestm1 = crtc->config.dpll.m1;
5155         bestm2 = crtc->config.dpll.m2;
5156         bestp1 = crtc->config.dpll.p1;
5157         bestp2 = crtc->config.dpll.p2;
5158
5159         /* See eDP HDMI DPIO driver vbios notes doc */
5160
5161         /* PLL B needs special handling */
5162         if (pipe)
5163                 vlv_pllb_recal_opamp(dev_priv, pipe);
5164
5165         /* Set up Tx target for periodic Rcomp update */
5166         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5167
5168         /* Disable target IRef on PLL */
5169         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5170         reg_val &= 0x00ffffff;
5171         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5172
5173         /* Disable fast lock */
5174         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5175
5176         /* Set idtafcrecal before PLL is enabled */
5177         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5178         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5179         mdiv |= ((bestn << DPIO_N_SHIFT));
5180         mdiv |= (1 << DPIO_K_SHIFT);
5181
5182         /*
5183          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5184          * but we don't support that).
5185          * Note: don't use the DAC post divider as it seems unstable.
5186          */
5187         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5188         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5189
5190         mdiv |= DPIO_ENABLE_CALIBRATION;
5191         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5192
5193         /* Set HBR and RBR LPF coefficients */
5194         if (crtc->config.port_clock == 162000 ||
5195             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5196             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5197                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5198                                  0x009f0003);
5199         else
5200                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5201                                  0x00d0000f);
5202
5203         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5204             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5205                 /* Use SSC source */
5206                 if (!pipe)
5207                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5208                                          0x0df40000);
5209                 else
5210                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5211                                          0x0df70000);
5212         } else { /* HDMI or VGA */
5213                 /* Use bend source */
5214                 if (!pipe)
5215                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5216                                          0x0df70000);
5217                 else
5218                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5219                                          0x0df40000);
5220         }
5221
5222         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5223         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5224         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5225             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5226                 coreclk |= 0x01000000;
5227         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5228
5229         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5230
5231         /*
5232          * Enable DPIO clock input. We should never disable the reference
5233          * clock for pipe B, since VGA hotplug / manual detection depends
5234          * on it.
5235          */
5236         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5237                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5238         /* We should never disable this, set it here for state tracking */
5239         if (pipe == PIPE_B)
5240                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5241         dpll |= DPLL_VCO_ENABLE;
5242         crtc->config.dpll_hw_state.dpll = dpll;
5243
5244         dpll_md = (crtc->config.pixel_multiplier - 1)
5245                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5246         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5247
5248         if (crtc->config.has_dp_encoder)
5249                 intel_dp_set_m_n(crtc);
5250
5251         mutex_unlock(&dev_priv->dpio_lock);
5252 }
5253
5254 static void i9xx_update_pll(struct intel_crtc *crtc,
5255                             intel_clock_t *reduced_clock,
5256                             int num_connectors)
5257 {
5258         struct drm_device *dev = crtc->base.dev;
5259         struct drm_i915_private *dev_priv = dev->dev_private;
5260         u32 dpll;
5261         bool is_sdvo;
5262         struct dpll *clock = &crtc->config.dpll;
5263
5264         i9xx_update_pll_dividers(crtc, reduced_clock);
5265
5266         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5267                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5268
5269         dpll = DPLL_VGA_MODE_DIS;
5270
5271         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5272                 dpll |= DPLLB_MODE_LVDS;
5273         else
5274                 dpll |= DPLLB_MODE_DAC_SERIAL;
5275
5276         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5277                 dpll |= (crtc->config.pixel_multiplier - 1)
5278                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5279         }
5280
5281         if (is_sdvo)
5282                 dpll |= DPLL_SDVO_HIGH_SPEED;
5283
5284         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5285                 dpll |= DPLL_SDVO_HIGH_SPEED;
5286
5287         /* compute bitmask from p1 value */
5288         if (IS_PINEVIEW(dev))
5289                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5290         else {
5291                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5292                 if (IS_G4X(dev) && reduced_clock)
5293                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5294         }
5295         switch (clock->p2) {
5296         case 5:
5297                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5298                 break;
5299         case 7:
5300                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5301                 break;
5302         case 10:
5303                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5304                 break;
5305         case 14:
5306                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5307                 break;
5308         }
5309         if (INTEL_INFO(dev)->gen >= 4)
5310                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5311
5312         if (crtc->config.sdvo_tv_clock)
5313                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5314         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5315                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5316                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5317         else
5318                 dpll |= PLL_REF_INPUT_DREFCLK;
5319
5320         dpll |= DPLL_VCO_ENABLE;
5321         crtc->config.dpll_hw_state.dpll = dpll;
5322
5323         if (INTEL_INFO(dev)->gen >= 4) {
5324                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5325                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5326                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5327         }
5328
5329         if (crtc->config.has_dp_encoder)
5330                 intel_dp_set_m_n(crtc);
5331 }
5332
5333 static void i8xx_update_pll(struct intel_crtc *crtc,
5334                             intel_clock_t *reduced_clock,
5335                             int num_connectors)
5336 {
5337         struct drm_device *dev = crtc->base.dev;
5338         struct drm_i915_private *dev_priv = dev->dev_private;
5339         u32 dpll;
5340         struct dpll *clock = &crtc->config.dpll;
5341
5342         i9xx_update_pll_dividers(crtc, reduced_clock);
5343
5344         dpll = DPLL_VGA_MODE_DIS;
5345
5346         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5347                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5348         } else {
5349                 if (clock->p1 == 2)
5350                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5351                 else
5352                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5353                 if (clock->p2 == 4)
5354                         dpll |= PLL_P2_DIVIDE_BY_4;
5355         }
5356
5357         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5358                 dpll |= DPLL_DVO_2X_MODE;
5359
5360         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5361                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5362                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5363         else
5364                 dpll |= PLL_REF_INPUT_DREFCLK;
5365
5366         dpll |= DPLL_VCO_ENABLE;
5367         crtc->config.dpll_hw_state.dpll = dpll;
5368 }
5369
5370 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5371 {
5372         struct drm_device *dev = intel_crtc->base.dev;
5373         struct drm_i915_private *dev_priv = dev->dev_private;
5374         enum pipe pipe = intel_crtc->pipe;
5375         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5376         struct drm_display_mode *adjusted_mode =
5377                 &intel_crtc->config.adjusted_mode;
5378         uint32_t crtc_vtotal, crtc_vblank_end;
5379         int vsyncshift = 0;
5380
5381         /* We need to be careful not to changed the adjusted mode, for otherwise
5382          * the hw state checker will get angry at the mismatch. */
5383         crtc_vtotal = adjusted_mode->crtc_vtotal;
5384         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5385
5386         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5387                 /* the chip adds 2 halflines automatically */
5388                 crtc_vtotal -= 1;
5389                 crtc_vblank_end -= 1;
5390
5391                 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5392                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5393                 else
5394                         vsyncshift = adjusted_mode->crtc_hsync_start -
5395                                 adjusted_mode->crtc_htotal / 2;
5396                 if (vsyncshift < 0)
5397                         vsyncshift += adjusted_mode->crtc_htotal;
5398         }
5399
5400         if (INTEL_INFO(dev)->gen > 3)
5401                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5402
5403         I915_WRITE(HTOTAL(cpu_transcoder),
5404                    (adjusted_mode->crtc_hdisplay - 1) |
5405                    ((adjusted_mode->crtc_htotal - 1) << 16));
5406         I915_WRITE(HBLANK(cpu_transcoder),
5407                    (adjusted_mode->crtc_hblank_start - 1) |
5408                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5409         I915_WRITE(HSYNC(cpu_transcoder),
5410                    (adjusted_mode->crtc_hsync_start - 1) |
5411                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5412
5413         I915_WRITE(VTOTAL(cpu_transcoder),
5414                    (adjusted_mode->crtc_vdisplay - 1) |
5415                    ((crtc_vtotal - 1) << 16));
5416         I915_WRITE(VBLANK(cpu_transcoder),
5417                    (adjusted_mode->crtc_vblank_start - 1) |
5418                    ((crtc_vblank_end - 1) << 16));
5419         I915_WRITE(VSYNC(cpu_transcoder),
5420                    (adjusted_mode->crtc_vsync_start - 1) |
5421                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5422
5423         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5424          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5425          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5426          * bits. */
5427         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5428             (pipe == PIPE_B || pipe == PIPE_C))
5429                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5430
5431         /* pipesrc controls the size that is scaled from, which should
5432          * always be the user's requested size.
5433          */
5434         I915_WRITE(PIPESRC(pipe),
5435                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5436                    (intel_crtc->config.pipe_src_h - 1));
5437 }
5438
5439 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5440                                    struct intel_crtc_config *pipe_config)
5441 {
5442         struct drm_device *dev = crtc->base.dev;
5443         struct drm_i915_private *dev_priv = dev->dev_private;
5444         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5445         uint32_t tmp;
5446
5447         tmp = I915_READ(HTOTAL(cpu_transcoder));
5448         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5449         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5450         tmp = I915_READ(HBLANK(cpu_transcoder));
5451         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5452         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5453         tmp = I915_READ(HSYNC(cpu_transcoder));
5454         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5455         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5456
5457         tmp = I915_READ(VTOTAL(cpu_transcoder));
5458         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5459         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5460         tmp = I915_READ(VBLANK(cpu_transcoder));
5461         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5462         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5463         tmp = I915_READ(VSYNC(cpu_transcoder));
5464         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5465         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5466
5467         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5468                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5469                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5470                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5471         }
5472
5473         tmp = I915_READ(PIPESRC(crtc->pipe));
5474         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5475         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5476
5477         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5478         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5479 }
5480
5481 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5482                                  struct intel_crtc_config *pipe_config)
5483 {
5484         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5485         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5486         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5487         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5488
5489         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5490         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5491         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5492         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5493
5494         mode->flags = pipe_config->adjusted_mode.flags;
5495
5496         mode->clock = pipe_config->adjusted_mode.crtc_clock;
5497         mode->flags |= pipe_config->adjusted_mode.flags;
5498 }
5499
5500 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5501 {
5502         struct drm_device *dev = intel_crtc->base.dev;
5503         struct drm_i915_private *dev_priv = dev->dev_private;
5504         uint32_t pipeconf;
5505
5506         pipeconf = 0;
5507
5508         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5509             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5510                 pipeconf |= PIPECONF_ENABLE;
5511
5512         if (intel_crtc->config.double_wide)
5513                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5514
5515         /* only g4x and later have fancy bpc/dither controls */
5516         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5517                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5518                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5519                         pipeconf |= PIPECONF_DITHER_EN |
5520                                     PIPECONF_DITHER_TYPE_SP;
5521
5522                 switch (intel_crtc->config.pipe_bpp) {
5523                 case 18:
5524                         pipeconf |= PIPECONF_6BPC;
5525                         break;
5526                 case 24:
5527                         pipeconf |= PIPECONF_8BPC;
5528                         break;
5529                 case 30:
5530                         pipeconf |= PIPECONF_10BPC;
5531                         break;
5532                 default:
5533                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5534                         BUG();
5535                 }
5536         }
5537
5538         if (HAS_PIPE_CXSR(dev)) {
5539                 if (intel_crtc->lowfreq_avail) {
5540                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5541                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5542                 } else {
5543                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5544                 }
5545         }
5546
5547         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
5548                 if (INTEL_INFO(dev)->gen < 4 ||
5549                     intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5550                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5551                 else
5552                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
5553         } else
5554                 pipeconf |= PIPECONF_PROGRESSIVE;
5555
5556         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5557                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5558
5559         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5560         POSTING_READ(PIPECONF(intel_crtc->pipe));
5561 }
5562
5563 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5564                               int x, int y,
5565                               struct drm_framebuffer *fb)
5566 {
5567         struct drm_device *dev = crtc->dev;
5568         struct drm_i915_private *dev_priv = dev->dev_private;
5569         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5570         int pipe = intel_crtc->pipe;
5571         int plane = intel_crtc->plane;
5572         int refclk, num_connectors = 0;
5573         intel_clock_t clock, reduced_clock;
5574         u32 dspcntr;
5575         bool ok, has_reduced_clock = false;
5576         bool is_lvds = false, is_dsi = false;
5577         struct intel_encoder *encoder;
5578         const intel_limit_t *limit;
5579         int ret;
5580
5581         for_each_encoder_on_crtc(dev, crtc, encoder) {
5582                 switch (encoder->type) {
5583                 case INTEL_OUTPUT_LVDS:
5584                         is_lvds = true;
5585                         break;
5586                 case INTEL_OUTPUT_DSI:
5587                         is_dsi = true;
5588                         break;
5589                 }
5590
5591                 num_connectors++;
5592         }
5593
5594         if (is_dsi)
5595                 goto skip_dpll;
5596
5597         if (!intel_crtc->config.clock_set) {
5598                 refclk = i9xx_get_refclk(crtc, num_connectors);
5599
5600                 /*
5601                  * Returns a set of divisors for the desired target clock with
5602                  * the given refclk, or FALSE.  The returned values represent
5603                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5604                  * 2) / p1 / p2.
5605                  */
5606                 limit = intel_limit(crtc, refclk);
5607                 ok = dev_priv->display.find_dpll(limit, crtc,
5608                                                  intel_crtc->config.port_clock,
5609                                                  refclk, NULL, &clock);
5610                 if (!ok) {
5611                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5612                         return -EINVAL;
5613                 }
5614
5615                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5616                         /*
5617                          * Ensure we match the reduced clock's P to the target
5618                          * clock.  If the clocks don't match, we can't switch
5619                          * the display clock by using the FP0/FP1. In such case
5620                          * we will disable the LVDS downclock feature.
5621                          */
5622                         has_reduced_clock =
5623                                 dev_priv->display.find_dpll(limit, crtc,
5624                                                             dev_priv->lvds_downclock,
5625                                                             refclk, &clock,
5626                                                             &reduced_clock);
5627                 }
5628                 /* Compat-code for transition, will disappear. */
5629                 intel_crtc->config.dpll.n = clock.n;
5630                 intel_crtc->config.dpll.m1 = clock.m1;
5631                 intel_crtc->config.dpll.m2 = clock.m2;
5632                 intel_crtc->config.dpll.p1 = clock.p1;
5633                 intel_crtc->config.dpll.p2 = clock.p2;
5634         }
5635
5636         if (IS_GEN2(dev)) {
5637                 i8xx_update_pll(intel_crtc,
5638                                 has_reduced_clock ? &reduced_clock : NULL,
5639                                 num_connectors);
5640         } else if (IS_VALLEYVIEW(dev)) {
5641                 vlv_update_pll(intel_crtc);
5642         } else {
5643                 i9xx_update_pll(intel_crtc,
5644                                 has_reduced_clock ? &reduced_clock : NULL,
5645                                 num_connectors);
5646         }
5647
5648 skip_dpll:
5649         /* Set up the display plane register */
5650         dspcntr = DISPPLANE_GAMMA_ENABLE;
5651
5652         if (!IS_VALLEYVIEW(dev)) {
5653                 if (pipe == 0)
5654                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5655                 else
5656                         dspcntr |= DISPPLANE_SEL_PIPE_B;
5657         }
5658
5659         intel_set_pipe_timings(intel_crtc);
5660
5661         /* pipesrc and dspsize control the size that is scaled from,
5662          * which should always be the user's requested size.
5663          */
5664         I915_WRITE(DSPSIZE(plane),
5665                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
5666                    (intel_crtc->config.pipe_src_w - 1));
5667         I915_WRITE(DSPPOS(plane), 0);
5668
5669         i9xx_set_pipeconf(intel_crtc);
5670
5671         I915_WRITE(DSPCNTR(plane), dspcntr);
5672         POSTING_READ(DSPCNTR(plane));
5673
5674         ret = intel_pipe_set_base(crtc, x, y, fb);
5675
5676         return ret;
5677 }
5678
5679 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5680                                  struct intel_crtc_config *pipe_config)
5681 {
5682         struct drm_device *dev = crtc->base.dev;
5683         struct drm_i915_private *dev_priv = dev->dev_private;
5684         uint32_t tmp;
5685
5686         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
5687                 return;
5688
5689         tmp = I915_READ(PFIT_CONTROL);
5690         if (!(tmp & PFIT_ENABLE))
5691                 return;
5692
5693         /* Check whether the pfit is attached to our pipe. */
5694         if (INTEL_INFO(dev)->gen < 4) {
5695                 if (crtc->pipe != PIPE_B)
5696                         return;
5697         } else {
5698                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5699                         return;
5700         }
5701
5702         pipe_config->gmch_pfit.control = tmp;
5703         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5704         if (INTEL_INFO(dev)->gen < 5)
5705                 pipe_config->gmch_pfit.lvds_border_bits =
5706                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5707 }
5708
5709 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5710                                struct intel_crtc_config *pipe_config)
5711 {
5712         struct drm_device *dev = crtc->base.dev;
5713         struct drm_i915_private *dev_priv = dev->dev_private;
5714         int pipe = pipe_config->cpu_transcoder;
5715         intel_clock_t clock;
5716         u32 mdiv;
5717         int refclk = 100000;
5718
5719         mutex_lock(&dev_priv->dpio_lock);
5720         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
5721         mutex_unlock(&dev_priv->dpio_lock);
5722
5723         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5724         clock.m2 = mdiv & DPIO_M2DIV_MASK;
5725         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5726         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5727         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5728
5729         vlv_clock(refclk, &clock);
5730
5731         /* clock.dot is the fast clock */
5732         pipe_config->port_clock = clock.dot / 5;
5733 }
5734
5735 static void i9xx_get_plane_config(struct intel_crtc *crtc,
5736                                   struct intel_plane_config *plane_config)
5737 {
5738         struct drm_device *dev = crtc->base.dev;
5739         struct drm_i915_private *dev_priv = dev->dev_private;
5740         u32 val, base, offset;
5741         int pipe = crtc->pipe, plane = crtc->plane;
5742         int fourcc, pixel_format;
5743         int aligned_height;
5744
5745         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
5746         if (!crtc->base.primary->fb) {
5747                 DRM_DEBUG_KMS("failed to alloc fb\n");
5748                 return;
5749         }
5750
5751         val = I915_READ(DSPCNTR(plane));
5752
5753         if (INTEL_INFO(dev)->gen >= 4)
5754                 if (val & DISPPLANE_TILED)
5755                         plane_config->tiled = true;
5756
5757         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
5758         fourcc = intel_format_to_fourcc(pixel_format);
5759         crtc->base.primary->fb->pixel_format = fourcc;
5760         crtc->base.primary->fb->bits_per_pixel =
5761                 drm_format_plane_cpp(fourcc, 0) * 8;
5762
5763         if (INTEL_INFO(dev)->gen >= 4) {
5764                 if (plane_config->tiled)
5765                         offset = I915_READ(DSPTILEOFF(plane));
5766                 else
5767                         offset = I915_READ(DSPLINOFF(plane));
5768                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
5769         } else {
5770                 base = I915_READ(DSPADDR(plane));
5771         }
5772         plane_config->base = base;
5773
5774         val = I915_READ(PIPESRC(pipe));
5775         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
5776         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
5777
5778         val = I915_READ(DSPSTRIDE(pipe));
5779         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
5780
5781         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
5782                                             plane_config->tiled);
5783
5784         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
5785                                    aligned_height, PAGE_SIZE);
5786
5787         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
5788                       pipe, plane, crtc->base.primary->fb->width,
5789                       crtc->base.primary->fb->height,
5790                       crtc->base.primary->fb->bits_per_pixel, base,
5791                       crtc->base.primary->fb->pitches[0],
5792                       plane_config->size);
5793
5794 }
5795
5796 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5797                                  struct intel_crtc_config *pipe_config)
5798 {
5799         struct drm_device *dev = crtc->base.dev;
5800         struct drm_i915_private *dev_priv = dev->dev_private;
5801         uint32_t tmp;
5802
5803         if (!intel_display_power_enabled(dev_priv,
5804                                          POWER_DOMAIN_PIPE(crtc->pipe)))
5805                 return false;
5806
5807         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5808         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5809
5810         tmp = I915_READ(PIPECONF(crtc->pipe));
5811         if (!(tmp & PIPECONF_ENABLE))
5812                 return false;
5813
5814         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5815                 switch (tmp & PIPECONF_BPC_MASK) {
5816                 case PIPECONF_6BPC:
5817                         pipe_config->pipe_bpp = 18;
5818                         break;
5819                 case PIPECONF_8BPC:
5820                         pipe_config->pipe_bpp = 24;
5821                         break;
5822                 case PIPECONF_10BPC:
5823                         pipe_config->pipe_bpp = 30;
5824                         break;
5825                 default:
5826                         break;
5827                 }
5828         }
5829
5830         if (INTEL_INFO(dev)->gen < 4)
5831                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5832
5833         intel_get_pipe_timings(crtc, pipe_config);
5834
5835         i9xx_get_pfit_config(crtc, pipe_config);
5836
5837         if (INTEL_INFO(dev)->gen >= 4) {
5838                 tmp = I915_READ(DPLL_MD(crtc->pipe));
5839                 pipe_config->pixel_multiplier =
5840                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5841                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5842                 pipe_config->dpll_hw_state.dpll_md = tmp;
5843         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5844                 tmp = I915_READ(DPLL(crtc->pipe));
5845                 pipe_config->pixel_multiplier =
5846                         ((tmp & SDVO_MULTIPLIER_MASK)
5847                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5848         } else {
5849                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5850                  * port and will be fixed up in the encoder->get_config
5851                  * function. */
5852                 pipe_config->pixel_multiplier = 1;
5853         }
5854         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5855         if (!IS_VALLEYVIEW(dev)) {
5856                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5857                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5858         } else {
5859                 /* Mask out read-only status bits. */
5860                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5861                                                      DPLL_PORTC_READY_MASK |
5862                                                      DPLL_PORTB_READY_MASK);
5863         }
5864
5865         if (IS_VALLEYVIEW(dev))
5866                 vlv_crtc_clock_get(crtc, pipe_config);
5867         else
5868                 i9xx_crtc_clock_get(crtc, pipe_config);
5869
5870         return true;
5871 }
5872
5873 static void ironlake_init_pch_refclk(struct drm_device *dev)
5874 {
5875         struct drm_i915_private *dev_priv = dev->dev_private;
5876         struct drm_mode_config *mode_config = &dev->mode_config;
5877         struct intel_encoder *encoder;
5878         u32 val, final;
5879         bool has_lvds = false;
5880         bool has_cpu_edp = false;
5881         bool has_panel = false;
5882         bool has_ck505 = false;
5883         bool can_ssc = false;
5884
5885         /* We need to take the global config into account */
5886         list_for_each_entry(encoder, &mode_config->encoder_list,
5887                             base.head) {
5888                 switch (encoder->type) {
5889                 case INTEL_OUTPUT_LVDS:
5890                         has_panel = true;
5891                         has_lvds = true;
5892                         break;
5893                 case INTEL_OUTPUT_EDP:
5894                         has_panel = true;
5895                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5896                                 has_cpu_edp = true;
5897                         break;
5898                 }
5899         }
5900
5901         if (HAS_PCH_IBX(dev)) {
5902                 has_ck505 = dev_priv->vbt.display_clock_mode;
5903                 can_ssc = has_ck505;
5904         } else {
5905                 has_ck505 = false;
5906                 can_ssc = true;
5907         }
5908
5909         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5910                       has_panel, has_lvds, has_ck505);
5911
5912         /* Ironlake: try to setup display ref clock before DPLL
5913          * enabling. This is only under driver's control after
5914          * PCH B stepping, previous chipset stepping should be
5915          * ignoring this setting.
5916          */
5917         val = I915_READ(PCH_DREF_CONTROL);
5918
5919         /* As we must carefully and slowly disable/enable each source in turn,
5920          * compute the final state we want first and check if we need to
5921          * make any changes at all.
5922          */
5923         final = val;
5924         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5925         if (has_ck505)
5926                 final |= DREF_NONSPREAD_CK505_ENABLE;
5927         else
5928                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5929
5930         final &= ~DREF_SSC_SOURCE_MASK;
5931         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5932         final &= ~DREF_SSC1_ENABLE;
5933
5934         if (has_panel) {
5935                 final |= DREF_SSC_SOURCE_ENABLE;
5936
5937                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5938                         final |= DREF_SSC1_ENABLE;
5939
5940                 if (has_cpu_edp) {
5941                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5942                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5943                         else
5944                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5945                 } else
5946                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5947         } else {
5948                 final |= DREF_SSC_SOURCE_DISABLE;
5949                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5950         }
5951
5952         if (final == val)
5953                 return;
5954
5955         /* Always enable nonspread source */
5956         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5957
5958         if (has_ck505)
5959                 val |= DREF_NONSPREAD_CK505_ENABLE;
5960         else
5961                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5962
5963         if (has_panel) {
5964                 val &= ~DREF_SSC_SOURCE_MASK;
5965                 val |= DREF_SSC_SOURCE_ENABLE;
5966
5967                 /* SSC must be turned on before enabling the CPU output  */
5968                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5969                         DRM_DEBUG_KMS("Using SSC on panel\n");
5970                         val |= DREF_SSC1_ENABLE;
5971                 } else
5972                         val &= ~DREF_SSC1_ENABLE;
5973
5974                 /* Get SSC going before enabling the outputs */
5975                 I915_WRITE(PCH_DREF_CONTROL, val);
5976                 POSTING_READ(PCH_DREF_CONTROL);
5977                 udelay(200);
5978
5979                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5980
5981                 /* Enable CPU source on CPU attached eDP */
5982                 if (has_cpu_edp) {
5983                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5984                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5985                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5986                         }
5987                         else
5988                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5989                 } else
5990                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5991
5992                 I915_WRITE(PCH_DREF_CONTROL, val);
5993                 POSTING_READ(PCH_DREF_CONTROL);
5994                 udelay(200);
5995         } else {
5996                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5997
5998                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5999
6000                 /* Turn off CPU output */
6001                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6002
6003                 I915_WRITE(PCH_DREF_CONTROL, val);
6004                 POSTING_READ(PCH_DREF_CONTROL);
6005                 udelay(200);
6006
6007                 /* Turn off the SSC source */
6008                 val &= ~DREF_SSC_SOURCE_MASK;
6009                 val |= DREF_SSC_SOURCE_DISABLE;
6010
6011                 /* Turn off SSC1 */
6012                 val &= ~DREF_SSC1_ENABLE;
6013
6014                 I915_WRITE(PCH_DREF_CONTROL, val);
6015                 POSTING_READ(PCH_DREF_CONTROL);
6016                 udelay(200);
6017         }
6018
6019         BUG_ON(val != final);
6020 }
6021
6022 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6023 {
6024         uint32_t tmp;
6025
6026         tmp = I915_READ(SOUTH_CHICKEN2);
6027         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6028         I915_WRITE(SOUTH_CHICKEN2, tmp);
6029
6030         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6031                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6032                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6033
6034         tmp = I915_READ(SOUTH_CHICKEN2);
6035         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6036         I915_WRITE(SOUTH_CHICKEN2, tmp);
6037
6038         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6039                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6040                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6041 }
6042
6043 /* WaMPhyProgramming:hsw */
6044 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6045 {
6046         uint32_t tmp;
6047
6048         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6049         tmp &= ~(0xFF << 24);
6050         tmp |= (0x12 << 24);
6051         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6052
6053         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6054         tmp |= (1 << 11);
6055         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6056
6057         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6058         tmp |= (1 << 11);
6059         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6060
6061         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6062         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6063         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6064
6065         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6066         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6067         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6068
6069         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6070         tmp &= ~(7 << 13);
6071         tmp |= (5 << 13);
6072         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6073
6074         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6075         tmp &= ~(7 << 13);
6076         tmp |= (5 << 13);
6077         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6078
6079         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6080         tmp &= ~0xFF;
6081         tmp |= 0x1C;
6082         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6083
6084         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6085         tmp &= ~0xFF;
6086         tmp |= 0x1C;
6087         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6088
6089         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6090         tmp &= ~(0xFF << 16);
6091         tmp |= (0x1C << 16);
6092         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6093
6094         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6095         tmp &= ~(0xFF << 16);
6096         tmp |= (0x1C << 16);
6097         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6098
6099         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6100         tmp |= (1 << 27);
6101         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6102
6103         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6104         tmp |= (1 << 27);
6105         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6106
6107         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6108         tmp &= ~(0xF << 28);
6109         tmp |= (4 << 28);
6110         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6111
6112         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6113         tmp &= ~(0xF << 28);
6114         tmp |= (4 << 28);
6115         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6116 }
6117
6118 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6119  * Programming" based on the parameters passed:
6120  * - Sequence to enable CLKOUT_DP
6121  * - Sequence to enable CLKOUT_DP without spread
6122  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6123  */
6124 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6125                                  bool with_fdi)
6126 {
6127         struct drm_i915_private *dev_priv = dev->dev_private;
6128         uint32_t reg, tmp;
6129
6130         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6131                 with_spread = true;
6132         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6133                  with_fdi, "LP PCH doesn't have FDI\n"))
6134                 with_fdi = false;
6135
6136         mutex_lock(&dev_priv->dpio_lock);
6137
6138         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6139         tmp &= ~SBI_SSCCTL_DISABLE;
6140         tmp |= SBI_SSCCTL_PATHALT;
6141         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6142
6143         udelay(24);
6144
6145         if (with_spread) {
6146                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6147                 tmp &= ~SBI_SSCCTL_PATHALT;
6148                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6149
6150                 if (with_fdi) {
6151                         lpt_reset_fdi_mphy(dev_priv);
6152                         lpt_program_fdi_mphy(dev_priv);
6153                 }
6154         }
6155
6156         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6157                SBI_GEN0 : SBI_DBUFF0;
6158         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6159         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6160         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6161
6162         mutex_unlock(&dev_priv->dpio_lock);
6163 }
6164
6165 /* Sequence to disable CLKOUT_DP */
6166 static void lpt_disable_clkout_dp(struct drm_device *dev)
6167 {
6168         struct drm_i915_private *dev_priv = dev->dev_private;
6169         uint32_t reg, tmp;
6170
6171         mutex_lock(&dev_priv->dpio_lock);
6172
6173         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6174                SBI_GEN0 : SBI_DBUFF0;
6175         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6176         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6177         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6178
6179         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6180         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6181                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6182                         tmp |= SBI_SSCCTL_PATHALT;
6183                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6184                         udelay(32);
6185                 }
6186                 tmp |= SBI_SSCCTL_DISABLE;
6187                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6188         }
6189
6190         mutex_unlock(&dev_priv->dpio_lock);
6191 }
6192
6193 static void lpt_init_pch_refclk(struct drm_device *dev)
6194 {
6195         struct drm_mode_config *mode_config = &dev->mode_config;
6196         struct intel_encoder *encoder;
6197         bool has_vga = false;
6198
6199         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6200                 switch (encoder->type) {
6201                 case INTEL_OUTPUT_ANALOG:
6202                         has_vga = true;
6203                         break;
6204                 }
6205         }
6206
6207         if (has_vga)
6208                 lpt_enable_clkout_dp(dev, true, true);
6209         else
6210                 lpt_disable_clkout_dp(dev);
6211 }
6212
6213 /*
6214  * Initialize reference clocks when the driver loads
6215  */
6216 void intel_init_pch_refclk(struct drm_device *dev)
6217 {
6218         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6219                 ironlake_init_pch_refclk(dev);
6220         else if (HAS_PCH_LPT(dev))
6221                 lpt_init_pch_refclk(dev);
6222 }
6223
6224 static int ironlake_get_refclk(struct drm_crtc *crtc)
6225 {
6226         struct drm_device *dev = crtc->dev;
6227         struct drm_i915_private *dev_priv = dev->dev_private;
6228         struct intel_encoder *encoder;
6229         int num_connectors = 0;
6230         bool is_lvds = false;
6231
6232         for_each_encoder_on_crtc(dev, crtc, encoder) {
6233                 switch (encoder->type) {
6234                 case INTEL_OUTPUT_LVDS:
6235                         is_lvds = true;
6236                         break;
6237                 }
6238                 num_connectors++;
6239         }
6240
6241         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6242                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6243                               dev_priv->vbt.lvds_ssc_freq);
6244                 return dev_priv->vbt.lvds_ssc_freq;
6245         }
6246
6247         return 120000;
6248 }
6249
6250 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6251 {
6252         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6253         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6254         int pipe = intel_crtc->pipe;
6255         uint32_t val;
6256
6257         val = 0;
6258
6259         switch (intel_crtc->config.pipe_bpp) {
6260         case 18:
6261                 val |= PIPECONF_6BPC;
6262                 break;
6263         case 24:
6264                 val |= PIPECONF_8BPC;
6265                 break;
6266         case 30:
6267                 val |= PIPECONF_10BPC;
6268                 break;
6269         case 36:
6270                 val |= PIPECONF_12BPC;
6271                 break;
6272         default:
6273                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6274                 BUG();
6275         }
6276
6277         if (intel_crtc->config.dither)
6278                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6279
6280         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6281                 val |= PIPECONF_INTERLACED_ILK;
6282         else
6283                 val |= PIPECONF_PROGRESSIVE;
6284
6285         if (intel_crtc->config.limited_color_range)
6286                 val |= PIPECONF_COLOR_RANGE_SELECT;
6287
6288         I915_WRITE(PIPECONF(pipe), val);
6289         POSTING_READ(PIPECONF(pipe));
6290 }
6291
6292 /*
6293  * Set up the pipe CSC unit.
6294  *
6295  * Currently only full range RGB to limited range RGB conversion
6296  * is supported, but eventually this should handle various
6297  * RGB<->YCbCr scenarios as well.
6298  */
6299 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6300 {
6301         struct drm_device *dev = crtc->dev;
6302         struct drm_i915_private *dev_priv = dev->dev_private;
6303         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6304         int pipe = intel_crtc->pipe;
6305         uint16_t coeff = 0x7800; /* 1.0 */
6306
6307         /*
6308          * TODO: Check what kind of values actually come out of the pipe
6309          * with these coeff/postoff values and adjust to get the best
6310          * accuracy. Perhaps we even need to take the bpc value into
6311          * consideration.
6312          */
6313
6314         if (intel_crtc->config.limited_color_range)
6315                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6316
6317         /*
6318          * GY/GU and RY/RU should be the other way around according
6319          * to BSpec, but reality doesn't agree. Just set them up in
6320          * a way that results in the correct picture.
6321          */
6322         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6323         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6324
6325         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6326         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6327
6328         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6329         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6330
6331         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6332         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6333         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6334
6335         if (INTEL_INFO(dev)->gen > 6) {
6336                 uint16_t postoff = 0;
6337
6338                 if (intel_crtc->config.limited_color_range)
6339                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6340
6341                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6342                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6343                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6344
6345                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6346         } else {
6347                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6348
6349                 if (intel_crtc->config.limited_color_range)
6350                         mode |= CSC_BLACK_SCREEN_OFFSET;
6351
6352                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6353         }
6354 }
6355
6356 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6357 {
6358         struct drm_device *dev = crtc->dev;
6359         struct drm_i915_private *dev_priv = dev->dev_private;
6360         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6361         enum pipe pipe = intel_crtc->pipe;
6362         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6363         uint32_t val;
6364
6365         val = 0;
6366
6367         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6368                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6369
6370         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6371                 val |= PIPECONF_INTERLACED_ILK;
6372         else
6373                 val |= PIPECONF_PROGRESSIVE;
6374
6375         I915_WRITE(PIPECONF(cpu_transcoder), val);
6376         POSTING_READ(PIPECONF(cpu_transcoder));
6377
6378         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6379         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6380
6381         if (IS_BROADWELL(dev)) {
6382                 val = 0;
6383
6384                 switch (intel_crtc->config.pipe_bpp) {
6385                 case 18:
6386                         val |= PIPEMISC_DITHER_6_BPC;
6387                         break;
6388                 case 24:
6389                         val |= PIPEMISC_DITHER_8_BPC;
6390                         break;
6391                 case 30:
6392                         val |= PIPEMISC_DITHER_10_BPC;
6393                         break;
6394                 case 36:
6395                         val |= PIPEMISC_DITHER_12_BPC;
6396                         break;
6397                 default:
6398                         /* Case prevented by pipe_config_set_bpp. */
6399                         BUG();
6400                 }
6401
6402                 if (intel_crtc->config.dither)
6403                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6404
6405                 I915_WRITE(PIPEMISC(pipe), val);
6406         }
6407 }
6408
6409 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6410                                     intel_clock_t *clock,
6411                                     bool *has_reduced_clock,
6412                                     intel_clock_t *reduced_clock)
6413 {
6414         struct drm_device *dev = crtc->dev;
6415         struct drm_i915_private *dev_priv = dev->dev_private;
6416         struct intel_encoder *intel_encoder;
6417         int refclk;
6418         const intel_limit_t *limit;
6419         bool ret, is_lvds = false;
6420
6421         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6422                 switch (intel_encoder->type) {
6423                 case INTEL_OUTPUT_LVDS:
6424                         is_lvds = true;
6425                         break;
6426                 }
6427         }
6428
6429         refclk = ironlake_get_refclk(crtc);
6430
6431         /*
6432          * Returns a set of divisors for the desired target clock with the given
6433          * refclk, or FALSE.  The returned values represent the clock equation:
6434          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6435          */
6436         limit = intel_limit(crtc, refclk);
6437         ret = dev_priv->display.find_dpll(limit, crtc,
6438                                           to_intel_crtc(crtc)->config.port_clock,
6439                                           refclk, NULL, clock);
6440         if (!ret)
6441                 return false;
6442
6443         if (is_lvds && dev_priv->lvds_downclock_avail) {
6444                 /*
6445                  * Ensure we match the reduced clock's P to the target clock.
6446                  * If the clocks don't match, we can't switch the display clock
6447                  * by using the FP0/FP1. In such case we will disable the LVDS
6448                  * downclock feature.
6449                 */
6450                 *has_reduced_clock =
6451                         dev_priv->display.find_dpll(limit, crtc,
6452                                                     dev_priv->lvds_downclock,
6453                                                     refclk, clock,
6454                                                     reduced_clock);
6455         }
6456
6457         return true;
6458 }
6459
6460 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6461 {
6462         /*
6463          * Account for spread spectrum to avoid
6464          * oversubscribing the link. Max center spread
6465          * is 2.5%; use 5% for safety's sake.
6466          */
6467         u32 bps = target_clock * bpp * 21 / 20;
6468         return DIV_ROUND_UP(bps, link_bw * 8);
6469 }
6470
6471 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6472 {
6473         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6474 }
6475
6476 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6477                                       u32 *fp,
6478                                       intel_clock_t *reduced_clock, u32 *fp2)
6479 {
6480         struct drm_crtc *crtc = &intel_crtc->base;
6481         struct drm_device *dev = crtc->dev;
6482         struct drm_i915_private *dev_priv = dev->dev_private;
6483         struct intel_encoder *intel_encoder;
6484         uint32_t dpll;
6485         int factor, num_connectors = 0;
6486         bool is_lvds = false, is_sdvo = false;
6487
6488         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6489                 switch (intel_encoder->type) {
6490                 case INTEL_OUTPUT_LVDS:
6491                         is_lvds = true;
6492                         break;
6493                 case INTEL_OUTPUT_SDVO:
6494                 case INTEL_OUTPUT_HDMI:
6495                         is_sdvo = true;
6496                         break;
6497                 }
6498
6499                 num_connectors++;
6500         }
6501
6502         /* Enable autotuning of the PLL clock (if permissible) */
6503         factor = 21;
6504         if (is_lvds) {
6505                 if ((intel_panel_use_ssc(dev_priv) &&
6506                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
6507                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6508                         factor = 25;
6509         } else if (intel_crtc->config.sdvo_tv_clock)
6510                 factor = 20;
6511
6512         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6513                 *fp |= FP_CB_TUNE;
6514
6515         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6516                 *fp2 |= FP_CB_TUNE;
6517
6518         dpll = 0;
6519
6520         if (is_lvds)
6521                 dpll |= DPLLB_MODE_LVDS;
6522         else
6523                 dpll |= DPLLB_MODE_DAC_SERIAL;
6524
6525         dpll |= (intel_crtc->config.pixel_multiplier - 1)
6526                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6527
6528         if (is_sdvo)
6529                 dpll |= DPLL_SDVO_HIGH_SPEED;
6530         if (intel_crtc->config.has_dp_encoder)
6531                 dpll |= DPLL_SDVO_HIGH_SPEED;
6532
6533         /* compute bitmask from p1 value */
6534         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6535         /* also FPA1 */
6536         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6537
6538         switch (intel_crtc->config.dpll.p2) {
6539         case 5:
6540                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6541                 break;
6542         case 7:
6543                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6544                 break;
6545         case 10:
6546                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6547                 break;
6548         case 14:
6549                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6550                 break;
6551         }
6552
6553         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6554                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6555         else
6556                 dpll |= PLL_REF_INPUT_DREFCLK;
6557
6558         return dpll | DPLL_VCO_ENABLE;
6559 }
6560
6561 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6562                                   int x, int y,
6563                                   struct drm_framebuffer *fb)
6564 {
6565         struct drm_device *dev = crtc->dev;
6566         struct drm_i915_private *dev_priv = dev->dev_private;
6567         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6568         int pipe = intel_crtc->pipe;
6569         int plane = intel_crtc->plane;
6570         int num_connectors = 0;
6571         intel_clock_t clock, reduced_clock;
6572         u32 dpll = 0, fp = 0, fp2 = 0;
6573         bool ok, has_reduced_clock = false;
6574         bool is_lvds = false;
6575         struct intel_encoder *encoder;
6576         struct intel_shared_dpll *pll;
6577         int ret;
6578
6579         for_each_encoder_on_crtc(dev, crtc, encoder) {
6580                 switch (encoder->type) {
6581                 case INTEL_OUTPUT_LVDS:
6582                         is_lvds = true;
6583                         break;
6584                 }
6585
6586                 num_connectors++;
6587         }
6588
6589         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6590              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6591
6592         ok = ironlake_compute_clocks(crtc, &clock,
6593                                      &has_reduced_clock, &reduced_clock);
6594         if (!ok && !intel_crtc->config.clock_set) {
6595                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6596                 return -EINVAL;
6597         }
6598         /* Compat-code for transition, will disappear. */
6599         if (!intel_crtc->config.clock_set) {
6600                 intel_crtc->config.dpll.n = clock.n;
6601                 intel_crtc->config.dpll.m1 = clock.m1;
6602                 intel_crtc->config.dpll.m2 = clock.m2;
6603                 intel_crtc->config.dpll.p1 = clock.p1;
6604                 intel_crtc->config.dpll.p2 = clock.p2;
6605         }
6606
6607         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6608         if (intel_crtc->config.has_pch_encoder) {
6609                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6610                 if (has_reduced_clock)
6611                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6612
6613                 dpll = ironlake_compute_dpll(intel_crtc,
6614                                              &fp, &reduced_clock,
6615                                              has_reduced_clock ? &fp2 : NULL);
6616
6617                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6618                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6619                 if (has_reduced_clock)
6620                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6621                 else
6622                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6623
6624                 pll = intel_get_shared_dpll(intel_crtc);
6625                 if (pll == NULL) {
6626                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6627                                          pipe_name(pipe));
6628                         return -EINVAL;
6629                 }
6630         } else
6631                 intel_put_shared_dpll(intel_crtc);
6632
6633         if (intel_crtc->config.has_dp_encoder)
6634                 intel_dp_set_m_n(intel_crtc);
6635
6636         if (is_lvds && has_reduced_clock && i915.powersave)
6637                 intel_crtc->lowfreq_avail = true;
6638         else
6639                 intel_crtc->lowfreq_avail = false;
6640
6641         intel_set_pipe_timings(intel_crtc);
6642
6643         if (intel_crtc->config.has_pch_encoder) {
6644                 intel_cpu_transcoder_set_m_n(intel_crtc,
6645                                              &intel_crtc->config.fdi_m_n);
6646         }
6647
6648         ironlake_set_pipeconf(crtc);
6649
6650         /* Set up the display plane register */
6651         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6652         POSTING_READ(DSPCNTR(plane));
6653
6654         ret = intel_pipe_set_base(crtc, x, y, fb);
6655
6656         return ret;
6657 }
6658
6659 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6660                                          struct intel_link_m_n *m_n)
6661 {
6662         struct drm_device *dev = crtc->base.dev;
6663         struct drm_i915_private *dev_priv = dev->dev_private;
6664         enum pipe pipe = crtc->pipe;
6665
6666         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6667         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6668         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6669                 & ~TU_SIZE_MASK;
6670         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6671         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6672                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6673 }
6674
6675 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6676                                          enum transcoder transcoder,
6677                                          struct intel_link_m_n *m_n)
6678 {
6679         struct drm_device *dev = crtc->base.dev;
6680         struct drm_i915_private *dev_priv = dev->dev_private;
6681         enum pipe pipe = crtc->pipe;
6682
6683         if (INTEL_INFO(dev)->gen >= 5) {
6684                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6685                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6686                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6687                         & ~TU_SIZE_MASK;
6688                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6689                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6690                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6691         } else {
6692                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6693                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6694                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6695                         & ~TU_SIZE_MASK;
6696                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6697                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6698                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6699         }
6700 }
6701
6702 void intel_dp_get_m_n(struct intel_crtc *crtc,
6703                       struct intel_crtc_config *pipe_config)
6704 {
6705         if (crtc->config.has_pch_encoder)
6706                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6707         else
6708                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6709                                              &pipe_config->dp_m_n);
6710 }
6711
6712 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6713                                         struct intel_crtc_config *pipe_config)
6714 {
6715         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6716                                      &pipe_config->fdi_m_n);
6717 }
6718
6719 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6720                                      struct intel_crtc_config *pipe_config)
6721 {
6722         struct drm_device *dev = crtc->base.dev;
6723         struct drm_i915_private *dev_priv = dev->dev_private;
6724         uint32_t tmp;
6725
6726         tmp = I915_READ(PF_CTL(crtc->pipe));
6727
6728         if (tmp & PF_ENABLE) {
6729                 pipe_config->pch_pfit.enabled = true;
6730                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6731                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6732
6733                 /* We currently do not free assignements of panel fitters on
6734                  * ivb/hsw (since we don't use the higher upscaling modes which
6735                  * differentiates them) so just WARN about this case for now. */
6736                 if (IS_GEN7(dev)) {
6737                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6738                                 PF_PIPE_SEL_IVB(crtc->pipe));
6739                 }
6740         }
6741 }
6742
6743 static void ironlake_get_plane_config(struct intel_crtc *crtc,
6744                                       struct intel_plane_config *plane_config)
6745 {
6746         struct drm_device *dev = crtc->base.dev;
6747         struct drm_i915_private *dev_priv = dev->dev_private;
6748         u32 val, base, offset;
6749         int pipe = crtc->pipe, plane = crtc->plane;
6750         int fourcc, pixel_format;
6751         int aligned_height;
6752
6753         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6754         if (!crtc->base.primary->fb) {
6755                 DRM_DEBUG_KMS("failed to alloc fb\n");
6756                 return;
6757         }
6758
6759         val = I915_READ(DSPCNTR(plane));
6760
6761         if (INTEL_INFO(dev)->gen >= 4)
6762                 if (val & DISPPLANE_TILED)
6763                         plane_config->tiled = true;
6764
6765         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6766         fourcc = intel_format_to_fourcc(pixel_format);
6767         crtc->base.primary->fb->pixel_format = fourcc;
6768         crtc->base.primary->fb->bits_per_pixel =
6769                 drm_format_plane_cpp(fourcc, 0) * 8;
6770
6771         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6772         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6773                 offset = I915_READ(DSPOFFSET(plane));
6774         } else {
6775                 if (plane_config->tiled)
6776                         offset = I915_READ(DSPTILEOFF(plane));
6777                 else
6778                         offset = I915_READ(DSPLINOFF(plane));
6779         }
6780         plane_config->base = base;
6781
6782         val = I915_READ(PIPESRC(pipe));
6783         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6784         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6785
6786         val = I915_READ(DSPSTRIDE(pipe));
6787         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
6788
6789         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6790                                             plane_config->tiled);
6791
6792         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
6793                                    aligned_height, PAGE_SIZE);
6794
6795         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6796                       pipe, plane, crtc->base.primary->fb->width,
6797                       crtc->base.primary->fb->height,
6798                       crtc->base.primary->fb->bits_per_pixel, base,
6799                       crtc->base.primary->fb->pitches[0],
6800                       plane_config->size);
6801 }
6802
6803 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6804                                      struct intel_crtc_config *pipe_config)
6805 {
6806         struct drm_device *dev = crtc->base.dev;
6807         struct drm_i915_private *dev_priv = dev->dev_private;
6808         uint32_t tmp;
6809
6810         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6811         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6812
6813         tmp = I915_READ(PIPECONF(crtc->pipe));
6814         if (!(tmp & PIPECONF_ENABLE))
6815                 return false;
6816
6817         switch (tmp & PIPECONF_BPC_MASK) {
6818         case PIPECONF_6BPC:
6819                 pipe_config->pipe_bpp = 18;
6820                 break;
6821         case PIPECONF_8BPC:
6822                 pipe_config->pipe_bpp = 24;
6823                 break;
6824         case PIPECONF_10BPC:
6825                 pipe_config->pipe_bpp = 30;
6826                 break;
6827         case PIPECONF_12BPC:
6828                 pipe_config->pipe_bpp = 36;
6829                 break;
6830         default:
6831                 break;
6832         }
6833
6834         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6835                 struct intel_shared_dpll *pll;
6836
6837                 pipe_config->has_pch_encoder = true;
6838
6839                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6840                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6841                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6842
6843                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6844
6845                 if (HAS_PCH_IBX(dev_priv->dev)) {
6846                         pipe_config->shared_dpll =
6847                                 (enum intel_dpll_id) crtc->pipe;
6848                 } else {
6849                         tmp = I915_READ(PCH_DPLL_SEL);
6850                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6851                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6852                         else
6853                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6854                 }
6855
6856                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6857
6858                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6859                                            &pipe_config->dpll_hw_state));
6860
6861                 tmp = pipe_config->dpll_hw_state.dpll;
6862                 pipe_config->pixel_multiplier =
6863                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6864                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6865
6866                 ironlake_pch_clock_get(crtc, pipe_config);
6867         } else {
6868                 pipe_config->pixel_multiplier = 1;
6869         }
6870
6871         intel_get_pipe_timings(crtc, pipe_config);
6872
6873         ironlake_get_pfit_config(crtc, pipe_config);
6874
6875         return true;
6876 }
6877
6878 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6879 {
6880         struct drm_device *dev = dev_priv->dev;
6881         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6882         struct intel_crtc *crtc;
6883         unsigned long irqflags;
6884         uint32_t val;
6885
6886         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6887                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
6888                      pipe_name(crtc->pipe));
6889
6890         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6891         WARN(plls->spll_refcount, "SPLL enabled\n");
6892         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6893         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6894         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6895         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6896              "CPU PWM1 enabled\n");
6897         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6898              "CPU PWM2 enabled\n");
6899         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6900              "PCH PWM1 enabled\n");
6901         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6902              "Utility pin enabled\n");
6903         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6904
6905         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6906         val = I915_READ(DEIMR);
6907         WARN((val | DE_PCH_EVENT_IVB) != 0xffffffff,
6908              "Unexpected DEIMR bits enabled: 0x%x\n", val);
6909         val = I915_READ(SDEIMR);
6910         WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6911              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6912         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6913 }
6914
6915 /*
6916  * This function implements pieces of two sequences from BSpec:
6917  * - Sequence for display software to disable LCPLL
6918  * - Sequence for display software to allow package C8+
6919  * The steps implemented here are just the steps that actually touch the LCPLL
6920  * register. Callers should take care of disabling all the display engine
6921  * functions, doing the mode unset, fixing interrupts, etc.
6922  */
6923 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6924                               bool switch_to_fclk, bool allow_power_down)
6925 {
6926         uint32_t val;
6927
6928         assert_can_disable_lcpll(dev_priv);
6929
6930         val = I915_READ(LCPLL_CTL);
6931
6932         if (switch_to_fclk) {
6933                 val |= LCPLL_CD_SOURCE_FCLK;
6934                 I915_WRITE(LCPLL_CTL, val);
6935
6936                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6937                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
6938                         DRM_ERROR("Switching to FCLK failed\n");
6939
6940                 val = I915_READ(LCPLL_CTL);
6941         }
6942
6943         val |= LCPLL_PLL_DISABLE;
6944         I915_WRITE(LCPLL_CTL, val);
6945         POSTING_READ(LCPLL_CTL);
6946
6947         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6948                 DRM_ERROR("LCPLL still locked\n");
6949
6950         val = I915_READ(D_COMP);
6951         val |= D_COMP_COMP_DISABLE;
6952         mutex_lock(&dev_priv->rps.hw_lock);
6953         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6954                 DRM_ERROR("Failed to disable D_COMP\n");
6955         mutex_unlock(&dev_priv->rps.hw_lock);
6956         POSTING_READ(D_COMP);
6957         ndelay(100);
6958
6959         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6960                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6961
6962         if (allow_power_down) {
6963                 val = I915_READ(LCPLL_CTL);
6964                 val |= LCPLL_POWER_DOWN_ALLOW;
6965                 I915_WRITE(LCPLL_CTL, val);
6966                 POSTING_READ(LCPLL_CTL);
6967         }
6968 }
6969
6970 /*
6971  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6972  * source.
6973  */
6974 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6975 {
6976         uint32_t val;
6977         unsigned long irqflags;
6978
6979         val = I915_READ(LCPLL_CTL);
6980
6981         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6982                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6983                 return;
6984
6985         /*
6986          * Make sure we're not on PC8 state before disabling PC8, otherwise
6987          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
6988          *
6989          * The other problem is that hsw_restore_lcpll() is called as part of
6990          * the runtime PM resume sequence, so we can't just call
6991          * gen6_gt_force_wake_get() because that function calls
6992          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
6993          * while we are on the resume sequence. So to solve this problem we have
6994          * to call special forcewake code that doesn't touch runtime PM and
6995          * doesn't enable the forcewake delayed work.
6996          */
6997         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
6998         if (dev_priv->uncore.forcewake_count++ == 0)
6999                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7000         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7001
7002         if (val & LCPLL_POWER_DOWN_ALLOW) {
7003                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7004                 I915_WRITE(LCPLL_CTL, val);
7005                 POSTING_READ(LCPLL_CTL);
7006         }
7007
7008         val = I915_READ(D_COMP);
7009         val |= D_COMP_COMP_FORCE;
7010         val &= ~D_COMP_COMP_DISABLE;
7011         mutex_lock(&dev_priv->rps.hw_lock);
7012         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
7013                 DRM_ERROR("Failed to enable D_COMP\n");
7014         mutex_unlock(&dev_priv->rps.hw_lock);
7015         POSTING_READ(D_COMP);
7016
7017         val = I915_READ(LCPLL_CTL);
7018         val &= ~LCPLL_PLL_DISABLE;
7019         I915_WRITE(LCPLL_CTL, val);
7020
7021         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7022                 DRM_ERROR("LCPLL not locked yet\n");
7023
7024         if (val & LCPLL_CD_SOURCE_FCLK) {
7025                 val = I915_READ(LCPLL_CTL);
7026                 val &= ~LCPLL_CD_SOURCE_FCLK;
7027                 I915_WRITE(LCPLL_CTL, val);
7028
7029                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7030                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7031                         DRM_ERROR("Switching back to LCPLL failed\n");
7032         }
7033
7034         /* See the big comment above. */
7035         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7036         if (--dev_priv->uncore.forcewake_count == 0)
7037                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7038         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7039 }
7040
7041 /*
7042  * Package states C8 and deeper are really deep PC states that can only be
7043  * reached when all the devices on the system allow it, so even if the graphics
7044  * device allows PC8+, it doesn't mean the system will actually get to these
7045  * states. Our driver only allows PC8+ when going into runtime PM.
7046  *
7047  * The requirements for PC8+ are that all the outputs are disabled, the power
7048  * well is disabled and most interrupts are disabled, and these are also
7049  * requirements for runtime PM. When these conditions are met, we manually do
7050  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7051  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7052  * hang the machine.
7053  *
7054  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7055  * the state of some registers, so when we come back from PC8+ we need to
7056  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7057  * need to take care of the registers kept by RC6. Notice that this happens even
7058  * if we don't put the device in PCI D3 state (which is what currently happens
7059  * because of the runtime PM support).
7060  *
7061  * For more, read "Display Sequences for Package C8" on the hardware
7062  * documentation.
7063  */
7064 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7065 {
7066         struct drm_device *dev = dev_priv->dev;
7067         uint32_t val;
7068
7069         WARN_ON(!HAS_PC8(dev));
7070
7071         DRM_DEBUG_KMS("Enabling package C8+\n");
7072
7073         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7074                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7075                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7076                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7077         }
7078
7079         lpt_disable_clkout_dp(dev);
7080         hsw_runtime_pm_disable_interrupts(dev);
7081         hsw_disable_lcpll(dev_priv, true, true);
7082 }
7083
7084 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7085 {
7086         struct drm_device *dev = dev_priv->dev;
7087         uint32_t val;
7088
7089         WARN_ON(!HAS_PC8(dev));
7090
7091         DRM_DEBUG_KMS("Disabling package C8+\n");
7092
7093         hsw_restore_lcpll(dev_priv);
7094         hsw_runtime_pm_restore_interrupts(dev);
7095         lpt_init_pch_refclk(dev);
7096
7097         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7098                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7099                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7100                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7101         }
7102
7103         intel_prepare_ddi(dev);
7104         i915_gem_init_swizzling(dev);
7105         mutex_lock(&dev_priv->rps.hw_lock);
7106         gen6_update_ring_freq(dev);
7107         mutex_unlock(&dev_priv->rps.hw_lock);
7108 }
7109
7110 static void haswell_modeset_global_resources(struct drm_device *dev)
7111 {
7112         modeset_update_crtc_power_domains(dev);
7113 }
7114
7115 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7116                                  int x, int y,
7117                                  struct drm_framebuffer *fb)
7118 {
7119         struct drm_device *dev = crtc->dev;
7120         struct drm_i915_private *dev_priv = dev->dev_private;
7121         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7122         int plane = intel_crtc->plane;
7123         int ret;
7124
7125         if (!intel_ddi_pll_select(intel_crtc))
7126                 return -EINVAL;
7127         intel_ddi_pll_enable(intel_crtc);
7128
7129         if (intel_crtc->config.has_dp_encoder)
7130                 intel_dp_set_m_n(intel_crtc);
7131
7132         intel_crtc->lowfreq_avail = false;
7133
7134         intel_set_pipe_timings(intel_crtc);
7135
7136         if (intel_crtc->config.has_pch_encoder) {
7137                 intel_cpu_transcoder_set_m_n(intel_crtc,
7138                                              &intel_crtc->config.fdi_m_n);
7139         }
7140
7141         haswell_set_pipeconf(crtc);
7142
7143         intel_set_pipe_csc(crtc);
7144
7145         /* Set up the display plane register */
7146         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
7147         POSTING_READ(DSPCNTR(plane));
7148
7149         ret = intel_pipe_set_base(crtc, x, y, fb);
7150
7151         return ret;
7152 }
7153
7154 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7155                                     struct intel_crtc_config *pipe_config)
7156 {
7157         struct drm_device *dev = crtc->base.dev;
7158         struct drm_i915_private *dev_priv = dev->dev_private;
7159         enum intel_display_power_domain pfit_domain;
7160         uint32_t tmp;
7161
7162         if (!intel_display_power_enabled(dev_priv,
7163                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7164                 return false;
7165
7166         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7167         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7168
7169         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7170         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7171                 enum pipe trans_edp_pipe;
7172                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7173                 default:
7174                         WARN(1, "unknown pipe linked to edp transcoder\n");
7175                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7176                 case TRANS_DDI_EDP_INPUT_A_ON:
7177                         trans_edp_pipe = PIPE_A;
7178                         break;
7179                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7180                         trans_edp_pipe = PIPE_B;
7181                         break;
7182                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7183                         trans_edp_pipe = PIPE_C;
7184                         break;
7185                 }
7186
7187                 if (trans_edp_pipe == crtc->pipe)
7188                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7189         }
7190
7191         if (!intel_display_power_enabled(dev_priv,
7192                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7193                 return false;
7194
7195         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7196         if (!(tmp & PIPECONF_ENABLE))
7197                 return false;
7198
7199         /*
7200          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7201          * DDI E. So just check whether this pipe is wired to DDI E and whether
7202          * the PCH transcoder is on.
7203          */
7204         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7205         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
7206             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7207                 pipe_config->has_pch_encoder = true;
7208
7209                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7210                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7211                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7212
7213                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7214         }
7215
7216         intel_get_pipe_timings(crtc, pipe_config);
7217
7218         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7219         if (intel_display_power_enabled(dev_priv, pfit_domain))
7220                 ironlake_get_pfit_config(crtc, pipe_config);
7221
7222         if (IS_HASWELL(dev))
7223                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7224                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7225
7226         pipe_config->pixel_multiplier = 1;
7227
7228         return true;
7229 }
7230
7231 static int intel_crtc_mode_set(struct drm_crtc *crtc,
7232                                int x, int y,
7233                                struct drm_framebuffer *fb)
7234 {
7235         struct drm_device *dev = crtc->dev;
7236         struct drm_i915_private *dev_priv = dev->dev_private;
7237         struct intel_encoder *encoder;
7238         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7239         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
7240         int pipe = intel_crtc->pipe;
7241         int ret;
7242
7243         drm_vblank_pre_modeset(dev, pipe);
7244
7245         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
7246
7247         drm_vblank_post_modeset(dev, pipe);
7248
7249         if (ret != 0)
7250                 return ret;
7251
7252         for_each_encoder_on_crtc(dev, crtc, encoder) {
7253                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7254                         encoder->base.base.id,
7255                         drm_get_encoder_name(&encoder->base),
7256                         mode->base.id, mode->name);
7257                 encoder->mode_set(encoder);
7258         }
7259
7260         return 0;
7261 }
7262
7263 static struct {
7264         int clock;
7265         u32 config;
7266 } hdmi_audio_clock[] = {
7267         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7268         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7269         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7270         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7271         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7272         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7273         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7274         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7275         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7276         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7277 };
7278
7279 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7280 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7281 {
7282         int i;
7283
7284         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7285                 if (mode->clock == hdmi_audio_clock[i].clock)
7286                         break;
7287         }
7288
7289         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7290                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7291                 i = 1;
7292         }
7293
7294         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7295                       hdmi_audio_clock[i].clock,
7296                       hdmi_audio_clock[i].config);
7297
7298         return hdmi_audio_clock[i].config;
7299 }
7300
7301 static bool intel_eld_uptodate(struct drm_connector *connector,
7302                                int reg_eldv, uint32_t bits_eldv,
7303                                int reg_elda, uint32_t bits_elda,
7304                                int reg_edid)
7305 {
7306         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7307         uint8_t *eld = connector->eld;
7308         uint32_t i;
7309
7310         i = I915_READ(reg_eldv);
7311         i &= bits_eldv;
7312
7313         if (!eld[0])
7314                 return !i;
7315
7316         if (!i)
7317                 return false;
7318
7319         i = I915_READ(reg_elda);
7320         i &= ~bits_elda;
7321         I915_WRITE(reg_elda, i);
7322
7323         for (i = 0; i < eld[2]; i++)
7324                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7325                         return false;
7326
7327         return true;
7328 }
7329
7330 static void g4x_write_eld(struct drm_connector *connector,
7331                           struct drm_crtc *crtc,
7332                           struct drm_display_mode *mode)
7333 {
7334         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7335         uint8_t *eld = connector->eld;
7336         uint32_t eldv;
7337         uint32_t len;
7338         uint32_t i;
7339
7340         i = I915_READ(G4X_AUD_VID_DID);
7341
7342         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7343                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7344         else
7345                 eldv = G4X_ELDV_DEVCTG;
7346
7347         if (intel_eld_uptodate(connector,
7348                                G4X_AUD_CNTL_ST, eldv,
7349                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7350                                G4X_HDMIW_HDMIEDID))
7351                 return;
7352
7353         i = I915_READ(G4X_AUD_CNTL_ST);
7354         i &= ~(eldv | G4X_ELD_ADDR);
7355         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7356         I915_WRITE(G4X_AUD_CNTL_ST, i);
7357
7358         if (!eld[0])
7359                 return;
7360
7361         len = min_t(uint8_t, eld[2], len);
7362         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7363         for (i = 0; i < len; i++)
7364                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7365
7366         i = I915_READ(G4X_AUD_CNTL_ST);
7367         i |= eldv;
7368         I915_WRITE(G4X_AUD_CNTL_ST, i);
7369 }
7370
7371 static void haswell_write_eld(struct drm_connector *connector,
7372                               struct drm_crtc *crtc,
7373                               struct drm_display_mode *mode)
7374 {
7375         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7376         uint8_t *eld = connector->eld;
7377         struct drm_device *dev = crtc->dev;
7378         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7379         uint32_t eldv;
7380         uint32_t i;
7381         int len;
7382         int pipe = to_intel_crtc(crtc)->pipe;
7383         int tmp;
7384
7385         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7386         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7387         int aud_config = HSW_AUD_CFG(pipe);
7388         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7389
7390
7391         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
7392
7393         /* Audio output enable */
7394         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7395         tmp = I915_READ(aud_cntrl_st2);
7396         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7397         I915_WRITE(aud_cntrl_st2, tmp);
7398
7399         /* Wait for 1 vertical blank */
7400         intel_wait_for_vblank(dev, pipe);
7401
7402         /* Set ELD valid state */
7403         tmp = I915_READ(aud_cntrl_st2);
7404         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7405         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7406         I915_WRITE(aud_cntrl_st2, tmp);
7407         tmp = I915_READ(aud_cntrl_st2);
7408         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7409
7410         /* Enable HDMI mode */
7411         tmp = I915_READ(aud_config);
7412         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7413         /* clear N_programing_enable and N_value_index */
7414         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7415         I915_WRITE(aud_config, tmp);
7416
7417         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7418
7419         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7420         intel_crtc->eld_vld = true;
7421
7422         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7423                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7424                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7425                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7426         } else {
7427                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7428         }
7429
7430         if (intel_eld_uptodate(connector,
7431                                aud_cntrl_st2, eldv,
7432                                aud_cntl_st, IBX_ELD_ADDRESS,
7433                                hdmiw_hdmiedid))
7434                 return;
7435
7436         i = I915_READ(aud_cntrl_st2);
7437         i &= ~eldv;
7438         I915_WRITE(aud_cntrl_st2, i);
7439
7440         if (!eld[0])
7441                 return;
7442
7443         i = I915_READ(aud_cntl_st);
7444         i &= ~IBX_ELD_ADDRESS;
7445         I915_WRITE(aud_cntl_st, i);
7446         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7447         DRM_DEBUG_DRIVER("port num:%d\n", i);
7448
7449         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7450         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7451         for (i = 0; i < len; i++)
7452                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7453
7454         i = I915_READ(aud_cntrl_st2);
7455         i |= eldv;
7456         I915_WRITE(aud_cntrl_st2, i);
7457
7458 }
7459
7460 static void ironlake_write_eld(struct drm_connector *connector,
7461                                struct drm_crtc *crtc,
7462                                struct drm_display_mode *mode)
7463 {
7464         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7465         uint8_t *eld = connector->eld;
7466         uint32_t eldv;
7467         uint32_t i;
7468         int len;
7469         int hdmiw_hdmiedid;
7470         int aud_config;
7471         int aud_cntl_st;
7472         int aud_cntrl_st2;
7473         int pipe = to_intel_crtc(crtc)->pipe;
7474
7475         if (HAS_PCH_IBX(connector->dev)) {
7476                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7477                 aud_config = IBX_AUD_CFG(pipe);
7478                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7479                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7480         } else if (IS_VALLEYVIEW(connector->dev)) {
7481                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7482                 aud_config = VLV_AUD_CFG(pipe);
7483                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7484                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7485         } else {
7486                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7487                 aud_config = CPT_AUD_CFG(pipe);
7488                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7489                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7490         }
7491
7492         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7493
7494         if (IS_VALLEYVIEW(connector->dev))  {
7495                 struct intel_encoder *intel_encoder;
7496                 struct intel_digital_port *intel_dig_port;
7497
7498                 intel_encoder = intel_attached_encoder(connector);
7499                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7500                 i = intel_dig_port->port;
7501         } else {
7502                 i = I915_READ(aud_cntl_st);
7503                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7504                 /* DIP_Port_Select, 0x1 = PortB */
7505         }
7506
7507         if (!i) {
7508                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7509                 /* operate blindly on all ports */
7510                 eldv = IBX_ELD_VALIDB;
7511                 eldv |= IBX_ELD_VALIDB << 4;
7512                 eldv |= IBX_ELD_VALIDB << 8;
7513         } else {
7514                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7515                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7516         }
7517
7518         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7519                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7520                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7521                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7522         } else {
7523                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7524         }
7525
7526         if (intel_eld_uptodate(connector,
7527                                aud_cntrl_st2, eldv,
7528                                aud_cntl_st, IBX_ELD_ADDRESS,
7529                                hdmiw_hdmiedid))
7530                 return;
7531
7532         i = I915_READ(aud_cntrl_st2);
7533         i &= ~eldv;
7534         I915_WRITE(aud_cntrl_st2, i);
7535
7536         if (!eld[0])
7537                 return;
7538
7539         i = I915_READ(aud_cntl_st);
7540         i &= ~IBX_ELD_ADDRESS;
7541         I915_WRITE(aud_cntl_st, i);
7542
7543         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7544         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7545         for (i = 0; i < len; i++)
7546                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7547
7548         i = I915_READ(aud_cntrl_st2);
7549         i |= eldv;
7550         I915_WRITE(aud_cntrl_st2, i);
7551 }
7552
7553 void intel_write_eld(struct drm_encoder *encoder,
7554                      struct drm_display_mode *mode)
7555 {
7556         struct drm_crtc *crtc = encoder->crtc;
7557         struct drm_connector *connector;
7558         struct drm_device *dev = encoder->dev;
7559         struct drm_i915_private *dev_priv = dev->dev_private;
7560
7561         connector = drm_select_eld(encoder, mode);
7562         if (!connector)
7563                 return;
7564
7565         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7566                          connector->base.id,
7567                          drm_get_connector_name(connector),
7568                          connector->encoder->base.id,
7569                          drm_get_encoder_name(connector->encoder));
7570
7571         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7572
7573         if (dev_priv->display.write_eld)
7574                 dev_priv->display.write_eld(connector, crtc, mode);
7575 }
7576
7577 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7578 {
7579         struct drm_device *dev = crtc->dev;
7580         struct drm_i915_private *dev_priv = dev->dev_private;
7581         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7582         bool visible = base != 0;
7583         u32 cntl;
7584
7585         if (intel_crtc->cursor_visible == visible)
7586                 return;
7587
7588         cntl = I915_READ(_CURACNTR);
7589         if (visible) {
7590                 /* On these chipsets we can only modify the base whilst
7591                  * the cursor is disabled.
7592                  */
7593                 I915_WRITE(_CURABASE, base);
7594
7595                 cntl &= ~(CURSOR_FORMAT_MASK);
7596                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7597                 cntl |= CURSOR_ENABLE |
7598                         CURSOR_GAMMA_ENABLE |
7599                         CURSOR_FORMAT_ARGB;
7600         } else
7601                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7602         I915_WRITE(_CURACNTR, cntl);
7603
7604         intel_crtc->cursor_visible = visible;
7605 }
7606
7607 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7608 {
7609         struct drm_device *dev = crtc->dev;
7610         struct drm_i915_private *dev_priv = dev->dev_private;
7611         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7612         int pipe = intel_crtc->pipe;
7613         bool visible = base != 0;
7614
7615         if (intel_crtc->cursor_visible != visible) {
7616                 int16_t width = intel_crtc->cursor_width;
7617                 uint32_t cntl = I915_READ(CURCNTR(pipe));
7618                 if (base) {
7619                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7620                         cntl |= MCURSOR_GAMMA_ENABLE;
7621
7622                         switch (width) {
7623                         case 64:
7624                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7625                                 break;
7626                         case 128:
7627                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7628                                 break;
7629                         case 256:
7630                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7631                                 break;
7632                         default:
7633                                 WARN_ON(1);
7634                                 return;
7635                         }
7636                         cntl |= pipe << 28; /* Connect to correct pipe */
7637                 } else {
7638                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7639                         cntl |= CURSOR_MODE_DISABLE;
7640                 }
7641                 I915_WRITE(CURCNTR(pipe), cntl);
7642
7643                 intel_crtc->cursor_visible = visible;
7644         }
7645         /* and commit changes on next vblank */
7646         POSTING_READ(CURCNTR(pipe));
7647         I915_WRITE(CURBASE(pipe), base);
7648         POSTING_READ(CURBASE(pipe));
7649 }
7650
7651 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7652 {
7653         struct drm_device *dev = crtc->dev;
7654         struct drm_i915_private *dev_priv = dev->dev_private;
7655         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7656         int pipe = intel_crtc->pipe;
7657         bool visible = base != 0;
7658
7659         if (intel_crtc->cursor_visible != visible) {
7660                 int16_t width = intel_crtc->cursor_width;
7661                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7662                 if (base) {
7663                         cntl &= ~CURSOR_MODE;
7664                         cntl |= MCURSOR_GAMMA_ENABLE;
7665                         switch (width) {
7666                         case 64:
7667                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7668                                 break;
7669                         case 128:
7670                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7671                                 break;
7672                         case 256:
7673                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7674                                 break;
7675                         default:
7676                                 WARN_ON(1);
7677                                 return;
7678                         }
7679                 } else {
7680                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7681                         cntl |= CURSOR_MODE_DISABLE;
7682                 }
7683                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7684                         cntl |= CURSOR_PIPE_CSC_ENABLE;
7685                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7686                 }
7687                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7688
7689                 intel_crtc->cursor_visible = visible;
7690         }
7691         /* and commit changes on next vblank */
7692         POSTING_READ(CURCNTR_IVB(pipe));
7693         I915_WRITE(CURBASE_IVB(pipe), base);
7694         POSTING_READ(CURBASE_IVB(pipe));
7695 }
7696
7697 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7698 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7699                                      bool on)
7700 {
7701         struct drm_device *dev = crtc->dev;
7702         struct drm_i915_private *dev_priv = dev->dev_private;
7703         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7704         int pipe = intel_crtc->pipe;
7705         int x = intel_crtc->cursor_x;
7706         int y = intel_crtc->cursor_y;
7707         u32 base = 0, pos = 0;
7708         bool visible;
7709
7710         if (on)
7711                 base = intel_crtc->cursor_addr;
7712
7713         if (x >= intel_crtc->config.pipe_src_w)
7714                 base = 0;
7715
7716         if (y >= intel_crtc->config.pipe_src_h)
7717                 base = 0;
7718
7719         if (x < 0) {
7720                 if (x + intel_crtc->cursor_width <= 0)
7721                         base = 0;
7722
7723                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7724                 x = -x;
7725         }
7726         pos |= x << CURSOR_X_SHIFT;
7727
7728         if (y < 0) {
7729                 if (y + intel_crtc->cursor_height <= 0)
7730                         base = 0;
7731
7732                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7733                 y = -y;
7734         }
7735         pos |= y << CURSOR_Y_SHIFT;
7736
7737         visible = base != 0;
7738         if (!visible && !intel_crtc->cursor_visible)
7739                 return;
7740
7741         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7742                 I915_WRITE(CURPOS_IVB(pipe), pos);
7743                 ivb_update_cursor(crtc, base);
7744         } else {
7745                 I915_WRITE(CURPOS(pipe), pos);
7746                 if (IS_845G(dev) || IS_I865G(dev))
7747                         i845_update_cursor(crtc, base);
7748                 else
7749                         i9xx_update_cursor(crtc, base);
7750         }
7751 }
7752
7753 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7754                                  struct drm_file *file,
7755                                  uint32_t handle,
7756                                  uint32_t width, uint32_t height)
7757 {
7758         struct drm_device *dev = crtc->dev;
7759         struct drm_i915_private *dev_priv = dev->dev_private;
7760         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7761         struct drm_i915_gem_object *obj;
7762         unsigned old_width;
7763         uint32_t addr;
7764         int ret;
7765
7766         /* if we want to turn off the cursor ignore width and height */
7767         if (!handle) {
7768                 DRM_DEBUG_KMS("cursor off\n");
7769                 addr = 0;
7770                 obj = NULL;
7771                 mutex_lock(&dev->struct_mutex);
7772                 goto finish;
7773         }
7774
7775         /* Check for which cursor types we support */
7776         if (!((width == 64 && height == 64) ||
7777                         (width == 128 && height == 128 && !IS_GEN2(dev)) ||
7778                         (width == 256 && height == 256 && !IS_GEN2(dev)))) {
7779                 DRM_DEBUG("Cursor dimension not supported\n");
7780                 return -EINVAL;
7781         }
7782
7783         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7784         if (&obj->base == NULL)
7785                 return -ENOENT;
7786
7787         if (obj->base.size < width * height * 4) {
7788                 DRM_DEBUG_KMS("buffer is to small\n");
7789                 ret = -ENOMEM;
7790                 goto fail;
7791         }
7792
7793         /* we only need to pin inside GTT if cursor is non-phy */
7794         mutex_lock(&dev->struct_mutex);
7795         if (!INTEL_INFO(dev)->cursor_needs_physical) {
7796                 unsigned alignment;
7797
7798                 if (obj->tiling_mode) {
7799                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
7800                         ret = -EINVAL;
7801                         goto fail_locked;
7802                 }
7803
7804                 /* Note that the w/a also requires 2 PTE of padding following
7805                  * the bo. We currently fill all unused PTE with the shadow
7806                  * page and so we should always have valid PTE following the
7807                  * cursor preventing the VT-d warning.
7808                  */
7809                 alignment = 0;
7810                 if (need_vtd_wa(dev))
7811                         alignment = 64*1024;
7812
7813                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7814                 if (ret) {
7815                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
7816                         goto fail_locked;
7817                 }
7818
7819                 ret = i915_gem_object_put_fence(obj);
7820                 if (ret) {
7821                         DRM_DEBUG_KMS("failed to release fence for cursor");
7822                         goto fail_unpin;
7823                 }
7824
7825                 addr = i915_gem_obj_ggtt_offset(obj);
7826         } else {
7827                 int align = IS_I830(dev) ? 16 * 1024 : 256;
7828                 ret = i915_gem_attach_phys_object(dev, obj,
7829                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7830                                                   align);
7831                 if (ret) {
7832                         DRM_DEBUG_KMS("failed to attach phys object\n");
7833                         goto fail_locked;
7834                 }
7835                 addr = obj->phys_obj->handle->busaddr;
7836         }
7837
7838         if (IS_GEN2(dev))
7839                 I915_WRITE(CURSIZE, (height << 12) | width);
7840
7841  finish:
7842         if (intel_crtc->cursor_bo) {
7843                 if (INTEL_INFO(dev)->cursor_needs_physical) {
7844                         if (intel_crtc->cursor_bo != obj)
7845                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7846                 } else
7847                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7848                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7849         }
7850
7851         mutex_unlock(&dev->struct_mutex);
7852
7853         old_width = intel_crtc->cursor_width;
7854
7855         intel_crtc->cursor_addr = addr;
7856         intel_crtc->cursor_bo = obj;
7857         intel_crtc->cursor_width = width;
7858         intel_crtc->cursor_height = height;
7859
7860         if (intel_crtc->active) {
7861                 if (old_width != width)
7862                         intel_update_watermarks(crtc);
7863                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7864         }
7865
7866         return 0;
7867 fail_unpin:
7868         i915_gem_object_unpin_from_display_plane(obj);
7869 fail_locked:
7870         mutex_unlock(&dev->struct_mutex);
7871 fail:
7872         drm_gem_object_unreference_unlocked(&obj->base);
7873         return ret;
7874 }
7875
7876 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7877 {
7878         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7879
7880         intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
7881         intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
7882
7883         if (intel_crtc->active)
7884                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7885
7886         return 0;
7887 }
7888
7889 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7890                                  u16 *blue, uint32_t start, uint32_t size)
7891 {
7892         int end = (start + size > 256) ? 256 : start + size, i;
7893         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7894
7895         for (i = start; i < end; i++) {
7896                 intel_crtc->lut_r[i] = red[i] >> 8;
7897                 intel_crtc->lut_g[i] = green[i] >> 8;
7898                 intel_crtc->lut_b[i] = blue[i] >> 8;
7899         }
7900
7901         intel_crtc_load_lut(crtc);
7902 }
7903
7904 /* VESA 640x480x72Hz mode to set on the pipe */
7905 static struct drm_display_mode load_detect_mode = {
7906         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7907                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7908 };
7909
7910 struct drm_framebuffer *
7911 __intel_framebuffer_create(struct drm_device *dev,
7912                            struct drm_mode_fb_cmd2 *mode_cmd,
7913                            struct drm_i915_gem_object *obj)
7914 {
7915         struct intel_framebuffer *intel_fb;
7916         int ret;
7917
7918         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7919         if (!intel_fb) {
7920                 drm_gem_object_unreference_unlocked(&obj->base);
7921                 return ERR_PTR(-ENOMEM);
7922         }
7923
7924         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7925         if (ret)
7926                 goto err;
7927
7928         return &intel_fb->base;
7929 err:
7930         drm_gem_object_unreference_unlocked(&obj->base);
7931         kfree(intel_fb);
7932
7933         return ERR_PTR(ret);
7934 }
7935
7936 static struct drm_framebuffer *
7937 intel_framebuffer_create(struct drm_device *dev,
7938                          struct drm_mode_fb_cmd2 *mode_cmd,
7939                          struct drm_i915_gem_object *obj)
7940 {
7941         struct drm_framebuffer *fb;
7942         int ret;
7943
7944         ret = i915_mutex_lock_interruptible(dev);
7945         if (ret)
7946                 return ERR_PTR(ret);
7947         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
7948         mutex_unlock(&dev->struct_mutex);
7949
7950         return fb;
7951 }
7952
7953 static u32
7954 intel_framebuffer_pitch_for_width(int width, int bpp)
7955 {
7956         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7957         return ALIGN(pitch, 64);
7958 }
7959
7960 static u32
7961 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7962 {
7963         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7964         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7965 }
7966
7967 static struct drm_framebuffer *
7968 intel_framebuffer_create_for_mode(struct drm_device *dev,
7969                                   struct drm_display_mode *mode,
7970                                   int depth, int bpp)
7971 {
7972         struct drm_i915_gem_object *obj;
7973         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7974
7975         obj = i915_gem_alloc_object(dev,
7976                                     intel_framebuffer_size_for_mode(mode, bpp));
7977         if (obj == NULL)
7978                 return ERR_PTR(-ENOMEM);
7979
7980         mode_cmd.width = mode->hdisplay;
7981         mode_cmd.height = mode->vdisplay;
7982         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7983                                                                 bpp);
7984         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7985
7986         return intel_framebuffer_create(dev, &mode_cmd, obj);
7987 }
7988
7989 static struct drm_framebuffer *
7990 mode_fits_in_fbdev(struct drm_device *dev,
7991                    struct drm_display_mode *mode)
7992 {
7993 #ifdef CONFIG_DRM_I915_FBDEV
7994         struct drm_i915_private *dev_priv = dev->dev_private;
7995         struct drm_i915_gem_object *obj;
7996         struct drm_framebuffer *fb;
7997
7998         if (!dev_priv->fbdev)
7999                 return NULL;
8000
8001         if (!dev_priv->fbdev->fb)
8002                 return NULL;
8003
8004         obj = dev_priv->fbdev->fb->obj;
8005         BUG_ON(!obj);
8006
8007         fb = &dev_priv->fbdev->fb->base;
8008         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8009                                                                fb->bits_per_pixel))
8010                 return NULL;
8011
8012         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8013                 return NULL;
8014
8015         return fb;
8016 #else
8017         return NULL;
8018 #endif
8019 }
8020
8021 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8022                                 struct drm_display_mode *mode,
8023                                 struct intel_load_detect_pipe *old)
8024 {
8025         struct intel_crtc *intel_crtc;
8026         struct intel_encoder *intel_encoder =
8027                 intel_attached_encoder(connector);
8028         struct drm_crtc *possible_crtc;
8029         struct drm_encoder *encoder = &intel_encoder->base;
8030         struct drm_crtc *crtc = NULL;
8031         struct drm_device *dev = encoder->dev;
8032         struct drm_framebuffer *fb;
8033         int i = -1;
8034
8035         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8036                       connector->base.id, drm_get_connector_name(connector),
8037                       encoder->base.id, drm_get_encoder_name(encoder));
8038
8039         /*
8040          * Algorithm gets a little messy:
8041          *
8042          *   - if the connector already has an assigned crtc, use it (but make
8043          *     sure it's on first)
8044          *
8045          *   - try to find the first unused crtc that can drive this connector,
8046          *     and use that if we find one
8047          */
8048
8049         /* See if we already have a CRTC for this connector */
8050         if (encoder->crtc) {
8051                 crtc = encoder->crtc;
8052
8053                 mutex_lock(&crtc->mutex);
8054
8055                 old->dpms_mode = connector->dpms;
8056                 old->load_detect_temp = false;
8057
8058                 /* Make sure the crtc and connector are running */
8059                 if (connector->dpms != DRM_MODE_DPMS_ON)
8060                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8061
8062                 return true;
8063         }
8064
8065         /* Find an unused one (if possible) */
8066         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
8067                 i++;
8068                 if (!(encoder->possible_crtcs & (1 << i)))
8069                         continue;
8070                 if (!possible_crtc->enabled) {
8071                         crtc = possible_crtc;
8072                         break;
8073                 }
8074         }
8075
8076         /*
8077          * If we didn't find an unused CRTC, don't use any.
8078          */
8079         if (!crtc) {
8080                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8081                 return false;
8082         }
8083
8084         mutex_lock(&crtc->mutex);
8085         intel_encoder->new_crtc = to_intel_crtc(crtc);
8086         to_intel_connector(connector)->new_encoder = intel_encoder;
8087
8088         intel_crtc = to_intel_crtc(crtc);
8089         intel_crtc->new_enabled = true;
8090         intel_crtc->new_config = &intel_crtc->config;
8091         old->dpms_mode = connector->dpms;
8092         old->load_detect_temp = true;
8093         old->release_fb = NULL;
8094
8095         if (!mode)
8096                 mode = &load_detect_mode;
8097
8098         /* We need a framebuffer large enough to accommodate all accesses
8099          * that the plane may generate whilst we perform load detection.
8100          * We can not rely on the fbcon either being present (we get called
8101          * during its initialisation to detect all boot displays, or it may
8102          * not even exist) or that it is large enough to satisfy the
8103          * requested mode.
8104          */
8105         fb = mode_fits_in_fbdev(dev, mode);
8106         if (fb == NULL) {
8107                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8108                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8109                 old->release_fb = fb;
8110         } else
8111                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8112         if (IS_ERR(fb)) {
8113                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8114                 goto fail;
8115         }
8116
8117         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8118                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8119                 if (old->release_fb)
8120                         old->release_fb->funcs->destroy(old->release_fb);
8121                 goto fail;
8122         }
8123
8124         /* let the connector get through one full cycle before testing */
8125         intel_wait_for_vblank(dev, intel_crtc->pipe);
8126         return true;
8127
8128  fail:
8129         intel_crtc->new_enabled = crtc->enabled;
8130         if (intel_crtc->new_enabled)
8131                 intel_crtc->new_config = &intel_crtc->config;
8132         else
8133                 intel_crtc->new_config = NULL;
8134         mutex_unlock(&crtc->mutex);
8135         return false;
8136 }
8137
8138 void intel_release_load_detect_pipe(struct drm_connector *connector,
8139                                     struct intel_load_detect_pipe *old)
8140 {
8141         struct intel_encoder *intel_encoder =
8142                 intel_attached_encoder(connector);
8143         struct drm_encoder *encoder = &intel_encoder->base;
8144         struct drm_crtc *crtc = encoder->crtc;
8145         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8146
8147         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8148                       connector->base.id, drm_get_connector_name(connector),
8149                       encoder->base.id, drm_get_encoder_name(encoder));
8150
8151         if (old->load_detect_temp) {
8152                 to_intel_connector(connector)->new_encoder = NULL;
8153                 intel_encoder->new_crtc = NULL;
8154                 intel_crtc->new_enabled = false;
8155                 intel_crtc->new_config = NULL;
8156                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8157
8158                 if (old->release_fb) {
8159                         drm_framebuffer_unregister_private(old->release_fb);
8160                         drm_framebuffer_unreference(old->release_fb);
8161                 }
8162
8163                 mutex_unlock(&crtc->mutex);
8164                 return;
8165         }
8166
8167         /* Switch crtc and encoder back off if necessary */
8168         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8169                 connector->funcs->dpms(connector, old->dpms_mode);
8170
8171         mutex_unlock(&crtc->mutex);
8172 }
8173
8174 static int i9xx_pll_refclk(struct drm_device *dev,
8175                            const struct intel_crtc_config *pipe_config)
8176 {
8177         struct drm_i915_private *dev_priv = dev->dev_private;
8178         u32 dpll = pipe_config->dpll_hw_state.dpll;
8179
8180         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8181                 return dev_priv->vbt.lvds_ssc_freq;
8182         else if (HAS_PCH_SPLIT(dev))
8183                 return 120000;
8184         else if (!IS_GEN2(dev))
8185                 return 96000;
8186         else
8187                 return 48000;
8188 }
8189
8190 /* Returns the clock of the currently programmed mode of the given pipe. */
8191 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8192                                 struct intel_crtc_config *pipe_config)
8193 {
8194         struct drm_device *dev = crtc->base.dev;
8195         struct drm_i915_private *dev_priv = dev->dev_private;
8196         int pipe = pipe_config->cpu_transcoder;
8197         u32 dpll = pipe_config->dpll_hw_state.dpll;
8198         u32 fp;
8199         intel_clock_t clock;
8200         int refclk = i9xx_pll_refclk(dev, pipe_config);
8201
8202         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8203                 fp = pipe_config->dpll_hw_state.fp0;
8204         else
8205                 fp = pipe_config->dpll_hw_state.fp1;
8206
8207         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8208         if (IS_PINEVIEW(dev)) {
8209                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8210                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8211         } else {
8212                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8213                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8214         }
8215
8216         if (!IS_GEN2(dev)) {
8217                 if (IS_PINEVIEW(dev))
8218                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8219                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8220                 else
8221                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8222                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8223
8224                 switch (dpll & DPLL_MODE_MASK) {
8225                 case DPLLB_MODE_DAC_SERIAL:
8226                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8227                                 5 : 10;
8228                         break;
8229                 case DPLLB_MODE_LVDS:
8230                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8231                                 7 : 14;
8232                         break;
8233                 default:
8234                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8235                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8236                         return;
8237                 }
8238
8239                 if (IS_PINEVIEW(dev))
8240                         pineview_clock(refclk, &clock);
8241                 else
8242                         i9xx_clock(refclk, &clock);
8243         } else {
8244                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8245                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8246
8247                 if (is_lvds) {
8248                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8249                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8250
8251                         if (lvds & LVDS_CLKB_POWER_UP)
8252                                 clock.p2 = 7;
8253                         else
8254                                 clock.p2 = 14;
8255                 } else {
8256                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8257                                 clock.p1 = 2;
8258                         else {
8259                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8260                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8261                         }
8262                         if (dpll & PLL_P2_DIVIDE_BY_4)
8263                                 clock.p2 = 4;
8264                         else
8265                                 clock.p2 = 2;
8266                 }
8267
8268                 i9xx_clock(refclk, &clock);
8269         }
8270
8271         /*
8272          * This value includes pixel_multiplier. We will use
8273          * port_clock to compute adjusted_mode.crtc_clock in the
8274          * encoder's get_config() function.
8275          */
8276         pipe_config->port_clock = clock.dot;
8277 }
8278
8279 int intel_dotclock_calculate(int link_freq,
8280                              const struct intel_link_m_n *m_n)
8281 {
8282         /*
8283          * The calculation for the data clock is:
8284          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8285          * But we want to avoid losing precison if possible, so:
8286          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8287          *
8288          * and the link clock is simpler:
8289          * link_clock = (m * link_clock) / n
8290          */
8291
8292         if (!m_n->link_n)
8293                 return 0;
8294
8295         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8296 }
8297
8298 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8299                                    struct intel_crtc_config *pipe_config)
8300 {
8301         struct drm_device *dev = crtc->base.dev;
8302
8303         /* read out port_clock from the DPLL */
8304         i9xx_crtc_clock_get(crtc, pipe_config);
8305
8306         /*
8307          * This value does not include pixel_multiplier.
8308          * We will check that port_clock and adjusted_mode.crtc_clock
8309          * agree once we know their relationship in the encoder's
8310          * get_config() function.
8311          */
8312         pipe_config->adjusted_mode.crtc_clock =
8313                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8314                                          &pipe_config->fdi_m_n);
8315 }
8316
8317 /** Returns the currently programmed mode of the given pipe. */
8318 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8319                                              struct drm_crtc *crtc)
8320 {
8321         struct drm_i915_private *dev_priv = dev->dev_private;
8322         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8323         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8324         struct drm_display_mode *mode;
8325         struct intel_crtc_config pipe_config;
8326         int htot = I915_READ(HTOTAL(cpu_transcoder));
8327         int hsync = I915_READ(HSYNC(cpu_transcoder));
8328         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8329         int vsync = I915_READ(VSYNC(cpu_transcoder));
8330         enum pipe pipe = intel_crtc->pipe;
8331
8332         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8333         if (!mode)
8334                 return NULL;
8335
8336         /*
8337          * Construct a pipe_config sufficient for getting the clock info
8338          * back out of crtc_clock_get.
8339          *
8340          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8341          * to use a real value here instead.
8342          */
8343         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8344         pipe_config.pixel_multiplier = 1;
8345         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8346         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8347         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8348         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8349
8350         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8351         mode->hdisplay = (htot & 0xffff) + 1;
8352         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8353         mode->hsync_start = (hsync & 0xffff) + 1;
8354         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8355         mode->vdisplay = (vtot & 0xffff) + 1;
8356         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8357         mode->vsync_start = (vsync & 0xffff) + 1;
8358         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8359
8360         drm_mode_set_name(mode);
8361
8362         return mode;
8363 }
8364
8365 static void intel_increase_pllclock(struct drm_crtc *crtc)
8366 {
8367         struct drm_device *dev = crtc->dev;
8368         struct drm_i915_private *dev_priv = dev->dev_private;
8369         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8370         int pipe = intel_crtc->pipe;
8371         int dpll_reg = DPLL(pipe);
8372         int dpll;
8373
8374         if (HAS_PCH_SPLIT(dev))
8375                 return;
8376
8377         if (!dev_priv->lvds_downclock_avail)
8378                 return;
8379
8380         dpll = I915_READ(dpll_reg);
8381         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8382                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8383
8384                 assert_panel_unlocked(dev_priv, pipe);
8385
8386                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8387                 I915_WRITE(dpll_reg, dpll);
8388                 intel_wait_for_vblank(dev, pipe);
8389
8390                 dpll = I915_READ(dpll_reg);
8391                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8392                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8393         }
8394 }
8395
8396 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8397 {
8398         struct drm_device *dev = crtc->dev;
8399         struct drm_i915_private *dev_priv = dev->dev_private;
8400         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8401
8402         if (HAS_PCH_SPLIT(dev))
8403                 return;
8404
8405         if (!dev_priv->lvds_downclock_avail)
8406                 return;
8407
8408         /*
8409          * Since this is called by a timer, we should never get here in
8410          * the manual case.
8411          */
8412         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8413                 int pipe = intel_crtc->pipe;
8414                 int dpll_reg = DPLL(pipe);
8415                 int dpll;
8416
8417                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8418
8419                 assert_panel_unlocked(dev_priv, pipe);
8420
8421                 dpll = I915_READ(dpll_reg);
8422                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8423                 I915_WRITE(dpll_reg, dpll);
8424                 intel_wait_for_vblank(dev, pipe);
8425                 dpll = I915_READ(dpll_reg);
8426                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8427                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8428         }
8429
8430 }
8431
8432 void intel_mark_busy(struct drm_device *dev)
8433 {
8434         struct drm_i915_private *dev_priv = dev->dev_private;
8435
8436         if (dev_priv->mm.busy)
8437                 return;
8438
8439         intel_runtime_pm_get(dev_priv);
8440         i915_update_gfx_val(dev_priv);
8441         dev_priv->mm.busy = true;
8442 }
8443
8444 void intel_mark_idle(struct drm_device *dev)
8445 {
8446         struct drm_i915_private *dev_priv = dev->dev_private;
8447         struct drm_crtc *crtc;
8448
8449         if (!dev_priv->mm.busy)
8450                 return;
8451
8452         dev_priv->mm.busy = false;
8453
8454         if (!i915.powersave)
8455                 goto out;
8456
8457         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8458                 if (!crtc->primary->fb)
8459                         continue;
8460
8461                 intel_decrease_pllclock(crtc);
8462         }
8463
8464         if (INTEL_INFO(dev)->gen >= 6)
8465                 gen6_rps_idle(dev->dev_private);
8466
8467 out:
8468         intel_runtime_pm_put(dev_priv);
8469 }
8470
8471 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8472                         struct intel_ring_buffer *ring)
8473 {
8474         struct drm_device *dev = obj->base.dev;
8475         struct drm_crtc *crtc;
8476
8477         if (!i915.powersave)
8478                 return;
8479
8480         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8481                 if (!crtc->primary->fb)
8482                         continue;
8483
8484                 if (to_intel_framebuffer(crtc->primary->fb)->obj != obj)
8485                         continue;
8486
8487                 intel_increase_pllclock(crtc);
8488                 if (ring && intel_fbc_enabled(dev))
8489                         ring->fbc_dirty = true;
8490         }
8491 }
8492
8493 static void intel_crtc_destroy(struct drm_crtc *crtc)
8494 {
8495         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8496         struct drm_device *dev = crtc->dev;
8497         struct intel_unpin_work *work;
8498         unsigned long flags;
8499
8500         spin_lock_irqsave(&dev->event_lock, flags);
8501         work = intel_crtc->unpin_work;
8502         intel_crtc->unpin_work = NULL;
8503         spin_unlock_irqrestore(&dev->event_lock, flags);
8504
8505         if (work) {
8506                 cancel_work_sync(&work->work);
8507                 kfree(work);
8508         }
8509
8510         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8511
8512         drm_crtc_cleanup(crtc);
8513
8514         kfree(intel_crtc);
8515 }
8516
8517 static void intel_unpin_work_fn(struct work_struct *__work)
8518 {
8519         struct intel_unpin_work *work =
8520                 container_of(__work, struct intel_unpin_work, work);
8521         struct drm_device *dev = work->crtc->dev;
8522
8523         mutex_lock(&dev->struct_mutex);
8524         intel_unpin_fb_obj(work->old_fb_obj);
8525         drm_gem_object_unreference(&work->pending_flip_obj->base);
8526         drm_gem_object_unreference(&work->old_fb_obj->base);
8527
8528         intel_update_fbc(dev);
8529         mutex_unlock(&dev->struct_mutex);
8530
8531         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8532         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8533
8534         kfree(work);
8535 }
8536
8537 static void do_intel_finish_page_flip(struct drm_device *dev,
8538                                       struct drm_crtc *crtc)
8539 {
8540         struct drm_i915_private *dev_priv = dev->dev_private;
8541         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8542         struct intel_unpin_work *work;
8543         unsigned long flags;
8544
8545         /* Ignore early vblank irqs */
8546         if (intel_crtc == NULL)
8547                 return;
8548
8549         spin_lock_irqsave(&dev->event_lock, flags);
8550         work = intel_crtc->unpin_work;
8551
8552         /* Ensure we don't miss a work->pending update ... */
8553         smp_rmb();
8554
8555         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8556                 spin_unlock_irqrestore(&dev->event_lock, flags);
8557                 return;
8558         }
8559
8560         /* and that the unpin work is consistent wrt ->pending. */
8561         smp_rmb();
8562
8563         intel_crtc->unpin_work = NULL;
8564
8565         if (work->event)
8566                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8567
8568         drm_vblank_put(dev, intel_crtc->pipe);
8569
8570         spin_unlock_irqrestore(&dev->event_lock, flags);
8571
8572         wake_up_all(&dev_priv->pending_flip_queue);
8573
8574         queue_work(dev_priv->wq, &work->work);
8575
8576         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8577 }
8578
8579 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8580 {
8581         struct drm_i915_private *dev_priv = dev->dev_private;
8582         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8583
8584         do_intel_finish_page_flip(dev, crtc);
8585 }
8586
8587 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8588 {
8589         struct drm_i915_private *dev_priv = dev->dev_private;
8590         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8591
8592         do_intel_finish_page_flip(dev, crtc);
8593 }
8594
8595 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8596 {
8597         struct drm_i915_private *dev_priv = dev->dev_private;
8598         struct intel_crtc *intel_crtc =
8599                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8600         unsigned long flags;
8601
8602         /* NB: An MMIO update of the plane base pointer will also
8603          * generate a page-flip completion irq, i.e. every modeset
8604          * is also accompanied by a spurious intel_prepare_page_flip().
8605          */
8606         spin_lock_irqsave(&dev->event_lock, flags);
8607         if (intel_crtc->unpin_work)
8608                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8609         spin_unlock_irqrestore(&dev->event_lock, flags);
8610 }
8611
8612 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8613 {
8614         /* Ensure that the work item is consistent when activating it ... */
8615         smp_wmb();
8616         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8617         /* and that it is marked active as soon as the irq could fire. */
8618         smp_wmb();
8619 }
8620
8621 static int intel_gen2_queue_flip(struct drm_device *dev,
8622                                  struct drm_crtc *crtc,
8623                                  struct drm_framebuffer *fb,
8624                                  struct drm_i915_gem_object *obj,
8625                                  uint32_t flags)
8626 {
8627         struct drm_i915_private *dev_priv = dev->dev_private;
8628         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8629         u32 flip_mask;
8630         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8631         int ret;
8632
8633         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8634         if (ret)
8635                 goto err;
8636
8637         ret = intel_ring_begin(ring, 6);
8638         if (ret)
8639                 goto err_unpin;
8640
8641         /* Can't queue multiple flips, so wait for the previous
8642          * one to finish before executing the next.
8643          */
8644         if (intel_crtc->plane)
8645                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8646         else
8647                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8648         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8649         intel_ring_emit(ring, MI_NOOP);
8650         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8651                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8652         intel_ring_emit(ring, fb->pitches[0]);
8653         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8654         intel_ring_emit(ring, 0); /* aux display base address, unused */
8655
8656         intel_mark_page_flip_active(intel_crtc);
8657         __intel_ring_advance(ring);
8658         return 0;
8659
8660 err_unpin:
8661         intel_unpin_fb_obj(obj);
8662 err:
8663         return ret;
8664 }
8665
8666 static int intel_gen3_queue_flip(struct drm_device *dev,
8667                                  struct drm_crtc *crtc,
8668                                  struct drm_framebuffer *fb,
8669                                  struct drm_i915_gem_object *obj,
8670                                  uint32_t flags)
8671 {
8672         struct drm_i915_private *dev_priv = dev->dev_private;
8673         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8674         u32 flip_mask;
8675         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8676         int ret;
8677
8678         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8679         if (ret)
8680                 goto err;
8681
8682         ret = intel_ring_begin(ring, 6);
8683         if (ret)
8684                 goto err_unpin;
8685
8686         if (intel_crtc->plane)
8687                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8688         else
8689                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8690         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8691         intel_ring_emit(ring, MI_NOOP);
8692         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8693                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8694         intel_ring_emit(ring, fb->pitches[0]);
8695         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8696         intel_ring_emit(ring, MI_NOOP);
8697
8698         intel_mark_page_flip_active(intel_crtc);
8699         __intel_ring_advance(ring);
8700         return 0;
8701
8702 err_unpin:
8703         intel_unpin_fb_obj(obj);
8704 err:
8705         return ret;
8706 }
8707
8708 static int intel_gen4_queue_flip(struct drm_device *dev,
8709                                  struct drm_crtc *crtc,
8710                                  struct drm_framebuffer *fb,
8711                                  struct drm_i915_gem_object *obj,
8712                                  uint32_t flags)
8713 {
8714         struct drm_i915_private *dev_priv = dev->dev_private;
8715         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8716         uint32_t pf, pipesrc;
8717         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8718         int ret;
8719
8720         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8721         if (ret)
8722                 goto err;
8723
8724         ret = intel_ring_begin(ring, 4);
8725         if (ret)
8726                 goto err_unpin;
8727
8728         /* i965+ uses the linear or tiled offsets from the
8729          * Display Registers (which do not change across a page-flip)
8730          * so we need only reprogram the base address.
8731          */
8732         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8733                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8734         intel_ring_emit(ring, fb->pitches[0]);
8735         intel_ring_emit(ring,
8736                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8737                         obj->tiling_mode);
8738
8739         /* XXX Enabling the panel-fitter across page-flip is so far
8740          * untested on non-native modes, so ignore it for now.
8741          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8742          */
8743         pf = 0;
8744         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8745         intel_ring_emit(ring, pf | pipesrc);
8746
8747         intel_mark_page_flip_active(intel_crtc);
8748         __intel_ring_advance(ring);
8749         return 0;
8750
8751 err_unpin:
8752         intel_unpin_fb_obj(obj);
8753 err:
8754         return ret;
8755 }
8756
8757 static int intel_gen6_queue_flip(struct drm_device *dev,
8758                                  struct drm_crtc *crtc,
8759                                  struct drm_framebuffer *fb,
8760                                  struct drm_i915_gem_object *obj,
8761                                  uint32_t flags)
8762 {
8763         struct drm_i915_private *dev_priv = dev->dev_private;
8764         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8765         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8766         uint32_t pf, pipesrc;
8767         int ret;
8768
8769         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8770         if (ret)
8771                 goto err;
8772
8773         ret = intel_ring_begin(ring, 4);
8774         if (ret)
8775                 goto err_unpin;
8776
8777         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8778                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8779         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8780         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8781
8782         /* Contrary to the suggestions in the documentation,
8783          * "Enable Panel Fitter" does not seem to be required when page
8784          * flipping with a non-native mode, and worse causes a normal
8785          * modeset to fail.
8786          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8787          */
8788         pf = 0;
8789         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8790         intel_ring_emit(ring, pf | pipesrc);
8791
8792         intel_mark_page_flip_active(intel_crtc);
8793         __intel_ring_advance(ring);
8794         return 0;
8795
8796 err_unpin:
8797         intel_unpin_fb_obj(obj);
8798 err:
8799         return ret;
8800 }
8801
8802 static int intel_gen7_queue_flip(struct drm_device *dev,
8803                                  struct drm_crtc *crtc,
8804                                  struct drm_framebuffer *fb,
8805                                  struct drm_i915_gem_object *obj,
8806                                  uint32_t flags)
8807 {
8808         struct drm_i915_private *dev_priv = dev->dev_private;
8809         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8810         struct intel_ring_buffer *ring;
8811         uint32_t plane_bit = 0;
8812         int len, ret;
8813
8814         ring = obj->ring;
8815         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8816                 ring = &dev_priv->ring[BCS];
8817
8818         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8819         if (ret)
8820                 goto err;
8821
8822         switch(intel_crtc->plane) {
8823         case PLANE_A:
8824                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8825                 break;
8826         case PLANE_B:
8827                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8828                 break;
8829         case PLANE_C:
8830                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8831                 break;
8832         default:
8833                 WARN_ONCE(1, "unknown plane in flip command\n");
8834                 ret = -ENODEV;
8835                 goto err_unpin;
8836         }
8837
8838         len = 4;
8839         if (ring->id == RCS)
8840                 len += 6;
8841
8842         /*
8843          * BSpec MI_DISPLAY_FLIP for IVB:
8844          * "The full packet must be contained within the same cache line."
8845          *
8846          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
8847          * cacheline, if we ever start emitting more commands before
8848          * the MI_DISPLAY_FLIP we may need to first emit everything else,
8849          * then do the cacheline alignment, and finally emit the
8850          * MI_DISPLAY_FLIP.
8851          */
8852         ret = intel_ring_cacheline_align(ring);
8853         if (ret)
8854                 goto err_unpin;
8855
8856         ret = intel_ring_begin(ring, len);
8857         if (ret)
8858                 goto err_unpin;
8859
8860         /* Unmask the flip-done completion message. Note that the bspec says that
8861          * we should do this for both the BCS and RCS, and that we must not unmask
8862          * more than one flip event at any time (or ensure that one flip message
8863          * can be sent by waiting for flip-done prior to queueing new flips).
8864          * Experimentation says that BCS works despite DERRMR masking all
8865          * flip-done completion events and that unmasking all planes at once
8866          * for the RCS also doesn't appear to drop events. Setting the DERRMR
8867          * to zero does lead to lockups within MI_DISPLAY_FLIP.
8868          */
8869         if (ring->id == RCS) {
8870                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8871                 intel_ring_emit(ring, DERRMR);
8872                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8873                                         DERRMR_PIPEB_PRI_FLIP_DONE |
8874                                         DERRMR_PIPEC_PRI_FLIP_DONE));
8875                 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
8876                                 MI_SRM_LRM_GLOBAL_GTT);
8877                 intel_ring_emit(ring, DERRMR);
8878                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8879         }
8880
8881         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8882         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8883         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8884         intel_ring_emit(ring, (MI_NOOP));
8885
8886         intel_mark_page_flip_active(intel_crtc);
8887         __intel_ring_advance(ring);
8888         return 0;
8889
8890 err_unpin:
8891         intel_unpin_fb_obj(obj);
8892 err:
8893         return ret;
8894 }
8895
8896 static int intel_default_queue_flip(struct drm_device *dev,
8897                                     struct drm_crtc *crtc,
8898                                     struct drm_framebuffer *fb,
8899                                     struct drm_i915_gem_object *obj,
8900                                     uint32_t flags)
8901 {
8902         return -ENODEV;
8903 }
8904
8905 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8906                                 struct drm_framebuffer *fb,
8907                                 struct drm_pending_vblank_event *event,
8908                                 uint32_t page_flip_flags)
8909 {
8910         struct drm_device *dev = crtc->dev;
8911         struct drm_i915_private *dev_priv = dev->dev_private;
8912         struct drm_framebuffer *old_fb = crtc->primary->fb;
8913         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8914         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8915         struct intel_unpin_work *work;
8916         unsigned long flags;
8917         int ret;
8918
8919         /* Can't change pixel format via MI display flips. */
8920         if (fb->pixel_format != crtc->primary->fb->pixel_format)
8921                 return -EINVAL;
8922
8923         /*
8924          * TILEOFF/LINOFF registers can't be changed via MI display flips.
8925          * Note that pitch changes could also affect these register.
8926          */
8927         if (INTEL_INFO(dev)->gen > 3 &&
8928             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
8929              fb->pitches[0] != crtc->primary->fb->pitches[0]))
8930                 return -EINVAL;
8931
8932         if (i915_terminally_wedged(&dev_priv->gpu_error))
8933                 goto out_hang;
8934
8935         work = kzalloc(sizeof(*work), GFP_KERNEL);
8936         if (work == NULL)
8937                 return -ENOMEM;
8938
8939         work->event = event;
8940         work->crtc = crtc;
8941         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8942         INIT_WORK(&work->work, intel_unpin_work_fn);
8943
8944         ret = drm_vblank_get(dev, intel_crtc->pipe);
8945         if (ret)
8946                 goto free_work;
8947
8948         /* We borrow the event spin lock for protecting unpin_work */
8949         spin_lock_irqsave(&dev->event_lock, flags);
8950         if (intel_crtc->unpin_work) {
8951                 spin_unlock_irqrestore(&dev->event_lock, flags);
8952                 kfree(work);
8953                 drm_vblank_put(dev, intel_crtc->pipe);
8954
8955                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8956                 return -EBUSY;
8957         }
8958         intel_crtc->unpin_work = work;
8959         spin_unlock_irqrestore(&dev->event_lock, flags);
8960
8961         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8962                 flush_workqueue(dev_priv->wq);
8963
8964         ret = i915_mutex_lock_interruptible(dev);
8965         if (ret)
8966                 goto cleanup;
8967
8968         /* Reference the objects for the scheduled work. */
8969         drm_gem_object_reference(&work->old_fb_obj->base);
8970         drm_gem_object_reference(&obj->base);
8971
8972         crtc->primary->fb = fb;
8973
8974         work->pending_flip_obj = obj;
8975
8976         work->enable_stall_check = true;
8977
8978         atomic_inc(&intel_crtc->unpin_work_count);
8979         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8980
8981         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8982         if (ret)
8983                 goto cleanup_pending;
8984
8985         intel_disable_fbc(dev);
8986         intel_mark_fb_busy(obj, NULL);
8987         mutex_unlock(&dev->struct_mutex);
8988
8989         trace_i915_flip_request(intel_crtc->plane, obj);
8990
8991         return 0;
8992
8993 cleanup_pending:
8994         atomic_dec(&intel_crtc->unpin_work_count);
8995         crtc->primary->fb = old_fb;
8996         drm_gem_object_unreference(&work->old_fb_obj->base);
8997         drm_gem_object_unreference(&obj->base);
8998         mutex_unlock(&dev->struct_mutex);
8999
9000 cleanup:
9001         spin_lock_irqsave(&dev->event_lock, flags);
9002         intel_crtc->unpin_work = NULL;
9003         spin_unlock_irqrestore(&dev->event_lock, flags);
9004
9005         drm_vblank_put(dev, intel_crtc->pipe);
9006 free_work:
9007         kfree(work);
9008
9009         if (ret == -EIO) {
9010 out_hang:
9011                 intel_crtc_wait_for_pending_flips(crtc);
9012                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9013                 if (ret == 0 && event)
9014                         drm_send_vblank_event(dev, intel_crtc->pipe, event);
9015         }
9016         return ret;
9017 }
9018
9019 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9020         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9021         .load_lut = intel_crtc_load_lut,
9022 };
9023
9024 /**
9025  * intel_modeset_update_staged_output_state
9026  *
9027  * Updates the staged output configuration state, e.g. after we've read out the
9028  * current hw state.
9029  */
9030 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9031 {
9032         struct intel_crtc *crtc;
9033         struct intel_encoder *encoder;
9034         struct intel_connector *connector;
9035
9036         list_for_each_entry(connector, &dev->mode_config.connector_list,
9037                             base.head) {
9038                 connector->new_encoder =
9039                         to_intel_encoder(connector->base.encoder);
9040         }
9041
9042         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9043                             base.head) {
9044                 encoder->new_crtc =
9045                         to_intel_crtc(encoder->base.crtc);
9046         }
9047
9048         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9049                             base.head) {
9050                 crtc->new_enabled = crtc->base.enabled;
9051
9052                 if (crtc->new_enabled)
9053                         crtc->new_config = &crtc->config;
9054                 else
9055                         crtc->new_config = NULL;
9056         }
9057 }
9058
9059 /**
9060  * intel_modeset_commit_output_state
9061  *
9062  * This function copies the stage display pipe configuration to the real one.
9063  */
9064 static void intel_modeset_commit_output_state(struct drm_device *dev)
9065 {
9066         struct intel_crtc *crtc;
9067         struct intel_encoder *encoder;
9068         struct intel_connector *connector;
9069
9070         list_for_each_entry(connector, &dev->mode_config.connector_list,
9071                             base.head) {
9072                 connector->base.encoder = &connector->new_encoder->base;
9073         }
9074
9075         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9076                             base.head) {
9077                 encoder->base.crtc = &encoder->new_crtc->base;
9078         }
9079
9080         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9081                             base.head) {
9082                 crtc->base.enabled = crtc->new_enabled;
9083         }
9084 }
9085
9086 static void
9087 connected_sink_compute_bpp(struct intel_connector * connector,
9088                            struct intel_crtc_config *pipe_config)
9089 {
9090         int bpp = pipe_config->pipe_bpp;
9091
9092         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9093                 connector->base.base.id,
9094                 drm_get_connector_name(&connector->base));
9095
9096         /* Don't use an invalid EDID bpc value */
9097         if (connector->base.display_info.bpc &&
9098             connector->base.display_info.bpc * 3 < bpp) {
9099                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9100                               bpp, connector->base.display_info.bpc*3);
9101                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9102         }
9103
9104         /* Clamp bpp to 8 on screens without EDID 1.4 */
9105         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9106                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9107                               bpp);
9108                 pipe_config->pipe_bpp = 24;
9109         }
9110 }
9111
9112 static int
9113 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9114                           struct drm_framebuffer *fb,
9115                           struct intel_crtc_config *pipe_config)
9116 {
9117         struct drm_device *dev = crtc->base.dev;
9118         struct intel_connector *connector;
9119         int bpp;
9120
9121         switch (fb->pixel_format) {
9122         case DRM_FORMAT_C8:
9123                 bpp = 8*3; /* since we go through a colormap */
9124                 break;
9125         case DRM_FORMAT_XRGB1555:
9126         case DRM_FORMAT_ARGB1555:
9127                 /* checked in intel_framebuffer_init already */
9128                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9129                         return -EINVAL;
9130         case DRM_FORMAT_RGB565:
9131                 bpp = 6*3; /* min is 18bpp */
9132                 break;
9133         case DRM_FORMAT_XBGR8888:
9134         case DRM_FORMAT_ABGR8888:
9135                 /* checked in intel_framebuffer_init already */
9136                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9137                         return -EINVAL;
9138         case DRM_FORMAT_XRGB8888:
9139         case DRM_FORMAT_ARGB8888:
9140                 bpp = 8*3;
9141                 break;
9142         case DRM_FORMAT_XRGB2101010:
9143         case DRM_FORMAT_ARGB2101010:
9144         case DRM_FORMAT_XBGR2101010:
9145         case DRM_FORMAT_ABGR2101010:
9146                 /* checked in intel_framebuffer_init already */
9147                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9148                         return -EINVAL;
9149                 bpp = 10*3;
9150                 break;
9151         /* TODO: gen4+ supports 16 bpc floating point, too. */
9152         default:
9153                 DRM_DEBUG_KMS("unsupported depth\n");
9154                 return -EINVAL;
9155         }
9156
9157         pipe_config->pipe_bpp = bpp;
9158
9159         /* Clamp display bpp to EDID value */
9160         list_for_each_entry(connector, &dev->mode_config.connector_list,
9161                             base.head) {
9162                 if (!connector->new_encoder ||
9163                     connector->new_encoder->new_crtc != crtc)
9164                         continue;
9165
9166                 connected_sink_compute_bpp(connector, pipe_config);
9167         }
9168
9169         return bpp;
9170 }
9171
9172 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9173 {
9174         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9175                         "type: 0x%x flags: 0x%x\n",
9176                 mode->crtc_clock,
9177                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9178                 mode->crtc_hsync_end, mode->crtc_htotal,
9179                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9180                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9181 }
9182
9183 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9184                                    struct intel_crtc_config *pipe_config,
9185                                    const char *context)
9186 {
9187         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9188                       context, pipe_name(crtc->pipe));
9189
9190         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9191         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9192                       pipe_config->pipe_bpp, pipe_config->dither);
9193         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9194                       pipe_config->has_pch_encoder,
9195                       pipe_config->fdi_lanes,
9196                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9197                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9198                       pipe_config->fdi_m_n.tu);
9199         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9200                       pipe_config->has_dp_encoder,
9201                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9202                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9203                       pipe_config->dp_m_n.tu);
9204         DRM_DEBUG_KMS("requested mode:\n");
9205         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9206         DRM_DEBUG_KMS("adjusted mode:\n");
9207         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9208         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9209         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9210         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9211                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9212         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9213                       pipe_config->gmch_pfit.control,
9214                       pipe_config->gmch_pfit.pgm_ratios,
9215                       pipe_config->gmch_pfit.lvds_border_bits);
9216         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9217                       pipe_config->pch_pfit.pos,
9218                       pipe_config->pch_pfit.size,
9219                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9220         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9221         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9222 }
9223
9224 static bool encoders_cloneable(const struct intel_encoder *a,
9225                                const struct intel_encoder *b)
9226 {
9227         /* masks could be asymmetric, so check both ways */
9228         return a == b || (a->cloneable & (1 << b->type) &&
9229                           b->cloneable & (1 << a->type));
9230 }
9231
9232 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9233                                          struct intel_encoder *encoder)
9234 {
9235         struct drm_device *dev = crtc->base.dev;
9236         struct intel_encoder *source_encoder;
9237
9238         list_for_each_entry(source_encoder,
9239                             &dev->mode_config.encoder_list, base.head) {
9240                 if (source_encoder->new_crtc != crtc)
9241                         continue;
9242
9243                 if (!encoders_cloneable(encoder, source_encoder))
9244                         return false;
9245         }
9246
9247         return true;
9248 }
9249
9250 static bool check_encoder_cloning(struct intel_crtc *crtc)
9251 {
9252         struct drm_device *dev = crtc->base.dev;
9253         struct intel_encoder *encoder;
9254
9255         list_for_each_entry(encoder,
9256                             &dev->mode_config.encoder_list, base.head) {
9257                 if (encoder->new_crtc != crtc)
9258                         continue;
9259
9260                 if (!check_single_encoder_cloning(crtc, encoder))
9261                         return false;
9262         }
9263
9264         return true;
9265 }
9266
9267 static struct intel_crtc_config *
9268 intel_modeset_pipe_config(struct drm_crtc *crtc,
9269                           struct drm_framebuffer *fb,
9270                           struct drm_display_mode *mode)
9271 {
9272         struct drm_device *dev = crtc->dev;
9273         struct intel_encoder *encoder;
9274         struct intel_crtc_config *pipe_config;
9275         int plane_bpp, ret = -EINVAL;
9276         bool retry = true;
9277
9278         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
9279                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9280                 return ERR_PTR(-EINVAL);
9281         }
9282
9283         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9284         if (!pipe_config)
9285                 return ERR_PTR(-ENOMEM);
9286
9287         drm_mode_copy(&pipe_config->adjusted_mode, mode);
9288         drm_mode_copy(&pipe_config->requested_mode, mode);
9289
9290         pipe_config->cpu_transcoder =
9291                 (enum transcoder) to_intel_crtc(crtc)->pipe;
9292         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9293
9294         /*
9295          * Sanitize sync polarity flags based on requested ones. If neither
9296          * positive or negative polarity is requested, treat this as meaning
9297          * negative polarity.
9298          */
9299         if (!(pipe_config->adjusted_mode.flags &
9300               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
9301                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
9302
9303         if (!(pipe_config->adjusted_mode.flags &
9304               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
9305                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
9306
9307         /* Compute a starting value for pipe_config->pipe_bpp taking the source
9308          * plane pixel format and any sink constraints into account. Returns the
9309          * source plane bpp so that dithering can be selected on mismatches
9310          * after encoders and crtc also have had their say. */
9311         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
9312                                               fb, pipe_config);
9313         if (plane_bpp < 0)
9314                 goto fail;
9315
9316         /*
9317          * Determine the real pipe dimensions. Note that stereo modes can
9318          * increase the actual pipe size due to the frame doubling and
9319          * insertion of additional space for blanks between the frame. This
9320          * is stored in the crtc timings. We use the requested mode to do this
9321          * computation to clearly distinguish it from the adjusted mode, which
9322          * can be changed by the connectors in the below retry loop.
9323          */
9324         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
9325         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
9326         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
9327
9328 encoder_retry:
9329         /* Ensure the port clock defaults are reset when retrying. */
9330         pipe_config->port_clock = 0;
9331         pipe_config->pixel_multiplier = 1;
9332
9333         /* Fill in default crtc timings, allow encoders to overwrite them. */
9334         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
9335
9336         /* Pass our mode to the connectors and the CRTC to give them a chance to
9337          * adjust it according to limitations or connector properties, and also
9338          * a chance to reject the mode entirely.
9339          */
9340         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9341                             base.head) {
9342
9343                 if (&encoder->new_crtc->base != crtc)
9344                         continue;
9345
9346                 if (!(encoder->compute_config(encoder, pipe_config))) {
9347                         DRM_DEBUG_KMS("Encoder config failure\n");
9348                         goto fail;
9349                 }
9350         }
9351
9352         /* Set default port clock if not overwritten by the encoder. Needs to be
9353          * done afterwards in case the encoder adjusts the mode. */
9354         if (!pipe_config->port_clock)
9355                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9356                         * pipe_config->pixel_multiplier;
9357
9358         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9359         if (ret < 0) {
9360                 DRM_DEBUG_KMS("CRTC fixup failed\n");
9361                 goto fail;
9362         }
9363
9364         if (ret == RETRY) {
9365                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
9366                         ret = -EINVAL;
9367                         goto fail;
9368                 }
9369
9370                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9371                 retry = false;
9372                 goto encoder_retry;
9373         }
9374
9375         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9376         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9377                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9378
9379         return pipe_config;
9380 fail:
9381         kfree(pipe_config);
9382         return ERR_PTR(ret);
9383 }
9384
9385 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
9386  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9387 static void
9388 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9389                              unsigned *prepare_pipes, unsigned *disable_pipes)
9390 {
9391         struct intel_crtc *intel_crtc;
9392         struct drm_device *dev = crtc->dev;
9393         struct intel_encoder *encoder;
9394         struct intel_connector *connector;
9395         struct drm_crtc *tmp_crtc;
9396
9397         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9398
9399         /* Check which crtcs have changed outputs connected to them, these need
9400          * to be part of the prepare_pipes mask. We don't (yet) support global
9401          * modeset across multiple crtcs, so modeset_pipes will only have one
9402          * bit set at most. */
9403         list_for_each_entry(connector, &dev->mode_config.connector_list,
9404                             base.head) {
9405                 if (connector->base.encoder == &connector->new_encoder->base)
9406                         continue;
9407
9408                 if (connector->base.encoder) {
9409                         tmp_crtc = connector->base.encoder->crtc;
9410
9411                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9412                 }
9413
9414                 if (connector->new_encoder)
9415                         *prepare_pipes |=
9416                                 1 << connector->new_encoder->new_crtc->pipe;
9417         }
9418
9419         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9420                             base.head) {
9421                 if (encoder->base.crtc == &encoder->new_crtc->base)
9422                         continue;
9423
9424                 if (encoder->base.crtc) {
9425                         tmp_crtc = encoder->base.crtc;
9426
9427                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9428                 }
9429
9430                 if (encoder->new_crtc)
9431                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9432         }
9433
9434         /* Check for pipes that will be enabled/disabled ... */
9435         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9436                             base.head) {
9437                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
9438                         continue;
9439
9440                 if (!intel_crtc->new_enabled)
9441                         *disable_pipes |= 1 << intel_crtc->pipe;
9442                 else
9443                         *prepare_pipes |= 1 << intel_crtc->pipe;
9444         }
9445
9446
9447         /* set_mode is also used to update properties on life display pipes. */
9448         intel_crtc = to_intel_crtc(crtc);
9449         if (intel_crtc->new_enabled)
9450                 *prepare_pipes |= 1 << intel_crtc->pipe;
9451
9452         /*
9453          * For simplicity do a full modeset on any pipe where the output routing
9454          * changed. We could be more clever, but that would require us to be
9455          * more careful with calling the relevant encoder->mode_set functions.
9456          */
9457         if (*prepare_pipes)
9458                 *modeset_pipes = *prepare_pipes;
9459
9460         /* ... and mask these out. */
9461         *modeset_pipes &= ~(*disable_pipes);
9462         *prepare_pipes &= ~(*disable_pipes);
9463
9464         /*
9465          * HACK: We don't (yet) fully support global modesets. intel_set_config
9466          * obies this rule, but the modeset restore mode of
9467          * intel_modeset_setup_hw_state does not.
9468          */
9469         *modeset_pipes &= 1 << intel_crtc->pipe;
9470         *prepare_pipes &= 1 << intel_crtc->pipe;
9471
9472         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9473                       *modeset_pipes, *prepare_pipes, *disable_pipes);
9474 }
9475
9476 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9477 {
9478         struct drm_encoder *encoder;
9479         struct drm_device *dev = crtc->dev;
9480
9481         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9482                 if (encoder->crtc == crtc)
9483                         return true;
9484
9485         return false;
9486 }
9487
9488 static void
9489 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9490 {
9491         struct intel_encoder *intel_encoder;
9492         struct intel_crtc *intel_crtc;
9493         struct drm_connector *connector;
9494
9495         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9496                             base.head) {
9497                 if (!intel_encoder->base.crtc)
9498                         continue;
9499
9500                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9501
9502                 if (prepare_pipes & (1 << intel_crtc->pipe))
9503                         intel_encoder->connectors_active = false;
9504         }
9505
9506         intel_modeset_commit_output_state(dev);
9507
9508         /* Double check state. */
9509         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9510                             base.head) {
9511                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
9512                 WARN_ON(intel_crtc->new_config &&
9513                         intel_crtc->new_config != &intel_crtc->config);
9514                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
9515         }
9516
9517         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9518                 if (!connector->encoder || !connector->encoder->crtc)
9519                         continue;
9520
9521                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9522
9523                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9524                         struct drm_property *dpms_property =
9525                                 dev->mode_config.dpms_property;
9526
9527                         connector->dpms = DRM_MODE_DPMS_ON;
9528                         drm_object_property_set_value(&connector->base,
9529                                                          dpms_property,
9530                                                          DRM_MODE_DPMS_ON);
9531
9532                         intel_encoder = to_intel_encoder(connector->encoder);
9533                         intel_encoder->connectors_active = true;
9534                 }
9535         }
9536
9537 }
9538
9539 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9540 {
9541         int diff;
9542
9543         if (clock1 == clock2)
9544                 return true;
9545
9546         if (!clock1 || !clock2)
9547                 return false;
9548
9549         diff = abs(clock1 - clock2);
9550
9551         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9552                 return true;
9553
9554         return false;
9555 }
9556
9557 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9558         list_for_each_entry((intel_crtc), \
9559                             &(dev)->mode_config.crtc_list, \
9560                             base.head) \
9561                 if (mask & (1 <<(intel_crtc)->pipe))
9562
9563 static bool
9564 intel_pipe_config_compare(struct drm_device *dev,
9565                           struct intel_crtc_config *current_config,
9566                           struct intel_crtc_config *pipe_config)
9567 {
9568 #define PIPE_CONF_CHECK_X(name) \
9569         if (current_config->name != pipe_config->name) { \
9570                 DRM_ERROR("mismatch in " #name " " \
9571                           "(expected 0x%08x, found 0x%08x)\n", \
9572                           current_config->name, \
9573                           pipe_config->name); \
9574                 return false; \
9575         }
9576
9577 #define PIPE_CONF_CHECK_I(name) \
9578         if (current_config->name != pipe_config->name) { \
9579                 DRM_ERROR("mismatch in " #name " " \
9580                           "(expected %i, found %i)\n", \
9581                           current_config->name, \
9582                           pipe_config->name); \
9583                 return false; \
9584         }
9585
9586 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
9587         if ((current_config->name ^ pipe_config->name) & (mask)) { \
9588                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
9589                           "(expected %i, found %i)\n", \
9590                           current_config->name & (mask), \
9591                           pipe_config->name & (mask)); \
9592                 return false; \
9593         }
9594
9595 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9596         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9597                 DRM_ERROR("mismatch in " #name " " \
9598                           "(expected %i, found %i)\n", \
9599                           current_config->name, \
9600                           pipe_config->name); \
9601                 return false; \
9602         }
9603
9604 #define PIPE_CONF_QUIRK(quirk)  \
9605         ((current_config->quirks | pipe_config->quirks) & (quirk))
9606
9607         PIPE_CONF_CHECK_I(cpu_transcoder);
9608
9609         PIPE_CONF_CHECK_I(has_pch_encoder);
9610         PIPE_CONF_CHECK_I(fdi_lanes);
9611         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9612         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9613         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9614         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9615         PIPE_CONF_CHECK_I(fdi_m_n.tu);
9616
9617         PIPE_CONF_CHECK_I(has_dp_encoder);
9618         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9619         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9620         PIPE_CONF_CHECK_I(dp_m_n.link_m);
9621         PIPE_CONF_CHECK_I(dp_m_n.link_n);
9622         PIPE_CONF_CHECK_I(dp_m_n.tu);
9623
9624         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9625         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9626         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9627         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9628         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9629         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9630
9631         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9632         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9633         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9634         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9635         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9636         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9637
9638         PIPE_CONF_CHECK_I(pixel_multiplier);
9639
9640         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9641                               DRM_MODE_FLAG_INTERLACE);
9642
9643         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9644                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9645                                       DRM_MODE_FLAG_PHSYNC);
9646                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9647                                       DRM_MODE_FLAG_NHSYNC);
9648                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9649                                       DRM_MODE_FLAG_PVSYNC);
9650                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9651                                       DRM_MODE_FLAG_NVSYNC);
9652         }
9653
9654         PIPE_CONF_CHECK_I(pipe_src_w);
9655         PIPE_CONF_CHECK_I(pipe_src_h);
9656
9657         /*
9658          * FIXME: BIOS likes to set up a cloned config with lvds+external
9659          * screen. Since we don't yet re-compute the pipe config when moving
9660          * just the lvds port away to another pipe the sw tracking won't match.
9661          *
9662          * Proper atomic modesets with recomputed global state will fix this.
9663          * Until then just don't check gmch state for inherited modes.
9664          */
9665         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
9666                 PIPE_CONF_CHECK_I(gmch_pfit.control);
9667                 /* pfit ratios are autocomputed by the hw on gen4+ */
9668                 if (INTEL_INFO(dev)->gen < 4)
9669                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9670                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9671         }
9672
9673         PIPE_CONF_CHECK_I(pch_pfit.enabled);
9674         if (current_config->pch_pfit.enabled) {
9675                 PIPE_CONF_CHECK_I(pch_pfit.pos);
9676                 PIPE_CONF_CHECK_I(pch_pfit.size);
9677         }
9678
9679         /* BDW+ don't expose a synchronous way to read the state */
9680         if (IS_HASWELL(dev))
9681                 PIPE_CONF_CHECK_I(ips_enabled);
9682
9683         PIPE_CONF_CHECK_I(double_wide);
9684
9685         PIPE_CONF_CHECK_I(shared_dpll);
9686         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9687         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9688         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9689         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9690
9691         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9692                 PIPE_CONF_CHECK_I(pipe_bpp);
9693
9694         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9695         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9696
9697 #undef PIPE_CONF_CHECK_X
9698 #undef PIPE_CONF_CHECK_I
9699 #undef PIPE_CONF_CHECK_FLAGS
9700 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9701 #undef PIPE_CONF_QUIRK
9702
9703         return true;
9704 }
9705
9706 static void
9707 check_connector_state(struct drm_device *dev)
9708 {
9709         struct intel_connector *connector;
9710
9711         list_for_each_entry(connector, &dev->mode_config.connector_list,
9712                             base.head) {
9713                 /* This also checks the encoder/connector hw state with the
9714                  * ->get_hw_state callbacks. */
9715                 intel_connector_check_state(connector);
9716
9717                 WARN(&connector->new_encoder->base != connector->base.encoder,
9718                      "connector's staged encoder doesn't match current encoder\n");
9719         }
9720 }
9721
9722 static void
9723 check_encoder_state(struct drm_device *dev)
9724 {
9725         struct intel_encoder *encoder;
9726         struct intel_connector *connector;
9727
9728         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9729                             base.head) {
9730                 bool enabled = false;
9731                 bool active = false;
9732                 enum pipe pipe, tracked_pipe;
9733
9734                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9735                               encoder->base.base.id,
9736                               drm_get_encoder_name(&encoder->base));
9737
9738                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9739                      "encoder's stage crtc doesn't match current crtc\n");
9740                 WARN(encoder->connectors_active && !encoder->base.crtc,
9741                      "encoder's active_connectors set, but no crtc\n");
9742
9743                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9744                                     base.head) {
9745                         if (connector->base.encoder != &encoder->base)
9746                                 continue;
9747                         enabled = true;
9748                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9749                                 active = true;
9750                 }
9751                 WARN(!!encoder->base.crtc != enabled,
9752                      "encoder's enabled state mismatch "
9753                      "(expected %i, found %i)\n",
9754                      !!encoder->base.crtc, enabled);
9755                 WARN(active && !encoder->base.crtc,
9756                      "active encoder with no crtc\n");
9757
9758                 WARN(encoder->connectors_active != active,
9759                      "encoder's computed active state doesn't match tracked active state "
9760                      "(expected %i, found %i)\n", active, encoder->connectors_active);
9761
9762                 active = encoder->get_hw_state(encoder, &pipe);
9763                 WARN(active != encoder->connectors_active,
9764                      "encoder's hw state doesn't match sw tracking "
9765                      "(expected %i, found %i)\n",
9766                      encoder->connectors_active, active);
9767
9768                 if (!encoder->base.crtc)
9769                         continue;
9770
9771                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9772                 WARN(active && pipe != tracked_pipe,
9773                      "active encoder's pipe doesn't match"
9774                      "(expected %i, found %i)\n",
9775                      tracked_pipe, pipe);
9776
9777         }
9778 }
9779
9780 static void
9781 check_crtc_state(struct drm_device *dev)
9782 {
9783         struct drm_i915_private *dev_priv = dev->dev_private;
9784         struct intel_crtc *crtc;
9785         struct intel_encoder *encoder;
9786         struct intel_crtc_config pipe_config;
9787
9788         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9789                             base.head) {
9790                 bool enabled = false;
9791                 bool active = false;
9792
9793                 memset(&pipe_config, 0, sizeof(pipe_config));
9794
9795                 DRM_DEBUG_KMS("[CRTC:%d]\n",
9796                               crtc->base.base.id);
9797
9798                 WARN(crtc->active && !crtc->base.enabled,
9799                      "active crtc, but not enabled in sw tracking\n");
9800
9801                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9802                                     base.head) {
9803                         if (encoder->base.crtc != &crtc->base)
9804                                 continue;
9805                         enabled = true;
9806                         if (encoder->connectors_active)
9807                                 active = true;
9808                 }
9809
9810                 WARN(active != crtc->active,
9811                      "crtc's computed active state doesn't match tracked active state "
9812                      "(expected %i, found %i)\n", active, crtc->active);
9813                 WARN(enabled != crtc->base.enabled,
9814                      "crtc's computed enabled state doesn't match tracked enabled state "
9815                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9816
9817                 active = dev_priv->display.get_pipe_config(crtc,
9818                                                            &pipe_config);
9819
9820                 /* hw state is inconsistent with the pipe A quirk */
9821                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9822                         active = crtc->active;
9823
9824                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9825                                     base.head) {
9826                         enum pipe pipe;
9827                         if (encoder->base.crtc != &crtc->base)
9828                                 continue;
9829                         if (encoder->get_hw_state(encoder, &pipe))
9830                                 encoder->get_config(encoder, &pipe_config);
9831                 }
9832
9833                 WARN(crtc->active != active,
9834                      "crtc active state doesn't match with hw state "
9835                      "(expected %i, found %i)\n", crtc->active, active);
9836
9837                 if (active &&
9838                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9839                         WARN(1, "pipe state doesn't match!\n");
9840                         intel_dump_pipe_config(crtc, &pipe_config,
9841                                                "[hw state]");
9842                         intel_dump_pipe_config(crtc, &crtc->config,
9843                                                "[sw state]");
9844                 }
9845         }
9846 }
9847
9848 static void
9849 check_shared_dpll_state(struct drm_device *dev)
9850 {
9851         struct drm_i915_private *dev_priv = dev->dev_private;
9852         struct intel_crtc *crtc;
9853         struct intel_dpll_hw_state dpll_hw_state;
9854         int i;
9855
9856         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9857                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9858                 int enabled_crtcs = 0, active_crtcs = 0;
9859                 bool active;
9860
9861                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9862
9863                 DRM_DEBUG_KMS("%s\n", pll->name);
9864
9865                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9866
9867                 WARN(pll->active > pll->refcount,
9868                      "more active pll users than references: %i vs %i\n",
9869                      pll->active, pll->refcount);
9870                 WARN(pll->active && !pll->on,
9871                      "pll in active use but not on in sw tracking\n");
9872                 WARN(pll->on && !pll->active,
9873                      "pll in on but not on in use in sw tracking\n");
9874                 WARN(pll->on != active,
9875                      "pll on state mismatch (expected %i, found %i)\n",
9876                      pll->on, active);
9877
9878                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9879                                     base.head) {
9880                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9881                                 enabled_crtcs++;
9882                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9883                                 active_crtcs++;
9884                 }
9885                 WARN(pll->active != active_crtcs,
9886                      "pll active crtcs mismatch (expected %i, found %i)\n",
9887                      pll->active, active_crtcs);
9888                 WARN(pll->refcount != enabled_crtcs,
9889                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
9890                      pll->refcount, enabled_crtcs);
9891
9892                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9893                                        sizeof(dpll_hw_state)),
9894                      "pll hw state mismatch\n");
9895         }
9896 }
9897
9898 void
9899 intel_modeset_check_state(struct drm_device *dev)
9900 {
9901         check_connector_state(dev);
9902         check_encoder_state(dev);
9903         check_crtc_state(dev);
9904         check_shared_dpll_state(dev);
9905 }
9906
9907 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9908                                      int dotclock)
9909 {
9910         /*
9911          * FDI already provided one idea for the dotclock.
9912          * Yell if the encoder disagrees.
9913          */
9914         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9915              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9916              pipe_config->adjusted_mode.crtc_clock, dotclock);
9917 }
9918
9919 static int __intel_set_mode(struct drm_crtc *crtc,
9920                             struct drm_display_mode *mode,
9921                             int x, int y, struct drm_framebuffer *fb)
9922 {
9923         struct drm_device *dev = crtc->dev;
9924         struct drm_i915_private *dev_priv = dev->dev_private;
9925         struct drm_display_mode *saved_mode;
9926         struct intel_crtc_config *pipe_config = NULL;
9927         struct intel_crtc *intel_crtc;
9928         unsigned disable_pipes, prepare_pipes, modeset_pipes;
9929         int ret = 0;
9930
9931         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
9932         if (!saved_mode)
9933                 return -ENOMEM;
9934
9935         intel_modeset_affected_pipes(crtc, &modeset_pipes,
9936                                      &prepare_pipes, &disable_pipes);
9937
9938         *saved_mode = crtc->mode;
9939
9940         /* Hack: Because we don't (yet) support global modeset on multiple
9941          * crtcs, we don't keep track of the new mode for more than one crtc.
9942          * Hence simply check whether any bit is set in modeset_pipes in all the
9943          * pieces of code that are not yet converted to deal with mutliple crtcs
9944          * changing their mode at the same time. */
9945         if (modeset_pipes) {
9946                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9947                 if (IS_ERR(pipe_config)) {
9948                         ret = PTR_ERR(pipe_config);
9949                         pipe_config = NULL;
9950
9951                         goto out;
9952                 }
9953                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9954                                        "[modeset]");
9955                 to_intel_crtc(crtc)->new_config = pipe_config;
9956         }
9957
9958         /*
9959          * See if the config requires any additional preparation, e.g.
9960          * to adjust global state with pipes off.  We need to do this
9961          * here so we can get the modeset_pipe updated config for the new
9962          * mode set on this crtc.  For other crtcs we need to use the
9963          * adjusted_mode bits in the crtc directly.
9964          */
9965         if (IS_VALLEYVIEW(dev)) {
9966                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
9967
9968                 /* may have added more to prepare_pipes than we should */
9969                 prepare_pipes &= ~disable_pipes;
9970         }
9971
9972         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9973                 intel_crtc_disable(&intel_crtc->base);
9974
9975         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9976                 if (intel_crtc->base.enabled)
9977                         dev_priv->display.crtc_disable(&intel_crtc->base);
9978         }
9979
9980         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9981          * to set it here already despite that we pass it down the callchain.
9982          */
9983         if (modeset_pipes) {
9984                 crtc->mode = *mode;
9985                 /* mode_set/enable/disable functions rely on a correct pipe
9986                  * config. */
9987                 to_intel_crtc(crtc)->config = *pipe_config;
9988                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
9989
9990                 /*
9991                  * Calculate and store various constants which
9992                  * are later needed by vblank and swap-completion
9993                  * timestamping. They are derived from true hwmode.
9994                  */
9995                 drm_calc_timestamping_constants(crtc,
9996                                                 &pipe_config->adjusted_mode);
9997         }
9998
9999         /* Only after disabling all output pipelines that will be changed can we
10000          * update the the output configuration. */
10001         intel_modeset_update_state(dev, prepare_pipes);
10002
10003         if (dev_priv->display.modeset_global_resources)
10004                 dev_priv->display.modeset_global_resources(dev);
10005
10006         /* Set up the DPLL and any encoders state that needs to adjust or depend
10007          * on the DPLL.
10008          */
10009         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10010                 ret = intel_crtc_mode_set(&intel_crtc->base,
10011                                           x, y, fb);
10012                 if (ret)
10013                         goto done;
10014         }
10015
10016         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10017         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
10018                 dev_priv->display.crtc_enable(&intel_crtc->base);
10019
10020         /* FIXME: add subpixel order */
10021 done:
10022         if (ret && crtc->enabled)
10023                 crtc->mode = *saved_mode;
10024
10025 out:
10026         kfree(pipe_config);
10027         kfree(saved_mode);
10028         return ret;
10029 }
10030
10031 static int intel_set_mode(struct drm_crtc *crtc,
10032                           struct drm_display_mode *mode,
10033                           int x, int y, struct drm_framebuffer *fb)
10034 {
10035         int ret;
10036
10037         ret = __intel_set_mode(crtc, mode, x, y, fb);
10038
10039         if (ret == 0)
10040                 intel_modeset_check_state(crtc->dev);
10041
10042         return ret;
10043 }
10044
10045 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10046 {
10047         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10048 }
10049
10050 #undef for_each_intel_crtc_masked
10051
10052 static void intel_set_config_free(struct intel_set_config *config)
10053 {
10054         if (!config)
10055                 return;
10056
10057         kfree(config->save_connector_encoders);
10058         kfree(config->save_encoder_crtcs);
10059         kfree(config->save_crtc_enabled);
10060         kfree(config);
10061 }
10062
10063 static int intel_set_config_save_state(struct drm_device *dev,
10064                                        struct intel_set_config *config)
10065 {
10066         struct drm_crtc *crtc;
10067         struct drm_encoder *encoder;
10068         struct drm_connector *connector;
10069         int count;
10070
10071         config->save_crtc_enabled =
10072                 kcalloc(dev->mode_config.num_crtc,
10073                         sizeof(bool), GFP_KERNEL);
10074         if (!config->save_crtc_enabled)
10075                 return -ENOMEM;
10076
10077         config->save_encoder_crtcs =
10078                 kcalloc(dev->mode_config.num_encoder,
10079                         sizeof(struct drm_crtc *), GFP_KERNEL);
10080         if (!config->save_encoder_crtcs)
10081                 return -ENOMEM;
10082
10083         config->save_connector_encoders =
10084                 kcalloc(dev->mode_config.num_connector,
10085                         sizeof(struct drm_encoder *), GFP_KERNEL);
10086         if (!config->save_connector_encoders)
10087                 return -ENOMEM;
10088
10089         /* Copy data. Note that driver private data is not affected.
10090          * Should anything bad happen only the expected state is
10091          * restored, not the drivers personal bookkeeping.
10092          */
10093         count = 0;
10094         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10095                 config->save_crtc_enabled[count++] = crtc->enabled;
10096         }
10097
10098         count = 0;
10099         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10100                 config->save_encoder_crtcs[count++] = encoder->crtc;
10101         }
10102
10103         count = 0;
10104         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10105                 config->save_connector_encoders[count++] = connector->encoder;
10106         }
10107
10108         return 0;
10109 }
10110
10111 static void intel_set_config_restore_state(struct drm_device *dev,
10112                                            struct intel_set_config *config)
10113 {
10114         struct intel_crtc *crtc;
10115         struct intel_encoder *encoder;
10116         struct intel_connector *connector;
10117         int count;
10118
10119         count = 0;
10120         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10121                 crtc->new_enabled = config->save_crtc_enabled[count++];
10122
10123                 if (crtc->new_enabled)
10124                         crtc->new_config = &crtc->config;
10125                 else
10126                         crtc->new_config = NULL;
10127         }
10128
10129         count = 0;
10130         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10131                 encoder->new_crtc =
10132                         to_intel_crtc(config->save_encoder_crtcs[count++]);
10133         }
10134
10135         count = 0;
10136         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10137                 connector->new_encoder =
10138                         to_intel_encoder(config->save_connector_encoders[count++]);
10139         }
10140 }
10141
10142 static bool
10143 is_crtc_connector_off(struct drm_mode_set *set)
10144 {
10145         int i;
10146
10147         if (set->num_connectors == 0)
10148                 return false;
10149
10150         if (WARN_ON(set->connectors == NULL))
10151                 return false;
10152
10153         for (i = 0; i < set->num_connectors; i++)
10154                 if (set->connectors[i]->encoder &&
10155                     set->connectors[i]->encoder->crtc == set->crtc &&
10156                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
10157                         return true;
10158
10159         return false;
10160 }
10161
10162 static void
10163 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10164                                       struct intel_set_config *config)
10165 {
10166
10167         /* We should be able to check here if the fb has the same properties
10168          * and then just flip_or_move it */
10169         if (is_crtc_connector_off(set)) {
10170                 config->mode_changed = true;
10171         } else if (set->crtc->primary->fb != set->fb) {
10172                 /* If we have no fb then treat it as a full mode set */
10173                 if (set->crtc->primary->fb == NULL) {
10174                         struct intel_crtc *intel_crtc =
10175                                 to_intel_crtc(set->crtc);
10176
10177                         if (intel_crtc->active && i915.fastboot) {
10178                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10179                                 config->fb_changed = true;
10180                         } else {
10181                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10182                                 config->mode_changed = true;
10183                         }
10184                 } else if (set->fb == NULL) {
10185                         config->mode_changed = true;
10186                 } else if (set->fb->pixel_format !=
10187                            set->crtc->primary->fb->pixel_format) {
10188                         config->mode_changed = true;
10189                 } else {
10190                         config->fb_changed = true;
10191                 }
10192         }
10193
10194         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
10195                 config->fb_changed = true;
10196
10197         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10198                 DRM_DEBUG_KMS("modes are different, full mode set\n");
10199                 drm_mode_debug_printmodeline(&set->crtc->mode);
10200                 drm_mode_debug_printmodeline(set->mode);
10201                 config->mode_changed = true;
10202         }
10203
10204         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10205                         set->crtc->base.id, config->mode_changed, config->fb_changed);
10206 }
10207
10208 static int
10209 intel_modeset_stage_output_state(struct drm_device *dev,
10210                                  struct drm_mode_set *set,
10211                                  struct intel_set_config *config)
10212 {
10213         struct intel_connector *connector;
10214         struct intel_encoder *encoder;
10215         struct intel_crtc *crtc;
10216         int ro;
10217
10218         /* The upper layers ensure that we either disable a crtc or have a list
10219          * of connectors. For paranoia, double-check this. */
10220         WARN_ON(!set->fb && (set->num_connectors != 0));
10221         WARN_ON(set->fb && (set->num_connectors == 0));
10222
10223         list_for_each_entry(connector, &dev->mode_config.connector_list,
10224                             base.head) {
10225                 /* Otherwise traverse passed in connector list and get encoders
10226                  * for them. */
10227                 for (ro = 0; ro < set->num_connectors; ro++) {
10228                         if (set->connectors[ro] == &connector->base) {
10229                                 connector->new_encoder = connector->encoder;
10230                                 break;
10231                         }
10232                 }
10233
10234                 /* If we disable the crtc, disable all its connectors. Also, if
10235                  * the connector is on the changing crtc but not on the new
10236                  * connector list, disable it. */
10237                 if ((!set->fb || ro == set->num_connectors) &&
10238                     connector->base.encoder &&
10239                     connector->base.encoder->crtc == set->crtc) {
10240                         connector->new_encoder = NULL;
10241
10242                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
10243                                 connector->base.base.id,
10244                                 drm_get_connector_name(&connector->base));
10245                 }
10246
10247
10248                 if (&connector->new_encoder->base != connector->base.encoder) {
10249                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
10250                         config->mode_changed = true;
10251                 }
10252         }
10253         /* connector->new_encoder is now updated for all connectors. */
10254
10255         /* Update crtc of enabled connectors. */
10256         list_for_each_entry(connector, &dev->mode_config.connector_list,
10257                             base.head) {
10258                 struct drm_crtc *new_crtc;
10259
10260                 if (!connector->new_encoder)
10261                         continue;
10262
10263                 new_crtc = connector->new_encoder->base.crtc;
10264
10265                 for (ro = 0; ro < set->num_connectors; ro++) {
10266                         if (set->connectors[ro] == &connector->base)
10267                                 new_crtc = set->crtc;
10268                 }
10269
10270                 /* Make sure the new CRTC will work with the encoder */
10271                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
10272                                          new_crtc)) {
10273                         return -EINVAL;
10274                 }
10275                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
10276
10277                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
10278                         connector->base.base.id,
10279                         drm_get_connector_name(&connector->base),
10280                         new_crtc->base.id);
10281         }
10282
10283         /* Check for any encoders that needs to be disabled. */
10284         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10285                             base.head) {
10286                 int num_connectors = 0;
10287                 list_for_each_entry(connector,
10288                                     &dev->mode_config.connector_list,
10289                                     base.head) {
10290                         if (connector->new_encoder == encoder) {
10291                                 WARN_ON(!connector->new_encoder->new_crtc);
10292                                 num_connectors++;
10293                         }
10294                 }
10295
10296                 if (num_connectors == 0)
10297                         encoder->new_crtc = NULL;
10298                 else if (num_connectors > 1)
10299                         return -EINVAL;
10300
10301                 /* Only now check for crtc changes so we don't miss encoders
10302                  * that will be disabled. */
10303                 if (&encoder->new_crtc->base != encoder->base.crtc) {
10304                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
10305                         config->mode_changed = true;
10306                 }
10307         }
10308         /* Now we've also updated encoder->new_crtc for all encoders. */
10309
10310         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10311                             base.head) {
10312                 crtc->new_enabled = false;
10313
10314                 list_for_each_entry(encoder,
10315                                     &dev->mode_config.encoder_list,
10316                                     base.head) {
10317                         if (encoder->new_crtc == crtc) {
10318                                 crtc->new_enabled = true;
10319                                 break;
10320                         }
10321                 }
10322
10323                 if (crtc->new_enabled != crtc->base.enabled) {
10324                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
10325                                       crtc->new_enabled ? "en" : "dis");
10326                         config->mode_changed = true;
10327                 }
10328
10329                 if (crtc->new_enabled)
10330                         crtc->new_config = &crtc->config;
10331                 else
10332                         crtc->new_config = NULL;
10333         }
10334
10335         return 0;
10336 }
10337
10338 static void disable_crtc_nofb(struct intel_crtc *crtc)
10339 {
10340         struct drm_device *dev = crtc->base.dev;
10341         struct intel_encoder *encoder;
10342         struct intel_connector *connector;
10343
10344         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
10345                       pipe_name(crtc->pipe));
10346
10347         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10348                 if (connector->new_encoder &&
10349                     connector->new_encoder->new_crtc == crtc)
10350                         connector->new_encoder = NULL;
10351         }
10352
10353         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10354                 if (encoder->new_crtc == crtc)
10355                         encoder->new_crtc = NULL;
10356         }
10357
10358         crtc->new_enabled = false;
10359         crtc->new_config = NULL;
10360 }
10361
10362 static int intel_crtc_set_config(struct drm_mode_set *set)
10363 {
10364         struct drm_device *dev;
10365         struct drm_mode_set save_set;
10366         struct intel_set_config *config;
10367         int ret;
10368
10369         BUG_ON(!set);
10370         BUG_ON(!set->crtc);
10371         BUG_ON(!set->crtc->helper_private);
10372
10373         /* Enforce sane interface api - has been abused by the fb helper. */
10374         BUG_ON(!set->mode && set->fb);
10375         BUG_ON(set->fb && set->num_connectors == 0);
10376
10377         if (set->fb) {
10378                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
10379                                 set->crtc->base.id, set->fb->base.id,
10380                                 (int)set->num_connectors, set->x, set->y);
10381         } else {
10382                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
10383         }
10384
10385         dev = set->crtc->dev;
10386
10387         ret = -ENOMEM;
10388         config = kzalloc(sizeof(*config), GFP_KERNEL);
10389         if (!config)
10390                 goto out_config;
10391
10392         ret = intel_set_config_save_state(dev, config);
10393         if (ret)
10394                 goto out_config;
10395
10396         save_set.crtc = set->crtc;
10397         save_set.mode = &set->crtc->mode;
10398         save_set.x = set->crtc->x;
10399         save_set.y = set->crtc->y;
10400         save_set.fb = set->crtc->primary->fb;
10401
10402         /* Compute whether we need a full modeset, only an fb base update or no
10403          * change at all. In the future we might also check whether only the
10404          * mode changed, e.g. for LVDS where we only change the panel fitter in
10405          * such cases. */
10406         intel_set_config_compute_mode_changes(set, config);
10407
10408         ret = intel_modeset_stage_output_state(dev, set, config);
10409         if (ret)
10410                 goto fail;
10411
10412         if (config->mode_changed) {
10413                 ret = intel_set_mode(set->crtc, set->mode,
10414                                      set->x, set->y, set->fb);
10415         } else if (config->fb_changed) {
10416                 intel_crtc_wait_for_pending_flips(set->crtc);
10417
10418                 ret = intel_pipe_set_base(set->crtc,
10419                                           set->x, set->y, set->fb);
10420                 /*
10421                  * In the fastboot case this may be our only check of the
10422                  * state after boot.  It would be better to only do it on
10423                  * the first update, but we don't have a nice way of doing that
10424                  * (and really, set_config isn't used much for high freq page
10425                  * flipping, so increasing its cost here shouldn't be a big
10426                  * deal).
10427                  */
10428                 if (i915.fastboot && ret == 0)
10429                         intel_modeset_check_state(set->crtc->dev);
10430         }
10431
10432         if (ret) {
10433                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
10434                               set->crtc->base.id, ret);
10435 fail:
10436                 intel_set_config_restore_state(dev, config);
10437
10438                 /*
10439                  * HACK: if the pipe was on, but we didn't have a framebuffer,
10440                  * force the pipe off to avoid oopsing in the modeset code
10441                  * due to fb==NULL. This should only happen during boot since
10442                  * we don't yet reconstruct the FB from the hardware state.
10443                  */
10444                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
10445                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
10446
10447                 /* Try to restore the config */
10448                 if (config->mode_changed &&
10449                     intel_set_mode(save_set.crtc, save_set.mode,
10450                                    save_set.x, save_set.y, save_set.fb))
10451                         DRM_ERROR("failed to restore config after modeset failure\n");
10452         }
10453
10454 out_config:
10455         intel_set_config_free(config);
10456         return ret;
10457 }
10458
10459 static const struct drm_crtc_funcs intel_crtc_funcs = {
10460         .cursor_set = intel_crtc_cursor_set,
10461         .cursor_move = intel_crtc_cursor_move,
10462         .gamma_set = intel_crtc_gamma_set,
10463         .set_config = intel_crtc_set_config,
10464         .destroy = intel_crtc_destroy,
10465         .page_flip = intel_crtc_page_flip,
10466 };
10467
10468 static void intel_cpu_pll_init(struct drm_device *dev)
10469 {
10470         if (HAS_DDI(dev))
10471                 intel_ddi_pll_init(dev);
10472 }
10473
10474 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
10475                                       struct intel_shared_dpll *pll,
10476                                       struct intel_dpll_hw_state *hw_state)
10477 {
10478         uint32_t val;
10479
10480         val = I915_READ(PCH_DPLL(pll->id));
10481         hw_state->dpll = val;
10482         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
10483         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10484
10485         return val & DPLL_VCO_ENABLE;
10486 }
10487
10488 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10489                                   struct intel_shared_dpll *pll)
10490 {
10491         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10492         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10493 }
10494
10495 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10496                                 struct intel_shared_dpll *pll)
10497 {
10498         /* PCH refclock must be enabled first */
10499         ibx_assert_pch_refclk_enabled(dev_priv);
10500
10501         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10502
10503         /* Wait for the clocks to stabilize. */
10504         POSTING_READ(PCH_DPLL(pll->id));
10505         udelay(150);
10506
10507         /* The pixel multiplier can only be updated once the
10508          * DPLL is enabled and the clocks are stable.
10509          *
10510          * So write it again.
10511          */
10512         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10513         POSTING_READ(PCH_DPLL(pll->id));
10514         udelay(200);
10515 }
10516
10517 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10518                                  struct intel_shared_dpll *pll)
10519 {
10520         struct drm_device *dev = dev_priv->dev;
10521         struct intel_crtc *crtc;
10522
10523         /* Make sure no transcoder isn't still depending on us. */
10524         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10525                 if (intel_crtc_to_shared_dpll(crtc) == pll)
10526                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10527         }
10528
10529         I915_WRITE(PCH_DPLL(pll->id), 0);
10530         POSTING_READ(PCH_DPLL(pll->id));
10531         udelay(200);
10532 }
10533
10534 static char *ibx_pch_dpll_names[] = {
10535         "PCH DPLL A",
10536         "PCH DPLL B",
10537 };
10538
10539 static void ibx_pch_dpll_init(struct drm_device *dev)
10540 {
10541         struct drm_i915_private *dev_priv = dev->dev_private;
10542         int i;
10543
10544         dev_priv->num_shared_dpll = 2;
10545
10546         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10547                 dev_priv->shared_dplls[i].id = i;
10548                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10549                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10550                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10551                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10552                 dev_priv->shared_dplls[i].get_hw_state =
10553                         ibx_pch_dpll_get_hw_state;
10554         }
10555 }
10556
10557 static void intel_shared_dpll_init(struct drm_device *dev)
10558 {
10559         struct drm_i915_private *dev_priv = dev->dev_private;
10560
10561         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10562                 ibx_pch_dpll_init(dev);
10563         else
10564                 dev_priv->num_shared_dpll = 0;
10565
10566         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10567 }
10568
10569 static void intel_crtc_init(struct drm_device *dev, int pipe)
10570 {
10571         struct drm_i915_private *dev_priv = dev->dev_private;
10572         struct intel_crtc *intel_crtc;
10573         int i;
10574
10575         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10576         if (intel_crtc == NULL)
10577                 return;
10578
10579         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10580
10581         if (IS_GEN2(dev)) {
10582                 intel_crtc->max_cursor_width = GEN2_CURSOR_WIDTH;
10583                 intel_crtc->max_cursor_height = GEN2_CURSOR_HEIGHT;
10584         } else {
10585                 intel_crtc->max_cursor_width = CURSOR_WIDTH;
10586                 intel_crtc->max_cursor_height = CURSOR_HEIGHT;
10587         }
10588         dev->mode_config.cursor_width = intel_crtc->max_cursor_width;
10589         dev->mode_config.cursor_height = intel_crtc->max_cursor_height;
10590
10591         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10592         for (i = 0; i < 256; i++) {
10593                 intel_crtc->lut_r[i] = i;
10594                 intel_crtc->lut_g[i] = i;
10595                 intel_crtc->lut_b[i] = i;
10596         }
10597
10598         /*
10599          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
10600          * is hooked to plane B. Hence we want plane A feeding pipe B.
10601          */
10602         intel_crtc->pipe = pipe;
10603         intel_crtc->plane = pipe;
10604         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
10605                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10606                 intel_crtc->plane = !pipe;
10607         }
10608
10609         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10610                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10611         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10612         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10613
10614         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10615 }
10616
10617 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10618 {
10619         struct drm_encoder *encoder = connector->base.encoder;
10620
10621         WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
10622
10623         if (!encoder)
10624                 return INVALID_PIPE;
10625
10626         return to_intel_crtc(encoder->crtc)->pipe;
10627 }
10628
10629 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
10630                                 struct drm_file *file)
10631 {
10632         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
10633         struct drm_mode_object *drmmode_obj;
10634         struct intel_crtc *crtc;
10635
10636         if (!drm_core_check_feature(dev, DRIVER_MODESET))
10637                 return -ENODEV;
10638
10639         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
10640                         DRM_MODE_OBJECT_CRTC);
10641
10642         if (!drmmode_obj) {
10643                 DRM_ERROR("no such CRTC id\n");
10644                 return -ENOENT;
10645         }
10646
10647         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
10648         pipe_from_crtc_id->pipe = crtc->pipe;
10649
10650         return 0;
10651 }
10652
10653 static int intel_encoder_clones(struct intel_encoder *encoder)
10654 {
10655         struct drm_device *dev = encoder->base.dev;
10656         struct intel_encoder *source_encoder;
10657         int index_mask = 0;
10658         int entry = 0;
10659
10660         list_for_each_entry(source_encoder,
10661                             &dev->mode_config.encoder_list, base.head) {
10662                 if (encoders_cloneable(encoder, source_encoder))
10663                         index_mask |= (1 << entry);
10664
10665                 entry++;
10666         }
10667
10668         return index_mask;
10669 }
10670
10671 static bool has_edp_a(struct drm_device *dev)
10672 {
10673         struct drm_i915_private *dev_priv = dev->dev_private;
10674
10675         if (!IS_MOBILE(dev))
10676                 return false;
10677
10678         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
10679                 return false;
10680
10681         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
10682                 return false;
10683
10684         return true;
10685 }
10686
10687 const char *intel_output_name(int output)
10688 {
10689         static const char *names[] = {
10690                 [INTEL_OUTPUT_UNUSED] = "Unused",
10691                 [INTEL_OUTPUT_ANALOG] = "Analog",
10692                 [INTEL_OUTPUT_DVO] = "DVO",
10693                 [INTEL_OUTPUT_SDVO] = "SDVO",
10694                 [INTEL_OUTPUT_LVDS] = "LVDS",
10695                 [INTEL_OUTPUT_TVOUT] = "TV",
10696                 [INTEL_OUTPUT_HDMI] = "HDMI",
10697                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
10698                 [INTEL_OUTPUT_EDP] = "eDP",
10699                 [INTEL_OUTPUT_DSI] = "DSI",
10700                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
10701         };
10702
10703         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
10704                 return "Invalid";
10705
10706         return names[output];
10707 }
10708
10709 static void intel_setup_outputs(struct drm_device *dev)
10710 {
10711         struct drm_i915_private *dev_priv = dev->dev_private;
10712         struct intel_encoder *encoder;
10713         bool dpd_is_edp = false;
10714
10715         intel_lvds_init(dev);
10716
10717         if (!IS_ULT(dev))
10718                 intel_crt_init(dev);
10719
10720         if (HAS_DDI(dev)) {
10721                 int found;
10722
10723                 /* Haswell uses DDI functions to detect digital outputs */
10724                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10725                 /* DDI A only supports eDP */
10726                 if (found)
10727                         intel_ddi_init(dev, PORT_A);
10728
10729                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10730                  * register */
10731                 found = I915_READ(SFUSE_STRAP);
10732
10733                 if (found & SFUSE_STRAP_DDIB_DETECTED)
10734                         intel_ddi_init(dev, PORT_B);
10735                 if (found & SFUSE_STRAP_DDIC_DETECTED)
10736                         intel_ddi_init(dev, PORT_C);
10737                 if (found & SFUSE_STRAP_DDID_DETECTED)
10738                         intel_ddi_init(dev, PORT_D);
10739         } else if (HAS_PCH_SPLIT(dev)) {
10740                 int found;
10741                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
10742
10743                 if (has_edp_a(dev))
10744                         intel_dp_init(dev, DP_A, PORT_A);
10745
10746                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10747                         /* PCH SDVOB multiplex with HDMIB */
10748                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
10749                         if (!found)
10750                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10751                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10752                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
10753                 }
10754
10755                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10756                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10757
10758                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10759                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10760
10761                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10762                         intel_dp_init(dev, PCH_DP_C, PORT_C);
10763
10764                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10765                         intel_dp_init(dev, PCH_DP_D, PORT_D);
10766         } else if (IS_VALLEYVIEW(dev)) {
10767                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10768                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10769                                         PORT_B);
10770                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10771                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10772                 }
10773
10774                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10775                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10776                                         PORT_C);
10777                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10778                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
10779                 }
10780
10781                 intel_dsi_init(dev);
10782         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
10783                 bool found = false;
10784
10785                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10786                         DRM_DEBUG_KMS("probing SDVOB\n");
10787                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
10788                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
10789                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
10790                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
10791                         }
10792
10793                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
10794                                 intel_dp_init(dev, DP_B, PORT_B);
10795                 }
10796
10797                 /* Before G4X SDVOC doesn't have its own detect register */
10798
10799                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10800                         DRM_DEBUG_KMS("probing SDVOC\n");
10801                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
10802                 }
10803
10804                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
10805
10806                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
10807                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
10808                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
10809                         }
10810                         if (SUPPORTS_INTEGRATED_DP(dev))
10811                                 intel_dp_init(dev, DP_C, PORT_C);
10812                 }
10813
10814                 if (SUPPORTS_INTEGRATED_DP(dev) &&
10815                     (I915_READ(DP_D) & DP_DETECTED))
10816                         intel_dp_init(dev, DP_D, PORT_D);
10817         } else if (IS_GEN2(dev))
10818                 intel_dvo_init(dev);
10819
10820         if (SUPPORTS_TV(dev))
10821                 intel_tv_init(dev);
10822
10823         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10824                 encoder->base.possible_crtcs = encoder->crtc_mask;
10825                 encoder->base.possible_clones =
10826                         intel_encoder_clones(encoder);
10827         }
10828
10829         intel_init_pch_refclk(dev);
10830
10831         drm_helper_move_panel_connectors_to_head(dev);
10832 }
10833
10834 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
10835 {
10836         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10837
10838         drm_framebuffer_cleanup(fb);
10839         WARN_ON(!intel_fb->obj->framebuffer_references--);
10840         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
10841         kfree(intel_fb);
10842 }
10843
10844 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
10845                                                 struct drm_file *file,
10846                                                 unsigned int *handle)
10847 {
10848         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10849         struct drm_i915_gem_object *obj = intel_fb->obj;
10850
10851         return drm_gem_handle_create(file, &obj->base, handle);
10852 }
10853
10854 static const struct drm_framebuffer_funcs intel_fb_funcs = {
10855         .destroy = intel_user_framebuffer_destroy,
10856         .create_handle = intel_user_framebuffer_create_handle,
10857 };
10858
10859 static int intel_framebuffer_init(struct drm_device *dev,
10860                                   struct intel_framebuffer *intel_fb,
10861                                   struct drm_mode_fb_cmd2 *mode_cmd,
10862                                   struct drm_i915_gem_object *obj)
10863 {
10864         int aligned_height;
10865         int pitch_limit;
10866         int ret;
10867
10868         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
10869
10870         if (obj->tiling_mode == I915_TILING_Y) {
10871                 DRM_DEBUG("hardware does not support tiling Y\n");
10872                 return -EINVAL;
10873         }
10874
10875         if (mode_cmd->pitches[0] & 63) {
10876                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
10877                           mode_cmd->pitches[0]);
10878                 return -EINVAL;
10879         }
10880
10881         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
10882                 pitch_limit = 32*1024;
10883         } else if (INTEL_INFO(dev)->gen >= 4) {
10884                 if (obj->tiling_mode)
10885                         pitch_limit = 16*1024;
10886                 else
10887                         pitch_limit = 32*1024;
10888         } else if (INTEL_INFO(dev)->gen >= 3) {
10889                 if (obj->tiling_mode)
10890                         pitch_limit = 8*1024;
10891                 else
10892                         pitch_limit = 16*1024;
10893         } else
10894                 /* XXX DSPC is limited to 4k tiled */
10895                 pitch_limit = 8*1024;
10896
10897         if (mode_cmd->pitches[0] > pitch_limit) {
10898                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
10899                           obj->tiling_mode ? "tiled" : "linear",
10900                           mode_cmd->pitches[0], pitch_limit);
10901                 return -EINVAL;
10902         }
10903
10904         if (obj->tiling_mode != I915_TILING_NONE &&
10905             mode_cmd->pitches[0] != obj->stride) {
10906                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10907                           mode_cmd->pitches[0], obj->stride);
10908                 return -EINVAL;
10909         }
10910
10911         /* Reject formats not supported by any plane early. */
10912         switch (mode_cmd->pixel_format) {
10913         case DRM_FORMAT_C8:
10914         case DRM_FORMAT_RGB565:
10915         case DRM_FORMAT_XRGB8888:
10916         case DRM_FORMAT_ARGB8888:
10917                 break;
10918         case DRM_FORMAT_XRGB1555:
10919         case DRM_FORMAT_ARGB1555:
10920                 if (INTEL_INFO(dev)->gen > 3) {
10921                         DRM_DEBUG("unsupported pixel format: %s\n",
10922                                   drm_get_format_name(mode_cmd->pixel_format));
10923                         return -EINVAL;
10924                 }
10925                 break;
10926         case DRM_FORMAT_XBGR8888:
10927         case DRM_FORMAT_ABGR8888:
10928         case DRM_FORMAT_XRGB2101010:
10929         case DRM_FORMAT_ARGB2101010:
10930         case DRM_FORMAT_XBGR2101010:
10931         case DRM_FORMAT_ABGR2101010:
10932                 if (INTEL_INFO(dev)->gen < 4) {
10933                         DRM_DEBUG("unsupported pixel format: %s\n",
10934                                   drm_get_format_name(mode_cmd->pixel_format));
10935                         return -EINVAL;
10936                 }
10937                 break;
10938         case DRM_FORMAT_YUYV:
10939         case DRM_FORMAT_UYVY:
10940         case DRM_FORMAT_YVYU:
10941         case DRM_FORMAT_VYUY:
10942                 if (INTEL_INFO(dev)->gen < 5) {
10943                         DRM_DEBUG("unsupported pixel format: %s\n",
10944                                   drm_get_format_name(mode_cmd->pixel_format));
10945                         return -EINVAL;
10946                 }
10947                 break;
10948         default:
10949                 DRM_DEBUG("unsupported pixel format: %s\n",
10950                           drm_get_format_name(mode_cmd->pixel_format));
10951                 return -EINVAL;
10952         }
10953
10954         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10955         if (mode_cmd->offsets[0] != 0)
10956                 return -EINVAL;
10957
10958         aligned_height = intel_align_height(dev, mode_cmd->height,
10959                                             obj->tiling_mode);
10960         /* FIXME drm helper for size checks (especially planar formats)? */
10961         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
10962                 return -EINVAL;
10963
10964         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10965         intel_fb->obj = obj;
10966         intel_fb->obj->framebuffer_references++;
10967
10968         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10969         if (ret) {
10970                 DRM_ERROR("framebuffer init failed %d\n", ret);
10971                 return ret;
10972         }
10973
10974         return 0;
10975 }
10976
10977 static struct drm_framebuffer *
10978 intel_user_framebuffer_create(struct drm_device *dev,
10979                               struct drm_file *filp,
10980                               struct drm_mode_fb_cmd2 *mode_cmd)
10981 {
10982         struct drm_i915_gem_object *obj;
10983
10984         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10985                                                 mode_cmd->handles[0]));
10986         if (&obj->base == NULL)
10987                 return ERR_PTR(-ENOENT);
10988
10989         return intel_framebuffer_create(dev, mode_cmd, obj);
10990 }
10991
10992 #ifndef CONFIG_DRM_I915_FBDEV
10993 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
10994 {
10995 }
10996 #endif
10997
10998 static const struct drm_mode_config_funcs intel_mode_funcs = {
10999         .fb_create = intel_user_framebuffer_create,
11000         .output_poll_changed = intel_fbdev_output_poll_changed,
11001 };
11002
11003 /* Set up chip specific display functions */
11004 static void intel_init_display(struct drm_device *dev)
11005 {
11006         struct drm_i915_private *dev_priv = dev->dev_private;
11007
11008         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
11009                 dev_priv->display.find_dpll = g4x_find_best_dpll;
11010         else if (IS_VALLEYVIEW(dev))
11011                 dev_priv->display.find_dpll = vlv_find_best_dpll;
11012         else if (IS_PINEVIEW(dev))
11013                 dev_priv->display.find_dpll = pnv_find_best_dpll;
11014         else
11015                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
11016
11017         if (HAS_DDI(dev)) {
11018                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
11019                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11020                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
11021                 dev_priv->display.crtc_enable = haswell_crtc_enable;
11022                 dev_priv->display.crtc_disable = haswell_crtc_disable;
11023                 dev_priv->display.off = haswell_crtc_off;
11024                 dev_priv->display.update_primary_plane =
11025                         ironlake_update_primary_plane;
11026         } else if (HAS_PCH_SPLIT(dev)) {
11027                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
11028                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11029                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
11030                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
11031                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
11032                 dev_priv->display.off = ironlake_crtc_off;
11033                 dev_priv->display.update_primary_plane =
11034                         ironlake_update_primary_plane;
11035         } else if (IS_VALLEYVIEW(dev)) {
11036                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11037                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11038                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11039                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
11040                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11041                 dev_priv->display.off = i9xx_crtc_off;
11042                 dev_priv->display.update_primary_plane =
11043                         i9xx_update_primary_plane;
11044         } else {
11045                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11046                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11047                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11048                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
11049                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11050                 dev_priv->display.off = i9xx_crtc_off;
11051                 dev_priv->display.update_primary_plane =
11052                         i9xx_update_primary_plane;
11053         }
11054
11055         /* Returns the core display clock speed */
11056         if (IS_VALLEYVIEW(dev))
11057                 dev_priv->display.get_display_clock_speed =
11058                         valleyview_get_display_clock_speed;
11059         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
11060                 dev_priv->display.get_display_clock_speed =
11061                         i945_get_display_clock_speed;
11062         else if (IS_I915G(dev))
11063                 dev_priv->display.get_display_clock_speed =
11064                         i915_get_display_clock_speed;
11065         else if (IS_I945GM(dev) || IS_845G(dev))
11066                 dev_priv->display.get_display_clock_speed =
11067                         i9xx_misc_get_display_clock_speed;
11068         else if (IS_PINEVIEW(dev))
11069                 dev_priv->display.get_display_clock_speed =
11070                         pnv_get_display_clock_speed;
11071         else if (IS_I915GM(dev))
11072                 dev_priv->display.get_display_clock_speed =
11073                         i915gm_get_display_clock_speed;
11074         else if (IS_I865G(dev))
11075                 dev_priv->display.get_display_clock_speed =
11076                         i865_get_display_clock_speed;
11077         else if (IS_I85X(dev))
11078                 dev_priv->display.get_display_clock_speed =
11079                         i855_get_display_clock_speed;
11080         else /* 852, 830 */
11081                 dev_priv->display.get_display_clock_speed =
11082                         i830_get_display_clock_speed;
11083
11084         if (HAS_PCH_SPLIT(dev)) {
11085                 if (IS_GEN5(dev)) {
11086                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
11087                         dev_priv->display.write_eld = ironlake_write_eld;
11088                 } else if (IS_GEN6(dev)) {
11089                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
11090                         dev_priv->display.write_eld = ironlake_write_eld;
11091                 } else if (IS_IVYBRIDGE(dev)) {
11092                         /* FIXME: detect B0+ stepping and use auto training */
11093                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
11094                         dev_priv->display.write_eld = ironlake_write_eld;
11095                         dev_priv->display.modeset_global_resources =
11096                                 ivb_modeset_global_resources;
11097                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
11098                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
11099                         dev_priv->display.write_eld = haswell_write_eld;
11100                         dev_priv->display.modeset_global_resources =
11101                                 haswell_modeset_global_resources;
11102                 }
11103         } else if (IS_G4X(dev)) {
11104                 dev_priv->display.write_eld = g4x_write_eld;
11105         } else if (IS_VALLEYVIEW(dev)) {
11106                 dev_priv->display.modeset_global_resources =
11107                         valleyview_modeset_global_resources;
11108                 dev_priv->display.write_eld = ironlake_write_eld;
11109         }
11110
11111         /* Default just returns -ENODEV to indicate unsupported */
11112         dev_priv->display.queue_flip = intel_default_queue_flip;
11113
11114         switch (INTEL_INFO(dev)->gen) {
11115         case 2:
11116                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
11117                 break;
11118
11119         case 3:
11120                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
11121                 break;
11122
11123         case 4:
11124         case 5:
11125                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
11126                 break;
11127
11128         case 6:
11129                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
11130                 break;
11131         case 7:
11132         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
11133                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
11134                 break;
11135         }
11136
11137         intel_panel_init_backlight_funcs(dev);
11138 }
11139
11140 /*
11141  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
11142  * resume, or other times.  This quirk makes sure that's the case for
11143  * affected systems.
11144  */
11145 static void quirk_pipea_force(struct drm_device *dev)
11146 {
11147         struct drm_i915_private *dev_priv = dev->dev_private;
11148
11149         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
11150         DRM_INFO("applying pipe a force quirk\n");
11151 }
11152
11153 /*
11154  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
11155  */
11156 static void quirk_ssc_force_disable(struct drm_device *dev)
11157 {
11158         struct drm_i915_private *dev_priv = dev->dev_private;
11159         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
11160         DRM_INFO("applying lvds SSC disable quirk\n");
11161 }
11162
11163 /*
11164  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
11165  * brightness value
11166  */
11167 static void quirk_invert_brightness(struct drm_device *dev)
11168 {
11169         struct drm_i915_private *dev_priv = dev->dev_private;
11170         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
11171         DRM_INFO("applying inverted panel brightness quirk\n");
11172 }
11173
11174 struct intel_quirk {
11175         int device;
11176         int subsystem_vendor;
11177         int subsystem_device;
11178         void (*hook)(struct drm_device *dev);
11179 };
11180
11181 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
11182 struct intel_dmi_quirk {
11183         void (*hook)(struct drm_device *dev);
11184         const struct dmi_system_id (*dmi_id_list)[];
11185 };
11186
11187 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
11188 {
11189         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
11190         return 1;
11191 }
11192
11193 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
11194         {
11195                 .dmi_id_list = &(const struct dmi_system_id[]) {
11196                         {
11197                                 .callback = intel_dmi_reverse_brightness,
11198                                 .ident = "NCR Corporation",
11199                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
11200                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
11201                                 },
11202                         },
11203                         { }  /* terminating entry */
11204                 },
11205                 .hook = quirk_invert_brightness,
11206         },
11207 };
11208
11209 static struct intel_quirk intel_quirks[] = {
11210         /* HP Mini needs pipe A force quirk (LP: #322104) */
11211         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
11212
11213         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
11214         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
11215
11216         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
11217         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
11218
11219         /* 830 needs to leave pipe A & dpll A up */
11220         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
11221
11222         /* Lenovo U160 cannot use SSC on LVDS */
11223         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
11224
11225         /* Sony Vaio Y cannot use SSC on LVDS */
11226         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
11227
11228         /* Acer Aspire 5734Z must invert backlight brightness */
11229         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
11230
11231         /* Acer/eMachines G725 */
11232         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
11233
11234         /* Acer/eMachines e725 */
11235         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
11236
11237         /* Acer/Packard Bell NCL20 */
11238         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
11239
11240         /* Acer Aspire 4736Z */
11241         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
11242
11243         /* Acer Aspire 5336 */
11244         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
11245 };
11246
11247 static void intel_init_quirks(struct drm_device *dev)
11248 {
11249         struct pci_dev *d = dev->pdev;
11250         int i;
11251
11252         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
11253                 struct intel_quirk *q = &intel_quirks[i];
11254
11255                 if (d->device == q->device &&
11256                     (d->subsystem_vendor == q->subsystem_vendor ||
11257                      q->subsystem_vendor == PCI_ANY_ID) &&
11258                     (d->subsystem_device == q->subsystem_device ||
11259                      q->subsystem_device == PCI_ANY_ID))
11260                         q->hook(dev);
11261         }
11262         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
11263                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
11264                         intel_dmi_quirks[i].hook(dev);
11265         }
11266 }
11267
11268 /* Disable the VGA plane that we never use */
11269 static void i915_disable_vga(struct drm_device *dev)
11270 {
11271         struct drm_i915_private *dev_priv = dev->dev_private;
11272         u8 sr1;
11273         u32 vga_reg = i915_vgacntrl_reg(dev);
11274
11275         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
11276         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
11277         outb(SR01, VGA_SR_INDEX);
11278         sr1 = inb(VGA_SR_DATA);
11279         outb(sr1 | 1<<5, VGA_SR_DATA);
11280         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
11281         udelay(300);
11282
11283         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
11284         POSTING_READ(vga_reg);
11285 }
11286
11287 void intel_modeset_init_hw(struct drm_device *dev)
11288 {
11289         intel_prepare_ddi(dev);
11290
11291         intel_init_clock_gating(dev);
11292
11293         intel_reset_dpio(dev);
11294
11295         mutex_lock(&dev->struct_mutex);
11296         intel_enable_gt_powersave(dev);
11297         mutex_unlock(&dev->struct_mutex);
11298 }
11299
11300 void intel_modeset_suspend_hw(struct drm_device *dev)
11301 {
11302         intel_suspend_hw(dev);
11303 }
11304
11305 void intel_modeset_init(struct drm_device *dev)
11306 {
11307         struct drm_i915_private *dev_priv = dev->dev_private;
11308         int sprite, ret;
11309         enum pipe pipe;
11310         struct intel_crtc *crtc;
11311
11312         drm_mode_config_init(dev);
11313
11314         dev->mode_config.min_width = 0;
11315         dev->mode_config.min_height = 0;
11316
11317         dev->mode_config.preferred_depth = 24;
11318         dev->mode_config.prefer_shadow = 1;
11319
11320         dev->mode_config.funcs = &intel_mode_funcs;
11321
11322         intel_init_quirks(dev);
11323
11324         intel_init_pm(dev);
11325
11326         if (INTEL_INFO(dev)->num_pipes == 0)
11327                 return;
11328
11329         intel_init_display(dev);
11330
11331         if (IS_GEN2(dev)) {
11332                 dev->mode_config.max_width = 2048;
11333                 dev->mode_config.max_height = 2048;
11334         } else if (IS_GEN3(dev)) {
11335                 dev->mode_config.max_width = 4096;
11336                 dev->mode_config.max_height = 4096;
11337         } else {
11338                 dev->mode_config.max_width = 8192;
11339                 dev->mode_config.max_height = 8192;
11340         }
11341         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
11342
11343         DRM_DEBUG_KMS("%d display pipe%s available.\n",
11344                       INTEL_INFO(dev)->num_pipes,
11345                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
11346
11347         for_each_pipe(pipe) {
11348                 intel_crtc_init(dev, pipe);
11349                 for_each_sprite(pipe, sprite) {
11350                         ret = intel_plane_init(dev, pipe, sprite);
11351                         if (ret)
11352                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
11353                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
11354                 }
11355         }
11356
11357         intel_init_dpio(dev);
11358         intel_reset_dpio(dev);
11359
11360         intel_cpu_pll_init(dev);
11361         intel_shared_dpll_init(dev);
11362
11363         /* Just disable it once at startup */
11364         i915_disable_vga(dev);
11365         intel_setup_outputs(dev);
11366
11367         /* Just in case the BIOS is doing something questionable. */
11368         intel_disable_fbc(dev);
11369
11370         mutex_lock(&dev->mode_config.mutex);
11371         intel_modeset_setup_hw_state(dev, false);
11372         mutex_unlock(&dev->mode_config.mutex);
11373
11374         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11375                             base.head) {
11376                 if (!crtc->active)
11377                         continue;
11378
11379                 /*
11380                  * Note that reserving the BIOS fb up front prevents us
11381                  * from stuffing other stolen allocations like the ring
11382                  * on top.  This prevents some ugliness at boot time, and
11383                  * can even allow for smooth boot transitions if the BIOS
11384                  * fb is large enough for the active pipe configuration.
11385                  */
11386                 if (dev_priv->display.get_plane_config) {
11387                         dev_priv->display.get_plane_config(crtc,
11388                                                            &crtc->plane_config);
11389                         /*
11390                          * If the fb is shared between multiple heads, we'll
11391                          * just get the first one.
11392                          */
11393                         intel_find_plane_obj(crtc, &crtc->plane_config);
11394                 }
11395         }
11396 }
11397
11398 static void intel_enable_pipe_a(struct drm_device *dev)
11399 {
11400         struct intel_connector *connector;
11401         struct drm_connector *crt = NULL;
11402         struct intel_load_detect_pipe load_detect_temp;
11403
11404         /* We can't just switch on the pipe A, we need to set things up with a
11405          * proper mode and output configuration. As a gross hack, enable pipe A
11406          * by enabling the load detect pipe once. */
11407         list_for_each_entry(connector,
11408                             &dev->mode_config.connector_list,
11409                             base.head) {
11410                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
11411                         crt = &connector->base;
11412                         break;
11413                 }
11414         }
11415
11416         if (!crt)
11417                 return;
11418
11419         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
11420                 intel_release_load_detect_pipe(crt, &load_detect_temp);
11421
11422
11423 }
11424
11425 static bool
11426 intel_check_plane_mapping(struct intel_crtc *crtc)
11427 {
11428         struct drm_device *dev = crtc->base.dev;
11429         struct drm_i915_private *dev_priv = dev->dev_private;
11430         u32 reg, val;
11431
11432         if (INTEL_INFO(dev)->num_pipes == 1)
11433                 return true;
11434
11435         reg = DSPCNTR(!crtc->plane);
11436         val = I915_READ(reg);
11437
11438         if ((val & DISPLAY_PLANE_ENABLE) &&
11439             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
11440                 return false;
11441
11442         return true;
11443 }
11444
11445 static void intel_sanitize_crtc(struct intel_crtc *crtc)
11446 {
11447         struct drm_device *dev = crtc->base.dev;
11448         struct drm_i915_private *dev_priv = dev->dev_private;
11449         u32 reg;
11450
11451         /* Clear any frame start delays used for debugging left by the BIOS */
11452         reg = PIPECONF(crtc->config.cpu_transcoder);
11453         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
11454
11455         /* We need to sanitize the plane -> pipe mapping first because this will
11456          * disable the crtc (and hence change the state) if it is wrong. Note
11457          * that gen4+ has a fixed plane -> pipe mapping.  */
11458         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
11459                 struct intel_connector *connector;
11460                 bool plane;
11461
11462                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
11463                               crtc->base.base.id);
11464
11465                 /* Pipe has the wrong plane attached and the plane is active.
11466                  * Temporarily change the plane mapping and disable everything
11467                  * ...  */
11468                 plane = crtc->plane;
11469                 crtc->plane = !plane;
11470                 dev_priv->display.crtc_disable(&crtc->base);
11471                 crtc->plane = plane;
11472
11473                 /* ... and break all links. */
11474                 list_for_each_entry(connector, &dev->mode_config.connector_list,
11475                                     base.head) {
11476                         if (connector->encoder->base.crtc != &crtc->base)
11477                                 continue;
11478
11479                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11480                         connector->base.encoder = NULL;
11481                 }
11482                 /* multiple connectors may have the same encoder:
11483                  *  handle them and break crtc link separately */
11484                 list_for_each_entry(connector, &dev->mode_config.connector_list,
11485                                     base.head)
11486                         if (connector->encoder->base.crtc == &crtc->base) {
11487                                 connector->encoder->base.crtc = NULL;
11488                                 connector->encoder->connectors_active = false;
11489                         }
11490
11491                 WARN_ON(crtc->active);
11492                 crtc->base.enabled = false;
11493         }
11494
11495         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
11496             crtc->pipe == PIPE_A && !crtc->active) {
11497                 /* BIOS forgot to enable pipe A, this mostly happens after
11498                  * resume. Force-enable the pipe to fix this, the update_dpms
11499                  * call below we restore the pipe to the right state, but leave
11500                  * the required bits on. */
11501                 intel_enable_pipe_a(dev);
11502         }
11503
11504         /* Adjust the state of the output pipe according to whether we
11505          * have active connectors/encoders. */
11506         intel_crtc_update_dpms(&crtc->base);
11507
11508         if (crtc->active != crtc->base.enabled) {
11509                 struct intel_encoder *encoder;
11510
11511                 /* This can happen either due to bugs in the get_hw_state
11512                  * functions or because the pipe is force-enabled due to the
11513                  * pipe A quirk. */
11514                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
11515                               crtc->base.base.id,
11516                               crtc->base.enabled ? "enabled" : "disabled",
11517                               crtc->active ? "enabled" : "disabled");
11518
11519                 crtc->base.enabled = crtc->active;
11520
11521                 /* Because we only establish the connector -> encoder ->
11522                  * crtc links if something is active, this means the
11523                  * crtc is now deactivated. Break the links. connector
11524                  * -> encoder links are only establish when things are
11525                  *  actually up, hence no need to break them. */
11526                 WARN_ON(crtc->active);
11527
11528                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
11529                         WARN_ON(encoder->connectors_active);
11530                         encoder->base.crtc = NULL;
11531                 }
11532         }
11533         if (crtc->active) {
11534                 /*
11535                  * We start out with underrun reporting disabled to avoid races.
11536                  * For correct bookkeeping mark this on active crtcs.
11537                  *
11538                  * No protection against concurrent access is required - at
11539                  * worst a fifo underrun happens which also sets this to false.
11540                  */
11541                 crtc->cpu_fifo_underrun_disabled = true;
11542                 crtc->pch_fifo_underrun_disabled = true;
11543         }
11544 }
11545
11546 static void intel_sanitize_encoder(struct intel_encoder *encoder)
11547 {
11548         struct intel_connector *connector;
11549         struct drm_device *dev = encoder->base.dev;
11550
11551         /* We need to check both for a crtc link (meaning that the
11552          * encoder is active and trying to read from a pipe) and the
11553          * pipe itself being active. */
11554         bool has_active_crtc = encoder->base.crtc &&
11555                 to_intel_crtc(encoder->base.crtc)->active;
11556
11557         if (encoder->connectors_active && !has_active_crtc) {
11558                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
11559                               encoder->base.base.id,
11560                               drm_get_encoder_name(&encoder->base));
11561
11562                 /* Connector is active, but has no active pipe. This is
11563                  * fallout from our resume register restoring. Disable
11564                  * the encoder manually again. */
11565                 if (encoder->base.crtc) {
11566                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11567                                       encoder->base.base.id,
11568                                       drm_get_encoder_name(&encoder->base));
11569                         encoder->disable(encoder);
11570                 }
11571                 encoder->base.crtc = NULL;
11572                 encoder->connectors_active = false;
11573
11574                 /* Inconsistent output/port/pipe state happens presumably due to
11575                  * a bug in one of the get_hw_state functions. Or someplace else
11576                  * in our code, like the register restore mess on resume. Clamp
11577                  * things to off as a safer default. */
11578                 list_for_each_entry(connector,
11579                                     &dev->mode_config.connector_list,
11580                                     base.head) {
11581                         if (connector->encoder != encoder)
11582                                 continue;
11583                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11584                         connector->base.encoder = NULL;
11585                 }
11586         }
11587         /* Enabled encoders without active connectors will be fixed in
11588          * the crtc fixup. */
11589 }
11590
11591 void i915_redisable_vga_power_on(struct drm_device *dev)
11592 {
11593         struct drm_i915_private *dev_priv = dev->dev_private;
11594         u32 vga_reg = i915_vgacntrl_reg(dev);
11595
11596         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
11597                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
11598                 i915_disable_vga(dev);
11599         }
11600 }
11601
11602 void i915_redisable_vga(struct drm_device *dev)
11603 {
11604         struct drm_i915_private *dev_priv = dev->dev_private;
11605
11606         /* This function can be called both from intel_modeset_setup_hw_state or
11607          * at a very early point in our resume sequence, where the power well
11608          * structures are not yet restored. Since this function is at a very
11609          * paranoid "someone might have enabled VGA while we were not looking"
11610          * level, just check if the power well is enabled instead of trying to
11611          * follow the "don't touch the power well if we don't need it" policy
11612          * the rest of the driver uses. */
11613         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
11614                 return;
11615
11616         i915_redisable_vga_power_on(dev);
11617 }
11618
11619 static void intel_modeset_readout_hw_state(struct drm_device *dev)
11620 {
11621         struct drm_i915_private *dev_priv = dev->dev_private;
11622         enum pipe pipe;
11623         struct intel_crtc *crtc;
11624         struct intel_encoder *encoder;
11625         struct intel_connector *connector;
11626         int i;
11627
11628         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11629                             base.head) {
11630                 memset(&crtc->config, 0, sizeof(crtc->config));
11631
11632                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
11633
11634                 crtc->active = dev_priv->display.get_pipe_config(crtc,
11635                                                                  &crtc->config);
11636
11637                 crtc->base.enabled = crtc->active;
11638                 crtc->primary_enabled = crtc->active;
11639
11640                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
11641                               crtc->base.base.id,
11642                               crtc->active ? "enabled" : "disabled");
11643         }
11644
11645         /* FIXME: Smash this into the new shared dpll infrastructure. */
11646         if (HAS_DDI(dev))
11647                 intel_ddi_setup_hw_pll_state(dev);
11648
11649         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11650                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11651
11652                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
11653                 pll->active = 0;
11654                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11655                                     base.head) {
11656                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11657                                 pll->active++;
11658                 }
11659                 pll->refcount = pll->active;
11660
11661                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
11662                               pll->name, pll->refcount, pll->on);
11663         }
11664
11665         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11666                             base.head) {
11667                 pipe = 0;
11668
11669                 if (encoder->get_hw_state(encoder, &pipe)) {
11670                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11671                         encoder->base.crtc = &crtc->base;
11672                         encoder->get_config(encoder, &crtc->config);
11673                 } else {
11674                         encoder->base.crtc = NULL;
11675                 }
11676
11677                 encoder->connectors_active = false;
11678                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
11679                               encoder->base.base.id,
11680                               drm_get_encoder_name(&encoder->base),
11681                               encoder->base.crtc ? "enabled" : "disabled",
11682                               pipe_name(pipe));
11683         }
11684
11685         list_for_each_entry(connector, &dev->mode_config.connector_list,
11686                             base.head) {
11687                 if (connector->get_hw_state(connector)) {
11688                         connector->base.dpms = DRM_MODE_DPMS_ON;
11689                         connector->encoder->connectors_active = true;
11690                         connector->base.encoder = &connector->encoder->base;
11691                 } else {
11692                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11693                         connector->base.encoder = NULL;
11694                 }
11695                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
11696                               connector->base.base.id,
11697                               drm_get_connector_name(&connector->base),
11698                               connector->base.encoder ? "enabled" : "disabled");
11699         }
11700 }
11701
11702 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
11703  * and i915 state tracking structures. */
11704 void intel_modeset_setup_hw_state(struct drm_device *dev,
11705                                   bool force_restore)
11706 {
11707         struct drm_i915_private *dev_priv = dev->dev_private;
11708         enum pipe pipe;
11709         struct intel_crtc *crtc;
11710         struct intel_encoder *encoder;
11711         int i;
11712
11713         intel_modeset_readout_hw_state(dev);
11714
11715         /*
11716          * Now that we have the config, copy it to each CRTC struct
11717          * Note that this could go away if we move to using crtc_config
11718          * checking everywhere.
11719          */
11720         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11721                             base.head) {
11722                 if (crtc->active && i915.fastboot) {
11723                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
11724                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
11725                                       crtc->base.base.id);
11726                         drm_mode_debug_printmodeline(&crtc->base.mode);
11727                 }
11728         }
11729
11730         /* HW state is read out, now we need to sanitize this mess. */
11731         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11732                             base.head) {
11733                 intel_sanitize_encoder(encoder);
11734         }
11735
11736         for_each_pipe(pipe) {
11737                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11738                 intel_sanitize_crtc(crtc);
11739                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
11740         }
11741
11742         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11743                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11744
11745                 if (!pll->on || pll->active)
11746                         continue;
11747
11748                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
11749
11750                 pll->disable(dev_priv, pll);
11751                 pll->on = false;
11752         }
11753
11754         if (HAS_PCH_SPLIT(dev))
11755                 ilk_wm_get_hw_state(dev);
11756
11757         if (force_restore) {
11758                 i915_redisable_vga(dev);
11759
11760                 /*
11761                  * We need to use raw interfaces for restoring state to avoid
11762                  * checking (bogus) intermediate states.
11763                  */
11764                 for_each_pipe(pipe) {
11765                         struct drm_crtc *crtc =
11766                                 dev_priv->pipe_to_crtc_mapping[pipe];
11767
11768                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
11769                                          crtc->primary->fb);
11770                 }
11771         } else {
11772                 intel_modeset_update_staged_output_state(dev);
11773         }
11774
11775         intel_modeset_check_state(dev);
11776 }
11777
11778 void intel_modeset_gem_init(struct drm_device *dev)
11779 {
11780         struct drm_crtc *c;
11781         struct intel_framebuffer *fb;
11782
11783         mutex_lock(&dev->struct_mutex);
11784         intel_init_gt_powersave(dev);
11785         mutex_unlock(&dev->struct_mutex);
11786
11787         intel_modeset_init_hw(dev);
11788
11789         intel_setup_overlay(dev);
11790
11791         /*
11792          * Make sure any fbs we allocated at startup are properly
11793          * pinned & fenced.  When we do the allocation it's too early
11794          * for this.
11795          */
11796         mutex_lock(&dev->struct_mutex);
11797         list_for_each_entry(c, &dev->mode_config.crtc_list, head) {
11798                 if (!c->primary->fb)
11799                         continue;
11800
11801                 fb = to_intel_framebuffer(c->primary->fb);
11802                 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
11803                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
11804                                   to_intel_crtc(c)->pipe);
11805                         drm_framebuffer_unreference(c->primary->fb);
11806                         c->primary->fb = NULL;
11807                 }
11808         }
11809         mutex_unlock(&dev->struct_mutex);
11810 }
11811
11812 void intel_connector_unregister(struct intel_connector *intel_connector)
11813 {
11814         struct drm_connector *connector = &intel_connector->base;
11815
11816         intel_panel_destroy_backlight(connector);
11817         drm_sysfs_connector_remove(connector);
11818 }
11819
11820 void intel_modeset_cleanup(struct drm_device *dev)
11821 {
11822         struct drm_i915_private *dev_priv = dev->dev_private;
11823         struct drm_crtc *crtc;
11824         struct drm_connector *connector;
11825
11826         /*
11827          * Interrupts and polling as the first thing to avoid creating havoc.
11828          * Too much stuff here (turning of rps, connectors, ...) would
11829          * experience fancy races otherwise.
11830          */
11831         drm_irq_uninstall(dev);
11832         cancel_work_sync(&dev_priv->hotplug_work);
11833         /*
11834          * Due to the hpd irq storm handling the hotplug work can re-arm the
11835          * poll handlers. Hence disable polling after hpd handling is shut down.
11836          */
11837         drm_kms_helper_poll_fini(dev);
11838
11839         mutex_lock(&dev->struct_mutex);
11840
11841         intel_unregister_dsm_handler();
11842
11843         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
11844                 /* Skip inactive CRTCs */
11845                 if (!crtc->primary->fb)
11846                         continue;
11847
11848                 intel_increase_pllclock(crtc);
11849         }
11850
11851         intel_disable_fbc(dev);
11852
11853         intel_disable_gt_powersave(dev);
11854
11855         ironlake_teardown_rc6(dev);
11856
11857         mutex_unlock(&dev->struct_mutex);
11858
11859         /* flush any delayed tasks or pending work */
11860         flush_scheduled_work();
11861
11862         /* destroy the backlight and sysfs files before encoders/connectors */
11863         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11864                 struct intel_connector *intel_connector;
11865
11866                 intel_connector = to_intel_connector(connector);
11867                 intel_connector->unregister(intel_connector);
11868         }
11869
11870         drm_mode_config_cleanup(dev);
11871
11872         intel_cleanup_overlay(dev);
11873
11874         mutex_lock(&dev->struct_mutex);
11875         intel_cleanup_gt_powersave(dev);
11876         mutex_unlock(&dev->struct_mutex);
11877 }
11878
11879 /*
11880  * Return which encoder is currently attached for connector.
11881  */
11882 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
11883 {
11884         return &intel_attached_encoder(connector)->base;
11885 }
11886
11887 void intel_connector_attach_encoder(struct intel_connector *connector,
11888                                     struct intel_encoder *encoder)
11889 {
11890         connector->encoder = encoder;
11891         drm_mode_connector_attach_encoder(&connector->base,
11892                                           &encoder->base);
11893 }
11894
11895 /*
11896  * set vga decode state - true == enable VGA decode
11897  */
11898 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
11899 {
11900         struct drm_i915_private *dev_priv = dev->dev_private;
11901         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
11902         u16 gmch_ctrl;
11903
11904         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
11905                 DRM_ERROR("failed to read control word\n");
11906                 return -EIO;
11907         }
11908
11909         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
11910                 return 0;
11911
11912         if (state)
11913                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
11914         else
11915                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
11916
11917         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
11918                 DRM_ERROR("failed to write control word\n");
11919                 return -EIO;
11920         }
11921
11922         return 0;
11923 }
11924
11925 struct intel_display_error_state {
11926
11927         u32 power_well_driver;
11928
11929         int num_transcoders;
11930
11931         struct intel_cursor_error_state {
11932                 u32 control;
11933                 u32 position;
11934                 u32 base;
11935                 u32 size;
11936         } cursor[I915_MAX_PIPES];
11937
11938         struct intel_pipe_error_state {
11939                 bool power_domain_on;
11940                 u32 source;
11941         } pipe[I915_MAX_PIPES];
11942
11943         struct intel_plane_error_state {
11944                 u32 control;
11945                 u32 stride;
11946                 u32 size;
11947                 u32 pos;
11948                 u32 addr;
11949                 u32 surface;
11950                 u32 tile_offset;
11951         } plane[I915_MAX_PIPES];
11952
11953         struct intel_transcoder_error_state {
11954                 bool power_domain_on;
11955                 enum transcoder cpu_transcoder;
11956
11957                 u32 conf;
11958
11959                 u32 htotal;
11960                 u32 hblank;
11961                 u32 hsync;
11962                 u32 vtotal;
11963                 u32 vblank;
11964                 u32 vsync;
11965         } transcoder[4];
11966 };
11967
11968 struct intel_display_error_state *
11969 intel_display_capture_error_state(struct drm_device *dev)
11970 {
11971         struct drm_i915_private *dev_priv = dev->dev_private;
11972         struct intel_display_error_state *error;
11973         int transcoders[] = {
11974                 TRANSCODER_A,
11975                 TRANSCODER_B,
11976                 TRANSCODER_C,
11977                 TRANSCODER_EDP,
11978         };
11979         int i;
11980
11981         if (INTEL_INFO(dev)->num_pipes == 0)
11982                 return NULL;
11983
11984         error = kzalloc(sizeof(*error), GFP_ATOMIC);
11985         if (error == NULL)
11986                 return NULL;
11987
11988         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11989                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
11990
11991         for_each_pipe(i) {
11992                 error->pipe[i].power_domain_on =
11993                         intel_display_power_enabled_sw(dev_priv,
11994                                                        POWER_DOMAIN_PIPE(i));
11995                 if (!error->pipe[i].power_domain_on)
11996                         continue;
11997
11998                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
11999                         error->cursor[i].control = I915_READ(CURCNTR(i));
12000                         error->cursor[i].position = I915_READ(CURPOS(i));
12001                         error->cursor[i].base = I915_READ(CURBASE(i));
12002                 } else {
12003                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
12004                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
12005                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
12006                 }
12007
12008                 error->plane[i].control = I915_READ(DSPCNTR(i));
12009                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
12010                 if (INTEL_INFO(dev)->gen <= 3) {
12011                         error->plane[i].size = I915_READ(DSPSIZE(i));
12012                         error->plane[i].pos = I915_READ(DSPPOS(i));
12013                 }
12014                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12015                         error->plane[i].addr = I915_READ(DSPADDR(i));
12016                 if (INTEL_INFO(dev)->gen >= 4) {
12017                         error->plane[i].surface = I915_READ(DSPSURF(i));
12018                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
12019                 }
12020
12021                 error->pipe[i].source = I915_READ(PIPESRC(i));
12022         }
12023
12024         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
12025         if (HAS_DDI(dev_priv->dev))
12026                 error->num_transcoders++; /* Account for eDP. */
12027
12028         for (i = 0; i < error->num_transcoders; i++) {
12029                 enum transcoder cpu_transcoder = transcoders[i];
12030
12031                 error->transcoder[i].power_domain_on =
12032                         intel_display_power_enabled_sw(dev_priv,
12033                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
12034                 if (!error->transcoder[i].power_domain_on)
12035                         continue;
12036
12037                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
12038
12039                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
12040                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
12041                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
12042                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
12043                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
12044                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
12045                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
12046         }
12047
12048         return error;
12049 }
12050
12051 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
12052
12053 void
12054 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
12055                                 struct drm_device *dev,
12056                                 struct intel_display_error_state *error)
12057 {
12058         int i;
12059
12060         if (!error)
12061                 return;
12062
12063         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
12064         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12065                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
12066                            error->power_well_driver);
12067         for_each_pipe(i) {
12068                 err_printf(m, "Pipe [%d]:\n", i);
12069                 err_printf(m, "  Power: %s\n",
12070                            error->pipe[i].power_domain_on ? "on" : "off");
12071                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
12072
12073                 err_printf(m, "Plane [%d]:\n", i);
12074                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
12075                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
12076                 if (INTEL_INFO(dev)->gen <= 3) {
12077                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
12078                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
12079                 }
12080                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12081                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
12082                 if (INTEL_INFO(dev)->gen >= 4) {
12083                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
12084                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
12085                 }
12086
12087                 err_printf(m, "Cursor [%d]:\n", i);
12088                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
12089                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
12090                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
12091         }
12092
12093         for (i = 0; i < error->num_transcoders; i++) {
12094                 err_printf(m, "CPU transcoder: %c\n",
12095                            transcoder_name(error->transcoder[i].cpu_transcoder));
12096                 err_printf(m, "  Power: %s\n",
12097                            error->transcoder[i].power_domain_on ? "on" : "off");
12098                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
12099                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
12100                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
12101                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
12102                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
12103                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
12104                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
12105         }
12106 }