Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define DIV_ROUND_CLOSEST_ULL(ll, d)    \
45         ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
46
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
51                                 struct intel_crtc_config *pipe_config);
52 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
53                                    struct intel_crtc_config *pipe_config);
54
55 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
56                           int x, int y, struct drm_framebuffer *old_fb);
57 static int intel_framebuffer_init(struct drm_device *dev,
58                                   struct intel_framebuffer *ifb,
59                                   struct drm_mode_fb_cmd2 *mode_cmd,
60                                   struct drm_i915_gem_object *obj);
61 static void intel_dp_set_m_n(struct intel_crtc *crtc);
62 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
63 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
64 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
65                                          struct intel_link_m_n *m_n);
66 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
67 static void haswell_set_pipeconf(struct drm_crtc *crtc);
68 static void intel_set_pipe_csc(struct drm_crtc *crtc);
69 static void vlv_prepare_pll(struct intel_crtc *crtc);
70
71 typedef struct {
72         int     min, max;
73 } intel_range_t;
74
75 typedef struct {
76         int     dot_limit;
77         int     p2_slow, p2_fast;
78 } intel_p2_t;
79
80 typedef struct intel_limit intel_limit_t;
81 struct intel_limit {
82         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
83         intel_p2_t          p2;
84 };
85
86 int
87 intel_pch_rawclk(struct drm_device *dev)
88 {
89         struct drm_i915_private *dev_priv = dev->dev_private;
90
91         WARN_ON(!HAS_PCH_SPLIT(dev));
92
93         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
94 }
95
96 static inline u32 /* units of 100MHz */
97 intel_fdi_link_freq(struct drm_device *dev)
98 {
99         if (IS_GEN5(dev)) {
100                 struct drm_i915_private *dev_priv = dev->dev_private;
101                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
102         } else
103                 return 27;
104 }
105
106 static const intel_limit_t intel_limits_i8xx_dac = {
107         .dot = { .min = 25000, .max = 350000 },
108         .vco = { .min = 908000, .max = 1512000 },
109         .n = { .min = 2, .max = 16 },
110         .m = { .min = 96, .max = 140 },
111         .m1 = { .min = 18, .max = 26 },
112         .m2 = { .min = 6, .max = 16 },
113         .p = { .min = 4, .max = 128 },
114         .p1 = { .min = 2, .max = 33 },
115         .p2 = { .dot_limit = 165000,
116                 .p2_slow = 4, .p2_fast = 2 },
117 };
118
119 static const intel_limit_t intel_limits_i8xx_dvo = {
120         .dot = { .min = 25000, .max = 350000 },
121         .vco = { .min = 908000, .max = 1512000 },
122         .n = { .min = 2, .max = 16 },
123         .m = { .min = 96, .max = 140 },
124         .m1 = { .min = 18, .max = 26 },
125         .m2 = { .min = 6, .max = 16 },
126         .p = { .min = 4, .max = 128 },
127         .p1 = { .min = 2, .max = 33 },
128         .p2 = { .dot_limit = 165000,
129                 .p2_slow = 4, .p2_fast = 4 },
130 };
131
132 static const intel_limit_t intel_limits_i8xx_lvds = {
133         .dot = { .min = 25000, .max = 350000 },
134         .vco = { .min = 908000, .max = 1512000 },
135         .n = { .min = 2, .max = 16 },
136         .m = { .min = 96, .max = 140 },
137         .m1 = { .min = 18, .max = 26 },
138         .m2 = { .min = 6, .max = 16 },
139         .p = { .min = 4, .max = 128 },
140         .p1 = { .min = 1, .max = 6 },
141         .p2 = { .dot_limit = 165000,
142                 .p2_slow = 14, .p2_fast = 7 },
143 };
144
145 static const intel_limit_t intel_limits_i9xx_sdvo = {
146         .dot = { .min = 20000, .max = 400000 },
147         .vco = { .min = 1400000, .max = 2800000 },
148         .n = { .min = 1, .max = 6 },
149         .m = { .min = 70, .max = 120 },
150         .m1 = { .min = 8, .max = 18 },
151         .m2 = { .min = 3, .max = 7 },
152         .p = { .min = 5, .max = 80 },
153         .p1 = { .min = 1, .max = 8 },
154         .p2 = { .dot_limit = 200000,
155                 .p2_slow = 10, .p2_fast = 5 },
156 };
157
158 static const intel_limit_t intel_limits_i9xx_lvds = {
159         .dot = { .min = 20000, .max = 400000 },
160         .vco = { .min = 1400000, .max = 2800000 },
161         .n = { .min = 1, .max = 6 },
162         .m = { .min = 70, .max = 120 },
163         .m1 = { .min = 8, .max = 18 },
164         .m2 = { .min = 3, .max = 7 },
165         .p = { .min = 7, .max = 98 },
166         .p1 = { .min = 1, .max = 8 },
167         .p2 = { .dot_limit = 112000,
168                 .p2_slow = 14, .p2_fast = 7 },
169 };
170
171
172 static const intel_limit_t intel_limits_g4x_sdvo = {
173         .dot = { .min = 25000, .max = 270000 },
174         .vco = { .min = 1750000, .max = 3500000},
175         .n = { .min = 1, .max = 4 },
176         .m = { .min = 104, .max = 138 },
177         .m1 = { .min = 17, .max = 23 },
178         .m2 = { .min = 5, .max = 11 },
179         .p = { .min = 10, .max = 30 },
180         .p1 = { .min = 1, .max = 3},
181         .p2 = { .dot_limit = 270000,
182                 .p2_slow = 10,
183                 .p2_fast = 10
184         },
185 };
186
187 static const intel_limit_t intel_limits_g4x_hdmi = {
188         .dot = { .min = 22000, .max = 400000 },
189         .vco = { .min = 1750000, .max = 3500000},
190         .n = { .min = 1, .max = 4 },
191         .m = { .min = 104, .max = 138 },
192         .m1 = { .min = 16, .max = 23 },
193         .m2 = { .min = 5, .max = 11 },
194         .p = { .min = 5, .max = 80 },
195         .p1 = { .min = 1, .max = 8},
196         .p2 = { .dot_limit = 165000,
197                 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
201         .dot = { .min = 20000, .max = 115000 },
202         .vco = { .min = 1750000, .max = 3500000 },
203         .n = { .min = 1, .max = 3 },
204         .m = { .min = 104, .max = 138 },
205         .m1 = { .min = 17, .max = 23 },
206         .m2 = { .min = 5, .max = 11 },
207         .p = { .min = 28, .max = 112 },
208         .p1 = { .min = 2, .max = 8 },
209         .p2 = { .dot_limit = 0,
210                 .p2_slow = 14, .p2_fast = 14
211         },
212 };
213
214 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
215         .dot = { .min = 80000, .max = 224000 },
216         .vco = { .min = 1750000, .max = 3500000 },
217         .n = { .min = 1, .max = 3 },
218         .m = { .min = 104, .max = 138 },
219         .m1 = { .min = 17, .max = 23 },
220         .m2 = { .min = 5, .max = 11 },
221         .p = { .min = 14, .max = 42 },
222         .p1 = { .min = 2, .max = 6 },
223         .p2 = { .dot_limit = 0,
224                 .p2_slow = 7, .p2_fast = 7
225         },
226 };
227
228 static const intel_limit_t intel_limits_pineview_sdvo = {
229         .dot = { .min = 20000, .max = 400000},
230         .vco = { .min = 1700000, .max = 3500000 },
231         /* Pineview's Ncounter is a ring counter */
232         .n = { .min = 3, .max = 6 },
233         .m = { .min = 2, .max = 256 },
234         /* Pineview only has one combined m divider, which we treat as m2. */
235         .m1 = { .min = 0, .max = 0 },
236         .m2 = { .min = 0, .max = 254 },
237         .p = { .min = 5, .max = 80 },
238         .p1 = { .min = 1, .max = 8 },
239         .p2 = { .dot_limit = 200000,
240                 .p2_slow = 10, .p2_fast = 5 },
241 };
242
243 static const intel_limit_t intel_limits_pineview_lvds = {
244         .dot = { .min = 20000, .max = 400000 },
245         .vco = { .min = 1700000, .max = 3500000 },
246         .n = { .min = 3, .max = 6 },
247         .m = { .min = 2, .max = 256 },
248         .m1 = { .min = 0, .max = 0 },
249         .m2 = { .min = 0, .max = 254 },
250         .p = { .min = 7, .max = 112 },
251         .p1 = { .min = 1, .max = 8 },
252         .p2 = { .dot_limit = 112000,
253                 .p2_slow = 14, .p2_fast = 14 },
254 };
255
256 /* Ironlake / Sandybridge
257  *
258  * We calculate clock using (register_value + 2) for N/M1/M2, so here
259  * the range value for them is (actual_value - 2).
260  */
261 static const intel_limit_t intel_limits_ironlake_dac = {
262         .dot = { .min = 25000, .max = 350000 },
263         .vco = { .min = 1760000, .max = 3510000 },
264         .n = { .min = 1, .max = 5 },
265         .m = { .min = 79, .max = 127 },
266         .m1 = { .min = 12, .max = 22 },
267         .m2 = { .min = 5, .max = 9 },
268         .p = { .min = 5, .max = 80 },
269         .p1 = { .min = 1, .max = 8 },
270         .p2 = { .dot_limit = 225000,
271                 .p2_slow = 10, .p2_fast = 5 },
272 };
273
274 static const intel_limit_t intel_limits_ironlake_single_lvds = {
275         .dot = { .min = 25000, .max = 350000 },
276         .vco = { .min = 1760000, .max = 3510000 },
277         .n = { .min = 1, .max = 3 },
278         .m = { .min = 79, .max = 118 },
279         .m1 = { .min = 12, .max = 22 },
280         .m2 = { .min = 5, .max = 9 },
281         .p = { .min = 28, .max = 112 },
282         .p1 = { .min = 2, .max = 8 },
283         .p2 = { .dot_limit = 225000,
284                 .p2_slow = 14, .p2_fast = 14 },
285 };
286
287 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
288         .dot = { .min = 25000, .max = 350000 },
289         .vco = { .min = 1760000, .max = 3510000 },
290         .n = { .min = 1, .max = 3 },
291         .m = { .min = 79, .max = 127 },
292         .m1 = { .min = 12, .max = 22 },
293         .m2 = { .min = 5, .max = 9 },
294         .p = { .min = 14, .max = 56 },
295         .p1 = { .min = 2, .max = 8 },
296         .p2 = { .dot_limit = 225000,
297                 .p2_slow = 7, .p2_fast = 7 },
298 };
299
300 /* LVDS 100mhz refclk limits. */
301 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
302         .dot = { .min = 25000, .max = 350000 },
303         .vco = { .min = 1760000, .max = 3510000 },
304         .n = { .min = 1, .max = 2 },
305         .m = { .min = 79, .max = 126 },
306         .m1 = { .min = 12, .max = 22 },
307         .m2 = { .min = 5, .max = 9 },
308         .p = { .min = 28, .max = 112 },
309         .p1 = { .min = 2, .max = 8 },
310         .p2 = { .dot_limit = 225000,
311                 .p2_slow = 14, .p2_fast = 14 },
312 };
313
314 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
315         .dot = { .min = 25000, .max = 350000 },
316         .vco = { .min = 1760000, .max = 3510000 },
317         .n = { .min = 1, .max = 3 },
318         .m = { .min = 79, .max = 126 },
319         .m1 = { .min = 12, .max = 22 },
320         .m2 = { .min = 5, .max = 9 },
321         .p = { .min = 14, .max = 42 },
322         .p1 = { .min = 2, .max = 6 },
323         .p2 = { .dot_limit = 225000,
324                 .p2_slow = 7, .p2_fast = 7 },
325 };
326
327 static const intel_limit_t intel_limits_vlv = {
328          /*
329           * These are the data rate limits (measured in fast clocks)
330           * since those are the strictest limits we have. The fast
331           * clock and actual rate limits are more relaxed, so checking
332           * them would make no difference.
333           */
334         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
335         .vco = { .min = 4000000, .max = 6000000 },
336         .n = { .min = 1, .max = 7 },
337         .m1 = { .min = 2, .max = 3 },
338         .m2 = { .min = 11, .max = 156 },
339         .p1 = { .min = 2, .max = 3 },
340         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
341 };
342
343 static const intel_limit_t intel_limits_chv = {
344         /*
345          * These are the data rate limits (measured in fast clocks)
346          * since those are the strictest limits we have.  The fast
347          * clock and actual rate limits are more relaxed, so checking
348          * them would make no difference.
349          */
350         .dot = { .min = 25000 * 5, .max = 540000 * 5},
351         .vco = { .min = 4860000, .max = 6700000 },
352         .n = { .min = 1, .max = 1 },
353         .m1 = { .min = 2, .max = 2 },
354         .m2 = { .min = 24 << 22, .max = 175 << 22 },
355         .p1 = { .min = 2, .max = 4 },
356         .p2 = { .p2_slow = 1, .p2_fast = 14 },
357 };
358
359 static void vlv_clock(int refclk, intel_clock_t *clock)
360 {
361         clock->m = clock->m1 * clock->m2;
362         clock->p = clock->p1 * clock->p2;
363         if (WARN_ON(clock->n == 0 || clock->p == 0))
364                 return;
365         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
366         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
367 }
368
369 /**
370  * Returns whether any output on the specified pipe is of the specified type
371  */
372 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
373 {
374         struct drm_device *dev = crtc->dev;
375         struct intel_encoder *encoder;
376
377         for_each_encoder_on_crtc(dev, crtc, encoder)
378                 if (encoder->type == type)
379                         return true;
380
381         return false;
382 }
383
384 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
385                                                 int refclk)
386 {
387         struct drm_device *dev = crtc->dev;
388         const intel_limit_t *limit;
389
390         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
391                 if (intel_is_dual_link_lvds(dev)) {
392                         if (refclk == 100000)
393                                 limit = &intel_limits_ironlake_dual_lvds_100m;
394                         else
395                                 limit = &intel_limits_ironlake_dual_lvds;
396                 } else {
397                         if (refclk == 100000)
398                                 limit = &intel_limits_ironlake_single_lvds_100m;
399                         else
400                                 limit = &intel_limits_ironlake_single_lvds;
401                 }
402         } else
403                 limit = &intel_limits_ironlake_dac;
404
405         return limit;
406 }
407
408 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
409 {
410         struct drm_device *dev = crtc->dev;
411         const intel_limit_t *limit;
412
413         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
414                 if (intel_is_dual_link_lvds(dev))
415                         limit = &intel_limits_g4x_dual_channel_lvds;
416                 else
417                         limit = &intel_limits_g4x_single_channel_lvds;
418         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
419                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
420                 limit = &intel_limits_g4x_hdmi;
421         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
422                 limit = &intel_limits_g4x_sdvo;
423         } else /* The option is for other outputs */
424                 limit = &intel_limits_i9xx_sdvo;
425
426         return limit;
427 }
428
429 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
430 {
431         struct drm_device *dev = crtc->dev;
432         const intel_limit_t *limit;
433
434         if (HAS_PCH_SPLIT(dev))
435                 limit = intel_ironlake_limit(crtc, refclk);
436         else if (IS_G4X(dev)) {
437                 limit = intel_g4x_limit(crtc);
438         } else if (IS_PINEVIEW(dev)) {
439                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
440                         limit = &intel_limits_pineview_lvds;
441                 else
442                         limit = &intel_limits_pineview_sdvo;
443         } else if (IS_CHERRYVIEW(dev)) {
444                 limit = &intel_limits_chv;
445         } else if (IS_VALLEYVIEW(dev)) {
446                 limit = &intel_limits_vlv;
447         } else if (!IS_GEN2(dev)) {
448                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
449                         limit = &intel_limits_i9xx_lvds;
450                 else
451                         limit = &intel_limits_i9xx_sdvo;
452         } else {
453                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
454                         limit = &intel_limits_i8xx_lvds;
455                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
456                         limit = &intel_limits_i8xx_dvo;
457                 else
458                         limit = &intel_limits_i8xx_dac;
459         }
460         return limit;
461 }
462
463 /* m1 is reserved as 0 in Pineview, n is a ring counter */
464 static void pineview_clock(int refclk, intel_clock_t *clock)
465 {
466         clock->m = clock->m2 + 2;
467         clock->p = clock->p1 * clock->p2;
468         if (WARN_ON(clock->n == 0 || clock->p == 0))
469                 return;
470         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
471         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
472 }
473
474 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
475 {
476         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
477 }
478
479 static void i9xx_clock(int refclk, intel_clock_t *clock)
480 {
481         clock->m = i9xx_dpll_compute_m(clock);
482         clock->p = clock->p1 * clock->p2;
483         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
484                 return;
485         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
486         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
487 }
488
489 static void chv_clock(int refclk, intel_clock_t *clock)
490 {
491         clock->m = clock->m1 * clock->m2;
492         clock->p = clock->p1 * clock->p2;
493         if (WARN_ON(clock->n == 0 || clock->p == 0))
494                 return;
495         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
496                         clock->n << 22);
497         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
498 }
499
500 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
501 /**
502  * Returns whether the given set of divisors are valid for a given refclk with
503  * the given connectors.
504  */
505
506 static bool intel_PLL_is_valid(struct drm_device *dev,
507                                const intel_limit_t *limit,
508                                const intel_clock_t *clock)
509 {
510         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
511                 INTELPllInvalid("n out of range\n");
512         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
513                 INTELPllInvalid("p1 out of range\n");
514         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
515                 INTELPllInvalid("m2 out of range\n");
516         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
517                 INTELPllInvalid("m1 out of range\n");
518
519         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
520                 if (clock->m1 <= clock->m2)
521                         INTELPllInvalid("m1 <= m2\n");
522
523         if (!IS_VALLEYVIEW(dev)) {
524                 if (clock->p < limit->p.min || limit->p.max < clock->p)
525                         INTELPllInvalid("p out of range\n");
526                 if (clock->m < limit->m.min || limit->m.max < clock->m)
527                         INTELPllInvalid("m out of range\n");
528         }
529
530         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
531                 INTELPllInvalid("vco out of range\n");
532         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
533          * connector, etc., rather than just a single range.
534          */
535         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
536                 INTELPllInvalid("dot out of range\n");
537
538         return true;
539 }
540
541 static bool
542 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
543                     int target, int refclk, intel_clock_t *match_clock,
544                     intel_clock_t *best_clock)
545 {
546         struct drm_device *dev = crtc->dev;
547         intel_clock_t clock;
548         int err = target;
549
550         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
551                 /*
552                  * For LVDS just rely on its current settings for dual-channel.
553                  * We haven't figured out how to reliably set up different
554                  * single/dual channel state, if we even can.
555                  */
556                 if (intel_is_dual_link_lvds(dev))
557                         clock.p2 = limit->p2.p2_fast;
558                 else
559                         clock.p2 = limit->p2.p2_slow;
560         } else {
561                 if (target < limit->p2.dot_limit)
562                         clock.p2 = limit->p2.p2_slow;
563                 else
564                         clock.p2 = limit->p2.p2_fast;
565         }
566
567         memset(best_clock, 0, sizeof(*best_clock));
568
569         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
570              clock.m1++) {
571                 for (clock.m2 = limit->m2.min;
572                      clock.m2 <= limit->m2.max; clock.m2++) {
573                         if (clock.m2 >= clock.m1)
574                                 break;
575                         for (clock.n = limit->n.min;
576                              clock.n <= limit->n.max; clock.n++) {
577                                 for (clock.p1 = limit->p1.min;
578                                         clock.p1 <= limit->p1.max; clock.p1++) {
579                                         int this_err;
580
581                                         i9xx_clock(refclk, &clock);
582                                         if (!intel_PLL_is_valid(dev, limit,
583                                                                 &clock))
584                                                 continue;
585                                         if (match_clock &&
586                                             clock.p != match_clock->p)
587                                                 continue;
588
589                                         this_err = abs(clock.dot - target);
590                                         if (this_err < err) {
591                                                 *best_clock = clock;
592                                                 err = this_err;
593                                         }
594                                 }
595                         }
596                 }
597         }
598
599         return (err != target);
600 }
601
602 static bool
603 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
604                    int target, int refclk, intel_clock_t *match_clock,
605                    intel_clock_t *best_clock)
606 {
607         struct drm_device *dev = crtc->dev;
608         intel_clock_t clock;
609         int err = target;
610
611         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
612                 /*
613                  * For LVDS just rely on its current settings for dual-channel.
614                  * We haven't figured out how to reliably set up different
615                  * single/dual channel state, if we even can.
616                  */
617                 if (intel_is_dual_link_lvds(dev))
618                         clock.p2 = limit->p2.p2_fast;
619                 else
620                         clock.p2 = limit->p2.p2_slow;
621         } else {
622                 if (target < limit->p2.dot_limit)
623                         clock.p2 = limit->p2.p2_slow;
624                 else
625                         clock.p2 = limit->p2.p2_fast;
626         }
627
628         memset(best_clock, 0, sizeof(*best_clock));
629
630         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
631              clock.m1++) {
632                 for (clock.m2 = limit->m2.min;
633                      clock.m2 <= limit->m2.max; clock.m2++) {
634                         for (clock.n = limit->n.min;
635                              clock.n <= limit->n.max; clock.n++) {
636                                 for (clock.p1 = limit->p1.min;
637                                         clock.p1 <= limit->p1.max; clock.p1++) {
638                                         int this_err;
639
640                                         pineview_clock(refclk, &clock);
641                                         if (!intel_PLL_is_valid(dev, limit,
642                                                                 &clock))
643                                                 continue;
644                                         if (match_clock &&
645                                             clock.p != match_clock->p)
646                                                 continue;
647
648                                         this_err = abs(clock.dot - target);
649                                         if (this_err < err) {
650                                                 *best_clock = clock;
651                                                 err = this_err;
652                                         }
653                                 }
654                         }
655                 }
656         }
657
658         return (err != target);
659 }
660
661 static bool
662 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
663                    int target, int refclk, intel_clock_t *match_clock,
664                    intel_clock_t *best_clock)
665 {
666         struct drm_device *dev = crtc->dev;
667         intel_clock_t clock;
668         int max_n;
669         bool found;
670         /* approximately equals target * 0.00585 */
671         int err_most = (target >> 8) + (target >> 9);
672         found = false;
673
674         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
675                 if (intel_is_dual_link_lvds(dev))
676                         clock.p2 = limit->p2.p2_fast;
677                 else
678                         clock.p2 = limit->p2.p2_slow;
679         } else {
680                 if (target < limit->p2.dot_limit)
681                         clock.p2 = limit->p2.p2_slow;
682                 else
683                         clock.p2 = limit->p2.p2_fast;
684         }
685
686         memset(best_clock, 0, sizeof(*best_clock));
687         max_n = limit->n.max;
688         /* based on hardware requirement, prefer smaller n to precision */
689         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
690                 /* based on hardware requirement, prefere larger m1,m2 */
691                 for (clock.m1 = limit->m1.max;
692                      clock.m1 >= limit->m1.min; clock.m1--) {
693                         for (clock.m2 = limit->m2.max;
694                              clock.m2 >= limit->m2.min; clock.m2--) {
695                                 for (clock.p1 = limit->p1.max;
696                                      clock.p1 >= limit->p1.min; clock.p1--) {
697                                         int this_err;
698
699                                         i9xx_clock(refclk, &clock);
700                                         if (!intel_PLL_is_valid(dev, limit,
701                                                                 &clock))
702                                                 continue;
703
704                                         this_err = abs(clock.dot - target);
705                                         if (this_err < err_most) {
706                                                 *best_clock = clock;
707                                                 err_most = this_err;
708                                                 max_n = clock.n;
709                                                 found = true;
710                                         }
711                                 }
712                         }
713                 }
714         }
715         return found;
716 }
717
718 static bool
719 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
720                    int target, int refclk, intel_clock_t *match_clock,
721                    intel_clock_t *best_clock)
722 {
723         struct drm_device *dev = crtc->dev;
724         intel_clock_t clock;
725         unsigned int bestppm = 1000000;
726         /* min update 19.2 MHz */
727         int max_n = min(limit->n.max, refclk / 19200);
728         bool found = false;
729
730         target *= 5; /* fast clock */
731
732         memset(best_clock, 0, sizeof(*best_clock));
733
734         /* based on hardware requirement, prefer smaller n to precision */
735         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
736                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
737                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
738                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
739                                 clock.p = clock.p1 * clock.p2;
740                                 /* based on hardware requirement, prefer bigger m1,m2 values */
741                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
742                                         unsigned int ppm, diff;
743
744                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
745                                                                      refclk * clock.m1);
746
747                                         vlv_clock(refclk, &clock);
748
749                                         if (!intel_PLL_is_valid(dev, limit,
750                                                                 &clock))
751                                                 continue;
752
753                                         diff = abs(clock.dot - target);
754                                         ppm = div_u64(1000000ULL * diff, target);
755
756                                         if (ppm < 100 && clock.p > best_clock->p) {
757                                                 bestppm = 0;
758                                                 *best_clock = clock;
759                                                 found = true;
760                                         }
761
762                                         if (bestppm >= 10 && ppm < bestppm - 10) {
763                                                 bestppm = ppm;
764                                                 *best_clock = clock;
765                                                 found = true;
766                                         }
767                                 }
768                         }
769                 }
770         }
771
772         return found;
773 }
774
775 static bool
776 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
777                    int target, int refclk, intel_clock_t *match_clock,
778                    intel_clock_t *best_clock)
779 {
780         struct drm_device *dev = crtc->dev;
781         intel_clock_t clock;
782         uint64_t m2;
783         int found = false;
784
785         memset(best_clock, 0, sizeof(*best_clock));
786
787         /*
788          * Based on hardware doc, the n always set to 1, and m1 always
789          * set to 2.  If requires to support 200Mhz refclk, we need to
790          * revisit this because n may not 1 anymore.
791          */
792         clock.n = 1, clock.m1 = 2;
793         target *= 5;    /* fast clock */
794
795         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
796                 for (clock.p2 = limit->p2.p2_fast;
797                                 clock.p2 >= limit->p2.p2_slow;
798                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
799
800                         clock.p = clock.p1 * clock.p2;
801
802                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
803                                         clock.n) << 22, refclk * clock.m1);
804
805                         if (m2 > INT_MAX/clock.m1)
806                                 continue;
807
808                         clock.m2 = m2;
809
810                         chv_clock(refclk, &clock);
811
812                         if (!intel_PLL_is_valid(dev, limit, &clock))
813                                 continue;
814
815                         /* based on hardware requirement, prefer bigger p
816                          */
817                         if (clock.p > best_clock->p) {
818                                 *best_clock = clock;
819                                 found = true;
820                         }
821                 }
822         }
823
824         return found;
825 }
826
827 bool intel_crtc_active(struct drm_crtc *crtc)
828 {
829         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
830
831         /* Be paranoid as we can arrive here with only partial
832          * state retrieved from the hardware during setup.
833          *
834          * We can ditch the adjusted_mode.crtc_clock check as soon
835          * as Haswell has gained clock readout/fastboot support.
836          *
837          * We can ditch the crtc->primary->fb check as soon as we can
838          * properly reconstruct framebuffers.
839          */
840         return intel_crtc->active && crtc->primary->fb &&
841                 intel_crtc->config.adjusted_mode.crtc_clock;
842 }
843
844 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
845                                              enum pipe pipe)
846 {
847         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
848         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
849
850         return intel_crtc->config.cpu_transcoder;
851 }
852
853 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
854 {
855         struct drm_i915_private *dev_priv = dev->dev_private;
856         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
857
858         frame = I915_READ(frame_reg);
859
860         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
861                 WARN(1, "vblank wait timed out\n");
862 }
863
864 /**
865  * intel_wait_for_vblank - wait for vblank on a given pipe
866  * @dev: drm device
867  * @pipe: pipe to wait for
868  *
869  * Wait for vblank to occur on a given pipe.  Needed for various bits of
870  * mode setting code.
871  */
872 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
873 {
874         struct drm_i915_private *dev_priv = dev->dev_private;
875         int pipestat_reg = PIPESTAT(pipe);
876
877         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
878                 g4x_wait_for_vblank(dev, pipe);
879                 return;
880         }
881
882         /* Clear existing vblank status. Note this will clear any other
883          * sticky status fields as well.
884          *
885          * This races with i915_driver_irq_handler() with the result
886          * that either function could miss a vblank event.  Here it is not
887          * fatal, as we will either wait upon the next vblank interrupt or
888          * timeout.  Generally speaking intel_wait_for_vblank() is only
889          * called during modeset at which time the GPU should be idle and
890          * should *not* be performing page flips and thus not waiting on
891          * vblanks...
892          * Currently, the result of us stealing a vblank from the irq
893          * handler is that a single frame will be skipped during swapbuffers.
894          */
895         I915_WRITE(pipestat_reg,
896                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
897
898         /* Wait for vblank interrupt bit to set */
899         if (wait_for(I915_READ(pipestat_reg) &
900                      PIPE_VBLANK_INTERRUPT_STATUS,
901                      50))
902                 DRM_DEBUG_KMS("vblank wait timed out\n");
903 }
904
905 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
906 {
907         struct drm_i915_private *dev_priv = dev->dev_private;
908         u32 reg = PIPEDSL(pipe);
909         u32 line1, line2;
910         u32 line_mask;
911
912         if (IS_GEN2(dev))
913                 line_mask = DSL_LINEMASK_GEN2;
914         else
915                 line_mask = DSL_LINEMASK_GEN3;
916
917         line1 = I915_READ(reg) & line_mask;
918         mdelay(5);
919         line2 = I915_READ(reg) & line_mask;
920
921         return line1 == line2;
922 }
923
924 /*
925  * intel_wait_for_pipe_off - wait for pipe to turn off
926  * @dev: drm device
927  * @pipe: pipe to wait for
928  *
929  * After disabling a pipe, we can't wait for vblank in the usual way,
930  * spinning on the vblank interrupt status bit, since we won't actually
931  * see an interrupt when the pipe is disabled.
932  *
933  * On Gen4 and above:
934  *   wait for the pipe register state bit to turn off
935  *
936  * Otherwise:
937  *   wait for the display line value to settle (it usually
938  *   ends up stopping at the start of the next frame).
939  *
940  */
941 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
942 {
943         struct drm_i915_private *dev_priv = dev->dev_private;
944         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
945                                                                       pipe);
946
947         if (INTEL_INFO(dev)->gen >= 4) {
948                 int reg = PIPECONF(cpu_transcoder);
949
950                 /* Wait for the Pipe State to go off */
951                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
952                              100))
953                         WARN(1, "pipe_off wait timed out\n");
954         } else {
955                 /* Wait for the display line to settle */
956                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
957                         WARN(1, "pipe_off wait timed out\n");
958         }
959 }
960
961 /*
962  * ibx_digital_port_connected - is the specified port connected?
963  * @dev_priv: i915 private structure
964  * @port: the port to test
965  *
966  * Returns true if @port is connected, false otherwise.
967  */
968 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
969                                 struct intel_digital_port *port)
970 {
971         u32 bit;
972
973         if (HAS_PCH_IBX(dev_priv->dev)) {
974                 switch (port->port) {
975                 case PORT_B:
976                         bit = SDE_PORTB_HOTPLUG;
977                         break;
978                 case PORT_C:
979                         bit = SDE_PORTC_HOTPLUG;
980                         break;
981                 case PORT_D:
982                         bit = SDE_PORTD_HOTPLUG;
983                         break;
984                 default:
985                         return true;
986                 }
987         } else {
988                 switch (port->port) {
989                 case PORT_B:
990                         bit = SDE_PORTB_HOTPLUG_CPT;
991                         break;
992                 case PORT_C:
993                         bit = SDE_PORTC_HOTPLUG_CPT;
994                         break;
995                 case PORT_D:
996                         bit = SDE_PORTD_HOTPLUG_CPT;
997                         break;
998                 default:
999                         return true;
1000                 }
1001         }
1002
1003         return I915_READ(SDEISR) & bit;
1004 }
1005
1006 static const char *state_string(bool enabled)
1007 {
1008         return enabled ? "on" : "off";
1009 }
1010
1011 /* Only for pre-ILK configs */
1012 void assert_pll(struct drm_i915_private *dev_priv,
1013                 enum pipe pipe, bool state)
1014 {
1015         int reg;
1016         u32 val;
1017         bool cur_state;
1018
1019         reg = DPLL(pipe);
1020         val = I915_READ(reg);
1021         cur_state = !!(val & DPLL_VCO_ENABLE);
1022         WARN(cur_state != state,
1023              "PLL state assertion failure (expected %s, current %s)\n",
1024              state_string(state), state_string(cur_state));
1025 }
1026
1027 /* XXX: the dsi pll is shared between MIPI DSI ports */
1028 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1029 {
1030         u32 val;
1031         bool cur_state;
1032
1033         mutex_lock(&dev_priv->dpio_lock);
1034         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1035         mutex_unlock(&dev_priv->dpio_lock);
1036
1037         cur_state = val & DSI_PLL_VCO_EN;
1038         WARN(cur_state != state,
1039              "DSI PLL state assertion failure (expected %s, current %s)\n",
1040              state_string(state), state_string(cur_state));
1041 }
1042 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1043 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1044
1045 struct intel_shared_dpll *
1046 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1047 {
1048         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1049
1050         if (crtc->config.shared_dpll < 0)
1051                 return NULL;
1052
1053         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1054 }
1055
1056 /* For ILK+ */
1057 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1058                         struct intel_shared_dpll *pll,
1059                         bool state)
1060 {
1061         bool cur_state;
1062         struct intel_dpll_hw_state hw_state;
1063
1064         if (HAS_PCH_LPT(dev_priv->dev)) {
1065                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1066                 return;
1067         }
1068
1069         if (WARN (!pll,
1070                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1071                 return;
1072
1073         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1074         WARN(cur_state != state,
1075              "%s assertion failure (expected %s, current %s)\n",
1076              pll->name, state_string(state), state_string(cur_state));
1077 }
1078
1079 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080                           enum pipe pipe, bool state)
1081 {
1082         int reg;
1083         u32 val;
1084         bool cur_state;
1085         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086                                                                       pipe);
1087
1088         if (HAS_DDI(dev_priv->dev)) {
1089                 /* DDI does not have a specific FDI_TX register */
1090                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1091                 val = I915_READ(reg);
1092                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1093         } else {
1094                 reg = FDI_TX_CTL(pipe);
1095                 val = I915_READ(reg);
1096                 cur_state = !!(val & FDI_TX_ENABLE);
1097         }
1098         WARN(cur_state != state,
1099              "FDI TX state assertion failure (expected %s, current %s)\n",
1100              state_string(state), state_string(cur_state));
1101 }
1102 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106                           enum pipe pipe, bool state)
1107 {
1108         int reg;
1109         u32 val;
1110         bool cur_state;
1111
1112         reg = FDI_RX_CTL(pipe);
1113         val = I915_READ(reg);
1114         cur_state = !!(val & FDI_RX_ENABLE);
1115         WARN(cur_state != state,
1116              "FDI RX state assertion failure (expected %s, current %s)\n",
1117              state_string(state), state_string(cur_state));
1118 }
1119 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123                                       enum pipe pipe)
1124 {
1125         int reg;
1126         u32 val;
1127
1128         /* ILK FDI PLL is always enabled */
1129         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1130                 return;
1131
1132         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1133         if (HAS_DDI(dev_priv->dev))
1134                 return;
1135
1136         reg = FDI_TX_CTL(pipe);
1137         val = I915_READ(reg);
1138         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139 }
1140
1141 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142                        enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155
1156 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157                                   enum pipe pipe)
1158 {
1159         int pp_reg, lvds_reg;
1160         u32 val;
1161         enum pipe panel_pipe = PIPE_A;
1162         bool locked = true;
1163
1164         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1165                 pp_reg = PCH_PP_CONTROL;
1166                 lvds_reg = PCH_LVDS;
1167         } else {
1168                 pp_reg = PP_CONTROL;
1169                 lvds_reg = LVDS;
1170         }
1171
1172         val = I915_READ(pp_reg);
1173         if (!(val & PANEL_POWER_ON) ||
1174             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1175                 locked = false;
1176
1177         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1178                 panel_pipe = PIPE_B;
1179
1180         WARN(panel_pipe == pipe && locked,
1181              "panel assertion failure, pipe %c regs locked\n",
1182              pipe_name(pipe));
1183 }
1184
1185 static void assert_cursor(struct drm_i915_private *dev_priv,
1186                           enum pipe pipe, bool state)
1187 {
1188         struct drm_device *dev = dev_priv->dev;
1189         bool cur_state;
1190
1191         if (IS_845G(dev) || IS_I865G(dev))
1192                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1193         else
1194                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1195
1196         WARN(cur_state != state,
1197              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1198              pipe_name(pipe), state_string(state), state_string(cur_state));
1199 }
1200 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1201 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1202
1203 void assert_pipe(struct drm_i915_private *dev_priv,
1204                  enum pipe pipe, bool state)
1205 {
1206         int reg;
1207         u32 val;
1208         bool cur_state;
1209         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1210                                                                       pipe);
1211
1212         /* if we need the pipe A quirk it must be always on */
1213         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1214                 state = true;
1215
1216         if (!intel_display_power_enabled(dev_priv,
1217                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1218                 cur_state = false;
1219         } else {
1220                 reg = PIPECONF(cpu_transcoder);
1221                 val = I915_READ(reg);
1222                 cur_state = !!(val & PIPECONF_ENABLE);
1223         }
1224
1225         WARN(cur_state != state,
1226              "pipe %c assertion failure (expected %s, current %s)\n",
1227              pipe_name(pipe), state_string(state), state_string(cur_state));
1228 }
1229
1230 static void assert_plane(struct drm_i915_private *dev_priv,
1231                          enum plane plane, bool state)
1232 {
1233         int reg;
1234         u32 val;
1235         bool cur_state;
1236
1237         reg = DSPCNTR(plane);
1238         val = I915_READ(reg);
1239         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1240         WARN(cur_state != state,
1241              "plane %c assertion failure (expected %s, current %s)\n",
1242              plane_name(plane), state_string(state), state_string(cur_state));
1243 }
1244
1245 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1246 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1247
1248 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1249                                    enum pipe pipe)
1250 {
1251         struct drm_device *dev = dev_priv->dev;
1252         int reg, i;
1253         u32 val;
1254         int cur_pipe;
1255
1256         /* Primary planes are fixed to pipes on gen4+ */
1257         if (INTEL_INFO(dev)->gen >= 4) {
1258                 reg = DSPCNTR(pipe);
1259                 val = I915_READ(reg);
1260                 WARN(val & DISPLAY_PLANE_ENABLE,
1261                      "plane %c assertion failure, should be disabled but not\n",
1262                      plane_name(pipe));
1263                 return;
1264         }
1265
1266         /* Need to check both planes against the pipe */
1267         for_each_pipe(i) {
1268                 reg = DSPCNTR(i);
1269                 val = I915_READ(reg);
1270                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1271                         DISPPLANE_SEL_PIPE_SHIFT;
1272                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1273                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1274                      plane_name(i), pipe_name(pipe));
1275         }
1276 }
1277
1278 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1279                                     enum pipe pipe)
1280 {
1281         struct drm_device *dev = dev_priv->dev;
1282         int reg, sprite;
1283         u32 val;
1284
1285         if (IS_VALLEYVIEW(dev)) {
1286                 for_each_sprite(pipe, sprite) {
1287                         reg = SPCNTR(pipe, sprite);
1288                         val = I915_READ(reg);
1289                         WARN(val & SP_ENABLE,
1290                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1291                              sprite_name(pipe, sprite), pipe_name(pipe));
1292                 }
1293         } else if (INTEL_INFO(dev)->gen >= 7) {
1294                 reg = SPRCTL(pipe);
1295                 val = I915_READ(reg);
1296                 WARN(val & SPRITE_ENABLE,
1297                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1298                      plane_name(pipe), pipe_name(pipe));
1299         } else if (INTEL_INFO(dev)->gen >= 5) {
1300                 reg = DVSCNTR(pipe);
1301                 val = I915_READ(reg);
1302                 WARN(val & DVS_ENABLE,
1303                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1304                      plane_name(pipe), pipe_name(pipe));
1305         }
1306 }
1307
1308 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1309 {
1310         u32 val;
1311         bool enabled;
1312
1313         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1314
1315         val = I915_READ(PCH_DREF_CONTROL);
1316         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1317                             DREF_SUPERSPREAD_SOURCE_MASK));
1318         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1319 }
1320
1321 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1322                                            enum pipe pipe)
1323 {
1324         int reg;
1325         u32 val;
1326         bool enabled;
1327
1328         reg = PCH_TRANSCONF(pipe);
1329         val = I915_READ(reg);
1330         enabled = !!(val & TRANS_ENABLE);
1331         WARN(enabled,
1332              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1333              pipe_name(pipe));
1334 }
1335
1336 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1337                             enum pipe pipe, u32 port_sel, u32 val)
1338 {
1339         if ((val & DP_PORT_EN) == 0)
1340                 return false;
1341
1342         if (HAS_PCH_CPT(dev_priv->dev)) {
1343                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1344                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1345                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1346                         return false;
1347         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1348                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1349                         return false;
1350         } else {
1351                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1352                         return false;
1353         }
1354         return true;
1355 }
1356
1357 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1358                               enum pipe pipe, u32 val)
1359 {
1360         if ((val & SDVO_ENABLE) == 0)
1361                 return false;
1362
1363         if (HAS_PCH_CPT(dev_priv->dev)) {
1364                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1365                         return false;
1366         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1367                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1368                         return false;
1369         } else {
1370                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1371                         return false;
1372         }
1373         return true;
1374 }
1375
1376 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1377                               enum pipe pipe, u32 val)
1378 {
1379         if ((val & LVDS_PORT_EN) == 0)
1380                 return false;
1381
1382         if (HAS_PCH_CPT(dev_priv->dev)) {
1383                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1384                         return false;
1385         } else {
1386                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1387                         return false;
1388         }
1389         return true;
1390 }
1391
1392 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1393                               enum pipe pipe, u32 val)
1394 {
1395         if ((val & ADPA_DAC_ENABLE) == 0)
1396                 return false;
1397         if (HAS_PCH_CPT(dev_priv->dev)) {
1398                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1399                         return false;
1400         } else {
1401                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1402                         return false;
1403         }
1404         return true;
1405 }
1406
1407 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1408                                    enum pipe pipe, int reg, u32 port_sel)
1409 {
1410         u32 val = I915_READ(reg);
1411         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1412              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1413              reg, pipe_name(pipe));
1414
1415         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1416              && (val & DP_PIPEB_SELECT),
1417              "IBX PCH dp port still using transcoder B\n");
1418 }
1419
1420 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1421                                      enum pipe pipe, int reg)
1422 {
1423         u32 val = I915_READ(reg);
1424         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1425              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1426              reg, pipe_name(pipe));
1427
1428         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1429              && (val & SDVO_PIPE_B_SELECT),
1430              "IBX PCH hdmi port still using transcoder B\n");
1431 }
1432
1433 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1434                                       enum pipe pipe)
1435 {
1436         int reg;
1437         u32 val;
1438
1439         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1440         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1441         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1442
1443         reg = PCH_ADPA;
1444         val = I915_READ(reg);
1445         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1446              "PCH VGA enabled on transcoder %c, should be disabled\n",
1447              pipe_name(pipe));
1448
1449         reg = PCH_LVDS;
1450         val = I915_READ(reg);
1451         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1452              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1453              pipe_name(pipe));
1454
1455         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1456         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1457         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1458 }
1459
1460 static void intel_init_dpio(struct drm_device *dev)
1461 {
1462         struct drm_i915_private *dev_priv = dev->dev_private;
1463
1464         if (!IS_VALLEYVIEW(dev))
1465                 return;
1466
1467         /*
1468          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1469          * CHV x1 PHY (DP/HDMI D)
1470          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1471          */
1472         if (IS_CHERRYVIEW(dev)) {
1473                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1474                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1475         } else {
1476                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1477         }
1478 }
1479
1480 static void intel_reset_dpio(struct drm_device *dev)
1481 {
1482         struct drm_i915_private *dev_priv = dev->dev_private;
1483
1484         if (!IS_VALLEYVIEW(dev))
1485                 return;
1486
1487         if (IS_CHERRYVIEW(dev)) {
1488                 enum dpio_phy phy;
1489                 u32 val;
1490
1491                 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1492                         /* Poll for phypwrgood signal */
1493                         if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1494                                                 PHY_POWERGOOD(phy), 1))
1495                                 DRM_ERROR("Display PHY %d is not power up\n", phy);
1496
1497                         /*
1498                          * Deassert common lane reset for PHY.
1499                          *
1500                          * This should only be done on init and resume from S3
1501                          * with both PLLs disabled, or we risk losing DPIO and
1502                          * PLL synchronization.
1503                          */
1504                         val = I915_READ(DISPLAY_PHY_CONTROL);
1505                         I915_WRITE(DISPLAY_PHY_CONTROL,
1506                                 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1507                 }
1508
1509         } else {
1510                 /*
1511                  * If DPIO has already been reset, e.g. by BIOS, just skip all
1512                  * this.
1513                  */
1514                 if (I915_READ(DPIO_CTL) & DPIO_CMNRST)
1515                         return;
1516
1517                 /*
1518                  * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1519                  * Need to assert and de-assert PHY SB reset by gating the
1520                  * common lane power, then un-gating it.
1521                  * Simply ungating isn't enough to reset the PHY enough to get
1522                  * ports and lanes running.
1523                  */
1524                 __vlv_set_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC,
1525                                      false);
1526                 __vlv_set_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC,
1527                                      true);
1528         }
1529 }
1530
1531 static void vlv_enable_pll(struct intel_crtc *crtc)
1532 {
1533         struct drm_device *dev = crtc->base.dev;
1534         struct drm_i915_private *dev_priv = dev->dev_private;
1535         int reg = DPLL(crtc->pipe);
1536         u32 dpll = crtc->config.dpll_hw_state.dpll;
1537
1538         assert_pipe_disabled(dev_priv, crtc->pipe);
1539
1540         /* No really, not for ILK+ */
1541         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1542
1543         /* PLL is protected by panel, make sure we can write it */
1544         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1545                 assert_panel_unlocked(dev_priv, crtc->pipe);
1546
1547         I915_WRITE(reg, dpll);
1548         POSTING_READ(reg);
1549         udelay(150);
1550
1551         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1552                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1553
1554         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1555         POSTING_READ(DPLL_MD(crtc->pipe));
1556
1557         /* We do this three times for luck */
1558         I915_WRITE(reg, dpll);
1559         POSTING_READ(reg);
1560         udelay(150); /* wait for warmup */
1561         I915_WRITE(reg, dpll);
1562         POSTING_READ(reg);
1563         udelay(150); /* wait for warmup */
1564         I915_WRITE(reg, dpll);
1565         POSTING_READ(reg);
1566         udelay(150); /* wait for warmup */
1567 }
1568
1569 static void chv_enable_pll(struct intel_crtc *crtc)
1570 {
1571         struct drm_device *dev = crtc->base.dev;
1572         struct drm_i915_private *dev_priv = dev->dev_private;
1573         int pipe = crtc->pipe;
1574         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1575         u32 tmp;
1576
1577         assert_pipe_disabled(dev_priv, crtc->pipe);
1578
1579         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1580
1581         mutex_lock(&dev_priv->dpio_lock);
1582
1583         /* Enable back the 10bit clock to display controller */
1584         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1585         tmp |= DPIO_DCLKP_EN;
1586         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1587
1588         /*
1589          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1590          */
1591         udelay(1);
1592
1593         /* Enable PLL */
1594         I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1595
1596         /* Check PLL is locked */
1597         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1598                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1599
1600         /* not sure when this should be written */
1601         I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1602         POSTING_READ(DPLL_MD(pipe));
1603
1604         mutex_unlock(&dev_priv->dpio_lock);
1605 }
1606
1607 static void i9xx_enable_pll(struct intel_crtc *crtc)
1608 {
1609         struct drm_device *dev = crtc->base.dev;
1610         struct drm_i915_private *dev_priv = dev->dev_private;
1611         int reg = DPLL(crtc->pipe);
1612         u32 dpll = crtc->config.dpll_hw_state.dpll;
1613
1614         assert_pipe_disabled(dev_priv, crtc->pipe);
1615
1616         /* No really, not for ILK+ */
1617         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1618
1619         /* PLL is protected by panel, make sure we can write it */
1620         if (IS_MOBILE(dev) && !IS_I830(dev))
1621                 assert_panel_unlocked(dev_priv, crtc->pipe);
1622
1623         I915_WRITE(reg, dpll);
1624
1625         /* Wait for the clocks to stabilize. */
1626         POSTING_READ(reg);
1627         udelay(150);
1628
1629         if (INTEL_INFO(dev)->gen >= 4) {
1630                 I915_WRITE(DPLL_MD(crtc->pipe),
1631                            crtc->config.dpll_hw_state.dpll_md);
1632         } else {
1633                 /* The pixel multiplier can only be updated once the
1634                  * DPLL is enabled and the clocks are stable.
1635                  *
1636                  * So write it again.
1637                  */
1638                 I915_WRITE(reg, dpll);
1639         }
1640
1641         /* We do this three times for luck */
1642         I915_WRITE(reg, dpll);
1643         POSTING_READ(reg);
1644         udelay(150); /* wait for warmup */
1645         I915_WRITE(reg, dpll);
1646         POSTING_READ(reg);
1647         udelay(150); /* wait for warmup */
1648         I915_WRITE(reg, dpll);
1649         POSTING_READ(reg);
1650         udelay(150); /* wait for warmup */
1651 }
1652
1653 /**
1654  * i9xx_disable_pll - disable a PLL
1655  * @dev_priv: i915 private structure
1656  * @pipe: pipe PLL to disable
1657  *
1658  * Disable the PLL for @pipe, making sure the pipe is off first.
1659  *
1660  * Note!  This is for pre-ILK only.
1661  */
1662 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1663 {
1664         /* Don't disable pipe A or pipe A PLLs if needed */
1665         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1666                 return;
1667
1668         /* Make sure the pipe isn't still relying on us */
1669         assert_pipe_disabled(dev_priv, pipe);
1670
1671         I915_WRITE(DPLL(pipe), 0);
1672         POSTING_READ(DPLL(pipe));
1673 }
1674
1675 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1676 {
1677         u32 val = 0;
1678
1679         /* Make sure the pipe isn't still relying on us */
1680         assert_pipe_disabled(dev_priv, pipe);
1681
1682         /*
1683          * Leave integrated clock source and reference clock enabled for pipe B.
1684          * The latter is needed for VGA hotplug / manual detection.
1685          */
1686         if (pipe == PIPE_B)
1687                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1688         I915_WRITE(DPLL(pipe), val);
1689         POSTING_READ(DPLL(pipe));
1690
1691 }
1692
1693 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1694 {
1695         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1696         u32 val;
1697
1698         /* Make sure the pipe isn't still relying on us */
1699         assert_pipe_disabled(dev_priv, pipe);
1700
1701         /* Set PLL en = 0 */
1702         val = DPLL_SSC_REF_CLOCK_CHV;
1703         if (pipe != PIPE_A)
1704                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1705         I915_WRITE(DPLL(pipe), val);
1706         POSTING_READ(DPLL(pipe));
1707
1708         mutex_lock(&dev_priv->dpio_lock);
1709
1710         /* Disable 10bit clock to display controller */
1711         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1712         val &= ~DPIO_DCLKP_EN;
1713         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1714
1715         mutex_unlock(&dev_priv->dpio_lock);
1716 }
1717
1718 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1719                 struct intel_digital_port *dport)
1720 {
1721         u32 port_mask;
1722         int dpll_reg;
1723
1724         switch (dport->port) {
1725         case PORT_B:
1726                 port_mask = DPLL_PORTB_READY_MASK;
1727                 dpll_reg = DPLL(0);
1728                 break;
1729         case PORT_C:
1730                 port_mask = DPLL_PORTC_READY_MASK;
1731                 dpll_reg = DPLL(0);
1732                 break;
1733         case PORT_D:
1734                 port_mask = DPLL_PORTD_READY_MASK;
1735                 dpll_reg = DPIO_PHY_STATUS;
1736                 break;
1737         default:
1738                 BUG();
1739         }
1740
1741         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1742                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1743                      port_name(dport->port), I915_READ(dpll_reg));
1744 }
1745
1746 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1747 {
1748         struct drm_device *dev = crtc->base.dev;
1749         struct drm_i915_private *dev_priv = dev->dev_private;
1750         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1751
1752         WARN_ON(!pll->refcount);
1753         if (pll->active == 0) {
1754                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1755                 WARN_ON(pll->on);
1756                 assert_shared_dpll_disabled(dev_priv, pll);
1757
1758                 pll->mode_set(dev_priv, pll);
1759         }
1760 }
1761
1762 /**
1763  * intel_enable_shared_dpll - enable PCH PLL
1764  * @dev_priv: i915 private structure
1765  * @pipe: pipe PLL to enable
1766  *
1767  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1768  * drives the transcoder clock.
1769  */
1770 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1771 {
1772         struct drm_device *dev = crtc->base.dev;
1773         struct drm_i915_private *dev_priv = dev->dev_private;
1774         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1775
1776         if (WARN_ON(pll == NULL))
1777                 return;
1778
1779         if (WARN_ON(pll->refcount == 0))
1780                 return;
1781
1782         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1783                       pll->name, pll->active, pll->on,
1784                       crtc->base.base.id);
1785
1786         if (pll->active++) {
1787                 WARN_ON(!pll->on);
1788                 assert_shared_dpll_enabled(dev_priv, pll);
1789                 return;
1790         }
1791         WARN_ON(pll->on);
1792
1793         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1794         pll->enable(dev_priv, pll);
1795         pll->on = true;
1796 }
1797
1798 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1799 {
1800         struct drm_device *dev = crtc->base.dev;
1801         struct drm_i915_private *dev_priv = dev->dev_private;
1802         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1803
1804         /* PCH only available on ILK+ */
1805         BUG_ON(INTEL_INFO(dev)->gen < 5);
1806         if (WARN_ON(pll == NULL))
1807                return;
1808
1809         if (WARN_ON(pll->refcount == 0))
1810                 return;
1811
1812         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1813                       pll->name, pll->active, pll->on,
1814                       crtc->base.base.id);
1815
1816         if (WARN_ON(pll->active == 0)) {
1817                 assert_shared_dpll_disabled(dev_priv, pll);
1818                 return;
1819         }
1820
1821         assert_shared_dpll_enabled(dev_priv, pll);
1822         WARN_ON(!pll->on);
1823         if (--pll->active)
1824                 return;
1825
1826         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1827         pll->disable(dev_priv, pll);
1828         pll->on = false;
1829 }
1830
1831 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1832                                            enum pipe pipe)
1833 {
1834         struct drm_device *dev = dev_priv->dev;
1835         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1836         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1837         uint32_t reg, val, pipeconf_val;
1838
1839         /* PCH only available on ILK+ */
1840         BUG_ON(INTEL_INFO(dev)->gen < 5);
1841
1842         /* Make sure PCH DPLL is enabled */
1843         assert_shared_dpll_enabled(dev_priv,
1844                                    intel_crtc_to_shared_dpll(intel_crtc));
1845
1846         /* FDI must be feeding us bits for PCH ports */
1847         assert_fdi_tx_enabled(dev_priv, pipe);
1848         assert_fdi_rx_enabled(dev_priv, pipe);
1849
1850         if (HAS_PCH_CPT(dev)) {
1851                 /* Workaround: Set the timing override bit before enabling the
1852                  * pch transcoder. */
1853                 reg = TRANS_CHICKEN2(pipe);
1854                 val = I915_READ(reg);
1855                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1856                 I915_WRITE(reg, val);
1857         }
1858
1859         reg = PCH_TRANSCONF(pipe);
1860         val = I915_READ(reg);
1861         pipeconf_val = I915_READ(PIPECONF(pipe));
1862
1863         if (HAS_PCH_IBX(dev_priv->dev)) {
1864                 /*
1865                  * make the BPC in transcoder be consistent with
1866                  * that in pipeconf reg.
1867                  */
1868                 val &= ~PIPECONF_BPC_MASK;
1869                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1870         }
1871
1872         val &= ~TRANS_INTERLACE_MASK;
1873         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1874                 if (HAS_PCH_IBX(dev_priv->dev) &&
1875                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1876                         val |= TRANS_LEGACY_INTERLACED_ILK;
1877                 else
1878                         val |= TRANS_INTERLACED;
1879         else
1880                 val |= TRANS_PROGRESSIVE;
1881
1882         I915_WRITE(reg, val | TRANS_ENABLE);
1883         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1884                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1885 }
1886
1887 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1888                                       enum transcoder cpu_transcoder)
1889 {
1890         u32 val, pipeconf_val;
1891
1892         /* PCH only available on ILK+ */
1893         BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1894
1895         /* FDI must be feeding us bits for PCH ports */
1896         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1897         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1898
1899         /* Workaround: set timing override bit. */
1900         val = I915_READ(_TRANSA_CHICKEN2);
1901         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1902         I915_WRITE(_TRANSA_CHICKEN2, val);
1903
1904         val = TRANS_ENABLE;
1905         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1906
1907         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1908             PIPECONF_INTERLACED_ILK)
1909                 val |= TRANS_INTERLACED;
1910         else
1911                 val |= TRANS_PROGRESSIVE;
1912
1913         I915_WRITE(LPT_TRANSCONF, val);
1914         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1915                 DRM_ERROR("Failed to enable PCH transcoder\n");
1916 }
1917
1918 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1919                                             enum pipe pipe)
1920 {
1921         struct drm_device *dev = dev_priv->dev;
1922         uint32_t reg, val;
1923
1924         /* FDI relies on the transcoder */
1925         assert_fdi_tx_disabled(dev_priv, pipe);
1926         assert_fdi_rx_disabled(dev_priv, pipe);
1927
1928         /* Ports must be off as well */
1929         assert_pch_ports_disabled(dev_priv, pipe);
1930
1931         reg = PCH_TRANSCONF(pipe);
1932         val = I915_READ(reg);
1933         val &= ~TRANS_ENABLE;
1934         I915_WRITE(reg, val);
1935         /* wait for PCH transcoder off, transcoder state */
1936         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1937                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1938
1939         if (!HAS_PCH_IBX(dev)) {
1940                 /* Workaround: Clear the timing override chicken bit again. */
1941                 reg = TRANS_CHICKEN2(pipe);
1942                 val = I915_READ(reg);
1943                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1944                 I915_WRITE(reg, val);
1945         }
1946 }
1947
1948 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1949 {
1950         u32 val;
1951
1952         val = I915_READ(LPT_TRANSCONF);
1953         val &= ~TRANS_ENABLE;
1954         I915_WRITE(LPT_TRANSCONF, val);
1955         /* wait for PCH transcoder off, transcoder state */
1956         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1957                 DRM_ERROR("Failed to disable PCH transcoder\n");
1958
1959         /* Workaround: clear timing override bit. */
1960         val = I915_READ(_TRANSA_CHICKEN2);
1961         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1962         I915_WRITE(_TRANSA_CHICKEN2, val);
1963 }
1964
1965 /**
1966  * intel_enable_pipe - enable a pipe, asserting requirements
1967  * @crtc: crtc responsible for the pipe
1968  *
1969  * Enable @crtc's pipe, making sure that various hardware specific requirements
1970  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1971  */
1972 static void intel_enable_pipe(struct intel_crtc *crtc)
1973 {
1974         struct drm_device *dev = crtc->base.dev;
1975         struct drm_i915_private *dev_priv = dev->dev_private;
1976         enum pipe pipe = crtc->pipe;
1977         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1978                                                                       pipe);
1979         enum pipe pch_transcoder;
1980         int reg;
1981         u32 val;
1982
1983         assert_planes_disabled(dev_priv, pipe);
1984         assert_cursor_disabled(dev_priv, pipe);
1985         assert_sprites_disabled(dev_priv, pipe);
1986
1987         if (HAS_PCH_LPT(dev_priv->dev))
1988                 pch_transcoder = TRANSCODER_A;
1989         else
1990                 pch_transcoder = pipe;
1991
1992         /*
1993          * A pipe without a PLL won't actually be able to drive bits from
1994          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1995          * need the check.
1996          */
1997         if (!HAS_PCH_SPLIT(dev_priv->dev))
1998                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
1999                         assert_dsi_pll_enabled(dev_priv);
2000                 else
2001                         assert_pll_enabled(dev_priv, pipe);
2002         else {
2003                 if (crtc->config.has_pch_encoder) {
2004                         /* if driving the PCH, we need FDI enabled */
2005                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2006                         assert_fdi_tx_pll_enabled(dev_priv,
2007                                                   (enum pipe) cpu_transcoder);
2008                 }
2009                 /* FIXME: assert CPU port conditions for SNB+ */
2010         }
2011
2012         reg = PIPECONF(cpu_transcoder);
2013         val = I915_READ(reg);
2014         if (val & PIPECONF_ENABLE) {
2015                 WARN_ON(!(pipe == PIPE_A &&
2016                           dev_priv->quirks & QUIRK_PIPEA_FORCE));
2017                 return;
2018         }
2019
2020         I915_WRITE(reg, val | PIPECONF_ENABLE);
2021         POSTING_READ(reg);
2022 }
2023
2024 /**
2025  * intel_disable_pipe - disable a pipe, asserting requirements
2026  * @dev_priv: i915 private structure
2027  * @pipe: pipe to disable
2028  *
2029  * Disable @pipe, making sure that various hardware specific requirements
2030  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2031  *
2032  * @pipe should be %PIPE_A or %PIPE_B.
2033  *
2034  * Will wait until the pipe has shut down before returning.
2035  */
2036 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2037                                enum pipe pipe)
2038 {
2039         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2040                                                                       pipe);
2041         int reg;
2042         u32 val;
2043
2044         /*
2045          * Make sure planes won't keep trying to pump pixels to us,
2046          * or we might hang the display.
2047          */
2048         assert_planes_disabled(dev_priv, pipe);
2049         assert_cursor_disabled(dev_priv, pipe);
2050         assert_sprites_disabled(dev_priv, pipe);
2051
2052         /* Don't disable pipe A or pipe A PLLs if needed */
2053         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2054                 return;
2055
2056         reg = PIPECONF(cpu_transcoder);
2057         val = I915_READ(reg);
2058         if ((val & PIPECONF_ENABLE) == 0)
2059                 return;
2060
2061         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
2062         intel_wait_for_pipe_off(dev_priv->dev, pipe);
2063 }
2064
2065 /*
2066  * Plane regs are double buffered, going from enabled->disabled needs a
2067  * trigger in order to latch.  The display address reg provides this.
2068  */
2069 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2070                                enum plane plane)
2071 {
2072         struct drm_device *dev = dev_priv->dev;
2073         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2074
2075         I915_WRITE(reg, I915_READ(reg));
2076         POSTING_READ(reg);
2077 }
2078
2079 /**
2080  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2081  * @dev_priv: i915 private structure
2082  * @plane: plane to enable
2083  * @pipe: pipe being fed
2084  *
2085  * Enable @plane on @pipe, making sure that @pipe is running first.
2086  */
2087 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2088                                           enum plane plane, enum pipe pipe)
2089 {
2090         struct intel_crtc *intel_crtc =
2091                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2092         int reg;
2093         u32 val;
2094
2095         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2096         assert_pipe_enabled(dev_priv, pipe);
2097
2098         if (intel_crtc->primary_enabled)
2099                 return;
2100
2101         intel_crtc->primary_enabled = true;
2102
2103         reg = DSPCNTR(plane);
2104         val = I915_READ(reg);
2105         WARN_ON(val & DISPLAY_PLANE_ENABLE);
2106
2107         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
2108         intel_flush_primary_plane(dev_priv, plane);
2109 }
2110
2111 /**
2112  * intel_disable_primary_hw_plane - disable the primary hardware plane
2113  * @dev_priv: i915 private structure
2114  * @plane: plane to disable
2115  * @pipe: pipe consuming the data
2116  *
2117  * Disable @plane; should be an independent operation.
2118  */
2119 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2120                                            enum plane plane, enum pipe pipe)
2121 {
2122         struct intel_crtc *intel_crtc =
2123                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2124         int reg;
2125         u32 val;
2126
2127         if (!intel_crtc->primary_enabled)
2128                 return;
2129
2130         intel_crtc->primary_enabled = false;
2131
2132         reg = DSPCNTR(plane);
2133         val = I915_READ(reg);
2134         WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
2135
2136         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
2137         intel_flush_primary_plane(dev_priv, plane);
2138 }
2139
2140 static bool need_vtd_wa(struct drm_device *dev)
2141 {
2142 #ifdef CONFIG_INTEL_IOMMU
2143         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2144                 return true;
2145 #endif
2146         return false;
2147 }
2148
2149 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2150 {
2151         int tile_height;
2152
2153         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2154         return ALIGN(height, tile_height);
2155 }
2156
2157 int
2158 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2159                            struct drm_i915_gem_object *obj,
2160                            struct intel_engine_cs *pipelined)
2161 {
2162         struct drm_i915_private *dev_priv = dev->dev_private;
2163         u32 alignment;
2164         int ret;
2165
2166         switch (obj->tiling_mode) {
2167         case I915_TILING_NONE:
2168                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2169                         alignment = 128 * 1024;
2170                 else if (INTEL_INFO(dev)->gen >= 4)
2171                         alignment = 4 * 1024;
2172                 else
2173                         alignment = 64 * 1024;
2174                 break;
2175         case I915_TILING_X:
2176                 /* pin() will align the object as required by fence */
2177                 alignment = 0;
2178                 break;
2179         case I915_TILING_Y:
2180                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2181                 return -EINVAL;
2182         default:
2183                 BUG();
2184         }
2185
2186         /* Note that the w/a also requires 64 PTE of padding following the
2187          * bo. We currently fill all unused PTE with the shadow page and so
2188          * we should always have valid PTE following the scanout preventing
2189          * the VT-d warning.
2190          */
2191         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2192                 alignment = 256 * 1024;
2193
2194         dev_priv->mm.interruptible = false;
2195         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2196         if (ret)
2197                 goto err_interruptible;
2198
2199         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2200          * fence, whereas 965+ only requires a fence if using
2201          * framebuffer compression.  For simplicity, we always install
2202          * a fence as the cost is not that onerous.
2203          */
2204         ret = i915_gem_object_get_fence(obj);
2205         if (ret)
2206                 goto err_unpin;
2207
2208         i915_gem_object_pin_fence(obj);
2209
2210         dev_priv->mm.interruptible = true;
2211         return 0;
2212
2213 err_unpin:
2214         i915_gem_object_unpin_from_display_plane(obj);
2215 err_interruptible:
2216         dev_priv->mm.interruptible = true;
2217         return ret;
2218 }
2219
2220 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2221 {
2222         i915_gem_object_unpin_fence(obj);
2223         i915_gem_object_unpin_from_display_plane(obj);
2224 }
2225
2226 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2227  * is assumed to be a power-of-two. */
2228 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2229                                              unsigned int tiling_mode,
2230                                              unsigned int cpp,
2231                                              unsigned int pitch)
2232 {
2233         if (tiling_mode != I915_TILING_NONE) {
2234                 unsigned int tile_rows, tiles;
2235
2236                 tile_rows = *y / 8;
2237                 *y %= 8;
2238
2239                 tiles = *x / (512/cpp);
2240                 *x %= 512/cpp;
2241
2242                 return tile_rows * pitch * 8 + tiles * 4096;
2243         } else {
2244                 unsigned int offset;
2245
2246                 offset = *y * pitch + *x * cpp;
2247                 *y = 0;
2248                 *x = (offset & 4095) / cpp;
2249                 return offset & -4096;
2250         }
2251 }
2252
2253 int intel_format_to_fourcc(int format)
2254 {
2255         switch (format) {
2256         case DISPPLANE_8BPP:
2257                 return DRM_FORMAT_C8;
2258         case DISPPLANE_BGRX555:
2259                 return DRM_FORMAT_XRGB1555;
2260         case DISPPLANE_BGRX565:
2261                 return DRM_FORMAT_RGB565;
2262         default:
2263         case DISPPLANE_BGRX888:
2264                 return DRM_FORMAT_XRGB8888;
2265         case DISPPLANE_RGBX888:
2266                 return DRM_FORMAT_XBGR8888;
2267         case DISPPLANE_BGRX101010:
2268                 return DRM_FORMAT_XRGB2101010;
2269         case DISPPLANE_RGBX101010:
2270                 return DRM_FORMAT_XBGR2101010;
2271         }
2272 }
2273
2274 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2275                                   struct intel_plane_config *plane_config)
2276 {
2277         struct drm_device *dev = crtc->base.dev;
2278         struct drm_i915_gem_object *obj = NULL;
2279         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2280         u32 base = plane_config->base;
2281
2282         if (plane_config->size == 0)
2283                 return false;
2284
2285         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2286                                                              plane_config->size);
2287         if (!obj)
2288                 return false;
2289
2290         if (plane_config->tiled) {
2291                 obj->tiling_mode = I915_TILING_X;
2292                 obj->stride = crtc->base.primary->fb->pitches[0];
2293         }
2294
2295         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2296         mode_cmd.width = crtc->base.primary->fb->width;
2297         mode_cmd.height = crtc->base.primary->fb->height;
2298         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2299
2300         mutex_lock(&dev->struct_mutex);
2301
2302         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2303                                    &mode_cmd, obj)) {
2304                 DRM_DEBUG_KMS("intel fb init failed\n");
2305                 goto out_unref_obj;
2306         }
2307
2308         mutex_unlock(&dev->struct_mutex);
2309
2310         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2311         return true;
2312
2313 out_unref_obj:
2314         drm_gem_object_unreference(&obj->base);
2315         mutex_unlock(&dev->struct_mutex);
2316         return false;
2317 }
2318
2319 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2320                                  struct intel_plane_config *plane_config)
2321 {
2322         struct drm_device *dev = intel_crtc->base.dev;
2323         struct drm_crtc *c;
2324         struct intel_crtc *i;
2325         struct intel_framebuffer *fb;
2326
2327         if (!intel_crtc->base.primary->fb)
2328                 return;
2329
2330         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2331                 return;
2332
2333         kfree(intel_crtc->base.primary->fb);
2334         intel_crtc->base.primary->fb = NULL;
2335
2336         /*
2337          * Failed to alloc the obj, check to see if we should share
2338          * an fb with another CRTC instead
2339          */
2340         for_each_crtc(dev, c) {
2341                 i = to_intel_crtc(c);
2342
2343                 if (c == &intel_crtc->base)
2344                         continue;
2345
2346                 if (!i->active || !c->primary->fb)
2347                         continue;
2348
2349                 fb = to_intel_framebuffer(c->primary->fb);
2350                 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
2351                         drm_framebuffer_reference(c->primary->fb);
2352                         intel_crtc->base.primary->fb = c->primary->fb;
2353                         break;
2354                 }
2355         }
2356 }
2357
2358 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2359                                       struct drm_framebuffer *fb,
2360                                       int x, int y)
2361 {
2362         struct drm_device *dev = crtc->dev;
2363         struct drm_i915_private *dev_priv = dev->dev_private;
2364         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2365         struct intel_framebuffer *intel_fb;
2366         struct drm_i915_gem_object *obj;
2367         int plane = intel_crtc->plane;
2368         unsigned long linear_offset;
2369         u32 dspcntr;
2370         u32 reg;
2371
2372         intel_fb = to_intel_framebuffer(fb);
2373         obj = intel_fb->obj;
2374
2375         reg = DSPCNTR(plane);
2376         dspcntr = I915_READ(reg);
2377         /* Mask out pixel format bits in case we change it */
2378         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2379         switch (fb->pixel_format) {
2380         case DRM_FORMAT_C8:
2381                 dspcntr |= DISPPLANE_8BPP;
2382                 break;
2383         case DRM_FORMAT_XRGB1555:
2384         case DRM_FORMAT_ARGB1555:
2385                 dspcntr |= DISPPLANE_BGRX555;
2386                 break;
2387         case DRM_FORMAT_RGB565:
2388                 dspcntr |= DISPPLANE_BGRX565;
2389                 break;
2390         case DRM_FORMAT_XRGB8888:
2391         case DRM_FORMAT_ARGB8888:
2392                 dspcntr |= DISPPLANE_BGRX888;
2393                 break;
2394         case DRM_FORMAT_XBGR8888:
2395         case DRM_FORMAT_ABGR8888:
2396                 dspcntr |= DISPPLANE_RGBX888;
2397                 break;
2398         case DRM_FORMAT_XRGB2101010:
2399         case DRM_FORMAT_ARGB2101010:
2400                 dspcntr |= DISPPLANE_BGRX101010;
2401                 break;
2402         case DRM_FORMAT_XBGR2101010:
2403         case DRM_FORMAT_ABGR2101010:
2404                 dspcntr |= DISPPLANE_RGBX101010;
2405                 break;
2406         default:
2407                 BUG();
2408         }
2409
2410         if (INTEL_INFO(dev)->gen >= 4) {
2411                 if (obj->tiling_mode != I915_TILING_NONE)
2412                         dspcntr |= DISPPLANE_TILED;
2413                 else
2414                         dspcntr &= ~DISPPLANE_TILED;
2415         }
2416
2417         if (IS_G4X(dev))
2418                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2419
2420         I915_WRITE(reg, dspcntr);
2421
2422         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2423
2424         if (INTEL_INFO(dev)->gen >= 4) {
2425                 intel_crtc->dspaddr_offset =
2426                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2427                                                        fb->bits_per_pixel / 8,
2428                                                        fb->pitches[0]);
2429                 linear_offset -= intel_crtc->dspaddr_offset;
2430         } else {
2431                 intel_crtc->dspaddr_offset = linear_offset;
2432         }
2433
2434         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2435                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2436                       fb->pitches[0]);
2437         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2438         if (INTEL_INFO(dev)->gen >= 4) {
2439                 I915_WRITE(DSPSURF(plane),
2440                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2441                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2442                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2443         } else
2444                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2445         POSTING_READ(reg);
2446 }
2447
2448 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2449                                           struct drm_framebuffer *fb,
2450                                           int x, int y)
2451 {
2452         struct drm_device *dev = crtc->dev;
2453         struct drm_i915_private *dev_priv = dev->dev_private;
2454         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2455         struct intel_framebuffer *intel_fb;
2456         struct drm_i915_gem_object *obj;
2457         int plane = intel_crtc->plane;
2458         unsigned long linear_offset;
2459         u32 dspcntr;
2460         u32 reg;
2461
2462         intel_fb = to_intel_framebuffer(fb);
2463         obj = intel_fb->obj;
2464
2465         reg = DSPCNTR(plane);
2466         dspcntr = I915_READ(reg);
2467         /* Mask out pixel format bits in case we change it */
2468         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2469         switch (fb->pixel_format) {
2470         case DRM_FORMAT_C8:
2471                 dspcntr |= DISPPLANE_8BPP;
2472                 break;
2473         case DRM_FORMAT_RGB565:
2474                 dspcntr |= DISPPLANE_BGRX565;
2475                 break;
2476         case DRM_FORMAT_XRGB8888:
2477         case DRM_FORMAT_ARGB8888:
2478                 dspcntr |= DISPPLANE_BGRX888;
2479                 break;
2480         case DRM_FORMAT_XBGR8888:
2481         case DRM_FORMAT_ABGR8888:
2482                 dspcntr |= DISPPLANE_RGBX888;
2483                 break;
2484         case DRM_FORMAT_XRGB2101010:
2485         case DRM_FORMAT_ARGB2101010:
2486                 dspcntr |= DISPPLANE_BGRX101010;
2487                 break;
2488         case DRM_FORMAT_XBGR2101010:
2489         case DRM_FORMAT_ABGR2101010:
2490                 dspcntr |= DISPPLANE_RGBX101010;
2491                 break;
2492         default:
2493                 BUG();
2494         }
2495
2496         if (obj->tiling_mode != I915_TILING_NONE)
2497                 dspcntr |= DISPPLANE_TILED;
2498         else
2499                 dspcntr &= ~DISPPLANE_TILED;
2500
2501         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2502                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2503         else
2504                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2505
2506         I915_WRITE(reg, dspcntr);
2507
2508         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2509         intel_crtc->dspaddr_offset =
2510                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2511                                                fb->bits_per_pixel / 8,
2512                                                fb->pitches[0]);
2513         linear_offset -= intel_crtc->dspaddr_offset;
2514
2515         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2516                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2517                       fb->pitches[0]);
2518         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2519         I915_WRITE(DSPSURF(plane),
2520                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2521         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2522                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2523         } else {
2524                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2525                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2526         }
2527         POSTING_READ(reg);
2528 }
2529
2530 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2531 static int
2532 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2533                            int x, int y, enum mode_set_atomic state)
2534 {
2535         struct drm_device *dev = crtc->dev;
2536         struct drm_i915_private *dev_priv = dev->dev_private;
2537
2538         if (dev_priv->display.disable_fbc)
2539                 dev_priv->display.disable_fbc(dev);
2540         intel_increase_pllclock(crtc);
2541
2542         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2543
2544         return 0;
2545 }
2546
2547 void intel_display_handle_reset(struct drm_device *dev)
2548 {
2549         struct drm_i915_private *dev_priv = dev->dev_private;
2550         struct drm_crtc *crtc;
2551
2552         /*
2553          * Flips in the rings have been nuked by the reset,
2554          * so complete all pending flips so that user space
2555          * will get its events and not get stuck.
2556          *
2557          * Also update the base address of all primary
2558          * planes to the the last fb to make sure we're
2559          * showing the correct fb after a reset.
2560          *
2561          * Need to make two loops over the crtcs so that we
2562          * don't try to grab a crtc mutex before the
2563          * pending_flip_queue really got woken up.
2564          */
2565
2566         for_each_crtc(dev, crtc) {
2567                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2568                 enum plane plane = intel_crtc->plane;
2569
2570                 intel_prepare_page_flip(dev, plane);
2571                 intel_finish_page_flip_plane(dev, plane);
2572         }
2573
2574         for_each_crtc(dev, crtc) {
2575                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2576
2577                 drm_modeset_lock(&crtc->mutex, NULL);
2578                 /*
2579                  * FIXME: Once we have proper support for primary planes (and
2580                  * disabling them without disabling the entire crtc) allow again
2581                  * a NULL crtc->primary->fb.
2582                  */
2583                 if (intel_crtc->active && crtc->primary->fb)
2584                         dev_priv->display.update_primary_plane(crtc,
2585                                                                crtc->primary->fb,
2586                                                                crtc->x,
2587                                                                crtc->y);
2588                 drm_modeset_unlock(&crtc->mutex);
2589         }
2590 }
2591
2592 static int
2593 intel_finish_fb(struct drm_framebuffer *old_fb)
2594 {
2595         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2596         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2597         bool was_interruptible = dev_priv->mm.interruptible;
2598         int ret;
2599
2600         /* Big Hammer, we also need to ensure that any pending
2601          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2602          * current scanout is retired before unpinning the old
2603          * framebuffer.
2604          *
2605          * This should only fail upon a hung GPU, in which case we
2606          * can safely continue.
2607          */
2608         dev_priv->mm.interruptible = false;
2609         ret = i915_gem_object_finish_gpu(obj);
2610         dev_priv->mm.interruptible = was_interruptible;
2611
2612         return ret;
2613 }
2614
2615 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2616 {
2617         struct drm_device *dev = crtc->dev;
2618         struct drm_i915_private *dev_priv = dev->dev_private;
2619         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2620         unsigned long flags;
2621         bool pending;
2622
2623         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2624             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2625                 return false;
2626
2627         spin_lock_irqsave(&dev->event_lock, flags);
2628         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2629         spin_unlock_irqrestore(&dev->event_lock, flags);
2630
2631         return pending;
2632 }
2633
2634 static int
2635 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2636                     struct drm_framebuffer *fb)
2637 {
2638         struct drm_device *dev = crtc->dev;
2639         struct drm_i915_private *dev_priv = dev->dev_private;
2640         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2641         struct drm_framebuffer *old_fb;
2642         int ret;
2643
2644         if (intel_crtc_has_pending_flip(crtc)) {
2645                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2646                 return -EBUSY;
2647         }
2648
2649         /* no fb bound */
2650         if (!fb) {
2651                 DRM_ERROR("No FB bound\n");
2652                 return 0;
2653         }
2654
2655         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2656                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2657                           plane_name(intel_crtc->plane),
2658                           INTEL_INFO(dev)->num_pipes);
2659                 return -EINVAL;
2660         }
2661
2662         mutex_lock(&dev->struct_mutex);
2663         ret = intel_pin_and_fence_fb_obj(dev,
2664                                          to_intel_framebuffer(fb)->obj,
2665                                          NULL);
2666         mutex_unlock(&dev->struct_mutex);
2667         if (ret != 0) {
2668                 DRM_ERROR("pin & fence failed\n");
2669                 return ret;
2670         }
2671
2672         /*
2673          * Update pipe size and adjust fitter if needed: the reason for this is
2674          * that in compute_mode_changes we check the native mode (not the pfit
2675          * mode) to see if we can flip rather than do a full mode set. In the
2676          * fastboot case, we'll flip, but if we don't update the pipesrc and
2677          * pfit state, we'll end up with a big fb scanned out into the wrong
2678          * sized surface.
2679          *
2680          * To fix this properly, we need to hoist the checks up into
2681          * compute_mode_changes (or above), check the actual pfit state and
2682          * whether the platform allows pfit disable with pipe active, and only
2683          * then update the pipesrc and pfit state, even on the flip path.
2684          */
2685         if (i915.fastboot) {
2686                 const struct drm_display_mode *adjusted_mode =
2687                         &intel_crtc->config.adjusted_mode;
2688
2689                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2690                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2691                            (adjusted_mode->crtc_vdisplay - 1));
2692                 if (!intel_crtc->config.pch_pfit.enabled &&
2693                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2694                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2695                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2696                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2697                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2698                 }
2699                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2700                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2701         }
2702
2703         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2704
2705         old_fb = crtc->primary->fb;
2706         crtc->primary->fb = fb;
2707         crtc->x = x;
2708         crtc->y = y;
2709
2710         if (old_fb) {
2711                 if (intel_crtc->active && old_fb != fb)
2712                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2713                 mutex_lock(&dev->struct_mutex);
2714                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2715                 mutex_unlock(&dev->struct_mutex);
2716         }
2717
2718         mutex_lock(&dev->struct_mutex);
2719         intel_update_fbc(dev);
2720         intel_edp_psr_update(dev);
2721         mutex_unlock(&dev->struct_mutex);
2722
2723         return 0;
2724 }
2725
2726 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2727 {
2728         struct drm_device *dev = crtc->dev;
2729         struct drm_i915_private *dev_priv = dev->dev_private;
2730         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2731         int pipe = intel_crtc->pipe;
2732         u32 reg, temp;
2733
2734         /* enable normal train */
2735         reg = FDI_TX_CTL(pipe);
2736         temp = I915_READ(reg);
2737         if (IS_IVYBRIDGE(dev)) {
2738                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2739                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2740         } else {
2741                 temp &= ~FDI_LINK_TRAIN_NONE;
2742                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2743         }
2744         I915_WRITE(reg, temp);
2745
2746         reg = FDI_RX_CTL(pipe);
2747         temp = I915_READ(reg);
2748         if (HAS_PCH_CPT(dev)) {
2749                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2750                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2751         } else {
2752                 temp &= ~FDI_LINK_TRAIN_NONE;
2753                 temp |= FDI_LINK_TRAIN_NONE;
2754         }
2755         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2756
2757         /* wait one idle pattern time */
2758         POSTING_READ(reg);
2759         udelay(1000);
2760
2761         /* IVB wants error correction enabled */
2762         if (IS_IVYBRIDGE(dev))
2763                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2764                            FDI_FE_ERRC_ENABLE);
2765 }
2766
2767 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2768 {
2769         return crtc->base.enabled && crtc->active &&
2770                 crtc->config.has_pch_encoder;
2771 }
2772
2773 static void ivb_modeset_global_resources(struct drm_device *dev)
2774 {
2775         struct drm_i915_private *dev_priv = dev->dev_private;
2776         struct intel_crtc *pipe_B_crtc =
2777                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2778         struct intel_crtc *pipe_C_crtc =
2779                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2780         uint32_t temp;
2781
2782         /*
2783          * When everything is off disable fdi C so that we could enable fdi B
2784          * with all lanes. Note that we don't care about enabled pipes without
2785          * an enabled pch encoder.
2786          */
2787         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2788             !pipe_has_enabled_pch(pipe_C_crtc)) {
2789                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2790                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2791
2792                 temp = I915_READ(SOUTH_CHICKEN1);
2793                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2794                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2795                 I915_WRITE(SOUTH_CHICKEN1, temp);
2796         }
2797 }
2798
2799 /* The FDI link training functions for ILK/Ibexpeak. */
2800 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2801 {
2802         struct drm_device *dev = crtc->dev;
2803         struct drm_i915_private *dev_priv = dev->dev_private;
2804         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2805         int pipe = intel_crtc->pipe;
2806         u32 reg, temp, tries;
2807
2808         /* FDI needs bits from pipe first */
2809         assert_pipe_enabled(dev_priv, pipe);
2810
2811         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2812            for train result */
2813         reg = FDI_RX_IMR(pipe);
2814         temp = I915_READ(reg);
2815         temp &= ~FDI_RX_SYMBOL_LOCK;
2816         temp &= ~FDI_RX_BIT_LOCK;
2817         I915_WRITE(reg, temp);
2818         I915_READ(reg);
2819         udelay(150);
2820
2821         /* enable CPU FDI TX and PCH FDI RX */
2822         reg = FDI_TX_CTL(pipe);
2823         temp = I915_READ(reg);
2824         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2825         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2826         temp &= ~FDI_LINK_TRAIN_NONE;
2827         temp |= FDI_LINK_TRAIN_PATTERN_1;
2828         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2829
2830         reg = FDI_RX_CTL(pipe);
2831         temp = I915_READ(reg);
2832         temp &= ~FDI_LINK_TRAIN_NONE;
2833         temp |= FDI_LINK_TRAIN_PATTERN_1;
2834         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2835
2836         POSTING_READ(reg);
2837         udelay(150);
2838
2839         /* Ironlake workaround, enable clock pointer after FDI enable*/
2840         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2841         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2842                    FDI_RX_PHASE_SYNC_POINTER_EN);
2843
2844         reg = FDI_RX_IIR(pipe);
2845         for (tries = 0; tries < 5; tries++) {
2846                 temp = I915_READ(reg);
2847                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2848
2849                 if ((temp & FDI_RX_BIT_LOCK)) {
2850                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2851                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2852                         break;
2853                 }
2854         }
2855         if (tries == 5)
2856                 DRM_ERROR("FDI train 1 fail!\n");
2857
2858         /* Train 2 */
2859         reg = FDI_TX_CTL(pipe);
2860         temp = I915_READ(reg);
2861         temp &= ~FDI_LINK_TRAIN_NONE;
2862         temp |= FDI_LINK_TRAIN_PATTERN_2;
2863         I915_WRITE(reg, temp);
2864
2865         reg = FDI_RX_CTL(pipe);
2866         temp = I915_READ(reg);
2867         temp &= ~FDI_LINK_TRAIN_NONE;
2868         temp |= FDI_LINK_TRAIN_PATTERN_2;
2869         I915_WRITE(reg, temp);
2870
2871         POSTING_READ(reg);
2872         udelay(150);
2873
2874         reg = FDI_RX_IIR(pipe);
2875         for (tries = 0; tries < 5; tries++) {
2876                 temp = I915_READ(reg);
2877                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2878
2879                 if (temp & FDI_RX_SYMBOL_LOCK) {
2880                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2881                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2882                         break;
2883                 }
2884         }
2885         if (tries == 5)
2886                 DRM_ERROR("FDI train 2 fail!\n");
2887
2888         DRM_DEBUG_KMS("FDI train done\n");
2889
2890 }
2891
2892 static const int snb_b_fdi_train_param[] = {
2893         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2894         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2895         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2896         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2897 };
2898
2899 /* The FDI link training functions for SNB/Cougarpoint. */
2900 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2901 {
2902         struct drm_device *dev = crtc->dev;
2903         struct drm_i915_private *dev_priv = dev->dev_private;
2904         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2905         int pipe = intel_crtc->pipe;
2906         u32 reg, temp, i, retry;
2907
2908         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2909            for train result */
2910         reg = FDI_RX_IMR(pipe);
2911         temp = I915_READ(reg);
2912         temp &= ~FDI_RX_SYMBOL_LOCK;
2913         temp &= ~FDI_RX_BIT_LOCK;
2914         I915_WRITE(reg, temp);
2915
2916         POSTING_READ(reg);
2917         udelay(150);
2918
2919         /* enable CPU FDI TX and PCH FDI RX */
2920         reg = FDI_TX_CTL(pipe);
2921         temp = I915_READ(reg);
2922         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2923         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2924         temp &= ~FDI_LINK_TRAIN_NONE;
2925         temp |= FDI_LINK_TRAIN_PATTERN_1;
2926         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2927         /* SNB-B */
2928         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2929         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2930
2931         I915_WRITE(FDI_RX_MISC(pipe),
2932                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2933
2934         reg = FDI_RX_CTL(pipe);
2935         temp = I915_READ(reg);
2936         if (HAS_PCH_CPT(dev)) {
2937                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2938                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2939         } else {
2940                 temp &= ~FDI_LINK_TRAIN_NONE;
2941                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2942         }
2943         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2944
2945         POSTING_READ(reg);
2946         udelay(150);
2947
2948         for (i = 0; i < 4; i++) {
2949                 reg = FDI_TX_CTL(pipe);
2950                 temp = I915_READ(reg);
2951                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2952                 temp |= snb_b_fdi_train_param[i];
2953                 I915_WRITE(reg, temp);
2954
2955                 POSTING_READ(reg);
2956                 udelay(500);
2957
2958                 for (retry = 0; retry < 5; retry++) {
2959                         reg = FDI_RX_IIR(pipe);
2960                         temp = I915_READ(reg);
2961                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2962                         if (temp & FDI_RX_BIT_LOCK) {
2963                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2964                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2965                                 break;
2966                         }
2967                         udelay(50);
2968                 }
2969                 if (retry < 5)
2970                         break;
2971         }
2972         if (i == 4)
2973                 DRM_ERROR("FDI train 1 fail!\n");
2974
2975         /* Train 2 */
2976         reg = FDI_TX_CTL(pipe);
2977         temp = I915_READ(reg);
2978         temp &= ~FDI_LINK_TRAIN_NONE;
2979         temp |= FDI_LINK_TRAIN_PATTERN_2;
2980         if (IS_GEN6(dev)) {
2981                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2982                 /* SNB-B */
2983                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2984         }
2985         I915_WRITE(reg, temp);
2986
2987         reg = FDI_RX_CTL(pipe);
2988         temp = I915_READ(reg);
2989         if (HAS_PCH_CPT(dev)) {
2990                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2991                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2992         } else {
2993                 temp &= ~FDI_LINK_TRAIN_NONE;
2994                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2995         }
2996         I915_WRITE(reg, temp);
2997
2998         POSTING_READ(reg);
2999         udelay(150);
3000
3001         for (i = 0; i < 4; i++) {
3002                 reg = FDI_TX_CTL(pipe);
3003                 temp = I915_READ(reg);
3004                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3005                 temp |= snb_b_fdi_train_param[i];
3006                 I915_WRITE(reg, temp);
3007
3008                 POSTING_READ(reg);
3009                 udelay(500);
3010
3011                 for (retry = 0; retry < 5; retry++) {
3012                         reg = FDI_RX_IIR(pipe);
3013                         temp = I915_READ(reg);
3014                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3015                         if (temp & FDI_RX_SYMBOL_LOCK) {
3016                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3017                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3018                                 break;
3019                         }
3020                         udelay(50);
3021                 }
3022                 if (retry < 5)
3023                         break;
3024         }
3025         if (i == 4)
3026                 DRM_ERROR("FDI train 2 fail!\n");
3027
3028         DRM_DEBUG_KMS("FDI train done.\n");
3029 }
3030
3031 /* Manual link training for Ivy Bridge A0 parts */
3032 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3033 {
3034         struct drm_device *dev = crtc->dev;
3035         struct drm_i915_private *dev_priv = dev->dev_private;
3036         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3037         int pipe = intel_crtc->pipe;
3038         u32 reg, temp, i, j;
3039
3040         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3041            for train result */
3042         reg = FDI_RX_IMR(pipe);
3043         temp = I915_READ(reg);
3044         temp &= ~FDI_RX_SYMBOL_LOCK;
3045         temp &= ~FDI_RX_BIT_LOCK;
3046         I915_WRITE(reg, temp);
3047
3048         POSTING_READ(reg);
3049         udelay(150);
3050
3051         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3052                       I915_READ(FDI_RX_IIR(pipe)));
3053
3054         /* Try each vswing and preemphasis setting twice before moving on */
3055         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3056                 /* disable first in case we need to retry */
3057                 reg = FDI_TX_CTL(pipe);
3058                 temp = I915_READ(reg);
3059                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3060                 temp &= ~FDI_TX_ENABLE;
3061                 I915_WRITE(reg, temp);
3062
3063                 reg = FDI_RX_CTL(pipe);
3064                 temp = I915_READ(reg);
3065                 temp &= ~FDI_LINK_TRAIN_AUTO;
3066                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3067                 temp &= ~FDI_RX_ENABLE;
3068                 I915_WRITE(reg, temp);
3069
3070                 /* enable CPU FDI TX and PCH FDI RX */
3071                 reg = FDI_TX_CTL(pipe);
3072                 temp = I915_READ(reg);
3073                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3074                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3075                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3076                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3077                 temp |= snb_b_fdi_train_param[j/2];
3078                 temp |= FDI_COMPOSITE_SYNC;
3079                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3080
3081                 I915_WRITE(FDI_RX_MISC(pipe),
3082                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3083
3084                 reg = FDI_RX_CTL(pipe);
3085                 temp = I915_READ(reg);
3086                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3087                 temp |= FDI_COMPOSITE_SYNC;
3088                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3089
3090                 POSTING_READ(reg);
3091                 udelay(1); /* should be 0.5us */
3092
3093                 for (i = 0; i < 4; i++) {
3094                         reg = FDI_RX_IIR(pipe);
3095                         temp = I915_READ(reg);
3096                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3097
3098                         if (temp & FDI_RX_BIT_LOCK ||
3099                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3100                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3101                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3102                                               i);
3103                                 break;
3104                         }
3105                         udelay(1); /* should be 0.5us */
3106                 }
3107                 if (i == 4) {
3108                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3109                         continue;
3110                 }
3111
3112                 /* Train 2 */
3113                 reg = FDI_TX_CTL(pipe);
3114                 temp = I915_READ(reg);
3115                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3116                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3117                 I915_WRITE(reg, temp);
3118
3119                 reg = FDI_RX_CTL(pipe);
3120                 temp = I915_READ(reg);
3121                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3122                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3123                 I915_WRITE(reg, temp);
3124
3125                 POSTING_READ(reg);
3126                 udelay(2); /* should be 1.5us */
3127
3128                 for (i = 0; i < 4; i++) {
3129                         reg = FDI_RX_IIR(pipe);
3130                         temp = I915_READ(reg);
3131                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3132
3133                         if (temp & FDI_RX_SYMBOL_LOCK ||
3134                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3135                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3136                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3137                                               i);
3138                                 goto train_done;
3139                         }
3140                         udelay(2); /* should be 1.5us */
3141                 }
3142                 if (i == 4)
3143                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3144         }
3145
3146 train_done:
3147         DRM_DEBUG_KMS("FDI train done.\n");
3148 }
3149
3150 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3151 {
3152         struct drm_device *dev = intel_crtc->base.dev;
3153         struct drm_i915_private *dev_priv = dev->dev_private;
3154         int pipe = intel_crtc->pipe;
3155         u32 reg, temp;
3156
3157
3158         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3159         reg = FDI_RX_CTL(pipe);
3160         temp = I915_READ(reg);
3161         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3162         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3163         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3164         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3165
3166         POSTING_READ(reg);
3167         udelay(200);
3168
3169         /* Switch from Rawclk to PCDclk */
3170         temp = I915_READ(reg);
3171         I915_WRITE(reg, temp | FDI_PCDCLK);
3172
3173         POSTING_READ(reg);
3174         udelay(200);
3175
3176         /* Enable CPU FDI TX PLL, always on for Ironlake */
3177         reg = FDI_TX_CTL(pipe);
3178         temp = I915_READ(reg);
3179         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3180                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3181
3182                 POSTING_READ(reg);
3183                 udelay(100);
3184         }
3185 }
3186
3187 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3188 {
3189         struct drm_device *dev = intel_crtc->base.dev;
3190         struct drm_i915_private *dev_priv = dev->dev_private;
3191         int pipe = intel_crtc->pipe;
3192         u32 reg, temp;
3193
3194         /* Switch from PCDclk to Rawclk */
3195         reg = FDI_RX_CTL(pipe);
3196         temp = I915_READ(reg);
3197         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3198
3199         /* Disable CPU FDI TX PLL */
3200         reg = FDI_TX_CTL(pipe);
3201         temp = I915_READ(reg);
3202         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3203
3204         POSTING_READ(reg);
3205         udelay(100);
3206
3207         reg = FDI_RX_CTL(pipe);
3208         temp = I915_READ(reg);
3209         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3210
3211         /* Wait for the clocks to turn off. */
3212         POSTING_READ(reg);
3213         udelay(100);
3214 }
3215
3216 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3217 {
3218         struct drm_device *dev = crtc->dev;
3219         struct drm_i915_private *dev_priv = dev->dev_private;
3220         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3221         int pipe = intel_crtc->pipe;
3222         u32 reg, temp;
3223
3224         /* disable CPU FDI tx and PCH FDI rx */
3225         reg = FDI_TX_CTL(pipe);
3226         temp = I915_READ(reg);
3227         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3228         POSTING_READ(reg);
3229
3230         reg = FDI_RX_CTL(pipe);
3231         temp = I915_READ(reg);
3232         temp &= ~(0x7 << 16);
3233         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3234         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3235
3236         POSTING_READ(reg);
3237         udelay(100);
3238
3239         /* Ironlake workaround, disable clock pointer after downing FDI */
3240         if (HAS_PCH_IBX(dev))
3241                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3242
3243         /* still set train pattern 1 */
3244         reg = FDI_TX_CTL(pipe);
3245         temp = I915_READ(reg);
3246         temp &= ~FDI_LINK_TRAIN_NONE;
3247         temp |= FDI_LINK_TRAIN_PATTERN_1;
3248         I915_WRITE(reg, temp);
3249
3250         reg = FDI_RX_CTL(pipe);
3251         temp = I915_READ(reg);
3252         if (HAS_PCH_CPT(dev)) {
3253                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3254                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3255         } else {
3256                 temp &= ~FDI_LINK_TRAIN_NONE;
3257                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3258         }
3259         /* BPC in FDI rx is consistent with that in PIPECONF */
3260         temp &= ~(0x07 << 16);
3261         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3262         I915_WRITE(reg, temp);
3263
3264         POSTING_READ(reg);
3265         udelay(100);
3266 }
3267
3268 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3269 {
3270         struct intel_crtc *crtc;
3271
3272         /* Note that we don't need to be called with mode_config.lock here
3273          * as our list of CRTC objects is static for the lifetime of the
3274          * device and so cannot disappear as we iterate. Similarly, we can
3275          * happily treat the predicates as racy, atomic checks as userspace
3276          * cannot claim and pin a new fb without at least acquring the
3277          * struct_mutex and so serialising with us.
3278          */
3279         for_each_intel_crtc(dev, crtc) {
3280                 if (atomic_read(&crtc->unpin_work_count) == 0)
3281                         continue;
3282
3283                 if (crtc->unpin_work)
3284                         intel_wait_for_vblank(dev, crtc->pipe);
3285
3286                 return true;
3287         }
3288
3289         return false;
3290 }
3291
3292 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3293 {
3294         struct drm_device *dev = crtc->dev;
3295         struct drm_i915_private *dev_priv = dev->dev_private;
3296
3297         if (crtc->primary->fb == NULL)
3298                 return;
3299
3300         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3301
3302         WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3303                                    !intel_crtc_has_pending_flip(crtc),
3304                                    60*HZ) == 0);
3305
3306         mutex_lock(&dev->struct_mutex);
3307         intel_finish_fb(crtc->primary->fb);
3308         mutex_unlock(&dev->struct_mutex);
3309 }
3310
3311 /* Program iCLKIP clock to the desired frequency */
3312 static void lpt_program_iclkip(struct drm_crtc *crtc)
3313 {
3314         struct drm_device *dev = crtc->dev;
3315         struct drm_i915_private *dev_priv = dev->dev_private;
3316         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3317         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3318         u32 temp;
3319
3320         mutex_lock(&dev_priv->dpio_lock);
3321
3322         /* It is necessary to ungate the pixclk gate prior to programming
3323          * the divisors, and gate it back when it is done.
3324          */
3325         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3326
3327         /* Disable SSCCTL */
3328         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3329                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3330                                 SBI_SSCCTL_DISABLE,
3331                         SBI_ICLK);
3332
3333         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3334         if (clock == 20000) {
3335                 auxdiv = 1;
3336                 divsel = 0x41;
3337                 phaseinc = 0x20;
3338         } else {
3339                 /* The iCLK virtual clock root frequency is in MHz,
3340                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3341                  * divisors, it is necessary to divide one by another, so we
3342                  * convert the virtual clock precision to KHz here for higher
3343                  * precision.
3344                  */
3345                 u32 iclk_virtual_root_freq = 172800 * 1000;
3346                 u32 iclk_pi_range = 64;
3347                 u32 desired_divisor, msb_divisor_value, pi_value;
3348
3349                 desired_divisor = (iclk_virtual_root_freq / clock);
3350                 msb_divisor_value = desired_divisor / iclk_pi_range;
3351                 pi_value = desired_divisor % iclk_pi_range;
3352
3353                 auxdiv = 0;
3354                 divsel = msb_divisor_value - 2;
3355                 phaseinc = pi_value;
3356         }
3357
3358         /* This should not happen with any sane values */
3359         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3360                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3361         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3362                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3363
3364         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3365                         clock,
3366                         auxdiv,
3367                         divsel,
3368                         phasedir,
3369                         phaseinc);
3370
3371         /* Program SSCDIVINTPHASE6 */
3372         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3373         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3374         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3375         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3376         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3377         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3378         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3379         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3380
3381         /* Program SSCAUXDIV */
3382         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3383         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3384         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3385         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3386
3387         /* Enable modulator and associated divider */
3388         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3389         temp &= ~SBI_SSCCTL_DISABLE;
3390         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3391
3392         /* Wait for initialization time */
3393         udelay(24);
3394
3395         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3396
3397         mutex_unlock(&dev_priv->dpio_lock);
3398 }
3399
3400 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3401                                                 enum pipe pch_transcoder)
3402 {
3403         struct drm_device *dev = crtc->base.dev;
3404         struct drm_i915_private *dev_priv = dev->dev_private;
3405         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3406
3407         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3408                    I915_READ(HTOTAL(cpu_transcoder)));
3409         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3410                    I915_READ(HBLANK(cpu_transcoder)));
3411         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3412                    I915_READ(HSYNC(cpu_transcoder)));
3413
3414         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3415                    I915_READ(VTOTAL(cpu_transcoder)));
3416         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3417                    I915_READ(VBLANK(cpu_transcoder)));
3418         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3419                    I915_READ(VSYNC(cpu_transcoder)));
3420         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3421                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3422 }
3423
3424 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3425 {
3426         struct drm_i915_private *dev_priv = dev->dev_private;
3427         uint32_t temp;
3428
3429         temp = I915_READ(SOUTH_CHICKEN1);
3430         if (temp & FDI_BC_BIFURCATION_SELECT)
3431                 return;
3432
3433         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3434         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3435
3436         temp |= FDI_BC_BIFURCATION_SELECT;
3437         DRM_DEBUG_KMS("enabling fdi C rx\n");
3438         I915_WRITE(SOUTH_CHICKEN1, temp);
3439         POSTING_READ(SOUTH_CHICKEN1);
3440 }
3441
3442 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3443 {
3444         struct drm_device *dev = intel_crtc->base.dev;
3445         struct drm_i915_private *dev_priv = dev->dev_private;
3446
3447         switch (intel_crtc->pipe) {
3448         case PIPE_A:
3449                 break;
3450         case PIPE_B:
3451                 if (intel_crtc->config.fdi_lanes > 2)
3452                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3453                 else
3454                         cpt_enable_fdi_bc_bifurcation(dev);
3455
3456                 break;
3457         case PIPE_C:
3458                 cpt_enable_fdi_bc_bifurcation(dev);
3459
3460                 break;
3461         default:
3462                 BUG();
3463         }
3464 }
3465
3466 /*
3467  * Enable PCH resources required for PCH ports:
3468  *   - PCH PLLs
3469  *   - FDI training & RX/TX
3470  *   - update transcoder timings
3471  *   - DP transcoding bits
3472  *   - transcoder
3473  */
3474 static void ironlake_pch_enable(struct drm_crtc *crtc)
3475 {
3476         struct drm_device *dev = crtc->dev;
3477         struct drm_i915_private *dev_priv = dev->dev_private;
3478         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3479         int pipe = intel_crtc->pipe;
3480         u32 reg, temp;
3481
3482         assert_pch_transcoder_disabled(dev_priv, pipe);
3483
3484         if (IS_IVYBRIDGE(dev))
3485                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3486
3487         /* Write the TU size bits before fdi link training, so that error
3488          * detection works. */
3489         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3490                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3491
3492         /* For PCH output, training FDI link */
3493         dev_priv->display.fdi_link_train(crtc);
3494
3495         /* We need to program the right clock selection before writing the pixel
3496          * mutliplier into the DPLL. */
3497         if (HAS_PCH_CPT(dev)) {
3498                 u32 sel;
3499
3500                 temp = I915_READ(PCH_DPLL_SEL);
3501                 temp |= TRANS_DPLL_ENABLE(pipe);
3502                 sel = TRANS_DPLLB_SEL(pipe);
3503                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3504                         temp |= sel;
3505                 else
3506                         temp &= ~sel;
3507                 I915_WRITE(PCH_DPLL_SEL, temp);
3508         }
3509
3510         /* XXX: pch pll's can be enabled any time before we enable the PCH
3511          * transcoder, and we actually should do this to not upset any PCH
3512          * transcoder that already use the clock when we share it.
3513          *
3514          * Note that enable_shared_dpll tries to do the right thing, but
3515          * get_shared_dpll unconditionally resets the pll - we need that to have
3516          * the right LVDS enable sequence. */
3517         intel_enable_shared_dpll(intel_crtc);
3518
3519         /* set transcoder timing, panel must allow it */
3520         assert_panel_unlocked(dev_priv, pipe);
3521         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3522
3523         intel_fdi_normal_train(crtc);
3524
3525         /* For PCH DP, enable TRANS_DP_CTL */
3526         if (HAS_PCH_CPT(dev) &&
3527             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3528              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3529                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3530                 reg = TRANS_DP_CTL(pipe);
3531                 temp = I915_READ(reg);
3532                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3533                           TRANS_DP_SYNC_MASK |
3534                           TRANS_DP_BPC_MASK);
3535                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3536                          TRANS_DP_ENH_FRAMING);
3537                 temp |= bpc << 9; /* same format but at 11:9 */
3538
3539                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3540                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3541                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3542                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3543
3544                 switch (intel_trans_dp_port_sel(crtc)) {
3545                 case PCH_DP_B:
3546                         temp |= TRANS_DP_PORT_SEL_B;
3547                         break;
3548                 case PCH_DP_C:
3549                         temp |= TRANS_DP_PORT_SEL_C;
3550                         break;
3551                 case PCH_DP_D:
3552                         temp |= TRANS_DP_PORT_SEL_D;
3553                         break;
3554                 default:
3555                         BUG();
3556                 }
3557
3558                 I915_WRITE(reg, temp);
3559         }
3560
3561         ironlake_enable_pch_transcoder(dev_priv, pipe);
3562 }
3563
3564 static void lpt_pch_enable(struct drm_crtc *crtc)
3565 {
3566         struct drm_device *dev = crtc->dev;
3567         struct drm_i915_private *dev_priv = dev->dev_private;
3568         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3569         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3570
3571         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3572
3573         lpt_program_iclkip(crtc);
3574
3575         /* Set transcoder timing. */
3576         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3577
3578         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3579 }
3580
3581 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3582 {
3583         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3584
3585         if (pll == NULL)
3586                 return;
3587
3588         if (pll->refcount == 0) {
3589                 WARN(1, "bad %s refcount\n", pll->name);
3590                 return;
3591         }
3592
3593         if (--pll->refcount == 0) {
3594                 WARN_ON(pll->on);
3595                 WARN_ON(pll->active);
3596         }
3597
3598         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3599 }
3600
3601 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3602 {
3603         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3604         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3605         enum intel_dpll_id i;
3606
3607         if (pll) {
3608                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3609                               crtc->base.base.id, pll->name);
3610                 intel_put_shared_dpll(crtc);
3611         }
3612
3613         if (HAS_PCH_IBX(dev_priv->dev)) {
3614                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3615                 i = (enum intel_dpll_id) crtc->pipe;
3616                 pll = &dev_priv->shared_dplls[i];
3617
3618                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3619                               crtc->base.base.id, pll->name);
3620
3621                 WARN_ON(pll->refcount);
3622
3623                 goto found;
3624         }
3625
3626         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3627                 pll = &dev_priv->shared_dplls[i];
3628
3629                 /* Only want to check enabled timings first */
3630                 if (pll->refcount == 0)
3631                         continue;
3632
3633                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3634                            sizeof(pll->hw_state)) == 0) {
3635                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3636                                       crtc->base.base.id,
3637                                       pll->name, pll->refcount, pll->active);
3638
3639                         goto found;
3640                 }
3641         }
3642
3643         /* Ok no matching timings, maybe there's a free one? */
3644         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3645                 pll = &dev_priv->shared_dplls[i];
3646                 if (pll->refcount == 0) {
3647                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3648                                       crtc->base.base.id, pll->name);
3649                         goto found;
3650                 }
3651         }
3652
3653         return NULL;
3654
3655 found:
3656         if (pll->refcount == 0)
3657                 pll->hw_state = crtc->config.dpll_hw_state;
3658
3659         crtc->config.shared_dpll = i;
3660         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3661                          pipe_name(crtc->pipe));
3662
3663         pll->refcount++;
3664
3665         return pll;
3666 }
3667
3668 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3669 {
3670         struct drm_i915_private *dev_priv = dev->dev_private;
3671         int dslreg = PIPEDSL(pipe);
3672         u32 temp;
3673
3674         temp = I915_READ(dslreg);
3675         udelay(500);
3676         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3677                 if (wait_for(I915_READ(dslreg) != temp, 5))
3678                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3679         }
3680 }
3681
3682 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3683 {
3684         struct drm_device *dev = crtc->base.dev;
3685         struct drm_i915_private *dev_priv = dev->dev_private;
3686         int pipe = crtc->pipe;
3687
3688         if (crtc->config.pch_pfit.enabled) {
3689                 /* Force use of hard-coded filter coefficients
3690                  * as some pre-programmed values are broken,
3691                  * e.g. x201.
3692                  */
3693                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3694                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3695                                                  PF_PIPE_SEL_IVB(pipe));
3696                 else
3697                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3698                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3699                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3700         }
3701 }
3702
3703 static void intel_enable_planes(struct drm_crtc *crtc)
3704 {
3705         struct drm_device *dev = crtc->dev;
3706         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3707         struct drm_plane *plane;
3708         struct intel_plane *intel_plane;
3709
3710         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3711                 intel_plane = to_intel_plane(plane);
3712                 if (intel_plane->pipe == pipe)
3713                         intel_plane_restore(&intel_plane->base);
3714         }
3715 }
3716
3717 static void intel_disable_planes(struct drm_crtc *crtc)
3718 {
3719         struct drm_device *dev = crtc->dev;
3720         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3721         struct drm_plane *plane;
3722         struct intel_plane *intel_plane;
3723
3724         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3725                 intel_plane = to_intel_plane(plane);
3726                 if (intel_plane->pipe == pipe)
3727                         intel_plane_disable(&intel_plane->base);
3728         }
3729 }
3730
3731 void hsw_enable_ips(struct intel_crtc *crtc)
3732 {
3733         struct drm_device *dev = crtc->base.dev;
3734         struct drm_i915_private *dev_priv = dev->dev_private;
3735
3736         if (!crtc->config.ips_enabled)
3737                 return;
3738
3739         /* We can only enable IPS after we enable a plane and wait for a vblank */
3740         intel_wait_for_vblank(dev, crtc->pipe);
3741
3742         assert_plane_enabled(dev_priv, crtc->plane);
3743         if (IS_BROADWELL(dev)) {
3744                 mutex_lock(&dev_priv->rps.hw_lock);
3745                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3746                 mutex_unlock(&dev_priv->rps.hw_lock);
3747                 /* Quoting Art Runyan: "its not safe to expect any particular
3748                  * value in IPS_CTL bit 31 after enabling IPS through the
3749                  * mailbox." Moreover, the mailbox may return a bogus state,
3750                  * so we need to just enable it and continue on.
3751                  */
3752         } else {
3753                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3754                 /* The bit only becomes 1 in the next vblank, so this wait here
3755                  * is essentially intel_wait_for_vblank. If we don't have this
3756                  * and don't wait for vblanks until the end of crtc_enable, then
3757                  * the HW state readout code will complain that the expected
3758                  * IPS_CTL value is not the one we read. */
3759                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3760                         DRM_ERROR("Timed out waiting for IPS enable\n");
3761         }
3762 }
3763
3764 void hsw_disable_ips(struct intel_crtc *crtc)
3765 {
3766         struct drm_device *dev = crtc->base.dev;
3767         struct drm_i915_private *dev_priv = dev->dev_private;
3768
3769         if (!crtc->config.ips_enabled)
3770                 return;
3771
3772         assert_plane_enabled(dev_priv, crtc->plane);
3773         if (IS_BROADWELL(dev)) {
3774                 mutex_lock(&dev_priv->rps.hw_lock);
3775                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3776                 mutex_unlock(&dev_priv->rps.hw_lock);
3777                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3778                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3779                         DRM_ERROR("Timed out waiting for IPS disable\n");
3780         } else {
3781                 I915_WRITE(IPS_CTL, 0);
3782                 POSTING_READ(IPS_CTL);
3783         }
3784
3785         /* We need to wait for a vblank before we can disable the plane. */
3786         intel_wait_for_vblank(dev, crtc->pipe);
3787 }
3788
3789 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3790 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3791 {
3792         struct drm_device *dev = crtc->dev;
3793         struct drm_i915_private *dev_priv = dev->dev_private;
3794         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3795         enum pipe pipe = intel_crtc->pipe;
3796         int palreg = PALETTE(pipe);
3797         int i;
3798         bool reenable_ips = false;
3799
3800         /* The clocks have to be on to load the palette. */
3801         if (!crtc->enabled || !intel_crtc->active)
3802                 return;
3803
3804         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3805                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3806                         assert_dsi_pll_enabled(dev_priv);
3807                 else
3808                         assert_pll_enabled(dev_priv, pipe);
3809         }
3810
3811         /* use legacy palette for Ironlake */
3812         if (HAS_PCH_SPLIT(dev))
3813                 palreg = LGC_PALETTE(pipe);
3814
3815         /* Workaround : Do not read or write the pipe palette/gamma data while
3816          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3817          */
3818         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3819             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3820              GAMMA_MODE_MODE_SPLIT)) {
3821                 hsw_disable_ips(intel_crtc);
3822                 reenable_ips = true;
3823         }
3824
3825         for (i = 0; i < 256; i++) {
3826                 I915_WRITE(palreg + 4 * i,
3827                            (intel_crtc->lut_r[i] << 16) |
3828                            (intel_crtc->lut_g[i] << 8) |
3829                            intel_crtc->lut_b[i]);
3830         }
3831
3832         if (reenable_ips)
3833                 hsw_enable_ips(intel_crtc);
3834 }
3835
3836 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3837 {
3838         if (!enable && intel_crtc->overlay) {
3839                 struct drm_device *dev = intel_crtc->base.dev;
3840                 struct drm_i915_private *dev_priv = dev->dev_private;
3841
3842                 mutex_lock(&dev->struct_mutex);
3843                 dev_priv->mm.interruptible = false;
3844                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3845                 dev_priv->mm.interruptible = true;
3846                 mutex_unlock(&dev->struct_mutex);
3847         }
3848
3849         /* Let userspace switch the overlay on again. In most cases userspace
3850          * has to recompute where to put it anyway.
3851          */
3852 }
3853
3854 /**
3855  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3856  * cursor plane briefly if not already running after enabling the display
3857  * plane.
3858  * This workaround avoids occasional blank screens when self refresh is
3859  * enabled.
3860  */
3861 static void
3862 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3863 {
3864         u32 cntl = I915_READ(CURCNTR(pipe));
3865
3866         if ((cntl & CURSOR_MODE) == 0) {
3867                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3868
3869                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3870                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3871                 intel_wait_for_vblank(dev_priv->dev, pipe);
3872                 I915_WRITE(CURCNTR(pipe), cntl);
3873                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3874                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3875         }
3876 }
3877
3878 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
3879 {
3880         struct drm_device *dev = crtc->dev;
3881         struct drm_i915_private *dev_priv = dev->dev_private;
3882         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3883         int pipe = intel_crtc->pipe;
3884         int plane = intel_crtc->plane;
3885
3886         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3887         intel_enable_planes(crtc);
3888         /* The fixup needs to happen before cursor is enabled */
3889         if (IS_G4X(dev))
3890                 g4x_fixup_plane(dev_priv, pipe);
3891         intel_crtc_update_cursor(crtc, true);
3892         intel_crtc_dpms_overlay(intel_crtc, true);
3893
3894         hsw_enable_ips(intel_crtc);
3895
3896         mutex_lock(&dev->struct_mutex);
3897         intel_update_fbc(dev);
3898         intel_edp_psr_update(dev);
3899         mutex_unlock(&dev->struct_mutex);
3900 }
3901
3902 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
3903 {
3904         struct drm_device *dev = crtc->dev;
3905         struct drm_i915_private *dev_priv = dev->dev_private;
3906         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3907         int pipe = intel_crtc->pipe;
3908         int plane = intel_crtc->plane;
3909
3910         intel_crtc_wait_for_pending_flips(crtc);
3911         drm_crtc_vblank_off(crtc);
3912
3913         if (dev_priv->fbc.plane == plane)
3914                 intel_disable_fbc(dev);
3915
3916         hsw_disable_ips(intel_crtc);
3917
3918         intel_crtc_dpms_overlay(intel_crtc, false);
3919         intel_crtc_update_cursor(crtc, false);
3920         intel_disable_planes(crtc);
3921         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3922 }
3923
3924 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3925 {
3926         struct drm_device *dev = crtc->dev;
3927         struct drm_i915_private *dev_priv = dev->dev_private;
3928         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3929         struct intel_encoder *encoder;
3930         int pipe = intel_crtc->pipe;
3931         enum plane plane = intel_crtc->plane;
3932
3933         WARN_ON(!crtc->enabled);
3934
3935         if (intel_crtc->active)
3936                 return;
3937
3938         if (intel_crtc->config.has_pch_encoder)
3939                 intel_prepare_shared_dpll(intel_crtc);
3940
3941         if (intel_crtc->config.has_dp_encoder)
3942                 intel_dp_set_m_n(intel_crtc);
3943
3944         intel_set_pipe_timings(intel_crtc);
3945
3946         if (intel_crtc->config.has_pch_encoder) {
3947                 intel_cpu_transcoder_set_m_n(intel_crtc,
3948                                              &intel_crtc->config.fdi_m_n);
3949         }
3950
3951         ironlake_set_pipeconf(crtc);
3952
3953         /* Set up the display plane register */
3954         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3955         POSTING_READ(DSPCNTR(plane));
3956
3957         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3958                                                crtc->x, crtc->y);
3959
3960         intel_crtc->active = true;
3961
3962         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3963         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3964
3965         for_each_encoder_on_crtc(dev, crtc, encoder)
3966                 if (encoder->pre_enable)
3967                         encoder->pre_enable(encoder);
3968
3969         if (intel_crtc->config.has_pch_encoder) {
3970                 /* Note: FDI PLL enabling _must_ be done before we enable the
3971                  * cpu pipes, hence this is separate from all the other fdi/pch
3972                  * enabling. */
3973                 ironlake_fdi_pll_enable(intel_crtc);
3974         } else {
3975                 assert_fdi_tx_disabled(dev_priv, pipe);
3976                 assert_fdi_rx_disabled(dev_priv, pipe);
3977         }
3978
3979         ironlake_pfit_enable(intel_crtc);
3980
3981         /*
3982          * On ILK+ LUT must be loaded before the pipe is running but with
3983          * clocks enabled
3984          */
3985         intel_crtc_load_lut(crtc);
3986
3987         intel_update_watermarks(crtc);
3988         intel_enable_pipe(intel_crtc);
3989
3990         if (intel_crtc->config.has_pch_encoder)
3991                 ironlake_pch_enable(crtc);
3992
3993         for_each_encoder_on_crtc(dev, crtc, encoder)
3994                 encoder->enable(encoder);
3995
3996         if (HAS_PCH_CPT(dev))
3997                 cpt_verify_modeset(dev, intel_crtc->pipe);
3998
3999         intel_crtc_enable_planes(crtc);
4000
4001         drm_crtc_vblank_on(crtc);
4002 }
4003
4004 /* IPS only exists on ULT machines and is tied to pipe A. */
4005 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4006 {
4007         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4008 }
4009
4010 /*
4011  * This implements the workaround described in the "notes" section of the mode
4012  * set sequence documentation. When going from no pipes or single pipe to
4013  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4014  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4015  */
4016 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4017 {
4018         struct drm_device *dev = crtc->base.dev;
4019         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4020
4021         /* We want to get the other_active_crtc only if there's only 1 other
4022          * active crtc. */
4023         for_each_intel_crtc(dev, crtc_it) {
4024                 if (!crtc_it->active || crtc_it == crtc)
4025                         continue;
4026
4027                 if (other_active_crtc)
4028                         return;
4029
4030                 other_active_crtc = crtc_it;
4031         }
4032         if (!other_active_crtc)
4033                 return;
4034
4035         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4036         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4037 }
4038
4039 static void haswell_crtc_enable(struct drm_crtc *crtc)
4040 {
4041         struct drm_device *dev = crtc->dev;
4042         struct drm_i915_private *dev_priv = dev->dev_private;
4043         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4044         struct intel_encoder *encoder;
4045         int pipe = intel_crtc->pipe;
4046         enum plane plane = intel_crtc->plane;
4047
4048         WARN_ON(!crtc->enabled);
4049
4050         if (intel_crtc->active)
4051                 return;
4052
4053         if (intel_crtc->config.has_dp_encoder)
4054                 intel_dp_set_m_n(intel_crtc);
4055
4056         intel_set_pipe_timings(intel_crtc);
4057
4058         if (intel_crtc->config.has_pch_encoder) {
4059                 intel_cpu_transcoder_set_m_n(intel_crtc,
4060                                              &intel_crtc->config.fdi_m_n);
4061         }
4062
4063         haswell_set_pipeconf(crtc);
4064
4065         intel_set_pipe_csc(crtc);
4066
4067         /* Set up the display plane register */
4068         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4069         POSTING_READ(DSPCNTR(plane));
4070
4071         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4072                                                crtc->x, crtc->y);
4073
4074         intel_crtc->active = true;
4075
4076         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4077         if (intel_crtc->config.has_pch_encoder)
4078                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4079
4080         if (intel_crtc->config.has_pch_encoder)
4081                 dev_priv->display.fdi_link_train(crtc);
4082
4083         for_each_encoder_on_crtc(dev, crtc, encoder)
4084                 if (encoder->pre_enable)
4085                         encoder->pre_enable(encoder);
4086
4087         intel_ddi_enable_pipe_clock(intel_crtc);
4088
4089         ironlake_pfit_enable(intel_crtc);
4090
4091         /*
4092          * On ILK+ LUT must be loaded before the pipe is running but with
4093          * clocks enabled
4094          */
4095         intel_crtc_load_lut(crtc);
4096
4097         intel_ddi_set_pipe_settings(crtc);
4098         intel_ddi_enable_transcoder_func(crtc);
4099
4100         intel_update_watermarks(crtc);
4101         intel_enable_pipe(intel_crtc);
4102
4103         if (intel_crtc->config.has_pch_encoder)
4104                 lpt_pch_enable(crtc);
4105
4106         for_each_encoder_on_crtc(dev, crtc, encoder) {
4107                 encoder->enable(encoder);
4108                 intel_opregion_notify_encoder(encoder, true);
4109         }
4110
4111         /* If we change the relative order between pipe/planes enabling, we need
4112          * to change the workaround. */
4113         haswell_mode_set_planes_workaround(intel_crtc);
4114         intel_crtc_enable_planes(crtc);
4115
4116         drm_crtc_vblank_on(crtc);
4117 }
4118
4119 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4120 {
4121         struct drm_device *dev = crtc->base.dev;
4122         struct drm_i915_private *dev_priv = dev->dev_private;
4123         int pipe = crtc->pipe;
4124
4125         /* To avoid upsetting the power well on haswell only disable the pfit if
4126          * it's in use. The hw state code will make sure we get this right. */
4127         if (crtc->config.pch_pfit.enabled) {
4128                 I915_WRITE(PF_CTL(pipe), 0);
4129                 I915_WRITE(PF_WIN_POS(pipe), 0);
4130                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4131         }
4132 }
4133
4134 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4135 {
4136         struct drm_device *dev = crtc->dev;
4137         struct drm_i915_private *dev_priv = dev->dev_private;
4138         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4139         struct intel_encoder *encoder;
4140         int pipe = intel_crtc->pipe;
4141         u32 reg, temp;
4142
4143         if (!intel_crtc->active)
4144                 return;
4145
4146         intel_crtc_disable_planes(crtc);
4147
4148         for_each_encoder_on_crtc(dev, crtc, encoder)
4149                 encoder->disable(encoder);
4150
4151         if (intel_crtc->config.has_pch_encoder)
4152                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4153
4154         intel_disable_pipe(dev_priv, pipe);
4155
4156         ironlake_pfit_disable(intel_crtc);
4157
4158         for_each_encoder_on_crtc(dev, crtc, encoder)
4159                 if (encoder->post_disable)
4160                         encoder->post_disable(encoder);
4161
4162         if (intel_crtc->config.has_pch_encoder) {
4163                 ironlake_fdi_disable(crtc);
4164
4165                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4166                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4167
4168                 if (HAS_PCH_CPT(dev)) {
4169                         /* disable TRANS_DP_CTL */
4170                         reg = TRANS_DP_CTL(pipe);
4171                         temp = I915_READ(reg);
4172                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4173                                   TRANS_DP_PORT_SEL_MASK);
4174                         temp |= TRANS_DP_PORT_SEL_NONE;
4175                         I915_WRITE(reg, temp);
4176
4177                         /* disable DPLL_SEL */
4178                         temp = I915_READ(PCH_DPLL_SEL);
4179                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4180                         I915_WRITE(PCH_DPLL_SEL, temp);
4181                 }
4182
4183                 /* disable PCH DPLL */
4184                 intel_disable_shared_dpll(intel_crtc);
4185
4186                 ironlake_fdi_pll_disable(intel_crtc);
4187         }
4188
4189         intel_crtc->active = false;
4190         intel_update_watermarks(crtc);
4191
4192         mutex_lock(&dev->struct_mutex);
4193         intel_update_fbc(dev);
4194         intel_edp_psr_update(dev);
4195         mutex_unlock(&dev->struct_mutex);
4196 }
4197
4198 static void haswell_crtc_disable(struct drm_crtc *crtc)
4199 {
4200         struct drm_device *dev = crtc->dev;
4201         struct drm_i915_private *dev_priv = dev->dev_private;
4202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4203         struct intel_encoder *encoder;
4204         int pipe = intel_crtc->pipe;
4205         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4206
4207         if (!intel_crtc->active)
4208                 return;
4209
4210         intel_crtc_disable_planes(crtc);
4211
4212         for_each_encoder_on_crtc(dev, crtc, encoder) {
4213                 intel_opregion_notify_encoder(encoder, false);
4214                 encoder->disable(encoder);
4215         }
4216
4217         if (intel_crtc->config.has_pch_encoder)
4218                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4219         intel_disable_pipe(dev_priv, pipe);
4220
4221         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4222
4223         ironlake_pfit_disable(intel_crtc);
4224
4225         intel_ddi_disable_pipe_clock(intel_crtc);
4226
4227         for_each_encoder_on_crtc(dev, crtc, encoder)
4228                 if (encoder->post_disable)
4229                         encoder->post_disable(encoder);
4230
4231         if (intel_crtc->config.has_pch_encoder) {
4232                 lpt_disable_pch_transcoder(dev_priv);
4233                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4234                 intel_ddi_fdi_disable(crtc);
4235         }
4236
4237         intel_crtc->active = false;
4238         intel_update_watermarks(crtc);
4239
4240         mutex_lock(&dev->struct_mutex);
4241         intel_update_fbc(dev);
4242         intel_edp_psr_update(dev);
4243         mutex_unlock(&dev->struct_mutex);
4244 }
4245
4246 static void ironlake_crtc_off(struct drm_crtc *crtc)
4247 {
4248         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4249         intel_put_shared_dpll(intel_crtc);
4250 }
4251
4252 static void haswell_crtc_off(struct drm_crtc *crtc)
4253 {
4254         intel_ddi_put_crtc_pll(crtc);
4255 }
4256
4257 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4258 {
4259         struct drm_device *dev = crtc->base.dev;
4260         struct drm_i915_private *dev_priv = dev->dev_private;
4261         struct intel_crtc_config *pipe_config = &crtc->config;
4262
4263         if (!crtc->config.gmch_pfit.control)
4264                 return;
4265
4266         /*
4267          * The panel fitter should only be adjusted whilst the pipe is disabled,
4268          * according to register description and PRM.
4269          */
4270         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4271         assert_pipe_disabled(dev_priv, crtc->pipe);
4272
4273         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4274         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4275
4276         /* Border color in case we don't scale up to the full screen. Black by
4277          * default, change to something else for debugging. */
4278         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4279 }
4280
4281 #define for_each_power_domain(domain, mask)                             \
4282         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4283                 if ((1 << (domain)) & (mask))
4284
4285 enum intel_display_power_domain
4286 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4287 {
4288         struct drm_device *dev = intel_encoder->base.dev;
4289         struct intel_digital_port *intel_dig_port;
4290
4291         switch (intel_encoder->type) {
4292         case INTEL_OUTPUT_UNKNOWN:
4293                 /* Only DDI platforms should ever use this output type */
4294                 WARN_ON_ONCE(!HAS_DDI(dev));
4295         case INTEL_OUTPUT_DISPLAYPORT:
4296         case INTEL_OUTPUT_HDMI:
4297         case INTEL_OUTPUT_EDP:
4298                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4299                 switch (intel_dig_port->port) {
4300                 case PORT_A:
4301                         return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4302                 case PORT_B:
4303                         return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4304                 case PORT_C:
4305                         return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4306                 case PORT_D:
4307                         return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4308                 default:
4309                         WARN_ON_ONCE(1);
4310                         return POWER_DOMAIN_PORT_OTHER;
4311                 }
4312         case INTEL_OUTPUT_ANALOG:
4313                 return POWER_DOMAIN_PORT_CRT;
4314         case INTEL_OUTPUT_DSI:
4315                 return POWER_DOMAIN_PORT_DSI;
4316         default:
4317                 return POWER_DOMAIN_PORT_OTHER;
4318         }
4319 }
4320
4321 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4322 {
4323         struct drm_device *dev = crtc->dev;
4324         struct intel_encoder *intel_encoder;
4325         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4326         enum pipe pipe = intel_crtc->pipe;
4327         bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
4328         unsigned long mask;
4329         enum transcoder transcoder;
4330
4331         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4332
4333         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4334         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4335         if (pfit_enabled)
4336                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4337
4338         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4339                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4340
4341         return mask;
4342 }
4343
4344 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4345                                   bool enable)
4346 {
4347         if (dev_priv->power_domains.init_power_on == enable)
4348                 return;
4349
4350         if (enable)
4351                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4352         else
4353                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4354
4355         dev_priv->power_domains.init_power_on = enable;
4356 }
4357
4358 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4359 {
4360         struct drm_i915_private *dev_priv = dev->dev_private;
4361         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4362         struct intel_crtc *crtc;
4363
4364         /*
4365          * First get all needed power domains, then put all unneeded, to avoid
4366          * any unnecessary toggling of the power wells.
4367          */
4368         for_each_intel_crtc(dev, crtc) {
4369                 enum intel_display_power_domain domain;
4370
4371                 if (!crtc->base.enabled)
4372                         continue;
4373
4374                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4375
4376                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4377                         intel_display_power_get(dev_priv, domain);
4378         }
4379
4380         for_each_intel_crtc(dev, crtc) {
4381                 enum intel_display_power_domain domain;
4382
4383                 for_each_power_domain(domain, crtc->enabled_power_domains)
4384                         intel_display_power_put(dev_priv, domain);
4385
4386                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4387         }
4388
4389         intel_display_set_init_power(dev_priv, false);
4390 }
4391
4392 int valleyview_get_vco(struct drm_i915_private *dev_priv)
4393 {
4394         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4395
4396         /* Obtain SKU information */
4397         mutex_lock(&dev_priv->dpio_lock);
4398         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4399                 CCK_FUSE_HPLL_FREQ_MASK;
4400         mutex_unlock(&dev_priv->dpio_lock);
4401
4402         return vco_freq[hpll_freq];
4403 }
4404
4405 /* Adjust CDclk dividers to allow high res or save power if possible */
4406 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4407 {
4408         struct drm_i915_private *dev_priv = dev->dev_private;
4409         u32 val, cmd;
4410
4411         WARN_ON(valleyview_cur_cdclk(dev_priv) != dev_priv->vlv_cdclk_freq);
4412         dev_priv->vlv_cdclk_freq = cdclk;
4413
4414         if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
4415                 cmd = 2;
4416         else if (cdclk == 266)
4417                 cmd = 1;
4418         else
4419                 cmd = 0;
4420
4421         mutex_lock(&dev_priv->rps.hw_lock);
4422         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4423         val &= ~DSPFREQGUAR_MASK;
4424         val |= (cmd << DSPFREQGUAR_SHIFT);
4425         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4426         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4427                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4428                      50)) {
4429                 DRM_ERROR("timed out waiting for CDclk change\n");
4430         }
4431         mutex_unlock(&dev_priv->rps.hw_lock);
4432
4433         if (cdclk == 400) {
4434                 u32 divider, vco;
4435
4436                 vco = valleyview_get_vco(dev_priv);
4437                 divider = ((vco << 1) / cdclk) - 1;
4438
4439                 mutex_lock(&dev_priv->dpio_lock);
4440                 /* adjust cdclk divider */
4441                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4442                 val &= ~0xf;
4443                 val |= divider;
4444                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4445                 mutex_unlock(&dev_priv->dpio_lock);
4446         }
4447
4448         mutex_lock(&dev_priv->dpio_lock);
4449         /* adjust self-refresh exit latency value */
4450         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4451         val &= ~0x7f;
4452
4453         /*
4454          * For high bandwidth configs, we set a higher latency in the bunit
4455          * so that the core display fetch happens in time to avoid underruns.
4456          */
4457         if (cdclk == 400)
4458                 val |= 4500 / 250; /* 4.5 usec */
4459         else
4460                 val |= 3000 / 250; /* 3.0 usec */
4461         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4462         mutex_unlock(&dev_priv->dpio_lock);
4463
4464         /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4465         intel_i2c_reset(dev);
4466 }
4467
4468 int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4469 {
4470         int cur_cdclk, vco;
4471         int divider;
4472
4473         vco = valleyview_get_vco(dev_priv);
4474
4475         mutex_lock(&dev_priv->dpio_lock);
4476         divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4477         mutex_unlock(&dev_priv->dpio_lock);
4478
4479         divider &= 0xf;
4480
4481         cur_cdclk = (vco << 1) / (divider + 1);
4482
4483         return cur_cdclk;
4484 }
4485
4486 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4487                                  int max_pixclk)
4488 {
4489         /*
4490          * Really only a few cases to deal with, as only 4 CDclks are supported:
4491          *   200MHz
4492          *   267MHz
4493          *   320MHz
4494          *   400MHz
4495          * So we check to see whether we're above 90% of the lower bin and
4496          * adjust if needed.
4497          */
4498         if (max_pixclk > 288000) {
4499                 return 400;
4500         } else if (max_pixclk > 240000) {
4501                 return 320;
4502         } else
4503                 return 266;
4504         /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4505 }
4506
4507 /* compute the max pixel clock for new configuration */
4508 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4509 {
4510         struct drm_device *dev = dev_priv->dev;
4511         struct intel_crtc *intel_crtc;
4512         int max_pixclk = 0;
4513
4514         for_each_intel_crtc(dev, intel_crtc) {
4515                 if (intel_crtc->new_enabled)
4516                         max_pixclk = max(max_pixclk,
4517                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4518         }
4519
4520         return max_pixclk;
4521 }
4522
4523 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4524                                             unsigned *prepare_pipes)
4525 {
4526         struct drm_i915_private *dev_priv = dev->dev_private;
4527         struct intel_crtc *intel_crtc;
4528         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4529
4530         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4531             dev_priv->vlv_cdclk_freq)
4532                 return;
4533
4534         /* disable/enable all currently active pipes while we change cdclk */
4535         for_each_intel_crtc(dev, intel_crtc)
4536                 if (intel_crtc->base.enabled)
4537                         *prepare_pipes |= (1 << intel_crtc->pipe);
4538 }
4539
4540 static void valleyview_modeset_global_resources(struct drm_device *dev)
4541 {
4542         struct drm_i915_private *dev_priv = dev->dev_private;
4543         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4544         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4545
4546         if (req_cdclk != dev_priv->vlv_cdclk_freq)
4547                 valleyview_set_cdclk(dev, req_cdclk);
4548         modeset_update_crtc_power_domains(dev);
4549 }
4550
4551 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4552 {
4553         struct drm_device *dev = crtc->dev;
4554         struct drm_i915_private *dev_priv = dev->dev_private;
4555         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4556         struct intel_encoder *encoder;
4557         int pipe = intel_crtc->pipe;
4558         int plane = intel_crtc->plane;
4559         bool is_dsi;
4560         u32 dspcntr;
4561
4562         WARN_ON(!crtc->enabled);
4563
4564         if (intel_crtc->active)
4565                 return;
4566
4567         vlv_prepare_pll(intel_crtc);
4568
4569         /* Set up the display plane register */
4570         dspcntr = DISPPLANE_GAMMA_ENABLE;
4571
4572         if (intel_crtc->config.has_dp_encoder)
4573                 intel_dp_set_m_n(intel_crtc);
4574
4575         intel_set_pipe_timings(intel_crtc);
4576
4577         /* pipesrc and dspsize control the size that is scaled from,
4578          * which should always be the user's requested size.
4579          */
4580         I915_WRITE(DSPSIZE(plane),
4581                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
4582                    (intel_crtc->config.pipe_src_w - 1));
4583         I915_WRITE(DSPPOS(plane), 0);
4584
4585         i9xx_set_pipeconf(intel_crtc);
4586
4587         I915_WRITE(DSPCNTR(plane), dspcntr);
4588         POSTING_READ(DSPCNTR(plane));
4589
4590         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4591                                                crtc->x, crtc->y);
4592
4593         intel_crtc->active = true;
4594
4595         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4596
4597         for_each_encoder_on_crtc(dev, crtc, encoder)
4598                 if (encoder->pre_pll_enable)
4599                         encoder->pre_pll_enable(encoder);
4600
4601         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4602
4603         if (!is_dsi) {
4604                 if (IS_CHERRYVIEW(dev))
4605                         chv_enable_pll(intel_crtc);
4606                 else
4607                         vlv_enable_pll(intel_crtc);
4608         }
4609
4610         for_each_encoder_on_crtc(dev, crtc, encoder)
4611                 if (encoder->pre_enable)
4612                         encoder->pre_enable(encoder);
4613
4614         i9xx_pfit_enable(intel_crtc);
4615
4616         intel_crtc_load_lut(crtc);
4617
4618         intel_update_watermarks(crtc);
4619         intel_enable_pipe(intel_crtc);
4620
4621         for_each_encoder_on_crtc(dev, crtc, encoder)
4622                 encoder->enable(encoder);
4623
4624         intel_crtc_enable_planes(crtc);
4625
4626         drm_crtc_vblank_on(crtc);
4627
4628         /* Underruns don't raise interrupts, so check manually. */
4629         i9xx_check_fifo_underruns(dev);
4630 }
4631
4632 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4633 {
4634         struct drm_device *dev = crtc->base.dev;
4635         struct drm_i915_private *dev_priv = dev->dev_private;
4636
4637         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4638         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4639 }
4640
4641 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4642 {
4643         struct drm_device *dev = crtc->dev;
4644         struct drm_i915_private *dev_priv = dev->dev_private;
4645         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4646         struct intel_encoder *encoder;
4647         int pipe = intel_crtc->pipe;
4648         int plane = intel_crtc->plane;
4649         u32 dspcntr;
4650
4651         WARN_ON(!crtc->enabled);
4652
4653         if (intel_crtc->active)
4654                 return;
4655
4656         i9xx_set_pll_dividers(intel_crtc);
4657
4658         /* Set up the display plane register */
4659         dspcntr = DISPPLANE_GAMMA_ENABLE;
4660
4661         if (pipe == 0)
4662                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4663         else
4664                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4665
4666         if (intel_crtc->config.has_dp_encoder)
4667                 intel_dp_set_m_n(intel_crtc);
4668
4669         intel_set_pipe_timings(intel_crtc);
4670
4671         /* pipesrc and dspsize control the size that is scaled from,
4672          * which should always be the user's requested size.
4673          */
4674         I915_WRITE(DSPSIZE(plane),
4675                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
4676                    (intel_crtc->config.pipe_src_w - 1));
4677         I915_WRITE(DSPPOS(plane), 0);
4678
4679         i9xx_set_pipeconf(intel_crtc);
4680
4681         I915_WRITE(DSPCNTR(plane), dspcntr);
4682         POSTING_READ(DSPCNTR(plane));
4683
4684         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4685                                                crtc->x, crtc->y);
4686
4687         intel_crtc->active = true;
4688
4689         if (!IS_GEN2(dev))
4690                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4691
4692         for_each_encoder_on_crtc(dev, crtc, encoder)
4693                 if (encoder->pre_enable)
4694                         encoder->pre_enable(encoder);
4695
4696         i9xx_enable_pll(intel_crtc);
4697
4698         i9xx_pfit_enable(intel_crtc);
4699
4700         intel_crtc_load_lut(crtc);
4701
4702         intel_update_watermarks(crtc);
4703         intel_enable_pipe(intel_crtc);
4704
4705         for_each_encoder_on_crtc(dev, crtc, encoder)
4706                 encoder->enable(encoder);
4707
4708         intel_crtc_enable_planes(crtc);
4709
4710         /*
4711          * Gen2 reports pipe underruns whenever all planes are disabled.
4712          * So don't enable underrun reporting before at least some planes
4713          * are enabled.
4714          * FIXME: Need to fix the logic to work when we turn off all planes
4715          * but leave the pipe running.
4716          */
4717         if (IS_GEN2(dev))
4718                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4719
4720         drm_crtc_vblank_on(crtc);
4721
4722         /* Underruns don't raise interrupts, so check manually. */
4723         i9xx_check_fifo_underruns(dev);
4724 }
4725
4726 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4727 {
4728         struct drm_device *dev = crtc->base.dev;
4729         struct drm_i915_private *dev_priv = dev->dev_private;
4730
4731         if (!crtc->config.gmch_pfit.control)
4732                 return;
4733
4734         assert_pipe_disabled(dev_priv, crtc->pipe);
4735
4736         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4737                          I915_READ(PFIT_CONTROL));
4738         I915_WRITE(PFIT_CONTROL, 0);
4739 }
4740
4741 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4742 {
4743         struct drm_device *dev = crtc->dev;
4744         struct drm_i915_private *dev_priv = dev->dev_private;
4745         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4746         struct intel_encoder *encoder;
4747         int pipe = intel_crtc->pipe;
4748
4749         if (!intel_crtc->active)
4750                 return;
4751
4752         /*
4753          * Gen2 reports pipe underruns whenever all planes are disabled.
4754          * So diasble underrun reporting before all the planes get disabled.
4755          * FIXME: Need to fix the logic to work when we turn off all planes
4756          * but leave the pipe running.
4757          */
4758         if (IS_GEN2(dev))
4759                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4760
4761         intel_crtc_disable_planes(crtc);
4762
4763         for_each_encoder_on_crtc(dev, crtc, encoder)
4764                 encoder->disable(encoder);
4765
4766         /*
4767          * On gen2 planes are double buffered but the pipe isn't, so we must
4768          * wait for planes to fully turn off before disabling the pipe.
4769          */
4770         if (IS_GEN2(dev))
4771                 intel_wait_for_vblank(dev, pipe);
4772
4773         intel_disable_pipe(dev_priv, pipe);
4774
4775         i9xx_pfit_disable(intel_crtc);
4776
4777         for_each_encoder_on_crtc(dev, crtc, encoder)
4778                 if (encoder->post_disable)
4779                         encoder->post_disable(encoder);
4780
4781         if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4782                 if (IS_CHERRYVIEW(dev))
4783                         chv_disable_pll(dev_priv, pipe);
4784                 else if (IS_VALLEYVIEW(dev))
4785                         vlv_disable_pll(dev_priv, pipe);
4786                 else
4787                         i9xx_disable_pll(dev_priv, pipe);
4788         }
4789
4790         if (!IS_GEN2(dev))
4791                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4792
4793         intel_crtc->active = false;
4794         intel_update_watermarks(crtc);
4795
4796         mutex_lock(&dev->struct_mutex);
4797         intel_update_fbc(dev);
4798         intel_edp_psr_update(dev);
4799         mutex_unlock(&dev->struct_mutex);
4800 }
4801
4802 static void i9xx_crtc_off(struct drm_crtc *crtc)
4803 {
4804 }
4805
4806 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4807                                     bool enabled)
4808 {
4809         struct drm_device *dev = crtc->dev;
4810         struct drm_i915_master_private *master_priv;
4811         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4812         int pipe = intel_crtc->pipe;
4813
4814         if (!dev->primary->master)
4815                 return;
4816
4817         master_priv = dev->primary->master->driver_priv;
4818         if (!master_priv->sarea_priv)
4819                 return;
4820
4821         switch (pipe) {
4822         case 0:
4823                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4824                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4825                 break;
4826         case 1:
4827                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4828                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4829                 break;
4830         default:
4831                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4832                 break;
4833         }
4834 }
4835
4836 /**
4837  * Sets the power management mode of the pipe and plane.
4838  */
4839 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4840 {
4841         struct drm_device *dev = crtc->dev;
4842         struct drm_i915_private *dev_priv = dev->dev_private;
4843         struct intel_encoder *intel_encoder;
4844         bool enable = false;
4845
4846         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4847                 enable |= intel_encoder->connectors_active;
4848
4849         if (enable)
4850                 dev_priv->display.crtc_enable(crtc);
4851         else
4852                 dev_priv->display.crtc_disable(crtc);
4853
4854         intel_crtc_update_sarea(crtc, enable);
4855 }
4856
4857 static void intel_crtc_disable(struct drm_crtc *crtc)
4858 {
4859         struct drm_device *dev = crtc->dev;
4860         struct drm_connector *connector;
4861         struct drm_i915_private *dev_priv = dev->dev_private;
4862
4863         /* crtc should still be enabled when we disable it. */
4864         WARN_ON(!crtc->enabled);
4865
4866         dev_priv->display.crtc_disable(crtc);
4867         intel_crtc_update_sarea(crtc, false);
4868         dev_priv->display.off(crtc);
4869
4870         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4871         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4872         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4873
4874         if (crtc->primary->fb) {
4875                 mutex_lock(&dev->struct_mutex);
4876                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->primary->fb)->obj);
4877                 mutex_unlock(&dev->struct_mutex);
4878                 crtc->primary->fb = NULL;
4879         }
4880
4881         /* Update computed state. */
4882         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4883                 if (!connector->encoder || !connector->encoder->crtc)
4884                         continue;
4885
4886                 if (connector->encoder->crtc != crtc)
4887                         continue;
4888
4889                 connector->dpms = DRM_MODE_DPMS_OFF;
4890                 to_intel_encoder(connector->encoder)->connectors_active = false;
4891         }
4892 }
4893
4894 void intel_encoder_destroy(struct drm_encoder *encoder)
4895 {
4896         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4897
4898         drm_encoder_cleanup(encoder);
4899         kfree(intel_encoder);
4900 }
4901
4902 /* Simple dpms helper for encoders with just one connector, no cloning and only
4903  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4904  * state of the entire output pipe. */
4905 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4906 {
4907         if (mode == DRM_MODE_DPMS_ON) {
4908                 encoder->connectors_active = true;
4909
4910                 intel_crtc_update_dpms(encoder->base.crtc);
4911         } else {
4912                 encoder->connectors_active = false;
4913
4914                 intel_crtc_update_dpms(encoder->base.crtc);
4915         }
4916 }
4917
4918 /* Cross check the actual hw state with our own modeset state tracking (and it's
4919  * internal consistency). */
4920 static void intel_connector_check_state(struct intel_connector *connector)
4921 {
4922         if (connector->get_hw_state(connector)) {
4923                 struct intel_encoder *encoder = connector->encoder;
4924                 struct drm_crtc *crtc;
4925                 bool encoder_enabled;
4926                 enum pipe pipe;
4927
4928                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4929                               connector->base.base.id,
4930                               connector->base.name);
4931
4932                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4933                      "wrong connector dpms state\n");
4934                 WARN(connector->base.encoder != &encoder->base,
4935                      "active connector not linked to encoder\n");
4936                 WARN(!encoder->connectors_active,
4937                      "encoder->connectors_active not set\n");
4938
4939                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4940                 WARN(!encoder_enabled, "encoder not enabled\n");
4941                 if (WARN_ON(!encoder->base.crtc))
4942                         return;
4943
4944                 crtc = encoder->base.crtc;
4945
4946                 WARN(!crtc->enabled, "crtc not enabled\n");
4947                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4948                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4949                      "encoder active on the wrong pipe\n");
4950         }
4951 }
4952
4953 /* Even simpler default implementation, if there's really no special case to
4954  * consider. */
4955 void intel_connector_dpms(struct drm_connector *connector, int mode)
4956 {
4957         /* All the simple cases only support two dpms states. */
4958         if (mode != DRM_MODE_DPMS_ON)
4959                 mode = DRM_MODE_DPMS_OFF;
4960
4961         if (mode == connector->dpms)
4962                 return;
4963
4964         connector->dpms = mode;
4965
4966         /* Only need to change hw state when actually enabled */
4967         if (connector->encoder)
4968                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4969
4970         intel_modeset_check_state(connector->dev);
4971 }
4972
4973 /* Simple connector->get_hw_state implementation for encoders that support only
4974  * one connector and no cloning and hence the encoder state determines the state
4975  * of the connector. */
4976 bool intel_connector_get_hw_state(struct intel_connector *connector)
4977 {
4978         enum pipe pipe = 0;
4979         struct intel_encoder *encoder = connector->encoder;
4980
4981         return encoder->get_hw_state(encoder, &pipe);
4982 }
4983
4984 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4985                                      struct intel_crtc_config *pipe_config)
4986 {
4987         struct drm_i915_private *dev_priv = dev->dev_private;
4988         struct intel_crtc *pipe_B_crtc =
4989                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4990
4991         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4992                       pipe_name(pipe), pipe_config->fdi_lanes);
4993         if (pipe_config->fdi_lanes > 4) {
4994                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4995                               pipe_name(pipe), pipe_config->fdi_lanes);
4996                 return false;
4997         }
4998
4999         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5000                 if (pipe_config->fdi_lanes > 2) {
5001                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5002                                       pipe_config->fdi_lanes);
5003                         return false;
5004                 } else {
5005                         return true;
5006                 }
5007         }
5008
5009         if (INTEL_INFO(dev)->num_pipes == 2)
5010                 return true;
5011
5012         /* Ivybridge 3 pipe is really complicated */
5013         switch (pipe) {
5014         case PIPE_A:
5015                 return true;
5016         case PIPE_B:
5017                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5018                     pipe_config->fdi_lanes > 2) {
5019                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5020                                       pipe_name(pipe), pipe_config->fdi_lanes);
5021                         return false;
5022                 }
5023                 return true;
5024         case PIPE_C:
5025                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5026                     pipe_B_crtc->config.fdi_lanes <= 2) {
5027                         if (pipe_config->fdi_lanes > 2) {
5028                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5029                                               pipe_name(pipe), pipe_config->fdi_lanes);
5030                                 return false;
5031                         }
5032                 } else {
5033                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5034                         return false;
5035                 }
5036                 return true;
5037         default:
5038                 BUG();
5039         }
5040 }
5041
5042 #define RETRY 1
5043 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5044                                        struct intel_crtc_config *pipe_config)
5045 {
5046         struct drm_device *dev = intel_crtc->base.dev;
5047         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5048         int lane, link_bw, fdi_dotclock;
5049         bool setup_ok, needs_recompute = false;
5050
5051 retry:
5052         /* FDI is a binary signal running at ~2.7GHz, encoding
5053          * each output octet as 10 bits. The actual frequency
5054          * is stored as a divider into a 100MHz clock, and the
5055          * mode pixel clock is stored in units of 1KHz.
5056          * Hence the bw of each lane in terms of the mode signal
5057          * is:
5058          */
5059         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5060
5061         fdi_dotclock = adjusted_mode->crtc_clock;
5062
5063         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5064                                            pipe_config->pipe_bpp);
5065
5066         pipe_config->fdi_lanes = lane;
5067
5068         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5069                                link_bw, &pipe_config->fdi_m_n);
5070
5071         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5072                                             intel_crtc->pipe, pipe_config);
5073         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5074                 pipe_config->pipe_bpp -= 2*3;
5075                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5076                               pipe_config->pipe_bpp);
5077                 needs_recompute = true;
5078                 pipe_config->bw_constrained = true;
5079
5080                 goto retry;
5081         }
5082
5083         if (needs_recompute)
5084                 return RETRY;
5085
5086         return setup_ok ? 0 : -EINVAL;
5087 }
5088
5089 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5090                                    struct intel_crtc_config *pipe_config)
5091 {
5092         pipe_config->ips_enabled = i915.enable_ips &&
5093                                    hsw_crtc_supports_ips(crtc) &&
5094                                    pipe_config->pipe_bpp <= 24;
5095 }
5096
5097 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5098                                      struct intel_crtc_config *pipe_config)
5099 {
5100         struct drm_device *dev = crtc->base.dev;
5101         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5102
5103         /* FIXME should check pixel clock limits on all platforms */
5104         if (INTEL_INFO(dev)->gen < 4) {
5105                 struct drm_i915_private *dev_priv = dev->dev_private;
5106                 int clock_limit =
5107                         dev_priv->display.get_display_clock_speed(dev);
5108
5109                 /*
5110                  * Enable pixel doubling when the dot clock
5111                  * is > 90% of the (display) core speed.
5112                  *
5113                  * GDG double wide on either pipe,
5114                  * otherwise pipe A only.
5115                  */
5116                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5117                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5118                         clock_limit *= 2;
5119                         pipe_config->double_wide = true;
5120                 }
5121
5122                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5123                         return -EINVAL;
5124         }
5125
5126         /*
5127          * Pipe horizontal size must be even in:
5128          * - DVO ganged mode
5129          * - LVDS dual channel mode
5130          * - Double wide pipe
5131          */
5132         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5133              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5134                 pipe_config->pipe_src_w &= ~1;
5135
5136         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5137          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5138          */
5139         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5140                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5141                 return -EINVAL;
5142
5143         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5144                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5145         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5146                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5147                  * for lvds. */
5148                 pipe_config->pipe_bpp = 8*3;
5149         }
5150
5151         if (HAS_IPS(dev))
5152                 hsw_compute_ips_config(crtc, pipe_config);
5153
5154         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
5155          * clock survives for now. */
5156         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5157                 pipe_config->shared_dpll = crtc->config.shared_dpll;
5158
5159         if (pipe_config->has_pch_encoder)
5160                 return ironlake_fdi_compute_config(crtc, pipe_config);
5161
5162         return 0;
5163 }
5164
5165 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5166 {
5167         return 400000; /* FIXME */
5168 }
5169
5170 static int i945_get_display_clock_speed(struct drm_device *dev)
5171 {
5172         return 400000;
5173 }
5174
5175 static int i915_get_display_clock_speed(struct drm_device *dev)
5176 {
5177         return 333000;
5178 }
5179
5180 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5181 {
5182         return 200000;
5183 }
5184
5185 static int pnv_get_display_clock_speed(struct drm_device *dev)
5186 {
5187         u16 gcfgc = 0;
5188
5189         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5190
5191         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5192         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5193                 return 267000;
5194         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5195                 return 333000;
5196         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5197                 return 444000;
5198         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5199                 return 200000;
5200         default:
5201                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5202         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5203                 return 133000;
5204         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5205                 return 167000;
5206         }
5207 }
5208
5209 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5210 {
5211         u16 gcfgc = 0;
5212
5213         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5214
5215         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5216                 return 133000;
5217         else {
5218                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5219                 case GC_DISPLAY_CLOCK_333_MHZ:
5220                         return 333000;
5221                 default:
5222                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5223                         return 190000;
5224                 }
5225         }
5226 }
5227
5228 static int i865_get_display_clock_speed(struct drm_device *dev)
5229 {
5230         return 266000;
5231 }
5232
5233 static int i855_get_display_clock_speed(struct drm_device *dev)
5234 {
5235         u16 hpllcc = 0;
5236         /* Assume that the hardware is in the high speed state.  This
5237          * should be the default.
5238          */
5239         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5240         case GC_CLOCK_133_200:
5241         case GC_CLOCK_100_200:
5242                 return 200000;
5243         case GC_CLOCK_166_250:
5244                 return 250000;
5245         case GC_CLOCK_100_133:
5246                 return 133000;
5247         }
5248
5249         /* Shouldn't happen */
5250         return 0;
5251 }
5252
5253 static int i830_get_display_clock_speed(struct drm_device *dev)
5254 {
5255         return 133000;
5256 }
5257
5258 static void
5259 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5260 {
5261         while (*num > DATA_LINK_M_N_MASK ||
5262                *den > DATA_LINK_M_N_MASK) {
5263                 *num >>= 1;
5264                 *den >>= 1;
5265         }
5266 }
5267
5268 static void compute_m_n(unsigned int m, unsigned int n,
5269                         uint32_t *ret_m, uint32_t *ret_n)
5270 {
5271         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5272         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5273         intel_reduce_m_n_ratio(ret_m, ret_n);
5274 }
5275
5276 void
5277 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5278                        int pixel_clock, int link_clock,
5279                        struct intel_link_m_n *m_n)
5280 {
5281         m_n->tu = 64;
5282
5283         compute_m_n(bits_per_pixel * pixel_clock,
5284                     link_clock * nlanes * 8,
5285                     &m_n->gmch_m, &m_n->gmch_n);
5286
5287         compute_m_n(pixel_clock, link_clock,
5288                     &m_n->link_m, &m_n->link_n);
5289 }
5290
5291 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5292 {
5293         if (i915.panel_use_ssc >= 0)
5294                 return i915.panel_use_ssc != 0;
5295         return dev_priv->vbt.lvds_use_ssc
5296                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5297 }
5298
5299 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5300 {
5301         struct drm_device *dev = crtc->dev;
5302         struct drm_i915_private *dev_priv = dev->dev_private;
5303         int refclk;
5304
5305         if (IS_VALLEYVIEW(dev)) {
5306                 refclk = 100000;
5307         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5308             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5309                 refclk = dev_priv->vbt.lvds_ssc_freq;
5310                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5311         } else if (!IS_GEN2(dev)) {
5312                 refclk = 96000;
5313         } else {
5314                 refclk = 48000;
5315         }
5316
5317         return refclk;
5318 }
5319
5320 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5321 {
5322         return (1 << dpll->n) << 16 | dpll->m2;
5323 }
5324
5325 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5326 {
5327         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5328 }
5329
5330 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5331                                      intel_clock_t *reduced_clock)
5332 {
5333         struct drm_device *dev = crtc->base.dev;
5334         u32 fp, fp2 = 0;
5335
5336         if (IS_PINEVIEW(dev)) {
5337                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5338                 if (reduced_clock)
5339                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5340         } else {
5341                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5342                 if (reduced_clock)
5343                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5344         }
5345
5346         crtc->config.dpll_hw_state.fp0 = fp;
5347
5348         crtc->lowfreq_avail = false;
5349         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5350             reduced_clock && i915.powersave) {
5351                 crtc->config.dpll_hw_state.fp1 = fp2;
5352                 crtc->lowfreq_avail = true;
5353         } else {
5354                 crtc->config.dpll_hw_state.fp1 = fp;
5355         }
5356 }
5357
5358 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5359                 pipe)
5360 {
5361         u32 reg_val;
5362
5363         /*
5364          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5365          * and set it to a reasonable value instead.
5366          */
5367         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5368         reg_val &= 0xffffff00;
5369         reg_val |= 0x00000030;
5370         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5371
5372         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5373         reg_val &= 0x8cffffff;
5374         reg_val = 0x8c000000;
5375         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5376
5377         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5378         reg_val &= 0xffffff00;
5379         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5380
5381         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5382         reg_val &= 0x00ffffff;
5383         reg_val |= 0xb0000000;
5384         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5385 }
5386
5387 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5388                                          struct intel_link_m_n *m_n)
5389 {
5390         struct drm_device *dev = crtc->base.dev;
5391         struct drm_i915_private *dev_priv = dev->dev_private;
5392         int pipe = crtc->pipe;
5393
5394         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5395         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5396         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5397         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5398 }
5399
5400 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5401                                          struct intel_link_m_n *m_n)
5402 {
5403         struct drm_device *dev = crtc->base.dev;
5404         struct drm_i915_private *dev_priv = dev->dev_private;
5405         int pipe = crtc->pipe;
5406         enum transcoder transcoder = crtc->config.cpu_transcoder;
5407
5408         if (INTEL_INFO(dev)->gen >= 5) {
5409                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5410                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5411                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5412                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5413         } else {
5414                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5415                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5416                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5417                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5418         }
5419 }
5420
5421 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5422 {
5423         if (crtc->config.has_pch_encoder)
5424                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5425         else
5426                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5427 }
5428
5429 static void vlv_update_pll(struct intel_crtc *crtc)
5430 {
5431         u32 dpll, dpll_md;
5432
5433         /*
5434          * Enable DPIO clock input. We should never disable the reference
5435          * clock for pipe B, since VGA hotplug / manual detection depends
5436          * on it.
5437          */
5438         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5439                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5440         /* We should never disable this, set it here for state tracking */
5441         if (crtc->pipe == PIPE_B)
5442                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5443         dpll |= DPLL_VCO_ENABLE;
5444         crtc->config.dpll_hw_state.dpll = dpll;
5445
5446         dpll_md = (crtc->config.pixel_multiplier - 1)
5447                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5448         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5449 }
5450
5451 static void vlv_prepare_pll(struct intel_crtc *crtc)
5452 {
5453         struct drm_device *dev = crtc->base.dev;
5454         struct drm_i915_private *dev_priv = dev->dev_private;
5455         int pipe = crtc->pipe;
5456         u32 mdiv;
5457         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5458         u32 coreclk, reg_val;
5459
5460         mutex_lock(&dev_priv->dpio_lock);
5461
5462         bestn = crtc->config.dpll.n;
5463         bestm1 = crtc->config.dpll.m1;
5464         bestm2 = crtc->config.dpll.m2;
5465         bestp1 = crtc->config.dpll.p1;
5466         bestp2 = crtc->config.dpll.p2;
5467
5468         /* See eDP HDMI DPIO driver vbios notes doc */
5469
5470         /* PLL B needs special handling */
5471         if (pipe == PIPE_B)
5472                 vlv_pllb_recal_opamp(dev_priv, pipe);
5473
5474         /* Set up Tx target for periodic Rcomp update */
5475         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5476
5477         /* Disable target IRef on PLL */
5478         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5479         reg_val &= 0x00ffffff;
5480         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5481
5482         /* Disable fast lock */
5483         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5484
5485         /* Set idtafcrecal before PLL is enabled */
5486         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5487         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5488         mdiv |= ((bestn << DPIO_N_SHIFT));
5489         mdiv |= (1 << DPIO_K_SHIFT);
5490
5491         /*
5492          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5493          * but we don't support that).
5494          * Note: don't use the DAC post divider as it seems unstable.
5495          */
5496         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5497         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5498
5499         mdiv |= DPIO_ENABLE_CALIBRATION;
5500         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5501
5502         /* Set HBR and RBR LPF coefficients */
5503         if (crtc->config.port_clock == 162000 ||
5504             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5505             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5506                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5507                                  0x009f0003);
5508         else
5509                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5510                                  0x00d0000f);
5511
5512         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5513             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5514                 /* Use SSC source */
5515                 if (pipe == PIPE_A)
5516                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5517                                          0x0df40000);
5518                 else
5519                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5520                                          0x0df70000);
5521         } else { /* HDMI or VGA */
5522                 /* Use bend source */
5523                 if (pipe == PIPE_A)
5524                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5525                                          0x0df70000);
5526                 else
5527                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5528                                          0x0df40000);
5529         }
5530
5531         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5532         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5533         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5534             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5535                 coreclk |= 0x01000000;
5536         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5537
5538         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5539         mutex_unlock(&dev_priv->dpio_lock);
5540 }
5541
5542 static void chv_update_pll(struct intel_crtc *crtc)
5543 {
5544         struct drm_device *dev = crtc->base.dev;
5545         struct drm_i915_private *dev_priv = dev->dev_private;
5546         int pipe = crtc->pipe;
5547         int dpll_reg = DPLL(crtc->pipe);
5548         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5549         u32 loopfilter, intcoeff;
5550         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5551         int refclk;
5552
5553         crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5554                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5555                 DPLL_VCO_ENABLE;
5556         if (pipe != PIPE_A)
5557                 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5558
5559         crtc->config.dpll_hw_state.dpll_md =
5560                 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5561
5562         bestn = crtc->config.dpll.n;
5563         bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5564         bestm1 = crtc->config.dpll.m1;
5565         bestm2 = crtc->config.dpll.m2 >> 22;
5566         bestp1 = crtc->config.dpll.p1;
5567         bestp2 = crtc->config.dpll.p2;
5568
5569         /*
5570          * Enable Refclk and SSC
5571          */
5572         I915_WRITE(dpll_reg,
5573                    crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5574
5575         mutex_lock(&dev_priv->dpio_lock);
5576
5577         /* p1 and p2 divider */
5578         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5579                         5 << DPIO_CHV_S1_DIV_SHIFT |
5580                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5581                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5582                         1 << DPIO_CHV_K_DIV_SHIFT);
5583
5584         /* Feedback post-divider - m2 */
5585         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5586
5587         /* Feedback refclk divider - n and m1 */
5588         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5589                         DPIO_CHV_M1_DIV_BY_2 |
5590                         1 << DPIO_CHV_N_DIV_SHIFT);
5591
5592         /* M2 fraction division */
5593         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5594
5595         /* M2 fraction division enable */
5596         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5597                        DPIO_CHV_FRAC_DIV_EN |
5598                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5599
5600         /* Loop filter */
5601         refclk = i9xx_get_refclk(&crtc->base, 0);
5602         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5603                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5604         if (refclk == 100000)
5605                 intcoeff = 11;
5606         else if (refclk == 38400)
5607                 intcoeff = 10;
5608         else
5609                 intcoeff = 9;
5610         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5611         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5612
5613         /* AFC Recal */
5614         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5615                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5616                         DPIO_AFC_RECAL);
5617
5618         mutex_unlock(&dev_priv->dpio_lock);
5619 }
5620
5621 static void i9xx_update_pll(struct intel_crtc *crtc,
5622                             intel_clock_t *reduced_clock,
5623                             int num_connectors)
5624 {
5625         struct drm_device *dev = crtc->base.dev;
5626         struct drm_i915_private *dev_priv = dev->dev_private;
5627         u32 dpll;
5628         bool is_sdvo;
5629         struct dpll *clock = &crtc->config.dpll;
5630
5631         i9xx_update_pll_dividers(crtc, reduced_clock);
5632
5633         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5634                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5635
5636         dpll = DPLL_VGA_MODE_DIS;
5637
5638         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5639                 dpll |= DPLLB_MODE_LVDS;
5640         else
5641                 dpll |= DPLLB_MODE_DAC_SERIAL;
5642
5643         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5644                 dpll |= (crtc->config.pixel_multiplier - 1)
5645                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5646         }
5647
5648         if (is_sdvo)
5649                 dpll |= DPLL_SDVO_HIGH_SPEED;
5650
5651         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5652                 dpll |= DPLL_SDVO_HIGH_SPEED;
5653
5654         /* compute bitmask from p1 value */
5655         if (IS_PINEVIEW(dev))
5656                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5657         else {
5658                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5659                 if (IS_G4X(dev) && reduced_clock)
5660                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5661         }
5662         switch (clock->p2) {
5663         case 5:
5664                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5665                 break;
5666         case 7:
5667                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5668                 break;
5669         case 10:
5670                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5671                 break;
5672         case 14:
5673                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5674                 break;
5675         }
5676         if (INTEL_INFO(dev)->gen >= 4)
5677                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5678
5679         if (crtc->config.sdvo_tv_clock)
5680                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5681         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5682                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5683                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5684         else
5685                 dpll |= PLL_REF_INPUT_DREFCLK;
5686
5687         dpll |= DPLL_VCO_ENABLE;
5688         crtc->config.dpll_hw_state.dpll = dpll;
5689
5690         if (INTEL_INFO(dev)->gen >= 4) {
5691                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5692                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5693                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5694         }
5695 }
5696
5697 static void i8xx_update_pll(struct intel_crtc *crtc,
5698                             intel_clock_t *reduced_clock,
5699                             int num_connectors)
5700 {
5701         struct drm_device *dev = crtc->base.dev;
5702         struct drm_i915_private *dev_priv = dev->dev_private;
5703         u32 dpll;
5704         struct dpll *clock = &crtc->config.dpll;
5705
5706         i9xx_update_pll_dividers(crtc, reduced_clock);
5707
5708         dpll = DPLL_VGA_MODE_DIS;
5709
5710         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5711                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5712         } else {
5713                 if (clock->p1 == 2)
5714                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5715                 else
5716                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5717                 if (clock->p2 == 4)
5718                         dpll |= PLL_P2_DIVIDE_BY_4;
5719         }
5720
5721         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5722                 dpll |= DPLL_DVO_2X_MODE;
5723
5724         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5725                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5726                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5727         else
5728                 dpll |= PLL_REF_INPUT_DREFCLK;
5729
5730         dpll |= DPLL_VCO_ENABLE;
5731         crtc->config.dpll_hw_state.dpll = dpll;
5732 }
5733
5734 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5735 {
5736         struct drm_device *dev = intel_crtc->base.dev;
5737         struct drm_i915_private *dev_priv = dev->dev_private;
5738         enum pipe pipe = intel_crtc->pipe;
5739         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5740         struct drm_display_mode *adjusted_mode =
5741                 &intel_crtc->config.adjusted_mode;
5742         uint32_t crtc_vtotal, crtc_vblank_end;
5743         int vsyncshift = 0;
5744
5745         /* We need to be careful not to changed the adjusted mode, for otherwise
5746          * the hw state checker will get angry at the mismatch. */
5747         crtc_vtotal = adjusted_mode->crtc_vtotal;
5748         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5749
5750         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5751                 /* the chip adds 2 halflines automatically */
5752                 crtc_vtotal -= 1;
5753                 crtc_vblank_end -= 1;
5754
5755                 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5756                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5757                 else
5758                         vsyncshift = adjusted_mode->crtc_hsync_start -
5759                                 adjusted_mode->crtc_htotal / 2;
5760                 if (vsyncshift < 0)
5761                         vsyncshift += adjusted_mode->crtc_htotal;
5762         }
5763
5764         if (INTEL_INFO(dev)->gen > 3)
5765                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5766
5767         I915_WRITE(HTOTAL(cpu_transcoder),
5768                    (adjusted_mode->crtc_hdisplay - 1) |
5769                    ((adjusted_mode->crtc_htotal - 1) << 16));
5770         I915_WRITE(HBLANK(cpu_transcoder),
5771                    (adjusted_mode->crtc_hblank_start - 1) |
5772                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5773         I915_WRITE(HSYNC(cpu_transcoder),
5774                    (adjusted_mode->crtc_hsync_start - 1) |
5775                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5776
5777         I915_WRITE(VTOTAL(cpu_transcoder),
5778                    (adjusted_mode->crtc_vdisplay - 1) |
5779                    ((crtc_vtotal - 1) << 16));
5780         I915_WRITE(VBLANK(cpu_transcoder),
5781                    (adjusted_mode->crtc_vblank_start - 1) |
5782                    ((crtc_vblank_end - 1) << 16));
5783         I915_WRITE(VSYNC(cpu_transcoder),
5784                    (adjusted_mode->crtc_vsync_start - 1) |
5785                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5786
5787         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5788          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5789          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5790          * bits. */
5791         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5792             (pipe == PIPE_B || pipe == PIPE_C))
5793                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5794
5795         /* pipesrc controls the size that is scaled from, which should
5796          * always be the user's requested size.
5797          */
5798         I915_WRITE(PIPESRC(pipe),
5799                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5800                    (intel_crtc->config.pipe_src_h - 1));
5801 }
5802
5803 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5804                                    struct intel_crtc_config *pipe_config)
5805 {
5806         struct drm_device *dev = crtc->base.dev;
5807         struct drm_i915_private *dev_priv = dev->dev_private;
5808         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5809         uint32_t tmp;
5810
5811         tmp = I915_READ(HTOTAL(cpu_transcoder));
5812         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5813         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5814         tmp = I915_READ(HBLANK(cpu_transcoder));
5815         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5816         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5817         tmp = I915_READ(HSYNC(cpu_transcoder));
5818         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5819         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5820
5821         tmp = I915_READ(VTOTAL(cpu_transcoder));
5822         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5823         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5824         tmp = I915_READ(VBLANK(cpu_transcoder));
5825         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5826         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5827         tmp = I915_READ(VSYNC(cpu_transcoder));
5828         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5829         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5830
5831         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5832                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5833                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5834                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5835         }
5836
5837         tmp = I915_READ(PIPESRC(crtc->pipe));
5838         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5839         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5840
5841         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5842         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5843 }
5844
5845 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5846                                  struct intel_crtc_config *pipe_config)
5847 {
5848         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5849         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5850         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5851         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5852
5853         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5854         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5855         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5856         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5857
5858         mode->flags = pipe_config->adjusted_mode.flags;
5859
5860         mode->clock = pipe_config->adjusted_mode.crtc_clock;
5861         mode->flags |= pipe_config->adjusted_mode.flags;
5862 }
5863
5864 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5865 {
5866         struct drm_device *dev = intel_crtc->base.dev;
5867         struct drm_i915_private *dev_priv = dev->dev_private;
5868         uint32_t pipeconf;
5869
5870         pipeconf = 0;
5871
5872         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5873             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5874                 pipeconf |= PIPECONF_ENABLE;
5875
5876         if (intel_crtc->config.double_wide)
5877                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5878
5879         /* only g4x and later have fancy bpc/dither controls */
5880         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5881                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5882                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5883                         pipeconf |= PIPECONF_DITHER_EN |
5884                                     PIPECONF_DITHER_TYPE_SP;
5885
5886                 switch (intel_crtc->config.pipe_bpp) {
5887                 case 18:
5888                         pipeconf |= PIPECONF_6BPC;
5889                         break;
5890                 case 24:
5891                         pipeconf |= PIPECONF_8BPC;
5892                         break;
5893                 case 30:
5894                         pipeconf |= PIPECONF_10BPC;
5895                         break;
5896                 default:
5897                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5898                         BUG();
5899                 }
5900         }
5901
5902         if (HAS_PIPE_CXSR(dev)) {
5903                 if (intel_crtc->lowfreq_avail) {
5904                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5905                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5906                 } else {
5907                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5908                 }
5909         }
5910
5911         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
5912                 if (INTEL_INFO(dev)->gen < 4 ||
5913                     intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5914                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5915                 else
5916                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
5917         } else
5918                 pipeconf |= PIPECONF_PROGRESSIVE;
5919
5920         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5921                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5922
5923         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5924         POSTING_READ(PIPECONF(intel_crtc->pipe));
5925 }
5926
5927 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5928                               int x, int y,
5929                               struct drm_framebuffer *fb)
5930 {
5931         struct drm_device *dev = crtc->dev;
5932         struct drm_i915_private *dev_priv = dev->dev_private;
5933         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5934         int refclk, num_connectors = 0;
5935         intel_clock_t clock, reduced_clock;
5936         bool ok, has_reduced_clock = false;
5937         bool is_lvds = false, is_dsi = false;
5938         struct intel_encoder *encoder;
5939         const intel_limit_t *limit;
5940
5941         for_each_encoder_on_crtc(dev, crtc, encoder) {
5942                 switch (encoder->type) {
5943                 case INTEL_OUTPUT_LVDS:
5944                         is_lvds = true;
5945                         break;
5946                 case INTEL_OUTPUT_DSI:
5947                         is_dsi = true;
5948                         break;
5949                 }
5950
5951                 num_connectors++;
5952         }
5953
5954         if (is_dsi)
5955                 return 0;
5956
5957         if (!intel_crtc->config.clock_set) {
5958                 refclk = i9xx_get_refclk(crtc, num_connectors);
5959
5960                 /*
5961                  * Returns a set of divisors for the desired target clock with
5962                  * the given refclk, or FALSE.  The returned values represent
5963                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5964                  * 2) / p1 / p2.
5965                  */
5966                 limit = intel_limit(crtc, refclk);
5967                 ok = dev_priv->display.find_dpll(limit, crtc,
5968                                                  intel_crtc->config.port_clock,
5969                                                  refclk, NULL, &clock);
5970                 if (!ok) {
5971                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5972                         return -EINVAL;
5973                 }
5974
5975                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5976                         /*
5977                          * Ensure we match the reduced clock's P to the target
5978                          * clock.  If the clocks don't match, we can't switch
5979                          * the display clock by using the FP0/FP1. In such case
5980                          * we will disable the LVDS downclock feature.
5981                          */
5982                         has_reduced_clock =
5983                                 dev_priv->display.find_dpll(limit, crtc,
5984                                                             dev_priv->lvds_downclock,
5985                                                             refclk, &clock,
5986                                                             &reduced_clock);
5987                 }
5988                 /* Compat-code for transition, will disappear. */
5989                 intel_crtc->config.dpll.n = clock.n;
5990                 intel_crtc->config.dpll.m1 = clock.m1;
5991                 intel_crtc->config.dpll.m2 = clock.m2;
5992                 intel_crtc->config.dpll.p1 = clock.p1;
5993                 intel_crtc->config.dpll.p2 = clock.p2;
5994         }
5995
5996         if (IS_GEN2(dev)) {
5997                 i8xx_update_pll(intel_crtc,
5998                                 has_reduced_clock ? &reduced_clock : NULL,
5999                                 num_connectors);
6000         } else if (IS_CHERRYVIEW(dev)) {
6001                 chv_update_pll(intel_crtc);
6002         } else if (IS_VALLEYVIEW(dev)) {
6003                 vlv_update_pll(intel_crtc);
6004         } else {
6005                 i9xx_update_pll(intel_crtc,
6006                                 has_reduced_clock ? &reduced_clock : NULL,
6007                                 num_connectors);
6008         }
6009
6010         return 0;
6011 }
6012
6013 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6014                                  struct intel_crtc_config *pipe_config)
6015 {
6016         struct drm_device *dev = crtc->base.dev;
6017         struct drm_i915_private *dev_priv = dev->dev_private;
6018         uint32_t tmp;
6019
6020         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6021                 return;
6022
6023         tmp = I915_READ(PFIT_CONTROL);
6024         if (!(tmp & PFIT_ENABLE))
6025                 return;
6026
6027         /* Check whether the pfit is attached to our pipe. */
6028         if (INTEL_INFO(dev)->gen < 4) {
6029                 if (crtc->pipe != PIPE_B)
6030                         return;
6031         } else {
6032                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6033                         return;
6034         }
6035
6036         pipe_config->gmch_pfit.control = tmp;
6037         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6038         if (INTEL_INFO(dev)->gen < 5)
6039                 pipe_config->gmch_pfit.lvds_border_bits =
6040                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6041 }
6042
6043 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6044                                struct intel_crtc_config *pipe_config)
6045 {
6046         struct drm_device *dev = crtc->base.dev;
6047         struct drm_i915_private *dev_priv = dev->dev_private;
6048         int pipe = pipe_config->cpu_transcoder;
6049         intel_clock_t clock;
6050         u32 mdiv;
6051         int refclk = 100000;
6052
6053         mutex_lock(&dev_priv->dpio_lock);
6054         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6055         mutex_unlock(&dev_priv->dpio_lock);
6056
6057         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6058         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6059         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6060         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6061         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6062
6063         vlv_clock(refclk, &clock);
6064
6065         /* clock.dot is the fast clock */
6066         pipe_config->port_clock = clock.dot / 5;
6067 }
6068
6069 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6070                                   struct intel_plane_config *plane_config)
6071 {
6072         struct drm_device *dev = crtc->base.dev;
6073         struct drm_i915_private *dev_priv = dev->dev_private;
6074         u32 val, base, offset;
6075         int pipe = crtc->pipe, plane = crtc->plane;
6076         int fourcc, pixel_format;
6077         int aligned_height;
6078
6079         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6080         if (!crtc->base.primary->fb) {
6081                 DRM_DEBUG_KMS("failed to alloc fb\n");
6082                 return;
6083         }
6084
6085         val = I915_READ(DSPCNTR(plane));
6086
6087         if (INTEL_INFO(dev)->gen >= 4)
6088                 if (val & DISPPLANE_TILED)
6089                         plane_config->tiled = true;
6090
6091         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6092         fourcc = intel_format_to_fourcc(pixel_format);
6093         crtc->base.primary->fb->pixel_format = fourcc;
6094         crtc->base.primary->fb->bits_per_pixel =
6095                 drm_format_plane_cpp(fourcc, 0) * 8;
6096
6097         if (INTEL_INFO(dev)->gen >= 4) {
6098                 if (plane_config->tiled)
6099                         offset = I915_READ(DSPTILEOFF(plane));
6100                 else
6101                         offset = I915_READ(DSPLINOFF(plane));
6102                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6103         } else {
6104                 base = I915_READ(DSPADDR(plane));
6105         }
6106         plane_config->base = base;
6107
6108         val = I915_READ(PIPESRC(pipe));
6109         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6110         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6111
6112         val = I915_READ(DSPSTRIDE(pipe));
6113         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
6114
6115         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6116                                             plane_config->tiled);
6117
6118         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
6119                                    aligned_height, PAGE_SIZE);
6120
6121         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6122                       pipe, plane, crtc->base.primary->fb->width,
6123                       crtc->base.primary->fb->height,
6124                       crtc->base.primary->fb->bits_per_pixel, base,
6125                       crtc->base.primary->fb->pitches[0],
6126                       plane_config->size);
6127
6128 }
6129
6130 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6131                                struct intel_crtc_config *pipe_config)
6132 {
6133         struct drm_device *dev = crtc->base.dev;
6134         struct drm_i915_private *dev_priv = dev->dev_private;
6135         int pipe = pipe_config->cpu_transcoder;
6136         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6137         intel_clock_t clock;
6138         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6139         int refclk = 100000;
6140
6141         mutex_lock(&dev_priv->dpio_lock);
6142         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6143         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6144         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6145         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6146         mutex_unlock(&dev_priv->dpio_lock);
6147
6148         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6149         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6150         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6151         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6152         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6153
6154         chv_clock(refclk, &clock);
6155
6156         /* clock.dot is the fast clock */
6157         pipe_config->port_clock = clock.dot / 5;
6158 }
6159
6160 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6161                                  struct intel_crtc_config *pipe_config)
6162 {
6163         struct drm_device *dev = crtc->base.dev;
6164         struct drm_i915_private *dev_priv = dev->dev_private;
6165         uint32_t tmp;
6166
6167         if (!intel_display_power_enabled(dev_priv,
6168                                          POWER_DOMAIN_PIPE(crtc->pipe)))
6169                 return false;
6170
6171         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6172         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6173
6174         tmp = I915_READ(PIPECONF(crtc->pipe));
6175         if (!(tmp & PIPECONF_ENABLE))
6176                 return false;
6177
6178         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6179                 switch (tmp & PIPECONF_BPC_MASK) {
6180                 case PIPECONF_6BPC:
6181                         pipe_config->pipe_bpp = 18;
6182                         break;
6183                 case PIPECONF_8BPC:
6184                         pipe_config->pipe_bpp = 24;
6185                         break;
6186                 case PIPECONF_10BPC:
6187                         pipe_config->pipe_bpp = 30;
6188                         break;
6189                 default:
6190                         break;
6191                 }
6192         }
6193
6194         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6195                 pipe_config->limited_color_range = true;
6196
6197         if (INTEL_INFO(dev)->gen < 4)
6198                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6199
6200         intel_get_pipe_timings(crtc, pipe_config);
6201
6202         i9xx_get_pfit_config(crtc, pipe_config);
6203
6204         if (INTEL_INFO(dev)->gen >= 4) {
6205                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6206                 pipe_config->pixel_multiplier =
6207                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6208                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6209                 pipe_config->dpll_hw_state.dpll_md = tmp;
6210         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6211                 tmp = I915_READ(DPLL(crtc->pipe));
6212                 pipe_config->pixel_multiplier =
6213                         ((tmp & SDVO_MULTIPLIER_MASK)
6214                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6215         } else {
6216                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6217                  * port and will be fixed up in the encoder->get_config
6218                  * function. */
6219                 pipe_config->pixel_multiplier = 1;
6220         }
6221         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6222         if (!IS_VALLEYVIEW(dev)) {
6223                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6224                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6225         } else {
6226                 /* Mask out read-only status bits. */
6227                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6228                                                      DPLL_PORTC_READY_MASK |
6229                                                      DPLL_PORTB_READY_MASK);
6230         }
6231
6232         if (IS_CHERRYVIEW(dev))
6233                 chv_crtc_clock_get(crtc, pipe_config);
6234         else if (IS_VALLEYVIEW(dev))
6235                 vlv_crtc_clock_get(crtc, pipe_config);
6236         else
6237                 i9xx_crtc_clock_get(crtc, pipe_config);
6238
6239         return true;
6240 }
6241
6242 static void ironlake_init_pch_refclk(struct drm_device *dev)
6243 {
6244         struct drm_i915_private *dev_priv = dev->dev_private;
6245         struct drm_mode_config *mode_config = &dev->mode_config;
6246         struct intel_encoder *encoder;
6247         u32 val, final;
6248         bool has_lvds = false;
6249         bool has_cpu_edp = false;
6250         bool has_panel = false;
6251         bool has_ck505 = false;
6252         bool can_ssc = false;
6253
6254         /* We need to take the global config into account */
6255         list_for_each_entry(encoder, &mode_config->encoder_list,
6256                             base.head) {
6257                 switch (encoder->type) {
6258                 case INTEL_OUTPUT_LVDS:
6259                         has_panel = true;
6260                         has_lvds = true;
6261                         break;
6262                 case INTEL_OUTPUT_EDP:
6263                         has_panel = true;
6264                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6265                                 has_cpu_edp = true;
6266                         break;
6267                 }
6268         }
6269
6270         if (HAS_PCH_IBX(dev)) {
6271                 has_ck505 = dev_priv->vbt.display_clock_mode;
6272                 can_ssc = has_ck505;
6273         } else {
6274                 has_ck505 = false;
6275                 can_ssc = true;
6276         }
6277
6278         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6279                       has_panel, has_lvds, has_ck505);
6280
6281         /* Ironlake: try to setup display ref clock before DPLL
6282          * enabling. This is only under driver's control after
6283          * PCH B stepping, previous chipset stepping should be
6284          * ignoring this setting.
6285          */
6286         val = I915_READ(PCH_DREF_CONTROL);
6287
6288         /* As we must carefully and slowly disable/enable each source in turn,
6289          * compute the final state we want first and check if we need to
6290          * make any changes at all.
6291          */
6292         final = val;
6293         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6294         if (has_ck505)
6295                 final |= DREF_NONSPREAD_CK505_ENABLE;
6296         else
6297                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6298
6299         final &= ~DREF_SSC_SOURCE_MASK;
6300         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6301         final &= ~DREF_SSC1_ENABLE;
6302
6303         if (has_panel) {
6304                 final |= DREF_SSC_SOURCE_ENABLE;
6305
6306                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6307                         final |= DREF_SSC1_ENABLE;
6308
6309                 if (has_cpu_edp) {
6310                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6311                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6312                         else
6313                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6314                 } else
6315                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6316         } else {
6317                 final |= DREF_SSC_SOURCE_DISABLE;
6318                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6319         }
6320
6321         if (final == val)
6322                 return;
6323
6324         /* Always enable nonspread source */
6325         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6326
6327         if (has_ck505)
6328                 val |= DREF_NONSPREAD_CK505_ENABLE;
6329         else
6330                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6331
6332         if (has_panel) {
6333                 val &= ~DREF_SSC_SOURCE_MASK;
6334                 val |= DREF_SSC_SOURCE_ENABLE;
6335
6336                 /* SSC must be turned on before enabling the CPU output  */
6337                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6338                         DRM_DEBUG_KMS("Using SSC on panel\n");
6339                         val |= DREF_SSC1_ENABLE;
6340                 } else
6341                         val &= ~DREF_SSC1_ENABLE;
6342
6343                 /* Get SSC going before enabling the outputs */
6344                 I915_WRITE(PCH_DREF_CONTROL, val);
6345                 POSTING_READ(PCH_DREF_CONTROL);
6346                 udelay(200);
6347
6348                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6349
6350                 /* Enable CPU source on CPU attached eDP */
6351                 if (has_cpu_edp) {
6352                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6353                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6354                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6355                         } else
6356                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6357                 } else
6358                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6359
6360                 I915_WRITE(PCH_DREF_CONTROL, val);
6361                 POSTING_READ(PCH_DREF_CONTROL);
6362                 udelay(200);
6363         } else {
6364                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6365
6366                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6367
6368                 /* Turn off CPU output */
6369                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6370
6371                 I915_WRITE(PCH_DREF_CONTROL, val);
6372                 POSTING_READ(PCH_DREF_CONTROL);
6373                 udelay(200);
6374
6375                 /* Turn off the SSC source */
6376                 val &= ~DREF_SSC_SOURCE_MASK;
6377                 val |= DREF_SSC_SOURCE_DISABLE;
6378
6379                 /* Turn off SSC1 */
6380                 val &= ~DREF_SSC1_ENABLE;
6381
6382                 I915_WRITE(PCH_DREF_CONTROL, val);
6383                 POSTING_READ(PCH_DREF_CONTROL);
6384                 udelay(200);
6385         }
6386
6387         BUG_ON(val != final);
6388 }
6389
6390 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6391 {
6392         uint32_t tmp;
6393
6394         tmp = I915_READ(SOUTH_CHICKEN2);
6395         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6396         I915_WRITE(SOUTH_CHICKEN2, tmp);
6397
6398         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6399                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6400                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6401
6402         tmp = I915_READ(SOUTH_CHICKEN2);
6403         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6404         I915_WRITE(SOUTH_CHICKEN2, tmp);
6405
6406         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6407                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6408                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6409 }
6410
6411 /* WaMPhyProgramming:hsw */
6412 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6413 {
6414         uint32_t tmp;
6415
6416         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6417         tmp &= ~(0xFF << 24);
6418         tmp |= (0x12 << 24);
6419         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6420
6421         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6422         tmp |= (1 << 11);
6423         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6424
6425         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6426         tmp |= (1 << 11);
6427         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6428
6429         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6430         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6431         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6432
6433         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6434         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6435         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6436
6437         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6438         tmp &= ~(7 << 13);
6439         tmp |= (5 << 13);
6440         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6441
6442         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6443         tmp &= ~(7 << 13);
6444         tmp |= (5 << 13);
6445         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6446
6447         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6448         tmp &= ~0xFF;
6449         tmp |= 0x1C;
6450         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6451
6452         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6453         tmp &= ~0xFF;
6454         tmp |= 0x1C;
6455         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6456
6457         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6458         tmp &= ~(0xFF << 16);
6459         tmp |= (0x1C << 16);
6460         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6461
6462         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6463         tmp &= ~(0xFF << 16);
6464         tmp |= (0x1C << 16);
6465         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6466
6467         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6468         tmp |= (1 << 27);
6469         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6470
6471         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6472         tmp |= (1 << 27);
6473         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6474
6475         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6476         tmp &= ~(0xF << 28);
6477         tmp |= (4 << 28);
6478         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6479
6480         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6481         tmp &= ~(0xF << 28);
6482         tmp |= (4 << 28);
6483         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6484 }
6485
6486 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6487  * Programming" based on the parameters passed:
6488  * - Sequence to enable CLKOUT_DP
6489  * - Sequence to enable CLKOUT_DP without spread
6490  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6491  */
6492 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6493                                  bool with_fdi)
6494 {
6495         struct drm_i915_private *dev_priv = dev->dev_private;
6496         uint32_t reg, tmp;
6497
6498         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6499                 with_spread = true;
6500         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6501                  with_fdi, "LP PCH doesn't have FDI\n"))
6502                 with_fdi = false;
6503
6504         mutex_lock(&dev_priv->dpio_lock);
6505
6506         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6507         tmp &= ~SBI_SSCCTL_DISABLE;
6508         tmp |= SBI_SSCCTL_PATHALT;
6509         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6510
6511         udelay(24);
6512
6513         if (with_spread) {
6514                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6515                 tmp &= ~SBI_SSCCTL_PATHALT;
6516                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6517
6518                 if (with_fdi) {
6519                         lpt_reset_fdi_mphy(dev_priv);
6520                         lpt_program_fdi_mphy(dev_priv);
6521                 }
6522         }
6523
6524         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6525                SBI_GEN0 : SBI_DBUFF0;
6526         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6527         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6528         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6529
6530         mutex_unlock(&dev_priv->dpio_lock);
6531 }
6532
6533 /* Sequence to disable CLKOUT_DP */
6534 static void lpt_disable_clkout_dp(struct drm_device *dev)
6535 {
6536         struct drm_i915_private *dev_priv = dev->dev_private;
6537         uint32_t reg, tmp;
6538
6539         mutex_lock(&dev_priv->dpio_lock);
6540
6541         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6542                SBI_GEN0 : SBI_DBUFF0;
6543         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6544         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6545         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6546
6547         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6548         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6549                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6550                         tmp |= SBI_SSCCTL_PATHALT;
6551                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6552                         udelay(32);
6553                 }
6554                 tmp |= SBI_SSCCTL_DISABLE;
6555                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6556         }
6557
6558         mutex_unlock(&dev_priv->dpio_lock);
6559 }
6560
6561 static void lpt_init_pch_refclk(struct drm_device *dev)
6562 {
6563         struct drm_mode_config *mode_config = &dev->mode_config;
6564         struct intel_encoder *encoder;
6565         bool has_vga = false;
6566
6567         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6568                 switch (encoder->type) {
6569                 case INTEL_OUTPUT_ANALOG:
6570                         has_vga = true;
6571                         break;
6572                 }
6573         }
6574
6575         if (has_vga)
6576                 lpt_enable_clkout_dp(dev, true, true);
6577         else
6578                 lpt_disable_clkout_dp(dev);
6579 }
6580
6581 /*
6582  * Initialize reference clocks when the driver loads
6583  */
6584 void intel_init_pch_refclk(struct drm_device *dev)
6585 {
6586         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6587                 ironlake_init_pch_refclk(dev);
6588         else if (HAS_PCH_LPT(dev))
6589                 lpt_init_pch_refclk(dev);
6590 }
6591
6592 static int ironlake_get_refclk(struct drm_crtc *crtc)
6593 {
6594         struct drm_device *dev = crtc->dev;
6595         struct drm_i915_private *dev_priv = dev->dev_private;
6596         struct intel_encoder *encoder;
6597         int num_connectors = 0;
6598         bool is_lvds = false;
6599
6600         for_each_encoder_on_crtc(dev, crtc, encoder) {
6601                 switch (encoder->type) {
6602                 case INTEL_OUTPUT_LVDS:
6603                         is_lvds = true;
6604                         break;
6605                 }
6606                 num_connectors++;
6607         }
6608
6609         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6610                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6611                               dev_priv->vbt.lvds_ssc_freq);
6612                 return dev_priv->vbt.lvds_ssc_freq;
6613         }
6614
6615         return 120000;
6616 }
6617
6618 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6619 {
6620         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6621         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6622         int pipe = intel_crtc->pipe;
6623         uint32_t val;
6624
6625         val = 0;
6626
6627         switch (intel_crtc->config.pipe_bpp) {
6628         case 18:
6629                 val |= PIPECONF_6BPC;
6630                 break;
6631         case 24:
6632                 val |= PIPECONF_8BPC;
6633                 break;
6634         case 30:
6635                 val |= PIPECONF_10BPC;
6636                 break;
6637         case 36:
6638                 val |= PIPECONF_12BPC;
6639                 break;
6640         default:
6641                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6642                 BUG();
6643         }
6644
6645         if (intel_crtc->config.dither)
6646                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6647
6648         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6649                 val |= PIPECONF_INTERLACED_ILK;
6650         else
6651                 val |= PIPECONF_PROGRESSIVE;
6652
6653         if (intel_crtc->config.limited_color_range)
6654                 val |= PIPECONF_COLOR_RANGE_SELECT;
6655
6656         I915_WRITE(PIPECONF(pipe), val);
6657         POSTING_READ(PIPECONF(pipe));
6658 }
6659
6660 /*
6661  * Set up the pipe CSC unit.
6662  *
6663  * Currently only full range RGB to limited range RGB conversion
6664  * is supported, but eventually this should handle various
6665  * RGB<->YCbCr scenarios as well.
6666  */
6667 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6668 {
6669         struct drm_device *dev = crtc->dev;
6670         struct drm_i915_private *dev_priv = dev->dev_private;
6671         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6672         int pipe = intel_crtc->pipe;
6673         uint16_t coeff = 0x7800; /* 1.0 */
6674
6675         /*
6676          * TODO: Check what kind of values actually come out of the pipe
6677          * with these coeff/postoff values and adjust to get the best
6678          * accuracy. Perhaps we even need to take the bpc value into
6679          * consideration.
6680          */
6681
6682         if (intel_crtc->config.limited_color_range)
6683                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6684
6685         /*
6686          * GY/GU and RY/RU should be the other way around according
6687          * to BSpec, but reality doesn't agree. Just set them up in
6688          * a way that results in the correct picture.
6689          */
6690         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6691         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6692
6693         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6694         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6695
6696         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6697         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6698
6699         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6700         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6701         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6702
6703         if (INTEL_INFO(dev)->gen > 6) {
6704                 uint16_t postoff = 0;
6705
6706                 if (intel_crtc->config.limited_color_range)
6707                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6708
6709                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6710                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6711                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6712
6713                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6714         } else {
6715                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6716
6717                 if (intel_crtc->config.limited_color_range)
6718                         mode |= CSC_BLACK_SCREEN_OFFSET;
6719
6720                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6721         }
6722 }
6723
6724 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6725 {
6726         struct drm_device *dev = crtc->dev;
6727         struct drm_i915_private *dev_priv = dev->dev_private;
6728         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6729         enum pipe pipe = intel_crtc->pipe;
6730         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6731         uint32_t val;
6732
6733         val = 0;
6734
6735         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6736                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6737
6738         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6739                 val |= PIPECONF_INTERLACED_ILK;
6740         else
6741                 val |= PIPECONF_PROGRESSIVE;
6742
6743         I915_WRITE(PIPECONF(cpu_transcoder), val);
6744         POSTING_READ(PIPECONF(cpu_transcoder));
6745
6746         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6747         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6748
6749         if (IS_BROADWELL(dev)) {
6750                 val = 0;
6751
6752                 switch (intel_crtc->config.pipe_bpp) {
6753                 case 18:
6754                         val |= PIPEMISC_DITHER_6_BPC;
6755                         break;
6756                 case 24:
6757                         val |= PIPEMISC_DITHER_8_BPC;
6758                         break;
6759                 case 30:
6760                         val |= PIPEMISC_DITHER_10_BPC;
6761                         break;
6762                 case 36:
6763                         val |= PIPEMISC_DITHER_12_BPC;
6764                         break;
6765                 default:
6766                         /* Case prevented by pipe_config_set_bpp. */
6767                         BUG();
6768                 }
6769
6770                 if (intel_crtc->config.dither)
6771                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6772
6773                 I915_WRITE(PIPEMISC(pipe), val);
6774         }
6775 }
6776
6777 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6778                                     intel_clock_t *clock,
6779                                     bool *has_reduced_clock,
6780                                     intel_clock_t *reduced_clock)
6781 {
6782         struct drm_device *dev = crtc->dev;
6783         struct drm_i915_private *dev_priv = dev->dev_private;
6784         struct intel_encoder *intel_encoder;
6785         int refclk;
6786         const intel_limit_t *limit;
6787         bool ret, is_lvds = false;
6788
6789         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6790                 switch (intel_encoder->type) {
6791                 case INTEL_OUTPUT_LVDS:
6792                         is_lvds = true;
6793                         break;
6794                 }
6795         }
6796
6797         refclk = ironlake_get_refclk(crtc);
6798
6799         /*
6800          * Returns a set of divisors for the desired target clock with the given
6801          * refclk, or FALSE.  The returned values represent the clock equation:
6802          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6803          */
6804         limit = intel_limit(crtc, refclk);
6805         ret = dev_priv->display.find_dpll(limit, crtc,
6806                                           to_intel_crtc(crtc)->config.port_clock,
6807                                           refclk, NULL, clock);
6808         if (!ret)
6809                 return false;
6810
6811         if (is_lvds && dev_priv->lvds_downclock_avail) {
6812                 /*
6813                  * Ensure we match the reduced clock's P to the target clock.
6814                  * If the clocks don't match, we can't switch the display clock
6815                  * by using the FP0/FP1. In such case we will disable the LVDS
6816                  * downclock feature.
6817                 */
6818                 *has_reduced_clock =
6819                         dev_priv->display.find_dpll(limit, crtc,
6820                                                     dev_priv->lvds_downclock,
6821                                                     refclk, clock,
6822                                                     reduced_clock);
6823         }
6824
6825         return true;
6826 }
6827
6828 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6829 {
6830         /*
6831          * Account for spread spectrum to avoid
6832          * oversubscribing the link. Max center spread
6833          * is 2.5%; use 5% for safety's sake.
6834          */
6835         u32 bps = target_clock * bpp * 21 / 20;
6836         return DIV_ROUND_UP(bps, link_bw * 8);
6837 }
6838
6839 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6840 {
6841         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6842 }
6843
6844 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6845                                       u32 *fp,
6846                                       intel_clock_t *reduced_clock, u32 *fp2)
6847 {
6848         struct drm_crtc *crtc = &intel_crtc->base;
6849         struct drm_device *dev = crtc->dev;
6850         struct drm_i915_private *dev_priv = dev->dev_private;
6851         struct intel_encoder *intel_encoder;
6852         uint32_t dpll;
6853         int factor, num_connectors = 0;
6854         bool is_lvds = false, is_sdvo = false;
6855
6856         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6857                 switch (intel_encoder->type) {
6858                 case INTEL_OUTPUT_LVDS:
6859                         is_lvds = true;
6860                         break;
6861                 case INTEL_OUTPUT_SDVO:
6862                 case INTEL_OUTPUT_HDMI:
6863                         is_sdvo = true;
6864                         break;
6865                 }
6866
6867                 num_connectors++;
6868         }
6869
6870         /* Enable autotuning of the PLL clock (if permissible) */
6871         factor = 21;
6872         if (is_lvds) {
6873                 if ((intel_panel_use_ssc(dev_priv) &&
6874                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
6875                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6876                         factor = 25;
6877         } else if (intel_crtc->config.sdvo_tv_clock)
6878                 factor = 20;
6879
6880         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6881                 *fp |= FP_CB_TUNE;
6882
6883         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6884                 *fp2 |= FP_CB_TUNE;
6885
6886         dpll = 0;
6887
6888         if (is_lvds)
6889                 dpll |= DPLLB_MODE_LVDS;
6890         else
6891                 dpll |= DPLLB_MODE_DAC_SERIAL;
6892
6893         dpll |= (intel_crtc->config.pixel_multiplier - 1)
6894                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6895
6896         if (is_sdvo)
6897                 dpll |= DPLL_SDVO_HIGH_SPEED;
6898         if (intel_crtc->config.has_dp_encoder)
6899                 dpll |= DPLL_SDVO_HIGH_SPEED;
6900
6901         /* compute bitmask from p1 value */
6902         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6903         /* also FPA1 */
6904         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6905
6906         switch (intel_crtc->config.dpll.p2) {
6907         case 5:
6908                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6909                 break;
6910         case 7:
6911                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6912                 break;
6913         case 10:
6914                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6915                 break;
6916         case 14:
6917                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6918                 break;
6919         }
6920
6921         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6922                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6923         else
6924                 dpll |= PLL_REF_INPUT_DREFCLK;
6925
6926         return dpll | DPLL_VCO_ENABLE;
6927 }
6928
6929 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6930                                   int x, int y,
6931                                   struct drm_framebuffer *fb)
6932 {
6933         struct drm_device *dev = crtc->dev;
6934         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6935         int num_connectors = 0;
6936         intel_clock_t clock, reduced_clock;
6937         u32 dpll = 0, fp = 0, fp2 = 0;
6938         bool ok, has_reduced_clock = false;
6939         bool is_lvds = false;
6940         struct intel_encoder *encoder;
6941         struct intel_shared_dpll *pll;
6942
6943         for_each_encoder_on_crtc(dev, crtc, encoder) {
6944                 switch (encoder->type) {
6945                 case INTEL_OUTPUT_LVDS:
6946                         is_lvds = true;
6947                         break;
6948                 }
6949
6950                 num_connectors++;
6951         }
6952
6953         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6954              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6955
6956         ok = ironlake_compute_clocks(crtc, &clock,
6957                                      &has_reduced_clock, &reduced_clock);
6958         if (!ok && !intel_crtc->config.clock_set) {
6959                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6960                 return -EINVAL;
6961         }
6962         /* Compat-code for transition, will disappear. */
6963         if (!intel_crtc->config.clock_set) {
6964                 intel_crtc->config.dpll.n = clock.n;
6965                 intel_crtc->config.dpll.m1 = clock.m1;
6966                 intel_crtc->config.dpll.m2 = clock.m2;
6967                 intel_crtc->config.dpll.p1 = clock.p1;
6968                 intel_crtc->config.dpll.p2 = clock.p2;
6969         }
6970
6971         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6972         if (intel_crtc->config.has_pch_encoder) {
6973                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6974                 if (has_reduced_clock)
6975                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6976
6977                 dpll = ironlake_compute_dpll(intel_crtc,
6978                                              &fp, &reduced_clock,
6979                                              has_reduced_clock ? &fp2 : NULL);
6980
6981                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6982                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6983                 if (has_reduced_clock)
6984                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6985                 else
6986                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6987
6988                 pll = intel_get_shared_dpll(intel_crtc);
6989                 if (pll == NULL) {
6990                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6991                                          pipe_name(intel_crtc->pipe));
6992                         return -EINVAL;
6993                 }
6994         } else
6995                 intel_put_shared_dpll(intel_crtc);
6996
6997         if (is_lvds && has_reduced_clock && i915.powersave)
6998                 intel_crtc->lowfreq_avail = true;
6999         else
7000                 intel_crtc->lowfreq_avail = false;
7001
7002         return 0;
7003 }
7004
7005 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7006                                          struct intel_link_m_n *m_n)
7007 {
7008         struct drm_device *dev = crtc->base.dev;
7009         struct drm_i915_private *dev_priv = dev->dev_private;
7010         enum pipe pipe = crtc->pipe;
7011
7012         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7013         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7014         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7015                 & ~TU_SIZE_MASK;
7016         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7017         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7018                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7019 }
7020
7021 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7022                                          enum transcoder transcoder,
7023                                          struct intel_link_m_n *m_n)
7024 {
7025         struct drm_device *dev = crtc->base.dev;
7026         struct drm_i915_private *dev_priv = dev->dev_private;
7027         enum pipe pipe = crtc->pipe;
7028
7029         if (INTEL_INFO(dev)->gen >= 5) {
7030                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7031                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7032                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7033                         & ~TU_SIZE_MASK;
7034                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7035                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7036                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7037         } else {
7038                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7039                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7040                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7041                         & ~TU_SIZE_MASK;
7042                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7043                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7044                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7045         }
7046 }
7047
7048 void intel_dp_get_m_n(struct intel_crtc *crtc,
7049                       struct intel_crtc_config *pipe_config)
7050 {
7051         if (crtc->config.has_pch_encoder)
7052                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7053         else
7054                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7055                                              &pipe_config->dp_m_n);
7056 }
7057
7058 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7059                                         struct intel_crtc_config *pipe_config)
7060 {
7061         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7062                                      &pipe_config->fdi_m_n);
7063 }
7064
7065 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7066                                      struct intel_crtc_config *pipe_config)
7067 {
7068         struct drm_device *dev = crtc->base.dev;
7069         struct drm_i915_private *dev_priv = dev->dev_private;
7070         uint32_t tmp;
7071
7072         tmp = I915_READ(PF_CTL(crtc->pipe));
7073
7074         if (tmp & PF_ENABLE) {
7075                 pipe_config->pch_pfit.enabled = true;
7076                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7077                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7078
7079                 /* We currently do not free assignements of panel fitters on
7080                  * ivb/hsw (since we don't use the higher upscaling modes which
7081                  * differentiates them) so just WARN about this case for now. */
7082                 if (IS_GEN7(dev)) {
7083                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7084                                 PF_PIPE_SEL_IVB(crtc->pipe));
7085                 }
7086         }
7087 }
7088
7089 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7090                                       struct intel_plane_config *plane_config)
7091 {
7092         struct drm_device *dev = crtc->base.dev;
7093         struct drm_i915_private *dev_priv = dev->dev_private;
7094         u32 val, base, offset;
7095         int pipe = crtc->pipe, plane = crtc->plane;
7096         int fourcc, pixel_format;
7097         int aligned_height;
7098
7099         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7100         if (!crtc->base.primary->fb) {
7101                 DRM_DEBUG_KMS("failed to alloc fb\n");
7102                 return;
7103         }
7104
7105         val = I915_READ(DSPCNTR(plane));
7106
7107         if (INTEL_INFO(dev)->gen >= 4)
7108                 if (val & DISPPLANE_TILED)
7109                         plane_config->tiled = true;
7110
7111         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7112         fourcc = intel_format_to_fourcc(pixel_format);
7113         crtc->base.primary->fb->pixel_format = fourcc;
7114         crtc->base.primary->fb->bits_per_pixel =
7115                 drm_format_plane_cpp(fourcc, 0) * 8;
7116
7117         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7118         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7119                 offset = I915_READ(DSPOFFSET(plane));
7120         } else {
7121                 if (plane_config->tiled)
7122                         offset = I915_READ(DSPTILEOFF(plane));
7123                 else
7124                         offset = I915_READ(DSPLINOFF(plane));
7125         }
7126         plane_config->base = base;
7127
7128         val = I915_READ(PIPESRC(pipe));
7129         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7130         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7131
7132         val = I915_READ(DSPSTRIDE(pipe));
7133         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
7134
7135         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7136                                             plane_config->tiled);
7137
7138         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
7139                                    aligned_height, PAGE_SIZE);
7140
7141         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7142                       pipe, plane, crtc->base.primary->fb->width,
7143                       crtc->base.primary->fb->height,
7144                       crtc->base.primary->fb->bits_per_pixel, base,
7145                       crtc->base.primary->fb->pitches[0],
7146                       plane_config->size);
7147 }
7148
7149 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7150                                      struct intel_crtc_config *pipe_config)
7151 {
7152         struct drm_device *dev = crtc->base.dev;
7153         struct drm_i915_private *dev_priv = dev->dev_private;
7154         uint32_t tmp;
7155
7156         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7157         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7158
7159         tmp = I915_READ(PIPECONF(crtc->pipe));
7160         if (!(tmp & PIPECONF_ENABLE))
7161                 return false;
7162
7163         switch (tmp & PIPECONF_BPC_MASK) {
7164         case PIPECONF_6BPC:
7165                 pipe_config->pipe_bpp = 18;
7166                 break;
7167         case PIPECONF_8BPC:
7168                 pipe_config->pipe_bpp = 24;
7169                 break;
7170         case PIPECONF_10BPC:
7171                 pipe_config->pipe_bpp = 30;
7172                 break;
7173         case PIPECONF_12BPC:
7174                 pipe_config->pipe_bpp = 36;
7175                 break;
7176         default:
7177                 break;
7178         }
7179
7180         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7181                 pipe_config->limited_color_range = true;
7182
7183         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7184                 struct intel_shared_dpll *pll;
7185
7186                 pipe_config->has_pch_encoder = true;
7187
7188                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7189                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7190                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7191
7192                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7193
7194                 if (HAS_PCH_IBX(dev_priv->dev)) {
7195                         pipe_config->shared_dpll =
7196                                 (enum intel_dpll_id) crtc->pipe;
7197                 } else {
7198                         tmp = I915_READ(PCH_DPLL_SEL);
7199                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7200                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7201                         else
7202                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7203                 }
7204
7205                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7206
7207                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7208                                            &pipe_config->dpll_hw_state));
7209
7210                 tmp = pipe_config->dpll_hw_state.dpll;
7211                 pipe_config->pixel_multiplier =
7212                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7213                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7214
7215                 ironlake_pch_clock_get(crtc, pipe_config);
7216         } else {
7217                 pipe_config->pixel_multiplier = 1;
7218         }
7219
7220         intel_get_pipe_timings(crtc, pipe_config);
7221
7222         ironlake_get_pfit_config(crtc, pipe_config);
7223
7224         return true;
7225 }
7226
7227 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7228 {
7229         struct drm_device *dev = dev_priv->dev;
7230         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
7231         struct intel_crtc *crtc;
7232
7233         for_each_intel_crtc(dev, crtc)
7234                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7235                      pipe_name(crtc->pipe));
7236
7237         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7238         WARN(plls->spll_refcount, "SPLL enabled\n");
7239         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
7240         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
7241         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7242         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7243              "CPU PWM1 enabled\n");
7244         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7245              "CPU PWM2 enabled\n");
7246         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7247              "PCH PWM1 enabled\n");
7248         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7249              "Utility pin enabled\n");
7250         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7251
7252         /*
7253          * In theory we can still leave IRQs enabled, as long as only the HPD
7254          * interrupts remain enabled. We used to check for that, but since it's
7255          * gen-specific and since we only disable LCPLL after we fully disable
7256          * the interrupts, the check below should be enough.
7257          */
7258         WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
7259 }
7260
7261 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7262 {
7263         struct drm_device *dev = dev_priv->dev;
7264
7265         if (IS_HASWELL(dev)) {
7266                 mutex_lock(&dev_priv->rps.hw_lock);
7267                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7268                                             val))
7269                         DRM_ERROR("Failed to disable D_COMP\n");
7270                 mutex_unlock(&dev_priv->rps.hw_lock);
7271         } else {
7272                 I915_WRITE(D_COMP, val);
7273         }
7274         POSTING_READ(D_COMP);
7275 }
7276
7277 /*
7278  * This function implements pieces of two sequences from BSpec:
7279  * - Sequence for display software to disable LCPLL
7280  * - Sequence for display software to allow package C8+
7281  * The steps implemented here are just the steps that actually touch the LCPLL
7282  * register. Callers should take care of disabling all the display engine
7283  * functions, doing the mode unset, fixing interrupts, etc.
7284  */
7285 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7286                               bool switch_to_fclk, bool allow_power_down)
7287 {
7288         uint32_t val;
7289
7290         assert_can_disable_lcpll(dev_priv);
7291
7292         val = I915_READ(LCPLL_CTL);
7293
7294         if (switch_to_fclk) {
7295                 val |= LCPLL_CD_SOURCE_FCLK;
7296                 I915_WRITE(LCPLL_CTL, val);
7297
7298                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7299                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7300                         DRM_ERROR("Switching to FCLK failed\n");
7301
7302                 val = I915_READ(LCPLL_CTL);
7303         }
7304
7305         val |= LCPLL_PLL_DISABLE;
7306         I915_WRITE(LCPLL_CTL, val);
7307         POSTING_READ(LCPLL_CTL);
7308
7309         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7310                 DRM_ERROR("LCPLL still locked\n");
7311
7312         val = I915_READ(D_COMP);
7313         val |= D_COMP_COMP_DISABLE;
7314         hsw_write_dcomp(dev_priv, val);
7315         ndelay(100);
7316
7317         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
7318                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7319
7320         if (allow_power_down) {
7321                 val = I915_READ(LCPLL_CTL);
7322                 val |= LCPLL_POWER_DOWN_ALLOW;
7323                 I915_WRITE(LCPLL_CTL, val);
7324                 POSTING_READ(LCPLL_CTL);
7325         }
7326 }
7327
7328 /*
7329  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7330  * source.
7331  */
7332 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7333 {
7334         uint32_t val;
7335         unsigned long irqflags;
7336
7337         val = I915_READ(LCPLL_CTL);
7338
7339         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7340                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7341                 return;
7342
7343         /*
7344          * Make sure we're not on PC8 state before disabling PC8, otherwise
7345          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7346          *
7347          * The other problem is that hsw_restore_lcpll() is called as part of
7348          * the runtime PM resume sequence, so we can't just call
7349          * gen6_gt_force_wake_get() because that function calls
7350          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7351          * while we are on the resume sequence. So to solve this problem we have
7352          * to call special forcewake code that doesn't touch runtime PM and
7353          * doesn't enable the forcewake delayed work.
7354          */
7355         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7356         if (dev_priv->uncore.forcewake_count++ == 0)
7357                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7358         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7359
7360         if (val & LCPLL_POWER_DOWN_ALLOW) {
7361                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7362                 I915_WRITE(LCPLL_CTL, val);
7363                 POSTING_READ(LCPLL_CTL);
7364         }
7365
7366         val = I915_READ(D_COMP);
7367         val |= D_COMP_COMP_FORCE;
7368         val &= ~D_COMP_COMP_DISABLE;
7369         hsw_write_dcomp(dev_priv, val);
7370
7371         val = I915_READ(LCPLL_CTL);
7372         val &= ~LCPLL_PLL_DISABLE;
7373         I915_WRITE(LCPLL_CTL, val);
7374
7375         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7376                 DRM_ERROR("LCPLL not locked yet\n");
7377
7378         if (val & LCPLL_CD_SOURCE_FCLK) {
7379                 val = I915_READ(LCPLL_CTL);
7380                 val &= ~LCPLL_CD_SOURCE_FCLK;
7381                 I915_WRITE(LCPLL_CTL, val);
7382
7383                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7384                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7385                         DRM_ERROR("Switching back to LCPLL failed\n");
7386         }
7387
7388         /* See the big comment above. */
7389         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7390         if (--dev_priv->uncore.forcewake_count == 0)
7391                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7392         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7393 }
7394
7395 /*
7396  * Package states C8 and deeper are really deep PC states that can only be
7397  * reached when all the devices on the system allow it, so even if the graphics
7398  * device allows PC8+, it doesn't mean the system will actually get to these
7399  * states. Our driver only allows PC8+ when going into runtime PM.
7400  *
7401  * The requirements for PC8+ are that all the outputs are disabled, the power
7402  * well is disabled and most interrupts are disabled, and these are also
7403  * requirements for runtime PM. When these conditions are met, we manually do
7404  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7405  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7406  * hang the machine.
7407  *
7408  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7409  * the state of some registers, so when we come back from PC8+ we need to
7410  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7411  * need to take care of the registers kept by RC6. Notice that this happens even
7412  * if we don't put the device in PCI D3 state (which is what currently happens
7413  * because of the runtime PM support).
7414  *
7415  * For more, read "Display Sequences for Package C8" on the hardware
7416  * documentation.
7417  */
7418 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7419 {
7420         struct drm_device *dev = dev_priv->dev;
7421         uint32_t val;
7422
7423         DRM_DEBUG_KMS("Enabling package C8+\n");
7424
7425         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7426                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7427                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7428                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7429         }
7430
7431         lpt_disable_clkout_dp(dev);
7432         hsw_disable_lcpll(dev_priv, true, true);
7433 }
7434
7435 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7436 {
7437         struct drm_device *dev = dev_priv->dev;
7438         uint32_t val;
7439
7440         DRM_DEBUG_KMS("Disabling package C8+\n");
7441
7442         hsw_restore_lcpll(dev_priv);
7443         lpt_init_pch_refclk(dev);
7444
7445         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7446                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7447                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7448                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7449         }
7450
7451         intel_prepare_ddi(dev);
7452 }
7453
7454 static void snb_modeset_global_resources(struct drm_device *dev)
7455 {
7456         modeset_update_crtc_power_domains(dev);
7457 }
7458
7459 static void haswell_modeset_global_resources(struct drm_device *dev)
7460 {
7461         modeset_update_crtc_power_domains(dev);
7462 }
7463
7464 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7465                                  int x, int y,
7466                                  struct drm_framebuffer *fb)
7467 {
7468         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7469
7470         if (!intel_ddi_pll_select(intel_crtc))
7471                 return -EINVAL;
7472         intel_ddi_pll_enable(intel_crtc);
7473
7474         intel_crtc->lowfreq_avail = false;
7475
7476         return 0;
7477 }
7478
7479 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7480                                     struct intel_crtc_config *pipe_config)
7481 {
7482         struct drm_device *dev = crtc->base.dev;
7483         struct drm_i915_private *dev_priv = dev->dev_private;
7484         enum intel_display_power_domain pfit_domain;
7485         uint32_t tmp;
7486
7487         if (!intel_display_power_enabled(dev_priv,
7488                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7489                 return false;
7490
7491         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7492         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7493
7494         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7495         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7496                 enum pipe trans_edp_pipe;
7497                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7498                 default:
7499                         WARN(1, "unknown pipe linked to edp transcoder\n");
7500                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7501                 case TRANS_DDI_EDP_INPUT_A_ON:
7502                         trans_edp_pipe = PIPE_A;
7503                         break;
7504                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7505                         trans_edp_pipe = PIPE_B;
7506                         break;
7507                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7508                         trans_edp_pipe = PIPE_C;
7509                         break;
7510                 }
7511
7512                 if (trans_edp_pipe == crtc->pipe)
7513                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7514         }
7515
7516         if (!intel_display_power_enabled(dev_priv,
7517                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7518                 return false;
7519
7520         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7521         if (!(tmp & PIPECONF_ENABLE))
7522                 return false;
7523
7524         /*
7525          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7526          * DDI E. So just check whether this pipe is wired to DDI E and whether
7527          * the PCH transcoder is on.
7528          */
7529         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7530         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
7531             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7532                 pipe_config->has_pch_encoder = true;
7533
7534                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7535                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7536                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7537
7538                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7539         }
7540
7541         intel_get_pipe_timings(crtc, pipe_config);
7542
7543         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7544         if (intel_display_power_enabled(dev_priv, pfit_domain))
7545                 ironlake_get_pfit_config(crtc, pipe_config);
7546
7547         if (IS_HASWELL(dev))
7548                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7549                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7550
7551         pipe_config->pixel_multiplier = 1;
7552
7553         return true;
7554 }
7555
7556 static struct {
7557         int clock;
7558         u32 config;
7559 } hdmi_audio_clock[] = {
7560         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7561         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7562         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7563         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7564         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7565         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7566         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7567         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7568         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7569         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7570 };
7571
7572 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7573 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7574 {
7575         int i;
7576
7577         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7578                 if (mode->clock == hdmi_audio_clock[i].clock)
7579                         break;
7580         }
7581
7582         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7583                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7584                 i = 1;
7585         }
7586
7587         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7588                       hdmi_audio_clock[i].clock,
7589                       hdmi_audio_clock[i].config);
7590
7591         return hdmi_audio_clock[i].config;
7592 }
7593
7594 static bool intel_eld_uptodate(struct drm_connector *connector,
7595                                int reg_eldv, uint32_t bits_eldv,
7596                                int reg_elda, uint32_t bits_elda,
7597                                int reg_edid)
7598 {
7599         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7600         uint8_t *eld = connector->eld;
7601         uint32_t i;
7602
7603         i = I915_READ(reg_eldv);
7604         i &= bits_eldv;
7605
7606         if (!eld[0])
7607                 return !i;
7608
7609         if (!i)
7610                 return false;
7611
7612         i = I915_READ(reg_elda);
7613         i &= ~bits_elda;
7614         I915_WRITE(reg_elda, i);
7615
7616         for (i = 0; i < eld[2]; i++)
7617                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7618                         return false;
7619
7620         return true;
7621 }
7622
7623 static void g4x_write_eld(struct drm_connector *connector,
7624                           struct drm_crtc *crtc,
7625                           struct drm_display_mode *mode)
7626 {
7627         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7628         uint8_t *eld = connector->eld;
7629         uint32_t eldv;
7630         uint32_t len;
7631         uint32_t i;
7632
7633         i = I915_READ(G4X_AUD_VID_DID);
7634
7635         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7636                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7637         else
7638                 eldv = G4X_ELDV_DEVCTG;
7639
7640         if (intel_eld_uptodate(connector,
7641                                G4X_AUD_CNTL_ST, eldv,
7642                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7643                                G4X_HDMIW_HDMIEDID))
7644                 return;
7645
7646         i = I915_READ(G4X_AUD_CNTL_ST);
7647         i &= ~(eldv | G4X_ELD_ADDR);
7648         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7649         I915_WRITE(G4X_AUD_CNTL_ST, i);
7650
7651         if (!eld[0])
7652                 return;
7653
7654         len = min_t(uint8_t, eld[2], len);
7655         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7656         for (i = 0; i < len; i++)
7657                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7658
7659         i = I915_READ(G4X_AUD_CNTL_ST);
7660         i |= eldv;
7661         I915_WRITE(G4X_AUD_CNTL_ST, i);
7662 }
7663
7664 static void haswell_write_eld(struct drm_connector *connector,
7665                               struct drm_crtc *crtc,
7666                               struct drm_display_mode *mode)
7667 {
7668         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7669         uint8_t *eld = connector->eld;
7670         uint32_t eldv;
7671         uint32_t i;
7672         int len;
7673         int pipe = to_intel_crtc(crtc)->pipe;
7674         int tmp;
7675
7676         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7677         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7678         int aud_config = HSW_AUD_CFG(pipe);
7679         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7680
7681         /* Audio output enable */
7682         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7683         tmp = I915_READ(aud_cntrl_st2);
7684         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7685         I915_WRITE(aud_cntrl_st2, tmp);
7686         POSTING_READ(aud_cntrl_st2);
7687
7688         assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7689
7690         /* Set ELD valid state */
7691         tmp = I915_READ(aud_cntrl_st2);
7692         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7693         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7694         I915_WRITE(aud_cntrl_st2, tmp);
7695         tmp = I915_READ(aud_cntrl_st2);
7696         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7697
7698         /* Enable HDMI mode */
7699         tmp = I915_READ(aud_config);
7700         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7701         /* clear N_programing_enable and N_value_index */
7702         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7703         I915_WRITE(aud_config, tmp);
7704
7705         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7706
7707         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7708
7709         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7710                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7711                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7712                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7713         } else {
7714                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7715         }
7716
7717         if (intel_eld_uptodate(connector,
7718                                aud_cntrl_st2, eldv,
7719                                aud_cntl_st, IBX_ELD_ADDRESS,
7720                                hdmiw_hdmiedid))
7721                 return;
7722
7723         i = I915_READ(aud_cntrl_st2);
7724         i &= ~eldv;
7725         I915_WRITE(aud_cntrl_st2, i);
7726
7727         if (!eld[0])
7728                 return;
7729
7730         i = I915_READ(aud_cntl_st);
7731         i &= ~IBX_ELD_ADDRESS;
7732         I915_WRITE(aud_cntl_st, i);
7733         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7734         DRM_DEBUG_DRIVER("port num:%d\n", i);
7735
7736         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7737         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7738         for (i = 0; i < len; i++)
7739                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7740
7741         i = I915_READ(aud_cntrl_st2);
7742         i |= eldv;
7743         I915_WRITE(aud_cntrl_st2, i);
7744
7745 }
7746
7747 static void ironlake_write_eld(struct drm_connector *connector,
7748                                struct drm_crtc *crtc,
7749                                struct drm_display_mode *mode)
7750 {
7751         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7752         uint8_t *eld = connector->eld;
7753         uint32_t eldv;
7754         uint32_t i;
7755         int len;
7756         int hdmiw_hdmiedid;
7757         int aud_config;
7758         int aud_cntl_st;
7759         int aud_cntrl_st2;
7760         int pipe = to_intel_crtc(crtc)->pipe;
7761
7762         if (HAS_PCH_IBX(connector->dev)) {
7763                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7764                 aud_config = IBX_AUD_CFG(pipe);
7765                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7766                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7767         } else if (IS_VALLEYVIEW(connector->dev)) {
7768                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7769                 aud_config = VLV_AUD_CFG(pipe);
7770                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7771                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7772         } else {
7773                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7774                 aud_config = CPT_AUD_CFG(pipe);
7775                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7776                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7777         }
7778
7779         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7780
7781         if (IS_VALLEYVIEW(connector->dev))  {
7782                 struct intel_encoder *intel_encoder;
7783                 struct intel_digital_port *intel_dig_port;
7784
7785                 intel_encoder = intel_attached_encoder(connector);
7786                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7787                 i = intel_dig_port->port;
7788         } else {
7789                 i = I915_READ(aud_cntl_st);
7790                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7791                 /* DIP_Port_Select, 0x1 = PortB */
7792         }
7793
7794         if (!i) {
7795                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7796                 /* operate blindly on all ports */
7797                 eldv = IBX_ELD_VALIDB;
7798                 eldv |= IBX_ELD_VALIDB << 4;
7799                 eldv |= IBX_ELD_VALIDB << 8;
7800         } else {
7801                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7802                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7803         }
7804
7805         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7806                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7807                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7808                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7809         } else {
7810                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7811         }
7812
7813         if (intel_eld_uptodate(connector,
7814                                aud_cntrl_st2, eldv,
7815                                aud_cntl_st, IBX_ELD_ADDRESS,
7816                                hdmiw_hdmiedid))
7817                 return;
7818
7819         i = I915_READ(aud_cntrl_st2);
7820         i &= ~eldv;
7821         I915_WRITE(aud_cntrl_st2, i);
7822
7823         if (!eld[0])
7824                 return;
7825
7826         i = I915_READ(aud_cntl_st);
7827         i &= ~IBX_ELD_ADDRESS;
7828         I915_WRITE(aud_cntl_st, i);
7829
7830         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7831         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7832         for (i = 0; i < len; i++)
7833                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7834
7835         i = I915_READ(aud_cntrl_st2);
7836         i |= eldv;
7837         I915_WRITE(aud_cntrl_st2, i);
7838 }
7839
7840 void intel_write_eld(struct drm_encoder *encoder,
7841                      struct drm_display_mode *mode)
7842 {
7843         struct drm_crtc *crtc = encoder->crtc;
7844         struct drm_connector *connector;
7845         struct drm_device *dev = encoder->dev;
7846         struct drm_i915_private *dev_priv = dev->dev_private;
7847
7848         connector = drm_select_eld(encoder, mode);
7849         if (!connector)
7850                 return;
7851
7852         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7853                          connector->base.id,
7854                          connector->name,
7855                          connector->encoder->base.id,
7856                          connector->encoder->name);
7857
7858         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7859
7860         if (dev_priv->display.write_eld)
7861                 dev_priv->display.write_eld(connector, crtc, mode);
7862 }
7863
7864 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7865 {
7866         struct drm_device *dev = crtc->dev;
7867         struct drm_i915_private *dev_priv = dev->dev_private;
7868         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7869         uint32_t cntl;
7870
7871         if (base != intel_crtc->cursor_base) {
7872                 /* On these chipsets we can only modify the base whilst
7873                  * the cursor is disabled.
7874                  */
7875                 if (intel_crtc->cursor_cntl) {
7876                         I915_WRITE(_CURACNTR, 0);
7877                         POSTING_READ(_CURACNTR);
7878                         intel_crtc->cursor_cntl = 0;
7879                 }
7880
7881                 I915_WRITE(_CURABASE, base);
7882                 POSTING_READ(_CURABASE);
7883         }
7884
7885         /* XXX width must be 64, stride 256 => 0x00 << 28 */
7886         cntl = 0;
7887         if (base)
7888                 cntl = (CURSOR_ENABLE |
7889                         CURSOR_GAMMA_ENABLE |
7890                         CURSOR_FORMAT_ARGB);
7891         if (intel_crtc->cursor_cntl != cntl) {
7892                 I915_WRITE(_CURACNTR, cntl);
7893                 POSTING_READ(_CURACNTR);
7894                 intel_crtc->cursor_cntl = cntl;
7895         }
7896 }
7897
7898 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7899 {
7900         struct drm_device *dev = crtc->dev;
7901         struct drm_i915_private *dev_priv = dev->dev_private;
7902         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7903         int pipe = intel_crtc->pipe;
7904         uint32_t cntl;
7905
7906         cntl = 0;
7907         if (base) {
7908                 cntl = MCURSOR_GAMMA_ENABLE;
7909                 switch (intel_crtc->cursor_width) {
7910                         case 64:
7911                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7912                                 break;
7913                         case 128:
7914                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7915                                 break;
7916                         case 256:
7917                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7918                                 break;
7919                         default:
7920                                 WARN_ON(1);
7921                                 return;
7922                 }
7923                 cntl |= pipe << 28; /* Connect to correct pipe */
7924         }
7925         if (intel_crtc->cursor_cntl != cntl) {
7926                 I915_WRITE(CURCNTR(pipe), cntl);
7927                 POSTING_READ(CURCNTR(pipe));
7928                 intel_crtc->cursor_cntl = cntl;
7929         }
7930
7931         /* and commit changes on next vblank */
7932         I915_WRITE(CURBASE(pipe), base);
7933         POSTING_READ(CURBASE(pipe));
7934 }
7935
7936 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7937 {
7938         struct drm_device *dev = crtc->dev;
7939         struct drm_i915_private *dev_priv = dev->dev_private;
7940         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7941         int pipe = intel_crtc->pipe;
7942         uint32_t cntl;
7943
7944         cntl = 0;
7945         if (base) {
7946                 cntl = MCURSOR_GAMMA_ENABLE;
7947                 switch (intel_crtc->cursor_width) {
7948                         case 64:
7949                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7950                                 break;
7951                         case 128:
7952                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7953                                 break;
7954                         case 256:
7955                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7956                                 break;
7957                         default:
7958                                 WARN_ON(1);
7959                                 return;
7960                 }
7961         }
7962         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
7963                 cntl |= CURSOR_PIPE_CSC_ENABLE;
7964
7965         if (intel_crtc->cursor_cntl != cntl) {
7966                 I915_WRITE(CURCNTR(pipe), cntl);
7967                 POSTING_READ(CURCNTR(pipe));
7968                 intel_crtc->cursor_cntl = cntl;
7969         }
7970
7971         /* and commit changes on next vblank */
7972         I915_WRITE(CURBASE(pipe), base);
7973         POSTING_READ(CURBASE(pipe));
7974 }
7975
7976 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7977 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7978                                      bool on)
7979 {
7980         struct drm_device *dev = crtc->dev;
7981         struct drm_i915_private *dev_priv = dev->dev_private;
7982         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7983         int pipe = intel_crtc->pipe;
7984         int x = intel_crtc->cursor_x;
7985         int y = intel_crtc->cursor_y;
7986         u32 base = 0, pos = 0;
7987
7988         if (on)
7989                 base = intel_crtc->cursor_addr;
7990
7991         if (x >= intel_crtc->config.pipe_src_w)
7992                 base = 0;
7993
7994         if (y >= intel_crtc->config.pipe_src_h)
7995                 base = 0;
7996
7997         if (x < 0) {
7998                 if (x + intel_crtc->cursor_width <= 0)
7999                         base = 0;
8000
8001                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8002                 x = -x;
8003         }
8004         pos |= x << CURSOR_X_SHIFT;
8005
8006         if (y < 0) {
8007                 if (y + intel_crtc->cursor_height <= 0)
8008                         base = 0;
8009
8010                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8011                 y = -y;
8012         }
8013         pos |= y << CURSOR_Y_SHIFT;
8014
8015         if (base == 0 && intel_crtc->cursor_base == 0)
8016                 return;
8017
8018         I915_WRITE(CURPOS(pipe), pos);
8019
8020         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
8021                 ivb_update_cursor(crtc, base);
8022         else if (IS_845G(dev) || IS_I865G(dev))
8023                 i845_update_cursor(crtc, base);
8024         else
8025                 i9xx_update_cursor(crtc, base);
8026         intel_crtc->cursor_base = base;
8027 }
8028
8029 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
8030                                  struct drm_file *file,
8031                                  uint32_t handle,
8032                                  uint32_t width, uint32_t height)
8033 {
8034         struct drm_device *dev = crtc->dev;
8035         struct drm_i915_private *dev_priv = dev->dev_private;
8036         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8037         struct drm_i915_gem_object *obj;
8038         unsigned old_width;
8039         uint32_t addr;
8040         int ret;
8041
8042         /* if we want to turn off the cursor ignore width and height */
8043         if (!handle) {
8044                 DRM_DEBUG_KMS("cursor off\n");
8045                 addr = 0;
8046                 obj = NULL;
8047                 mutex_lock(&dev->struct_mutex);
8048                 goto finish;
8049         }
8050
8051         /* Check for which cursor types we support */
8052         if (!((width == 64 && height == 64) ||
8053                         (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8054                         (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8055                 DRM_DEBUG("Cursor dimension not supported\n");
8056                 return -EINVAL;
8057         }
8058
8059         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
8060         if (&obj->base == NULL)
8061                 return -ENOENT;
8062
8063         if (obj->base.size < width * height * 4) {
8064                 DRM_DEBUG_KMS("buffer is to small\n");
8065                 ret = -ENOMEM;
8066                 goto fail;
8067         }
8068
8069         /* we only need to pin inside GTT if cursor is non-phy */
8070         mutex_lock(&dev->struct_mutex);
8071         if (!INTEL_INFO(dev)->cursor_needs_physical) {
8072                 unsigned alignment;
8073
8074                 if (obj->tiling_mode) {
8075                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
8076                         ret = -EINVAL;
8077                         goto fail_locked;
8078                 }
8079
8080                 /* Note that the w/a also requires 2 PTE of padding following
8081                  * the bo. We currently fill all unused PTE with the shadow
8082                  * page and so we should always have valid PTE following the
8083                  * cursor preventing the VT-d warning.
8084                  */
8085                 alignment = 0;
8086                 if (need_vtd_wa(dev))
8087                         alignment = 64*1024;
8088
8089                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8090                 if (ret) {
8091                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8092                         goto fail_locked;
8093                 }
8094
8095                 ret = i915_gem_object_put_fence(obj);
8096                 if (ret) {
8097                         DRM_DEBUG_KMS("failed to release fence for cursor");
8098                         goto fail_unpin;
8099                 }
8100
8101                 addr = i915_gem_obj_ggtt_offset(obj);
8102         } else {
8103                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8104                 ret = i915_gem_object_attach_phys(obj, align);
8105                 if (ret) {
8106                         DRM_DEBUG_KMS("failed to attach phys object\n");
8107                         goto fail_locked;
8108                 }
8109                 addr = obj->phys_handle->busaddr;
8110         }
8111
8112         if (IS_GEN2(dev))
8113                 I915_WRITE(CURSIZE, (height << 12) | width);
8114
8115  finish:
8116         if (intel_crtc->cursor_bo) {
8117                 if (!INTEL_INFO(dev)->cursor_needs_physical)
8118                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8119                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
8120         }
8121
8122         mutex_unlock(&dev->struct_mutex);
8123
8124         old_width = intel_crtc->cursor_width;
8125
8126         intel_crtc->cursor_addr = addr;
8127         intel_crtc->cursor_bo = obj;
8128         intel_crtc->cursor_width = width;
8129         intel_crtc->cursor_height = height;
8130
8131         if (intel_crtc->active) {
8132                 if (old_width != width)
8133                         intel_update_watermarks(crtc);
8134                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8135         }
8136
8137         return 0;
8138 fail_unpin:
8139         i915_gem_object_unpin_from_display_plane(obj);
8140 fail_locked:
8141         mutex_unlock(&dev->struct_mutex);
8142 fail:
8143         drm_gem_object_unreference_unlocked(&obj->base);
8144         return ret;
8145 }
8146
8147 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
8148 {
8149         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8150
8151         intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
8152         intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
8153
8154         if (intel_crtc->active)
8155                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8156
8157         return 0;
8158 }
8159
8160 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8161                                  u16 *blue, uint32_t start, uint32_t size)
8162 {
8163         int end = (start + size > 256) ? 256 : start + size, i;
8164         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8165
8166         for (i = start; i < end; i++) {
8167                 intel_crtc->lut_r[i] = red[i] >> 8;
8168                 intel_crtc->lut_g[i] = green[i] >> 8;
8169                 intel_crtc->lut_b[i] = blue[i] >> 8;
8170         }
8171
8172         intel_crtc_load_lut(crtc);
8173 }
8174
8175 /* VESA 640x480x72Hz mode to set on the pipe */
8176 static struct drm_display_mode load_detect_mode = {
8177         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8178                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8179 };
8180
8181 struct drm_framebuffer *
8182 __intel_framebuffer_create(struct drm_device *dev,
8183                            struct drm_mode_fb_cmd2 *mode_cmd,
8184                            struct drm_i915_gem_object *obj)
8185 {
8186         struct intel_framebuffer *intel_fb;
8187         int ret;
8188
8189         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8190         if (!intel_fb) {
8191                 drm_gem_object_unreference_unlocked(&obj->base);
8192                 return ERR_PTR(-ENOMEM);
8193         }
8194
8195         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8196         if (ret)
8197                 goto err;
8198
8199         return &intel_fb->base;
8200 err:
8201         drm_gem_object_unreference_unlocked(&obj->base);
8202         kfree(intel_fb);
8203
8204         return ERR_PTR(ret);
8205 }
8206
8207 static struct drm_framebuffer *
8208 intel_framebuffer_create(struct drm_device *dev,
8209                          struct drm_mode_fb_cmd2 *mode_cmd,
8210                          struct drm_i915_gem_object *obj)
8211 {
8212         struct drm_framebuffer *fb;
8213         int ret;
8214
8215         ret = i915_mutex_lock_interruptible(dev);
8216         if (ret)
8217                 return ERR_PTR(ret);
8218         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8219         mutex_unlock(&dev->struct_mutex);
8220
8221         return fb;
8222 }
8223
8224 static u32
8225 intel_framebuffer_pitch_for_width(int width, int bpp)
8226 {
8227         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8228         return ALIGN(pitch, 64);
8229 }
8230
8231 static u32
8232 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8233 {
8234         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8235         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
8236 }
8237
8238 static struct drm_framebuffer *
8239 intel_framebuffer_create_for_mode(struct drm_device *dev,
8240                                   struct drm_display_mode *mode,
8241                                   int depth, int bpp)
8242 {
8243         struct drm_i915_gem_object *obj;
8244         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8245
8246         obj = i915_gem_alloc_object(dev,
8247                                     intel_framebuffer_size_for_mode(mode, bpp));
8248         if (obj == NULL)
8249                 return ERR_PTR(-ENOMEM);
8250
8251         mode_cmd.width = mode->hdisplay;
8252         mode_cmd.height = mode->vdisplay;
8253         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8254                                                                 bpp);
8255         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8256
8257         return intel_framebuffer_create(dev, &mode_cmd, obj);
8258 }
8259
8260 static struct drm_framebuffer *
8261 mode_fits_in_fbdev(struct drm_device *dev,
8262                    struct drm_display_mode *mode)
8263 {
8264 #ifdef CONFIG_DRM_I915_FBDEV
8265         struct drm_i915_private *dev_priv = dev->dev_private;
8266         struct drm_i915_gem_object *obj;
8267         struct drm_framebuffer *fb;
8268
8269         if (!dev_priv->fbdev)
8270                 return NULL;
8271
8272         if (!dev_priv->fbdev->fb)
8273                 return NULL;
8274
8275         obj = dev_priv->fbdev->fb->obj;
8276         BUG_ON(!obj);
8277
8278         fb = &dev_priv->fbdev->fb->base;
8279         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8280                                                                fb->bits_per_pixel))
8281                 return NULL;
8282
8283         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8284                 return NULL;
8285
8286         return fb;
8287 #else
8288         return NULL;
8289 #endif
8290 }
8291
8292 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8293                                 struct drm_display_mode *mode,
8294                                 struct intel_load_detect_pipe *old,
8295                                 struct drm_modeset_acquire_ctx *ctx)
8296 {
8297         struct intel_crtc *intel_crtc;
8298         struct intel_encoder *intel_encoder =
8299                 intel_attached_encoder(connector);
8300         struct drm_crtc *possible_crtc;
8301         struct drm_encoder *encoder = &intel_encoder->base;
8302         struct drm_crtc *crtc = NULL;
8303         struct drm_device *dev = encoder->dev;
8304         struct drm_framebuffer *fb;
8305         struct drm_mode_config *config = &dev->mode_config;
8306         int ret, i = -1;
8307
8308         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8309                       connector->base.id, connector->name,
8310                       encoder->base.id, encoder->name);
8311
8312         drm_modeset_acquire_init(ctx, 0);
8313
8314 retry:
8315         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8316         if (ret)
8317                 goto fail_unlock;
8318
8319         /*
8320          * Algorithm gets a little messy:
8321          *
8322          *   - if the connector already has an assigned crtc, use it (but make
8323          *     sure it's on first)
8324          *
8325          *   - try to find the first unused crtc that can drive this connector,
8326          *     and use that if we find one
8327          */
8328
8329         /* See if we already have a CRTC for this connector */
8330         if (encoder->crtc) {
8331                 crtc = encoder->crtc;
8332
8333                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8334                 if (ret)
8335                         goto fail_unlock;
8336
8337                 old->dpms_mode = connector->dpms;
8338                 old->load_detect_temp = false;
8339
8340                 /* Make sure the crtc and connector are running */
8341                 if (connector->dpms != DRM_MODE_DPMS_ON)
8342                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8343
8344                 return true;
8345         }
8346
8347         /* Find an unused one (if possible) */
8348         for_each_crtc(dev, possible_crtc) {
8349                 i++;
8350                 if (!(encoder->possible_crtcs & (1 << i)))
8351                         continue;
8352                 if (!possible_crtc->enabled) {
8353                         crtc = possible_crtc;
8354                         break;
8355                 }
8356         }
8357
8358         /*
8359          * If we didn't find an unused CRTC, don't use any.
8360          */
8361         if (!crtc) {
8362                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8363                 goto fail_unlock;
8364         }
8365
8366         ret = drm_modeset_lock(&crtc->mutex, ctx);
8367         if (ret)
8368                 goto fail_unlock;
8369         intel_encoder->new_crtc = to_intel_crtc(crtc);
8370         to_intel_connector(connector)->new_encoder = intel_encoder;
8371
8372         intel_crtc = to_intel_crtc(crtc);
8373         intel_crtc->new_enabled = true;
8374         intel_crtc->new_config = &intel_crtc->config;
8375         old->dpms_mode = connector->dpms;
8376         old->load_detect_temp = true;
8377         old->release_fb = NULL;
8378
8379         if (!mode)
8380                 mode = &load_detect_mode;
8381
8382         /* We need a framebuffer large enough to accommodate all accesses
8383          * that the plane may generate whilst we perform load detection.
8384          * We can not rely on the fbcon either being present (we get called
8385          * during its initialisation to detect all boot displays, or it may
8386          * not even exist) or that it is large enough to satisfy the
8387          * requested mode.
8388          */
8389         fb = mode_fits_in_fbdev(dev, mode);
8390         if (fb == NULL) {
8391                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8392                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8393                 old->release_fb = fb;
8394         } else
8395                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8396         if (IS_ERR(fb)) {
8397                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8398                 goto fail;
8399         }
8400
8401         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8402                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8403                 if (old->release_fb)
8404                         old->release_fb->funcs->destroy(old->release_fb);
8405                 goto fail;
8406         }
8407
8408         /* let the connector get through one full cycle before testing */
8409         intel_wait_for_vblank(dev, intel_crtc->pipe);
8410         return true;
8411
8412  fail:
8413         intel_crtc->new_enabled = crtc->enabled;
8414         if (intel_crtc->new_enabled)
8415                 intel_crtc->new_config = &intel_crtc->config;
8416         else
8417                 intel_crtc->new_config = NULL;
8418 fail_unlock:
8419         if (ret == -EDEADLK) {
8420                 drm_modeset_backoff(ctx);
8421                 goto retry;
8422         }
8423
8424         drm_modeset_drop_locks(ctx);
8425         drm_modeset_acquire_fini(ctx);
8426
8427         return false;
8428 }
8429
8430 void intel_release_load_detect_pipe(struct drm_connector *connector,
8431                                     struct intel_load_detect_pipe *old,
8432                                     struct drm_modeset_acquire_ctx *ctx)
8433 {
8434         struct intel_encoder *intel_encoder =
8435                 intel_attached_encoder(connector);
8436         struct drm_encoder *encoder = &intel_encoder->base;
8437         struct drm_crtc *crtc = encoder->crtc;
8438         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8439
8440         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8441                       connector->base.id, connector->name,
8442                       encoder->base.id, encoder->name);
8443
8444         if (old->load_detect_temp) {
8445                 to_intel_connector(connector)->new_encoder = NULL;
8446                 intel_encoder->new_crtc = NULL;
8447                 intel_crtc->new_enabled = false;
8448                 intel_crtc->new_config = NULL;
8449                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8450
8451                 if (old->release_fb) {
8452                         drm_framebuffer_unregister_private(old->release_fb);
8453                         drm_framebuffer_unreference(old->release_fb);
8454                 }
8455
8456                 goto unlock;
8457                 return;
8458         }
8459
8460         /* Switch crtc and encoder back off if necessary */
8461         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8462                 connector->funcs->dpms(connector, old->dpms_mode);
8463
8464 unlock:
8465         drm_modeset_drop_locks(ctx);
8466         drm_modeset_acquire_fini(ctx);
8467 }
8468
8469 static int i9xx_pll_refclk(struct drm_device *dev,
8470                            const struct intel_crtc_config *pipe_config)
8471 {
8472         struct drm_i915_private *dev_priv = dev->dev_private;
8473         u32 dpll = pipe_config->dpll_hw_state.dpll;
8474
8475         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8476                 return dev_priv->vbt.lvds_ssc_freq;
8477         else if (HAS_PCH_SPLIT(dev))
8478                 return 120000;
8479         else if (!IS_GEN2(dev))
8480                 return 96000;
8481         else
8482                 return 48000;
8483 }
8484
8485 /* Returns the clock of the currently programmed mode of the given pipe. */
8486 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8487                                 struct intel_crtc_config *pipe_config)
8488 {
8489         struct drm_device *dev = crtc->base.dev;
8490         struct drm_i915_private *dev_priv = dev->dev_private;
8491         int pipe = pipe_config->cpu_transcoder;
8492         u32 dpll = pipe_config->dpll_hw_state.dpll;
8493         u32 fp;
8494         intel_clock_t clock;
8495         int refclk = i9xx_pll_refclk(dev, pipe_config);
8496
8497         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8498                 fp = pipe_config->dpll_hw_state.fp0;
8499         else
8500                 fp = pipe_config->dpll_hw_state.fp1;
8501
8502         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8503         if (IS_PINEVIEW(dev)) {
8504                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8505                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8506         } else {
8507                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8508                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8509         }
8510
8511         if (!IS_GEN2(dev)) {
8512                 if (IS_PINEVIEW(dev))
8513                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8514                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8515                 else
8516                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8517                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8518
8519                 switch (dpll & DPLL_MODE_MASK) {
8520                 case DPLLB_MODE_DAC_SERIAL:
8521                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8522                                 5 : 10;
8523                         break;
8524                 case DPLLB_MODE_LVDS:
8525                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8526                                 7 : 14;
8527                         break;
8528                 default:
8529                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8530                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8531                         return;
8532                 }
8533
8534                 if (IS_PINEVIEW(dev))
8535                         pineview_clock(refclk, &clock);
8536                 else
8537                         i9xx_clock(refclk, &clock);
8538         } else {
8539                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8540                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8541
8542                 if (is_lvds) {
8543                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8544                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8545
8546                         if (lvds & LVDS_CLKB_POWER_UP)
8547                                 clock.p2 = 7;
8548                         else
8549                                 clock.p2 = 14;
8550                 } else {
8551                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8552                                 clock.p1 = 2;
8553                         else {
8554                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8555                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8556                         }
8557                         if (dpll & PLL_P2_DIVIDE_BY_4)
8558                                 clock.p2 = 4;
8559                         else
8560                                 clock.p2 = 2;
8561                 }
8562
8563                 i9xx_clock(refclk, &clock);
8564         }
8565
8566         /*
8567          * This value includes pixel_multiplier. We will use
8568          * port_clock to compute adjusted_mode.crtc_clock in the
8569          * encoder's get_config() function.
8570          */
8571         pipe_config->port_clock = clock.dot;
8572 }
8573
8574 int intel_dotclock_calculate(int link_freq,
8575                              const struct intel_link_m_n *m_n)
8576 {
8577         /*
8578          * The calculation for the data clock is:
8579          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8580          * But we want to avoid losing precison if possible, so:
8581          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8582          *
8583          * and the link clock is simpler:
8584          * link_clock = (m * link_clock) / n
8585          */
8586
8587         if (!m_n->link_n)
8588                 return 0;
8589
8590         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8591 }
8592
8593 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8594                                    struct intel_crtc_config *pipe_config)
8595 {
8596         struct drm_device *dev = crtc->base.dev;
8597
8598         /* read out port_clock from the DPLL */
8599         i9xx_crtc_clock_get(crtc, pipe_config);
8600
8601         /*
8602          * This value does not include pixel_multiplier.
8603          * We will check that port_clock and adjusted_mode.crtc_clock
8604          * agree once we know their relationship in the encoder's
8605          * get_config() function.
8606          */
8607         pipe_config->adjusted_mode.crtc_clock =
8608                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8609                                          &pipe_config->fdi_m_n);
8610 }
8611
8612 /** Returns the currently programmed mode of the given pipe. */
8613 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8614                                              struct drm_crtc *crtc)
8615 {
8616         struct drm_i915_private *dev_priv = dev->dev_private;
8617         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8618         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8619         struct drm_display_mode *mode;
8620         struct intel_crtc_config pipe_config;
8621         int htot = I915_READ(HTOTAL(cpu_transcoder));
8622         int hsync = I915_READ(HSYNC(cpu_transcoder));
8623         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8624         int vsync = I915_READ(VSYNC(cpu_transcoder));
8625         enum pipe pipe = intel_crtc->pipe;
8626
8627         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8628         if (!mode)
8629                 return NULL;
8630
8631         /*
8632          * Construct a pipe_config sufficient for getting the clock info
8633          * back out of crtc_clock_get.
8634          *
8635          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8636          * to use a real value here instead.
8637          */
8638         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8639         pipe_config.pixel_multiplier = 1;
8640         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8641         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8642         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8643         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8644
8645         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8646         mode->hdisplay = (htot & 0xffff) + 1;
8647         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8648         mode->hsync_start = (hsync & 0xffff) + 1;
8649         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8650         mode->vdisplay = (vtot & 0xffff) + 1;
8651         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8652         mode->vsync_start = (vsync & 0xffff) + 1;
8653         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8654
8655         drm_mode_set_name(mode);
8656
8657         return mode;
8658 }
8659
8660 static void intel_increase_pllclock(struct drm_crtc *crtc)
8661 {
8662         struct drm_device *dev = crtc->dev;
8663         struct drm_i915_private *dev_priv = dev->dev_private;
8664         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8665         int pipe = intel_crtc->pipe;
8666         int dpll_reg = DPLL(pipe);
8667         int dpll;
8668
8669         if (HAS_PCH_SPLIT(dev))
8670                 return;
8671
8672         if (!dev_priv->lvds_downclock_avail)
8673                 return;
8674
8675         dpll = I915_READ(dpll_reg);
8676         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8677                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8678
8679                 assert_panel_unlocked(dev_priv, pipe);
8680
8681                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8682                 I915_WRITE(dpll_reg, dpll);
8683                 intel_wait_for_vblank(dev, pipe);
8684
8685                 dpll = I915_READ(dpll_reg);
8686                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8687                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8688         }
8689 }
8690
8691 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8692 {
8693         struct drm_device *dev = crtc->dev;
8694         struct drm_i915_private *dev_priv = dev->dev_private;
8695         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8696
8697         if (HAS_PCH_SPLIT(dev))
8698                 return;
8699
8700         if (!dev_priv->lvds_downclock_avail)
8701                 return;
8702
8703         /*
8704          * Since this is called by a timer, we should never get here in
8705          * the manual case.
8706          */
8707         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8708                 int pipe = intel_crtc->pipe;
8709                 int dpll_reg = DPLL(pipe);
8710                 int dpll;
8711
8712                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8713
8714                 assert_panel_unlocked(dev_priv, pipe);
8715
8716                 dpll = I915_READ(dpll_reg);
8717                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8718                 I915_WRITE(dpll_reg, dpll);
8719                 intel_wait_for_vblank(dev, pipe);
8720                 dpll = I915_READ(dpll_reg);
8721                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8722                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8723         }
8724
8725 }
8726
8727 void intel_mark_busy(struct drm_device *dev)
8728 {
8729         struct drm_i915_private *dev_priv = dev->dev_private;
8730
8731         if (dev_priv->mm.busy)
8732                 return;
8733
8734         intel_runtime_pm_get(dev_priv);
8735         i915_update_gfx_val(dev_priv);
8736         dev_priv->mm.busy = true;
8737 }
8738
8739 void intel_mark_idle(struct drm_device *dev)
8740 {
8741         struct drm_i915_private *dev_priv = dev->dev_private;
8742         struct drm_crtc *crtc;
8743
8744         if (!dev_priv->mm.busy)
8745                 return;
8746
8747         dev_priv->mm.busy = false;
8748
8749         if (!i915.powersave)
8750                 goto out;
8751
8752         for_each_crtc(dev, crtc) {
8753                 if (!crtc->primary->fb)
8754                         continue;
8755
8756                 intel_decrease_pllclock(crtc);
8757         }
8758
8759         if (INTEL_INFO(dev)->gen >= 6)
8760                 gen6_rps_idle(dev->dev_private);
8761
8762 out:
8763         intel_runtime_pm_put(dev_priv);
8764 }
8765
8766 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8767                         struct intel_engine_cs *ring)
8768 {
8769         struct drm_device *dev = obj->base.dev;
8770         struct drm_crtc *crtc;
8771
8772         if (!i915.powersave)
8773                 return;
8774
8775         for_each_crtc(dev, crtc) {
8776                 if (!crtc->primary->fb)
8777                         continue;
8778
8779                 if (to_intel_framebuffer(crtc->primary->fb)->obj != obj)
8780                         continue;
8781
8782                 intel_increase_pllclock(crtc);
8783                 if (ring && intel_fbc_enabled(dev))
8784                         ring->fbc_dirty = true;
8785         }
8786 }
8787
8788 static void intel_crtc_destroy(struct drm_crtc *crtc)
8789 {
8790         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8791         struct drm_device *dev = crtc->dev;
8792         struct intel_unpin_work *work;
8793         unsigned long flags;
8794
8795         spin_lock_irqsave(&dev->event_lock, flags);
8796         work = intel_crtc->unpin_work;
8797         intel_crtc->unpin_work = NULL;
8798         spin_unlock_irqrestore(&dev->event_lock, flags);
8799
8800         if (work) {
8801                 cancel_work_sync(&work->work);
8802                 kfree(work);
8803         }
8804
8805         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8806
8807         drm_crtc_cleanup(crtc);
8808
8809         kfree(intel_crtc);
8810 }
8811
8812 static void intel_unpin_work_fn(struct work_struct *__work)
8813 {
8814         struct intel_unpin_work *work =
8815                 container_of(__work, struct intel_unpin_work, work);
8816         struct drm_device *dev = work->crtc->dev;
8817
8818         mutex_lock(&dev->struct_mutex);
8819         intel_unpin_fb_obj(work->old_fb_obj);
8820         drm_gem_object_unreference(&work->pending_flip_obj->base);
8821         drm_gem_object_unreference(&work->old_fb_obj->base);
8822
8823         intel_update_fbc(dev);
8824         mutex_unlock(&dev->struct_mutex);
8825
8826         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8827         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8828
8829         kfree(work);
8830 }
8831
8832 static void do_intel_finish_page_flip(struct drm_device *dev,
8833                                       struct drm_crtc *crtc)
8834 {
8835         struct drm_i915_private *dev_priv = dev->dev_private;
8836         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8837         struct intel_unpin_work *work;
8838         unsigned long flags;
8839
8840         /* Ignore early vblank irqs */
8841         if (intel_crtc == NULL)
8842                 return;
8843
8844         spin_lock_irqsave(&dev->event_lock, flags);
8845         work = intel_crtc->unpin_work;
8846
8847         /* Ensure we don't miss a work->pending update ... */
8848         smp_rmb();
8849
8850         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8851                 spin_unlock_irqrestore(&dev->event_lock, flags);
8852                 return;
8853         }
8854
8855         /* and that the unpin work is consistent wrt ->pending. */
8856         smp_rmb();
8857
8858         intel_crtc->unpin_work = NULL;
8859
8860         if (work->event)
8861                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8862
8863         drm_crtc_vblank_put(crtc);
8864
8865         spin_unlock_irqrestore(&dev->event_lock, flags);
8866
8867         wake_up_all(&dev_priv->pending_flip_queue);
8868
8869         queue_work(dev_priv->wq, &work->work);
8870
8871         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8872 }
8873
8874 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8875 {
8876         struct drm_i915_private *dev_priv = dev->dev_private;
8877         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8878
8879         do_intel_finish_page_flip(dev, crtc);
8880 }
8881
8882 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8883 {
8884         struct drm_i915_private *dev_priv = dev->dev_private;
8885         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8886
8887         do_intel_finish_page_flip(dev, crtc);
8888 }
8889
8890 /* Is 'a' after or equal to 'b'? */
8891 static bool g4x_flip_count_after_eq(u32 a, u32 b)
8892 {
8893         return !((a - b) & 0x80000000);
8894 }
8895
8896 static bool page_flip_finished(struct intel_crtc *crtc)
8897 {
8898         struct drm_device *dev = crtc->base.dev;
8899         struct drm_i915_private *dev_priv = dev->dev_private;
8900
8901         /*
8902          * The relevant registers doen't exist on pre-ctg.
8903          * As the flip done interrupt doesn't trigger for mmio
8904          * flips on gmch platforms, a flip count check isn't
8905          * really needed there. But since ctg has the registers,
8906          * include it in the check anyway.
8907          */
8908         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
8909                 return true;
8910
8911         /*
8912          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
8913          * used the same base address. In that case the mmio flip might
8914          * have completed, but the CS hasn't even executed the flip yet.
8915          *
8916          * A flip count check isn't enough as the CS might have updated
8917          * the base address just after start of vblank, but before we
8918          * managed to process the interrupt. This means we'd complete the
8919          * CS flip too soon.
8920          *
8921          * Combining both checks should get us a good enough result. It may
8922          * still happen that the CS flip has been executed, but has not
8923          * yet actually completed. But in case the base address is the same
8924          * anyway, we don't really care.
8925          */
8926         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
8927                 crtc->unpin_work->gtt_offset &&
8928                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
8929                                     crtc->unpin_work->flip_count);
8930 }
8931
8932 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8933 {
8934         struct drm_i915_private *dev_priv = dev->dev_private;
8935         struct intel_crtc *intel_crtc =
8936                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8937         unsigned long flags;
8938
8939         /* NB: An MMIO update of the plane base pointer will also
8940          * generate a page-flip completion irq, i.e. every modeset
8941          * is also accompanied by a spurious intel_prepare_page_flip().
8942          */
8943         spin_lock_irqsave(&dev->event_lock, flags);
8944         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
8945                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8946         spin_unlock_irqrestore(&dev->event_lock, flags);
8947 }
8948
8949 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8950 {
8951         /* Ensure that the work item is consistent when activating it ... */
8952         smp_wmb();
8953         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8954         /* and that it is marked active as soon as the irq could fire. */
8955         smp_wmb();
8956 }
8957
8958 static int intel_gen2_queue_flip(struct drm_device *dev,
8959                                  struct drm_crtc *crtc,
8960                                  struct drm_framebuffer *fb,
8961                                  struct drm_i915_gem_object *obj,
8962                                  struct intel_engine_cs *ring,
8963                                  uint32_t flags)
8964 {
8965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8966         u32 flip_mask;
8967         int ret;
8968
8969         ret = intel_ring_begin(ring, 6);
8970         if (ret)
8971                 return ret;
8972
8973         /* Can't queue multiple flips, so wait for the previous
8974          * one to finish before executing the next.
8975          */
8976         if (intel_crtc->plane)
8977                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8978         else
8979                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8980         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8981         intel_ring_emit(ring, MI_NOOP);
8982         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8983                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8984         intel_ring_emit(ring, fb->pitches[0]);
8985         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8986         intel_ring_emit(ring, 0); /* aux display base address, unused */
8987
8988         intel_mark_page_flip_active(intel_crtc);
8989         __intel_ring_advance(ring);
8990         return 0;
8991 }
8992
8993 static int intel_gen3_queue_flip(struct drm_device *dev,
8994                                  struct drm_crtc *crtc,
8995                                  struct drm_framebuffer *fb,
8996                                  struct drm_i915_gem_object *obj,
8997                                  struct intel_engine_cs *ring,
8998                                  uint32_t flags)
8999 {
9000         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9001         u32 flip_mask;
9002         int ret;
9003
9004         ret = intel_ring_begin(ring, 6);
9005         if (ret)
9006                 return ret;
9007
9008         if (intel_crtc->plane)
9009                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9010         else
9011                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9012         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9013         intel_ring_emit(ring, MI_NOOP);
9014         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9015                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9016         intel_ring_emit(ring, fb->pitches[0]);
9017         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9018         intel_ring_emit(ring, MI_NOOP);
9019
9020         intel_mark_page_flip_active(intel_crtc);
9021         __intel_ring_advance(ring);
9022         return 0;
9023 }
9024
9025 static int intel_gen4_queue_flip(struct drm_device *dev,
9026                                  struct drm_crtc *crtc,
9027                                  struct drm_framebuffer *fb,
9028                                  struct drm_i915_gem_object *obj,
9029                                  struct intel_engine_cs *ring,
9030                                  uint32_t flags)
9031 {
9032         struct drm_i915_private *dev_priv = dev->dev_private;
9033         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9034         uint32_t pf, pipesrc;
9035         int ret;
9036
9037         ret = intel_ring_begin(ring, 4);
9038         if (ret)
9039                 return ret;
9040
9041         /* i965+ uses the linear or tiled offsets from the
9042          * Display Registers (which do not change across a page-flip)
9043          * so we need only reprogram the base address.
9044          */
9045         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9046                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9047         intel_ring_emit(ring, fb->pitches[0]);
9048         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9049                         obj->tiling_mode);
9050
9051         /* XXX Enabling the panel-fitter across page-flip is so far
9052          * untested on non-native modes, so ignore it for now.
9053          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9054          */
9055         pf = 0;
9056         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9057         intel_ring_emit(ring, pf | pipesrc);
9058
9059         intel_mark_page_flip_active(intel_crtc);
9060         __intel_ring_advance(ring);
9061         return 0;
9062 }
9063
9064 static int intel_gen6_queue_flip(struct drm_device *dev,
9065                                  struct drm_crtc *crtc,
9066                                  struct drm_framebuffer *fb,
9067                                  struct drm_i915_gem_object *obj,
9068                                  struct intel_engine_cs *ring,
9069                                  uint32_t flags)
9070 {
9071         struct drm_i915_private *dev_priv = dev->dev_private;
9072         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9073         uint32_t pf, pipesrc;
9074         int ret;
9075
9076         ret = intel_ring_begin(ring, 4);
9077         if (ret)
9078                 return ret;
9079
9080         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9081                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9082         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9083         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9084
9085         /* Contrary to the suggestions in the documentation,
9086          * "Enable Panel Fitter" does not seem to be required when page
9087          * flipping with a non-native mode, and worse causes a normal
9088          * modeset to fail.
9089          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9090          */
9091         pf = 0;
9092         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9093         intel_ring_emit(ring, pf | pipesrc);
9094
9095         intel_mark_page_flip_active(intel_crtc);
9096         __intel_ring_advance(ring);
9097         return 0;
9098 }
9099
9100 static int intel_gen7_queue_flip(struct drm_device *dev,
9101                                  struct drm_crtc *crtc,
9102                                  struct drm_framebuffer *fb,
9103                                  struct drm_i915_gem_object *obj,
9104                                  struct intel_engine_cs *ring,
9105                                  uint32_t flags)
9106 {
9107         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9108         uint32_t plane_bit = 0;
9109         int len, ret;
9110
9111         switch (intel_crtc->plane) {
9112         case PLANE_A:
9113                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9114                 break;
9115         case PLANE_B:
9116                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9117                 break;
9118         case PLANE_C:
9119                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9120                 break;
9121         default:
9122                 WARN_ONCE(1, "unknown plane in flip command\n");
9123                 return -ENODEV;
9124         }
9125
9126         len = 4;
9127         if (ring->id == RCS) {
9128                 len += 6;
9129                 /*
9130                  * On Gen 8, SRM is now taking an extra dword to accommodate
9131                  * 48bits addresses, and we need a NOOP for the batch size to
9132                  * stay even.
9133                  */
9134                 if (IS_GEN8(dev))
9135                         len += 2;
9136         }
9137
9138         /*
9139          * BSpec MI_DISPLAY_FLIP for IVB:
9140          * "The full packet must be contained within the same cache line."
9141          *
9142          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9143          * cacheline, if we ever start emitting more commands before
9144          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9145          * then do the cacheline alignment, and finally emit the
9146          * MI_DISPLAY_FLIP.
9147          */
9148         ret = intel_ring_cacheline_align(ring);
9149         if (ret)
9150                 return ret;
9151
9152         ret = intel_ring_begin(ring, len);
9153         if (ret)
9154                 return ret;
9155
9156         /* Unmask the flip-done completion message. Note that the bspec says that
9157          * we should do this for both the BCS and RCS, and that we must not unmask
9158          * more than one flip event at any time (or ensure that one flip message
9159          * can be sent by waiting for flip-done prior to queueing new flips).
9160          * Experimentation says that BCS works despite DERRMR masking all
9161          * flip-done completion events and that unmasking all planes at once
9162          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9163          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9164          */
9165         if (ring->id == RCS) {
9166                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9167                 intel_ring_emit(ring, DERRMR);
9168                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9169                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9170                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9171                 if (IS_GEN8(dev))
9172                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9173                                               MI_SRM_LRM_GLOBAL_GTT);
9174                 else
9175                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9176                                               MI_SRM_LRM_GLOBAL_GTT);
9177                 intel_ring_emit(ring, DERRMR);
9178                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9179                 if (IS_GEN8(dev)) {
9180                         intel_ring_emit(ring, 0);
9181                         intel_ring_emit(ring, MI_NOOP);
9182                 }
9183         }
9184
9185         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9186         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9187         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9188         intel_ring_emit(ring, (MI_NOOP));
9189
9190         intel_mark_page_flip_active(intel_crtc);
9191         __intel_ring_advance(ring);
9192         return 0;
9193 }
9194
9195 static int intel_default_queue_flip(struct drm_device *dev,
9196                                     struct drm_crtc *crtc,
9197                                     struct drm_framebuffer *fb,
9198                                     struct drm_i915_gem_object *obj,
9199                                     struct intel_engine_cs *ring,
9200                                     uint32_t flags)
9201 {
9202         return -ENODEV;
9203 }
9204
9205 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9206                                 struct drm_framebuffer *fb,
9207                                 struct drm_pending_vblank_event *event,
9208                                 uint32_t page_flip_flags)
9209 {
9210         struct drm_device *dev = crtc->dev;
9211         struct drm_i915_private *dev_priv = dev->dev_private;
9212         struct drm_framebuffer *old_fb = crtc->primary->fb;
9213         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
9214         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9215         struct intel_unpin_work *work;
9216         struct intel_engine_cs *ring;
9217         unsigned long flags;
9218         int ret;
9219
9220         /* Can't change pixel format via MI display flips. */
9221         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9222                 return -EINVAL;
9223
9224         /*
9225          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9226          * Note that pitch changes could also affect these register.
9227          */
9228         if (INTEL_INFO(dev)->gen > 3 &&
9229             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9230              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9231                 return -EINVAL;
9232
9233         if (i915_terminally_wedged(&dev_priv->gpu_error))
9234                 goto out_hang;
9235
9236         work = kzalloc(sizeof(*work), GFP_KERNEL);
9237         if (work == NULL)
9238                 return -ENOMEM;
9239
9240         work->event = event;
9241         work->crtc = crtc;
9242         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
9243         INIT_WORK(&work->work, intel_unpin_work_fn);
9244
9245         ret = drm_crtc_vblank_get(crtc);
9246         if (ret)
9247                 goto free_work;
9248
9249         /* We borrow the event spin lock for protecting unpin_work */
9250         spin_lock_irqsave(&dev->event_lock, flags);
9251         if (intel_crtc->unpin_work) {
9252                 spin_unlock_irqrestore(&dev->event_lock, flags);
9253                 kfree(work);
9254                 drm_crtc_vblank_put(crtc);
9255
9256                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9257                 return -EBUSY;
9258         }
9259         intel_crtc->unpin_work = work;
9260         spin_unlock_irqrestore(&dev->event_lock, flags);
9261
9262         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9263                 flush_workqueue(dev_priv->wq);
9264
9265         ret = i915_mutex_lock_interruptible(dev);
9266         if (ret)
9267                 goto cleanup;
9268
9269         /* Reference the objects for the scheduled work. */
9270         drm_gem_object_reference(&work->old_fb_obj->base);
9271         drm_gem_object_reference(&obj->base);
9272
9273         crtc->primary->fb = fb;
9274
9275         work->pending_flip_obj = obj;
9276
9277         work->enable_stall_check = true;
9278
9279         atomic_inc(&intel_crtc->unpin_work_count);
9280         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9281
9282         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9283                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(intel_crtc->pipe)) + 1;
9284
9285         if (IS_VALLEYVIEW(dev)) {
9286                 ring = &dev_priv->ring[BCS];
9287         } else if (INTEL_INFO(dev)->gen >= 7) {
9288                 ring = obj->ring;
9289                 if (ring == NULL || ring->id != RCS)
9290                         ring = &dev_priv->ring[BCS];
9291         } else {
9292                 ring = &dev_priv->ring[RCS];
9293         }
9294
9295         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9296         if (ret)
9297                 goto cleanup_pending;
9298
9299         work->gtt_offset =
9300                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9301
9302         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring, page_flip_flags);
9303         if (ret)
9304                 goto cleanup_unpin;
9305
9306         intel_disable_fbc(dev);
9307         intel_mark_fb_busy(obj, NULL);
9308         mutex_unlock(&dev->struct_mutex);
9309
9310         trace_i915_flip_request(intel_crtc->plane, obj);
9311
9312         return 0;
9313
9314 cleanup_unpin:
9315         intel_unpin_fb_obj(obj);
9316 cleanup_pending:
9317         atomic_dec(&intel_crtc->unpin_work_count);
9318         crtc->primary->fb = old_fb;
9319         drm_gem_object_unreference(&work->old_fb_obj->base);
9320         drm_gem_object_unreference(&obj->base);
9321         mutex_unlock(&dev->struct_mutex);
9322
9323 cleanup:
9324         spin_lock_irqsave(&dev->event_lock, flags);
9325         intel_crtc->unpin_work = NULL;
9326         spin_unlock_irqrestore(&dev->event_lock, flags);
9327
9328         drm_crtc_vblank_put(crtc);
9329 free_work:
9330         kfree(work);
9331
9332         if (ret == -EIO) {
9333 out_hang:
9334                 intel_crtc_wait_for_pending_flips(crtc);
9335                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9336                 if (ret == 0 && event)
9337                         drm_send_vblank_event(dev, intel_crtc->pipe, event);
9338         }
9339         return ret;
9340 }
9341
9342 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9343         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9344         .load_lut = intel_crtc_load_lut,
9345 };
9346
9347 /**
9348  * intel_modeset_update_staged_output_state
9349  *
9350  * Updates the staged output configuration state, e.g. after we've read out the
9351  * current hw state.
9352  */
9353 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9354 {
9355         struct intel_crtc *crtc;
9356         struct intel_encoder *encoder;
9357         struct intel_connector *connector;
9358
9359         list_for_each_entry(connector, &dev->mode_config.connector_list,
9360                             base.head) {
9361                 connector->new_encoder =
9362                         to_intel_encoder(connector->base.encoder);
9363         }
9364
9365         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9366                             base.head) {
9367                 encoder->new_crtc =
9368                         to_intel_crtc(encoder->base.crtc);
9369         }
9370
9371         for_each_intel_crtc(dev, crtc) {
9372                 crtc->new_enabled = crtc->base.enabled;
9373
9374                 if (crtc->new_enabled)
9375                         crtc->new_config = &crtc->config;
9376                 else
9377                         crtc->new_config = NULL;
9378         }
9379 }
9380
9381 /**
9382  * intel_modeset_commit_output_state
9383  *
9384  * This function copies the stage display pipe configuration to the real one.
9385  */
9386 static void intel_modeset_commit_output_state(struct drm_device *dev)
9387 {
9388         struct intel_crtc *crtc;
9389         struct intel_encoder *encoder;
9390         struct intel_connector *connector;
9391
9392         list_for_each_entry(connector, &dev->mode_config.connector_list,
9393                             base.head) {
9394                 connector->base.encoder = &connector->new_encoder->base;
9395         }
9396
9397         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9398                             base.head) {
9399                 encoder->base.crtc = &encoder->new_crtc->base;
9400         }
9401
9402         for_each_intel_crtc(dev, crtc) {
9403                 crtc->base.enabled = crtc->new_enabled;
9404         }
9405 }
9406
9407 static void
9408 connected_sink_compute_bpp(struct intel_connector *connector,
9409                            struct intel_crtc_config *pipe_config)
9410 {
9411         int bpp = pipe_config->pipe_bpp;
9412
9413         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9414                 connector->base.base.id,
9415                 connector->base.name);
9416
9417         /* Don't use an invalid EDID bpc value */
9418         if (connector->base.display_info.bpc &&
9419             connector->base.display_info.bpc * 3 < bpp) {
9420                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9421                               bpp, connector->base.display_info.bpc*3);
9422                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9423         }
9424
9425         /* Clamp bpp to 8 on screens without EDID 1.4 */
9426         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9427                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9428                               bpp);
9429                 pipe_config->pipe_bpp = 24;
9430         }
9431 }
9432
9433 static int
9434 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9435                           struct drm_framebuffer *fb,
9436                           struct intel_crtc_config *pipe_config)
9437 {
9438         struct drm_device *dev = crtc->base.dev;
9439         struct intel_connector *connector;
9440         int bpp;
9441
9442         switch (fb->pixel_format) {
9443         case DRM_FORMAT_C8:
9444                 bpp = 8*3; /* since we go through a colormap */
9445                 break;
9446         case DRM_FORMAT_XRGB1555:
9447         case DRM_FORMAT_ARGB1555:
9448                 /* checked in intel_framebuffer_init already */
9449                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9450                         return -EINVAL;
9451         case DRM_FORMAT_RGB565:
9452                 bpp = 6*3; /* min is 18bpp */
9453                 break;
9454         case DRM_FORMAT_XBGR8888:
9455         case DRM_FORMAT_ABGR8888:
9456                 /* checked in intel_framebuffer_init already */
9457                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9458                         return -EINVAL;
9459         case DRM_FORMAT_XRGB8888:
9460         case DRM_FORMAT_ARGB8888:
9461                 bpp = 8*3;
9462                 break;
9463         case DRM_FORMAT_XRGB2101010:
9464         case DRM_FORMAT_ARGB2101010:
9465         case DRM_FORMAT_XBGR2101010:
9466         case DRM_FORMAT_ABGR2101010:
9467                 /* checked in intel_framebuffer_init already */
9468                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9469                         return -EINVAL;
9470                 bpp = 10*3;
9471                 break;
9472         /* TODO: gen4+ supports 16 bpc floating point, too. */
9473         default:
9474                 DRM_DEBUG_KMS("unsupported depth\n");
9475                 return -EINVAL;
9476         }
9477
9478         pipe_config->pipe_bpp = bpp;
9479
9480         /* Clamp display bpp to EDID value */
9481         list_for_each_entry(connector, &dev->mode_config.connector_list,
9482                             base.head) {
9483                 if (!connector->new_encoder ||
9484                     connector->new_encoder->new_crtc != crtc)
9485                         continue;
9486
9487                 connected_sink_compute_bpp(connector, pipe_config);
9488         }
9489
9490         return bpp;
9491 }
9492
9493 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9494 {
9495         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9496                         "type: 0x%x flags: 0x%x\n",
9497                 mode->crtc_clock,
9498                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9499                 mode->crtc_hsync_end, mode->crtc_htotal,
9500                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9501                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9502 }
9503
9504 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9505                                    struct intel_crtc_config *pipe_config,
9506                                    const char *context)
9507 {
9508         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9509                       context, pipe_name(crtc->pipe));
9510
9511         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9512         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9513                       pipe_config->pipe_bpp, pipe_config->dither);
9514         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9515                       pipe_config->has_pch_encoder,
9516                       pipe_config->fdi_lanes,
9517                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9518                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9519                       pipe_config->fdi_m_n.tu);
9520         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9521                       pipe_config->has_dp_encoder,
9522                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9523                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9524                       pipe_config->dp_m_n.tu);
9525         DRM_DEBUG_KMS("requested mode:\n");
9526         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9527         DRM_DEBUG_KMS("adjusted mode:\n");
9528         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9529         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9530         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9531         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9532                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9533         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9534                       pipe_config->gmch_pfit.control,
9535                       pipe_config->gmch_pfit.pgm_ratios,
9536                       pipe_config->gmch_pfit.lvds_border_bits);
9537         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9538                       pipe_config->pch_pfit.pos,
9539                       pipe_config->pch_pfit.size,
9540                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9541         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9542         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9543 }
9544
9545 static bool encoders_cloneable(const struct intel_encoder *a,
9546                                const struct intel_encoder *b)
9547 {
9548         /* masks could be asymmetric, so check both ways */
9549         return a == b || (a->cloneable & (1 << b->type) &&
9550                           b->cloneable & (1 << a->type));
9551 }
9552
9553 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9554                                          struct intel_encoder *encoder)
9555 {
9556         struct drm_device *dev = crtc->base.dev;
9557         struct intel_encoder *source_encoder;
9558
9559         list_for_each_entry(source_encoder,
9560                             &dev->mode_config.encoder_list, base.head) {
9561                 if (source_encoder->new_crtc != crtc)
9562                         continue;
9563
9564                 if (!encoders_cloneable(encoder, source_encoder))
9565                         return false;
9566         }
9567
9568         return true;
9569 }
9570
9571 static bool check_encoder_cloning(struct intel_crtc *crtc)
9572 {
9573         struct drm_device *dev = crtc->base.dev;
9574         struct intel_encoder *encoder;
9575
9576         list_for_each_entry(encoder,
9577                             &dev->mode_config.encoder_list, base.head) {
9578                 if (encoder->new_crtc != crtc)
9579                         continue;
9580
9581                 if (!check_single_encoder_cloning(crtc, encoder))
9582                         return false;
9583         }
9584
9585         return true;
9586 }
9587
9588 static struct intel_crtc_config *
9589 intel_modeset_pipe_config(struct drm_crtc *crtc,
9590                           struct drm_framebuffer *fb,
9591                           struct drm_display_mode *mode)
9592 {
9593         struct drm_device *dev = crtc->dev;
9594         struct intel_encoder *encoder;
9595         struct intel_crtc_config *pipe_config;
9596         int plane_bpp, ret = -EINVAL;
9597         bool retry = true;
9598
9599         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
9600                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9601                 return ERR_PTR(-EINVAL);
9602         }
9603
9604         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9605         if (!pipe_config)
9606                 return ERR_PTR(-ENOMEM);
9607
9608         drm_mode_copy(&pipe_config->adjusted_mode, mode);
9609         drm_mode_copy(&pipe_config->requested_mode, mode);
9610
9611         pipe_config->cpu_transcoder =
9612                 (enum transcoder) to_intel_crtc(crtc)->pipe;
9613         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9614
9615         /*
9616          * Sanitize sync polarity flags based on requested ones. If neither
9617          * positive or negative polarity is requested, treat this as meaning
9618          * negative polarity.
9619          */
9620         if (!(pipe_config->adjusted_mode.flags &
9621               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
9622                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
9623
9624         if (!(pipe_config->adjusted_mode.flags &
9625               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
9626                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
9627
9628         /* Compute a starting value for pipe_config->pipe_bpp taking the source
9629          * plane pixel format and any sink constraints into account. Returns the
9630          * source plane bpp so that dithering can be selected on mismatches
9631          * after encoders and crtc also have had their say. */
9632         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
9633                                               fb, pipe_config);
9634         if (plane_bpp < 0)
9635                 goto fail;
9636
9637         /*
9638          * Determine the real pipe dimensions. Note that stereo modes can
9639          * increase the actual pipe size due to the frame doubling and
9640          * insertion of additional space for blanks between the frame. This
9641          * is stored in the crtc timings. We use the requested mode to do this
9642          * computation to clearly distinguish it from the adjusted mode, which
9643          * can be changed by the connectors in the below retry loop.
9644          */
9645         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
9646         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
9647         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
9648
9649 encoder_retry:
9650         /* Ensure the port clock defaults are reset when retrying. */
9651         pipe_config->port_clock = 0;
9652         pipe_config->pixel_multiplier = 1;
9653
9654         /* Fill in default crtc timings, allow encoders to overwrite them. */
9655         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
9656
9657         /* Pass our mode to the connectors and the CRTC to give them a chance to
9658          * adjust it according to limitations or connector properties, and also
9659          * a chance to reject the mode entirely.
9660          */
9661         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9662                             base.head) {
9663
9664                 if (&encoder->new_crtc->base != crtc)
9665                         continue;
9666
9667                 if (!(encoder->compute_config(encoder, pipe_config))) {
9668                         DRM_DEBUG_KMS("Encoder config failure\n");
9669                         goto fail;
9670                 }
9671         }
9672
9673         /* Set default port clock if not overwritten by the encoder. Needs to be
9674          * done afterwards in case the encoder adjusts the mode. */
9675         if (!pipe_config->port_clock)
9676                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9677                         * pipe_config->pixel_multiplier;
9678
9679         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9680         if (ret < 0) {
9681                 DRM_DEBUG_KMS("CRTC fixup failed\n");
9682                 goto fail;
9683         }
9684
9685         if (ret == RETRY) {
9686                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
9687                         ret = -EINVAL;
9688                         goto fail;
9689                 }
9690
9691                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9692                 retry = false;
9693                 goto encoder_retry;
9694         }
9695
9696         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9697         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9698                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9699
9700         return pipe_config;
9701 fail:
9702         kfree(pipe_config);
9703         return ERR_PTR(ret);
9704 }
9705
9706 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
9707  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9708 static void
9709 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9710                              unsigned *prepare_pipes, unsigned *disable_pipes)
9711 {
9712         struct intel_crtc *intel_crtc;
9713         struct drm_device *dev = crtc->dev;
9714         struct intel_encoder *encoder;
9715         struct intel_connector *connector;
9716         struct drm_crtc *tmp_crtc;
9717
9718         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9719
9720         /* Check which crtcs have changed outputs connected to them, these need
9721          * to be part of the prepare_pipes mask. We don't (yet) support global
9722          * modeset across multiple crtcs, so modeset_pipes will only have one
9723          * bit set at most. */
9724         list_for_each_entry(connector, &dev->mode_config.connector_list,
9725                             base.head) {
9726                 if (connector->base.encoder == &connector->new_encoder->base)
9727                         continue;
9728
9729                 if (connector->base.encoder) {
9730                         tmp_crtc = connector->base.encoder->crtc;
9731
9732                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9733                 }
9734
9735                 if (connector->new_encoder)
9736                         *prepare_pipes |=
9737                                 1 << connector->new_encoder->new_crtc->pipe;
9738         }
9739
9740         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9741                             base.head) {
9742                 if (encoder->base.crtc == &encoder->new_crtc->base)
9743                         continue;
9744
9745                 if (encoder->base.crtc) {
9746                         tmp_crtc = encoder->base.crtc;
9747
9748                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9749                 }
9750
9751                 if (encoder->new_crtc)
9752                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9753         }
9754
9755         /* Check for pipes that will be enabled/disabled ... */
9756         for_each_intel_crtc(dev, intel_crtc) {
9757                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
9758                         continue;
9759
9760                 if (!intel_crtc->new_enabled)
9761                         *disable_pipes |= 1 << intel_crtc->pipe;
9762                 else
9763                         *prepare_pipes |= 1 << intel_crtc->pipe;
9764         }
9765
9766
9767         /* set_mode is also used to update properties on life display pipes. */
9768         intel_crtc = to_intel_crtc(crtc);
9769         if (intel_crtc->new_enabled)
9770                 *prepare_pipes |= 1 << intel_crtc->pipe;
9771
9772         /*
9773          * For simplicity do a full modeset on any pipe where the output routing
9774          * changed. We could be more clever, but that would require us to be
9775          * more careful with calling the relevant encoder->mode_set functions.
9776          */
9777         if (*prepare_pipes)
9778                 *modeset_pipes = *prepare_pipes;
9779
9780         /* ... and mask these out. */
9781         *modeset_pipes &= ~(*disable_pipes);
9782         *prepare_pipes &= ~(*disable_pipes);
9783
9784         /*
9785          * HACK: We don't (yet) fully support global modesets. intel_set_config
9786          * obies this rule, but the modeset restore mode of
9787          * intel_modeset_setup_hw_state does not.
9788          */
9789         *modeset_pipes &= 1 << intel_crtc->pipe;
9790         *prepare_pipes &= 1 << intel_crtc->pipe;
9791
9792         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9793                       *modeset_pipes, *prepare_pipes, *disable_pipes);
9794 }
9795
9796 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9797 {
9798         struct drm_encoder *encoder;
9799         struct drm_device *dev = crtc->dev;
9800
9801         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9802                 if (encoder->crtc == crtc)
9803                         return true;
9804
9805         return false;
9806 }
9807
9808 static void
9809 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9810 {
9811         struct intel_encoder *intel_encoder;
9812         struct intel_crtc *intel_crtc;
9813         struct drm_connector *connector;
9814
9815         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9816                             base.head) {
9817                 if (!intel_encoder->base.crtc)
9818                         continue;
9819
9820                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9821
9822                 if (prepare_pipes & (1 << intel_crtc->pipe))
9823                         intel_encoder->connectors_active = false;
9824         }
9825
9826         intel_modeset_commit_output_state(dev);
9827
9828         /* Double check state. */
9829         for_each_intel_crtc(dev, intel_crtc) {
9830                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
9831                 WARN_ON(intel_crtc->new_config &&
9832                         intel_crtc->new_config != &intel_crtc->config);
9833                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
9834         }
9835
9836         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9837                 if (!connector->encoder || !connector->encoder->crtc)
9838                         continue;
9839
9840                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9841
9842                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9843                         struct drm_property *dpms_property =
9844                                 dev->mode_config.dpms_property;
9845
9846                         connector->dpms = DRM_MODE_DPMS_ON;
9847                         drm_object_property_set_value(&connector->base,
9848                                                          dpms_property,
9849                                                          DRM_MODE_DPMS_ON);
9850
9851                         intel_encoder = to_intel_encoder(connector->encoder);
9852                         intel_encoder->connectors_active = true;
9853                 }
9854         }
9855
9856 }
9857
9858 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9859 {
9860         int diff;
9861
9862         if (clock1 == clock2)
9863                 return true;
9864
9865         if (!clock1 || !clock2)
9866                 return false;
9867
9868         diff = abs(clock1 - clock2);
9869
9870         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9871                 return true;
9872
9873         return false;
9874 }
9875
9876 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9877         list_for_each_entry((intel_crtc), \
9878                             &(dev)->mode_config.crtc_list, \
9879                             base.head) \
9880                 if (mask & (1 <<(intel_crtc)->pipe))
9881
9882 static bool
9883 intel_pipe_config_compare(struct drm_device *dev,
9884                           struct intel_crtc_config *current_config,
9885                           struct intel_crtc_config *pipe_config)
9886 {
9887 #define PIPE_CONF_CHECK_X(name) \
9888         if (current_config->name != pipe_config->name) { \
9889                 DRM_ERROR("mismatch in " #name " " \
9890                           "(expected 0x%08x, found 0x%08x)\n", \
9891                           current_config->name, \
9892                           pipe_config->name); \
9893                 return false; \
9894         }
9895
9896 #define PIPE_CONF_CHECK_I(name) \
9897         if (current_config->name != pipe_config->name) { \
9898                 DRM_ERROR("mismatch in " #name " " \
9899                           "(expected %i, found %i)\n", \
9900                           current_config->name, \
9901                           pipe_config->name); \
9902                 return false; \
9903         }
9904
9905 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
9906         if ((current_config->name ^ pipe_config->name) & (mask)) { \
9907                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
9908                           "(expected %i, found %i)\n", \
9909                           current_config->name & (mask), \
9910                           pipe_config->name & (mask)); \
9911                 return false; \
9912         }
9913
9914 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9915         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9916                 DRM_ERROR("mismatch in " #name " " \
9917                           "(expected %i, found %i)\n", \
9918                           current_config->name, \
9919                           pipe_config->name); \
9920                 return false; \
9921         }
9922
9923 #define PIPE_CONF_QUIRK(quirk)  \
9924         ((current_config->quirks | pipe_config->quirks) & (quirk))
9925
9926         PIPE_CONF_CHECK_I(cpu_transcoder);
9927
9928         PIPE_CONF_CHECK_I(has_pch_encoder);
9929         PIPE_CONF_CHECK_I(fdi_lanes);
9930         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9931         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9932         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9933         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9934         PIPE_CONF_CHECK_I(fdi_m_n.tu);
9935
9936         PIPE_CONF_CHECK_I(has_dp_encoder);
9937         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9938         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9939         PIPE_CONF_CHECK_I(dp_m_n.link_m);
9940         PIPE_CONF_CHECK_I(dp_m_n.link_n);
9941         PIPE_CONF_CHECK_I(dp_m_n.tu);
9942
9943         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9944         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9945         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9946         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9947         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9948         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9949
9950         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9951         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9952         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9953         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9954         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9955         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9956
9957         PIPE_CONF_CHECK_I(pixel_multiplier);
9958         PIPE_CONF_CHECK_I(has_hdmi_sink);
9959         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
9960             IS_VALLEYVIEW(dev))
9961                 PIPE_CONF_CHECK_I(limited_color_range);
9962
9963         PIPE_CONF_CHECK_I(has_audio);
9964
9965         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9966                               DRM_MODE_FLAG_INTERLACE);
9967
9968         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9969                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9970                                       DRM_MODE_FLAG_PHSYNC);
9971                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9972                                       DRM_MODE_FLAG_NHSYNC);
9973                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9974                                       DRM_MODE_FLAG_PVSYNC);
9975                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9976                                       DRM_MODE_FLAG_NVSYNC);
9977         }
9978
9979         PIPE_CONF_CHECK_I(pipe_src_w);
9980         PIPE_CONF_CHECK_I(pipe_src_h);
9981
9982         /*
9983          * FIXME: BIOS likes to set up a cloned config with lvds+external
9984          * screen. Since we don't yet re-compute the pipe config when moving
9985          * just the lvds port away to another pipe the sw tracking won't match.
9986          *
9987          * Proper atomic modesets with recomputed global state will fix this.
9988          * Until then just don't check gmch state for inherited modes.
9989          */
9990         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
9991                 PIPE_CONF_CHECK_I(gmch_pfit.control);
9992                 /* pfit ratios are autocomputed by the hw on gen4+ */
9993                 if (INTEL_INFO(dev)->gen < 4)
9994                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9995                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9996         }
9997
9998         PIPE_CONF_CHECK_I(pch_pfit.enabled);
9999         if (current_config->pch_pfit.enabled) {
10000                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10001                 PIPE_CONF_CHECK_I(pch_pfit.size);
10002         }
10003
10004         /* BDW+ don't expose a synchronous way to read the state */
10005         if (IS_HASWELL(dev))
10006                 PIPE_CONF_CHECK_I(ips_enabled);
10007
10008         PIPE_CONF_CHECK_I(double_wide);
10009
10010         PIPE_CONF_CHECK_I(shared_dpll);
10011         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10012         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10013         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10014         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10015
10016         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10017                 PIPE_CONF_CHECK_I(pipe_bpp);
10018
10019         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10020         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10021
10022 #undef PIPE_CONF_CHECK_X
10023 #undef PIPE_CONF_CHECK_I
10024 #undef PIPE_CONF_CHECK_FLAGS
10025 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10026 #undef PIPE_CONF_QUIRK
10027
10028         return true;
10029 }
10030
10031 static void
10032 check_connector_state(struct drm_device *dev)
10033 {
10034         struct intel_connector *connector;
10035
10036         list_for_each_entry(connector, &dev->mode_config.connector_list,
10037                             base.head) {
10038                 /* This also checks the encoder/connector hw state with the
10039                  * ->get_hw_state callbacks. */
10040                 intel_connector_check_state(connector);
10041
10042                 WARN(&connector->new_encoder->base != connector->base.encoder,
10043                      "connector's staged encoder doesn't match current encoder\n");
10044         }
10045 }
10046
10047 static void
10048 check_encoder_state(struct drm_device *dev)
10049 {
10050         struct intel_encoder *encoder;
10051         struct intel_connector *connector;
10052
10053         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10054                             base.head) {
10055                 bool enabled = false;
10056                 bool active = false;
10057                 enum pipe pipe, tracked_pipe;
10058
10059                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10060                               encoder->base.base.id,
10061                               encoder->base.name);
10062
10063                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10064                      "encoder's stage crtc doesn't match current crtc\n");
10065                 WARN(encoder->connectors_active && !encoder->base.crtc,
10066                      "encoder's active_connectors set, but no crtc\n");
10067
10068                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10069                                     base.head) {
10070                         if (connector->base.encoder != &encoder->base)
10071                                 continue;
10072                         enabled = true;
10073                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10074                                 active = true;
10075                 }
10076                 WARN(!!encoder->base.crtc != enabled,
10077                      "encoder's enabled state mismatch "
10078                      "(expected %i, found %i)\n",
10079                      !!encoder->base.crtc, enabled);
10080                 WARN(active && !encoder->base.crtc,
10081                      "active encoder with no crtc\n");
10082
10083                 WARN(encoder->connectors_active != active,
10084                      "encoder's computed active state doesn't match tracked active state "
10085                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10086
10087                 active = encoder->get_hw_state(encoder, &pipe);
10088                 WARN(active != encoder->connectors_active,
10089                      "encoder's hw state doesn't match sw tracking "
10090                      "(expected %i, found %i)\n",
10091                      encoder->connectors_active, active);
10092
10093                 if (!encoder->base.crtc)
10094                         continue;
10095
10096                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10097                 WARN(active && pipe != tracked_pipe,
10098                      "active encoder's pipe doesn't match"
10099                      "(expected %i, found %i)\n",
10100                      tracked_pipe, pipe);
10101
10102         }
10103 }
10104
10105 static void
10106 check_crtc_state(struct drm_device *dev)
10107 {
10108         struct drm_i915_private *dev_priv = dev->dev_private;
10109         struct intel_crtc *crtc;
10110         struct intel_encoder *encoder;
10111         struct intel_crtc_config pipe_config;
10112
10113         for_each_intel_crtc(dev, crtc) {
10114                 bool enabled = false;
10115                 bool active = false;
10116
10117                 memset(&pipe_config, 0, sizeof(pipe_config));
10118
10119                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10120                               crtc->base.base.id);
10121
10122                 WARN(crtc->active && !crtc->base.enabled,
10123                      "active crtc, but not enabled in sw tracking\n");
10124
10125                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10126                                     base.head) {
10127                         if (encoder->base.crtc != &crtc->base)
10128                                 continue;
10129                         enabled = true;
10130                         if (encoder->connectors_active)
10131                                 active = true;
10132                 }
10133
10134                 WARN(active != crtc->active,
10135                      "crtc's computed active state doesn't match tracked active state "
10136                      "(expected %i, found %i)\n", active, crtc->active);
10137                 WARN(enabled != crtc->base.enabled,
10138                      "crtc's computed enabled state doesn't match tracked enabled state "
10139                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10140
10141                 active = dev_priv->display.get_pipe_config(crtc,
10142                                                            &pipe_config);
10143
10144                 /* hw state is inconsistent with the pipe A quirk */
10145                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10146                         active = crtc->active;
10147
10148                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10149                                     base.head) {
10150                         enum pipe pipe;
10151                         if (encoder->base.crtc != &crtc->base)
10152                                 continue;
10153                         if (encoder->get_hw_state(encoder, &pipe))
10154                                 encoder->get_config(encoder, &pipe_config);
10155                 }
10156
10157                 WARN(crtc->active != active,
10158                      "crtc active state doesn't match with hw state "
10159                      "(expected %i, found %i)\n", crtc->active, active);
10160
10161                 if (active &&
10162                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10163                         WARN(1, "pipe state doesn't match!\n");
10164                         intel_dump_pipe_config(crtc, &pipe_config,
10165                                                "[hw state]");
10166                         intel_dump_pipe_config(crtc, &crtc->config,
10167                                                "[sw state]");
10168                 }
10169         }
10170 }
10171
10172 static void
10173 check_shared_dpll_state(struct drm_device *dev)
10174 {
10175         struct drm_i915_private *dev_priv = dev->dev_private;
10176         struct intel_crtc *crtc;
10177         struct intel_dpll_hw_state dpll_hw_state;
10178         int i;
10179
10180         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10181                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10182                 int enabled_crtcs = 0, active_crtcs = 0;
10183                 bool active;
10184
10185                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10186
10187                 DRM_DEBUG_KMS("%s\n", pll->name);
10188
10189                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10190
10191                 WARN(pll->active > pll->refcount,
10192                      "more active pll users than references: %i vs %i\n",
10193                      pll->active, pll->refcount);
10194                 WARN(pll->active && !pll->on,
10195                      "pll in active use but not on in sw tracking\n");
10196                 WARN(pll->on && !pll->active,
10197                      "pll in on but not on in use in sw tracking\n");
10198                 WARN(pll->on != active,
10199                      "pll on state mismatch (expected %i, found %i)\n",
10200                      pll->on, active);
10201
10202                 for_each_intel_crtc(dev, crtc) {
10203                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10204                                 enabled_crtcs++;
10205                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10206                                 active_crtcs++;
10207                 }
10208                 WARN(pll->active != active_crtcs,
10209                      "pll active crtcs mismatch (expected %i, found %i)\n",
10210                      pll->active, active_crtcs);
10211                 WARN(pll->refcount != enabled_crtcs,
10212                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10213                      pll->refcount, enabled_crtcs);
10214
10215                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10216                                        sizeof(dpll_hw_state)),
10217                      "pll hw state mismatch\n");
10218         }
10219 }
10220
10221 void
10222 intel_modeset_check_state(struct drm_device *dev)
10223 {
10224         check_connector_state(dev);
10225         check_encoder_state(dev);
10226         check_crtc_state(dev);
10227         check_shared_dpll_state(dev);
10228 }
10229
10230 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10231                                      int dotclock)
10232 {
10233         /*
10234          * FDI already provided one idea for the dotclock.
10235          * Yell if the encoder disagrees.
10236          */
10237         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10238              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10239              pipe_config->adjusted_mode.crtc_clock, dotclock);
10240 }
10241
10242 static void update_scanline_offset(struct intel_crtc *crtc)
10243 {
10244         struct drm_device *dev = crtc->base.dev;
10245
10246         /*
10247          * The scanline counter increments at the leading edge of hsync.
10248          *
10249          * On most platforms it starts counting from vtotal-1 on the
10250          * first active line. That means the scanline counter value is
10251          * always one less than what we would expect. Ie. just after
10252          * start of vblank, which also occurs at start of hsync (on the
10253          * last active line), the scanline counter will read vblank_start-1.
10254          *
10255          * On gen2 the scanline counter starts counting from 1 instead
10256          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10257          * to keep the value positive), instead of adding one.
10258          *
10259          * On HSW+ the behaviour of the scanline counter depends on the output
10260          * type. For DP ports it behaves like most other platforms, but on HDMI
10261          * there's an extra 1 line difference. So we need to add two instead of
10262          * one to the value.
10263          */
10264         if (IS_GEN2(dev)) {
10265                 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10266                 int vtotal;
10267
10268                 vtotal = mode->crtc_vtotal;
10269                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10270                         vtotal /= 2;
10271
10272                 crtc->scanline_offset = vtotal - 1;
10273         } else if (HAS_DDI(dev) &&
10274                    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10275                 crtc->scanline_offset = 2;
10276         } else
10277                 crtc->scanline_offset = 1;
10278 }
10279
10280 static int __intel_set_mode(struct drm_crtc *crtc,
10281                             struct drm_display_mode *mode,
10282                             int x, int y, struct drm_framebuffer *fb)
10283 {
10284         struct drm_device *dev = crtc->dev;
10285         struct drm_i915_private *dev_priv = dev->dev_private;
10286         struct drm_display_mode *saved_mode;
10287         struct intel_crtc_config *pipe_config = NULL;
10288         struct intel_crtc *intel_crtc;
10289         unsigned disable_pipes, prepare_pipes, modeset_pipes;
10290         int ret = 0;
10291
10292         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10293         if (!saved_mode)
10294                 return -ENOMEM;
10295
10296         intel_modeset_affected_pipes(crtc, &modeset_pipes,
10297                                      &prepare_pipes, &disable_pipes);
10298
10299         *saved_mode = crtc->mode;
10300
10301         /* Hack: Because we don't (yet) support global modeset on multiple
10302          * crtcs, we don't keep track of the new mode for more than one crtc.
10303          * Hence simply check whether any bit is set in modeset_pipes in all the
10304          * pieces of code that are not yet converted to deal with mutliple crtcs
10305          * changing their mode at the same time. */
10306         if (modeset_pipes) {
10307                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10308                 if (IS_ERR(pipe_config)) {
10309                         ret = PTR_ERR(pipe_config);
10310                         pipe_config = NULL;
10311
10312                         goto out;
10313                 }
10314                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10315                                        "[modeset]");
10316                 to_intel_crtc(crtc)->new_config = pipe_config;
10317         }
10318
10319         /*
10320          * See if the config requires any additional preparation, e.g.
10321          * to adjust global state with pipes off.  We need to do this
10322          * here so we can get the modeset_pipe updated config for the new
10323          * mode set on this crtc.  For other crtcs we need to use the
10324          * adjusted_mode bits in the crtc directly.
10325          */
10326         if (IS_VALLEYVIEW(dev)) {
10327                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10328
10329                 /* may have added more to prepare_pipes than we should */
10330                 prepare_pipes &= ~disable_pipes;
10331         }
10332
10333         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10334                 intel_crtc_disable(&intel_crtc->base);
10335
10336         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10337                 if (intel_crtc->base.enabled)
10338                         dev_priv->display.crtc_disable(&intel_crtc->base);
10339         }
10340
10341         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10342          * to set it here already despite that we pass it down the callchain.
10343          */
10344         if (modeset_pipes) {
10345                 crtc->mode = *mode;
10346                 /* mode_set/enable/disable functions rely on a correct pipe
10347                  * config. */
10348                 to_intel_crtc(crtc)->config = *pipe_config;
10349                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10350
10351                 /*
10352                  * Calculate and store various constants which
10353                  * are later needed by vblank and swap-completion
10354                  * timestamping. They are derived from true hwmode.
10355                  */
10356                 drm_calc_timestamping_constants(crtc,
10357                                                 &pipe_config->adjusted_mode);
10358         }
10359
10360         /* Only after disabling all output pipelines that will be changed can we
10361          * update the the output configuration. */
10362         intel_modeset_update_state(dev, prepare_pipes);
10363
10364         if (dev_priv->display.modeset_global_resources)
10365                 dev_priv->display.modeset_global_resources(dev);
10366
10367         /* Set up the DPLL and any encoders state that needs to adjust or depend
10368          * on the DPLL.
10369          */
10370         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10371                 struct drm_framebuffer *old_fb;
10372
10373                 mutex_lock(&dev->struct_mutex);
10374                 ret = intel_pin_and_fence_fb_obj(dev,
10375                                                  to_intel_framebuffer(fb)->obj,
10376                                                  NULL);
10377                 if (ret != 0) {
10378                         DRM_ERROR("pin & fence failed\n");
10379                         mutex_unlock(&dev->struct_mutex);
10380                         goto done;
10381                 }
10382                 old_fb = crtc->primary->fb;
10383                 if (old_fb)
10384                         intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
10385                 mutex_unlock(&dev->struct_mutex);
10386
10387                 crtc->primary->fb = fb;
10388                 crtc->x = x;
10389                 crtc->y = y;
10390
10391                 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10392                                                       x, y, fb);
10393                 if (ret)
10394                         goto done;
10395         }
10396
10397         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10398         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10399                 update_scanline_offset(intel_crtc);
10400
10401                 dev_priv->display.crtc_enable(&intel_crtc->base);
10402         }
10403
10404         /* FIXME: add subpixel order */
10405 done:
10406         if (ret && crtc->enabled)
10407                 crtc->mode = *saved_mode;
10408
10409 out:
10410         kfree(pipe_config);
10411         kfree(saved_mode);
10412         return ret;
10413 }
10414
10415 static int intel_set_mode(struct drm_crtc *crtc,
10416                           struct drm_display_mode *mode,
10417                           int x, int y, struct drm_framebuffer *fb)
10418 {
10419         int ret;
10420
10421         ret = __intel_set_mode(crtc, mode, x, y, fb);
10422
10423         if (ret == 0)
10424                 intel_modeset_check_state(crtc->dev);
10425
10426         return ret;
10427 }
10428
10429 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10430 {
10431         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10432 }
10433
10434 #undef for_each_intel_crtc_masked
10435
10436 static void intel_set_config_free(struct intel_set_config *config)
10437 {
10438         if (!config)
10439                 return;
10440
10441         kfree(config->save_connector_encoders);
10442         kfree(config->save_encoder_crtcs);
10443         kfree(config->save_crtc_enabled);
10444         kfree(config);
10445 }
10446
10447 static int intel_set_config_save_state(struct drm_device *dev,
10448                                        struct intel_set_config *config)
10449 {
10450         struct drm_crtc *crtc;
10451         struct drm_encoder *encoder;
10452         struct drm_connector *connector;
10453         int count;
10454
10455         config->save_crtc_enabled =
10456                 kcalloc(dev->mode_config.num_crtc,
10457                         sizeof(bool), GFP_KERNEL);
10458         if (!config->save_crtc_enabled)
10459                 return -ENOMEM;
10460
10461         config->save_encoder_crtcs =
10462                 kcalloc(dev->mode_config.num_encoder,
10463                         sizeof(struct drm_crtc *), GFP_KERNEL);
10464         if (!config->save_encoder_crtcs)
10465                 return -ENOMEM;
10466
10467         config->save_connector_encoders =
10468                 kcalloc(dev->mode_config.num_connector,
10469                         sizeof(struct drm_encoder *), GFP_KERNEL);
10470         if (!config->save_connector_encoders)
10471                 return -ENOMEM;
10472
10473         /* Copy data. Note that driver private data is not affected.
10474          * Should anything bad happen only the expected state is
10475          * restored, not the drivers personal bookkeeping.
10476          */
10477         count = 0;
10478         for_each_crtc(dev, crtc) {
10479                 config->save_crtc_enabled[count++] = crtc->enabled;
10480         }
10481
10482         count = 0;
10483         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10484                 config->save_encoder_crtcs[count++] = encoder->crtc;
10485         }
10486
10487         count = 0;
10488         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10489                 config->save_connector_encoders[count++] = connector->encoder;
10490         }
10491
10492         return 0;
10493 }
10494
10495 static void intel_set_config_restore_state(struct drm_device *dev,
10496                                            struct intel_set_config *config)
10497 {
10498         struct intel_crtc *crtc;
10499         struct intel_encoder *encoder;
10500         struct intel_connector *connector;
10501         int count;
10502
10503         count = 0;
10504         for_each_intel_crtc(dev, crtc) {
10505                 crtc->new_enabled = config->save_crtc_enabled[count++];
10506
10507                 if (crtc->new_enabled)
10508                         crtc->new_config = &crtc->config;
10509                 else
10510                         crtc->new_config = NULL;
10511         }
10512
10513         count = 0;
10514         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10515                 encoder->new_crtc =
10516                         to_intel_crtc(config->save_encoder_crtcs[count++]);
10517         }
10518
10519         count = 0;
10520         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10521                 connector->new_encoder =
10522                         to_intel_encoder(config->save_connector_encoders[count++]);
10523         }
10524 }
10525
10526 static bool
10527 is_crtc_connector_off(struct drm_mode_set *set)
10528 {
10529         int i;
10530
10531         if (set->num_connectors == 0)
10532                 return false;
10533
10534         if (WARN_ON(set->connectors == NULL))
10535                 return false;
10536
10537         for (i = 0; i < set->num_connectors; i++)
10538                 if (set->connectors[i]->encoder &&
10539                     set->connectors[i]->encoder->crtc == set->crtc &&
10540                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
10541                         return true;
10542
10543         return false;
10544 }
10545
10546 static void
10547 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10548                                       struct intel_set_config *config)
10549 {
10550
10551         /* We should be able to check here if the fb has the same properties
10552          * and then just flip_or_move it */
10553         if (is_crtc_connector_off(set)) {
10554                 config->mode_changed = true;
10555         } else if (set->crtc->primary->fb != set->fb) {
10556                 /* If we have no fb then treat it as a full mode set */
10557                 if (set->crtc->primary->fb == NULL) {
10558                         struct intel_crtc *intel_crtc =
10559                                 to_intel_crtc(set->crtc);
10560
10561                         if (intel_crtc->active && i915.fastboot) {
10562                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10563                                 config->fb_changed = true;
10564                         } else {
10565                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10566                                 config->mode_changed = true;
10567                         }
10568                 } else if (set->fb == NULL) {
10569                         config->mode_changed = true;
10570                 } else if (set->fb->pixel_format !=
10571                            set->crtc->primary->fb->pixel_format) {
10572                         config->mode_changed = true;
10573                 } else {
10574                         config->fb_changed = true;
10575                 }
10576         }
10577
10578         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
10579                 config->fb_changed = true;
10580
10581         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10582                 DRM_DEBUG_KMS("modes are different, full mode set\n");
10583                 drm_mode_debug_printmodeline(&set->crtc->mode);
10584                 drm_mode_debug_printmodeline(set->mode);
10585                 config->mode_changed = true;
10586         }
10587
10588         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10589                         set->crtc->base.id, config->mode_changed, config->fb_changed);
10590 }
10591
10592 static int
10593 intel_modeset_stage_output_state(struct drm_device *dev,
10594                                  struct drm_mode_set *set,
10595                                  struct intel_set_config *config)
10596 {
10597         struct intel_connector *connector;
10598         struct intel_encoder *encoder;
10599         struct intel_crtc *crtc;
10600         int ro;
10601
10602         /* The upper layers ensure that we either disable a crtc or have a list
10603          * of connectors. For paranoia, double-check this. */
10604         WARN_ON(!set->fb && (set->num_connectors != 0));
10605         WARN_ON(set->fb && (set->num_connectors == 0));
10606
10607         list_for_each_entry(connector, &dev->mode_config.connector_list,
10608                             base.head) {
10609                 /* Otherwise traverse passed in connector list and get encoders
10610                  * for them. */
10611                 for (ro = 0; ro < set->num_connectors; ro++) {
10612                         if (set->connectors[ro] == &connector->base) {
10613                                 connector->new_encoder = connector->encoder;
10614                                 break;
10615                         }
10616                 }
10617
10618                 /* If we disable the crtc, disable all its connectors. Also, if
10619                  * the connector is on the changing crtc but not on the new
10620                  * connector list, disable it. */
10621                 if ((!set->fb || ro == set->num_connectors) &&
10622                     connector->base.encoder &&
10623                     connector->base.encoder->crtc == set->crtc) {
10624                         connector->new_encoder = NULL;
10625
10626                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
10627                                 connector->base.base.id,
10628                                 connector->base.name);
10629                 }
10630
10631
10632                 if (&connector->new_encoder->base != connector->base.encoder) {
10633                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
10634                         config->mode_changed = true;
10635                 }
10636         }
10637         /* connector->new_encoder is now updated for all connectors. */
10638
10639         /* Update crtc of enabled connectors. */
10640         list_for_each_entry(connector, &dev->mode_config.connector_list,
10641                             base.head) {
10642                 struct drm_crtc *new_crtc;
10643
10644                 if (!connector->new_encoder)
10645                         continue;
10646
10647                 new_crtc = connector->new_encoder->base.crtc;
10648
10649                 for (ro = 0; ro < set->num_connectors; ro++) {
10650                         if (set->connectors[ro] == &connector->base)
10651                                 new_crtc = set->crtc;
10652                 }
10653
10654                 /* Make sure the new CRTC will work with the encoder */
10655                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
10656                                          new_crtc)) {
10657                         return -EINVAL;
10658                 }
10659                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
10660
10661                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
10662                         connector->base.base.id,
10663                         connector->base.name,
10664                         new_crtc->base.id);
10665         }
10666
10667         /* Check for any encoders that needs to be disabled. */
10668         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10669                             base.head) {
10670                 int num_connectors = 0;
10671                 list_for_each_entry(connector,
10672                                     &dev->mode_config.connector_list,
10673                                     base.head) {
10674                         if (connector->new_encoder == encoder) {
10675                                 WARN_ON(!connector->new_encoder->new_crtc);
10676                                 num_connectors++;
10677                         }
10678                 }
10679
10680                 if (num_connectors == 0)
10681                         encoder->new_crtc = NULL;
10682                 else if (num_connectors > 1)
10683                         return -EINVAL;
10684
10685                 /* Only now check for crtc changes so we don't miss encoders
10686                  * that will be disabled. */
10687                 if (&encoder->new_crtc->base != encoder->base.crtc) {
10688                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
10689                         config->mode_changed = true;
10690                 }
10691         }
10692         /* Now we've also updated encoder->new_crtc for all encoders. */
10693
10694         for_each_intel_crtc(dev, crtc) {
10695                 crtc->new_enabled = false;
10696
10697                 list_for_each_entry(encoder,
10698                                     &dev->mode_config.encoder_list,
10699                                     base.head) {
10700                         if (encoder->new_crtc == crtc) {
10701                                 crtc->new_enabled = true;
10702                                 break;
10703                         }
10704                 }
10705
10706                 if (crtc->new_enabled != crtc->base.enabled) {
10707                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
10708                                       crtc->new_enabled ? "en" : "dis");
10709                         config->mode_changed = true;
10710                 }
10711
10712                 if (crtc->new_enabled)
10713                         crtc->new_config = &crtc->config;
10714                 else
10715                         crtc->new_config = NULL;
10716         }
10717
10718         return 0;
10719 }
10720
10721 static void disable_crtc_nofb(struct intel_crtc *crtc)
10722 {
10723         struct drm_device *dev = crtc->base.dev;
10724         struct intel_encoder *encoder;
10725         struct intel_connector *connector;
10726
10727         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
10728                       pipe_name(crtc->pipe));
10729
10730         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10731                 if (connector->new_encoder &&
10732                     connector->new_encoder->new_crtc == crtc)
10733                         connector->new_encoder = NULL;
10734         }
10735
10736         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10737                 if (encoder->new_crtc == crtc)
10738                         encoder->new_crtc = NULL;
10739         }
10740
10741         crtc->new_enabled = false;
10742         crtc->new_config = NULL;
10743 }
10744
10745 static int intel_crtc_set_config(struct drm_mode_set *set)
10746 {
10747         struct drm_device *dev;
10748         struct drm_mode_set save_set;
10749         struct intel_set_config *config;
10750         int ret;
10751
10752         BUG_ON(!set);
10753         BUG_ON(!set->crtc);
10754         BUG_ON(!set->crtc->helper_private);
10755
10756         /* Enforce sane interface api - has been abused by the fb helper. */
10757         BUG_ON(!set->mode && set->fb);
10758         BUG_ON(set->fb && set->num_connectors == 0);
10759
10760         if (set->fb) {
10761                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
10762                                 set->crtc->base.id, set->fb->base.id,
10763                                 (int)set->num_connectors, set->x, set->y);
10764         } else {
10765                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
10766         }
10767
10768         dev = set->crtc->dev;
10769
10770         ret = -ENOMEM;
10771         config = kzalloc(sizeof(*config), GFP_KERNEL);
10772         if (!config)
10773                 goto out_config;
10774
10775         ret = intel_set_config_save_state(dev, config);
10776         if (ret)
10777                 goto out_config;
10778
10779         save_set.crtc = set->crtc;
10780         save_set.mode = &set->crtc->mode;
10781         save_set.x = set->crtc->x;
10782         save_set.y = set->crtc->y;
10783         save_set.fb = set->crtc->primary->fb;
10784
10785         /* Compute whether we need a full modeset, only an fb base update or no
10786          * change at all. In the future we might also check whether only the
10787          * mode changed, e.g. for LVDS where we only change the panel fitter in
10788          * such cases. */
10789         intel_set_config_compute_mode_changes(set, config);
10790
10791         ret = intel_modeset_stage_output_state(dev, set, config);
10792         if (ret)
10793                 goto fail;
10794
10795         if (config->mode_changed) {
10796                 ret = intel_set_mode(set->crtc, set->mode,
10797                                      set->x, set->y, set->fb);
10798         } else if (config->fb_changed) {
10799                 intel_crtc_wait_for_pending_flips(set->crtc);
10800
10801                 ret = intel_pipe_set_base(set->crtc,
10802                                           set->x, set->y, set->fb);
10803                 /*
10804                  * In the fastboot case this may be our only check of the
10805                  * state after boot.  It would be better to only do it on
10806                  * the first update, but we don't have a nice way of doing that
10807                  * (and really, set_config isn't used much for high freq page
10808                  * flipping, so increasing its cost here shouldn't be a big
10809                  * deal).
10810                  */
10811                 if (i915.fastboot && ret == 0)
10812                         intel_modeset_check_state(set->crtc->dev);
10813         }
10814
10815         if (ret) {
10816                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
10817                               set->crtc->base.id, ret);
10818 fail:
10819                 intel_set_config_restore_state(dev, config);
10820
10821                 /*
10822                  * HACK: if the pipe was on, but we didn't have a framebuffer,
10823                  * force the pipe off to avoid oopsing in the modeset code
10824                  * due to fb==NULL. This should only happen during boot since
10825                  * we don't yet reconstruct the FB from the hardware state.
10826                  */
10827                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
10828                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
10829
10830                 /* Try to restore the config */
10831                 if (config->mode_changed &&
10832                     intel_set_mode(save_set.crtc, save_set.mode,
10833                                    save_set.x, save_set.y, save_set.fb))
10834                         DRM_ERROR("failed to restore config after modeset failure\n");
10835         }
10836
10837 out_config:
10838         intel_set_config_free(config);
10839         return ret;
10840 }
10841
10842 static const struct drm_crtc_funcs intel_crtc_funcs = {
10843         .cursor_set = intel_crtc_cursor_set,
10844         .cursor_move = intel_crtc_cursor_move,
10845         .gamma_set = intel_crtc_gamma_set,
10846         .set_config = intel_crtc_set_config,
10847         .destroy = intel_crtc_destroy,
10848         .page_flip = intel_crtc_page_flip,
10849 };
10850
10851 static void intel_cpu_pll_init(struct drm_device *dev)
10852 {
10853         if (HAS_DDI(dev))
10854                 intel_ddi_pll_init(dev);
10855 }
10856
10857 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
10858                                       struct intel_shared_dpll *pll,
10859                                       struct intel_dpll_hw_state *hw_state)
10860 {
10861         uint32_t val;
10862
10863         val = I915_READ(PCH_DPLL(pll->id));
10864         hw_state->dpll = val;
10865         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
10866         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10867
10868         return val & DPLL_VCO_ENABLE;
10869 }
10870
10871 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10872                                   struct intel_shared_dpll *pll)
10873 {
10874         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10875         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10876 }
10877
10878 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10879                                 struct intel_shared_dpll *pll)
10880 {
10881         /* PCH refclock must be enabled first */
10882         ibx_assert_pch_refclk_enabled(dev_priv);
10883
10884         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10885
10886         /* Wait for the clocks to stabilize. */
10887         POSTING_READ(PCH_DPLL(pll->id));
10888         udelay(150);
10889
10890         /* The pixel multiplier can only be updated once the
10891          * DPLL is enabled and the clocks are stable.
10892          *
10893          * So write it again.
10894          */
10895         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10896         POSTING_READ(PCH_DPLL(pll->id));
10897         udelay(200);
10898 }
10899
10900 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10901                                  struct intel_shared_dpll *pll)
10902 {
10903         struct drm_device *dev = dev_priv->dev;
10904         struct intel_crtc *crtc;
10905
10906         /* Make sure no transcoder isn't still depending on us. */
10907         for_each_intel_crtc(dev, crtc) {
10908                 if (intel_crtc_to_shared_dpll(crtc) == pll)
10909                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10910         }
10911
10912         I915_WRITE(PCH_DPLL(pll->id), 0);
10913         POSTING_READ(PCH_DPLL(pll->id));
10914         udelay(200);
10915 }
10916
10917 static char *ibx_pch_dpll_names[] = {
10918         "PCH DPLL A",
10919         "PCH DPLL B",
10920 };
10921
10922 static void ibx_pch_dpll_init(struct drm_device *dev)
10923 {
10924         struct drm_i915_private *dev_priv = dev->dev_private;
10925         int i;
10926
10927         dev_priv->num_shared_dpll = 2;
10928
10929         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10930                 dev_priv->shared_dplls[i].id = i;
10931                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10932                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10933                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10934                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10935                 dev_priv->shared_dplls[i].get_hw_state =
10936                         ibx_pch_dpll_get_hw_state;
10937         }
10938 }
10939
10940 static void intel_shared_dpll_init(struct drm_device *dev)
10941 {
10942         struct drm_i915_private *dev_priv = dev->dev_private;
10943
10944         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10945                 ibx_pch_dpll_init(dev);
10946         else
10947                 dev_priv->num_shared_dpll = 0;
10948
10949         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10950 }
10951
10952 static void intel_crtc_init(struct drm_device *dev, int pipe)
10953 {
10954         struct drm_i915_private *dev_priv = dev->dev_private;
10955         struct intel_crtc *intel_crtc;
10956         int i;
10957
10958         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10959         if (intel_crtc == NULL)
10960                 return;
10961
10962         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10963
10964         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10965         for (i = 0; i < 256; i++) {
10966                 intel_crtc->lut_r[i] = i;
10967                 intel_crtc->lut_g[i] = i;
10968                 intel_crtc->lut_b[i] = i;
10969         }
10970
10971         /*
10972          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
10973          * is hooked to plane B. Hence we want plane A feeding pipe B.
10974          */
10975         intel_crtc->pipe = pipe;
10976         intel_crtc->plane = pipe;
10977         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
10978                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10979                 intel_crtc->plane = !pipe;
10980         }
10981
10982         intel_crtc->cursor_base = ~0;
10983         intel_crtc->cursor_cntl = ~0;
10984
10985         init_waitqueue_head(&intel_crtc->vbl_wait);
10986
10987         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10988                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10989         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10990         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10991
10992         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10993
10994         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
10995 }
10996
10997 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10998 {
10999         struct drm_encoder *encoder = connector->base.encoder;
11000         struct drm_device *dev = connector->base.dev;
11001
11002         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
11003
11004         if (!encoder)
11005                 return INVALID_PIPE;
11006
11007         return to_intel_crtc(encoder->crtc)->pipe;
11008 }
11009
11010 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
11011                                 struct drm_file *file)
11012 {
11013         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
11014         struct drm_mode_object *drmmode_obj;
11015         struct intel_crtc *crtc;
11016
11017         if (!drm_core_check_feature(dev, DRIVER_MODESET))
11018                 return -ENODEV;
11019
11020         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
11021                         DRM_MODE_OBJECT_CRTC);
11022
11023         if (!drmmode_obj) {
11024                 DRM_ERROR("no such CRTC id\n");
11025                 return -ENOENT;
11026         }
11027
11028         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
11029         pipe_from_crtc_id->pipe = crtc->pipe;
11030
11031         return 0;
11032 }
11033
11034 static int intel_encoder_clones(struct intel_encoder *encoder)
11035 {
11036         struct drm_device *dev = encoder->base.dev;
11037         struct intel_encoder *source_encoder;
11038         int index_mask = 0;
11039         int entry = 0;
11040
11041         list_for_each_entry(source_encoder,
11042                             &dev->mode_config.encoder_list, base.head) {
11043                 if (encoders_cloneable(encoder, source_encoder))
11044                         index_mask |= (1 << entry);
11045
11046                 entry++;
11047         }
11048
11049         return index_mask;
11050 }
11051
11052 static bool has_edp_a(struct drm_device *dev)
11053 {
11054         struct drm_i915_private *dev_priv = dev->dev_private;
11055
11056         if (!IS_MOBILE(dev))
11057                 return false;
11058
11059         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11060                 return false;
11061
11062         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
11063                 return false;
11064
11065         return true;
11066 }
11067
11068 const char *intel_output_name(int output)
11069 {
11070         static const char *names[] = {
11071                 [INTEL_OUTPUT_UNUSED] = "Unused",
11072                 [INTEL_OUTPUT_ANALOG] = "Analog",
11073                 [INTEL_OUTPUT_DVO] = "DVO",
11074                 [INTEL_OUTPUT_SDVO] = "SDVO",
11075                 [INTEL_OUTPUT_LVDS] = "LVDS",
11076                 [INTEL_OUTPUT_TVOUT] = "TV",
11077                 [INTEL_OUTPUT_HDMI] = "HDMI",
11078                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11079                 [INTEL_OUTPUT_EDP] = "eDP",
11080                 [INTEL_OUTPUT_DSI] = "DSI",
11081                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11082         };
11083
11084         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11085                 return "Invalid";
11086
11087         return names[output];
11088 }
11089
11090 static void intel_setup_outputs(struct drm_device *dev)
11091 {
11092         struct drm_i915_private *dev_priv = dev->dev_private;
11093         struct intel_encoder *encoder;
11094         bool dpd_is_edp = false;
11095
11096         intel_lvds_init(dev);
11097
11098         if (!IS_ULT(dev) && !IS_CHERRYVIEW(dev) && dev_priv->vbt.int_crt_support)
11099                 intel_crt_init(dev);
11100
11101         if (HAS_DDI(dev)) {
11102                 int found;
11103
11104                 /* Haswell uses DDI functions to detect digital outputs */
11105                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11106                 /* DDI A only supports eDP */
11107                 if (found)
11108                         intel_ddi_init(dev, PORT_A);
11109
11110                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11111                  * register */
11112                 found = I915_READ(SFUSE_STRAP);
11113
11114                 if (found & SFUSE_STRAP_DDIB_DETECTED)
11115                         intel_ddi_init(dev, PORT_B);
11116                 if (found & SFUSE_STRAP_DDIC_DETECTED)
11117                         intel_ddi_init(dev, PORT_C);
11118                 if (found & SFUSE_STRAP_DDID_DETECTED)
11119                         intel_ddi_init(dev, PORT_D);
11120         } else if (HAS_PCH_SPLIT(dev)) {
11121                 int found;
11122                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
11123
11124                 if (has_edp_a(dev))
11125                         intel_dp_init(dev, DP_A, PORT_A);
11126
11127                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
11128                         /* PCH SDVOB multiplex with HDMIB */
11129                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
11130                         if (!found)
11131                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
11132                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
11133                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
11134                 }
11135
11136                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
11137                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
11138
11139                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
11140                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
11141
11142                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
11143                         intel_dp_init(dev, PCH_DP_C, PORT_C);
11144
11145                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
11146                         intel_dp_init(dev, PCH_DP_D, PORT_D);
11147         } else if (IS_VALLEYVIEW(dev)) {
11148                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11149                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11150                                         PORT_B);
11151                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11152                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11153                 }
11154
11155                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11156                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11157                                         PORT_C);
11158                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
11159                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
11160                 }
11161
11162                 if (IS_CHERRYVIEW(dev)) {
11163                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
11164                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
11165                                                 PORT_D);
11166                                 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
11167                                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
11168                         }
11169                 }
11170
11171                 intel_dsi_init(dev);
11172         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
11173                 bool found = false;
11174
11175                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
11176                         DRM_DEBUG_KMS("probing SDVOB\n");
11177                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
11178                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11179                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
11180                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
11181                         }
11182
11183                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
11184                                 intel_dp_init(dev, DP_B, PORT_B);
11185                 }
11186
11187                 /* Before G4X SDVOC doesn't have its own detect register */
11188
11189                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
11190                         DRM_DEBUG_KMS("probing SDVOC\n");
11191                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
11192                 }
11193
11194                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
11195
11196                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11197                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
11198                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
11199                         }
11200                         if (SUPPORTS_INTEGRATED_DP(dev))
11201                                 intel_dp_init(dev, DP_C, PORT_C);
11202                 }
11203
11204                 if (SUPPORTS_INTEGRATED_DP(dev) &&
11205                     (I915_READ(DP_D) & DP_DETECTED))
11206                         intel_dp_init(dev, DP_D, PORT_D);
11207         } else if (IS_GEN2(dev))
11208                 intel_dvo_init(dev);
11209
11210         if (SUPPORTS_TV(dev))
11211                 intel_tv_init(dev);
11212
11213         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11214                 encoder->base.possible_crtcs = encoder->crtc_mask;
11215                 encoder->base.possible_clones =
11216                         intel_encoder_clones(encoder);
11217         }
11218
11219         intel_init_pch_refclk(dev);
11220
11221         drm_helper_move_panel_connectors_to_head(dev);
11222 }
11223
11224 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
11225 {
11226         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11227
11228         drm_framebuffer_cleanup(fb);
11229         WARN_ON(!intel_fb->obj->framebuffer_references--);
11230         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
11231         kfree(intel_fb);
11232 }
11233
11234 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
11235                                                 struct drm_file *file,
11236                                                 unsigned int *handle)
11237 {
11238         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11239         struct drm_i915_gem_object *obj = intel_fb->obj;
11240
11241         return drm_gem_handle_create(file, &obj->base, handle);
11242 }
11243
11244 static const struct drm_framebuffer_funcs intel_fb_funcs = {
11245         .destroy = intel_user_framebuffer_destroy,
11246         .create_handle = intel_user_framebuffer_create_handle,
11247 };
11248
11249 static int intel_framebuffer_init(struct drm_device *dev,
11250                                   struct intel_framebuffer *intel_fb,
11251                                   struct drm_mode_fb_cmd2 *mode_cmd,
11252                                   struct drm_i915_gem_object *obj)
11253 {
11254         int aligned_height;
11255         int pitch_limit;
11256         int ret;
11257
11258         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
11259
11260         if (obj->tiling_mode == I915_TILING_Y) {
11261                 DRM_DEBUG("hardware does not support tiling Y\n");
11262                 return -EINVAL;
11263         }
11264
11265         if (mode_cmd->pitches[0] & 63) {
11266                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
11267                           mode_cmd->pitches[0]);
11268                 return -EINVAL;
11269         }
11270
11271         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
11272                 pitch_limit = 32*1024;
11273         } else if (INTEL_INFO(dev)->gen >= 4) {
11274                 if (obj->tiling_mode)
11275                         pitch_limit = 16*1024;
11276                 else
11277                         pitch_limit = 32*1024;
11278         } else if (INTEL_INFO(dev)->gen >= 3) {
11279                 if (obj->tiling_mode)
11280                         pitch_limit = 8*1024;
11281                 else
11282                         pitch_limit = 16*1024;
11283         } else
11284                 /* XXX DSPC is limited to 4k tiled */
11285                 pitch_limit = 8*1024;
11286
11287         if (mode_cmd->pitches[0] > pitch_limit) {
11288                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
11289                           obj->tiling_mode ? "tiled" : "linear",
11290                           mode_cmd->pitches[0], pitch_limit);
11291                 return -EINVAL;
11292         }
11293
11294         if (obj->tiling_mode != I915_TILING_NONE &&
11295             mode_cmd->pitches[0] != obj->stride) {
11296                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
11297                           mode_cmd->pitches[0], obj->stride);
11298                 return -EINVAL;
11299         }
11300
11301         /* Reject formats not supported by any plane early. */
11302         switch (mode_cmd->pixel_format) {
11303         case DRM_FORMAT_C8:
11304         case DRM_FORMAT_RGB565:
11305         case DRM_FORMAT_XRGB8888:
11306         case DRM_FORMAT_ARGB8888:
11307                 break;
11308         case DRM_FORMAT_XRGB1555:
11309         case DRM_FORMAT_ARGB1555:
11310                 if (INTEL_INFO(dev)->gen > 3) {
11311                         DRM_DEBUG("unsupported pixel format: %s\n",
11312                                   drm_get_format_name(mode_cmd->pixel_format));
11313                         return -EINVAL;
11314                 }
11315                 break;
11316         case DRM_FORMAT_XBGR8888:
11317         case DRM_FORMAT_ABGR8888:
11318         case DRM_FORMAT_XRGB2101010:
11319         case DRM_FORMAT_ARGB2101010:
11320         case DRM_FORMAT_XBGR2101010:
11321         case DRM_FORMAT_ABGR2101010:
11322                 if (INTEL_INFO(dev)->gen < 4) {
11323                         DRM_DEBUG("unsupported pixel format: %s\n",
11324                                   drm_get_format_name(mode_cmd->pixel_format));
11325                         return -EINVAL;
11326                 }
11327                 break;
11328         case DRM_FORMAT_YUYV:
11329         case DRM_FORMAT_UYVY:
11330         case DRM_FORMAT_YVYU:
11331         case DRM_FORMAT_VYUY:
11332                 if (INTEL_INFO(dev)->gen < 5) {
11333                         DRM_DEBUG("unsupported pixel format: %s\n",
11334                                   drm_get_format_name(mode_cmd->pixel_format));
11335                         return -EINVAL;
11336                 }
11337                 break;
11338         default:
11339                 DRM_DEBUG("unsupported pixel format: %s\n",
11340                           drm_get_format_name(mode_cmd->pixel_format));
11341                 return -EINVAL;
11342         }
11343
11344         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
11345         if (mode_cmd->offsets[0] != 0)
11346                 return -EINVAL;
11347
11348         aligned_height = intel_align_height(dev, mode_cmd->height,
11349                                             obj->tiling_mode);
11350         /* FIXME drm helper for size checks (especially planar formats)? */
11351         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
11352                 return -EINVAL;
11353
11354         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
11355         intel_fb->obj = obj;
11356         intel_fb->obj->framebuffer_references++;
11357
11358         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
11359         if (ret) {
11360                 DRM_ERROR("framebuffer init failed %d\n", ret);
11361                 return ret;
11362         }
11363
11364         return 0;
11365 }
11366
11367 static struct drm_framebuffer *
11368 intel_user_framebuffer_create(struct drm_device *dev,
11369                               struct drm_file *filp,
11370                               struct drm_mode_fb_cmd2 *mode_cmd)
11371 {
11372         struct drm_i915_gem_object *obj;
11373
11374         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
11375                                                 mode_cmd->handles[0]));
11376         if (&obj->base == NULL)
11377                 return ERR_PTR(-ENOENT);
11378
11379         return intel_framebuffer_create(dev, mode_cmd, obj);
11380 }
11381
11382 #ifndef CONFIG_DRM_I915_FBDEV
11383 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
11384 {
11385 }
11386 #endif
11387
11388 static const struct drm_mode_config_funcs intel_mode_funcs = {
11389         .fb_create = intel_user_framebuffer_create,
11390         .output_poll_changed = intel_fbdev_output_poll_changed,
11391 };
11392
11393 /* Set up chip specific display functions */
11394 static void intel_init_display(struct drm_device *dev)
11395 {
11396         struct drm_i915_private *dev_priv = dev->dev_private;
11397
11398         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
11399                 dev_priv->display.find_dpll = g4x_find_best_dpll;
11400         else if (IS_CHERRYVIEW(dev))
11401                 dev_priv->display.find_dpll = chv_find_best_dpll;
11402         else if (IS_VALLEYVIEW(dev))
11403                 dev_priv->display.find_dpll = vlv_find_best_dpll;
11404         else if (IS_PINEVIEW(dev))
11405                 dev_priv->display.find_dpll = pnv_find_best_dpll;
11406         else
11407                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
11408
11409         if (HAS_DDI(dev)) {
11410                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
11411                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11412                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
11413                 dev_priv->display.crtc_enable = haswell_crtc_enable;
11414                 dev_priv->display.crtc_disable = haswell_crtc_disable;
11415                 dev_priv->display.off = haswell_crtc_off;
11416                 dev_priv->display.update_primary_plane =
11417                         ironlake_update_primary_plane;
11418         } else if (HAS_PCH_SPLIT(dev)) {
11419                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
11420                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11421                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
11422                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
11423                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
11424                 dev_priv->display.off = ironlake_crtc_off;
11425                 dev_priv->display.update_primary_plane =
11426                         ironlake_update_primary_plane;
11427         } else if (IS_VALLEYVIEW(dev)) {
11428                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11429                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11430                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11431                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
11432                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11433                 dev_priv->display.off = i9xx_crtc_off;
11434                 dev_priv->display.update_primary_plane =
11435                         i9xx_update_primary_plane;
11436         } else {
11437                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11438                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11439                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11440                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
11441                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11442                 dev_priv->display.off = i9xx_crtc_off;
11443                 dev_priv->display.update_primary_plane =
11444                         i9xx_update_primary_plane;
11445         }
11446
11447         /* Returns the core display clock speed */
11448         if (IS_VALLEYVIEW(dev))
11449                 dev_priv->display.get_display_clock_speed =
11450                         valleyview_get_display_clock_speed;
11451         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
11452                 dev_priv->display.get_display_clock_speed =
11453                         i945_get_display_clock_speed;
11454         else if (IS_I915G(dev))
11455                 dev_priv->display.get_display_clock_speed =
11456                         i915_get_display_clock_speed;
11457         else if (IS_I945GM(dev) || IS_845G(dev))
11458                 dev_priv->display.get_display_clock_speed =
11459                         i9xx_misc_get_display_clock_speed;
11460         else if (IS_PINEVIEW(dev))
11461                 dev_priv->display.get_display_clock_speed =
11462                         pnv_get_display_clock_speed;
11463         else if (IS_I915GM(dev))
11464                 dev_priv->display.get_display_clock_speed =
11465                         i915gm_get_display_clock_speed;
11466         else if (IS_I865G(dev))
11467                 dev_priv->display.get_display_clock_speed =
11468                         i865_get_display_clock_speed;
11469         else if (IS_I85X(dev))
11470                 dev_priv->display.get_display_clock_speed =
11471                         i855_get_display_clock_speed;
11472         else /* 852, 830 */
11473                 dev_priv->display.get_display_clock_speed =
11474                         i830_get_display_clock_speed;
11475
11476         if (HAS_PCH_SPLIT(dev)) {
11477                 if (IS_GEN5(dev)) {
11478                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
11479                         dev_priv->display.write_eld = ironlake_write_eld;
11480                 } else if (IS_GEN6(dev)) {
11481                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
11482                         dev_priv->display.write_eld = ironlake_write_eld;
11483                         dev_priv->display.modeset_global_resources =
11484                                 snb_modeset_global_resources;
11485                 } else if (IS_IVYBRIDGE(dev)) {
11486                         /* FIXME: detect B0+ stepping and use auto training */
11487                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
11488                         dev_priv->display.write_eld = ironlake_write_eld;
11489                         dev_priv->display.modeset_global_resources =
11490                                 ivb_modeset_global_resources;
11491                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
11492                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
11493                         dev_priv->display.write_eld = haswell_write_eld;
11494                         dev_priv->display.modeset_global_resources =
11495                                 haswell_modeset_global_resources;
11496                 }
11497         } else if (IS_G4X(dev)) {
11498                 dev_priv->display.write_eld = g4x_write_eld;
11499         } else if (IS_VALLEYVIEW(dev)) {
11500                 dev_priv->display.modeset_global_resources =
11501                         valleyview_modeset_global_resources;
11502                 dev_priv->display.write_eld = ironlake_write_eld;
11503         }
11504
11505         /* Default just returns -ENODEV to indicate unsupported */
11506         dev_priv->display.queue_flip = intel_default_queue_flip;
11507
11508         switch (INTEL_INFO(dev)->gen) {
11509         case 2:
11510                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
11511                 break;
11512
11513         case 3:
11514                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
11515                 break;
11516
11517         case 4:
11518         case 5:
11519                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
11520                 break;
11521
11522         case 6:
11523                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
11524                 break;
11525         case 7:
11526         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
11527                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
11528                 break;
11529         }
11530
11531         intel_panel_init_backlight_funcs(dev);
11532 }
11533
11534 /*
11535  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
11536  * resume, or other times.  This quirk makes sure that's the case for
11537  * affected systems.
11538  */
11539 static void quirk_pipea_force(struct drm_device *dev)
11540 {
11541         struct drm_i915_private *dev_priv = dev->dev_private;
11542
11543         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
11544         DRM_INFO("applying pipe a force quirk\n");
11545 }
11546
11547 /*
11548  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
11549  */
11550 static void quirk_ssc_force_disable(struct drm_device *dev)
11551 {
11552         struct drm_i915_private *dev_priv = dev->dev_private;
11553         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
11554         DRM_INFO("applying lvds SSC disable quirk\n");
11555 }
11556
11557 /*
11558  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
11559  * brightness value
11560  */
11561 static void quirk_invert_brightness(struct drm_device *dev)
11562 {
11563         struct drm_i915_private *dev_priv = dev->dev_private;
11564         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
11565         DRM_INFO("applying inverted panel brightness quirk\n");
11566 }
11567
11568 struct intel_quirk {
11569         int device;
11570         int subsystem_vendor;
11571         int subsystem_device;
11572         void (*hook)(struct drm_device *dev);
11573 };
11574
11575 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
11576 struct intel_dmi_quirk {
11577         void (*hook)(struct drm_device *dev);
11578         const struct dmi_system_id (*dmi_id_list)[];
11579 };
11580
11581 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
11582 {
11583         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
11584         return 1;
11585 }
11586
11587 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
11588         {
11589                 .dmi_id_list = &(const struct dmi_system_id[]) {
11590                         {
11591                                 .callback = intel_dmi_reverse_brightness,
11592                                 .ident = "NCR Corporation",
11593                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
11594                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
11595                                 },
11596                         },
11597                         { }  /* terminating entry */
11598                 },
11599                 .hook = quirk_invert_brightness,
11600         },
11601 };
11602
11603 static struct intel_quirk intel_quirks[] = {
11604         /* HP Mini needs pipe A force quirk (LP: #322104) */
11605         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
11606
11607         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
11608         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
11609
11610         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
11611         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
11612
11613         /* Lenovo U160 cannot use SSC on LVDS */
11614         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
11615
11616         /* Sony Vaio Y cannot use SSC on LVDS */
11617         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
11618
11619         /* Acer Aspire 5734Z must invert backlight brightness */
11620         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
11621
11622         /* Acer/eMachines G725 */
11623         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
11624
11625         /* Acer/eMachines e725 */
11626         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
11627
11628         /* Acer/Packard Bell NCL20 */
11629         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
11630
11631         /* Acer Aspire 4736Z */
11632         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
11633
11634         /* Acer Aspire 5336 */
11635         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
11636 };
11637
11638 static void intel_init_quirks(struct drm_device *dev)
11639 {
11640         struct pci_dev *d = dev->pdev;
11641         int i;
11642
11643         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
11644                 struct intel_quirk *q = &intel_quirks[i];
11645
11646                 if (d->device == q->device &&
11647                     (d->subsystem_vendor == q->subsystem_vendor ||
11648                      q->subsystem_vendor == PCI_ANY_ID) &&
11649                     (d->subsystem_device == q->subsystem_device ||
11650                      q->subsystem_device == PCI_ANY_ID))
11651                         q->hook(dev);
11652         }
11653         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
11654                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
11655                         intel_dmi_quirks[i].hook(dev);
11656         }
11657 }
11658
11659 /* Disable the VGA plane that we never use */
11660 static void i915_disable_vga(struct drm_device *dev)
11661 {
11662         struct drm_i915_private *dev_priv = dev->dev_private;
11663         u8 sr1;
11664         u32 vga_reg = i915_vgacntrl_reg(dev);
11665
11666         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
11667         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
11668         outb(SR01, VGA_SR_INDEX);
11669         sr1 = inb(VGA_SR_DATA);
11670         outb(sr1 | 1<<5, VGA_SR_DATA);
11671         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
11672         udelay(300);
11673
11674         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
11675         POSTING_READ(vga_reg);
11676 }
11677
11678 void intel_modeset_init_hw(struct drm_device *dev)
11679 {
11680         intel_prepare_ddi(dev);
11681
11682         intel_init_clock_gating(dev);
11683
11684         intel_reset_dpio(dev);
11685
11686         intel_enable_gt_powersave(dev);
11687 }
11688
11689 void intel_modeset_suspend_hw(struct drm_device *dev)
11690 {
11691         intel_suspend_hw(dev);
11692 }
11693
11694 void intel_modeset_init(struct drm_device *dev)
11695 {
11696         struct drm_i915_private *dev_priv = dev->dev_private;
11697         int sprite, ret;
11698         enum pipe pipe;
11699         struct intel_crtc *crtc;
11700
11701         drm_mode_config_init(dev);
11702
11703         dev->mode_config.min_width = 0;
11704         dev->mode_config.min_height = 0;
11705
11706         dev->mode_config.preferred_depth = 24;
11707         dev->mode_config.prefer_shadow = 1;
11708
11709         dev->mode_config.funcs = &intel_mode_funcs;
11710
11711         intel_init_quirks(dev);
11712
11713         intel_init_pm(dev);
11714
11715         if (INTEL_INFO(dev)->num_pipes == 0)
11716                 return;
11717
11718         intel_init_display(dev);
11719
11720         if (IS_GEN2(dev)) {
11721                 dev->mode_config.max_width = 2048;
11722                 dev->mode_config.max_height = 2048;
11723         } else if (IS_GEN3(dev)) {
11724                 dev->mode_config.max_width = 4096;
11725                 dev->mode_config.max_height = 4096;
11726         } else {
11727                 dev->mode_config.max_width = 8192;
11728                 dev->mode_config.max_height = 8192;
11729         }
11730
11731         if (IS_GEN2(dev)) {
11732                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
11733                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
11734         } else {
11735                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
11736                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
11737         }
11738
11739         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
11740
11741         DRM_DEBUG_KMS("%d display pipe%s available.\n",
11742                       INTEL_INFO(dev)->num_pipes,
11743                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
11744
11745         for_each_pipe(pipe) {
11746                 intel_crtc_init(dev, pipe);
11747                 for_each_sprite(pipe, sprite) {
11748                         ret = intel_plane_init(dev, pipe, sprite);
11749                         if (ret)
11750                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
11751                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
11752                 }
11753         }
11754
11755         intel_init_dpio(dev);
11756         intel_reset_dpio(dev);
11757
11758         intel_cpu_pll_init(dev);
11759         intel_shared_dpll_init(dev);
11760
11761         /* Just disable it once at startup */
11762         i915_disable_vga(dev);
11763         intel_setup_outputs(dev);
11764
11765         /* Just in case the BIOS is doing something questionable. */
11766         intel_disable_fbc(dev);
11767
11768         drm_modeset_lock_all(dev);
11769         intel_modeset_setup_hw_state(dev, false);
11770         drm_modeset_unlock_all(dev);
11771
11772         for_each_intel_crtc(dev, crtc) {
11773                 if (!crtc->active)
11774                         continue;
11775
11776                 /*
11777                  * Note that reserving the BIOS fb up front prevents us
11778                  * from stuffing other stolen allocations like the ring
11779                  * on top.  This prevents some ugliness at boot time, and
11780                  * can even allow for smooth boot transitions if the BIOS
11781                  * fb is large enough for the active pipe configuration.
11782                  */
11783                 if (dev_priv->display.get_plane_config) {
11784                         dev_priv->display.get_plane_config(crtc,
11785                                                            &crtc->plane_config);
11786                         /*
11787                          * If the fb is shared between multiple heads, we'll
11788                          * just get the first one.
11789                          */
11790                         intel_find_plane_obj(crtc, &crtc->plane_config);
11791                 }
11792         }
11793 }
11794
11795 static void intel_enable_pipe_a(struct drm_device *dev)
11796 {
11797         struct intel_connector *connector;
11798         struct drm_connector *crt = NULL;
11799         struct intel_load_detect_pipe load_detect_temp;
11800         struct drm_modeset_acquire_ctx ctx;
11801
11802         /* We can't just switch on the pipe A, we need to set things up with a
11803          * proper mode and output configuration. As a gross hack, enable pipe A
11804          * by enabling the load detect pipe once. */
11805         list_for_each_entry(connector,
11806                             &dev->mode_config.connector_list,
11807                             base.head) {
11808                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
11809                         crt = &connector->base;
11810                         break;
11811                 }
11812         }
11813
11814         if (!crt)
11815                 return;
11816
11817         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
11818                 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
11819
11820
11821 }
11822
11823 static bool
11824 intel_check_plane_mapping(struct intel_crtc *crtc)
11825 {
11826         struct drm_device *dev = crtc->base.dev;
11827         struct drm_i915_private *dev_priv = dev->dev_private;
11828         u32 reg, val;
11829
11830         if (INTEL_INFO(dev)->num_pipes == 1)
11831                 return true;
11832
11833         reg = DSPCNTR(!crtc->plane);
11834         val = I915_READ(reg);
11835
11836         if ((val & DISPLAY_PLANE_ENABLE) &&
11837             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
11838                 return false;
11839
11840         return true;
11841 }
11842
11843 static void intel_sanitize_crtc(struct intel_crtc *crtc)
11844 {
11845         struct drm_device *dev = crtc->base.dev;
11846         struct drm_i915_private *dev_priv = dev->dev_private;
11847         u32 reg;
11848
11849         /* Clear any frame start delays used for debugging left by the BIOS */
11850         reg = PIPECONF(crtc->config.cpu_transcoder);
11851         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
11852
11853         /* restore vblank interrupts to correct state */
11854         if (crtc->active)
11855                 drm_vblank_on(dev, crtc->pipe);
11856         else
11857                 drm_vblank_off(dev, crtc->pipe);
11858
11859         /* We need to sanitize the plane -> pipe mapping first because this will
11860          * disable the crtc (and hence change the state) if it is wrong. Note
11861          * that gen4+ has a fixed plane -> pipe mapping.  */
11862         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
11863                 struct intel_connector *connector;
11864                 bool plane;
11865
11866                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
11867                               crtc->base.base.id);
11868
11869                 /* Pipe has the wrong plane attached and the plane is active.
11870                  * Temporarily change the plane mapping and disable everything
11871                  * ...  */
11872                 plane = crtc->plane;
11873                 crtc->plane = !plane;
11874                 dev_priv->display.crtc_disable(&crtc->base);
11875                 crtc->plane = plane;
11876
11877                 /* ... and break all links. */
11878                 list_for_each_entry(connector, &dev->mode_config.connector_list,
11879                                     base.head) {
11880                         if (connector->encoder->base.crtc != &crtc->base)
11881                                 continue;
11882
11883                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11884                         connector->base.encoder = NULL;
11885                 }
11886                 /* multiple connectors may have the same encoder:
11887                  *  handle them and break crtc link separately */
11888                 list_for_each_entry(connector, &dev->mode_config.connector_list,
11889                                     base.head)
11890                         if (connector->encoder->base.crtc == &crtc->base) {
11891                                 connector->encoder->base.crtc = NULL;
11892                                 connector->encoder->connectors_active = false;
11893                         }
11894
11895                 WARN_ON(crtc->active);
11896                 crtc->base.enabled = false;
11897         }
11898
11899         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
11900             crtc->pipe == PIPE_A && !crtc->active) {
11901                 /* BIOS forgot to enable pipe A, this mostly happens after
11902                  * resume. Force-enable the pipe to fix this, the update_dpms
11903                  * call below we restore the pipe to the right state, but leave
11904                  * the required bits on. */
11905                 intel_enable_pipe_a(dev);
11906         }
11907
11908         /* Adjust the state of the output pipe according to whether we
11909          * have active connectors/encoders. */
11910         intel_crtc_update_dpms(&crtc->base);
11911
11912         if (crtc->active != crtc->base.enabled) {
11913                 struct intel_encoder *encoder;
11914
11915                 /* This can happen either due to bugs in the get_hw_state
11916                  * functions or because the pipe is force-enabled due to the
11917                  * pipe A quirk. */
11918                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
11919                               crtc->base.base.id,
11920                               crtc->base.enabled ? "enabled" : "disabled",
11921                               crtc->active ? "enabled" : "disabled");
11922
11923                 crtc->base.enabled = crtc->active;
11924
11925                 /* Because we only establish the connector -> encoder ->
11926                  * crtc links if something is active, this means the
11927                  * crtc is now deactivated. Break the links. connector
11928                  * -> encoder links are only establish when things are
11929                  *  actually up, hence no need to break them. */
11930                 WARN_ON(crtc->active);
11931
11932                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
11933                         WARN_ON(encoder->connectors_active);
11934                         encoder->base.crtc = NULL;
11935                 }
11936         }
11937
11938         if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
11939                 /*
11940                  * We start out with underrun reporting disabled to avoid races.
11941                  * For correct bookkeeping mark this on active crtcs.
11942                  *
11943                  * Also on gmch platforms we dont have any hardware bits to
11944                  * disable the underrun reporting. Which means we need to start
11945                  * out with underrun reporting disabled also on inactive pipes,
11946                  * since otherwise we'll complain about the garbage we read when
11947                  * e.g. coming up after runtime pm.
11948                  *
11949                  * No protection against concurrent access is required - at
11950                  * worst a fifo underrun happens which also sets this to false.
11951                  */
11952                 crtc->cpu_fifo_underrun_disabled = true;
11953                 crtc->pch_fifo_underrun_disabled = true;
11954
11955                 update_scanline_offset(crtc);
11956         }
11957 }
11958
11959 static void intel_sanitize_encoder(struct intel_encoder *encoder)
11960 {
11961         struct intel_connector *connector;
11962         struct drm_device *dev = encoder->base.dev;
11963
11964         /* We need to check both for a crtc link (meaning that the
11965          * encoder is active and trying to read from a pipe) and the
11966          * pipe itself being active. */
11967         bool has_active_crtc = encoder->base.crtc &&
11968                 to_intel_crtc(encoder->base.crtc)->active;
11969
11970         if (encoder->connectors_active && !has_active_crtc) {
11971                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
11972                               encoder->base.base.id,
11973                               encoder->base.name);
11974
11975                 /* Connector is active, but has no active pipe. This is
11976                  * fallout from our resume register restoring. Disable
11977                  * the encoder manually again. */
11978                 if (encoder->base.crtc) {
11979                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11980                                       encoder->base.base.id,
11981                                       encoder->base.name);
11982                         encoder->disable(encoder);
11983                 }
11984                 encoder->base.crtc = NULL;
11985                 encoder->connectors_active = false;
11986
11987                 /* Inconsistent output/port/pipe state happens presumably due to
11988                  * a bug in one of the get_hw_state functions. Or someplace else
11989                  * in our code, like the register restore mess on resume. Clamp
11990                  * things to off as a safer default. */
11991                 list_for_each_entry(connector,
11992                                     &dev->mode_config.connector_list,
11993                                     base.head) {
11994                         if (connector->encoder != encoder)
11995                                 continue;
11996                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11997                         connector->base.encoder = NULL;
11998                 }
11999         }
12000         /* Enabled encoders without active connectors will be fixed in
12001          * the crtc fixup. */
12002 }
12003
12004 void i915_redisable_vga_power_on(struct drm_device *dev)
12005 {
12006         struct drm_i915_private *dev_priv = dev->dev_private;
12007         u32 vga_reg = i915_vgacntrl_reg(dev);
12008
12009         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12010                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12011                 i915_disable_vga(dev);
12012         }
12013 }
12014
12015 void i915_redisable_vga(struct drm_device *dev)
12016 {
12017         struct drm_i915_private *dev_priv = dev->dev_private;
12018
12019         /* This function can be called both from intel_modeset_setup_hw_state or
12020          * at a very early point in our resume sequence, where the power well
12021          * structures are not yet restored. Since this function is at a very
12022          * paranoid "someone might have enabled VGA while we were not looking"
12023          * level, just check if the power well is enabled instead of trying to
12024          * follow the "don't touch the power well if we don't need it" policy
12025          * the rest of the driver uses. */
12026         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
12027                 return;
12028
12029         i915_redisable_vga_power_on(dev);
12030 }
12031
12032 static bool primary_get_hw_state(struct intel_crtc *crtc)
12033 {
12034         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12035
12036         if (!crtc->active)
12037                 return false;
12038
12039         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12040 }
12041
12042 static void intel_modeset_readout_hw_state(struct drm_device *dev)
12043 {
12044         struct drm_i915_private *dev_priv = dev->dev_private;
12045         enum pipe pipe;
12046         struct intel_crtc *crtc;
12047         struct intel_encoder *encoder;
12048         struct intel_connector *connector;
12049         int i;
12050
12051         for_each_intel_crtc(dev, crtc) {
12052                 memset(&crtc->config, 0, sizeof(crtc->config));
12053
12054                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12055
12056                 crtc->active = dev_priv->display.get_pipe_config(crtc,
12057                                                                  &crtc->config);
12058
12059                 crtc->base.enabled = crtc->active;
12060                 crtc->primary_enabled = primary_get_hw_state(crtc);
12061
12062                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12063                               crtc->base.base.id,
12064                               crtc->active ? "enabled" : "disabled");
12065         }
12066
12067         /* FIXME: Smash this into the new shared dpll infrastructure. */
12068         if (HAS_DDI(dev))
12069                 intel_ddi_setup_hw_pll_state(dev);
12070
12071         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12072                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12073
12074                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12075                 pll->active = 0;
12076                 for_each_intel_crtc(dev, crtc) {
12077                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12078                                 pll->active++;
12079                 }
12080                 pll->refcount = pll->active;
12081
12082                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12083                               pll->name, pll->refcount, pll->on);
12084         }
12085
12086         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12087                             base.head) {
12088                 pipe = 0;
12089
12090                 if (encoder->get_hw_state(encoder, &pipe)) {
12091                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12092                         encoder->base.crtc = &crtc->base;
12093                         encoder->get_config(encoder, &crtc->config);
12094                 } else {
12095                         encoder->base.crtc = NULL;
12096                 }
12097
12098                 encoder->connectors_active = false;
12099                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
12100                               encoder->base.base.id,
12101                               encoder->base.name,
12102                               encoder->base.crtc ? "enabled" : "disabled",
12103                               pipe_name(pipe));
12104         }
12105
12106         list_for_each_entry(connector, &dev->mode_config.connector_list,
12107                             base.head) {
12108                 if (connector->get_hw_state(connector)) {
12109                         connector->base.dpms = DRM_MODE_DPMS_ON;
12110                         connector->encoder->connectors_active = true;
12111                         connector->base.encoder = &connector->encoder->base;
12112                 } else {
12113                         connector->base.dpms = DRM_MODE_DPMS_OFF;
12114                         connector->base.encoder = NULL;
12115                 }
12116                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12117                               connector->base.base.id,
12118                               connector->base.name,
12119                               connector->base.encoder ? "enabled" : "disabled");
12120         }
12121 }
12122
12123 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12124  * and i915 state tracking structures. */
12125 void intel_modeset_setup_hw_state(struct drm_device *dev,
12126                                   bool force_restore)
12127 {
12128         struct drm_i915_private *dev_priv = dev->dev_private;
12129         enum pipe pipe;
12130         struct intel_crtc *crtc;
12131         struct intel_encoder *encoder;
12132         int i;
12133
12134         intel_modeset_readout_hw_state(dev);
12135
12136         /*
12137          * Now that we have the config, copy it to each CRTC struct
12138          * Note that this could go away if we move to using crtc_config
12139          * checking everywhere.
12140          */
12141         for_each_intel_crtc(dev, crtc) {
12142                 if (crtc->active && i915.fastboot) {
12143                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
12144                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
12145                                       crtc->base.base.id);
12146                         drm_mode_debug_printmodeline(&crtc->base.mode);
12147                 }
12148         }
12149
12150         /* HW state is read out, now we need to sanitize this mess. */
12151         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12152                             base.head) {
12153                 intel_sanitize_encoder(encoder);
12154         }
12155
12156         for_each_pipe(pipe) {
12157                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12158                 intel_sanitize_crtc(crtc);
12159                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
12160         }
12161
12162         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12163                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12164
12165                 if (!pll->on || pll->active)
12166                         continue;
12167
12168                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
12169
12170                 pll->disable(dev_priv, pll);
12171                 pll->on = false;
12172         }
12173
12174         if (HAS_PCH_SPLIT(dev))
12175                 ilk_wm_get_hw_state(dev);
12176
12177         if (force_restore) {
12178                 i915_redisable_vga(dev);
12179
12180                 /*
12181                  * We need to use raw interfaces for restoring state to avoid
12182                  * checking (bogus) intermediate states.
12183                  */
12184                 for_each_pipe(pipe) {
12185                         struct drm_crtc *crtc =
12186                                 dev_priv->pipe_to_crtc_mapping[pipe];
12187
12188                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
12189                                          crtc->primary->fb);
12190                 }
12191         } else {
12192                 intel_modeset_update_staged_output_state(dev);
12193         }
12194
12195         intel_modeset_check_state(dev);
12196 }
12197
12198 void intel_modeset_gem_init(struct drm_device *dev)
12199 {
12200         struct drm_crtc *c;
12201         struct intel_framebuffer *fb;
12202
12203         mutex_lock(&dev->struct_mutex);
12204         intel_init_gt_powersave(dev);
12205         mutex_unlock(&dev->struct_mutex);
12206
12207         intel_modeset_init_hw(dev);
12208
12209         intel_setup_overlay(dev);
12210
12211         /*
12212          * Make sure any fbs we allocated at startup are properly
12213          * pinned & fenced.  When we do the allocation it's too early
12214          * for this.
12215          */
12216         mutex_lock(&dev->struct_mutex);
12217         for_each_crtc(dev, c) {
12218                 if (!c->primary->fb)
12219                         continue;
12220
12221                 fb = to_intel_framebuffer(c->primary->fb);
12222                 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
12223                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
12224                                   to_intel_crtc(c)->pipe);
12225                         drm_framebuffer_unreference(c->primary->fb);
12226                         c->primary->fb = NULL;
12227                 }
12228         }
12229         mutex_unlock(&dev->struct_mutex);
12230 }
12231
12232 void intel_connector_unregister(struct intel_connector *intel_connector)
12233 {
12234         struct drm_connector *connector = &intel_connector->base;
12235
12236         intel_panel_destroy_backlight(connector);
12237         drm_sysfs_connector_remove(connector);
12238 }
12239
12240 void intel_modeset_cleanup(struct drm_device *dev)
12241 {
12242         struct drm_i915_private *dev_priv = dev->dev_private;
12243         struct drm_crtc *crtc;
12244         struct drm_connector *connector;
12245
12246         /*
12247          * Interrupts and polling as the first thing to avoid creating havoc.
12248          * Too much stuff here (turning of rps, connectors, ...) would
12249          * experience fancy races otherwise.
12250          */
12251         drm_irq_uninstall(dev);
12252         cancel_work_sync(&dev_priv->hotplug_work);
12253         /*
12254          * Due to the hpd irq storm handling the hotplug work can re-arm the
12255          * poll handlers. Hence disable polling after hpd handling is shut down.
12256          */
12257         drm_kms_helper_poll_fini(dev);
12258
12259         mutex_lock(&dev->struct_mutex);
12260
12261         intel_unregister_dsm_handler();
12262
12263         for_each_crtc(dev, crtc) {
12264                 /* Skip inactive CRTCs */
12265                 if (!crtc->primary->fb)
12266                         continue;
12267
12268                 intel_increase_pllclock(crtc);
12269         }
12270
12271         intel_disable_fbc(dev);
12272
12273         intel_disable_gt_powersave(dev);
12274
12275         ironlake_teardown_rc6(dev);
12276
12277         mutex_unlock(&dev->struct_mutex);
12278
12279         /* flush any delayed tasks or pending work */
12280         flush_scheduled_work();
12281
12282         /* destroy the backlight and sysfs files before encoders/connectors */
12283         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12284                 struct intel_connector *intel_connector;
12285
12286                 intel_connector = to_intel_connector(connector);
12287                 intel_connector->unregister(intel_connector);
12288         }
12289
12290         drm_mode_config_cleanup(dev);
12291
12292         intel_cleanup_overlay(dev);
12293
12294         mutex_lock(&dev->struct_mutex);
12295         intel_cleanup_gt_powersave(dev);
12296         mutex_unlock(&dev->struct_mutex);
12297 }
12298
12299 /*
12300  * Return which encoder is currently attached for connector.
12301  */
12302 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
12303 {
12304         return &intel_attached_encoder(connector)->base;
12305 }
12306
12307 void intel_connector_attach_encoder(struct intel_connector *connector,
12308                                     struct intel_encoder *encoder)
12309 {
12310         connector->encoder = encoder;
12311         drm_mode_connector_attach_encoder(&connector->base,
12312                                           &encoder->base);
12313 }
12314
12315 /*
12316  * set vga decode state - true == enable VGA decode
12317  */
12318 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
12319 {
12320         struct drm_i915_private *dev_priv = dev->dev_private;
12321         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
12322         u16 gmch_ctrl;
12323
12324         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
12325                 DRM_ERROR("failed to read control word\n");
12326                 return -EIO;
12327         }
12328
12329         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
12330                 return 0;
12331
12332         if (state)
12333                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
12334         else
12335                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
12336
12337         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
12338                 DRM_ERROR("failed to write control word\n");
12339                 return -EIO;
12340         }
12341
12342         return 0;
12343 }
12344
12345 struct intel_display_error_state {
12346
12347         u32 power_well_driver;
12348
12349         int num_transcoders;
12350
12351         struct intel_cursor_error_state {
12352                 u32 control;
12353                 u32 position;
12354                 u32 base;
12355                 u32 size;
12356         } cursor[I915_MAX_PIPES];
12357
12358         struct intel_pipe_error_state {
12359                 bool power_domain_on;
12360                 u32 source;
12361                 u32 stat;
12362         } pipe[I915_MAX_PIPES];
12363
12364         struct intel_plane_error_state {
12365                 u32 control;
12366                 u32 stride;
12367                 u32 size;
12368                 u32 pos;
12369                 u32 addr;
12370                 u32 surface;
12371                 u32 tile_offset;
12372         } plane[I915_MAX_PIPES];
12373
12374         struct intel_transcoder_error_state {
12375                 bool power_domain_on;
12376                 enum transcoder cpu_transcoder;
12377
12378                 u32 conf;
12379
12380                 u32 htotal;
12381                 u32 hblank;
12382                 u32 hsync;
12383                 u32 vtotal;
12384                 u32 vblank;
12385                 u32 vsync;
12386         } transcoder[4];
12387 };
12388
12389 struct intel_display_error_state *
12390 intel_display_capture_error_state(struct drm_device *dev)
12391 {
12392         struct drm_i915_private *dev_priv = dev->dev_private;
12393         struct intel_display_error_state *error;
12394         int transcoders[] = {
12395                 TRANSCODER_A,
12396                 TRANSCODER_B,
12397                 TRANSCODER_C,
12398                 TRANSCODER_EDP,
12399         };
12400         int i;
12401
12402         if (INTEL_INFO(dev)->num_pipes == 0)
12403                 return NULL;
12404
12405         error = kzalloc(sizeof(*error), GFP_ATOMIC);
12406         if (error == NULL)
12407                 return NULL;
12408
12409         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12410                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
12411
12412         for_each_pipe(i) {
12413                 error->pipe[i].power_domain_on =
12414                         intel_display_power_enabled_sw(dev_priv,
12415                                                        POWER_DOMAIN_PIPE(i));
12416                 if (!error->pipe[i].power_domain_on)
12417                         continue;
12418
12419                 error->cursor[i].control = I915_READ(CURCNTR(i));
12420                 error->cursor[i].position = I915_READ(CURPOS(i));
12421                 error->cursor[i].base = I915_READ(CURBASE(i));
12422
12423                 error->plane[i].control = I915_READ(DSPCNTR(i));
12424                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
12425                 if (INTEL_INFO(dev)->gen <= 3) {
12426                         error->plane[i].size = I915_READ(DSPSIZE(i));
12427                         error->plane[i].pos = I915_READ(DSPPOS(i));
12428                 }
12429                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12430                         error->plane[i].addr = I915_READ(DSPADDR(i));
12431                 if (INTEL_INFO(dev)->gen >= 4) {
12432                         error->plane[i].surface = I915_READ(DSPSURF(i));
12433                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
12434                 }
12435
12436                 error->pipe[i].source = I915_READ(PIPESRC(i));
12437
12438                 if (!HAS_PCH_SPLIT(dev))
12439                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
12440         }
12441
12442         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
12443         if (HAS_DDI(dev_priv->dev))
12444                 error->num_transcoders++; /* Account for eDP. */
12445
12446         for (i = 0; i < error->num_transcoders; i++) {
12447                 enum transcoder cpu_transcoder = transcoders[i];
12448
12449                 error->transcoder[i].power_domain_on =
12450                         intel_display_power_enabled_sw(dev_priv,
12451                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
12452                 if (!error->transcoder[i].power_domain_on)
12453                         continue;
12454
12455                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
12456
12457                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
12458                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
12459                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
12460                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
12461                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
12462                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
12463                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
12464         }
12465
12466         return error;
12467 }
12468
12469 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
12470
12471 void
12472 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
12473                                 struct drm_device *dev,
12474                                 struct intel_display_error_state *error)
12475 {
12476         int i;
12477
12478         if (!error)
12479                 return;
12480
12481         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
12482         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12483                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
12484                            error->power_well_driver);
12485         for_each_pipe(i) {
12486                 err_printf(m, "Pipe [%d]:\n", i);
12487                 err_printf(m, "  Power: %s\n",
12488                            error->pipe[i].power_domain_on ? "on" : "off");
12489                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
12490                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
12491
12492                 err_printf(m, "Plane [%d]:\n", i);
12493                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
12494                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
12495                 if (INTEL_INFO(dev)->gen <= 3) {
12496                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
12497                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
12498                 }
12499                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12500                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
12501                 if (INTEL_INFO(dev)->gen >= 4) {
12502                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
12503                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
12504                 }
12505
12506                 err_printf(m, "Cursor [%d]:\n", i);
12507                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
12508                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
12509                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
12510         }
12511
12512         for (i = 0; i < error->num_transcoders; i++) {
12513                 err_printf(m, "CPU transcoder: %c\n",
12514                            transcoder_name(error->transcoder[i].cpu_transcoder));
12515                 err_printf(m, "  Power: %s\n",
12516                            error->transcoder[i].power_domain_on ? "on" : "off");
12517                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
12518                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
12519                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
12520                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
12521                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
12522                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
12523                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
12524         }
12525 }