Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define DIV_ROUND_CLOSEST_ULL(ll, d)    \
45         ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
46
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
51                                 struct intel_crtc_config *pipe_config);
52 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
53                                    struct intel_crtc_config *pipe_config);
54
55 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
56                           int x, int y, struct drm_framebuffer *old_fb);
57 static int intel_framebuffer_init(struct drm_device *dev,
58                                   struct intel_framebuffer *ifb,
59                                   struct drm_mode_fb_cmd2 *mode_cmd,
60                                   struct drm_i915_gem_object *obj);
61 static void intel_dp_set_m_n(struct intel_crtc *crtc);
62 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
63 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
64 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
65                                          struct intel_link_m_n *m_n);
66 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
67 static void haswell_set_pipeconf(struct drm_crtc *crtc);
68 static void intel_set_pipe_csc(struct drm_crtc *crtc);
69 static void vlv_prepare_pll(struct intel_crtc *crtc);
70
71 typedef struct {
72         int     min, max;
73 } intel_range_t;
74
75 typedef struct {
76         int     dot_limit;
77         int     p2_slow, p2_fast;
78 } intel_p2_t;
79
80 typedef struct intel_limit intel_limit_t;
81 struct intel_limit {
82         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
83         intel_p2_t          p2;
84 };
85
86 int
87 intel_pch_rawclk(struct drm_device *dev)
88 {
89         struct drm_i915_private *dev_priv = dev->dev_private;
90
91         WARN_ON(!HAS_PCH_SPLIT(dev));
92
93         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
94 }
95
96 static inline u32 /* units of 100MHz */
97 intel_fdi_link_freq(struct drm_device *dev)
98 {
99         if (IS_GEN5(dev)) {
100                 struct drm_i915_private *dev_priv = dev->dev_private;
101                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
102         } else
103                 return 27;
104 }
105
106 static const intel_limit_t intel_limits_i8xx_dac = {
107         .dot = { .min = 25000, .max = 350000 },
108         .vco = { .min = 908000, .max = 1512000 },
109         .n = { .min = 2, .max = 16 },
110         .m = { .min = 96, .max = 140 },
111         .m1 = { .min = 18, .max = 26 },
112         .m2 = { .min = 6, .max = 16 },
113         .p = { .min = 4, .max = 128 },
114         .p1 = { .min = 2, .max = 33 },
115         .p2 = { .dot_limit = 165000,
116                 .p2_slow = 4, .p2_fast = 2 },
117 };
118
119 static const intel_limit_t intel_limits_i8xx_dvo = {
120         .dot = { .min = 25000, .max = 350000 },
121         .vco = { .min = 908000, .max = 1512000 },
122         .n = { .min = 2, .max = 16 },
123         .m = { .min = 96, .max = 140 },
124         .m1 = { .min = 18, .max = 26 },
125         .m2 = { .min = 6, .max = 16 },
126         .p = { .min = 4, .max = 128 },
127         .p1 = { .min = 2, .max = 33 },
128         .p2 = { .dot_limit = 165000,
129                 .p2_slow = 4, .p2_fast = 4 },
130 };
131
132 static const intel_limit_t intel_limits_i8xx_lvds = {
133         .dot = { .min = 25000, .max = 350000 },
134         .vco = { .min = 908000, .max = 1512000 },
135         .n = { .min = 2, .max = 16 },
136         .m = { .min = 96, .max = 140 },
137         .m1 = { .min = 18, .max = 26 },
138         .m2 = { .min = 6, .max = 16 },
139         .p = { .min = 4, .max = 128 },
140         .p1 = { .min = 1, .max = 6 },
141         .p2 = { .dot_limit = 165000,
142                 .p2_slow = 14, .p2_fast = 7 },
143 };
144
145 static const intel_limit_t intel_limits_i9xx_sdvo = {
146         .dot = { .min = 20000, .max = 400000 },
147         .vco = { .min = 1400000, .max = 2800000 },
148         .n = { .min = 1, .max = 6 },
149         .m = { .min = 70, .max = 120 },
150         .m1 = { .min = 8, .max = 18 },
151         .m2 = { .min = 3, .max = 7 },
152         .p = { .min = 5, .max = 80 },
153         .p1 = { .min = 1, .max = 8 },
154         .p2 = { .dot_limit = 200000,
155                 .p2_slow = 10, .p2_fast = 5 },
156 };
157
158 static const intel_limit_t intel_limits_i9xx_lvds = {
159         .dot = { .min = 20000, .max = 400000 },
160         .vco = { .min = 1400000, .max = 2800000 },
161         .n = { .min = 1, .max = 6 },
162         .m = { .min = 70, .max = 120 },
163         .m1 = { .min = 8, .max = 18 },
164         .m2 = { .min = 3, .max = 7 },
165         .p = { .min = 7, .max = 98 },
166         .p1 = { .min = 1, .max = 8 },
167         .p2 = { .dot_limit = 112000,
168                 .p2_slow = 14, .p2_fast = 7 },
169 };
170
171
172 static const intel_limit_t intel_limits_g4x_sdvo = {
173         .dot = { .min = 25000, .max = 270000 },
174         .vco = { .min = 1750000, .max = 3500000},
175         .n = { .min = 1, .max = 4 },
176         .m = { .min = 104, .max = 138 },
177         .m1 = { .min = 17, .max = 23 },
178         .m2 = { .min = 5, .max = 11 },
179         .p = { .min = 10, .max = 30 },
180         .p1 = { .min = 1, .max = 3},
181         .p2 = { .dot_limit = 270000,
182                 .p2_slow = 10,
183                 .p2_fast = 10
184         },
185 };
186
187 static const intel_limit_t intel_limits_g4x_hdmi = {
188         .dot = { .min = 22000, .max = 400000 },
189         .vco = { .min = 1750000, .max = 3500000},
190         .n = { .min = 1, .max = 4 },
191         .m = { .min = 104, .max = 138 },
192         .m1 = { .min = 16, .max = 23 },
193         .m2 = { .min = 5, .max = 11 },
194         .p = { .min = 5, .max = 80 },
195         .p1 = { .min = 1, .max = 8},
196         .p2 = { .dot_limit = 165000,
197                 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
201         .dot = { .min = 20000, .max = 115000 },
202         .vco = { .min = 1750000, .max = 3500000 },
203         .n = { .min = 1, .max = 3 },
204         .m = { .min = 104, .max = 138 },
205         .m1 = { .min = 17, .max = 23 },
206         .m2 = { .min = 5, .max = 11 },
207         .p = { .min = 28, .max = 112 },
208         .p1 = { .min = 2, .max = 8 },
209         .p2 = { .dot_limit = 0,
210                 .p2_slow = 14, .p2_fast = 14
211         },
212 };
213
214 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
215         .dot = { .min = 80000, .max = 224000 },
216         .vco = { .min = 1750000, .max = 3500000 },
217         .n = { .min = 1, .max = 3 },
218         .m = { .min = 104, .max = 138 },
219         .m1 = { .min = 17, .max = 23 },
220         .m2 = { .min = 5, .max = 11 },
221         .p = { .min = 14, .max = 42 },
222         .p1 = { .min = 2, .max = 6 },
223         .p2 = { .dot_limit = 0,
224                 .p2_slow = 7, .p2_fast = 7
225         },
226 };
227
228 static const intel_limit_t intel_limits_pineview_sdvo = {
229         .dot = { .min = 20000, .max = 400000},
230         .vco = { .min = 1700000, .max = 3500000 },
231         /* Pineview's Ncounter is a ring counter */
232         .n = { .min = 3, .max = 6 },
233         .m = { .min = 2, .max = 256 },
234         /* Pineview only has one combined m divider, which we treat as m2. */
235         .m1 = { .min = 0, .max = 0 },
236         .m2 = { .min = 0, .max = 254 },
237         .p = { .min = 5, .max = 80 },
238         .p1 = { .min = 1, .max = 8 },
239         .p2 = { .dot_limit = 200000,
240                 .p2_slow = 10, .p2_fast = 5 },
241 };
242
243 static const intel_limit_t intel_limits_pineview_lvds = {
244         .dot = { .min = 20000, .max = 400000 },
245         .vco = { .min = 1700000, .max = 3500000 },
246         .n = { .min = 3, .max = 6 },
247         .m = { .min = 2, .max = 256 },
248         .m1 = { .min = 0, .max = 0 },
249         .m2 = { .min = 0, .max = 254 },
250         .p = { .min = 7, .max = 112 },
251         .p1 = { .min = 1, .max = 8 },
252         .p2 = { .dot_limit = 112000,
253                 .p2_slow = 14, .p2_fast = 14 },
254 };
255
256 /* Ironlake / Sandybridge
257  *
258  * We calculate clock using (register_value + 2) for N/M1/M2, so here
259  * the range value for them is (actual_value - 2).
260  */
261 static const intel_limit_t intel_limits_ironlake_dac = {
262         .dot = { .min = 25000, .max = 350000 },
263         .vco = { .min = 1760000, .max = 3510000 },
264         .n = { .min = 1, .max = 5 },
265         .m = { .min = 79, .max = 127 },
266         .m1 = { .min = 12, .max = 22 },
267         .m2 = { .min = 5, .max = 9 },
268         .p = { .min = 5, .max = 80 },
269         .p1 = { .min = 1, .max = 8 },
270         .p2 = { .dot_limit = 225000,
271                 .p2_slow = 10, .p2_fast = 5 },
272 };
273
274 static const intel_limit_t intel_limits_ironlake_single_lvds = {
275         .dot = { .min = 25000, .max = 350000 },
276         .vco = { .min = 1760000, .max = 3510000 },
277         .n = { .min = 1, .max = 3 },
278         .m = { .min = 79, .max = 118 },
279         .m1 = { .min = 12, .max = 22 },
280         .m2 = { .min = 5, .max = 9 },
281         .p = { .min = 28, .max = 112 },
282         .p1 = { .min = 2, .max = 8 },
283         .p2 = { .dot_limit = 225000,
284                 .p2_slow = 14, .p2_fast = 14 },
285 };
286
287 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
288         .dot = { .min = 25000, .max = 350000 },
289         .vco = { .min = 1760000, .max = 3510000 },
290         .n = { .min = 1, .max = 3 },
291         .m = { .min = 79, .max = 127 },
292         .m1 = { .min = 12, .max = 22 },
293         .m2 = { .min = 5, .max = 9 },
294         .p = { .min = 14, .max = 56 },
295         .p1 = { .min = 2, .max = 8 },
296         .p2 = { .dot_limit = 225000,
297                 .p2_slow = 7, .p2_fast = 7 },
298 };
299
300 /* LVDS 100mhz refclk limits. */
301 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
302         .dot = { .min = 25000, .max = 350000 },
303         .vco = { .min = 1760000, .max = 3510000 },
304         .n = { .min = 1, .max = 2 },
305         .m = { .min = 79, .max = 126 },
306         .m1 = { .min = 12, .max = 22 },
307         .m2 = { .min = 5, .max = 9 },
308         .p = { .min = 28, .max = 112 },
309         .p1 = { .min = 2, .max = 8 },
310         .p2 = { .dot_limit = 225000,
311                 .p2_slow = 14, .p2_fast = 14 },
312 };
313
314 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
315         .dot = { .min = 25000, .max = 350000 },
316         .vco = { .min = 1760000, .max = 3510000 },
317         .n = { .min = 1, .max = 3 },
318         .m = { .min = 79, .max = 126 },
319         .m1 = { .min = 12, .max = 22 },
320         .m2 = { .min = 5, .max = 9 },
321         .p = { .min = 14, .max = 42 },
322         .p1 = { .min = 2, .max = 6 },
323         .p2 = { .dot_limit = 225000,
324                 .p2_slow = 7, .p2_fast = 7 },
325 };
326
327 static const intel_limit_t intel_limits_vlv = {
328          /*
329           * These are the data rate limits (measured in fast clocks)
330           * since those are the strictest limits we have. The fast
331           * clock and actual rate limits are more relaxed, so checking
332           * them would make no difference.
333           */
334         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
335         .vco = { .min = 4000000, .max = 6000000 },
336         .n = { .min = 1, .max = 7 },
337         .m1 = { .min = 2, .max = 3 },
338         .m2 = { .min = 11, .max = 156 },
339         .p1 = { .min = 2, .max = 3 },
340         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
341 };
342
343 static const intel_limit_t intel_limits_chv = {
344         /*
345          * These are the data rate limits (measured in fast clocks)
346          * since those are the strictest limits we have.  The fast
347          * clock and actual rate limits are more relaxed, so checking
348          * them would make no difference.
349          */
350         .dot = { .min = 25000 * 5, .max = 540000 * 5},
351         .vco = { .min = 4860000, .max = 6700000 },
352         .n = { .min = 1, .max = 1 },
353         .m1 = { .min = 2, .max = 2 },
354         .m2 = { .min = 24 << 22, .max = 175 << 22 },
355         .p1 = { .min = 2, .max = 4 },
356         .p2 = { .p2_slow = 1, .p2_fast = 14 },
357 };
358
359 static void vlv_clock(int refclk, intel_clock_t *clock)
360 {
361         clock->m = clock->m1 * clock->m2;
362         clock->p = clock->p1 * clock->p2;
363         if (WARN_ON(clock->n == 0 || clock->p == 0))
364                 return;
365         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
366         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
367 }
368
369 /**
370  * Returns whether any output on the specified pipe is of the specified type
371  */
372 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
373 {
374         struct drm_device *dev = crtc->dev;
375         struct intel_encoder *encoder;
376
377         for_each_encoder_on_crtc(dev, crtc, encoder)
378                 if (encoder->type == type)
379                         return true;
380
381         return false;
382 }
383
384 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
385                                                 int refclk)
386 {
387         struct drm_device *dev = crtc->dev;
388         const intel_limit_t *limit;
389
390         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
391                 if (intel_is_dual_link_lvds(dev)) {
392                         if (refclk == 100000)
393                                 limit = &intel_limits_ironlake_dual_lvds_100m;
394                         else
395                                 limit = &intel_limits_ironlake_dual_lvds;
396                 } else {
397                         if (refclk == 100000)
398                                 limit = &intel_limits_ironlake_single_lvds_100m;
399                         else
400                                 limit = &intel_limits_ironlake_single_lvds;
401                 }
402         } else
403                 limit = &intel_limits_ironlake_dac;
404
405         return limit;
406 }
407
408 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
409 {
410         struct drm_device *dev = crtc->dev;
411         const intel_limit_t *limit;
412
413         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
414                 if (intel_is_dual_link_lvds(dev))
415                         limit = &intel_limits_g4x_dual_channel_lvds;
416                 else
417                         limit = &intel_limits_g4x_single_channel_lvds;
418         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
419                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
420                 limit = &intel_limits_g4x_hdmi;
421         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
422                 limit = &intel_limits_g4x_sdvo;
423         } else /* The option is for other outputs */
424                 limit = &intel_limits_i9xx_sdvo;
425
426         return limit;
427 }
428
429 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
430 {
431         struct drm_device *dev = crtc->dev;
432         const intel_limit_t *limit;
433
434         if (HAS_PCH_SPLIT(dev))
435                 limit = intel_ironlake_limit(crtc, refclk);
436         else if (IS_G4X(dev)) {
437                 limit = intel_g4x_limit(crtc);
438         } else if (IS_PINEVIEW(dev)) {
439                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
440                         limit = &intel_limits_pineview_lvds;
441                 else
442                         limit = &intel_limits_pineview_sdvo;
443         } else if (IS_CHERRYVIEW(dev)) {
444                 limit = &intel_limits_chv;
445         } else if (IS_VALLEYVIEW(dev)) {
446                 limit = &intel_limits_vlv;
447         } else if (!IS_GEN2(dev)) {
448                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
449                         limit = &intel_limits_i9xx_lvds;
450                 else
451                         limit = &intel_limits_i9xx_sdvo;
452         } else {
453                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
454                         limit = &intel_limits_i8xx_lvds;
455                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
456                         limit = &intel_limits_i8xx_dvo;
457                 else
458                         limit = &intel_limits_i8xx_dac;
459         }
460         return limit;
461 }
462
463 /* m1 is reserved as 0 in Pineview, n is a ring counter */
464 static void pineview_clock(int refclk, intel_clock_t *clock)
465 {
466         clock->m = clock->m2 + 2;
467         clock->p = clock->p1 * clock->p2;
468         if (WARN_ON(clock->n == 0 || clock->p == 0))
469                 return;
470         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
471         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
472 }
473
474 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
475 {
476         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
477 }
478
479 static void i9xx_clock(int refclk, intel_clock_t *clock)
480 {
481         clock->m = i9xx_dpll_compute_m(clock);
482         clock->p = clock->p1 * clock->p2;
483         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
484                 return;
485         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
486         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
487 }
488
489 static void chv_clock(int refclk, intel_clock_t *clock)
490 {
491         clock->m = clock->m1 * clock->m2;
492         clock->p = clock->p1 * clock->p2;
493         if (WARN_ON(clock->n == 0 || clock->p == 0))
494                 return;
495         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
496                         clock->n << 22);
497         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
498 }
499
500 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
501 /**
502  * Returns whether the given set of divisors are valid for a given refclk with
503  * the given connectors.
504  */
505
506 static bool intel_PLL_is_valid(struct drm_device *dev,
507                                const intel_limit_t *limit,
508                                const intel_clock_t *clock)
509 {
510         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
511                 INTELPllInvalid("n out of range\n");
512         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
513                 INTELPllInvalid("p1 out of range\n");
514         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
515                 INTELPllInvalid("m2 out of range\n");
516         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
517                 INTELPllInvalid("m1 out of range\n");
518
519         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
520                 if (clock->m1 <= clock->m2)
521                         INTELPllInvalid("m1 <= m2\n");
522
523         if (!IS_VALLEYVIEW(dev)) {
524                 if (clock->p < limit->p.min || limit->p.max < clock->p)
525                         INTELPllInvalid("p out of range\n");
526                 if (clock->m < limit->m.min || limit->m.max < clock->m)
527                         INTELPllInvalid("m out of range\n");
528         }
529
530         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
531                 INTELPllInvalid("vco out of range\n");
532         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
533          * connector, etc., rather than just a single range.
534          */
535         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
536                 INTELPllInvalid("dot out of range\n");
537
538         return true;
539 }
540
541 static bool
542 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
543                     int target, int refclk, intel_clock_t *match_clock,
544                     intel_clock_t *best_clock)
545 {
546         struct drm_device *dev = crtc->dev;
547         intel_clock_t clock;
548         int err = target;
549
550         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
551                 /*
552                  * For LVDS just rely on its current settings for dual-channel.
553                  * We haven't figured out how to reliably set up different
554                  * single/dual channel state, if we even can.
555                  */
556                 if (intel_is_dual_link_lvds(dev))
557                         clock.p2 = limit->p2.p2_fast;
558                 else
559                         clock.p2 = limit->p2.p2_slow;
560         } else {
561                 if (target < limit->p2.dot_limit)
562                         clock.p2 = limit->p2.p2_slow;
563                 else
564                         clock.p2 = limit->p2.p2_fast;
565         }
566
567         memset(best_clock, 0, sizeof(*best_clock));
568
569         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
570              clock.m1++) {
571                 for (clock.m2 = limit->m2.min;
572                      clock.m2 <= limit->m2.max; clock.m2++) {
573                         if (clock.m2 >= clock.m1)
574                                 break;
575                         for (clock.n = limit->n.min;
576                              clock.n <= limit->n.max; clock.n++) {
577                                 for (clock.p1 = limit->p1.min;
578                                         clock.p1 <= limit->p1.max; clock.p1++) {
579                                         int this_err;
580
581                                         i9xx_clock(refclk, &clock);
582                                         if (!intel_PLL_is_valid(dev, limit,
583                                                                 &clock))
584                                                 continue;
585                                         if (match_clock &&
586                                             clock.p != match_clock->p)
587                                                 continue;
588
589                                         this_err = abs(clock.dot - target);
590                                         if (this_err < err) {
591                                                 *best_clock = clock;
592                                                 err = this_err;
593                                         }
594                                 }
595                         }
596                 }
597         }
598
599         return (err != target);
600 }
601
602 static bool
603 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
604                    int target, int refclk, intel_clock_t *match_clock,
605                    intel_clock_t *best_clock)
606 {
607         struct drm_device *dev = crtc->dev;
608         intel_clock_t clock;
609         int err = target;
610
611         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
612                 /*
613                  * For LVDS just rely on its current settings for dual-channel.
614                  * We haven't figured out how to reliably set up different
615                  * single/dual channel state, if we even can.
616                  */
617                 if (intel_is_dual_link_lvds(dev))
618                         clock.p2 = limit->p2.p2_fast;
619                 else
620                         clock.p2 = limit->p2.p2_slow;
621         } else {
622                 if (target < limit->p2.dot_limit)
623                         clock.p2 = limit->p2.p2_slow;
624                 else
625                         clock.p2 = limit->p2.p2_fast;
626         }
627
628         memset(best_clock, 0, sizeof(*best_clock));
629
630         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
631              clock.m1++) {
632                 for (clock.m2 = limit->m2.min;
633                      clock.m2 <= limit->m2.max; clock.m2++) {
634                         for (clock.n = limit->n.min;
635                              clock.n <= limit->n.max; clock.n++) {
636                                 for (clock.p1 = limit->p1.min;
637                                         clock.p1 <= limit->p1.max; clock.p1++) {
638                                         int this_err;
639
640                                         pineview_clock(refclk, &clock);
641                                         if (!intel_PLL_is_valid(dev, limit,
642                                                                 &clock))
643                                                 continue;
644                                         if (match_clock &&
645                                             clock.p != match_clock->p)
646                                                 continue;
647
648                                         this_err = abs(clock.dot - target);
649                                         if (this_err < err) {
650                                                 *best_clock = clock;
651                                                 err = this_err;
652                                         }
653                                 }
654                         }
655                 }
656         }
657
658         return (err != target);
659 }
660
661 static bool
662 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
663                    int target, int refclk, intel_clock_t *match_clock,
664                    intel_clock_t *best_clock)
665 {
666         struct drm_device *dev = crtc->dev;
667         intel_clock_t clock;
668         int max_n;
669         bool found;
670         /* approximately equals target * 0.00585 */
671         int err_most = (target >> 8) + (target >> 9);
672         found = false;
673
674         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
675                 if (intel_is_dual_link_lvds(dev))
676                         clock.p2 = limit->p2.p2_fast;
677                 else
678                         clock.p2 = limit->p2.p2_slow;
679         } else {
680                 if (target < limit->p2.dot_limit)
681                         clock.p2 = limit->p2.p2_slow;
682                 else
683                         clock.p2 = limit->p2.p2_fast;
684         }
685
686         memset(best_clock, 0, sizeof(*best_clock));
687         max_n = limit->n.max;
688         /* based on hardware requirement, prefer smaller n to precision */
689         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
690                 /* based on hardware requirement, prefere larger m1,m2 */
691                 for (clock.m1 = limit->m1.max;
692                      clock.m1 >= limit->m1.min; clock.m1--) {
693                         for (clock.m2 = limit->m2.max;
694                              clock.m2 >= limit->m2.min; clock.m2--) {
695                                 for (clock.p1 = limit->p1.max;
696                                      clock.p1 >= limit->p1.min; clock.p1--) {
697                                         int this_err;
698
699                                         i9xx_clock(refclk, &clock);
700                                         if (!intel_PLL_is_valid(dev, limit,
701                                                                 &clock))
702                                                 continue;
703
704                                         this_err = abs(clock.dot - target);
705                                         if (this_err < err_most) {
706                                                 *best_clock = clock;
707                                                 err_most = this_err;
708                                                 max_n = clock.n;
709                                                 found = true;
710                                         }
711                                 }
712                         }
713                 }
714         }
715         return found;
716 }
717
718 static bool
719 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
720                    int target, int refclk, intel_clock_t *match_clock,
721                    intel_clock_t *best_clock)
722 {
723         struct drm_device *dev = crtc->dev;
724         intel_clock_t clock;
725         unsigned int bestppm = 1000000;
726         /* min update 19.2 MHz */
727         int max_n = min(limit->n.max, refclk / 19200);
728         bool found = false;
729
730         target *= 5; /* fast clock */
731
732         memset(best_clock, 0, sizeof(*best_clock));
733
734         /* based on hardware requirement, prefer smaller n to precision */
735         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
736                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
737                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
738                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
739                                 clock.p = clock.p1 * clock.p2;
740                                 /* based on hardware requirement, prefer bigger m1,m2 values */
741                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
742                                         unsigned int ppm, diff;
743
744                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
745                                                                      refclk * clock.m1);
746
747                                         vlv_clock(refclk, &clock);
748
749                                         if (!intel_PLL_is_valid(dev, limit,
750                                                                 &clock))
751                                                 continue;
752
753                                         diff = abs(clock.dot - target);
754                                         ppm = div_u64(1000000ULL * diff, target);
755
756                                         if (ppm < 100 && clock.p > best_clock->p) {
757                                                 bestppm = 0;
758                                                 *best_clock = clock;
759                                                 found = true;
760                                         }
761
762                                         if (bestppm >= 10 && ppm < bestppm - 10) {
763                                                 bestppm = ppm;
764                                                 *best_clock = clock;
765                                                 found = true;
766                                         }
767                                 }
768                         }
769                 }
770         }
771
772         return found;
773 }
774
775 static bool
776 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
777                    int target, int refclk, intel_clock_t *match_clock,
778                    intel_clock_t *best_clock)
779 {
780         struct drm_device *dev = crtc->dev;
781         intel_clock_t clock;
782         uint64_t m2;
783         int found = false;
784
785         memset(best_clock, 0, sizeof(*best_clock));
786
787         /*
788          * Based on hardware doc, the n always set to 1, and m1 always
789          * set to 2.  If requires to support 200Mhz refclk, we need to
790          * revisit this because n may not 1 anymore.
791          */
792         clock.n = 1, clock.m1 = 2;
793         target *= 5;    /* fast clock */
794
795         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
796                 for (clock.p2 = limit->p2.p2_fast;
797                                 clock.p2 >= limit->p2.p2_slow;
798                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
799
800                         clock.p = clock.p1 * clock.p2;
801
802                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
803                                         clock.n) << 22, refclk * clock.m1);
804
805                         if (m2 > INT_MAX/clock.m1)
806                                 continue;
807
808                         clock.m2 = m2;
809
810                         chv_clock(refclk, &clock);
811
812                         if (!intel_PLL_is_valid(dev, limit, &clock))
813                                 continue;
814
815                         /* based on hardware requirement, prefer bigger p
816                          */
817                         if (clock.p > best_clock->p) {
818                                 *best_clock = clock;
819                                 found = true;
820                         }
821                 }
822         }
823
824         return found;
825 }
826
827 bool intel_crtc_active(struct drm_crtc *crtc)
828 {
829         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
830
831         /* Be paranoid as we can arrive here with only partial
832          * state retrieved from the hardware during setup.
833          *
834          * We can ditch the adjusted_mode.crtc_clock check as soon
835          * as Haswell has gained clock readout/fastboot support.
836          *
837          * We can ditch the crtc->primary->fb check as soon as we can
838          * properly reconstruct framebuffers.
839          */
840         return intel_crtc->active && crtc->primary->fb &&
841                 intel_crtc->config.adjusted_mode.crtc_clock;
842 }
843
844 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
845                                              enum pipe pipe)
846 {
847         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
848         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
849
850         return intel_crtc->config.cpu_transcoder;
851 }
852
853 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
854 {
855         struct drm_i915_private *dev_priv = dev->dev_private;
856         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
857
858         frame = I915_READ(frame_reg);
859
860         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
861                 WARN(1, "vblank wait timed out\n");
862 }
863
864 /**
865  * intel_wait_for_vblank - wait for vblank on a given pipe
866  * @dev: drm device
867  * @pipe: pipe to wait for
868  *
869  * Wait for vblank to occur on a given pipe.  Needed for various bits of
870  * mode setting code.
871  */
872 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
873 {
874         struct drm_i915_private *dev_priv = dev->dev_private;
875         int pipestat_reg = PIPESTAT(pipe);
876
877         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
878                 g4x_wait_for_vblank(dev, pipe);
879                 return;
880         }
881
882         /* Clear existing vblank status. Note this will clear any other
883          * sticky status fields as well.
884          *
885          * This races with i915_driver_irq_handler() with the result
886          * that either function could miss a vblank event.  Here it is not
887          * fatal, as we will either wait upon the next vblank interrupt or
888          * timeout.  Generally speaking intel_wait_for_vblank() is only
889          * called during modeset at which time the GPU should be idle and
890          * should *not* be performing page flips and thus not waiting on
891          * vblanks...
892          * Currently, the result of us stealing a vblank from the irq
893          * handler is that a single frame will be skipped during swapbuffers.
894          */
895         I915_WRITE(pipestat_reg,
896                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
897
898         /* Wait for vblank interrupt bit to set */
899         if (wait_for(I915_READ(pipestat_reg) &
900                      PIPE_VBLANK_INTERRUPT_STATUS,
901                      50))
902                 DRM_DEBUG_KMS("vblank wait timed out\n");
903 }
904
905 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
906 {
907         struct drm_i915_private *dev_priv = dev->dev_private;
908         u32 reg = PIPEDSL(pipe);
909         u32 line1, line2;
910         u32 line_mask;
911
912         if (IS_GEN2(dev))
913                 line_mask = DSL_LINEMASK_GEN2;
914         else
915                 line_mask = DSL_LINEMASK_GEN3;
916
917         line1 = I915_READ(reg) & line_mask;
918         mdelay(5);
919         line2 = I915_READ(reg) & line_mask;
920
921         return line1 == line2;
922 }
923
924 /*
925  * intel_wait_for_pipe_off - wait for pipe to turn off
926  * @dev: drm device
927  * @pipe: pipe to wait for
928  *
929  * After disabling a pipe, we can't wait for vblank in the usual way,
930  * spinning on the vblank interrupt status bit, since we won't actually
931  * see an interrupt when the pipe is disabled.
932  *
933  * On Gen4 and above:
934  *   wait for the pipe register state bit to turn off
935  *
936  * Otherwise:
937  *   wait for the display line value to settle (it usually
938  *   ends up stopping at the start of the next frame).
939  *
940  */
941 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
942 {
943         struct drm_i915_private *dev_priv = dev->dev_private;
944         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
945                                                                       pipe);
946
947         if (INTEL_INFO(dev)->gen >= 4) {
948                 int reg = PIPECONF(cpu_transcoder);
949
950                 /* Wait for the Pipe State to go off */
951                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
952                              100))
953                         WARN(1, "pipe_off wait timed out\n");
954         } else {
955                 /* Wait for the display line to settle */
956                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
957                         WARN(1, "pipe_off wait timed out\n");
958         }
959 }
960
961 /*
962  * ibx_digital_port_connected - is the specified port connected?
963  * @dev_priv: i915 private structure
964  * @port: the port to test
965  *
966  * Returns true if @port is connected, false otherwise.
967  */
968 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
969                                 struct intel_digital_port *port)
970 {
971         u32 bit;
972
973         if (HAS_PCH_IBX(dev_priv->dev)) {
974                 switch (port->port) {
975                 case PORT_B:
976                         bit = SDE_PORTB_HOTPLUG;
977                         break;
978                 case PORT_C:
979                         bit = SDE_PORTC_HOTPLUG;
980                         break;
981                 case PORT_D:
982                         bit = SDE_PORTD_HOTPLUG;
983                         break;
984                 default:
985                         return true;
986                 }
987         } else {
988                 switch (port->port) {
989                 case PORT_B:
990                         bit = SDE_PORTB_HOTPLUG_CPT;
991                         break;
992                 case PORT_C:
993                         bit = SDE_PORTC_HOTPLUG_CPT;
994                         break;
995                 case PORT_D:
996                         bit = SDE_PORTD_HOTPLUG_CPT;
997                         break;
998                 default:
999                         return true;
1000                 }
1001         }
1002
1003         return I915_READ(SDEISR) & bit;
1004 }
1005
1006 static const char *state_string(bool enabled)
1007 {
1008         return enabled ? "on" : "off";
1009 }
1010
1011 /* Only for pre-ILK configs */
1012 void assert_pll(struct drm_i915_private *dev_priv,
1013                 enum pipe pipe, bool state)
1014 {
1015         int reg;
1016         u32 val;
1017         bool cur_state;
1018
1019         reg = DPLL(pipe);
1020         val = I915_READ(reg);
1021         cur_state = !!(val & DPLL_VCO_ENABLE);
1022         WARN(cur_state != state,
1023              "PLL state assertion failure (expected %s, current %s)\n",
1024              state_string(state), state_string(cur_state));
1025 }
1026
1027 /* XXX: the dsi pll is shared between MIPI DSI ports */
1028 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1029 {
1030         u32 val;
1031         bool cur_state;
1032
1033         mutex_lock(&dev_priv->dpio_lock);
1034         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1035         mutex_unlock(&dev_priv->dpio_lock);
1036
1037         cur_state = val & DSI_PLL_VCO_EN;
1038         WARN(cur_state != state,
1039              "DSI PLL state assertion failure (expected %s, current %s)\n",
1040              state_string(state), state_string(cur_state));
1041 }
1042 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1043 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1044
1045 struct intel_shared_dpll *
1046 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1047 {
1048         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1049
1050         if (crtc->config.shared_dpll < 0)
1051                 return NULL;
1052
1053         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1054 }
1055
1056 /* For ILK+ */
1057 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1058                         struct intel_shared_dpll *pll,
1059                         bool state)
1060 {
1061         bool cur_state;
1062         struct intel_dpll_hw_state hw_state;
1063
1064         if (HAS_PCH_LPT(dev_priv->dev)) {
1065                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1066                 return;
1067         }
1068
1069         if (WARN (!pll,
1070                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1071                 return;
1072
1073         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1074         WARN(cur_state != state,
1075              "%s assertion failure (expected %s, current %s)\n",
1076              pll->name, state_string(state), state_string(cur_state));
1077 }
1078
1079 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080                           enum pipe pipe, bool state)
1081 {
1082         int reg;
1083         u32 val;
1084         bool cur_state;
1085         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086                                                                       pipe);
1087
1088         if (HAS_DDI(dev_priv->dev)) {
1089                 /* DDI does not have a specific FDI_TX register */
1090                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1091                 val = I915_READ(reg);
1092                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1093         } else {
1094                 reg = FDI_TX_CTL(pipe);
1095                 val = I915_READ(reg);
1096                 cur_state = !!(val & FDI_TX_ENABLE);
1097         }
1098         WARN(cur_state != state,
1099              "FDI TX state assertion failure (expected %s, current %s)\n",
1100              state_string(state), state_string(cur_state));
1101 }
1102 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106                           enum pipe pipe, bool state)
1107 {
1108         int reg;
1109         u32 val;
1110         bool cur_state;
1111
1112         reg = FDI_RX_CTL(pipe);
1113         val = I915_READ(reg);
1114         cur_state = !!(val & FDI_RX_ENABLE);
1115         WARN(cur_state != state,
1116              "FDI RX state assertion failure (expected %s, current %s)\n",
1117              state_string(state), state_string(cur_state));
1118 }
1119 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123                                       enum pipe pipe)
1124 {
1125         int reg;
1126         u32 val;
1127
1128         /* ILK FDI PLL is always enabled */
1129         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1130                 return;
1131
1132         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1133         if (HAS_DDI(dev_priv->dev))
1134                 return;
1135
1136         reg = FDI_TX_CTL(pipe);
1137         val = I915_READ(reg);
1138         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139 }
1140
1141 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142                        enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155
1156 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157                                   enum pipe pipe)
1158 {
1159         int pp_reg, lvds_reg;
1160         u32 val;
1161         enum pipe panel_pipe = PIPE_A;
1162         bool locked = true;
1163
1164         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1165                 pp_reg = PCH_PP_CONTROL;
1166                 lvds_reg = PCH_LVDS;
1167         } else {
1168                 pp_reg = PP_CONTROL;
1169                 lvds_reg = LVDS;
1170         }
1171
1172         val = I915_READ(pp_reg);
1173         if (!(val & PANEL_POWER_ON) ||
1174             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1175                 locked = false;
1176
1177         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1178                 panel_pipe = PIPE_B;
1179
1180         WARN(panel_pipe == pipe && locked,
1181              "panel assertion failure, pipe %c regs locked\n",
1182              pipe_name(pipe));
1183 }
1184
1185 static void assert_cursor(struct drm_i915_private *dev_priv,
1186                           enum pipe pipe, bool state)
1187 {
1188         struct drm_device *dev = dev_priv->dev;
1189         bool cur_state;
1190
1191         if (IS_845G(dev) || IS_I865G(dev))
1192                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1193         else
1194                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1195
1196         WARN(cur_state != state,
1197              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1198              pipe_name(pipe), state_string(state), state_string(cur_state));
1199 }
1200 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1201 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1202
1203 void assert_pipe(struct drm_i915_private *dev_priv,
1204                  enum pipe pipe, bool state)
1205 {
1206         int reg;
1207         u32 val;
1208         bool cur_state;
1209         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1210                                                                       pipe);
1211
1212         /* if we need the pipe A quirk it must be always on */
1213         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1214                 state = true;
1215
1216         if (!intel_display_power_enabled(dev_priv,
1217                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1218                 cur_state = false;
1219         } else {
1220                 reg = PIPECONF(cpu_transcoder);
1221                 val = I915_READ(reg);
1222                 cur_state = !!(val & PIPECONF_ENABLE);
1223         }
1224
1225         WARN(cur_state != state,
1226              "pipe %c assertion failure (expected %s, current %s)\n",
1227              pipe_name(pipe), state_string(state), state_string(cur_state));
1228 }
1229
1230 static void assert_plane(struct drm_i915_private *dev_priv,
1231                          enum plane plane, bool state)
1232 {
1233         int reg;
1234         u32 val;
1235         bool cur_state;
1236
1237         reg = DSPCNTR(plane);
1238         val = I915_READ(reg);
1239         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1240         WARN(cur_state != state,
1241              "plane %c assertion failure (expected %s, current %s)\n",
1242              plane_name(plane), state_string(state), state_string(cur_state));
1243 }
1244
1245 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1246 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1247
1248 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1249                                    enum pipe pipe)
1250 {
1251         struct drm_device *dev = dev_priv->dev;
1252         int reg, i;
1253         u32 val;
1254         int cur_pipe;
1255
1256         /* Primary planes are fixed to pipes on gen4+ */
1257         if (INTEL_INFO(dev)->gen >= 4) {
1258                 reg = DSPCNTR(pipe);
1259                 val = I915_READ(reg);
1260                 WARN(val & DISPLAY_PLANE_ENABLE,
1261                      "plane %c assertion failure, should be disabled but not\n",
1262                      plane_name(pipe));
1263                 return;
1264         }
1265
1266         /* Need to check both planes against the pipe */
1267         for_each_pipe(i) {
1268                 reg = DSPCNTR(i);
1269                 val = I915_READ(reg);
1270                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1271                         DISPPLANE_SEL_PIPE_SHIFT;
1272                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1273                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1274                      plane_name(i), pipe_name(pipe));
1275         }
1276 }
1277
1278 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1279                                     enum pipe pipe)
1280 {
1281         struct drm_device *dev = dev_priv->dev;
1282         int reg, sprite;
1283         u32 val;
1284
1285         if (IS_VALLEYVIEW(dev)) {
1286                 for_each_sprite(pipe, sprite) {
1287                         reg = SPCNTR(pipe, sprite);
1288                         val = I915_READ(reg);
1289                         WARN(val & SP_ENABLE,
1290                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1291                              sprite_name(pipe, sprite), pipe_name(pipe));
1292                 }
1293         } else if (INTEL_INFO(dev)->gen >= 7) {
1294                 reg = SPRCTL(pipe);
1295                 val = I915_READ(reg);
1296                 WARN(val & SPRITE_ENABLE,
1297                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1298                      plane_name(pipe), pipe_name(pipe));
1299         } else if (INTEL_INFO(dev)->gen >= 5) {
1300                 reg = DVSCNTR(pipe);
1301                 val = I915_READ(reg);
1302                 WARN(val & DVS_ENABLE,
1303                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1304                      plane_name(pipe), pipe_name(pipe));
1305         }
1306 }
1307
1308 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1309 {
1310         u32 val;
1311         bool enabled;
1312
1313         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1314
1315         val = I915_READ(PCH_DREF_CONTROL);
1316         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1317                             DREF_SUPERSPREAD_SOURCE_MASK));
1318         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1319 }
1320
1321 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1322                                            enum pipe pipe)
1323 {
1324         int reg;
1325         u32 val;
1326         bool enabled;
1327
1328         reg = PCH_TRANSCONF(pipe);
1329         val = I915_READ(reg);
1330         enabled = !!(val & TRANS_ENABLE);
1331         WARN(enabled,
1332              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1333              pipe_name(pipe));
1334 }
1335
1336 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1337                             enum pipe pipe, u32 port_sel, u32 val)
1338 {
1339         if ((val & DP_PORT_EN) == 0)
1340                 return false;
1341
1342         if (HAS_PCH_CPT(dev_priv->dev)) {
1343                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1344                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1345                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1346                         return false;
1347         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1348                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1349                         return false;
1350         } else {
1351                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1352                         return false;
1353         }
1354         return true;
1355 }
1356
1357 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1358                               enum pipe pipe, u32 val)
1359 {
1360         if ((val & SDVO_ENABLE) == 0)
1361                 return false;
1362
1363         if (HAS_PCH_CPT(dev_priv->dev)) {
1364                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1365                         return false;
1366         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1367                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1368                         return false;
1369         } else {
1370                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1371                         return false;
1372         }
1373         return true;
1374 }
1375
1376 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1377                               enum pipe pipe, u32 val)
1378 {
1379         if ((val & LVDS_PORT_EN) == 0)
1380                 return false;
1381
1382         if (HAS_PCH_CPT(dev_priv->dev)) {
1383                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1384                         return false;
1385         } else {
1386                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1387                         return false;
1388         }
1389         return true;
1390 }
1391
1392 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1393                               enum pipe pipe, u32 val)
1394 {
1395         if ((val & ADPA_DAC_ENABLE) == 0)
1396                 return false;
1397         if (HAS_PCH_CPT(dev_priv->dev)) {
1398                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1399                         return false;
1400         } else {
1401                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1402                         return false;
1403         }
1404         return true;
1405 }
1406
1407 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1408                                    enum pipe pipe, int reg, u32 port_sel)
1409 {
1410         u32 val = I915_READ(reg);
1411         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1412              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1413              reg, pipe_name(pipe));
1414
1415         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1416              && (val & DP_PIPEB_SELECT),
1417              "IBX PCH dp port still using transcoder B\n");
1418 }
1419
1420 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1421                                      enum pipe pipe, int reg)
1422 {
1423         u32 val = I915_READ(reg);
1424         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1425              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1426              reg, pipe_name(pipe));
1427
1428         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1429              && (val & SDVO_PIPE_B_SELECT),
1430              "IBX PCH hdmi port still using transcoder B\n");
1431 }
1432
1433 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1434                                       enum pipe pipe)
1435 {
1436         int reg;
1437         u32 val;
1438
1439         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1440         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1441         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1442
1443         reg = PCH_ADPA;
1444         val = I915_READ(reg);
1445         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1446              "PCH VGA enabled on transcoder %c, should be disabled\n",
1447              pipe_name(pipe));
1448
1449         reg = PCH_LVDS;
1450         val = I915_READ(reg);
1451         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1452              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1453              pipe_name(pipe));
1454
1455         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1456         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1457         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1458 }
1459
1460 static void intel_init_dpio(struct drm_device *dev)
1461 {
1462         struct drm_i915_private *dev_priv = dev->dev_private;
1463
1464         if (!IS_VALLEYVIEW(dev))
1465                 return;
1466
1467         /*
1468          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1469          * CHV x1 PHY (DP/HDMI D)
1470          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1471          */
1472         if (IS_CHERRYVIEW(dev)) {
1473                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1474                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1475         } else {
1476                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1477         }
1478 }
1479
1480 static void intel_reset_dpio(struct drm_device *dev)
1481 {
1482         struct drm_i915_private *dev_priv = dev->dev_private;
1483
1484         if (!IS_VALLEYVIEW(dev))
1485                 return;
1486
1487         if (IS_CHERRYVIEW(dev)) {
1488                 enum dpio_phy phy;
1489                 u32 val;
1490
1491                 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1492                         /* Poll for phypwrgood signal */
1493                         if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1494                                                 PHY_POWERGOOD(phy), 1))
1495                                 DRM_ERROR("Display PHY %d is not power up\n", phy);
1496
1497                         /*
1498                          * Deassert common lane reset for PHY.
1499                          *
1500                          * This should only be done on init and resume from S3
1501                          * with both PLLs disabled, or we risk losing DPIO and
1502                          * PLL synchronization.
1503                          */
1504                         val = I915_READ(DISPLAY_PHY_CONTROL);
1505                         I915_WRITE(DISPLAY_PHY_CONTROL,
1506                                 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1507                 }
1508
1509         } else {
1510                 /*
1511                  * If DPIO has already been reset, e.g. by BIOS, just skip all
1512                  * this.
1513                  */
1514                 if (I915_READ(DPIO_CTL) & DPIO_CMNRST)
1515                         return;
1516
1517                 /*
1518                  * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1519                  * Need to assert and de-assert PHY SB reset by gating the
1520                  * common lane power, then un-gating it.
1521                  * Simply ungating isn't enough to reset the PHY enough to get
1522                  * ports and lanes running.
1523                  */
1524                 __vlv_set_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC,
1525                                      false);
1526                 __vlv_set_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC,
1527                                      true);
1528         }
1529 }
1530
1531 static void vlv_enable_pll(struct intel_crtc *crtc)
1532 {
1533         struct drm_device *dev = crtc->base.dev;
1534         struct drm_i915_private *dev_priv = dev->dev_private;
1535         int reg = DPLL(crtc->pipe);
1536         u32 dpll = crtc->config.dpll_hw_state.dpll;
1537
1538         assert_pipe_disabled(dev_priv, crtc->pipe);
1539
1540         /* No really, not for ILK+ */
1541         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1542
1543         /* PLL is protected by panel, make sure we can write it */
1544         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1545                 assert_panel_unlocked(dev_priv, crtc->pipe);
1546
1547         I915_WRITE(reg, dpll);
1548         POSTING_READ(reg);
1549         udelay(150);
1550
1551         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1552                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1553
1554         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1555         POSTING_READ(DPLL_MD(crtc->pipe));
1556
1557         /* We do this three times for luck */
1558         I915_WRITE(reg, dpll);
1559         POSTING_READ(reg);
1560         udelay(150); /* wait for warmup */
1561         I915_WRITE(reg, dpll);
1562         POSTING_READ(reg);
1563         udelay(150); /* wait for warmup */
1564         I915_WRITE(reg, dpll);
1565         POSTING_READ(reg);
1566         udelay(150); /* wait for warmup */
1567 }
1568
1569 static void chv_enable_pll(struct intel_crtc *crtc)
1570 {
1571         struct drm_device *dev = crtc->base.dev;
1572         struct drm_i915_private *dev_priv = dev->dev_private;
1573         int pipe = crtc->pipe;
1574         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1575         u32 tmp;
1576
1577         assert_pipe_disabled(dev_priv, crtc->pipe);
1578
1579         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1580
1581         mutex_lock(&dev_priv->dpio_lock);
1582
1583         /* Enable back the 10bit clock to display controller */
1584         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1585         tmp |= DPIO_DCLKP_EN;
1586         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1587
1588         /*
1589          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1590          */
1591         udelay(1);
1592
1593         /* Enable PLL */
1594         I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1595
1596         /* Check PLL is locked */
1597         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1598                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1599
1600         /* not sure when this should be written */
1601         I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1602         POSTING_READ(DPLL_MD(pipe));
1603
1604         mutex_unlock(&dev_priv->dpio_lock);
1605 }
1606
1607 static void i9xx_enable_pll(struct intel_crtc *crtc)
1608 {
1609         struct drm_device *dev = crtc->base.dev;
1610         struct drm_i915_private *dev_priv = dev->dev_private;
1611         int reg = DPLL(crtc->pipe);
1612         u32 dpll = crtc->config.dpll_hw_state.dpll;
1613
1614         assert_pipe_disabled(dev_priv, crtc->pipe);
1615
1616         /* No really, not for ILK+ */
1617         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1618
1619         /* PLL is protected by panel, make sure we can write it */
1620         if (IS_MOBILE(dev) && !IS_I830(dev))
1621                 assert_panel_unlocked(dev_priv, crtc->pipe);
1622
1623         I915_WRITE(reg, dpll);
1624
1625         /* Wait for the clocks to stabilize. */
1626         POSTING_READ(reg);
1627         udelay(150);
1628
1629         if (INTEL_INFO(dev)->gen >= 4) {
1630                 I915_WRITE(DPLL_MD(crtc->pipe),
1631                            crtc->config.dpll_hw_state.dpll_md);
1632         } else {
1633                 /* The pixel multiplier can only be updated once the
1634                  * DPLL is enabled and the clocks are stable.
1635                  *
1636                  * So write it again.
1637                  */
1638                 I915_WRITE(reg, dpll);
1639         }
1640
1641         /* We do this three times for luck */
1642         I915_WRITE(reg, dpll);
1643         POSTING_READ(reg);
1644         udelay(150); /* wait for warmup */
1645         I915_WRITE(reg, dpll);
1646         POSTING_READ(reg);
1647         udelay(150); /* wait for warmup */
1648         I915_WRITE(reg, dpll);
1649         POSTING_READ(reg);
1650         udelay(150); /* wait for warmup */
1651 }
1652
1653 /**
1654  * i9xx_disable_pll - disable a PLL
1655  * @dev_priv: i915 private structure
1656  * @pipe: pipe PLL to disable
1657  *
1658  * Disable the PLL for @pipe, making sure the pipe is off first.
1659  *
1660  * Note!  This is for pre-ILK only.
1661  */
1662 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1663 {
1664         /* Don't disable pipe A or pipe A PLLs if needed */
1665         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1666                 return;
1667
1668         /* Make sure the pipe isn't still relying on us */
1669         assert_pipe_disabled(dev_priv, pipe);
1670
1671         I915_WRITE(DPLL(pipe), 0);
1672         POSTING_READ(DPLL(pipe));
1673 }
1674
1675 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1676 {
1677         u32 val = 0;
1678
1679         /* Make sure the pipe isn't still relying on us */
1680         assert_pipe_disabled(dev_priv, pipe);
1681
1682         /*
1683          * Leave integrated clock source and reference clock enabled for pipe B.
1684          * The latter is needed for VGA hotplug / manual detection.
1685          */
1686         if (pipe == PIPE_B)
1687                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1688         I915_WRITE(DPLL(pipe), val);
1689         POSTING_READ(DPLL(pipe));
1690
1691 }
1692
1693 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1694 {
1695         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1696         u32 val;
1697
1698         /* Make sure the pipe isn't still relying on us */
1699         assert_pipe_disabled(dev_priv, pipe);
1700
1701         /* Set PLL en = 0 */
1702         val = DPLL_SSC_REF_CLOCK_CHV;
1703         if (pipe != PIPE_A)
1704                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1705         I915_WRITE(DPLL(pipe), val);
1706         POSTING_READ(DPLL(pipe));
1707
1708         mutex_lock(&dev_priv->dpio_lock);
1709
1710         /* Disable 10bit clock to display controller */
1711         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1712         val &= ~DPIO_DCLKP_EN;
1713         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1714
1715         mutex_unlock(&dev_priv->dpio_lock);
1716 }
1717
1718 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1719                 struct intel_digital_port *dport)
1720 {
1721         u32 port_mask;
1722         int dpll_reg;
1723
1724         switch (dport->port) {
1725         case PORT_B:
1726                 port_mask = DPLL_PORTB_READY_MASK;
1727                 dpll_reg = DPLL(0);
1728                 break;
1729         case PORT_C:
1730                 port_mask = DPLL_PORTC_READY_MASK;
1731                 dpll_reg = DPLL(0);
1732                 break;
1733         case PORT_D:
1734                 port_mask = DPLL_PORTD_READY_MASK;
1735                 dpll_reg = DPIO_PHY_STATUS;
1736                 break;
1737         default:
1738                 BUG();
1739         }
1740
1741         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1742                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1743                      port_name(dport->port), I915_READ(dpll_reg));
1744 }
1745
1746 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1747 {
1748         struct drm_device *dev = crtc->base.dev;
1749         struct drm_i915_private *dev_priv = dev->dev_private;
1750         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1751
1752         WARN_ON(!pll->refcount);
1753         if (pll->active == 0) {
1754                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1755                 WARN_ON(pll->on);
1756                 assert_shared_dpll_disabled(dev_priv, pll);
1757
1758                 pll->mode_set(dev_priv, pll);
1759         }
1760 }
1761
1762 /**
1763  * intel_enable_shared_dpll - enable PCH PLL
1764  * @dev_priv: i915 private structure
1765  * @pipe: pipe PLL to enable
1766  *
1767  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1768  * drives the transcoder clock.
1769  */
1770 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1771 {
1772         struct drm_device *dev = crtc->base.dev;
1773         struct drm_i915_private *dev_priv = dev->dev_private;
1774         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1775
1776         if (WARN_ON(pll == NULL))
1777                 return;
1778
1779         if (WARN_ON(pll->refcount == 0))
1780                 return;
1781
1782         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1783                       pll->name, pll->active, pll->on,
1784                       crtc->base.base.id);
1785
1786         if (pll->active++) {
1787                 WARN_ON(!pll->on);
1788                 assert_shared_dpll_enabled(dev_priv, pll);
1789                 return;
1790         }
1791         WARN_ON(pll->on);
1792
1793         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1794         pll->enable(dev_priv, pll);
1795         pll->on = true;
1796 }
1797
1798 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1799 {
1800         struct drm_device *dev = crtc->base.dev;
1801         struct drm_i915_private *dev_priv = dev->dev_private;
1802         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1803
1804         /* PCH only available on ILK+ */
1805         BUG_ON(INTEL_INFO(dev)->gen < 5);
1806         if (WARN_ON(pll == NULL))
1807                return;
1808
1809         if (WARN_ON(pll->refcount == 0))
1810                 return;
1811
1812         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1813                       pll->name, pll->active, pll->on,
1814                       crtc->base.base.id);
1815
1816         if (WARN_ON(pll->active == 0)) {
1817                 assert_shared_dpll_disabled(dev_priv, pll);
1818                 return;
1819         }
1820
1821         assert_shared_dpll_enabled(dev_priv, pll);
1822         WARN_ON(!pll->on);
1823         if (--pll->active)
1824                 return;
1825
1826         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1827         pll->disable(dev_priv, pll);
1828         pll->on = false;
1829 }
1830
1831 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1832                                            enum pipe pipe)
1833 {
1834         struct drm_device *dev = dev_priv->dev;
1835         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1836         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1837         uint32_t reg, val, pipeconf_val;
1838
1839         /* PCH only available on ILK+ */
1840         BUG_ON(INTEL_INFO(dev)->gen < 5);
1841
1842         /* Make sure PCH DPLL is enabled */
1843         assert_shared_dpll_enabled(dev_priv,
1844                                    intel_crtc_to_shared_dpll(intel_crtc));
1845
1846         /* FDI must be feeding us bits for PCH ports */
1847         assert_fdi_tx_enabled(dev_priv, pipe);
1848         assert_fdi_rx_enabled(dev_priv, pipe);
1849
1850         if (HAS_PCH_CPT(dev)) {
1851                 /* Workaround: Set the timing override bit before enabling the
1852                  * pch transcoder. */
1853                 reg = TRANS_CHICKEN2(pipe);
1854                 val = I915_READ(reg);
1855                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1856                 I915_WRITE(reg, val);
1857         }
1858
1859         reg = PCH_TRANSCONF(pipe);
1860         val = I915_READ(reg);
1861         pipeconf_val = I915_READ(PIPECONF(pipe));
1862
1863         if (HAS_PCH_IBX(dev_priv->dev)) {
1864                 /*
1865                  * make the BPC in transcoder be consistent with
1866                  * that in pipeconf reg.
1867                  */
1868                 val &= ~PIPECONF_BPC_MASK;
1869                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1870         }
1871
1872         val &= ~TRANS_INTERLACE_MASK;
1873         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1874                 if (HAS_PCH_IBX(dev_priv->dev) &&
1875                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1876                         val |= TRANS_LEGACY_INTERLACED_ILK;
1877                 else
1878                         val |= TRANS_INTERLACED;
1879         else
1880                 val |= TRANS_PROGRESSIVE;
1881
1882         I915_WRITE(reg, val | TRANS_ENABLE);
1883         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1884                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1885 }
1886
1887 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1888                                       enum transcoder cpu_transcoder)
1889 {
1890         u32 val, pipeconf_val;
1891
1892         /* PCH only available on ILK+ */
1893         BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1894
1895         /* FDI must be feeding us bits for PCH ports */
1896         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1897         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1898
1899         /* Workaround: set timing override bit. */
1900         val = I915_READ(_TRANSA_CHICKEN2);
1901         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1902         I915_WRITE(_TRANSA_CHICKEN2, val);
1903
1904         val = TRANS_ENABLE;
1905         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1906
1907         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1908             PIPECONF_INTERLACED_ILK)
1909                 val |= TRANS_INTERLACED;
1910         else
1911                 val |= TRANS_PROGRESSIVE;
1912
1913         I915_WRITE(LPT_TRANSCONF, val);
1914         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1915                 DRM_ERROR("Failed to enable PCH transcoder\n");
1916 }
1917
1918 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1919                                             enum pipe pipe)
1920 {
1921         struct drm_device *dev = dev_priv->dev;
1922         uint32_t reg, val;
1923
1924         /* FDI relies on the transcoder */
1925         assert_fdi_tx_disabled(dev_priv, pipe);
1926         assert_fdi_rx_disabled(dev_priv, pipe);
1927
1928         /* Ports must be off as well */
1929         assert_pch_ports_disabled(dev_priv, pipe);
1930
1931         reg = PCH_TRANSCONF(pipe);
1932         val = I915_READ(reg);
1933         val &= ~TRANS_ENABLE;
1934         I915_WRITE(reg, val);
1935         /* wait for PCH transcoder off, transcoder state */
1936         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1937                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1938
1939         if (!HAS_PCH_IBX(dev)) {
1940                 /* Workaround: Clear the timing override chicken bit again. */
1941                 reg = TRANS_CHICKEN2(pipe);
1942                 val = I915_READ(reg);
1943                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1944                 I915_WRITE(reg, val);
1945         }
1946 }
1947
1948 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1949 {
1950         u32 val;
1951
1952         val = I915_READ(LPT_TRANSCONF);
1953         val &= ~TRANS_ENABLE;
1954         I915_WRITE(LPT_TRANSCONF, val);
1955         /* wait for PCH transcoder off, transcoder state */
1956         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1957                 DRM_ERROR("Failed to disable PCH transcoder\n");
1958
1959         /* Workaround: clear timing override bit. */
1960         val = I915_READ(_TRANSA_CHICKEN2);
1961         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1962         I915_WRITE(_TRANSA_CHICKEN2, val);
1963 }
1964
1965 /**
1966  * intel_enable_pipe - enable a pipe, asserting requirements
1967  * @crtc: crtc responsible for the pipe
1968  *
1969  * Enable @crtc's pipe, making sure that various hardware specific requirements
1970  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1971  */
1972 static void intel_enable_pipe(struct intel_crtc *crtc)
1973 {
1974         struct drm_device *dev = crtc->base.dev;
1975         struct drm_i915_private *dev_priv = dev->dev_private;
1976         enum pipe pipe = crtc->pipe;
1977         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1978                                                                       pipe);
1979         enum pipe pch_transcoder;
1980         int reg;
1981         u32 val;
1982
1983         assert_planes_disabled(dev_priv, pipe);
1984         assert_cursor_disabled(dev_priv, pipe);
1985         assert_sprites_disabled(dev_priv, pipe);
1986
1987         if (HAS_PCH_LPT(dev_priv->dev))
1988                 pch_transcoder = TRANSCODER_A;
1989         else
1990                 pch_transcoder = pipe;
1991
1992         /*
1993          * A pipe without a PLL won't actually be able to drive bits from
1994          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1995          * need the check.
1996          */
1997         if (!HAS_PCH_SPLIT(dev_priv->dev))
1998                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
1999                         assert_dsi_pll_enabled(dev_priv);
2000                 else
2001                         assert_pll_enabled(dev_priv, pipe);
2002         else {
2003                 if (crtc->config.has_pch_encoder) {
2004                         /* if driving the PCH, we need FDI enabled */
2005                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2006                         assert_fdi_tx_pll_enabled(dev_priv,
2007                                                   (enum pipe) cpu_transcoder);
2008                 }
2009                 /* FIXME: assert CPU port conditions for SNB+ */
2010         }
2011
2012         reg = PIPECONF(cpu_transcoder);
2013         val = I915_READ(reg);
2014         if (val & PIPECONF_ENABLE) {
2015                 WARN_ON(!(pipe == PIPE_A &&
2016                           dev_priv->quirks & QUIRK_PIPEA_FORCE));
2017                 return;
2018         }
2019
2020         I915_WRITE(reg, val | PIPECONF_ENABLE);
2021         POSTING_READ(reg);
2022 }
2023
2024 /**
2025  * intel_disable_pipe - disable a pipe, asserting requirements
2026  * @dev_priv: i915 private structure
2027  * @pipe: pipe to disable
2028  *
2029  * Disable @pipe, making sure that various hardware specific requirements
2030  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2031  *
2032  * @pipe should be %PIPE_A or %PIPE_B.
2033  *
2034  * Will wait until the pipe has shut down before returning.
2035  */
2036 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2037                                enum pipe pipe)
2038 {
2039         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2040                                                                       pipe);
2041         int reg;
2042         u32 val;
2043
2044         /*
2045          * Make sure planes won't keep trying to pump pixels to us,
2046          * or we might hang the display.
2047          */
2048         assert_planes_disabled(dev_priv, pipe);
2049         assert_cursor_disabled(dev_priv, pipe);
2050         assert_sprites_disabled(dev_priv, pipe);
2051
2052         /* Don't disable pipe A or pipe A PLLs if needed */
2053         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2054                 return;
2055
2056         reg = PIPECONF(cpu_transcoder);
2057         val = I915_READ(reg);
2058         if ((val & PIPECONF_ENABLE) == 0)
2059                 return;
2060
2061         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
2062         intel_wait_for_pipe_off(dev_priv->dev, pipe);
2063 }
2064
2065 /*
2066  * Plane regs are double buffered, going from enabled->disabled needs a
2067  * trigger in order to latch.  The display address reg provides this.
2068  */
2069 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2070                                enum plane plane)
2071 {
2072         struct drm_device *dev = dev_priv->dev;
2073         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2074
2075         I915_WRITE(reg, I915_READ(reg));
2076         POSTING_READ(reg);
2077 }
2078
2079 /**
2080  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2081  * @dev_priv: i915 private structure
2082  * @plane: plane to enable
2083  * @pipe: pipe being fed
2084  *
2085  * Enable @plane on @pipe, making sure that @pipe is running first.
2086  */
2087 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2088                                           enum plane plane, enum pipe pipe)
2089 {
2090         struct intel_crtc *intel_crtc =
2091                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2092         int reg;
2093         u32 val;
2094
2095         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2096         assert_pipe_enabled(dev_priv, pipe);
2097
2098         if (intel_crtc->primary_enabled)
2099                 return;
2100
2101         intel_crtc->primary_enabled = true;
2102
2103         reg = DSPCNTR(plane);
2104         val = I915_READ(reg);
2105         WARN_ON(val & DISPLAY_PLANE_ENABLE);
2106
2107         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
2108         intel_flush_primary_plane(dev_priv, plane);
2109 }
2110
2111 /**
2112  * intel_disable_primary_hw_plane - disable the primary hardware plane
2113  * @dev_priv: i915 private structure
2114  * @plane: plane to disable
2115  * @pipe: pipe consuming the data
2116  *
2117  * Disable @plane; should be an independent operation.
2118  */
2119 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2120                                            enum plane plane, enum pipe pipe)
2121 {
2122         struct intel_crtc *intel_crtc =
2123                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2124         int reg;
2125         u32 val;
2126
2127         if (!intel_crtc->primary_enabled)
2128                 return;
2129
2130         intel_crtc->primary_enabled = false;
2131
2132         reg = DSPCNTR(plane);
2133         val = I915_READ(reg);
2134         WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
2135
2136         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
2137         intel_flush_primary_plane(dev_priv, plane);
2138 }
2139
2140 static bool need_vtd_wa(struct drm_device *dev)
2141 {
2142 #ifdef CONFIG_INTEL_IOMMU
2143         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2144                 return true;
2145 #endif
2146         return false;
2147 }
2148
2149 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2150 {
2151         int tile_height;
2152
2153         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2154         return ALIGN(height, tile_height);
2155 }
2156
2157 int
2158 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2159                            struct drm_i915_gem_object *obj,
2160                            struct intel_engine_cs *pipelined)
2161 {
2162         struct drm_i915_private *dev_priv = dev->dev_private;
2163         u32 alignment;
2164         int ret;
2165
2166         switch (obj->tiling_mode) {
2167         case I915_TILING_NONE:
2168                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2169                         alignment = 128 * 1024;
2170                 else if (INTEL_INFO(dev)->gen >= 4)
2171                         alignment = 4 * 1024;
2172                 else
2173                         alignment = 64 * 1024;
2174                 break;
2175         case I915_TILING_X:
2176                 /* pin() will align the object as required by fence */
2177                 alignment = 0;
2178                 break;
2179         case I915_TILING_Y:
2180                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2181                 return -EINVAL;
2182         default:
2183                 BUG();
2184         }
2185
2186         /* Note that the w/a also requires 64 PTE of padding following the
2187          * bo. We currently fill all unused PTE with the shadow page and so
2188          * we should always have valid PTE following the scanout preventing
2189          * the VT-d warning.
2190          */
2191         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2192                 alignment = 256 * 1024;
2193
2194         dev_priv->mm.interruptible = false;
2195         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2196         if (ret)
2197                 goto err_interruptible;
2198
2199         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2200          * fence, whereas 965+ only requires a fence if using
2201          * framebuffer compression.  For simplicity, we always install
2202          * a fence as the cost is not that onerous.
2203          */
2204         ret = i915_gem_object_get_fence(obj);
2205         if (ret)
2206                 goto err_unpin;
2207
2208         i915_gem_object_pin_fence(obj);
2209
2210         dev_priv->mm.interruptible = true;
2211         return 0;
2212
2213 err_unpin:
2214         i915_gem_object_unpin_from_display_plane(obj);
2215 err_interruptible:
2216         dev_priv->mm.interruptible = true;
2217         return ret;
2218 }
2219
2220 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2221 {
2222         i915_gem_object_unpin_fence(obj);
2223         i915_gem_object_unpin_from_display_plane(obj);
2224 }
2225
2226 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2227  * is assumed to be a power-of-two. */
2228 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2229                                              unsigned int tiling_mode,
2230                                              unsigned int cpp,
2231                                              unsigned int pitch)
2232 {
2233         if (tiling_mode != I915_TILING_NONE) {
2234                 unsigned int tile_rows, tiles;
2235
2236                 tile_rows = *y / 8;
2237                 *y %= 8;
2238
2239                 tiles = *x / (512/cpp);
2240                 *x %= 512/cpp;
2241
2242                 return tile_rows * pitch * 8 + tiles * 4096;
2243         } else {
2244                 unsigned int offset;
2245
2246                 offset = *y * pitch + *x * cpp;
2247                 *y = 0;
2248                 *x = (offset & 4095) / cpp;
2249                 return offset & -4096;
2250         }
2251 }
2252
2253 int intel_format_to_fourcc(int format)
2254 {
2255         switch (format) {
2256         case DISPPLANE_8BPP:
2257                 return DRM_FORMAT_C8;
2258         case DISPPLANE_BGRX555:
2259                 return DRM_FORMAT_XRGB1555;
2260         case DISPPLANE_BGRX565:
2261                 return DRM_FORMAT_RGB565;
2262         default:
2263         case DISPPLANE_BGRX888:
2264                 return DRM_FORMAT_XRGB8888;
2265         case DISPPLANE_RGBX888:
2266                 return DRM_FORMAT_XBGR8888;
2267         case DISPPLANE_BGRX101010:
2268                 return DRM_FORMAT_XRGB2101010;
2269         case DISPPLANE_RGBX101010:
2270                 return DRM_FORMAT_XBGR2101010;
2271         }
2272 }
2273
2274 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2275                                   struct intel_plane_config *plane_config)
2276 {
2277         struct drm_device *dev = crtc->base.dev;
2278         struct drm_i915_gem_object *obj = NULL;
2279         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2280         u32 base = plane_config->base;
2281
2282         if (plane_config->size == 0)
2283                 return false;
2284
2285         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2286                                                              plane_config->size);
2287         if (!obj)
2288                 return false;
2289
2290         if (plane_config->tiled) {
2291                 obj->tiling_mode = I915_TILING_X;
2292                 obj->stride = crtc->base.primary->fb->pitches[0];
2293         }
2294
2295         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2296         mode_cmd.width = crtc->base.primary->fb->width;
2297         mode_cmd.height = crtc->base.primary->fb->height;
2298         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2299
2300         mutex_lock(&dev->struct_mutex);
2301
2302         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2303                                    &mode_cmd, obj)) {
2304                 DRM_DEBUG_KMS("intel fb init failed\n");
2305                 goto out_unref_obj;
2306         }
2307
2308         mutex_unlock(&dev->struct_mutex);
2309
2310         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2311         return true;
2312
2313 out_unref_obj:
2314         drm_gem_object_unreference(&obj->base);
2315         mutex_unlock(&dev->struct_mutex);
2316         return false;
2317 }
2318
2319 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2320                                  struct intel_plane_config *plane_config)
2321 {
2322         struct drm_device *dev = intel_crtc->base.dev;
2323         struct drm_crtc *c;
2324         struct intel_crtc *i;
2325         struct intel_framebuffer *fb;
2326
2327         if (!intel_crtc->base.primary->fb)
2328                 return;
2329
2330         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2331                 return;
2332
2333         kfree(intel_crtc->base.primary->fb);
2334         intel_crtc->base.primary->fb = NULL;
2335
2336         /*
2337          * Failed to alloc the obj, check to see if we should share
2338          * an fb with another CRTC instead
2339          */
2340         for_each_crtc(dev, c) {
2341                 i = to_intel_crtc(c);
2342
2343                 if (c == &intel_crtc->base)
2344                         continue;
2345
2346                 if (!i->active || !c->primary->fb)
2347                         continue;
2348
2349                 fb = to_intel_framebuffer(c->primary->fb);
2350                 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
2351                         drm_framebuffer_reference(c->primary->fb);
2352                         intel_crtc->base.primary->fb = c->primary->fb;
2353                         break;
2354                 }
2355         }
2356 }
2357
2358 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2359                                       struct drm_framebuffer *fb,
2360                                       int x, int y)
2361 {
2362         struct drm_device *dev = crtc->dev;
2363         struct drm_i915_private *dev_priv = dev->dev_private;
2364         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2365         struct intel_framebuffer *intel_fb;
2366         struct drm_i915_gem_object *obj;
2367         int plane = intel_crtc->plane;
2368         unsigned long linear_offset;
2369         u32 dspcntr;
2370         u32 reg;
2371
2372         intel_fb = to_intel_framebuffer(fb);
2373         obj = intel_fb->obj;
2374
2375         reg = DSPCNTR(plane);
2376         dspcntr = I915_READ(reg);
2377         /* Mask out pixel format bits in case we change it */
2378         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2379         switch (fb->pixel_format) {
2380         case DRM_FORMAT_C8:
2381                 dspcntr |= DISPPLANE_8BPP;
2382                 break;
2383         case DRM_FORMAT_XRGB1555:
2384         case DRM_FORMAT_ARGB1555:
2385                 dspcntr |= DISPPLANE_BGRX555;
2386                 break;
2387         case DRM_FORMAT_RGB565:
2388                 dspcntr |= DISPPLANE_BGRX565;
2389                 break;
2390         case DRM_FORMAT_XRGB8888:
2391         case DRM_FORMAT_ARGB8888:
2392                 dspcntr |= DISPPLANE_BGRX888;
2393                 break;
2394         case DRM_FORMAT_XBGR8888:
2395         case DRM_FORMAT_ABGR8888:
2396                 dspcntr |= DISPPLANE_RGBX888;
2397                 break;
2398         case DRM_FORMAT_XRGB2101010:
2399         case DRM_FORMAT_ARGB2101010:
2400                 dspcntr |= DISPPLANE_BGRX101010;
2401                 break;
2402         case DRM_FORMAT_XBGR2101010:
2403         case DRM_FORMAT_ABGR2101010:
2404                 dspcntr |= DISPPLANE_RGBX101010;
2405                 break;
2406         default:
2407                 BUG();
2408         }
2409
2410         if (INTEL_INFO(dev)->gen >= 4) {
2411                 if (obj->tiling_mode != I915_TILING_NONE)
2412                         dspcntr |= DISPPLANE_TILED;
2413                 else
2414                         dspcntr &= ~DISPPLANE_TILED;
2415         }
2416
2417         if (IS_G4X(dev))
2418                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2419
2420         I915_WRITE(reg, dspcntr);
2421
2422         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2423
2424         if (INTEL_INFO(dev)->gen >= 4) {
2425                 intel_crtc->dspaddr_offset =
2426                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2427                                                        fb->bits_per_pixel / 8,
2428                                                        fb->pitches[0]);
2429                 linear_offset -= intel_crtc->dspaddr_offset;
2430         } else {
2431                 intel_crtc->dspaddr_offset = linear_offset;
2432         }
2433
2434         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2435                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2436                       fb->pitches[0]);
2437         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2438         if (INTEL_INFO(dev)->gen >= 4) {
2439                 I915_WRITE(DSPSURF(plane),
2440                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2441                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2442                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2443         } else
2444                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2445         POSTING_READ(reg);
2446 }
2447
2448 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2449                                           struct drm_framebuffer *fb,
2450                                           int x, int y)
2451 {
2452         struct drm_device *dev = crtc->dev;
2453         struct drm_i915_private *dev_priv = dev->dev_private;
2454         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2455         struct intel_framebuffer *intel_fb;
2456         struct drm_i915_gem_object *obj;
2457         int plane = intel_crtc->plane;
2458         unsigned long linear_offset;
2459         u32 dspcntr;
2460         u32 reg;
2461
2462         intel_fb = to_intel_framebuffer(fb);
2463         obj = intel_fb->obj;
2464
2465         reg = DSPCNTR(plane);
2466         dspcntr = I915_READ(reg);
2467         /* Mask out pixel format bits in case we change it */
2468         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2469         switch (fb->pixel_format) {
2470         case DRM_FORMAT_C8:
2471                 dspcntr |= DISPPLANE_8BPP;
2472                 break;
2473         case DRM_FORMAT_RGB565:
2474                 dspcntr |= DISPPLANE_BGRX565;
2475                 break;
2476         case DRM_FORMAT_XRGB8888:
2477         case DRM_FORMAT_ARGB8888:
2478                 dspcntr |= DISPPLANE_BGRX888;
2479                 break;
2480         case DRM_FORMAT_XBGR8888:
2481         case DRM_FORMAT_ABGR8888:
2482                 dspcntr |= DISPPLANE_RGBX888;
2483                 break;
2484         case DRM_FORMAT_XRGB2101010:
2485         case DRM_FORMAT_ARGB2101010:
2486                 dspcntr |= DISPPLANE_BGRX101010;
2487                 break;
2488         case DRM_FORMAT_XBGR2101010:
2489         case DRM_FORMAT_ABGR2101010:
2490                 dspcntr |= DISPPLANE_RGBX101010;
2491                 break;
2492         default:
2493                 BUG();
2494         }
2495
2496         if (obj->tiling_mode != I915_TILING_NONE)
2497                 dspcntr |= DISPPLANE_TILED;
2498         else
2499                 dspcntr &= ~DISPPLANE_TILED;
2500
2501         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2502                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2503         else
2504                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2505
2506         I915_WRITE(reg, dspcntr);
2507
2508         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2509         intel_crtc->dspaddr_offset =
2510                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2511                                                fb->bits_per_pixel / 8,
2512                                                fb->pitches[0]);
2513         linear_offset -= intel_crtc->dspaddr_offset;
2514
2515         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2516                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2517                       fb->pitches[0]);
2518         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2519         I915_WRITE(DSPSURF(plane),
2520                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2521         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2522                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2523         } else {
2524                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2525                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2526         }
2527         POSTING_READ(reg);
2528 }
2529
2530 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2531 static int
2532 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2533                            int x, int y, enum mode_set_atomic state)
2534 {
2535         struct drm_device *dev = crtc->dev;
2536         struct drm_i915_private *dev_priv = dev->dev_private;
2537
2538         if (dev_priv->display.disable_fbc)
2539                 dev_priv->display.disable_fbc(dev);
2540         intel_increase_pllclock(crtc);
2541
2542         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2543
2544         return 0;
2545 }
2546
2547 void intel_display_handle_reset(struct drm_device *dev)
2548 {
2549         struct drm_i915_private *dev_priv = dev->dev_private;
2550         struct drm_crtc *crtc;
2551
2552         /*
2553          * Flips in the rings have been nuked by the reset,
2554          * so complete all pending flips so that user space
2555          * will get its events and not get stuck.
2556          *
2557          * Also update the base address of all primary
2558          * planes to the the last fb to make sure we're
2559          * showing the correct fb after a reset.
2560          *
2561          * Need to make two loops over the crtcs so that we
2562          * don't try to grab a crtc mutex before the
2563          * pending_flip_queue really got woken up.
2564          */
2565
2566         for_each_crtc(dev, crtc) {
2567                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2568                 enum plane plane = intel_crtc->plane;
2569
2570                 intel_prepare_page_flip(dev, plane);
2571                 intel_finish_page_flip_plane(dev, plane);
2572         }
2573
2574         for_each_crtc(dev, crtc) {
2575                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2576
2577                 drm_modeset_lock(&crtc->mutex, NULL);
2578                 /*
2579                  * FIXME: Once we have proper support for primary planes (and
2580                  * disabling them without disabling the entire crtc) allow again
2581                  * a NULL crtc->primary->fb.
2582                  */
2583                 if (intel_crtc->active && crtc->primary->fb)
2584                         dev_priv->display.update_primary_plane(crtc,
2585                                                                crtc->primary->fb,
2586                                                                crtc->x,
2587                                                                crtc->y);
2588                 drm_modeset_unlock(&crtc->mutex);
2589         }
2590 }
2591
2592 static int
2593 intel_finish_fb(struct drm_framebuffer *old_fb)
2594 {
2595         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2596         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2597         bool was_interruptible = dev_priv->mm.interruptible;
2598         int ret;
2599
2600         /* Big Hammer, we also need to ensure that any pending
2601          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2602          * current scanout is retired before unpinning the old
2603          * framebuffer.
2604          *
2605          * This should only fail upon a hung GPU, in which case we
2606          * can safely continue.
2607          */
2608         dev_priv->mm.interruptible = false;
2609         ret = i915_gem_object_finish_gpu(obj);
2610         dev_priv->mm.interruptible = was_interruptible;
2611
2612         return ret;
2613 }
2614
2615 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2616 {
2617         struct drm_device *dev = crtc->dev;
2618         struct drm_i915_private *dev_priv = dev->dev_private;
2619         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2620         unsigned long flags;
2621         bool pending;
2622
2623         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2624             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2625                 return false;
2626
2627         spin_lock_irqsave(&dev->event_lock, flags);
2628         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2629         spin_unlock_irqrestore(&dev->event_lock, flags);
2630
2631         return pending;
2632 }
2633
2634 static int
2635 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2636                     struct drm_framebuffer *fb)
2637 {
2638         struct drm_device *dev = crtc->dev;
2639         struct drm_i915_private *dev_priv = dev->dev_private;
2640         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2641         struct drm_framebuffer *old_fb;
2642         int ret;
2643
2644         if (intel_crtc_has_pending_flip(crtc)) {
2645                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2646                 return -EBUSY;
2647         }
2648
2649         /* no fb bound */
2650         if (!fb) {
2651                 DRM_ERROR("No FB bound\n");
2652                 return 0;
2653         }
2654
2655         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2656                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2657                           plane_name(intel_crtc->plane),
2658                           INTEL_INFO(dev)->num_pipes);
2659                 return -EINVAL;
2660         }
2661
2662         mutex_lock(&dev->struct_mutex);
2663         ret = intel_pin_and_fence_fb_obj(dev,
2664                                          to_intel_framebuffer(fb)->obj,
2665                                          NULL);
2666         mutex_unlock(&dev->struct_mutex);
2667         if (ret != 0) {
2668                 DRM_ERROR("pin & fence failed\n");
2669                 return ret;
2670         }
2671
2672         /*
2673          * Update pipe size and adjust fitter if needed: the reason for this is
2674          * that in compute_mode_changes we check the native mode (not the pfit
2675          * mode) to see if we can flip rather than do a full mode set. In the
2676          * fastboot case, we'll flip, but if we don't update the pipesrc and
2677          * pfit state, we'll end up with a big fb scanned out into the wrong
2678          * sized surface.
2679          *
2680          * To fix this properly, we need to hoist the checks up into
2681          * compute_mode_changes (or above), check the actual pfit state and
2682          * whether the platform allows pfit disable with pipe active, and only
2683          * then update the pipesrc and pfit state, even on the flip path.
2684          */
2685         if (i915.fastboot) {
2686                 const struct drm_display_mode *adjusted_mode =
2687                         &intel_crtc->config.adjusted_mode;
2688
2689                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2690                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2691                            (adjusted_mode->crtc_vdisplay - 1));
2692                 if (!intel_crtc->config.pch_pfit.enabled &&
2693                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2694                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2695                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2696                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2697                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2698                 }
2699                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2700                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2701         }
2702
2703         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2704
2705         old_fb = crtc->primary->fb;
2706         crtc->primary->fb = fb;
2707         crtc->x = x;
2708         crtc->y = y;
2709
2710         if (old_fb) {
2711                 if (intel_crtc->active && old_fb != fb)
2712                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2713                 mutex_lock(&dev->struct_mutex);
2714                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2715                 mutex_unlock(&dev->struct_mutex);
2716         }
2717
2718         mutex_lock(&dev->struct_mutex);
2719         intel_update_fbc(dev);
2720         intel_edp_psr_update(dev);
2721         mutex_unlock(&dev->struct_mutex);
2722
2723         return 0;
2724 }
2725
2726 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2727 {
2728         struct drm_device *dev = crtc->dev;
2729         struct drm_i915_private *dev_priv = dev->dev_private;
2730         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2731         int pipe = intel_crtc->pipe;
2732         u32 reg, temp;
2733
2734         /* enable normal train */
2735         reg = FDI_TX_CTL(pipe);
2736         temp = I915_READ(reg);
2737         if (IS_IVYBRIDGE(dev)) {
2738                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2739                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2740         } else {
2741                 temp &= ~FDI_LINK_TRAIN_NONE;
2742                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2743         }
2744         I915_WRITE(reg, temp);
2745
2746         reg = FDI_RX_CTL(pipe);
2747         temp = I915_READ(reg);
2748         if (HAS_PCH_CPT(dev)) {
2749                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2750                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2751         } else {
2752                 temp &= ~FDI_LINK_TRAIN_NONE;
2753                 temp |= FDI_LINK_TRAIN_NONE;
2754         }
2755         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2756
2757         /* wait one idle pattern time */
2758         POSTING_READ(reg);
2759         udelay(1000);
2760
2761         /* IVB wants error correction enabled */
2762         if (IS_IVYBRIDGE(dev))
2763                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2764                            FDI_FE_ERRC_ENABLE);
2765 }
2766
2767 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2768 {
2769         return crtc->base.enabled && crtc->active &&
2770                 crtc->config.has_pch_encoder;
2771 }
2772
2773 static void ivb_modeset_global_resources(struct drm_device *dev)
2774 {
2775         struct drm_i915_private *dev_priv = dev->dev_private;
2776         struct intel_crtc *pipe_B_crtc =
2777                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2778         struct intel_crtc *pipe_C_crtc =
2779                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2780         uint32_t temp;
2781
2782         /*
2783          * When everything is off disable fdi C so that we could enable fdi B
2784          * with all lanes. Note that we don't care about enabled pipes without
2785          * an enabled pch encoder.
2786          */
2787         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2788             !pipe_has_enabled_pch(pipe_C_crtc)) {
2789                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2790                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2791
2792                 temp = I915_READ(SOUTH_CHICKEN1);
2793                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2794                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2795                 I915_WRITE(SOUTH_CHICKEN1, temp);
2796         }
2797 }
2798
2799 /* The FDI link training functions for ILK/Ibexpeak. */
2800 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2801 {
2802         struct drm_device *dev = crtc->dev;
2803         struct drm_i915_private *dev_priv = dev->dev_private;
2804         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2805         int pipe = intel_crtc->pipe;
2806         u32 reg, temp, tries;
2807
2808         /* FDI needs bits from pipe first */
2809         assert_pipe_enabled(dev_priv, pipe);
2810
2811         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2812            for train result */
2813         reg = FDI_RX_IMR(pipe);
2814         temp = I915_READ(reg);
2815         temp &= ~FDI_RX_SYMBOL_LOCK;
2816         temp &= ~FDI_RX_BIT_LOCK;
2817         I915_WRITE(reg, temp);
2818         I915_READ(reg);
2819         udelay(150);
2820
2821         /* enable CPU FDI TX and PCH FDI RX */
2822         reg = FDI_TX_CTL(pipe);
2823         temp = I915_READ(reg);
2824         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2825         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2826         temp &= ~FDI_LINK_TRAIN_NONE;
2827         temp |= FDI_LINK_TRAIN_PATTERN_1;
2828         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2829
2830         reg = FDI_RX_CTL(pipe);
2831         temp = I915_READ(reg);
2832         temp &= ~FDI_LINK_TRAIN_NONE;
2833         temp |= FDI_LINK_TRAIN_PATTERN_1;
2834         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2835
2836         POSTING_READ(reg);
2837         udelay(150);
2838
2839         /* Ironlake workaround, enable clock pointer after FDI enable*/
2840         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2841         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2842                    FDI_RX_PHASE_SYNC_POINTER_EN);
2843
2844         reg = FDI_RX_IIR(pipe);
2845         for (tries = 0; tries < 5; tries++) {
2846                 temp = I915_READ(reg);
2847                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2848
2849                 if ((temp & FDI_RX_BIT_LOCK)) {
2850                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2851                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2852                         break;
2853                 }
2854         }
2855         if (tries == 5)
2856                 DRM_ERROR("FDI train 1 fail!\n");
2857
2858         /* Train 2 */
2859         reg = FDI_TX_CTL(pipe);
2860         temp = I915_READ(reg);
2861         temp &= ~FDI_LINK_TRAIN_NONE;
2862         temp |= FDI_LINK_TRAIN_PATTERN_2;
2863         I915_WRITE(reg, temp);
2864
2865         reg = FDI_RX_CTL(pipe);
2866         temp = I915_READ(reg);
2867         temp &= ~FDI_LINK_TRAIN_NONE;
2868         temp |= FDI_LINK_TRAIN_PATTERN_2;
2869         I915_WRITE(reg, temp);
2870
2871         POSTING_READ(reg);
2872         udelay(150);
2873
2874         reg = FDI_RX_IIR(pipe);
2875         for (tries = 0; tries < 5; tries++) {
2876                 temp = I915_READ(reg);
2877                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2878
2879                 if (temp & FDI_RX_SYMBOL_LOCK) {
2880                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2881                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2882                         break;
2883                 }
2884         }
2885         if (tries == 5)
2886                 DRM_ERROR("FDI train 2 fail!\n");
2887
2888         DRM_DEBUG_KMS("FDI train done\n");
2889
2890 }
2891
2892 static const int snb_b_fdi_train_param[] = {
2893         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2894         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2895         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2896         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2897 };
2898
2899 /* The FDI link training functions for SNB/Cougarpoint. */
2900 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2901 {
2902         struct drm_device *dev = crtc->dev;
2903         struct drm_i915_private *dev_priv = dev->dev_private;
2904         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2905         int pipe = intel_crtc->pipe;
2906         u32 reg, temp, i, retry;
2907
2908         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2909            for train result */
2910         reg = FDI_RX_IMR(pipe);
2911         temp = I915_READ(reg);
2912         temp &= ~FDI_RX_SYMBOL_LOCK;
2913         temp &= ~FDI_RX_BIT_LOCK;
2914         I915_WRITE(reg, temp);
2915
2916         POSTING_READ(reg);
2917         udelay(150);
2918
2919         /* enable CPU FDI TX and PCH FDI RX */
2920         reg = FDI_TX_CTL(pipe);
2921         temp = I915_READ(reg);
2922         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2923         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2924         temp &= ~FDI_LINK_TRAIN_NONE;
2925         temp |= FDI_LINK_TRAIN_PATTERN_1;
2926         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2927         /* SNB-B */
2928         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2929         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2930
2931         I915_WRITE(FDI_RX_MISC(pipe),
2932                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2933
2934         reg = FDI_RX_CTL(pipe);
2935         temp = I915_READ(reg);
2936         if (HAS_PCH_CPT(dev)) {
2937                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2938                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2939         } else {
2940                 temp &= ~FDI_LINK_TRAIN_NONE;
2941                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2942         }
2943         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2944
2945         POSTING_READ(reg);
2946         udelay(150);
2947
2948         for (i = 0; i < 4; i++) {
2949                 reg = FDI_TX_CTL(pipe);
2950                 temp = I915_READ(reg);
2951                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2952                 temp |= snb_b_fdi_train_param[i];
2953                 I915_WRITE(reg, temp);
2954
2955                 POSTING_READ(reg);
2956                 udelay(500);
2957
2958                 for (retry = 0; retry < 5; retry++) {
2959                         reg = FDI_RX_IIR(pipe);
2960                         temp = I915_READ(reg);
2961                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2962                         if (temp & FDI_RX_BIT_LOCK) {
2963                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2964                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2965                                 break;
2966                         }
2967                         udelay(50);
2968                 }
2969                 if (retry < 5)
2970                         break;
2971         }
2972         if (i == 4)
2973                 DRM_ERROR("FDI train 1 fail!\n");
2974
2975         /* Train 2 */
2976         reg = FDI_TX_CTL(pipe);
2977         temp = I915_READ(reg);
2978         temp &= ~FDI_LINK_TRAIN_NONE;
2979         temp |= FDI_LINK_TRAIN_PATTERN_2;
2980         if (IS_GEN6(dev)) {
2981                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2982                 /* SNB-B */
2983                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2984         }
2985         I915_WRITE(reg, temp);
2986
2987         reg = FDI_RX_CTL(pipe);
2988         temp = I915_READ(reg);
2989         if (HAS_PCH_CPT(dev)) {
2990                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2991                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2992         } else {
2993                 temp &= ~FDI_LINK_TRAIN_NONE;
2994                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2995         }
2996         I915_WRITE(reg, temp);
2997
2998         POSTING_READ(reg);
2999         udelay(150);
3000
3001         for (i = 0; i < 4; i++) {
3002                 reg = FDI_TX_CTL(pipe);
3003                 temp = I915_READ(reg);
3004                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3005                 temp |= snb_b_fdi_train_param[i];
3006                 I915_WRITE(reg, temp);
3007
3008                 POSTING_READ(reg);
3009                 udelay(500);
3010
3011                 for (retry = 0; retry < 5; retry++) {
3012                         reg = FDI_RX_IIR(pipe);
3013                         temp = I915_READ(reg);
3014                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3015                         if (temp & FDI_RX_SYMBOL_LOCK) {
3016                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3017                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3018                                 break;
3019                         }
3020                         udelay(50);
3021                 }
3022                 if (retry < 5)
3023                         break;
3024         }
3025         if (i == 4)
3026                 DRM_ERROR("FDI train 2 fail!\n");
3027
3028         DRM_DEBUG_KMS("FDI train done.\n");
3029 }
3030
3031 /* Manual link training for Ivy Bridge A0 parts */
3032 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3033 {
3034         struct drm_device *dev = crtc->dev;
3035         struct drm_i915_private *dev_priv = dev->dev_private;
3036         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3037         int pipe = intel_crtc->pipe;
3038         u32 reg, temp, i, j;
3039
3040         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3041            for train result */
3042         reg = FDI_RX_IMR(pipe);
3043         temp = I915_READ(reg);
3044         temp &= ~FDI_RX_SYMBOL_LOCK;
3045         temp &= ~FDI_RX_BIT_LOCK;
3046         I915_WRITE(reg, temp);
3047
3048         POSTING_READ(reg);
3049         udelay(150);
3050
3051         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3052                       I915_READ(FDI_RX_IIR(pipe)));
3053
3054         /* Try each vswing and preemphasis setting twice before moving on */
3055         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3056                 /* disable first in case we need to retry */
3057                 reg = FDI_TX_CTL(pipe);
3058                 temp = I915_READ(reg);
3059                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3060                 temp &= ~FDI_TX_ENABLE;
3061                 I915_WRITE(reg, temp);
3062
3063                 reg = FDI_RX_CTL(pipe);
3064                 temp = I915_READ(reg);
3065                 temp &= ~FDI_LINK_TRAIN_AUTO;
3066                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3067                 temp &= ~FDI_RX_ENABLE;
3068                 I915_WRITE(reg, temp);
3069
3070                 /* enable CPU FDI TX and PCH FDI RX */
3071                 reg = FDI_TX_CTL(pipe);
3072                 temp = I915_READ(reg);
3073                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3074                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3075                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3076                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3077                 temp |= snb_b_fdi_train_param[j/2];
3078                 temp |= FDI_COMPOSITE_SYNC;
3079                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3080
3081                 I915_WRITE(FDI_RX_MISC(pipe),
3082                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3083
3084                 reg = FDI_RX_CTL(pipe);
3085                 temp = I915_READ(reg);
3086                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3087                 temp |= FDI_COMPOSITE_SYNC;
3088                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3089
3090                 POSTING_READ(reg);
3091                 udelay(1); /* should be 0.5us */
3092
3093                 for (i = 0; i < 4; i++) {
3094                         reg = FDI_RX_IIR(pipe);
3095                         temp = I915_READ(reg);
3096                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3097
3098                         if (temp & FDI_RX_BIT_LOCK ||
3099                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3100                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3101                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3102                                               i);
3103                                 break;
3104                         }
3105                         udelay(1); /* should be 0.5us */
3106                 }
3107                 if (i == 4) {
3108                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3109                         continue;
3110                 }
3111
3112                 /* Train 2 */
3113                 reg = FDI_TX_CTL(pipe);
3114                 temp = I915_READ(reg);
3115                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3116                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3117                 I915_WRITE(reg, temp);
3118
3119                 reg = FDI_RX_CTL(pipe);
3120                 temp = I915_READ(reg);
3121                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3122                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3123                 I915_WRITE(reg, temp);
3124
3125                 POSTING_READ(reg);
3126                 udelay(2); /* should be 1.5us */
3127
3128                 for (i = 0; i < 4; i++) {
3129                         reg = FDI_RX_IIR(pipe);
3130                         temp = I915_READ(reg);
3131                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3132
3133                         if (temp & FDI_RX_SYMBOL_LOCK ||
3134                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3135                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3136                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3137                                               i);
3138                                 goto train_done;
3139                         }
3140                         udelay(2); /* should be 1.5us */
3141                 }
3142                 if (i == 4)
3143                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3144         }
3145
3146 train_done:
3147         DRM_DEBUG_KMS("FDI train done.\n");
3148 }
3149
3150 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3151 {
3152         struct drm_device *dev = intel_crtc->base.dev;
3153         struct drm_i915_private *dev_priv = dev->dev_private;
3154         int pipe = intel_crtc->pipe;
3155         u32 reg, temp;
3156
3157
3158         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3159         reg = FDI_RX_CTL(pipe);
3160         temp = I915_READ(reg);
3161         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3162         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3163         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3164         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3165
3166         POSTING_READ(reg);
3167         udelay(200);
3168
3169         /* Switch from Rawclk to PCDclk */
3170         temp = I915_READ(reg);
3171         I915_WRITE(reg, temp | FDI_PCDCLK);
3172
3173         POSTING_READ(reg);
3174         udelay(200);
3175
3176         /* Enable CPU FDI TX PLL, always on for Ironlake */
3177         reg = FDI_TX_CTL(pipe);
3178         temp = I915_READ(reg);
3179         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3180                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3181
3182                 POSTING_READ(reg);
3183                 udelay(100);
3184         }
3185 }
3186
3187 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3188 {
3189         struct drm_device *dev = intel_crtc->base.dev;
3190         struct drm_i915_private *dev_priv = dev->dev_private;
3191         int pipe = intel_crtc->pipe;
3192         u32 reg, temp;
3193
3194         /* Switch from PCDclk to Rawclk */
3195         reg = FDI_RX_CTL(pipe);
3196         temp = I915_READ(reg);
3197         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3198
3199         /* Disable CPU FDI TX PLL */
3200         reg = FDI_TX_CTL(pipe);
3201         temp = I915_READ(reg);
3202         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3203
3204         POSTING_READ(reg);
3205         udelay(100);
3206
3207         reg = FDI_RX_CTL(pipe);
3208         temp = I915_READ(reg);
3209         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3210
3211         /* Wait for the clocks to turn off. */
3212         POSTING_READ(reg);
3213         udelay(100);
3214 }
3215
3216 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3217 {
3218         struct drm_device *dev = crtc->dev;
3219         struct drm_i915_private *dev_priv = dev->dev_private;
3220         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3221         int pipe = intel_crtc->pipe;
3222         u32 reg, temp;
3223
3224         /* disable CPU FDI tx and PCH FDI rx */
3225         reg = FDI_TX_CTL(pipe);
3226         temp = I915_READ(reg);
3227         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3228         POSTING_READ(reg);
3229
3230         reg = FDI_RX_CTL(pipe);
3231         temp = I915_READ(reg);
3232         temp &= ~(0x7 << 16);
3233         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3234         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3235
3236         POSTING_READ(reg);
3237         udelay(100);
3238
3239         /* Ironlake workaround, disable clock pointer after downing FDI */
3240         if (HAS_PCH_IBX(dev))
3241                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3242
3243         /* still set train pattern 1 */
3244         reg = FDI_TX_CTL(pipe);
3245         temp = I915_READ(reg);
3246         temp &= ~FDI_LINK_TRAIN_NONE;
3247         temp |= FDI_LINK_TRAIN_PATTERN_1;
3248         I915_WRITE(reg, temp);
3249
3250         reg = FDI_RX_CTL(pipe);
3251         temp = I915_READ(reg);
3252         if (HAS_PCH_CPT(dev)) {
3253                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3254                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3255         } else {
3256                 temp &= ~FDI_LINK_TRAIN_NONE;
3257                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3258         }
3259         /* BPC in FDI rx is consistent with that in PIPECONF */
3260         temp &= ~(0x07 << 16);
3261         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3262         I915_WRITE(reg, temp);
3263
3264         POSTING_READ(reg);
3265         udelay(100);
3266 }
3267
3268 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3269 {
3270         struct intel_crtc *crtc;
3271
3272         /* Note that we don't need to be called with mode_config.lock here
3273          * as our list of CRTC objects is static for the lifetime of the
3274          * device and so cannot disappear as we iterate. Similarly, we can
3275          * happily treat the predicates as racy, atomic checks as userspace
3276          * cannot claim and pin a new fb without at least acquring the
3277          * struct_mutex and so serialising with us.
3278          */
3279         for_each_intel_crtc(dev, crtc) {
3280                 if (atomic_read(&crtc->unpin_work_count) == 0)
3281                         continue;
3282
3283                 if (crtc->unpin_work)
3284                         intel_wait_for_vblank(dev, crtc->pipe);
3285
3286                 return true;
3287         }
3288
3289         return false;
3290 }
3291
3292 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3293 {
3294         struct drm_device *dev = crtc->dev;
3295         struct drm_i915_private *dev_priv = dev->dev_private;
3296
3297         if (crtc->primary->fb == NULL)
3298                 return;
3299
3300         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3301
3302         WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3303                                    !intel_crtc_has_pending_flip(crtc),
3304                                    60*HZ) == 0);
3305
3306         mutex_lock(&dev->struct_mutex);
3307         intel_finish_fb(crtc->primary->fb);
3308         mutex_unlock(&dev->struct_mutex);
3309 }
3310
3311 /* Program iCLKIP clock to the desired frequency */
3312 static void lpt_program_iclkip(struct drm_crtc *crtc)
3313 {
3314         struct drm_device *dev = crtc->dev;
3315         struct drm_i915_private *dev_priv = dev->dev_private;
3316         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3317         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3318         u32 temp;
3319
3320         mutex_lock(&dev_priv->dpio_lock);
3321
3322         /* It is necessary to ungate the pixclk gate prior to programming
3323          * the divisors, and gate it back when it is done.
3324          */
3325         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3326
3327         /* Disable SSCCTL */
3328         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3329                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3330                                 SBI_SSCCTL_DISABLE,
3331                         SBI_ICLK);
3332
3333         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3334         if (clock == 20000) {
3335                 auxdiv = 1;
3336                 divsel = 0x41;
3337                 phaseinc = 0x20;
3338         } else {
3339                 /* The iCLK virtual clock root frequency is in MHz,
3340                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3341                  * divisors, it is necessary to divide one by another, so we
3342                  * convert the virtual clock precision to KHz here for higher
3343                  * precision.
3344                  */
3345                 u32 iclk_virtual_root_freq = 172800 * 1000;
3346                 u32 iclk_pi_range = 64;
3347                 u32 desired_divisor, msb_divisor_value, pi_value;
3348
3349                 desired_divisor = (iclk_virtual_root_freq / clock);
3350                 msb_divisor_value = desired_divisor / iclk_pi_range;
3351                 pi_value = desired_divisor % iclk_pi_range;
3352
3353                 auxdiv = 0;
3354                 divsel = msb_divisor_value - 2;
3355                 phaseinc = pi_value;
3356         }
3357
3358         /* This should not happen with any sane values */
3359         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3360                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3361         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3362                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3363
3364         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3365                         clock,
3366                         auxdiv,
3367                         divsel,
3368                         phasedir,
3369                         phaseinc);
3370
3371         /* Program SSCDIVINTPHASE6 */
3372         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3373         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3374         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3375         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3376         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3377         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3378         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3379         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3380
3381         /* Program SSCAUXDIV */
3382         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3383         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3384         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3385         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3386
3387         /* Enable modulator and associated divider */
3388         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3389         temp &= ~SBI_SSCCTL_DISABLE;
3390         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3391
3392         /* Wait for initialization time */
3393         udelay(24);
3394
3395         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3396
3397         mutex_unlock(&dev_priv->dpio_lock);
3398 }
3399
3400 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3401                                                 enum pipe pch_transcoder)
3402 {
3403         struct drm_device *dev = crtc->base.dev;
3404         struct drm_i915_private *dev_priv = dev->dev_private;
3405         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3406
3407         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3408                    I915_READ(HTOTAL(cpu_transcoder)));
3409         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3410                    I915_READ(HBLANK(cpu_transcoder)));
3411         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3412                    I915_READ(HSYNC(cpu_transcoder)));
3413
3414         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3415                    I915_READ(VTOTAL(cpu_transcoder)));
3416         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3417                    I915_READ(VBLANK(cpu_transcoder)));
3418         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3419                    I915_READ(VSYNC(cpu_transcoder)));
3420         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3421                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3422 }
3423
3424 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3425 {
3426         struct drm_i915_private *dev_priv = dev->dev_private;
3427         uint32_t temp;
3428
3429         temp = I915_READ(SOUTH_CHICKEN1);
3430         if (temp & FDI_BC_BIFURCATION_SELECT)
3431                 return;
3432
3433         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3434         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3435
3436         temp |= FDI_BC_BIFURCATION_SELECT;
3437         DRM_DEBUG_KMS("enabling fdi C rx\n");
3438         I915_WRITE(SOUTH_CHICKEN1, temp);
3439         POSTING_READ(SOUTH_CHICKEN1);
3440 }
3441
3442 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3443 {
3444         struct drm_device *dev = intel_crtc->base.dev;
3445         struct drm_i915_private *dev_priv = dev->dev_private;
3446
3447         switch (intel_crtc->pipe) {
3448         case PIPE_A:
3449                 break;
3450         case PIPE_B:
3451                 if (intel_crtc->config.fdi_lanes > 2)
3452                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3453                 else
3454                         cpt_enable_fdi_bc_bifurcation(dev);
3455
3456                 break;
3457         case PIPE_C:
3458                 cpt_enable_fdi_bc_bifurcation(dev);
3459
3460                 break;
3461         default:
3462                 BUG();
3463         }
3464 }
3465
3466 /*
3467  * Enable PCH resources required for PCH ports:
3468  *   - PCH PLLs
3469  *   - FDI training & RX/TX
3470  *   - update transcoder timings
3471  *   - DP transcoding bits
3472  *   - transcoder
3473  */
3474 static void ironlake_pch_enable(struct drm_crtc *crtc)
3475 {
3476         struct drm_device *dev = crtc->dev;
3477         struct drm_i915_private *dev_priv = dev->dev_private;
3478         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3479         int pipe = intel_crtc->pipe;
3480         u32 reg, temp;
3481
3482         assert_pch_transcoder_disabled(dev_priv, pipe);
3483
3484         if (IS_IVYBRIDGE(dev))
3485                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3486
3487         /* Write the TU size bits before fdi link training, so that error
3488          * detection works. */
3489         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3490                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3491
3492         /* For PCH output, training FDI link */
3493         dev_priv->display.fdi_link_train(crtc);
3494
3495         /* We need to program the right clock selection before writing the pixel
3496          * mutliplier into the DPLL. */
3497         if (HAS_PCH_CPT(dev)) {
3498                 u32 sel;
3499
3500                 temp = I915_READ(PCH_DPLL_SEL);
3501                 temp |= TRANS_DPLL_ENABLE(pipe);
3502                 sel = TRANS_DPLLB_SEL(pipe);
3503                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3504                         temp |= sel;
3505                 else
3506                         temp &= ~sel;
3507                 I915_WRITE(PCH_DPLL_SEL, temp);
3508         }
3509
3510         /* XXX: pch pll's can be enabled any time before we enable the PCH
3511          * transcoder, and we actually should do this to not upset any PCH
3512          * transcoder that already use the clock when we share it.
3513          *
3514          * Note that enable_shared_dpll tries to do the right thing, but
3515          * get_shared_dpll unconditionally resets the pll - we need that to have
3516          * the right LVDS enable sequence. */
3517         intel_enable_shared_dpll(intel_crtc);
3518
3519         /* set transcoder timing, panel must allow it */
3520         assert_panel_unlocked(dev_priv, pipe);
3521         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3522
3523         intel_fdi_normal_train(crtc);
3524
3525         /* For PCH DP, enable TRANS_DP_CTL */
3526         if (HAS_PCH_CPT(dev) &&
3527             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3528              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3529                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3530                 reg = TRANS_DP_CTL(pipe);
3531                 temp = I915_READ(reg);
3532                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3533                           TRANS_DP_SYNC_MASK |
3534                           TRANS_DP_BPC_MASK);
3535                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3536                          TRANS_DP_ENH_FRAMING);
3537                 temp |= bpc << 9; /* same format but at 11:9 */
3538
3539                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3540                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3541                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3542                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3543
3544                 switch (intel_trans_dp_port_sel(crtc)) {
3545                 case PCH_DP_B:
3546                         temp |= TRANS_DP_PORT_SEL_B;
3547                         break;
3548                 case PCH_DP_C:
3549                         temp |= TRANS_DP_PORT_SEL_C;
3550                         break;
3551                 case PCH_DP_D:
3552                         temp |= TRANS_DP_PORT_SEL_D;
3553                         break;
3554                 default:
3555                         BUG();
3556                 }
3557
3558                 I915_WRITE(reg, temp);
3559         }
3560
3561         ironlake_enable_pch_transcoder(dev_priv, pipe);
3562 }
3563
3564 static void lpt_pch_enable(struct drm_crtc *crtc)
3565 {
3566         struct drm_device *dev = crtc->dev;
3567         struct drm_i915_private *dev_priv = dev->dev_private;
3568         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3569         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3570
3571         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3572
3573         lpt_program_iclkip(crtc);
3574
3575         /* Set transcoder timing. */
3576         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3577
3578         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3579 }
3580
3581 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3582 {
3583         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3584
3585         if (pll == NULL)
3586                 return;
3587
3588         if (pll->refcount == 0) {
3589                 WARN(1, "bad %s refcount\n", pll->name);
3590                 return;
3591         }
3592
3593         if (--pll->refcount == 0) {
3594                 WARN_ON(pll->on);
3595                 WARN_ON(pll->active);
3596         }
3597
3598         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3599 }
3600
3601 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3602 {
3603         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3604         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3605         enum intel_dpll_id i;
3606
3607         if (pll) {
3608                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3609                               crtc->base.base.id, pll->name);
3610                 intel_put_shared_dpll(crtc);
3611         }
3612
3613         if (HAS_PCH_IBX(dev_priv->dev)) {
3614                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3615                 i = (enum intel_dpll_id) crtc->pipe;
3616                 pll = &dev_priv->shared_dplls[i];
3617
3618                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3619                               crtc->base.base.id, pll->name);
3620
3621                 WARN_ON(pll->refcount);
3622
3623                 goto found;
3624         }
3625
3626         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3627                 pll = &dev_priv->shared_dplls[i];
3628
3629                 /* Only want to check enabled timings first */
3630                 if (pll->refcount == 0)
3631                         continue;
3632
3633                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3634                            sizeof(pll->hw_state)) == 0) {
3635                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3636                                       crtc->base.base.id,
3637                                       pll->name, pll->refcount, pll->active);
3638
3639                         goto found;
3640                 }
3641         }
3642
3643         /* Ok no matching timings, maybe there's a free one? */
3644         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3645                 pll = &dev_priv->shared_dplls[i];
3646                 if (pll->refcount == 0) {
3647                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3648                                       crtc->base.base.id, pll->name);
3649                         goto found;
3650                 }
3651         }
3652
3653         return NULL;
3654
3655 found:
3656         if (pll->refcount == 0)
3657                 pll->hw_state = crtc->config.dpll_hw_state;
3658
3659         crtc->config.shared_dpll = i;
3660         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3661                          pipe_name(crtc->pipe));
3662
3663         pll->refcount++;
3664
3665         return pll;
3666 }
3667
3668 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3669 {
3670         struct drm_i915_private *dev_priv = dev->dev_private;
3671         int dslreg = PIPEDSL(pipe);
3672         u32 temp;
3673
3674         temp = I915_READ(dslreg);
3675         udelay(500);
3676         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3677                 if (wait_for(I915_READ(dslreg) != temp, 5))
3678                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3679         }
3680 }
3681
3682 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3683 {
3684         struct drm_device *dev = crtc->base.dev;
3685         struct drm_i915_private *dev_priv = dev->dev_private;
3686         int pipe = crtc->pipe;
3687
3688         if (crtc->config.pch_pfit.enabled) {
3689                 /* Force use of hard-coded filter coefficients
3690                  * as some pre-programmed values are broken,
3691                  * e.g. x201.
3692                  */
3693                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3694                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3695                                                  PF_PIPE_SEL_IVB(pipe));
3696                 else
3697                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3698                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3699                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3700         }
3701 }
3702
3703 static void intel_enable_planes(struct drm_crtc *crtc)
3704 {
3705         struct drm_device *dev = crtc->dev;
3706         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3707         struct drm_plane *plane;
3708         struct intel_plane *intel_plane;
3709
3710         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3711                 intel_plane = to_intel_plane(plane);
3712                 if (intel_plane->pipe == pipe)
3713                         intel_plane_restore(&intel_plane->base);
3714         }
3715 }
3716
3717 static void intel_disable_planes(struct drm_crtc *crtc)
3718 {
3719         struct drm_device *dev = crtc->dev;
3720         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3721         struct drm_plane *plane;
3722         struct intel_plane *intel_plane;
3723
3724         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3725                 intel_plane = to_intel_plane(plane);
3726                 if (intel_plane->pipe == pipe)
3727                         intel_plane_disable(&intel_plane->base);
3728         }
3729 }
3730
3731 void hsw_enable_ips(struct intel_crtc *crtc)
3732 {
3733         struct drm_device *dev = crtc->base.dev;
3734         struct drm_i915_private *dev_priv = dev->dev_private;
3735
3736         if (!crtc->config.ips_enabled)
3737                 return;
3738
3739         /* We can only enable IPS after we enable a plane and wait for a vblank */
3740         intel_wait_for_vblank(dev, crtc->pipe);
3741
3742         assert_plane_enabled(dev_priv, crtc->plane);
3743         if (IS_BROADWELL(dev)) {
3744                 mutex_lock(&dev_priv->rps.hw_lock);
3745                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3746                 mutex_unlock(&dev_priv->rps.hw_lock);
3747                 /* Quoting Art Runyan: "its not safe to expect any particular
3748                  * value in IPS_CTL bit 31 after enabling IPS through the
3749                  * mailbox." Moreover, the mailbox may return a bogus state,
3750                  * so we need to just enable it and continue on.
3751                  */
3752         } else {
3753                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3754                 /* The bit only becomes 1 in the next vblank, so this wait here
3755                  * is essentially intel_wait_for_vblank. If we don't have this
3756                  * and don't wait for vblanks until the end of crtc_enable, then
3757                  * the HW state readout code will complain that the expected
3758                  * IPS_CTL value is not the one we read. */
3759                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3760                         DRM_ERROR("Timed out waiting for IPS enable\n");
3761         }
3762 }
3763
3764 void hsw_disable_ips(struct intel_crtc *crtc)
3765 {
3766         struct drm_device *dev = crtc->base.dev;
3767         struct drm_i915_private *dev_priv = dev->dev_private;
3768
3769         if (!crtc->config.ips_enabled)
3770                 return;
3771
3772         assert_plane_enabled(dev_priv, crtc->plane);
3773         if (IS_BROADWELL(dev)) {
3774                 mutex_lock(&dev_priv->rps.hw_lock);
3775                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3776                 mutex_unlock(&dev_priv->rps.hw_lock);
3777                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3778                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3779                         DRM_ERROR("Timed out waiting for IPS disable\n");
3780         } else {
3781                 I915_WRITE(IPS_CTL, 0);
3782                 POSTING_READ(IPS_CTL);
3783         }
3784
3785         /* We need to wait for a vblank before we can disable the plane. */
3786         intel_wait_for_vblank(dev, crtc->pipe);
3787 }
3788
3789 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3790 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3791 {
3792         struct drm_device *dev = crtc->dev;
3793         struct drm_i915_private *dev_priv = dev->dev_private;
3794         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3795         enum pipe pipe = intel_crtc->pipe;
3796         int palreg = PALETTE(pipe);
3797         int i;
3798         bool reenable_ips = false;
3799
3800         /* The clocks have to be on to load the palette. */
3801         if (!crtc->enabled || !intel_crtc->active)
3802                 return;
3803
3804         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3805                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3806                         assert_dsi_pll_enabled(dev_priv);
3807                 else
3808                         assert_pll_enabled(dev_priv, pipe);
3809         }
3810
3811         /* use legacy palette for Ironlake */
3812         if (HAS_PCH_SPLIT(dev))
3813                 palreg = LGC_PALETTE(pipe);
3814
3815         /* Workaround : Do not read or write the pipe palette/gamma data while
3816          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3817          */
3818         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3819             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3820              GAMMA_MODE_MODE_SPLIT)) {
3821                 hsw_disable_ips(intel_crtc);
3822                 reenable_ips = true;
3823         }
3824
3825         for (i = 0; i < 256; i++) {
3826                 I915_WRITE(palreg + 4 * i,
3827                            (intel_crtc->lut_r[i] << 16) |
3828                            (intel_crtc->lut_g[i] << 8) |
3829                            intel_crtc->lut_b[i]);
3830         }
3831
3832         if (reenable_ips)
3833                 hsw_enable_ips(intel_crtc);
3834 }
3835
3836 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3837 {
3838         if (!enable && intel_crtc->overlay) {
3839                 struct drm_device *dev = intel_crtc->base.dev;
3840                 struct drm_i915_private *dev_priv = dev->dev_private;
3841
3842                 mutex_lock(&dev->struct_mutex);
3843                 dev_priv->mm.interruptible = false;
3844                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3845                 dev_priv->mm.interruptible = true;
3846                 mutex_unlock(&dev->struct_mutex);
3847         }
3848
3849         /* Let userspace switch the overlay on again. In most cases userspace
3850          * has to recompute where to put it anyway.
3851          */
3852 }
3853
3854 /**
3855  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3856  * cursor plane briefly if not already running after enabling the display
3857  * plane.
3858  * This workaround avoids occasional blank screens when self refresh is
3859  * enabled.
3860  */
3861 static void
3862 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3863 {
3864         u32 cntl = I915_READ(CURCNTR(pipe));
3865
3866         if ((cntl & CURSOR_MODE) == 0) {
3867                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3868
3869                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3870                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3871                 intel_wait_for_vblank(dev_priv->dev, pipe);
3872                 I915_WRITE(CURCNTR(pipe), cntl);
3873                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3874                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3875         }
3876 }
3877
3878 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
3879 {
3880         struct drm_device *dev = crtc->dev;
3881         struct drm_i915_private *dev_priv = dev->dev_private;
3882         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3883         int pipe = intel_crtc->pipe;
3884         int plane = intel_crtc->plane;
3885
3886         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3887         intel_enable_planes(crtc);
3888         /* The fixup needs to happen before cursor is enabled */
3889         if (IS_G4X(dev))
3890                 g4x_fixup_plane(dev_priv, pipe);
3891         intel_crtc_update_cursor(crtc, true);
3892         intel_crtc_dpms_overlay(intel_crtc, true);
3893
3894         hsw_enable_ips(intel_crtc);
3895
3896         mutex_lock(&dev->struct_mutex);
3897         intel_update_fbc(dev);
3898         intel_edp_psr_update(dev);
3899         mutex_unlock(&dev->struct_mutex);
3900 }
3901
3902 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
3903 {
3904         struct drm_device *dev = crtc->dev;
3905         struct drm_i915_private *dev_priv = dev->dev_private;
3906         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3907         int pipe = intel_crtc->pipe;
3908         int plane = intel_crtc->plane;
3909
3910         intel_crtc_wait_for_pending_flips(crtc);
3911         drm_crtc_vblank_off(crtc);
3912
3913         if (dev_priv->fbc.plane == plane)
3914                 intel_disable_fbc(dev);
3915
3916         hsw_disable_ips(intel_crtc);
3917
3918         intel_crtc_dpms_overlay(intel_crtc, false);
3919         intel_crtc_update_cursor(crtc, false);
3920         intel_disable_planes(crtc);
3921         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3922 }
3923
3924 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3925 {
3926         struct drm_device *dev = crtc->dev;
3927         struct drm_i915_private *dev_priv = dev->dev_private;
3928         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3929         struct intel_encoder *encoder;
3930         int pipe = intel_crtc->pipe;
3931         enum plane plane = intel_crtc->plane;
3932
3933         WARN_ON(!crtc->enabled);
3934
3935         if (intel_crtc->active)
3936                 return;
3937
3938         if (intel_crtc->config.has_pch_encoder)
3939                 intel_prepare_shared_dpll(intel_crtc);
3940
3941         if (intel_crtc->config.has_dp_encoder)
3942                 intel_dp_set_m_n(intel_crtc);
3943
3944         intel_set_pipe_timings(intel_crtc);
3945
3946         if (intel_crtc->config.has_pch_encoder) {
3947                 intel_cpu_transcoder_set_m_n(intel_crtc,
3948                                              &intel_crtc->config.fdi_m_n);
3949         }
3950
3951         ironlake_set_pipeconf(crtc);
3952
3953         /* Set up the display plane register */
3954         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3955         POSTING_READ(DSPCNTR(plane));
3956
3957         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3958                                                crtc->x, crtc->y);
3959
3960         intel_crtc->active = true;
3961
3962         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3963         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3964
3965         for_each_encoder_on_crtc(dev, crtc, encoder)
3966                 if (encoder->pre_enable)
3967                         encoder->pre_enable(encoder);
3968
3969         if (intel_crtc->config.has_pch_encoder) {
3970                 /* Note: FDI PLL enabling _must_ be done before we enable the
3971                  * cpu pipes, hence this is separate from all the other fdi/pch
3972                  * enabling. */
3973                 ironlake_fdi_pll_enable(intel_crtc);
3974         } else {
3975                 assert_fdi_tx_disabled(dev_priv, pipe);
3976                 assert_fdi_rx_disabled(dev_priv, pipe);
3977         }
3978
3979         ironlake_pfit_enable(intel_crtc);
3980
3981         /*
3982          * On ILK+ LUT must be loaded before the pipe is running but with
3983          * clocks enabled
3984          */
3985         intel_crtc_load_lut(crtc);
3986
3987         intel_update_watermarks(crtc);
3988         intel_enable_pipe(intel_crtc);
3989
3990         if (intel_crtc->config.has_pch_encoder)
3991                 ironlake_pch_enable(crtc);
3992
3993         for_each_encoder_on_crtc(dev, crtc, encoder)
3994                 encoder->enable(encoder);
3995
3996         if (HAS_PCH_CPT(dev))
3997                 cpt_verify_modeset(dev, intel_crtc->pipe);
3998
3999         intel_crtc_enable_planes(crtc);
4000
4001         drm_crtc_vblank_on(crtc);
4002 }
4003
4004 /* IPS only exists on ULT machines and is tied to pipe A. */
4005 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4006 {
4007         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4008 }
4009
4010 /*
4011  * This implements the workaround described in the "notes" section of the mode
4012  * set sequence documentation. When going from no pipes or single pipe to
4013  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4014  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4015  */
4016 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4017 {
4018         struct drm_device *dev = crtc->base.dev;
4019         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4020
4021         /* We want to get the other_active_crtc only if there's only 1 other
4022          * active crtc. */
4023         for_each_intel_crtc(dev, crtc_it) {
4024                 if (!crtc_it->active || crtc_it == crtc)
4025                         continue;
4026
4027                 if (other_active_crtc)
4028                         return;
4029
4030                 other_active_crtc = crtc_it;
4031         }
4032         if (!other_active_crtc)
4033                 return;
4034
4035         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4036         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4037 }
4038
4039 static void haswell_crtc_enable(struct drm_crtc *crtc)
4040 {
4041         struct drm_device *dev = crtc->dev;
4042         struct drm_i915_private *dev_priv = dev->dev_private;
4043         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4044         struct intel_encoder *encoder;
4045         int pipe = intel_crtc->pipe;
4046         enum plane plane = intel_crtc->plane;
4047
4048         WARN_ON(!crtc->enabled);
4049
4050         if (intel_crtc->active)
4051                 return;
4052
4053         if (intel_crtc->config.has_dp_encoder)
4054                 intel_dp_set_m_n(intel_crtc);
4055
4056         intel_set_pipe_timings(intel_crtc);
4057
4058         if (intel_crtc->config.has_pch_encoder) {
4059                 intel_cpu_transcoder_set_m_n(intel_crtc,
4060                                              &intel_crtc->config.fdi_m_n);
4061         }
4062
4063         haswell_set_pipeconf(crtc);
4064
4065         intel_set_pipe_csc(crtc);
4066
4067         /* Set up the display plane register */
4068         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4069         POSTING_READ(DSPCNTR(plane));
4070
4071         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4072                                                crtc->x, crtc->y);
4073
4074         intel_crtc->active = true;
4075
4076         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4077         if (intel_crtc->config.has_pch_encoder)
4078                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4079
4080         if (intel_crtc->config.has_pch_encoder)
4081                 dev_priv->display.fdi_link_train(crtc);
4082
4083         for_each_encoder_on_crtc(dev, crtc, encoder)
4084                 if (encoder->pre_enable)
4085                         encoder->pre_enable(encoder);
4086
4087         intel_ddi_enable_pipe_clock(intel_crtc);
4088
4089         ironlake_pfit_enable(intel_crtc);
4090
4091         /*
4092          * On ILK+ LUT must be loaded before the pipe is running but with
4093          * clocks enabled
4094          */
4095         intel_crtc_load_lut(crtc);
4096
4097         intel_ddi_set_pipe_settings(crtc);
4098         intel_ddi_enable_transcoder_func(crtc);
4099
4100         intel_update_watermarks(crtc);
4101         intel_enable_pipe(intel_crtc);
4102
4103         if (intel_crtc->config.has_pch_encoder)
4104                 lpt_pch_enable(crtc);
4105
4106         for_each_encoder_on_crtc(dev, crtc, encoder) {
4107                 encoder->enable(encoder);
4108                 intel_opregion_notify_encoder(encoder, true);
4109         }
4110
4111         /* If we change the relative order between pipe/planes enabling, we need
4112          * to change the workaround. */
4113         haswell_mode_set_planes_workaround(intel_crtc);
4114         intel_crtc_enable_planes(crtc);
4115
4116         drm_crtc_vblank_on(crtc);
4117 }
4118
4119 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4120 {
4121         struct drm_device *dev = crtc->base.dev;
4122         struct drm_i915_private *dev_priv = dev->dev_private;
4123         int pipe = crtc->pipe;
4124
4125         /* To avoid upsetting the power well on haswell only disable the pfit if
4126          * it's in use. The hw state code will make sure we get this right. */
4127         if (crtc->config.pch_pfit.enabled) {
4128                 I915_WRITE(PF_CTL(pipe), 0);
4129                 I915_WRITE(PF_WIN_POS(pipe), 0);
4130                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4131         }
4132 }
4133
4134 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4135 {
4136         struct drm_device *dev = crtc->dev;
4137         struct drm_i915_private *dev_priv = dev->dev_private;
4138         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4139         struct intel_encoder *encoder;
4140         int pipe = intel_crtc->pipe;
4141         u32 reg, temp;
4142
4143         if (!intel_crtc->active)
4144                 return;
4145
4146         intel_crtc_disable_planes(crtc);
4147
4148         for_each_encoder_on_crtc(dev, crtc, encoder)
4149                 encoder->disable(encoder);
4150
4151         if (intel_crtc->config.has_pch_encoder)
4152                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4153
4154         intel_disable_pipe(dev_priv, pipe);
4155
4156         ironlake_pfit_disable(intel_crtc);
4157
4158         for_each_encoder_on_crtc(dev, crtc, encoder)
4159                 if (encoder->post_disable)
4160                         encoder->post_disable(encoder);
4161
4162         if (intel_crtc->config.has_pch_encoder) {
4163                 ironlake_fdi_disable(crtc);
4164
4165                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4166                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4167
4168                 if (HAS_PCH_CPT(dev)) {
4169                         /* disable TRANS_DP_CTL */
4170                         reg = TRANS_DP_CTL(pipe);
4171                         temp = I915_READ(reg);
4172                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4173                                   TRANS_DP_PORT_SEL_MASK);
4174                         temp |= TRANS_DP_PORT_SEL_NONE;
4175                         I915_WRITE(reg, temp);
4176
4177                         /* disable DPLL_SEL */
4178                         temp = I915_READ(PCH_DPLL_SEL);
4179                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4180                         I915_WRITE(PCH_DPLL_SEL, temp);
4181                 }
4182
4183                 /* disable PCH DPLL */
4184                 intel_disable_shared_dpll(intel_crtc);
4185
4186                 ironlake_fdi_pll_disable(intel_crtc);
4187         }
4188
4189         intel_crtc->active = false;
4190         intel_update_watermarks(crtc);
4191
4192         mutex_lock(&dev->struct_mutex);
4193         intel_update_fbc(dev);
4194         intel_edp_psr_update(dev);
4195         mutex_unlock(&dev->struct_mutex);
4196 }
4197
4198 static void haswell_crtc_disable(struct drm_crtc *crtc)
4199 {
4200         struct drm_device *dev = crtc->dev;
4201         struct drm_i915_private *dev_priv = dev->dev_private;
4202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4203         struct intel_encoder *encoder;
4204         int pipe = intel_crtc->pipe;
4205         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4206
4207         if (!intel_crtc->active)
4208                 return;
4209
4210         intel_crtc_disable_planes(crtc);
4211
4212         for_each_encoder_on_crtc(dev, crtc, encoder) {
4213                 intel_opregion_notify_encoder(encoder, false);
4214                 encoder->disable(encoder);
4215         }
4216
4217         if (intel_crtc->config.has_pch_encoder)
4218                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4219         intel_disable_pipe(dev_priv, pipe);
4220
4221         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4222
4223         ironlake_pfit_disable(intel_crtc);
4224
4225         intel_ddi_disable_pipe_clock(intel_crtc);
4226
4227         for_each_encoder_on_crtc(dev, crtc, encoder)
4228                 if (encoder->post_disable)
4229                         encoder->post_disable(encoder);
4230
4231         if (intel_crtc->config.has_pch_encoder) {
4232                 lpt_disable_pch_transcoder(dev_priv);
4233                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4234                 intel_ddi_fdi_disable(crtc);
4235         }
4236
4237         intel_crtc->active = false;
4238         intel_update_watermarks(crtc);
4239
4240         mutex_lock(&dev->struct_mutex);
4241         intel_update_fbc(dev);
4242         intel_edp_psr_update(dev);
4243         mutex_unlock(&dev->struct_mutex);
4244 }
4245
4246 static void ironlake_crtc_off(struct drm_crtc *crtc)
4247 {
4248         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4249         intel_put_shared_dpll(intel_crtc);
4250 }
4251
4252 static void haswell_crtc_off(struct drm_crtc *crtc)
4253 {
4254         intel_ddi_put_crtc_pll(crtc);
4255 }
4256
4257 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4258 {
4259         struct drm_device *dev = crtc->base.dev;
4260         struct drm_i915_private *dev_priv = dev->dev_private;
4261         struct intel_crtc_config *pipe_config = &crtc->config;
4262
4263         if (!crtc->config.gmch_pfit.control)
4264                 return;
4265
4266         /*
4267          * The panel fitter should only be adjusted whilst the pipe is disabled,
4268          * according to register description and PRM.
4269          */
4270         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4271         assert_pipe_disabled(dev_priv, crtc->pipe);
4272
4273         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4274         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4275
4276         /* Border color in case we don't scale up to the full screen. Black by
4277          * default, change to something else for debugging. */
4278         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4279 }
4280
4281 #define for_each_power_domain(domain, mask)                             \
4282         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4283                 if ((1 << (domain)) & (mask))
4284
4285 enum intel_display_power_domain
4286 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4287 {
4288         struct drm_device *dev = intel_encoder->base.dev;
4289         struct intel_digital_port *intel_dig_port;
4290
4291         switch (intel_encoder->type) {
4292         case INTEL_OUTPUT_UNKNOWN:
4293                 /* Only DDI platforms should ever use this output type */
4294                 WARN_ON_ONCE(!HAS_DDI(dev));
4295         case INTEL_OUTPUT_DISPLAYPORT:
4296         case INTEL_OUTPUT_HDMI:
4297         case INTEL_OUTPUT_EDP:
4298                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4299                 switch (intel_dig_port->port) {
4300                 case PORT_A:
4301                         return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4302                 case PORT_B:
4303                         return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4304                 case PORT_C:
4305                         return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4306                 case PORT_D:
4307                         return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4308                 default:
4309                         WARN_ON_ONCE(1);
4310                         return POWER_DOMAIN_PORT_OTHER;
4311                 }
4312         case INTEL_OUTPUT_ANALOG:
4313                 return POWER_DOMAIN_PORT_CRT;
4314         case INTEL_OUTPUT_DSI:
4315                 return POWER_DOMAIN_PORT_DSI;
4316         default:
4317                 return POWER_DOMAIN_PORT_OTHER;
4318         }
4319 }
4320
4321 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4322 {
4323         struct drm_device *dev = crtc->dev;
4324         struct intel_encoder *intel_encoder;
4325         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4326         enum pipe pipe = intel_crtc->pipe;
4327         bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
4328         unsigned long mask;
4329         enum transcoder transcoder;
4330
4331         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4332
4333         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4334         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4335         if (pfit_enabled)
4336                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4337
4338         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4339                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4340
4341         return mask;
4342 }
4343
4344 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4345                                   bool enable)
4346 {
4347         if (dev_priv->power_domains.init_power_on == enable)
4348                 return;
4349
4350         if (enable)
4351                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4352         else
4353                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4354
4355         dev_priv->power_domains.init_power_on = enable;
4356 }
4357
4358 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4359 {
4360         struct drm_i915_private *dev_priv = dev->dev_private;
4361         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4362         struct intel_crtc *crtc;
4363
4364         /*
4365          * First get all needed power domains, then put all unneeded, to avoid
4366          * any unnecessary toggling of the power wells.
4367          */
4368         for_each_intel_crtc(dev, crtc) {
4369                 enum intel_display_power_domain domain;
4370
4371                 if (!crtc->base.enabled)
4372                         continue;
4373
4374                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4375
4376                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4377                         intel_display_power_get(dev_priv, domain);
4378         }
4379
4380         for_each_intel_crtc(dev, crtc) {
4381                 enum intel_display_power_domain domain;
4382
4383                 for_each_power_domain(domain, crtc->enabled_power_domains)
4384                         intel_display_power_put(dev_priv, domain);
4385
4386                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4387         }
4388
4389         intel_display_set_init_power(dev_priv, false);
4390 }
4391
4392 int valleyview_get_vco(struct drm_i915_private *dev_priv)
4393 {
4394         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4395
4396         /* Obtain SKU information */
4397         mutex_lock(&dev_priv->dpio_lock);
4398         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4399                 CCK_FUSE_HPLL_FREQ_MASK;
4400         mutex_unlock(&dev_priv->dpio_lock);
4401
4402         return vco_freq[hpll_freq];
4403 }
4404
4405 /* Adjust CDclk dividers to allow high res or save power if possible */
4406 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4407 {
4408         struct drm_i915_private *dev_priv = dev->dev_private;
4409         u32 val, cmd;
4410
4411         WARN_ON(valleyview_cur_cdclk(dev_priv) != dev_priv->vlv_cdclk_freq);
4412         dev_priv->vlv_cdclk_freq = cdclk;
4413
4414         if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
4415                 cmd = 2;
4416         else if (cdclk == 266)
4417                 cmd = 1;
4418         else
4419                 cmd = 0;
4420
4421         mutex_lock(&dev_priv->rps.hw_lock);
4422         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4423         val &= ~DSPFREQGUAR_MASK;
4424         val |= (cmd << DSPFREQGUAR_SHIFT);
4425         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4426         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4427                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4428                      50)) {
4429                 DRM_ERROR("timed out waiting for CDclk change\n");
4430         }
4431         mutex_unlock(&dev_priv->rps.hw_lock);
4432
4433         if (cdclk == 400) {
4434                 u32 divider, vco;
4435
4436                 vco = valleyview_get_vco(dev_priv);
4437                 divider = ((vco << 1) / cdclk) - 1;
4438
4439                 mutex_lock(&dev_priv->dpio_lock);
4440                 /* adjust cdclk divider */
4441                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4442                 val &= ~0xf;
4443                 val |= divider;
4444                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4445                 mutex_unlock(&dev_priv->dpio_lock);
4446         }
4447
4448         mutex_lock(&dev_priv->dpio_lock);
4449         /* adjust self-refresh exit latency value */
4450         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4451         val &= ~0x7f;
4452
4453         /*
4454          * For high bandwidth configs, we set a higher latency in the bunit
4455          * so that the core display fetch happens in time to avoid underruns.
4456          */
4457         if (cdclk == 400)
4458                 val |= 4500 / 250; /* 4.5 usec */
4459         else
4460                 val |= 3000 / 250; /* 3.0 usec */
4461         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4462         mutex_unlock(&dev_priv->dpio_lock);
4463
4464         /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4465         intel_i2c_reset(dev);
4466 }
4467
4468 int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4469 {
4470         int cur_cdclk, vco;
4471         int divider;
4472
4473         vco = valleyview_get_vco(dev_priv);
4474
4475         mutex_lock(&dev_priv->dpio_lock);
4476         divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4477         mutex_unlock(&dev_priv->dpio_lock);
4478
4479         divider &= 0xf;
4480
4481         cur_cdclk = (vco << 1) / (divider + 1);
4482
4483         return cur_cdclk;
4484 }
4485
4486 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4487                                  int max_pixclk)
4488 {
4489         /*
4490          * Really only a few cases to deal with, as only 4 CDclks are supported:
4491          *   200MHz
4492          *   267MHz
4493          *   320MHz
4494          *   400MHz
4495          * So we check to see whether we're above 90% of the lower bin and
4496          * adjust if needed.
4497          */
4498         if (max_pixclk > 288000) {
4499                 return 400;
4500         } else if (max_pixclk > 240000) {
4501                 return 320;
4502         } else
4503                 return 266;
4504         /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4505 }
4506
4507 /* compute the max pixel clock for new configuration */
4508 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4509 {
4510         struct drm_device *dev = dev_priv->dev;
4511         struct intel_crtc *intel_crtc;
4512         int max_pixclk = 0;
4513
4514         for_each_intel_crtc(dev, intel_crtc) {
4515                 if (intel_crtc->new_enabled)
4516                         max_pixclk = max(max_pixclk,
4517                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4518         }
4519
4520         return max_pixclk;
4521 }
4522
4523 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4524                                             unsigned *prepare_pipes)
4525 {
4526         struct drm_i915_private *dev_priv = dev->dev_private;
4527         struct intel_crtc *intel_crtc;
4528         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4529
4530         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4531             dev_priv->vlv_cdclk_freq)
4532                 return;
4533
4534         /* disable/enable all currently active pipes while we change cdclk */
4535         for_each_intel_crtc(dev, intel_crtc)
4536                 if (intel_crtc->base.enabled)
4537                         *prepare_pipes |= (1 << intel_crtc->pipe);
4538 }
4539
4540 static void valleyview_modeset_global_resources(struct drm_device *dev)
4541 {
4542         struct drm_i915_private *dev_priv = dev->dev_private;
4543         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4544         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4545
4546         if (req_cdclk != dev_priv->vlv_cdclk_freq)
4547                 valleyview_set_cdclk(dev, req_cdclk);
4548         modeset_update_crtc_power_domains(dev);
4549 }
4550
4551 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4552 {
4553         struct drm_device *dev = crtc->dev;
4554         struct drm_i915_private *dev_priv = dev->dev_private;
4555         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4556         struct intel_encoder *encoder;
4557         int pipe = intel_crtc->pipe;
4558         int plane = intel_crtc->plane;
4559         bool is_dsi;
4560         u32 dspcntr;
4561
4562         WARN_ON(!crtc->enabled);
4563
4564         if (intel_crtc->active)
4565                 return;
4566
4567         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4568
4569         if (!is_dsi && !IS_CHERRYVIEW(dev))
4570                 vlv_prepare_pll(intel_crtc);
4571
4572         /* Set up the display plane register */
4573         dspcntr = DISPPLANE_GAMMA_ENABLE;
4574
4575         if (intel_crtc->config.has_dp_encoder)
4576                 intel_dp_set_m_n(intel_crtc);
4577
4578         intel_set_pipe_timings(intel_crtc);
4579
4580         /* pipesrc and dspsize control the size that is scaled from,
4581          * which should always be the user's requested size.
4582          */
4583         I915_WRITE(DSPSIZE(plane),
4584                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
4585                    (intel_crtc->config.pipe_src_w - 1));
4586         I915_WRITE(DSPPOS(plane), 0);
4587
4588         i9xx_set_pipeconf(intel_crtc);
4589
4590         I915_WRITE(DSPCNTR(plane), dspcntr);
4591         POSTING_READ(DSPCNTR(plane));
4592
4593         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4594                                                crtc->x, crtc->y);
4595
4596         intel_crtc->active = true;
4597
4598         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4599
4600         for_each_encoder_on_crtc(dev, crtc, encoder)
4601                 if (encoder->pre_pll_enable)
4602                         encoder->pre_pll_enable(encoder);
4603
4604         if (!is_dsi) {
4605                 if (IS_CHERRYVIEW(dev))
4606                         chv_enable_pll(intel_crtc);
4607                 else
4608                         vlv_enable_pll(intel_crtc);
4609         }
4610
4611         for_each_encoder_on_crtc(dev, crtc, encoder)
4612                 if (encoder->pre_enable)
4613                         encoder->pre_enable(encoder);
4614
4615         i9xx_pfit_enable(intel_crtc);
4616
4617         intel_crtc_load_lut(crtc);
4618
4619         intel_update_watermarks(crtc);
4620         intel_enable_pipe(intel_crtc);
4621
4622         for_each_encoder_on_crtc(dev, crtc, encoder)
4623                 encoder->enable(encoder);
4624
4625         intel_crtc_enable_planes(crtc);
4626
4627         drm_crtc_vblank_on(crtc);
4628
4629         /* Underruns don't raise interrupts, so check manually. */
4630         i9xx_check_fifo_underruns(dev);
4631 }
4632
4633 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4634 {
4635         struct drm_device *dev = crtc->base.dev;
4636         struct drm_i915_private *dev_priv = dev->dev_private;
4637
4638         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4639         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4640 }
4641
4642 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4643 {
4644         struct drm_device *dev = crtc->dev;
4645         struct drm_i915_private *dev_priv = dev->dev_private;
4646         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4647         struct intel_encoder *encoder;
4648         int pipe = intel_crtc->pipe;
4649         int plane = intel_crtc->plane;
4650         u32 dspcntr;
4651
4652         WARN_ON(!crtc->enabled);
4653
4654         if (intel_crtc->active)
4655                 return;
4656
4657         i9xx_set_pll_dividers(intel_crtc);
4658
4659         /* Set up the display plane register */
4660         dspcntr = DISPPLANE_GAMMA_ENABLE;
4661
4662         if (pipe == 0)
4663                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4664         else
4665                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4666
4667         if (intel_crtc->config.has_dp_encoder)
4668                 intel_dp_set_m_n(intel_crtc);
4669
4670         intel_set_pipe_timings(intel_crtc);
4671
4672         /* pipesrc and dspsize control the size that is scaled from,
4673          * which should always be the user's requested size.
4674          */
4675         I915_WRITE(DSPSIZE(plane),
4676                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
4677                    (intel_crtc->config.pipe_src_w - 1));
4678         I915_WRITE(DSPPOS(plane), 0);
4679
4680         i9xx_set_pipeconf(intel_crtc);
4681
4682         I915_WRITE(DSPCNTR(plane), dspcntr);
4683         POSTING_READ(DSPCNTR(plane));
4684
4685         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4686                                                crtc->x, crtc->y);
4687
4688         intel_crtc->active = true;
4689
4690         if (!IS_GEN2(dev))
4691                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4692
4693         for_each_encoder_on_crtc(dev, crtc, encoder)
4694                 if (encoder->pre_enable)
4695                         encoder->pre_enable(encoder);
4696
4697         i9xx_enable_pll(intel_crtc);
4698
4699         i9xx_pfit_enable(intel_crtc);
4700
4701         intel_crtc_load_lut(crtc);
4702
4703         intel_update_watermarks(crtc);
4704         intel_enable_pipe(intel_crtc);
4705
4706         for_each_encoder_on_crtc(dev, crtc, encoder)
4707                 encoder->enable(encoder);
4708
4709         intel_crtc_enable_planes(crtc);
4710
4711         /*
4712          * Gen2 reports pipe underruns whenever all planes are disabled.
4713          * So don't enable underrun reporting before at least some planes
4714          * are enabled.
4715          * FIXME: Need to fix the logic to work when we turn off all planes
4716          * but leave the pipe running.
4717          */
4718         if (IS_GEN2(dev))
4719                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4720
4721         drm_crtc_vblank_on(crtc);
4722
4723         /* Underruns don't raise interrupts, so check manually. */
4724         i9xx_check_fifo_underruns(dev);
4725 }
4726
4727 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4728 {
4729         struct drm_device *dev = crtc->base.dev;
4730         struct drm_i915_private *dev_priv = dev->dev_private;
4731
4732         if (!crtc->config.gmch_pfit.control)
4733                 return;
4734
4735         assert_pipe_disabled(dev_priv, crtc->pipe);
4736
4737         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4738                          I915_READ(PFIT_CONTROL));
4739         I915_WRITE(PFIT_CONTROL, 0);
4740 }
4741
4742 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4743 {
4744         struct drm_device *dev = crtc->dev;
4745         struct drm_i915_private *dev_priv = dev->dev_private;
4746         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4747         struct intel_encoder *encoder;
4748         int pipe = intel_crtc->pipe;
4749
4750         if (!intel_crtc->active)
4751                 return;
4752
4753         /*
4754          * Gen2 reports pipe underruns whenever all planes are disabled.
4755          * So diasble underrun reporting before all the planes get disabled.
4756          * FIXME: Need to fix the logic to work when we turn off all planes
4757          * but leave the pipe running.
4758          */
4759         if (IS_GEN2(dev))
4760                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4761
4762         intel_crtc_disable_planes(crtc);
4763
4764         for_each_encoder_on_crtc(dev, crtc, encoder)
4765                 encoder->disable(encoder);
4766
4767         /*
4768          * On gen2 planes are double buffered but the pipe isn't, so we must
4769          * wait for planes to fully turn off before disabling the pipe.
4770          */
4771         if (IS_GEN2(dev))
4772                 intel_wait_for_vblank(dev, pipe);
4773
4774         intel_disable_pipe(dev_priv, pipe);
4775
4776         i9xx_pfit_disable(intel_crtc);
4777
4778         for_each_encoder_on_crtc(dev, crtc, encoder)
4779                 if (encoder->post_disable)
4780                         encoder->post_disable(encoder);
4781
4782         if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4783                 if (IS_CHERRYVIEW(dev))
4784                         chv_disable_pll(dev_priv, pipe);
4785                 else if (IS_VALLEYVIEW(dev))
4786                         vlv_disable_pll(dev_priv, pipe);
4787                 else
4788                         i9xx_disable_pll(dev_priv, pipe);
4789         }
4790
4791         if (!IS_GEN2(dev))
4792                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4793
4794         intel_crtc->active = false;
4795         intel_update_watermarks(crtc);
4796
4797         mutex_lock(&dev->struct_mutex);
4798         intel_update_fbc(dev);
4799         intel_edp_psr_update(dev);
4800         mutex_unlock(&dev->struct_mutex);
4801 }
4802
4803 static void i9xx_crtc_off(struct drm_crtc *crtc)
4804 {
4805 }
4806
4807 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4808                                     bool enabled)
4809 {
4810         struct drm_device *dev = crtc->dev;
4811         struct drm_i915_master_private *master_priv;
4812         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4813         int pipe = intel_crtc->pipe;
4814
4815         if (!dev->primary->master)
4816                 return;
4817
4818         master_priv = dev->primary->master->driver_priv;
4819         if (!master_priv->sarea_priv)
4820                 return;
4821
4822         switch (pipe) {
4823         case 0:
4824                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4825                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4826                 break;
4827         case 1:
4828                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4829                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4830                 break;
4831         default:
4832                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4833                 break;
4834         }
4835 }
4836
4837 /**
4838  * Sets the power management mode of the pipe and plane.
4839  */
4840 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4841 {
4842         struct drm_device *dev = crtc->dev;
4843         struct drm_i915_private *dev_priv = dev->dev_private;
4844         struct intel_encoder *intel_encoder;
4845         bool enable = false;
4846
4847         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4848                 enable |= intel_encoder->connectors_active;
4849
4850         if (enable)
4851                 dev_priv->display.crtc_enable(crtc);
4852         else
4853                 dev_priv->display.crtc_disable(crtc);
4854
4855         intel_crtc_update_sarea(crtc, enable);
4856 }
4857
4858 static void intel_crtc_disable(struct drm_crtc *crtc)
4859 {
4860         struct drm_device *dev = crtc->dev;
4861         struct drm_connector *connector;
4862         struct drm_i915_private *dev_priv = dev->dev_private;
4863
4864         /* crtc should still be enabled when we disable it. */
4865         WARN_ON(!crtc->enabled);
4866
4867         dev_priv->display.crtc_disable(crtc);
4868         intel_crtc_update_sarea(crtc, false);
4869         dev_priv->display.off(crtc);
4870
4871         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4872         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4873         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4874
4875         if (crtc->primary->fb) {
4876                 mutex_lock(&dev->struct_mutex);
4877                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->primary->fb)->obj);
4878                 mutex_unlock(&dev->struct_mutex);
4879                 crtc->primary->fb = NULL;
4880         }
4881
4882         /* Update computed state. */
4883         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4884                 if (!connector->encoder || !connector->encoder->crtc)
4885                         continue;
4886
4887                 if (connector->encoder->crtc != crtc)
4888                         continue;
4889
4890                 connector->dpms = DRM_MODE_DPMS_OFF;
4891                 to_intel_encoder(connector->encoder)->connectors_active = false;
4892         }
4893 }
4894
4895 void intel_encoder_destroy(struct drm_encoder *encoder)
4896 {
4897         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4898
4899         drm_encoder_cleanup(encoder);
4900         kfree(intel_encoder);
4901 }
4902
4903 /* Simple dpms helper for encoders with just one connector, no cloning and only
4904  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4905  * state of the entire output pipe. */
4906 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4907 {
4908         if (mode == DRM_MODE_DPMS_ON) {
4909                 encoder->connectors_active = true;
4910
4911                 intel_crtc_update_dpms(encoder->base.crtc);
4912         } else {
4913                 encoder->connectors_active = false;
4914
4915                 intel_crtc_update_dpms(encoder->base.crtc);
4916         }
4917 }
4918
4919 /* Cross check the actual hw state with our own modeset state tracking (and it's
4920  * internal consistency). */
4921 static void intel_connector_check_state(struct intel_connector *connector)
4922 {
4923         if (connector->get_hw_state(connector)) {
4924                 struct intel_encoder *encoder = connector->encoder;
4925                 struct drm_crtc *crtc;
4926                 bool encoder_enabled;
4927                 enum pipe pipe;
4928
4929                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4930                               connector->base.base.id,
4931                               connector->base.name);
4932
4933                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4934                      "wrong connector dpms state\n");
4935                 WARN(connector->base.encoder != &encoder->base,
4936                      "active connector not linked to encoder\n");
4937                 WARN(!encoder->connectors_active,
4938                      "encoder->connectors_active not set\n");
4939
4940                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4941                 WARN(!encoder_enabled, "encoder not enabled\n");
4942                 if (WARN_ON(!encoder->base.crtc))
4943                         return;
4944
4945                 crtc = encoder->base.crtc;
4946
4947                 WARN(!crtc->enabled, "crtc not enabled\n");
4948                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4949                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4950                      "encoder active on the wrong pipe\n");
4951         }
4952 }
4953
4954 /* Even simpler default implementation, if there's really no special case to
4955  * consider. */
4956 void intel_connector_dpms(struct drm_connector *connector, int mode)
4957 {
4958         /* All the simple cases only support two dpms states. */
4959         if (mode != DRM_MODE_DPMS_ON)
4960                 mode = DRM_MODE_DPMS_OFF;
4961
4962         if (mode == connector->dpms)
4963                 return;
4964
4965         connector->dpms = mode;
4966
4967         /* Only need to change hw state when actually enabled */
4968         if (connector->encoder)
4969                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4970
4971         intel_modeset_check_state(connector->dev);
4972 }
4973
4974 /* Simple connector->get_hw_state implementation for encoders that support only
4975  * one connector and no cloning and hence the encoder state determines the state
4976  * of the connector. */
4977 bool intel_connector_get_hw_state(struct intel_connector *connector)
4978 {
4979         enum pipe pipe = 0;
4980         struct intel_encoder *encoder = connector->encoder;
4981
4982         return encoder->get_hw_state(encoder, &pipe);
4983 }
4984
4985 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4986                                      struct intel_crtc_config *pipe_config)
4987 {
4988         struct drm_i915_private *dev_priv = dev->dev_private;
4989         struct intel_crtc *pipe_B_crtc =
4990                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4991
4992         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4993                       pipe_name(pipe), pipe_config->fdi_lanes);
4994         if (pipe_config->fdi_lanes > 4) {
4995                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4996                               pipe_name(pipe), pipe_config->fdi_lanes);
4997                 return false;
4998         }
4999
5000         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5001                 if (pipe_config->fdi_lanes > 2) {
5002                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5003                                       pipe_config->fdi_lanes);
5004                         return false;
5005                 } else {
5006                         return true;
5007                 }
5008         }
5009
5010         if (INTEL_INFO(dev)->num_pipes == 2)
5011                 return true;
5012
5013         /* Ivybridge 3 pipe is really complicated */
5014         switch (pipe) {
5015         case PIPE_A:
5016                 return true;
5017         case PIPE_B:
5018                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5019                     pipe_config->fdi_lanes > 2) {
5020                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5021                                       pipe_name(pipe), pipe_config->fdi_lanes);
5022                         return false;
5023                 }
5024                 return true;
5025         case PIPE_C:
5026                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5027                     pipe_B_crtc->config.fdi_lanes <= 2) {
5028                         if (pipe_config->fdi_lanes > 2) {
5029                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5030                                               pipe_name(pipe), pipe_config->fdi_lanes);
5031                                 return false;
5032                         }
5033                 } else {
5034                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5035                         return false;
5036                 }
5037                 return true;
5038         default:
5039                 BUG();
5040         }
5041 }
5042
5043 #define RETRY 1
5044 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5045                                        struct intel_crtc_config *pipe_config)
5046 {
5047         struct drm_device *dev = intel_crtc->base.dev;
5048         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5049         int lane, link_bw, fdi_dotclock;
5050         bool setup_ok, needs_recompute = false;
5051
5052 retry:
5053         /* FDI is a binary signal running at ~2.7GHz, encoding
5054          * each output octet as 10 bits. The actual frequency
5055          * is stored as a divider into a 100MHz clock, and the
5056          * mode pixel clock is stored in units of 1KHz.
5057          * Hence the bw of each lane in terms of the mode signal
5058          * is:
5059          */
5060         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5061
5062         fdi_dotclock = adjusted_mode->crtc_clock;
5063
5064         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5065                                            pipe_config->pipe_bpp);
5066
5067         pipe_config->fdi_lanes = lane;
5068
5069         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5070                                link_bw, &pipe_config->fdi_m_n);
5071
5072         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5073                                             intel_crtc->pipe, pipe_config);
5074         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5075                 pipe_config->pipe_bpp -= 2*3;
5076                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5077                               pipe_config->pipe_bpp);
5078                 needs_recompute = true;
5079                 pipe_config->bw_constrained = true;
5080
5081                 goto retry;
5082         }
5083
5084         if (needs_recompute)
5085                 return RETRY;
5086
5087         return setup_ok ? 0 : -EINVAL;
5088 }
5089
5090 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5091                                    struct intel_crtc_config *pipe_config)
5092 {
5093         pipe_config->ips_enabled = i915.enable_ips &&
5094                                    hsw_crtc_supports_ips(crtc) &&
5095                                    pipe_config->pipe_bpp <= 24;
5096 }
5097
5098 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5099                                      struct intel_crtc_config *pipe_config)
5100 {
5101         struct drm_device *dev = crtc->base.dev;
5102         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5103
5104         /* FIXME should check pixel clock limits on all platforms */
5105         if (INTEL_INFO(dev)->gen < 4) {
5106                 struct drm_i915_private *dev_priv = dev->dev_private;
5107                 int clock_limit =
5108                         dev_priv->display.get_display_clock_speed(dev);
5109
5110                 /*
5111                  * Enable pixel doubling when the dot clock
5112                  * is > 90% of the (display) core speed.
5113                  *
5114                  * GDG double wide on either pipe,
5115                  * otherwise pipe A only.
5116                  */
5117                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5118                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5119                         clock_limit *= 2;
5120                         pipe_config->double_wide = true;
5121                 }
5122
5123                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5124                         return -EINVAL;
5125         }
5126
5127         /*
5128          * Pipe horizontal size must be even in:
5129          * - DVO ganged mode
5130          * - LVDS dual channel mode
5131          * - Double wide pipe
5132          */
5133         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5134              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5135                 pipe_config->pipe_src_w &= ~1;
5136
5137         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5138          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5139          */
5140         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5141                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5142                 return -EINVAL;
5143
5144         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5145                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5146         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5147                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5148                  * for lvds. */
5149                 pipe_config->pipe_bpp = 8*3;
5150         }
5151
5152         if (HAS_IPS(dev))
5153                 hsw_compute_ips_config(crtc, pipe_config);
5154
5155         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
5156          * clock survives for now. */
5157         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5158                 pipe_config->shared_dpll = crtc->config.shared_dpll;
5159
5160         if (pipe_config->has_pch_encoder)
5161                 return ironlake_fdi_compute_config(crtc, pipe_config);
5162
5163         return 0;
5164 }
5165
5166 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5167 {
5168         return 400000; /* FIXME */
5169 }
5170
5171 static int i945_get_display_clock_speed(struct drm_device *dev)
5172 {
5173         return 400000;
5174 }
5175
5176 static int i915_get_display_clock_speed(struct drm_device *dev)
5177 {
5178         return 333000;
5179 }
5180
5181 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5182 {
5183         return 200000;
5184 }
5185
5186 static int pnv_get_display_clock_speed(struct drm_device *dev)
5187 {
5188         u16 gcfgc = 0;
5189
5190         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5191
5192         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5193         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5194                 return 267000;
5195         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5196                 return 333000;
5197         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5198                 return 444000;
5199         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5200                 return 200000;
5201         default:
5202                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5203         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5204                 return 133000;
5205         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5206                 return 167000;
5207         }
5208 }
5209
5210 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5211 {
5212         u16 gcfgc = 0;
5213
5214         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5215
5216         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5217                 return 133000;
5218         else {
5219                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5220                 case GC_DISPLAY_CLOCK_333_MHZ:
5221                         return 333000;
5222                 default:
5223                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5224                         return 190000;
5225                 }
5226         }
5227 }
5228
5229 static int i865_get_display_clock_speed(struct drm_device *dev)
5230 {
5231         return 266000;
5232 }
5233
5234 static int i855_get_display_clock_speed(struct drm_device *dev)
5235 {
5236         u16 hpllcc = 0;
5237         /* Assume that the hardware is in the high speed state.  This
5238          * should be the default.
5239          */
5240         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5241         case GC_CLOCK_133_200:
5242         case GC_CLOCK_100_200:
5243                 return 200000;
5244         case GC_CLOCK_166_250:
5245                 return 250000;
5246         case GC_CLOCK_100_133:
5247                 return 133000;
5248         }
5249
5250         /* Shouldn't happen */
5251         return 0;
5252 }
5253
5254 static int i830_get_display_clock_speed(struct drm_device *dev)
5255 {
5256         return 133000;
5257 }
5258
5259 static void
5260 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5261 {
5262         while (*num > DATA_LINK_M_N_MASK ||
5263                *den > DATA_LINK_M_N_MASK) {
5264                 *num >>= 1;
5265                 *den >>= 1;
5266         }
5267 }
5268
5269 static void compute_m_n(unsigned int m, unsigned int n,
5270                         uint32_t *ret_m, uint32_t *ret_n)
5271 {
5272         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5273         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5274         intel_reduce_m_n_ratio(ret_m, ret_n);
5275 }
5276
5277 void
5278 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5279                        int pixel_clock, int link_clock,
5280                        struct intel_link_m_n *m_n)
5281 {
5282         m_n->tu = 64;
5283
5284         compute_m_n(bits_per_pixel * pixel_clock,
5285                     link_clock * nlanes * 8,
5286                     &m_n->gmch_m, &m_n->gmch_n);
5287
5288         compute_m_n(pixel_clock, link_clock,
5289                     &m_n->link_m, &m_n->link_n);
5290 }
5291
5292 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5293 {
5294         if (i915.panel_use_ssc >= 0)
5295                 return i915.panel_use_ssc != 0;
5296         return dev_priv->vbt.lvds_use_ssc
5297                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5298 }
5299
5300 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5301 {
5302         struct drm_device *dev = crtc->dev;
5303         struct drm_i915_private *dev_priv = dev->dev_private;
5304         int refclk;
5305
5306         if (IS_VALLEYVIEW(dev)) {
5307                 refclk = 100000;
5308         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5309             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5310                 refclk = dev_priv->vbt.lvds_ssc_freq;
5311                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5312         } else if (!IS_GEN2(dev)) {
5313                 refclk = 96000;
5314         } else {
5315                 refclk = 48000;
5316         }
5317
5318         return refclk;
5319 }
5320
5321 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5322 {
5323         return (1 << dpll->n) << 16 | dpll->m2;
5324 }
5325
5326 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5327 {
5328         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5329 }
5330
5331 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5332                                      intel_clock_t *reduced_clock)
5333 {
5334         struct drm_device *dev = crtc->base.dev;
5335         u32 fp, fp2 = 0;
5336
5337         if (IS_PINEVIEW(dev)) {
5338                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5339                 if (reduced_clock)
5340                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5341         } else {
5342                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5343                 if (reduced_clock)
5344                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5345         }
5346
5347         crtc->config.dpll_hw_state.fp0 = fp;
5348
5349         crtc->lowfreq_avail = false;
5350         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5351             reduced_clock && i915.powersave) {
5352                 crtc->config.dpll_hw_state.fp1 = fp2;
5353                 crtc->lowfreq_avail = true;
5354         } else {
5355                 crtc->config.dpll_hw_state.fp1 = fp;
5356         }
5357 }
5358
5359 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5360                 pipe)
5361 {
5362         u32 reg_val;
5363
5364         /*
5365          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5366          * and set it to a reasonable value instead.
5367          */
5368         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5369         reg_val &= 0xffffff00;
5370         reg_val |= 0x00000030;
5371         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5372
5373         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5374         reg_val &= 0x8cffffff;
5375         reg_val = 0x8c000000;
5376         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5377
5378         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5379         reg_val &= 0xffffff00;
5380         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5381
5382         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5383         reg_val &= 0x00ffffff;
5384         reg_val |= 0xb0000000;
5385         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5386 }
5387
5388 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5389                                          struct intel_link_m_n *m_n)
5390 {
5391         struct drm_device *dev = crtc->base.dev;
5392         struct drm_i915_private *dev_priv = dev->dev_private;
5393         int pipe = crtc->pipe;
5394
5395         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5396         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5397         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5398         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5399 }
5400
5401 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5402                                          struct intel_link_m_n *m_n)
5403 {
5404         struct drm_device *dev = crtc->base.dev;
5405         struct drm_i915_private *dev_priv = dev->dev_private;
5406         int pipe = crtc->pipe;
5407         enum transcoder transcoder = crtc->config.cpu_transcoder;
5408
5409         if (INTEL_INFO(dev)->gen >= 5) {
5410                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5411                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5412                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5413                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5414         } else {
5415                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5416                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5417                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5418                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5419         }
5420 }
5421
5422 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5423 {
5424         if (crtc->config.has_pch_encoder)
5425                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5426         else
5427                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5428 }
5429
5430 static void vlv_update_pll(struct intel_crtc *crtc)
5431 {
5432         u32 dpll, dpll_md;
5433
5434         /*
5435          * Enable DPIO clock input. We should never disable the reference
5436          * clock for pipe B, since VGA hotplug / manual detection depends
5437          * on it.
5438          */
5439         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5440                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5441         /* We should never disable this, set it here for state tracking */
5442         if (crtc->pipe == PIPE_B)
5443                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5444         dpll |= DPLL_VCO_ENABLE;
5445         crtc->config.dpll_hw_state.dpll = dpll;
5446
5447         dpll_md = (crtc->config.pixel_multiplier - 1)
5448                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5449         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5450 }
5451
5452 static void vlv_prepare_pll(struct intel_crtc *crtc)
5453 {
5454         struct drm_device *dev = crtc->base.dev;
5455         struct drm_i915_private *dev_priv = dev->dev_private;
5456         int pipe = crtc->pipe;
5457         u32 mdiv;
5458         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5459         u32 coreclk, reg_val;
5460
5461         mutex_lock(&dev_priv->dpio_lock);
5462
5463         bestn = crtc->config.dpll.n;
5464         bestm1 = crtc->config.dpll.m1;
5465         bestm2 = crtc->config.dpll.m2;
5466         bestp1 = crtc->config.dpll.p1;
5467         bestp2 = crtc->config.dpll.p2;
5468
5469         /* See eDP HDMI DPIO driver vbios notes doc */
5470
5471         /* PLL B needs special handling */
5472         if (pipe == PIPE_B)
5473                 vlv_pllb_recal_opamp(dev_priv, pipe);
5474
5475         /* Set up Tx target for periodic Rcomp update */
5476         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5477
5478         /* Disable target IRef on PLL */
5479         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5480         reg_val &= 0x00ffffff;
5481         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5482
5483         /* Disable fast lock */
5484         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5485
5486         /* Set idtafcrecal before PLL is enabled */
5487         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5488         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5489         mdiv |= ((bestn << DPIO_N_SHIFT));
5490         mdiv |= (1 << DPIO_K_SHIFT);
5491
5492         /*
5493          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5494          * but we don't support that).
5495          * Note: don't use the DAC post divider as it seems unstable.
5496          */
5497         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5498         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5499
5500         mdiv |= DPIO_ENABLE_CALIBRATION;
5501         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5502
5503         /* Set HBR and RBR LPF coefficients */
5504         if (crtc->config.port_clock == 162000 ||
5505             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5506             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5507                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5508                                  0x009f0003);
5509         else
5510                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5511                                  0x00d0000f);
5512
5513         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5514             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5515                 /* Use SSC source */
5516                 if (pipe == PIPE_A)
5517                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5518                                          0x0df40000);
5519                 else
5520                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5521                                          0x0df70000);
5522         } else { /* HDMI or VGA */
5523                 /* Use bend source */
5524                 if (pipe == PIPE_A)
5525                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5526                                          0x0df70000);
5527                 else
5528                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5529                                          0x0df40000);
5530         }
5531
5532         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5533         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5534         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5535             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5536                 coreclk |= 0x01000000;
5537         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5538
5539         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5540         mutex_unlock(&dev_priv->dpio_lock);
5541 }
5542
5543 static void chv_update_pll(struct intel_crtc *crtc)
5544 {
5545         struct drm_device *dev = crtc->base.dev;
5546         struct drm_i915_private *dev_priv = dev->dev_private;
5547         int pipe = crtc->pipe;
5548         int dpll_reg = DPLL(crtc->pipe);
5549         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5550         u32 loopfilter, intcoeff;
5551         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5552         int refclk;
5553
5554         crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5555                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5556                 DPLL_VCO_ENABLE;
5557         if (pipe != PIPE_A)
5558                 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5559
5560         crtc->config.dpll_hw_state.dpll_md =
5561                 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5562
5563         bestn = crtc->config.dpll.n;
5564         bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5565         bestm1 = crtc->config.dpll.m1;
5566         bestm2 = crtc->config.dpll.m2 >> 22;
5567         bestp1 = crtc->config.dpll.p1;
5568         bestp2 = crtc->config.dpll.p2;
5569
5570         /*
5571          * Enable Refclk and SSC
5572          */
5573         I915_WRITE(dpll_reg,
5574                    crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5575
5576         mutex_lock(&dev_priv->dpio_lock);
5577
5578         /* p1 and p2 divider */
5579         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5580                         5 << DPIO_CHV_S1_DIV_SHIFT |
5581                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5582                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5583                         1 << DPIO_CHV_K_DIV_SHIFT);
5584
5585         /* Feedback post-divider - m2 */
5586         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5587
5588         /* Feedback refclk divider - n and m1 */
5589         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5590                         DPIO_CHV_M1_DIV_BY_2 |
5591                         1 << DPIO_CHV_N_DIV_SHIFT);
5592
5593         /* M2 fraction division */
5594         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5595
5596         /* M2 fraction division enable */
5597         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5598                        DPIO_CHV_FRAC_DIV_EN |
5599                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5600
5601         /* Loop filter */
5602         refclk = i9xx_get_refclk(&crtc->base, 0);
5603         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5604                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5605         if (refclk == 100000)
5606                 intcoeff = 11;
5607         else if (refclk == 38400)
5608                 intcoeff = 10;
5609         else
5610                 intcoeff = 9;
5611         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5612         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5613
5614         /* AFC Recal */
5615         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5616                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5617                         DPIO_AFC_RECAL);
5618
5619         mutex_unlock(&dev_priv->dpio_lock);
5620 }
5621
5622 static void i9xx_update_pll(struct intel_crtc *crtc,
5623                             intel_clock_t *reduced_clock,
5624                             int num_connectors)
5625 {
5626         struct drm_device *dev = crtc->base.dev;
5627         struct drm_i915_private *dev_priv = dev->dev_private;
5628         u32 dpll;
5629         bool is_sdvo;
5630         struct dpll *clock = &crtc->config.dpll;
5631
5632         i9xx_update_pll_dividers(crtc, reduced_clock);
5633
5634         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5635                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5636
5637         dpll = DPLL_VGA_MODE_DIS;
5638
5639         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5640                 dpll |= DPLLB_MODE_LVDS;
5641         else
5642                 dpll |= DPLLB_MODE_DAC_SERIAL;
5643
5644         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5645                 dpll |= (crtc->config.pixel_multiplier - 1)
5646                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5647         }
5648
5649         if (is_sdvo)
5650                 dpll |= DPLL_SDVO_HIGH_SPEED;
5651
5652         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5653                 dpll |= DPLL_SDVO_HIGH_SPEED;
5654
5655         /* compute bitmask from p1 value */
5656         if (IS_PINEVIEW(dev))
5657                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5658         else {
5659                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5660                 if (IS_G4X(dev) && reduced_clock)
5661                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5662         }
5663         switch (clock->p2) {
5664         case 5:
5665                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5666                 break;
5667         case 7:
5668                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5669                 break;
5670         case 10:
5671                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5672                 break;
5673         case 14:
5674                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5675                 break;
5676         }
5677         if (INTEL_INFO(dev)->gen >= 4)
5678                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5679
5680         if (crtc->config.sdvo_tv_clock)
5681                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5682         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5683                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5684                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5685         else
5686                 dpll |= PLL_REF_INPUT_DREFCLK;
5687
5688         dpll |= DPLL_VCO_ENABLE;
5689         crtc->config.dpll_hw_state.dpll = dpll;
5690
5691         if (INTEL_INFO(dev)->gen >= 4) {
5692                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5693                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5694                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5695         }
5696 }
5697
5698 static void i8xx_update_pll(struct intel_crtc *crtc,
5699                             intel_clock_t *reduced_clock,
5700                             int num_connectors)
5701 {
5702         struct drm_device *dev = crtc->base.dev;
5703         struct drm_i915_private *dev_priv = dev->dev_private;
5704         u32 dpll;
5705         struct dpll *clock = &crtc->config.dpll;
5706
5707         i9xx_update_pll_dividers(crtc, reduced_clock);
5708
5709         dpll = DPLL_VGA_MODE_DIS;
5710
5711         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5712                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5713         } else {
5714                 if (clock->p1 == 2)
5715                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5716                 else
5717                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5718                 if (clock->p2 == 4)
5719                         dpll |= PLL_P2_DIVIDE_BY_4;
5720         }
5721
5722         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5723                 dpll |= DPLL_DVO_2X_MODE;
5724
5725         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5726                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5727                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5728         else
5729                 dpll |= PLL_REF_INPUT_DREFCLK;
5730
5731         dpll |= DPLL_VCO_ENABLE;
5732         crtc->config.dpll_hw_state.dpll = dpll;
5733 }
5734
5735 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5736 {
5737         struct drm_device *dev = intel_crtc->base.dev;
5738         struct drm_i915_private *dev_priv = dev->dev_private;
5739         enum pipe pipe = intel_crtc->pipe;
5740         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5741         struct drm_display_mode *adjusted_mode =
5742                 &intel_crtc->config.adjusted_mode;
5743         uint32_t crtc_vtotal, crtc_vblank_end;
5744         int vsyncshift = 0;
5745
5746         /* We need to be careful not to changed the adjusted mode, for otherwise
5747          * the hw state checker will get angry at the mismatch. */
5748         crtc_vtotal = adjusted_mode->crtc_vtotal;
5749         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5750
5751         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5752                 /* the chip adds 2 halflines automatically */
5753                 crtc_vtotal -= 1;
5754                 crtc_vblank_end -= 1;
5755
5756                 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5757                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5758                 else
5759                         vsyncshift = adjusted_mode->crtc_hsync_start -
5760                                 adjusted_mode->crtc_htotal / 2;
5761                 if (vsyncshift < 0)
5762                         vsyncshift += adjusted_mode->crtc_htotal;
5763         }
5764
5765         if (INTEL_INFO(dev)->gen > 3)
5766                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5767
5768         I915_WRITE(HTOTAL(cpu_transcoder),
5769                    (adjusted_mode->crtc_hdisplay - 1) |
5770                    ((adjusted_mode->crtc_htotal - 1) << 16));
5771         I915_WRITE(HBLANK(cpu_transcoder),
5772                    (adjusted_mode->crtc_hblank_start - 1) |
5773                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5774         I915_WRITE(HSYNC(cpu_transcoder),
5775                    (adjusted_mode->crtc_hsync_start - 1) |
5776                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5777
5778         I915_WRITE(VTOTAL(cpu_transcoder),
5779                    (adjusted_mode->crtc_vdisplay - 1) |
5780                    ((crtc_vtotal - 1) << 16));
5781         I915_WRITE(VBLANK(cpu_transcoder),
5782                    (adjusted_mode->crtc_vblank_start - 1) |
5783                    ((crtc_vblank_end - 1) << 16));
5784         I915_WRITE(VSYNC(cpu_transcoder),
5785                    (adjusted_mode->crtc_vsync_start - 1) |
5786                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5787
5788         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5789          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5790          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5791          * bits. */
5792         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5793             (pipe == PIPE_B || pipe == PIPE_C))
5794                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5795
5796         /* pipesrc controls the size that is scaled from, which should
5797          * always be the user's requested size.
5798          */
5799         I915_WRITE(PIPESRC(pipe),
5800                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5801                    (intel_crtc->config.pipe_src_h - 1));
5802 }
5803
5804 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5805                                    struct intel_crtc_config *pipe_config)
5806 {
5807         struct drm_device *dev = crtc->base.dev;
5808         struct drm_i915_private *dev_priv = dev->dev_private;
5809         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5810         uint32_t tmp;
5811
5812         tmp = I915_READ(HTOTAL(cpu_transcoder));
5813         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5814         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5815         tmp = I915_READ(HBLANK(cpu_transcoder));
5816         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5817         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5818         tmp = I915_READ(HSYNC(cpu_transcoder));
5819         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5820         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5821
5822         tmp = I915_READ(VTOTAL(cpu_transcoder));
5823         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5824         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5825         tmp = I915_READ(VBLANK(cpu_transcoder));
5826         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5827         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5828         tmp = I915_READ(VSYNC(cpu_transcoder));
5829         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5830         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5831
5832         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5833                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5834                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5835                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5836         }
5837
5838         tmp = I915_READ(PIPESRC(crtc->pipe));
5839         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5840         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5841
5842         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5843         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5844 }
5845
5846 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5847                                  struct intel_crtc_config *pipe_config)
5848 {
5849         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5850         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5851         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5852         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5853
5854         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5855         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5856         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5857         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5858
5859         mode->flags = pipe_config->adjusted_mode.flags;
5860
5861         mode->clock = pipe_config->adjusted_mode.crtc_clock;
5862         mode->flags |= pipe_config->adjusted_mode.flags;
5863 }
5864
5865 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5866 {
5867         struct drm_device *dev = intel_crtc->base.dev;
5868         struct drm_i915_private *dev_priv = dev->dev_private;
5869         uint32_t pipeconf;
5870
5871         pipeconf = 0;
5872
5873         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5874             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5875                 pipeconf |= PIPECONF_ENABLE;
5876
5877         if (intel_crtc->config.double_wide)
5878                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5879
5880         /* only g4x and later have fancy bpc/dither controls */
5881         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5882                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5883                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5884                         pipeconf |= PIPECONF_DITHER_EN |
5885                                     PIPECONF_DITHER_TYPE_SP;
5886
5887                 switch (intel_crtc->config.pipe_bpp) {
5888                 case 18:
5889                         pipeconf |= PIPECONF_6BPC;
5890                         break;
5891                 case 24:
5892                         pipeconf |= PIPECONF_8BPC;
5893                         break;
5894                 case 30:
5895                         pipeconf |= PIPECONF_10BPC;
5896                         break;
5897                 default:
5898                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5899                         BUG();
5900                 }
5901         }
5902
5903         if (HAS_PIPE_CXSR(dev)) {
5904                 if (intel_crtc->lowfreq_avail) {
5905                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5906                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5907                 } else {
5908                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5909                 }
5910         }
5911
5912         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
5913                 if (INTEL_INFO(dev)->gen < 4 ||
5914                     intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5915                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5916                 else
5917                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
5918         } else
5919                 pipeconf |= PIPECONF_PROGRESSIVE;
5920
5921         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5922                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5923
5924         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5925         POSTING_READ(PIPECONF(intel_crtc->pipe));
5926 }
5927
5928 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5929                               int x, int y,
5930                               struct drm_framebuffer *fb)
5931 {
5932         struct drm_device *dev = crtc->dev;
5933         struct drm_i915_private *dev_priv = dev->dev_private;
5934         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5935         int refclk, num_connectors = 0;
5936         intel_clock_t clock, reduced_clock;
5937         bool ok, has_reduced_clock = false;
5938         bool is_lvds = false, is_dsi = false;
5939         struct intel_encoder *encoder;
5940         const intel_limit_t *limit;
5941
5942         for_each_encoder_on_crtc(dev, crtc, encoder) {
5943                 switch (encoder->type) {
5944                 case INTEL_OUTPUT_LVDS:
5945                         is_lvds = true;
5946                         break;
5947                 case INTEL_OUTPUT_DSI:
5948                         is_dsi = true;
5949                         break;
5950                 }
5951
5952                 num_connectors++;
5953         }
5954
5955         if (is_dsi)
5956                 return 0;
5957
5958         if (!intel_crtc->config.clock_set) {
5959                 refclk = i9xx_get_refclk(crtc, num_connectors);
5960
5961                 /*
5962                  * Returns a set of divisors for the desired target clock with
5963                  * the given refclk, or FALSE.  The returned values represent
5964                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5965                  * 2) / p1 / p2.
5966                  */
5967                 limit = intel_limit(crtc, refclk);
5968                 ok = dev_priv->display.find_dpll(limit, crtc,
5969                                                  intel_crtc->config.port_clock,
5970                                                  refclk, NULL, &clock);
5971                 if (!ok) {
5972                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5973                         return -EINVAL;
5974                 }
5975
5976                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5977                         /*
5978                          * Ensure we match the reduced clock's P to the target
5979                          * clock.  If the clocks don't match, we can't switch
5980                          * the display clock by using the FP0/FP1. In such case
5981                          * we will disable the LVDS downclock feature.
5982                          */
5983                         has_reduced_clock =
5984                                 dev_priv->display.find_dpll(limit, crtc,
5985                                                             dev_priv->lvds_downclock,
5986                                                             refclk, &clock,
5987                                                             &reduced_clock);
5988                 }
5989                 /* Compat-code for transition, will disappear. */
5990                 intel_crtc->config.dpll.n = clock.n;
5991                 intel_crtc->config.dpll.m1 = clock.m1;
5992                 intel_crtc->config.dpll.m2 = clock.m2;
5993                 intel_crtc->config.dpll.p1 = clock.p1;
5994                 intel_crtc->config.dpll.p2 = clock.p2;
5995         }
5996
5997         if (IS_GEN2(dev)) {
5998                 i8xx_update_pll(intel_crtc,
5999                                 has_reduced_clock ? &reduced_clock : NULL,
6000                                 num_connectors);
6001         } else if (IS_CHERRYVIEW(dev)) {
6002                 chv_update_pll(intel_crtc);
6003         } else if (IS_VALLEYVIEW(dev)) {
6004                 vlv_update_pll(intel_crtc);
6005         } else {
6006                 i9xx_update_pll(intel_crtc,
6007                                 has_reduced_clock ? &reduced_clock : NULL,
6008                                 num_connectors);
6009         }
6010
6011         return 0;
6012 }
6013
6014 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6015                                  struct intel_crtc_config *pipe_config)
6016 {
6017         struct drm_device *dev = crtc->base.dev;
6018         struct drm_i915_private *dev_priv = dev->dev_private;
6019         uint32_t tmp;
6020
6021         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6022                 return;
6023
6024         tmp = I915_READ(PFIT_CONTROL);
6025         if (!(tmp & PFIT_ENABLE))
6026                 return;
6027
6028         /* Check whether the pfit is attached to our pipe. */
6029         if (INTEL_INFO(dev)->gen < 4) {
6030                 if (crtc->pipe != PIPE_B)
6031                         return;
6032         } else {
6033                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6034                         return;
6035         }
6036
6037         pipe_config->gmch_pfit.control = tmp;
6038         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6039         if (INTEL_INFO(dev)->gen < 5)
6040                 pipe_config->gmch_pfit.lvds_border_bits =
6041                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6042 }
6043
6044 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6045                                struct intel_crtc_config *pipe_config)
6046 {
6047         struct drm_device *dev = crtc->base.dev;
6048         struct drm_i915_private *dev_priv = dev->dev_private;
6049         int pipe = pipe_config->cpu_transcoder;
6050         intel_clock_t clock;
6051         u32 mdiv;
6052         int refclk = 100000;
6053
6054         mutex_lock(&dev_priv->dpio_lock);
6055         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6056         mutex_unlock(&dev_priv->dpio_lock);
6057
6058         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6059         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6060         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6061         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6062         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6063
6064         vlv_clock(refclk, &clock);
6065
6066         /* clock.dot is the fast clock */
6067         pipe_config->port_clock = clock.dot / 5;
6068 }
6069
6070 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6071                                   struct intel_plane_config *plane_config)
6072 {
6073         struct drm_device *dev = crtc->base.dev;
6074         struct drm_i915_private *dev_priv = dev->dev_private;
6075         u32 val, base, offset;
6076         int pipe = crtc->pipe, plane = crtc->plane;
6077         int fourcc, pixel_format;
6078         int aligned_height;
6079
6080         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6081         if (!crtc->base.primary->fb) {
6082                 DRM_DEBUG_KMS("failed to alloc fb\n");
6083                 return;
6084         }
6085
6086         val = I915_READ(DSPCNTR(plane));
6087
6088         if (INTEL_INFO(dev)->gen >= 4)
6089                 if (val & DISPPLANE_TILED)
6090                         plane_config->tiled = true;
6091
6092         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6093         fourcc = intel_format_to_fourcc(pixel_format);
6094         crtc->base.primary->fb->pixel_format = fourcc;
6095         crtc->base.primary->fb->bits_per_pixel =
6096                 drm_format_plane_cpp(fourcc, 0) * 8;
6097
6098         if (INTEL_INFO(dev)->gen >= 4) {
6099                 if (plane_config->tiled)
6100                         offset = I915_READ(DSPTILEOFF(plane));
6101                 else
6102                         offset = I915_READ(DSPLINOFF(plane));
6103                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6104         } else {
6105                 base = I915_READ(DSPADDR(plane));
6106         }
6107         plane_config->base = base;
6108
6109         val = I915_READ(PIPESRC(pipe));
6110         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6111         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6112
6113         val = I915_READ(DSPSTRIDE(pipe));
6114         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
6115
6116         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6117                                             plane_config->tiled);
6118
6119         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
6120                                    aligned_height, PAGE_SIZE);
6121
6122         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6123                       pipe, plane, crtc->base.primary->fb->width,
6124                       crtc->base.primary->fb->height,
6125                       crtc->base.primary->fb->bits_per_pixel, base,
6126                       crtc->base.primary->fb->pitches[0],
6127                       plane_config->size);
6128
6129 }
6130
6131 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6132                                struct intel_crtc_config *pipe_config)
6133 {
6134         struct drm_device *dev = crtc->base.dev;
6135         struct drm_i915_private *dev_priv = dev->dev_private;
6136         int pipe = pipe_config->cpu_transcoder;
6137         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6138         intel_clock_t clock;
6139         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6140         int refclk = 100000;
6141
6142         mutex_lock(&dev_priv->dpio_lock);
6143         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6144         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6145         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6146         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6147         mutex_unlock(&dev_priv->dpio_lock);
6148
6149         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6150         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6151         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6152         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6153         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6154
6155         chv_clock(refclk, &clock);
6156
6157         /* clock.dot is the fast clock */
6158         pipe_config->port_clock = clock.dot / 5;
6159 }
6160
6161 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6162                                  struct intel_crtc_config *pipe_config)
6163 {
6164         struct drm_device *dev = crtc->base.dev;
6165         struct drm_i915_private *dev_priv = dev->dev_private;
6166         uint32_t tmp;
6167
6168         if (!intel_display_power_enabled(dev_priv,
6169                                          POWER_DOMAIN_PIPE(crtc->pipe)))
6170                 return false;
6171
6172         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6173         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6174
6175         tmp = I915_READ(PIPECONF(crtc->pipe));
6176         if (!(tmp & PIPECONF_ENABLE))
6177                 return false;
6178
6179         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6180                 switch (tmp & PIPECONF_BPC_MASK) {
6181                 case PIPECONF_6BPC:
6182                         pipe_config->pipe_bpp = 18;
6183                         break;
6184                 case PIPECONF_8BPC:
6185                         pipe_config->pipe_bpp = 24;
6186                         break;
6187                 case PIPECONF_10BPC:
6188                         pipe_config->pipe_bpp = 30;
6189                         break;
6190                 default:
6191                         break;
6192                 }
6193         }
6194
6195         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6196                 pipe_config->limited_color_range = true;
6197
6198         if (INTEL_INFO(dev)->gen < 4)
6199                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6200
6201         intel_get_pipe_timings(crtc, pipe_config);
6202
6203         i9xx_get_pfit_config(crtc, pipe_config);
6204
6205         if (INTEL_INFO(dev)->gen >= 4) {
6206                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6207                 pipe_config->pixel_multiplier =
6208                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6209                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6210                 pipe_config->dpll_hw_state.dpll_md = tmp;
6211         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6212                 tmp = I915_READ(DPLL(crtc->pipe));
6213                 pipe_config->pixel_multiplier =
6214                         ((tmp & SDVO_MULTIPLIER_MASK)
6215                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6216         } else {
6217                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6218                  * port and will be fixed up in the encoder->get_config
6219                  * function. */
6220                 pipe_config->pixel_multiplier = 1;
6221         }
6222         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6223         if (!IS_VALLEYVIEW(dev)) {
6224                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6225                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6226         } else {
6227                 /* Mask out read-only status bits. */
6228                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6229                                                      DPLL_PORTC_READY_MASK |
6230                                                      DPLL_PORTB_READY_MASK);
6231         }
6232
6233         if (IS_CHERRYVIEW(dev))
6234                 chv_crtc_clock_get(crtc, pipe_config);
6235         else if (IS_VALLEYVIEW(dev))
6236                 vlv_crtc_clock_get(crtc, pipe_config);
6237         else
6238                 i9xx_crtc_clock_get(crtc, pipe_config);
6239
6240         return true;
6241 }
6242
6243 static void ironlake_init_pch_refclk(struct drm_device *dev)
6244 {
6245         struct drm_i915_private *dev_priv = dev->dev_private;
6246         struct drm_mode_config *mode_config = &dev->mode_config;
6247         struct intel_encoder *encoder;
6248         u32 val, final;
6249         bool has_lvds = false;
6250         bool has_cpu_edp = false;
6251         bool has_panel = false;
6252         bool has_ck505 = false;
6253         bool can_ssc = false;
6254
6255         /* We need to take the global config into account */
6256         list_for_each_entry(encoder, &mode_config->encoder_list,
6257                             base.head) {
6258                 switch (encoder->type) {
6259                 case INTEL_OUTPUT_LVDS:
6260                         has_panel = true;
6261                         has_lvds = true;
6262                         break;
6263                 case INTEL_OUTPUT_EDP:
6264                         has_panel = true;
6265                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6266                                 has_cpu_edp = true;
6267                         break;
6268                 }
6269         }
6270
6271         if (HAS_PCH_IBX(dev)) {
6272                 has_ck505 = dev_priv->vbt.display_clock_mode;
6273                 can_ssc = has_ck505;
6274         } else {
6275                 has_ck505 = false;
6276                 can_ssc = true;
6277         }
6278
6279         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6280                       has_panel, has_lvds, has_ck505);
6281
6282         /* Ironlake: try to setup display ref clock before DPLL
6283          * enabling. This is only under driver's control after
6284          * PCH B stepping, previous chipset stepping should be
6285          * ignoring this setting.
6286          */
6287         val = I915_READ(PCH_DREF_CONTROL);
6288
6289         /* As we must carefully and slowly disable/enable each source in turn,
6290          * compute the final state we want first and check if we need to
6291          * make any changes at all.
6292          */
6293         final = val;
6294         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6295         if (has_ck505)
6296                 final |= DREF_NONSPREAD_CK505_ENABLE;
6297         else
6298                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6299
6300         final &= ~DREF_SSC_SOURCE_MASK;
6301         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6302         final &= ~DREF_SSC1_ENABLE;
6303
6304         if (has_panel) {
6305                 final |= DREF_SSC_SOURCE_ENABLE;
6306
6307                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6308                         final |= DREF_SSC1_ENABLE;
6309
6310                 if (has_cpu_edp) {
6311                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6312                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6313                         else
6314                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6315                 } else
6316                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6317         } else {
6318                 final |= DREF_SSC_SOURCE_DISABLE;
6319                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6320         }
6321
6322         if (final == val)
6323                 return;
6324
6325         /* Always enable nonspread source */
6326         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6327
6328         if (has_ck505)
6329                 val |= DREF_NONSPREAD_CK505_ENABLE;
6330         else
6331                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6332
6333         if (has_panel) {
6334                 val &= ~DREF_SSC_SOURCE_MASK;
6335                 val |= DREF_SSC_SOURCE_ENABLE;
6336
6337                 /* SSC must be turned on before enabling the CPU output  */
6338                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6339                         DRM_DEBUG_KMS("Using SSC on panel\n");
6340                         val |= DREF_SSC1_ENABLE;
6341                 } else
6342                         val &= ~DREF_SSC1_ENABLE;
6343
6344                 /* Get SSC going before enabling the outputs */
6345                 I915_WRITE(PCH_DREF_CONTROL, val);
6346                 POSTING_READ(PCH_DREF_CONTROL);
6347                 udelay(200);
6348
6349                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6350
6351                 /* Enable CPU source on CPU attached eDP */
6352                 if (has_cpu_edp) {
6353                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6354                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6355                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6356                         } else
6357                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6358                 } else
6359                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6360
6361                 I915_WRITE(PCH_DREF_CONTROL, val);
6362                 POSTING_READ(PCH_DREF_CONTROL);
6363                 udelay(200);
6364         } else {
6365                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6366
6367                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6368
6369                 /* Turn off CPU output */
6370                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6371
6372                 I915_WRITE(PCH_DREF_CONTROL, val);
6373                 POSTING_READ(PCH_DREF_CONTROL);
6374                 udelay(200);
6375
6376                 /* Turn off the SSC source */
6377                 val &= ~DREF_SSC_SOURCE_MASK;
6378                 val |= DREF_SSC_SOURCE_DISABLE;
6379
6380                 /* Turn off SSC1 */
6381                 val &= ~DREF_SSC1_ENABLE;
6382
6383                 I915_WRITE(PCH_DREF_CONTROL, val);
6384                 POSTING_READ(PCH_DREF_CONTROL);
6385                 udelay(200);
6386         }
6387
6388         BUG_ON(val != final);
6389 }
6390
6391 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6392 {
6393         uint32_t tmp;
6394
6395         tmp = I915_READ(SOUTH_CHICKEN2);
6396         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6397         I915_WRITE(SOUTH_CHICKEN2, tmp);
6398
6399         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6400                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6401                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6402
6403         tmp = I915_READ(SOUTH_CHICKEN2);
6404         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6405         I915_WRITE(SOUTH_CHICKEN2, tmp);
6406
6407         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6408                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6409                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6410 }
6411
6412 /* WaMPhyProgramming:hsw */
6413 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6414 {
6415         uint32_t tmp;
6416
6417         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6418         tmp &= ~(0xFF << 24);
6419         tmp |= (0x12 << 24);
6420         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6421
6422         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6423         tmp |= (1 << 11);
6424         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6425
6426         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6427         tmp |= (1 << 11);
6428         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6429
6430         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6431         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6432         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6433
6434         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6435         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6436         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6437
6438         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6439         tmp &= ~(7 << 13);
6440         tmp |= (5 << 13);
6441         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6442
6443         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6444         tmp &= ~(7 << 13);
6445         tmp |= (5 << 13);
6446         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6447
6448         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6449         tmp &= ~0xFF;
6450         tmp |= 0x1C;
6451         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6452
6453         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6454         tmp &= ~0xFF;
6455         tmp |= 0x1C;
6456         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6457
6458         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6459         tmp &= ~(0xFF << 16);
6460         tmp |= (0x1C << 16);
6461         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6462
6463         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6464         tmp &= ~(0xFF << 16);
6465         tmp |= (0x1C << 16);
6466         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6467
6468         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6469         tmp |= (1 << 27);
6470         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6471
6472         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6473         tmp |= (1 << 27);
6474         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6475
6476         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6477         tmp &= ~(0xF << 28);
6478         tmp |= (4 << 28);
6479         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6480
6481         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6482         tmp &= ~(0xF << 28);
6483         tmp |= (4 << 28);
6484         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6485 }
6486
6487 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6488  * Programming" based on the parameters passed:
6489  * - Sequence to enable CLKOUT_DP
6490  * - Sequence to enable CLKOUT_DP without spread
6491  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6492  */
6493 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6494                                  bool with_fdi)
6495 {
6496         struct drm_i915_private *dev_priv = dev->dev_private;
6497         uint32_t reg, tmp;
6498
6499         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6500                 with_spread = true;
6501         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6502                  with_fdi, "LP PCH doesn't have FDI\n"))
6503                 with_fdi = false;
6504
6505         mutex_lock(&dev_priv->dpio_lock);
6506
6507         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6508         tmp &= ~SBI_SSCCTL_DISABLE;
6509         tmp |= SBI_SSCCTL_PATHALT;
6510         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6511
6512         udelay(24);
6513
6514         if (with_spread) {
6515                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6516                 tmp &= ~SBI_SSCCTL_PATHALT;
6517                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6518
6519                 if (with_fdi) {
6520                         lpt_reset_fdi_mphy(dev_priv);
6521                         lpt_program_fdi_mphy(dev_priv);
6522                 }
6523         }
6524
6525         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6526                SBI_GEN0 : SBI_DBUFF0;
6527         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6528         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6529         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6530
6531         mutex_unlock(&dev_priv->dpio_lock);
6532 }
6533
6534 /* Sequence to disable CLKOUT_DP */
6535 static void lpt_disable_clkout_dp(struct drm_device *dev)
6536 {
6537         struct drm_i915_private *dev_priv = dev->dev_private;
6538         uint32_t reg, tmp;
6539
6540         mutex_lock(&dev_priv->dpio_lock);
6541
6542         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6543                SBI_GEN0 : SBI_DBUFF0;
6544         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6545         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6546         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6547
6548         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6549         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6550                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6551                         tmp |= SBI_SSCCTL_PATHALT;
6552                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6553                         udelay(32);
6554                 }
6555                 tmp |= SBI_SSCCTL_DISABLE;
6556                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6557         }
6558
6559         mutex_unlock(&dev_priv->dpio_lock);
6560 }
6561
6562 static void lpt_init_pch_refclk(struct drm_device *dev)
6563 {
6564         struct drm_mode_config *mode_config = &dev->mode_config;
6565         struct intel_encoder *encoder;
6566         bool has_vga = false;
6567
6568         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6569                 switch (encoder->type) {
6570                 case INTEL_OUTPUT_ANALOG:
6571                         has_vga = true;
6572                         break;
6573                 }
6574         }
6575
6576         if (has_vga)
6577                 lpt_enable_clkout_dp(dev, true, true);
6578         else
6579                 lpt_disable_clkout_dp(dev);
6580 }
6581
6582 /*
6583  * Initialize reference clocks when the driver loads
6584  */
6585 void intel_init_pch_refclk(struct drm_device *dev)
6586 {
6587         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6588                 ironlake_init_pch_refclk(dev);
6589         else if (HAS_PCH_LPT(dev))
6590                 lpt_init_pch_refclk(dev);
6591 }
6592
6593 static int ironlake_get_refclk(struct drm_crtc *crtc)
6594 {
6595         struct drm_device *dev = crtc->dev;
6596         struct drm_i915_private *dev_priv = dev->dev_private;
6597         struct intel_encoder *encoder;
6598         int num_connectors = 0;
6599         bool is_lvds = false;
6600
6601         for_each_encoder_on_crtc(dev, crtc, encoder) {
6602                 switch (encoder->type) {
6603                 case INTEL_OUTPUT_LVDS:
6604                         is_lvds = true;
6605                         break;
6606                 }
6607                 num_connectors++;
6608         }
6609
6610         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6611                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6612                               dev_priv->vbt.lvds_ssc_freq);
6613                 return dev_priv->vbt.lvds_ssc_freq;
6614         }
6615
6616         return 120000;
6617 }
6618
6619 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6620 {
6621         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6622         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6623         int pipe = intel_crtc->pipe;
6624         uint32_t val;
6625
6626         val = 0;
6627
6628         switch (intel_crtc->config.pipe_bpp) {
6629         case 18:
6630                 val |= PIPECONF_6BPC;
6631                 break;
6632         case 24:
6633                 val |= PIPECONF_8BPC;
6634                 break;
6635         case 30:
6636                 val |= PIPECONF_10BPC;
6637                 break;
6638         case 36:
6639                 val |= PIPECONF_12BPC;
6640                 break;
6641         default:
6642                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6643                 BUG();
6644         }
6645
6646         if (intel_crtc->config.dither)
6647                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6648
6649         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6650                 val |= PIPECONF_INTERLACED_ILK;
6651         else
6652                 val |= PIPECONF_PROGRESSIVE;
6653
6654         if (intel_crtc->config.limited_color_range)
6655                 val |= PIPECONF_COLOR_RANGE_SELECT;
6656
6657         I915_WRITE(PIPECONF(pipe), val);
6658         POSTING_READ(PIPECONF(pipe));
6659 }
6660
6661 /*
6662  * Set up the pipe CSC unit.
6663  *
6664  * Currently only full range RGB to limited range RGB conversion
6665  * is supported, but eventually this should handle various
6666  * RGB<->YCbCr scenarios as well.
6667  */
6668 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6669 {
6670         struct drm_device *dev = crtc->dev;
6671         struct drm_i915_private *dev_priv = dev->dev_private;
6672         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6673         int pipe = intel_crtc->pipe;
6674         uint16_t coeff = 0x7800; /* 1.0 */
6675
6676         /*
6677          * TODO: Check what kind of values actually come out of the pipe
6678          * with these coeff/postoff values and adjust to get the best
6679          * accuracy. Perhaps we even need to take the bpc value into
6680          * consideration.
6681          */
6682
6683         if (intel_crtc->config.limited_color_range)
6684                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6685
6686         /*
6687          * GY/GU and RY/RU should be the other way around according
6688          * to BSpec, but reality doesn't agree. Just set them up in
6689          * a way that results in the correct picture.
6690          */
6691         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6692         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6693
6694         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6695         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6696
6697         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6698         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6699
6700         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6701         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6702         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6703
6704         if (INTEL_INFO(dev)->gen > 6) {
6705                 uint16_t postoff = 0;
6706
6707                 if (intel_crtc->config.limited_color_range)
6708                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6709
6710                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6711                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6712                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6713
6714                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6715         } else {
6716                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6717
6718                 if (intel_crtc->config.limited_color_range)
6719                         mode |= CSC_BLACK_SCREEN_OFFSET;
6720
6721                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6722         }
6723 }
6724
6725 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6726 {
6727         struct drm_device *dev = crtc->dev;
6728         struct drm_i915_private *dev_priv = dev->dev_private;
6729         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6730         enum pipe pipe = intel_crtc->pipe;
6731         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6732         uint32_t val;
6733
6734         val = 0;
6735
6736         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6737                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6738
6739         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6740                 val |= PIPECONF_INTERLACED_ILK;
6741         else
6742                 val |= PIPECONF_PROGRESSIVE;
6743
6744         I915_WRITE(PIPECONF(cpu_transcoder), val);
6745         POSTING_READ(PIPECONF(cpu_transcoder));
6746
6747         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6748         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6749
6750         if (IS_BROADWELL(dev)) {
6751                 val = 0;
6752
6753                 switch (intel_crtc->config.pipe_bpp) {
6754                 case 18:
6755                         val |= PIPEMISC_DITHER_6_BPC;
6756                         break;
6757                 case 24:
6758                         val |= PIPEMISC_DITHER_8_BPC;
6759                         break;
6760                 case 30:
6761                         val |= PIPEMISC_DITHER_10_BPC;
6762                         break;
6763                 case 36:
6764                         val |= PIPEMISC_DITHER_12_BPC;
6765                         break;
6766                 default:
6767                         /* Case prevented by pipe_config_set_bpp. */
6768                         BUG();
6769                 }
6770
6771                 if (intel_crtc->config.dither)
6772                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6773
6774                 I915_WRITE(PIPEMISC(pipe), val);
6775         }
6776 }
6777
6778 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6779                                     intel_clock_t *clock,
6780                                     bool *has_reduced_clock,
6781                                     intel_clock_t *reduced_clock)
6782 {
6783         struct drm_device *dev = crtc->dev;
6784         struct drm_i915_private *dev_priv = dev->dev_private;
6785         struct intel_encoder *intel_encoder;
6786         int refclk;
6787         const intel_limit_t *limit;
6788         bool ret, is_lvds = false;
6789
6790         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6791                 switch (intel_encoder->type) {
6792                 case INTEL_OUTPUT_LVDS:
6793                         is_lvds = true;
6794                         break;
6795                 }
6796         }
6797
6798         refclk = ironlake_get_refclk(crtc);
6799
6800         /*
6801          * Returns a set of divisors for the desired target clock with the given
6802          * refclk, or FALSE.  The returned values represent the clock equation:
6803          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6804          */
6805         limit = intel_limit(crtc, refclk);
6806         ret = dev_priv->display.find_dpll(limit, crtc,
6807                                           to_intel_crtc(crtc)->config.port_clock,
6808                                           refclk, NULL, clock);
6809         if (!ret)
6810                 return false;
6811
6812         if (is_lvds && dev_priv->lvds_downclock_avail) {
6813                 /*
6814                  * Ensure we match the reduced clock's P to the target clock.
6815                  * If the clocks don't match, we can't switch the display clock
6816                  * by using the FP0/FP1. In such case we will disable the LVDS
6817                  * downclock feature.
6818                 */
6819                 *has_reduced_clock =
6820                         dev_priv->display.find_dpll(limit, crtc,
6821                                                     dev_priv->lvds_downclock,
6822                                                     refclk, clock,
6823                                                     reduced_clock);
6824         }
6825
6826         return true;
6827 }
6828
6829 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6830 {
6831         /*
6832          * Account for spread spectrum to avoid
6833          * oversubscribing the link. Max center spread
6834          * is 2.5%; use 5% for safety's sake.
6835          */
6836         u32 bps = target_clock * bpp * 21 / 20;
6837         return DIV_ROUND_UP(bps, link_bw * 8);
6838 }
6839
6840 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6841 {
6842         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6843 }
6844
6845 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6846                                       u32 *fp,
6847                                       intel_clock_t *reduced_clock, u32 *fp2)
6848 {
6849         struct drm_crtc *crtc = &intel_crtc->base;
6850         struct drm_device *dev = crtc->dev;
6851         struct drm_i915_private *dev_priv = dev->dev_private;
6852         struct intel_encoder *intel_encoder;
6853         uint32_t dpll;
6854         int factor, num_connectors = 0;
6855         bool is_lvds = false, is_sdvo = false;
6856
6857         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6858                 switch (intel_encoder->type) {
6859                 case INTEL_OUTPUT_LVDS:
6860                         is_lvds = true;
6861                         break;
6862                 case INTEL_OUTPUT_SDVO:
6863                 case INTEL_OUTPUT_HDMI:
6864                         is_sdvo = true;
6865                         break;
6866                 }
6867
6868                 num_connectors++;
6869         }
6870
6871         /* Enable autotuning of the PLL clock (if permissible) */
6872         factor = 21;
6873         if (is_lvds) {
6874                 if ((intel_panel_use_ssc(dev_priv) &&
6875                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
6876                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6877                         factor = 25;
6878         } else if (intel_crtc->config.sdvo_tv_clock)
6879                 factor = 20;
6880
6881         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6882                 *fp |= FP_CB_TUNE;
6883
6884         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6885                 *fp2 |= FP_CB_TUNE;
6886
6887         dpll = 0;
6888
6889         if (is_lvds)
6890                 dpll |= DPLLB_MODE_LVDS;
6891         else
6892                 dpll |= DPLLB_MODE_DAC_SERIAL;
6893
6894         dpll |= (intel_crtc->config.pixel_multiplier - 1)
6895                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6896
6897         if (is_sdvo)
6898                 dpll |= DPLL_SDVO_HIGH_SPEED;
6899         if (intel_crtc->config.has_dp_encoder)
6900                 dpll |= DPLL_SDVO_HIGH_SPEED;
6901
6902         /* compute bitmask from p1 value */
6903         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6904         /* also FPA1 */
6905         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6906
6907         switch (intel_crtc->config.dpll.p2) {
6908         case 5:
6909                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6910                 break;
6911         case 7:
6912                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6913                 break;
6914         case 10:
6915                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6916                 break;
6917         case 14:
6918                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6919                 break;
6920         }
6921
6922         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6923                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6924         else
6925                 dpll |= PLL_REF_INPUT_DREFCLK;
6926
6927         return dpll | DPLL_VCO_ENABLE;
6928 }
6929
6930 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6931                                   int x, int y,
6932                                   struct drm_framebuffer *fb)
6933 {
6934         struct drm_device *dev = crtc->dev;
6935         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6936         int num_connectors = 0;
6937         intel_clock_t clock, reduced_clock;
6938         u32 dpll = 0, fp = 0, fp2 = 0;
6939         bool ok, has_reduced_clock = false;
6940         bool is_lvds = false;
6941         struct intel_encoder *encoder;
6942         struct intel_shared_dpll *pll;
6943
6944         for_each_encoder_on_crtc(dev, crtc, encoder) {
6945                 switch (encoder->type) {
6946                 case INTEL_OUTPUT_LVDS:
6947                         is_lvds = true;
6948                         break;
6949                 }
6950
6951                 num_connectors++;
6952         }
6953
6954         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6955              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6956
6957         ok = ironlake_compute_clocks(crtc, &clock,
6958                                      &has_reduced_clock, &reduced_clock);
6959         if (!ok && !intel_crtc->config.clock_set) {
6960                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6961                 return -EINVAL;
6962         }
6963         /* Compat-code for transition, will disappear. */
6964         if (!intel_crtc->config.clock_set) {
6965                 intel_crtc->config.dpll.n = clock.n;
6966                 intel_crtc->config.dpll.m1 = clock.m1;
6967                 intel_crtc->config.dpll.m2 = clock.m2;
6968                 intel_crtc->config.dpll.p1 = clock.p1;
6969                 intel_crtc->config.dpll.p2 = clock.p2;
6970         }
6971
6972         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6973         if (intel_crtc->config.has_pch_encoder) {
6974                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6975                 if (has_reduced_clock)
6976                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6977
6978                 dpll = ironlake_compute_dpll(intel_crtc,
6979                                              &fp, &reduced_clock,
6980                                              has_reduced_clock ? &fp2 : NULL);
6981
6982                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6983                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6984                 if (has_reduced_clock)
6985                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6986                 else
6987                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6988
6989                 pll = intel_get_shared_dpll(intel_crtc);
6990                 if (pll == NULL) {
6991                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6992                                          pipe_name(intel_crtc->pipe));
6993                         return -EINVAL;
6994                 }
6995         } else
6996                 intel_put_shared_dpll(intel_crtc);
6997
6998         if (is_lvds && has_reduced_clock && i915.powersave)
6999                 intel_crtc->lowfreq_avail = true;
7000         else
7001                 intel_crtc->lowfreq_avail = false;
7002
7003         return 0;
7004 }
7005
7006 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7007                                          struct intel_link_m_n *m_n)
7008 {
7009         struct drm_device *dev = crtc->base.dev;
7010         struct drm_i915_private *dev_priv = dev->dev_private;
7011         enum pipe pipe = crtc->pipe;
7012
7013         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7014         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7015         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7016                 & ~TU_SIZE_MASK;
7017         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7018         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7019                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7020 }
7021
7022 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7023                                          enum transcoder transcoder,
7024                                          struct intel_link_m_n *m_n)
7025 {
7026         struct drm_device *dev = crtc->base.dev;
7027         struct drm_i915_private *dev_priv = dev->dev_private;
7028         enum pipe pipe = crtc->pipe;
7029
7030         if (INTEL_INFO(dev)->gen >= 5) {
7031                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7032                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7033                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7034                         & ~TU_SIZE_MASK;
7035                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7036                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7037                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7038         } else {
7039                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7040                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7041                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7042                         & ~TU_SIZE_MASK;
7043                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7044                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7045                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7046         }
7047 }
7048
7049 void intel_dp_get_m_n(struct intel_crtc *crtc,
7050                       struct intel_crtc_config *pipe_config)
7051 {
7052         if (crtc->config.has_pch_encoder)
7053                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7054         else
7055                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7056                                              &pipe_config->dp_m_n);
7057 }
7058
7059 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7060                                         struct intel_crtc_config *pipe_config)
7061 {
7062         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7063                                      &pipe_config->fdi_m_n);
7064 }
7065
7066 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7067                                      struct intel_crtc_config *pipe_config)
7068 {
7069         struct drm_device *dev = crtc->base.dev;
7070         struct drm_i915_private *dev_priv = dev->dev_private;
7071         uint32_t tmp;
7072
7073         tmp = I915_READ(PF_CTL(crtc->pipe));
7074
7075         if (tmp & PF_ENABLE) {
7076                 pipe_config->pch_pfit.enabled = true;
7077                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7078                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7079
7080                 /* We currently do not free assignements of panel fitters on
7081                  * ivb/hsw (since we don't use the higher upscaling modes which
7082                  * differentiates them) so just WARN about this case for now. */
7083                 if (IS_GEN7(dev)) {
7084                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7085                                 PF_PIPE_SEL_IVB(crtc->pipe));
7086                 }
7087         }
7088 }
7089
7090 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7091                                       struct intel_plane_config *plane_config)
7092 {
7093         struct drm_device *dev = crtc->base.dev;
7094         struct drm_i915_private *dev_priv = dev->dev_private;
7095         u32 val, base, offset;
7096         int pipe = crtc->pipe, plane = crtc->plane;
7097         int fourcc, pixel_format;
7098         int aligned_height;
7099
7100         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7101         if (!crtc->base.primary->fb) {
7102                 DRM_DEBUG_KMS("failed to alloc fb\n");
7103                 return;
7104         }
7105
7106         val = I915_READ(DSPCNTR(plane));
7107
7108         if (INTEL_INFO(dev)->gen >= 4)
7109                 if (val & DISPPLANE_TILED)
7110                         plane_config->tiled = true;
7111
7112         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7113         fourcc = intel_format_to_fourcc(pixel_format);
7114         crtc->base.primary->fb->pixel_format = fourcc;
7115         crtc->base.primary->fb->bits_per_pixel =
7116                 drm_format_plane_cpp(fourcc, 0) * 8;
7117
7118         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7119         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7120                 offset = I915_READ(DSPOFFSET(plane));
7121         } else {
7122                 if (plane_config->tiled)
7123                         offset = I915_READ(DSPTILEOFF(plane));
7124                 else
7125                         offset = I915_READ(DSPLINOFF(plane));
7126         }
7127         plane_config->base = base;
7128
7129         val = I915_READ(PIPESRC(pipe));
7130         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7131         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7132
7133         val = I915_READ(DSPSTRIDE(pipe));
7134         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
7135
7136         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7137                                             plane_config->tiled);
7138
7139         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
7140                                    aligned_height, PAGE_SIZE);
7141
7142         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7143                       pipe, plane, crtc->base.primary->fb->width,
7144                       crtc->base.primary->fb->height,
7145                       crtc->base.primary->fb->bits_per_pixel, base,
7146                       crtc->base.primary->fb->pitches[0],
7147                       plane_config->size);
7148 }
7149
7150 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7151                                      struct intel_crtc_config *pipe_config)
7152 {
7153         struct drm_device *dev = crtc->base.dev;
7154         struct drm_i915_private *dev_priv = dev->dev_private;
7155         uint32_t tmp;
7156
7157         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7158         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7159
7160         tmp = I915_READ(PIPECONF(crtc->pipe));
7161         if (!(tmp & PIPECONF_ENABLE))
7162                 return false;
7163
7164         switch (tmp & PIPECONF_BPC_MASK) {
7165         case PIPECONF_6BPC:
7166                 pipe_config->pipe_bpp = 18;
7167                 break;
7168         case PIPECONF_8BPC:
7169                 pipe_config->pipe_bpp = 24;
7170                 break;
7171         case PIPECONF_10BPC:
7172                 pipe_config->pipe_bpp = 30;
7173                 break;
7174         case PIPECONF_12BPC:
7175                 pipe_config->pipe_bpp = 36;
7176                 break;
7177         default:
7178                 break;
7179         }
7180
7181         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7182                 pipe_config->limited_color_range = true;
7183
7184         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7185                 struct intel_shared_dpll *pll;
7186
7187                 pipe_config->has_pch_encoder = true;
7188
7189                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7190                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7191                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7192
7193                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7194
7195                 if (HAS_PCH_IBX(dev_priv->dev)) {
7196                         pipe_config->shared_dpll =
7197                                 (enum intel_dpll_id) crtc->pipe;
7198                 } else {
7199                         tmp = I915_READ(PCH_DPLL_SEL);
7200                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7201                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7202                         else
7203                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7204                 }
7205
7206                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7207
7208                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7209                                            &pipe_config->dpll_hw_state));
7210
7211                 tmp = pipe_config->dpll_hw_state.dpll;
7212                 pipe_config->pixel_multiplier =
7213                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7214                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7215
7216                 ironlake_pch_clock_get(crtc, pipe_config);
7217         } else {
7218                 pipe_config->pixel_multiplier = 1;
7219         }
7220
7221         intel_get_pipe_timings(crtc, pipe_config);
7222
7223         ironlake_get_pfit_config(crtc, pipe_config);
7224
7225         return true;
7226 }
7227
7228 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7229 {
7230         struct drm_device *dev = dev_priv->dev;
7231         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
7232         struct intel_crtc *crtc;
7233
7234         for_each_intel_crtc(dev, crtc)
7235                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7236                      pipe_name(crtc->pipe));
7237
7238         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7239         WARN(plls->spll_refcount, "SPLL enabled\n");
7240         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
7241         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
7242         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7243         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7244              "CPU PWM1 enabled\n");
7245         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7246              "CPU PWM2 enabled\n");
7247         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7248              "PCH PWM1 enabled\n");
7249         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7250              "Utility pin enabled\n");
7251         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7252
7253         /*
7254          * In theory we can still leave IRQs enabled, as long as only the HPD
7255          * interrupts remain enabled. We used to check for that, but since it's
7256          * gen-specific and since we only disable LCPLL after we fully disable
7257          * the interrupts, the check below should be enough.
7258          */
7259         WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
7260 }
7261
7262 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7263 {
7264         struct drm_device *dev = dev_priv->dev;
7265
7266         if (IS_HASWELL(dev)) {
7267                 mutex_lock(&dev_priv->rps.hw_lock);
7268                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7269                                             val))
7270                         DRM_ERROR("Failed to disable D_COMP\n");
7271                 mutex_unlock(&dev_priv->rps.hw_lock);
7272         } else {
7273                 I915_WRITE(D_COMP, val);
7274         }
7275         POSTING_READ(D_COMP);
7276 }
7277
7278 /*
7279  * This function implements pieces of two sequences from BSpec:
7280  * - Sequence for display software to disable LCPLL
7281  * - Sequence for display software to allow package C8+
7282  * The steps implemented here are just the steps that actually touch the LCPLL
7283  * register. Callers should take care of disabling all the display engine
7284  * functions, doing the mode unset, fixing interrupts, etc.
7285  */
7286 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7287                               bool switch_to_fclk, bool allow_power_down)
7288 {
7289         uint32_t val;
7290
7291         assert_can_disable_lcpll(dev_priv);
7292
7293         val = I915_READ(LCPLL_CTL);
7294
7295         if (switch_to_fclk) {
7296                 val |= LCPLL_CD_SOURCE_FCLK;
7297                 I915_WRITE(LCPLL_CTL, val);
7298
7299                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7300                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7301                         DRM_ERROR("Switching to FCLK failed\n");
7302
7303                 val = I915_READ(LCPLL_CTL);
7304         }
7305
7306         val |= LCPLL_PLL_DISABLE;
7307         I915_WRITE(LCPLL_CTL, val);
7308         POSTING_READ(LCPLL_CTL);
7309
7310         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7311                 DRM_ERROR("LCPLL still locked\n");
7312
7313         val = I915_READ(D_COMP);
7314         val |= D_COMP_COMP_DISABLE;
7315         hsw_write_dcomp(dev_priv, val);
7316         ndelay(100);
7317
7318         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
7319                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7320
7321         if (allow_power_down) {
7322                 val = I915_READ(LCPLL_CTL);
7323                 val |= LCPLL_POWER_DOWN_ALLOW;
7324                 I915_WRITE(LCPLL_CTL, val);
7325                 POSTING_READ(LCPLL_CTL);
7326         }
7327 }
7328
7329 /*
7330  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7331  * source.
7332  */
7333 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7334 {
7335         uint32_t val;
7336         unsigned long irqflags;
7337
7338         val = I915_READ(LCPLL_CTL);
7339
7340         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7341                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7342                 return;
7343
7344         /*
7345          * Make sure we're not on PC8 state before disabling PC8, otherwise
7346          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7347          *
7348          * The other problem is that hsw_restore_lcpll() is called as part of
7349          * the runtime PM resume sequence, so we can't just call
7350          * gen6_gt_force_wake_get() because that function calls
7351          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7352          * while we are on the resume sequence. So to solve this problem we have
7353          * to call special forcewake code that doesn't touch runtime PM and
7354          * doesn't enable the forcewake delayed work.
7355          */
7356         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7357         if (dev_priv->uncore.forcewake_count++ == 0)
7358                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7359         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7360
7361         if (val & LCPLL_POWER_DOWN_ALLOW) {
7362                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7363                 I915_WRITE(LCPLL_CTL, val);
7364                 POSTING_READ(LCPLL_CTL);
7365         }
7366
7367         val = I915_READ(D_COMP);
7368         val |= D_COMP_COMP_FORCE;
7369         val &= ~D_COMP_COMP_DISABLE;
7370         hsw_write_dcomp(dev_priv, val);
7371
7372         val = I915_READ(LCPLL_CTL);
7373         val &= ~LCPLL_PLL_DISABLE;
7374         I915_WRITE(LCPLL_CTL, val);
7375
7376         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7377                 DRM_ERROR("LCPLL not locked yet\n");
7378
7379         if (val & LCPLL_CD_SOURCE_FCLK) {
7380                 val = I915_READ(LCPLL_CTL);
7381                 val &= ~LCPLL_CD_SOURCE_FCLK;
7382                 I915_WRITE(LCPLL_CTL, val);
7383
7384                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7385                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7386                         DRM_ERROR("Switching back to LCPLL failed\n");
7387         }
7388
7389         /* See the big comment above. */
7390         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7391         if (--dev_priv->uncore.forcewake_count == 0)
7392                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7393         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7394 }
7395
7396 /*
7397  * Package states C8 and deeper are really deep PC states that can only be
7398  * reached when all the devices on the system allow it, so even if the graphics
7399  * device allows PC8+, it doesn't mean the system will actually get to these
7400  * states. Our driver only allows PC8+ when going into runtime PM.
7401  *
7402  * The requirements for PC8+ are that all the outputs are disabled, the power
7403  * well is disabled and most interrupts are disabled, and these are also
7404  * requirements for runtime PM. When these conditions are met, we manually do
7405  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7406  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7407  * hang the machine.
7408  *
7409  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7410  * the state of some registers, so when we come back from PC8+ we need to
7411  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7412  * need to take care of the registers kept by RC6. Notice that this happens even
7413  * if we don't put the device in PCI D3 state (which is what currently happens
7414  * because of the runtime PM support).
7415  *
7416  * For more, read "Display Sequences for Package C8" on the hardware
7417  * documentation.
7418  */
7419 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7420 {
7421         struct drm_device *dev = dev_priv->dev;
7422         uint32_t val;
7423
7424         DRM_DEBUG_KMS("Enabling package C8+\n");
7425
7426         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7427                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7428                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7429                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7430         }
7431
7432         lpt_disable_clkout_dp(dev);
7433         hsw_disable_lcpll(dev_priv, true, true);
7434 }
7435
7436 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7437 {
7438         struct drm_device *dev = dev_priv->dev;
7439         uint32_t val;
7440
7441         DRM_DEBUG_KMS("Disabling package C8+\n");
7442
7443         hsw_restore_lcpll(dev_priv);
7444         lpt_init_pch_refclk(dev);
7445
7446         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7447                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7448                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7449                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7450         }
7451
7452         intel_prepare_ddi(dev);
7453 }
7454
7455 static void snb_modeset_global_resources(struct drm_device *dev)
7456 {
7457         modeset_update_crtc_power_domains(dev);
7458 }
7459
7460 static void haswell_modeset_global_resources(struct drm_device *dev)
7461 {
7462         modeset_update_crtc_power_domains(dev);
7463 }
7464
7465 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7466                                  int x, int y,
7467                                  struct drm_framebuffer *fb)
7468 {
7469         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7470
7471         if (!intel_ddi_pll_select(intel_crtc))
7472                 return -EINVAL;
7473         intel_ddi_pll_enable(intel_crtc);
7474
7475         intel_crtc->lowfreq_avail = false;
7476
7477         return 0;
7478 }
7479
7480 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7481                                     struct intel_crtc_config *pipe_config)
7482 {
7483         struct drm_device *dev = crtc->base.dev;
7484         struct drm_i915_private *dev_priv = dev->dev_private;
7485         enum intel_display_power_domain pfit_domain;
7486         uint32_t tmp;
7487
7488         if (!intel_display_power_enabled(dev_priv,
7489                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7490                 return false;
7491
7492         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7493         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7494
7495         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7496         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7497                 enum pipe trans_edp_pipe;
7498                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7499                 default:
7500                         WARN(1, "unknown pipe linked to edp transcoder\n");
7501                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7502                 case TRANS_DDI_EDP_INPUT_A_ON:
7503                         trans_edp_pipe = PIPE_A;
7504                         break;
7505                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7506                         trans_edp_pipe = PIPE_B;
7507                         break;
7508                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7509                         trans_edp_pipe = PIPE_C;
7510                         break;
7511                 }
7512
7513                 if (trans_edp_pipe == crtc->pipe)
7514                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7515         }
7516
7517         if (!intel_display_power_enabled(dev_priv,
7518                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7519                 return false;
7520
7521         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7522         if (!(tmp & PIPECONF_ENABLE))
7523                 return false;
7524
7525         /*
7526          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7527          * DDI E. So just check whether this pipe is wired to DDI E and whether
7528          * the PCH transcoder is on.
7529          */
7530         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7531         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
7532             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7533                 pipe_config->has_pch_encoder = true;
7534
7535                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7536                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7537                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7538
7539                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7540         }
7541
7542         intel_get_pipe_timings(crtc, pipe_config);
7543
7544         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7545         if (intel_display_power_enabled(dev_priv, pfit_domain))
7546                 ironlake_get_pfit_config(crtc, pipe_config);
7547
7548         if (IS_HASWELL(dev))
7549                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7550                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7551
7552         pipe_config->pixel_multiplier = 1;
7553
7554         return true;
7555 }
7556
7557 static struct {
7558         int clock;
7559         u32 config;
7560 } hdmi_audio_clock[] = {
7561         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7562         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7563         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7564         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7565         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7566         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7567         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7568         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7569         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7570         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7571 };
7572
7573 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7574 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7575 {
7576         int i;
7577
7578         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7579                 if (mode->clock == hdmi_audio_clock[i].clock)
7580                         break;
7581         }
7582
7583         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7584                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7585                 i = 1;
7586         }
7587
7588         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7589                       hdmi_audio_clock[i].clock,
7590                       hdmi_audio_clock[i].config);
7591
7592         return hdmi_audio_clock[i].config;
7593 }
7594
7595 static bool intel_eld_uptodate(struct drm_connector *connector,
7596                                int reg_eldv, uint32_t bits_eldv,
7597                                int reg_elda, uint32_t bits_elda,
7598                                int reg_edid)
7599 {
7600         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7601         uint8_t *eld = connector->eld;
7602         uint32_t i;
7603
7604         i = I915_READ(reg_eldv);
7605         i &= bits_eldv;
7606
7607         if (!eld[0])
7608                 return !i;
7609
7610         if (!i)
7611                 return false;
7612
7613         i = I915_READ(reg_elda);
7614         i &= ~bits_elda;
7615         I915_WRITE(reg_elda, i);
7616
7617         for (i = 0; i < eld[2]; i++)
7618                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7619                         return false;
7620
7621         return true;
7622 }
7623
7624 static void g4x_write_eld(struct drm_connector *connector,
7625                           struct drm_crtc *crtc,
7626                           struct drm_display_mode *mode)
7627 {
7628         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7629         uint8_t *eld = connector->eld;
7630         uint32_t eldv;
7631         uint32_t len;
7632         uint32_t i;
7633
7634         i = I915_READ(G4X_AUD_VID_DID);
7635
7636         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7637                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7638         else
7639                 eldv = G4X_ELDV_DEVCTG;
7640
7641         if (intel_eld_uptodate(connector,
7642                                G4X_AUD_CNTL_ST, eldv,
7643                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7644                                G4X_HDMIW_HDMIEDID))
7645                 return;
7646
7647         i = I915_READ(G4X_AUD_CNTL_ST);
7648         i &= ~(eldv | G4X_ELD_ADDR);
7649         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7650         I915_WRITE(G4X_AUD_CNTL_ST, i);
7651
7652         if (!eld[0])
7653                 return;
7654
7655         len = min_t(uint8_t, eld[2], len);
7656         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7657         for (i = 0; i < len; i++)
7658                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7659
7660         i = I915_READ(G4X_AUD_CNTL_ST);
7661         i |= eldv;
7662         I915_WRITE(G4X_AUD_CNTL_ST, i);
7663 }
7664
7665 static void haswell_write_eld(struct drm_connector *connector,
7666                               struct drm_crtc *crtc,
7667                               struct drm_display_mode *mode)
7668 {
7669         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7670         uint8_t *eld = connector->eld;
7671         uint32_t eldv;
7672         uint32_t i;
7673         int len;
7674         int pipe = to_intel_crtc(crtc)->pipe;
7675         int tmp;
7676
7677         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7678         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7679         int aud_config = HSW_AUD_CFG(pipe);
7680         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7681
7682         /* Audio output enable */
7683         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7684         tmp = I915_READ(aud_cntrl_st2);
7685         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7686         I915_WRITE(aud_cntrl_st2, tmp);
7687         POSTING_READ(aud_cntrl_st2);
7688
7689         assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7690
7691         /* Set ELD valid state */
7692         tmp = I915_READ(aud_cntrl_st2);
7693         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7694         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7695         I915_WRITE(aud_cntrl_st2, tmp);
7696         tmp = I915_READ(aud_cntrl_st2);
7697         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7698
7699         /* Enable HDMI mode */
7700         tmp = I915_READ(aud_config);
7701         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7702         /* clear N_programing_enable and N_value_index */
7703         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7704         I915_WRITE(aud_config, tmp);
7705
7706         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7707
7708         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7709
7710         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7711                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7712                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7713                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7714         } else {
7715                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7716         }
7717
7718         if (intel_eld_uptodate(connector,
7719                                aud_cntrl_st2, eldv,
7720                                aud_cntl_st, IBX_ELD_ADDRESS,
7721                                hdmiw_hdmiedid))
7722                 return;
7723
7724         i = I915_READ(aud_cntrl_st2);
7725         i &= ~eldv;
7726         I915_WRITE(aud_cntrl_st2, i);
7727
7728         if (!eld[0])
7729                 return;
7730
7731         i = I915_READ(aud_cntl_st);
7732         i &= ~IBX_ELD_ADDRESS;
7733         I915_WRITE(aud_cntl_st, i);
7734         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7735         DRM_DEBUG_DRIVER("port num:%d\n", i);
7736
7737         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7738         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7739         for (i = 0; i < len; i++)
7740                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7741
7742         i = I915_READ(aud_cntrl_st2);
7743         i |= eldv;
7744         I915_WRITE(aud_cntrl_st2, i);
7745
7746 }
7747
7748 static void ironlake_write_eld(struct drm_connector *connector,
7749                                struct drm_crtc *crtc,
7750                                struct drm_display_mode *mode)
7751 {
7752         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7753         uint8_t *eld = connector->eld;
7754         uint32_t eldv;
7755         uint32_t i;
7756         int len;
7757         int hdmiw_hdmiedid;
7758         int aud_config;
7759         int aud_cntl_st;
7760         int aud_cntrl_st2;
7761         int pipe = to_intel_crtc(crtc)->pipe;
7762
7763         if (HAS_PCH_IBX(connector->dev)) {
7764                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7765                 aud_config = IBX_AUD_CFG(pipe);
7766                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7767                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7768         } else if (IS_VALLEYVIEW(connector->dev)) {
7769                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7770                 aud_config = VLV_AUD_CFG(pipe);
7771                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7772                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7773         } else {
7774                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7775                 aud_config = CPT_AUD_CFG(pipe);
7776                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7777                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7778         }
7779
7780         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7781
7782         if (IS_VALLEYVIEW(connector->dev))  {
7783                 struct intel_encoder *intel_encoder;
7784                 struct intel_digital_port *intel_dig_port;
7785
7786                 intel_encoder = intel_attached_encoder(connector);
7787                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7788                 i = intel_dig_port->port;
7789         } else {
7790                 i = I915_READ(aud_cntl_st);
7791                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7792                 /* DIP_Port_Select, 0x1 = PortB */
7793         }
7794
7795         if (!i) {
7796                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7797                 /* operate blindly on all ports */
7798                 eldv = IBX_ELD_VALIDB;
7799                 eldv |= IBX_ELD_VALIDB << 4;
7800                 eldv |= IBX_ELD_VALIDB << 8;
7801         } else {
7802                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7803                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7804         }
7805
7806         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7807                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7808                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7809                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7810         } else {
7811                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7812         }
7813
7814         if (intel_eld_uptodate(connector,
7815                                aud_cntrl_st2, eldv,
7816                                aud_cntl_st, IBX_ELD_ADDRESS,
7817                                hdmiw_hdmiedid))
7818                 return;
7819
7820         i = I915_READ(aud_cntrl_st2);
7821         i &= ~eldv;
7822         I915_WRITE(aud_cntrl_st2, i);
7823
7824         if (!eld[0])
7825                 return;
7826
7827         i = I915_READ(aud_cntl_st);
7828         i &= ~IBX_ELD_ADDRESS;
7829         I915_WRITE(aud_cntl_st, i);
7830
7831         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7832         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7833         for (i = 0; i < len; i++)
7834                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7835
7836         i = I915_READ(aud_cntrl_st2);
7837         i |= eldv;
7838         I915_WRITE(aud_cntrl_st2, i);
7839 }
7840
7841 void intel_write_eld(struct drm_encoder *encoder,
7842                      struct drm_display_mode *mode)
7843 {
7844         struct drm_crtc *crtc = encoder->crtc;
7845         struct drm_connector *connector;
7846         struct drm_device *dev = encoder->dev;
7847         struct drm_i915_private *dev_priv = dev->dev_private;
7848
7849         connector = drm_select_eld(encoder, mode);
7850         if (!connector)
7851                 return;
7852
7853         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7854                          connector->base.id,
7855                          connector->name,
7856                          connector->encoder->base.id,
7857                          connector->encoder->name);
7858
7859         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7860
7861         if (dev_priv->display.write_eld)
7862                 dev_priv->display.write_eld(connector, crtc, mode);
7863 }
7864
7865 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7866 {
7867         struct drm_device *dev = crtc->dev;
7868         struct drm_i915_private *dev_priv = dev->dev_private;
7869         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7870         uint32_t cntl;
7871
7872         if (base != intel_crtc->cursor_base) {
7873                 /* On these chipsets we can only modify the base whilst
7874                  * the cursor is disabled.
7875                  */
7876                 if (intel_crtc->cursor_cntl) {
7877                         I915_WRITE(_CURACNTR, 0);
7878                         POSTING_READ(_CURACNTR);
7879                         intel_crtc->cursor_cntl = 0;
7880                 }
7881
7882                 I915_WRITE(_CURABASE, base);
7883                 POSTING_READ(_CURABASE);
7884         }
7885
7886         /* XXX width must be 64, stride 256 => 0x00 << 28 */
7887         cntl = 0;
7888         if (base)
7889                 cntl = (CURSOR_ENABLE |
7890                         CURSOR_GAMMA_ENABLE |
7891                         CURSOR_FORMAT_ARGB);
7892         if (intel_crtc->cursor_cntl != cntl) {
7893                 I915_WRITE(_CURACNTR, cntl);
7894                 POSTING_READ(_CURACNTR);
7895                 intel_crtc->cursor_cntl = cntl;
7896         }
7897 }
7898
7899 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7900 {
7901         struct drm_device *dev = crtc->dev;
7902         struct drm_i915_private *dev_priv = dev->dev_private;
7903         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7904         int pipe = intel_crtc->pipe;
7905         uint32_t cntl;
7906
7907         cntl = 0;
7908         if (base) {
7909                 cntl = MCURSOR_GAMMA_ENABLE;
7910                 switch (intel_crtc->cursor_width) {
7911                         case 64:
7912                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7913                                 break;
7914                         case 128:
7915                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7916                                 break;
7917                         case 256:
7918                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7919                                 break;
7920                         default:
7921                                 WARN_ON(1);
7922                                 return;
7923                 }
7924                 cntl |= pipe << 28; /* Connect to correct pipe */
7925         }
7926         if (intel_crtc->cursor_cntl != cntl) {
7927                 I915_WRITE(CURCNTR(pipe), cntl);
7928                 POSTING_READ(CURCNTR(pipe));
7929                 intel_crtc->cursor_cntl = cntl;
7930         }
7931
7932         /* and commit changes on next vblank */
7933         I915_WRITE(CURBASE(pipe), base);
7934         POSTING_READ(CURBASE(pipe));
7935 }
7936
7937 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7938 {
7939         struct drm_device *dev = crtc->dev;
7940         struct drm_i915_private *dev_priv = dev->dev_private;
7941         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7942         int pipe = intel_crtc->pipe;
7943         uint32_t cntl;
7944
7945         cntl = 0;
7946         if (base) {
7947                 cntl = MCURSOR_GAMMA_ENABLE;
7948                 switch (intel_crtc->cursor_width) {
7949                         case 64:
7950                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7951                                 break;
7952                         case 128:
7953                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7954                                 break;
7955                         case 256:
7956                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7957                                 break;
7958                         default:
7959                                 WARN_ON(1);
7960                                 return;
7961                 }
7962         }
7963         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
7964                 cntl |= CURSOR_PIPE_CSC_ENABLE;
7965
7966         if (intel_crtc->cursor_cntl != cntl) {
7967                 I915_WRITE(CURCNTR(pipe), cntl);
7968                 POSTING_READ(CURCNTR(pipe));
7969                 intel_crtc->cursor_cntl = cntl;
7970         }
7971
7972         /* and commit changes on next vblank */
7973         I915_WRITE(CURBASE(pipe), base);
7974         POSTING_READ(CURBASE(pipe));
7975 }
7976
7977 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7978 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7979                                      bool on)
7980 {
7981         struct drm_device *dev = crtc->dev;
7982         struct drm_i915_private *dev_priv = dev->dev_private;
7983         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7984         int pipe = intel_crtc->pipe;
7985         int x = intel_crtc->cursor_x;
7986         int y = intel_crtc->cursor_y;
7987         u32 base = 0, pos = 0;
7988
7989         if (on)
7990                 base = intel_crtc->cursor_addr;
7991
7992         if (x >= intel_crtc->config.pipe_src_w)
7993                 base = 0;
7994
7995         if (y >= intel_crtc->config.pipe_src_h)
7996                 base = 0;
7997
7998         if (x < 0) {
7999                 if (x + intel_crtc->cursor_width <= 0)
8000                         base = 0;
8001
8002                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8003                 x = -x;
8004         }
8005         pos |= x << CURSOR_X_SHIFT;
8006
8007         if (y < 0) {
8008                 if (y + intel_crtc->cursor_height <= 0)
8009                         base = 0;
8010
8011                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8012                 y = -y;
8013         }
8014         pos |= y << CURSOR_Y_SHIFT;
8015
8016         if (base == 0 && intel_crtc->cursor_base == 0)
8017                 return;
8018
8019         I915_WRITE(CURPOS(pipe), pos);
8020
8021         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
8022                 ivb_update_cursor(crtc, base);
8023         else if (IS_845G(dev) || IS_I865G(dev))
8024                 i845_update_cursor(crtc, base);
8025         else
8026                 i9xx_update_cursor(crtc, base);
8027         intel_crtc->cursor_base = base;
8028 }
8029
8030 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
8031                                  struct drm_file *file,
8032                                  uint32_t handle,
8033                                  uint32_t width, uint32_t height)
8034 {
8035         struct drm_device *dev = crtc->dev;
8036         struct drm_i915_private *dev_priv = dev->dev_private;
8037         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8038         struct drm_i915_gem_object *obj;
8039         unsigned old_width;
8040         uint32_t addr;
8041         int ret;
8042
8043         /* if we want to turn off the cursor ignore width and height */
8044         if (!handle) {
8045                 DRM_DEBUG_KMS("cursor off\n");
8046                 addr = 0;
8047                 obj = NULL;
8048                 mutex_lock(&dev->struct_mutex);
8049                 goto finish;
8050         }
8051
8052         /* Check for which cursor types we support */
8053         if (!((width == 64 && height == 64) ||
8054                         (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8055                         (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8056                 DRM_DEBUG("Cursor dimension not supported\n");
8057                 return -EINVAL;
8058         }
8059
8060         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
8061         if (&obj->base == NULL)
8062                 return -ENOENT;
8063
8064         if (obj->base.size < width * height * 4) {
8065                 DRM_DEBUG_KMS("buffer is to small\n");
8066                 ret = -ENOMEM;
8067                 goto fail;
8068         }
8069
8070         /* we only need to pin inside GTT if cursor is non-phy */
8071         mutex_lock(&dev->struct_mutex);
8072         if (!INTEL_INFO(dev)->cursor_needs_physical) {
8073                 unsigned alignment;
8074
8075                 if (obj->tiling_mode) {
8076                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
8077                         ret = -EINVAL;
8078                         goto fail_locked;
8079                 }
8080
8081                 /* Note that the w/a also requires 2 PTE of padding following
8082                  * the bo. We currently fill all unused PTE with the shadow
8083                  * page and so we should always have valid PTE following the
8084                  * cursor preventing the VT-d warning.
8085                  */
8086                 alignment = 0;
8087                 if (need_vtd_wa(dev))
8088                         alignment = 64*1024;
8089
8090                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8091                 if (ret) {
8092                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8093                         goto fail_locked;
8094                 }
8095
8096                 ret = i915_gem_object_put_fence(obj);
8097                 if (ret) {
8098                         DRM_DEBUG_KMS("failed to release fence for cursor");
8099                         goto fail_unpin;
8100                 }
8101
8102                 addr = i915_gem_obj_ggtt_offset(obj);
8103         } else {
8104                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8105                 ret = i915_gem_object_attach_phys(obj, align);
8106                 if (ret) {
8107                         DRM_DEBUG_KMS("failed to attach phys object\n");
8108                         goto fail_locked;
8109                 }
8110                 addr = obj->phys_handle->busaddr;
8111         }
8112
8113         if (IS_GEN2(dev))
8114                 I915_WRITE(CURSIZE, (height << 12) | width);
8115
8116  finish:
8117         if (intel_crtc->cursor_bo) {
8118                 if (!INTEL_INFO(dev)->cursor_needs_physical)
8119                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8120                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
8121         }
8122
8123         mutex_unlock(&dev->struct_mutex);
8124
8125         old_width = intel_crtc->cursor_width;
8126
8127         intel_crtc->cursor_addr = addr;
8128         intel_crtc->cursor_bo = obj;
8129         intel_crtc->cursor_width = width;
8130         intel_crtc->cursor_height = height;
8131
8132         if (intel_crtc->active) {
8133                 if (old_width != width)
8134                         intel_update_watermarks(crtc);
8135                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8136         }
8137
8138         return 0;
8139 fail_unpin:
8140         i915_gem_object_unpin_from_display_plane(obj);
8141 fail_locked:
8142         mutex_unlock(&dev->struct_mutex);
8143 fail:
8144         drm_gem_object_unreference_unlocked(&obj->base);
8145         return ret;
8146 }
8147
8148 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
8149 {
8150         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8151
8152         intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
8153         intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
8154
8155         if (intel_crtc->active)
8156                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8157
8158         return 0;
8159 }
8160
8161 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8162                                  u16 *blue, uint32_t start, uint32_t size)
8163 {
8164         int end = (start + size > 256) ? 256 : start + size, i;
8165         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8166
8167         for (i = start; i < end; i++) {
8168                 intel_crtc->lut_r[i] = red[i] >> 8;
8169                 intel_crtc->lut_g[i] = green[i] >> 8;
8170                 intel_crtc->lut_b[i] = blue[i] >> 8;
8171         }
8172
8173         intel_crtc_load_lut(crtc);
8174 }
8175
8176 /* VESA 640x480x72Hz mode to set on the pipe */
8177 static struct drm_display_mode load_detect_mode = {
8178         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8179                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8180 };
8181
8182 struct drm_framebuffer *
8183 __intel_framebuffer_create(struct drm_device *dev,
8184                            struct drm_mode_fb_cmd2 *mode_cmd,
8185                            struct drm_i915_gem_object *obj)
8186 {
8187         struct intel_framebuffer *intel_fb;
8188         int ret;
8189
8190         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8191         if (!intel_fb) {
8192                 drm_gem_object_unreference_unlocked(&obj->base);
8193                 return ERR_PTR(-ENOMEM);
8194         }
8195
8196         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8197         if (ret)
8198                 goto err;
8199
8200         return &intel_fb->base;
8201 err:
8202         drm_gem_object_unreference_unlocked(&obj->base);
8203         kfree(intel_fb);
8204
8205         return ERR_PTR(ret);
8206 }
8207
8208 static struct drm_framebuffer *
8209 intel_framebuffer_create(struct drm_device *dev,
8210                          struct drm_mode_fb_cmd2 *mode_cmd,
8211                          struct drm_i915_gem_object *obj)
8212 {
8213         struct drm_framebuffer *fb;
8214         int ret;
8215
8216         ret = i915_mutex_lock_interruptible(dev);
8217         if (ret)
8218                 return ERR_PTR(ret);
8219         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8220         mutex_unlock(&dev->struct_mutex);
8221
8222         return fb;
8223 }
8224
8225 static u32
8226 intel_framebuffer_pitch_for_width(int width, int bpp)
8227 {
8228         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8229         return ALIGN(pitch, 64);
8230 }
8231
8232 static u32
8233 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8234 {
8235         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8236         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
8237 }
8238
8239 static struct drm_framebuffer *
8240 intel_framebuffer_create_for_mode(struct drm_device *dev,
8241                                   struct drm_display_mode *mode,
8242                                   int depth, int bpp)
8243 {
8244         struct drm_i915_gem_object *obj;
8245         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8246
8247         obj = i915_gem_alloc_object(dev,
8248                                     intel_framebuffer_size_for_mode(mode, bpp));
8249         if (obj == NULL)
8250                 return ERR_PTR(-ENOMEM);
8251
8252         mode_cmd.width = mode->hdisplay;
8253         mode_cmd.height = mode->vdisplay;
8254         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8255                                                                 bpp);
8256         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8257
8258         return intel_framebuffer_create(dev, &mode_cmd, obj);
8259 }
8260
8261 static struct drm_framebuffer *
8262 mode_fits_in_fbdev(struct drm_device *dev,
8263                    struct drm_display_mode *mode)
8264 {
8265 #ifdef CONFIG_DRM_I915_FBDEV
8266         struct drm_i915_private *dev_priv = dev->dev_private;
8267         struct drm_i915_gem_object *obj;
8268         struct drm_framebuffer *fb;
8269
8270         if (!dev_priv->fbdev)
8271                 return NULL;
8272
8273         if (!dev_priv->fbdev->fb)
8274                 return NULL;
8275
8276         obj = dev_priv->fbdev->fb->obj;
8277         BUG_ON(!obj);
8278
8279         fb = &dev_priv->fbdev->fb->base;
8280         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8281                                                                fb->bits_per_pixel))
8282                 return NULL;
8283
8284         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8285                 return NULL;
8286
8287         return fb;
8288 #else
8289         return NULL;
8290 #endif
8291 }
8292
8293 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8294                                 struct drm_display_mode *mode,
8295                                 struct intel_load_detect_pipe *old,
8296                                 struct drm_modeset_acquire_ctx *ctx)
8297 {
8298         struct intel_crtc *intel_crtc;
8299         struct intel_encoder *intel_encoder =
8300                 intel_attached_encoder(connector);
8301         struct drm_crtc *possible_crtc;
8302         struct drm_encoder *encoder = &intel_encoder->base;
8303         struct drm_crtc *crtc = NULL;
8304         struct drm_device *dev = encoder->dev;
8305         struct drm_framebuffer *fb;
8306         struct drm_mode_config *config = &dev->mode_config;
8307         int ret, i = -1;
8308
8309         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8310                       connector->base.id, connector->name,
8311                       encoder->base.id, encoder->name);
8312
8313         drm_modeset_acquire_init(ctx, 0);
8314
8315 retry:
8316         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8317         if (ret)
8318                 goto fail_unlock;
8319
8320         /*
8321          * Algorithm gets a little messy:
8322          *
8323          *   - if the connector already has an assigned crtc, use it (but make
8324          *     sure it's on first)
8325          *
8326          *   - try to find the first unused crtc that can drive this connector,
8327          *     and use that if we find one
8328          */
8329
8330         /* See if we already have a CRTC for this connector */
8331         if (encoder->crtc) {
8332                 crtc = encoder->crtc;
8333
8334                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8335                 if (ret)
8336                         goto fail_unlock;
8337
8338                 old->dpms_mode = connector->dpms;
8339                 old->load_detect_temp = false;
8340
8341                 /* Make sure the crtc and connector are running */
8342                 if (connector->dpms != DRM_MODE_DPMS_ON)
8343                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8344
8345                 return true;
8346         }
8347
8348         /* Find an unused one (if possible) */
8349         for_each_crtc(dev, possible_crtc) {
8350                 i++;
8351                 if (!(encoder->possible_crtcs & (1 << i)))
8352                         continue;
8353                 if (!possible_crtc->enabled) {
8354                         crtc = possible_crtc;
8355                         break;
8356                 }
8357         }
8358
8359         /*
8360          * If we didn't find an unused CRTC, don't use any.
8361          */
8362         if (!crtc) {
8363                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8364                 goto fail_unlock;
8365         }
8366
8367         ret = drm_modeset_lock(&crtc->mutex, ctx);
8368         if (ret)
8369                 goto fail_unlock;
8370         intel_encoder->new_crtc = to_intel_crtc(crtc);
8371         to_intel_connector(connector)->new_encoder = intel_encoder;
8372
8373         intel_crtc = to_intel_crtc(crtc);
8374         intel_crtc->new_enabled = true;
8375         intel_crtc->new_config = &intel_crtc->config;
8376         old->dpms_mode = connector->dpms;
8377         old->load_detect_temp = true;
8378         old->release_fb = NULL;
8379
8380         if (!mode)
8381                 mode = &load_detect_mode;
8382
8383         /* We need a framebuffer large enough to accommodate all accesses
8384          * that the plane may generate whilst we perform load detection.
8385          * We can not rely on the fbcon either being present (we get called
8386          * during its initialisation to detect all boot displays, or it may
8387          * not even exist) or that it is large enough to satisfy the
8388          * requested mode.
8389          */
8390         fb = mode_fits_in_fbdev(dev, mode);
8391         if (fb == NULL) {
8392                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8393                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8394                 old->release_fb = fb;
8395         } else
8396                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8397         if (IS_ERR(fb)) {
8398                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8399                 goto fail;
8400         }
8401
8402         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8403                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8404                 if (old->release_fb)
8405                         old->release_fb->funcs->destroy(old->release_fb);
8406                 goto fail;
8407         }
8408
8409         /* let the connector get through one full cycle before testing */
8410         intel_wait_for_vblank(dev, intel_crtc->pipe);
8411         return true;
8412
8413  fail:
8414         intel_crtc->new_enabled = crtc->enabled;
8415         if (intel_crtc->new_enabled)
8416                 intel_crtc->new_config = &intel_crtc->config;
8417         else
8418                 intel_crtc->new_config = NULL;
8419 fail_unlock:
8420         if (ret == -EDEADLK) {
8421                 drm_modeset_backoff(ctx);
8422                 goto retry;
8423         }
8424
8425         drm_modeset_drop_locks(ctx);
8426         drm_modeset_acquire_fini(ctx);
8427
8428         return false;
8429 }
8430
8431 void intel_release_load_detect_pipe(struct drm_connector *connector,
8432                                     struct intel_load_detect_pipe *old,
8433                                     struct drm_modeset_acquire_ctx *ctx)
8434 {
8435         struct intel_encoder *intel_encoder =
8436                 intel_attached_encoder(connector);
8437         struct drm_encoder *encoder = &intel_encoder->base;
8438         struct drm_crtc *crtc = encoder->crtc;
8439         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8440
8441         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8442                       connector->base.id, connector->name,
8443                       encoder->base.id, encoder->name);
8444
8445         if (old->load_detect_temp) {
8446                 to_intel_connector(connector)->new_encoder = NULL;
8447                 intel_encoder->new_crtc = NULL;
8448                 intel_crtc->new_enabled = false;
8449                 intel_crtc->new_config = NULL;
8450                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8451
8452                 if (old->release_fb) {
8453                         drm_framebuffer_unregister_private(old->release_fb);
8454                         drm_framebuffer_unreference(old->release_fb);
8455                 }
8456
8457                 goto unlock;
8458                 return;
8459         }
8460
8461         /* Switch crtc and encoder back off if necessary */
8462         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8463                 connector->funcs->dpms(connector, old->dpms_mode);
8464
8465 unlock:
8466         drm_modeset_drop_locks(ctx);
8467         drm_modeset_acquire_fini(ctx);
8468 }
8469
8470 static int i9xx_pll_refclk(struct drm_device *dev,
8471                            const struct intel_crtc_config *pipe_config)
8472 {
8473         struct drm_i915_private *dev_priv = dev->dev_private;
8474         u32 dpll = pipe_config->dpll_hw_state.dpll;
8475
8476         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8477                 return dev_priv->vbt.lvds_ssc_freq;
8478         else if (HAS_PCH_SPLIT(dev))
8479                 return 120000;
8480         else if (!IS_GEN2(dev))
8481                 return 96000;
8482         else
8483                 return 48000;
8484 }
8485
8486 /* Returns the clock of the currently programmed mode of the given pipe. */
8487 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8488                                 struct intel_crtc_config *pipe_config)
8489 {
8490         struct drm_device *dev = crtc->base.dev;
8491         struct drm_i915_private *dev_priv = dev->dev_private;
8492         int pipe = pipe_config->cpu_transcoder;
8493         u32 dpll = pipe_config->dpll_hw_state.dpll;
8494         u32 fp;
8495         intel_clock_t clock;
8496         int refclk = i9xx_pll_refclk(dev, pipe_config);
8497
8498         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8499                 fp = pipe_config->dpll_hw_state.fp0;
8500         else
8501                 fp = pipe_config->dpll_hw_state.fp1;
8502
8503         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8504         if (IS_PINEVIEW(dev)) {
8505                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8506                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8507         } else {
8508                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8509                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8510         }
8511
8512         if (!IS_GEN2(dev)) {
8513                 if (IS_PINEVIEW(dev))
8514                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8515                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8516                 else
8517                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8518                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8519
8520                 switch (dpll & DPLL_MODE_MASK) {
8521                 case DPLLB_MODE_DAC_SERIAL:
8522                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8523                                 5 : 10;
8524                         break;
8525                 case DPLLB_MODE_LVDS:
8526                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8527                                 7 : 14;
8528                         break;
8529                 default:
8530                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8531                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8532                         return;
8533                 }
8534
8535                 if (IS_PINEVIEW(dev))
8536                         pineview_clock(refclk, &clock);
8537                 else
8538                         i9xx_clock(refclk, &clock);
8539         } else {
8540                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8541                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8542
8543                 if (is_lvds) {
8544                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8545                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8546
8547                         if (lvds & LVDS_CLKB_POWER_UP)
8548                                 clock.p2 = 7;
8549                         else
8550                                 clock.p2 = 14;
8551                 } else {
8552                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8553                                 clock.p1 = 2;
8554                         else {
8555                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8556                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8557                         }
8558                         if (dpll & PLL_P2_DIVIDE_BY_4)
8559                                 clock.p2 = 4;
8560                         else
8561                                 clock.p2 = 2;
8562                 }
8563
8564                 i9xx_clock(refclk, &clock);
8565         }
8566
8567         /*
8568          * This value includes pixel_multiplier. We will use
8569          * port_clock to compute adjusted_mode.crtc_clock in the
8570          * encoder's get_config() function.
8571          */
8572         pipe_config->port_clock = clock.dot;
8573 }
8574
8575 int intel_dotclock_calculate(int link_freq,
8576                              const struct intel_link_m_n *m_n)
8577 {
8578         /*
8579          * The calculation for the data clock is:
8580          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8581          * But we want to avoid losing precison if possible, so:
8582          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8583          *
8584          * and the link clock is simpler:
8585          * link_clock = (m * link_clock) / n
8586          */
8587
8588         if (!m_n->link_n)
8589                 return 0;
8590
8591         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8592 }
8593
8594 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8595                                    struct intel_crtc_config *pipe_config)
8596 {
8597         struct drm_device *dev = crtc->base.dev;
8598
8599         /* read out port_clock from the DPLL */
8600         i9xx_crtc_clock_get(crtc, pipe_config);
8601
8602         /*
8603          * This value does not include pixel_multiplier.
8604          * We will check that port_clock and adjusted_mode.crtc_clock
8605          * agree once we know their relationship in the encoder's
8606          * get_config() function.
8607          */
8608         pipe_config->adjusted_mode.crtc_clock =
8609                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8610                                          &pipe_config->fdi_m_n);
8611 }
8612
8613 /** Returns the currently programmed mode of the given pipe. */
8614 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8615                                              struct drm_crtc *crtc)
8616 {
8617         struct drm_i915_private *dev_priv = dev->dev_private;
8618         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8619         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8620         struct drm_display_mode *mode;
8621         struct intel_crtc_config pipe_config;
8622         int htot = I915_READ(HTOTAL(cpu_transcoder));
8623         int hsync = I915_READ(HSYNC(cpu_transcoder));
8624         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8625         int vsync = I915_READ(VSYNC(cpu_transcoder));
8626         enum pipe pipe = intel_crtc->pipe;
8627
8628         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8629         if (!mode)
8630                 return NULL;
8631
8632         /*
8633          * Construct a pipe_config sufficient for getting the clock info
8634          * back out of crtc_clock_get.
8635          *
8636          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8637          * to use a real value here instead.
8638          */
8639         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8640         pipe_config.pixel_multiplier = 1;
8641         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8642         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8643         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8644         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8645
8646         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8647         mode->hdisplay = (htot & 0xffff) + 1;
8648         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8649         mode->hsync_start = (hsync & 0xffff) + 1;
8650         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8651         mode->vdisplay = (vtot & 0xffff) + 1;
8652         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8653         mode->vsync_start = (vsync & 0xffff) + 1;
8654         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8655
8656         drm_mode_set_name(mode);
8657
8658         return mode;
8659 }
8660
8661 static void intel_increase_pllclock(struct drm_crtc *crtc)
8662 {
8663         struct drm_device *dev = crtc->dev;
8664         struct drm_i915_private *dev_priv = dev->dev_private;
8665         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8666         int pipe = intel_crtc->pipe;
8667         int dpll_reg = DPLL(pipe);
8668         int dpll;
8669
8670         if (HAS_PCH_SPLIT(dev))
8671                 return;
8672
8673         if (!dev_priv->lvds_downclock_avail)
8674                 return;
8675
8676         dpll = I915_READ(dpll_reg);
8677         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8678                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8679
8680                 assert_panel_unlocked(dev_priv, pipe);
8681
8682                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8683                 I915_WRITE(dpll_reg, dpll);
8684                 intel_wait_for_vblank(dev, pipe);
8685
8686                 dpll = I915_READ(dpll_reg);
8687                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8688                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8689         }
8690 }
8691
8692 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8693 {
8694         struct drm_device *dev = crtc->dev;
8695         struct drm_i915_private *dev_priv = dev->dev_private;
8696         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8697
8698         if (HAS_PCH_SPLIT(dev))
8699                 return;
8700
8701         if (!dev_priv->lvds_downclock_avail)
8702                 return;
8703
8704         /*
8705          * Since this is called by a timer, we should never get here in
8706          * the manual case.
8707          */
8708         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8709                 int pipe = intel_crtc->pipe;
8710                 int dpll_reg = DPLL(pipe);
8711                 int dpll;
8712
8713                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8714
8715                 assert_panel_unlocked(dev_priv, pipe);
8716
8717                 dpll = I915_READ(dpll_reg);
8718                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8719                 I915_WRITE(dpll_reg, dpll);
8720                 intel_wait_for_vblank(dev, pipe);
8721                 dpll = I915_READ(dpll_reg);
8722                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8723                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8724         }
8725
8726 }
8727
8728 void intel_mark_busy(struct drm_device *dev)
8729 {
8730         struct drm_i915_private *dev_priv = dev->dev_private;
8731
8732         if (dev_priv->mm.busy)
8733                 return;
8734
8735         intel_runtime_pm_get(dev_priv);
8736         i915_update_gfx_val(dev_priv);
8737         dev_priv->mm.busy = true;
8738 }
8739
8740 void intel_mark_idle(struct drm_device *dev)
8741 {
8742         struct drm_i915_private *dev_priv = dev->dev_private;
8743         struct drm_crtc *crtc;
8744
8745         if (!dev_priv->mm.busy)
8746                 return;
8747
8748         dev_priv->mm.busy = false;
8749
8750         if (!i915.powersave)
8751                 goto out;
8752
8753         for_each_crtc(dev, crtc) {
8754                 if (!crtc->primary->fb)
8755                         continue;
8756
8757                 intel_decrease_pllclock(crtc);
8758         }
8759
8760         if (INTEL_INFO(dev)->gen >= 6)
8761                 gen6_rps_idle(dev->dev_private);
8762
8763 out:
8764         intel_runtime_pm_put(dev_priv);
8765 }
8766
8767 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8768                         struct intel_engine_cs *ring)
8769 {
8770         struct drm_device *dev = obj->base.dev;
8771         struct drm_crtc *crtc;
8772
8773         if (!i915.powersave)
8774                 return;
8775
8776         for_each_crtc(dev, crtc) {
8777                 if (!crtc->primary->fb)
8778                         continue;
8779
8780                 if (to_intel_framebuffer(crtc->primary->fb)->obj != obj)
8781                         continue;
8782
8783                 intel_increase_pllclock(crtc);
8784                 if (ring && intel_fbc_enabled(dev))
8785                         ring->fbc_dirty = true;
8786         }
8787 }
8788
8789 static void intel_crtc_destroy(struct drm_crtc *crtc)
8790 {
8791         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8792         struct drm_device *dev = crtc->dev;
8793         struct intel_unpin_work *work;
8794         unsigned long flags;
8795
8796         spin_lock_irqsave(&dev->event_lock, flags);
8797         work = intel_crtc->unpin_work;
8798         intel_crtc->unpin_work = NULL;
8799         spin_unlock_irqrestore(&dev->event_lock, flags);
8800
8801         if (work) {
8802                 cancel_work_sync(&work->work);
8803                 kfree(work);
8804         }
8805
8806         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8807
8808         drm_crtc_cleanup(crtc);
8809
8810         kfree(intel_crtc);
8811 }
8812
8813 static void intel_unpin_work_fn(struct work_struct *__work)
8814 {
8815         struct intel_unpin_work *work =
8816                 container_of(__work, struct intel_unpin_work, work);
8817         struct drm_device *dev = work->crtc->dev;
8818
8819         mutex_lock(&dev->struct_mutex);
8820         intel_unpin_fb_obj(work->old_fb_obj);
8821         drm_gem_object_unreference(&work->pending_flip_obj->base);
8822         drm_gem_object_unreference(&work->old_fb_obj->base);
8823
8824         intel_update_fbc(dev);
8825         mutex_unlock(&dev->struct_mutex);
8826
8827         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8828         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8829
8830         kfree(work);
8831 }
8832
8833 static void do_intel_finish_page_flip(struct drm_device *dev,
8834                                       struct drm_crtc *crtc)
8835 {
8836         struct drm_i915_private *dev_priv = dev->dev_private;
8837         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8838         struct intel_unpin_work *work;
8839         unsigned long flags;
8840
8841         /* Ignore early vblank irqs */
8842         if (intel_crtc == NULL)
8843                 return;
8844
8845         spin_lock_irqsave(&dev->event_lock, flags);
8846         work = intel_crtc->unpin_work;
8847
8848         /* Ensure we don't miss a work->pending update ... */
8849         smp_rmb();
8850
8851         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8852                 spin_unlock_irqrestore(&dev->event_lock, flags);
8853                 return;
8854         }
8855
8856         /* and that the unpin work is consistent wrt ->pending. */
8857         smp_rmb();
8858
8859         intel_crtc->unpin_work = NULL;
8860
8861         if (work->event)
8862                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8863
8864         drm_crtc_vblank_put(crtc);
8865
8866         spin_unlock_irqrestore(&dev->event_lock, flags);
8867
8868         wake_up_all(&dev_priv->pending_flip_queue);
8869
8870         queue_work(dev_priv->wq, &work->work);
8871
8872         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8873 }
8874
8875 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8876 {
8877         struct drm_i915_private *dev_priv = dev->dev_private;
8878         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8879
8880         do_intel_finish_page_flip(dev, crtc);
8881 }
8882
8883 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8884 {
8885         struct drm_i915_private *dev_priv = dev->dev_private;
8886         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8887
8888         do_intel_finish_page_flip(dev, crtc);
8889 }
8890
8891 /* Is 'a' after or equal to 'b'? */
8892 static bool g4x_flip_count_after_eq(u32 a, u32 b)
8893 {
8894         return !((a - b) & 0x80000000);
8895 }
8896
8897 static bool page_flip_finished(struct intel_crtc *crtc)
8898 {
8899         struct drm_device *dev = crtc->base.dev;
8900         struct drm_i915_private *dev_priv = dev->dev_private;
8901
8902         /*
8903          * The relevant registers doen't exist on pre-ctg.
8904          * As the flip done interrupt doesn't trigger for mmio
8905          * flips on gmch platforms, a flip count check isn't
8906          * really needed there. But since ctg has the registers,
8907          * include it in the check anyway.
8908          */
8909         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
8910                 return true;
8911
8912         /*
8913          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
8914          * used the same base address. In that case the mmio flip might
8915          * have completed, but the CS hasn't even executed the flip yet.
8916          *
8917          * A flip count check isn't enough as the CS might have updated
8918          * the base address just after start of vblank, but before we
8919          * managed to process the interrupt. This means we'd complete the
8920          * CS flip too soon.
8921          *
8922          * Combining both checks should get us a good enough result. It may
8923          * still happen that the CS flip has been executed, but has not
8924          * yet actually completed. But in case the base address is the same
8925          * anyway, we don't really care.
8926          */
8927         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
8928                 crtc->unpin_work->gtt_offset &&
8929                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
8930                                     crtc->unpin_work->flip_count);
8931 }
8932
8933 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8934 {
8935         struct drm_i915_private *dev_priv = dev->dev_private;
8936         struct intel_crtc *intel_crtc =
8937                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8938         unsigned long flags;
8939
8940         /* NB: An MMIO update of the plane base pointer will also
8941          * generate a page-flip completion irq, i.e. every modeset
8942          * is also accompanied by a spurious intel_prepare_page_flip().
8943          */
8944         spin_lock_irqsave(&dev->event_lock, flags);
8945         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
8946                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8947         spin_unlock_irqrestore(&dev->event_lock, flags);
8948 }
8949
8950 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8951 {
8952         /* Ensure that the work item is consistent when activating it ... */
8953         smp_wmb();
8954         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8955         /* and that it is marked active as soon as the irq could fire. */
8956         smp_wmb();
8957 }
8958
8959 static int intel_gen2_queue_flip(struct drm_device *dev,
8960                                  struct drm_crtc *crtc,
8961                                  struct drm_framebuffer *fb,
8962                                  struct drm_i915_gem_object *obj,
8963                                  struct intel_engine_cs *ring,
8964                                  uint32_t flags)
8965 {
8966         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8967         u32 flip_mask;
8968         int ret;
8969
8970         ret = intel_ring_begin(ring, 6);
8971         if (ret)
8972                 return ret;
8973
8974         /* Can't queue multiple flips, so wait for the previous
8975          * one to finish before executing the next.
8976          */
8977         if (intel_crtc->plane)
8978                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8979         else
8980                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8981         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8982         intel_ring_emit(ring, MI_NOOP);
8983         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8984                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8985         intel_ring_emit(ring, fb->pitches[0]);
8986         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8987         intel_ring_emit(ring, 0); /* aux display base address, unused */
8988
8989         intel_mark_page_flip_active(intel_crtc);
8990         __intel_ring_advance(ring);
8991         return 0;
8992 }
8993
8994 static int intel_gen3_queue_flip(struct drm_device *dev,
8995                                  struct drm_crtc *crtc,
8996                                  struct drm_framebuffer *fb,
8997                                  struct drm_i915_gem_object *obj,
8998                                  struct intel_engine_cs *ring,
8999                                  uint32_t flags)
9000 {
9001         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9002         u32 flip_mask;
9003         int ret;
9004
9005         ret = intel_ring_begin(ring, 6);
9006         if (ret)
9007                 return ret;
9008
9009         if (intel_crtc->plane)
9010                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9011         else
9012                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9013         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9014         intel_ring_emit(ring, MI_NOOP);
9015         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9016                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9017         intel_ring_emit(ring, fb->pitches[0]);
9018         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9019         intel_ring_emit(ring, MI_NOOP);
9020
9021         intel_mark_page_flip_active(intel_crtc);
9022         __intel_ring_advance(ring);
9023         return 0;
9024 }
9025
9026 static int intel_gen4_queue_flip(struct drm_device *dev,
9027                                  struct drm_crtc *crtc,
9028                                  struct drm_framebuffer *fb,
9029                                  struct drm_i915_gem_object *obj,
9030                                  struct intel_engine_cs *ring,
9031                                  uint32_t flags)
9032 {
9033         struct drm_i915_private *dev_priv = dev->dev_private;
9034         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9035         uint32_t pf, pipesrc;
9036         int ret;
9037
9038         ret = intel_ring_begin(ring, 4);
9039         if (ret)
9040                 return ret;
9041
9042         /* i965+ uses the linear or tiled offsets from the
9043          * Display Registers (which do not change across a page-flip)
9044          * so we need only reprogram the base address.
9045          */
9046         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9047                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9048         intel_ring_emit(ring, fb->pitches[0]);
9049         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9050                         obj->tiling_mode);
9051
9052         /* XXX Enabling the panel-fitter across page-flip is so far
9053          * untested on non-native modes, so ignore it for now.
9054          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9055          */
9056         pf = 0;
9057         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9058         intel_ring_emit(ring, pf | pipesrc);
9059
9060         intel_mark_page_flip_active(intel_crtc);
9061         __intel_ring_advance(ring);
9062         return 0;
9063 }
9064
9065 static int intel_gen6_queue_flip(struct drm_device *dev,
9066                                  struct drm_crtc *crtc,
9067                                  struct drm_framebuffer *fb,
9068                                  struct drm_i915_gem_object *obj,
9069                                  struct intel_engine_cs *ring,
9070                                  uint32_t flags)
9071 {
9072         struct drm_i915_private *dev_priv = dev->dev_private;
9073         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9074         uint32_t pf, pipesrc;
9075         int ret;
9076
9077         ret = intel_ring_begin(ring, 4);
9078         if (ret)
9079                 return ret;
9080
9081         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9082                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9083         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9084         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9085
9086         /* Contrary to the suggestions in the documentation,
9087          * "Enable Panel Fitter" does not seem to be required when page
9088          * flipping with a non-native mode, and worse causes a normal
9089          * modeset to fail.
9090          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9091          */
9092         pf = 0;
9093         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9094         intel_ring_emit(ring, pf | pipesrc);
9095
9096         intel_mark_page_flip_active(intel_crtc);
9097         __intel_ring_advance(ring);
9098         return 0;
9099 }
9100
9101 static int intel_gen7_queue_flip(struct drm_device *dev,
9102                                  struct drm_crtc *crtc,
9103                                  struct drm_framebuffer *fb,
9104                                  struct drm_i915_gem_object *obj,
9105                                  struct intel_engine_cs *ring,
9106                                  uint32_t flags)
9107 {
9108         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9109         uint32_t plane_bit = 0;
9110         int len, ret;
9111
9112         switch (intel_crtc->plane) {
9113         case PLANE_A:
9114                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9115                 break;
9116         case PLANE_B:
9117                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9118                 break;
9119         case PLANE_C:
9120                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9121                 break;
9122         default:
9123                 WARN_ONCE(1, "unknown plane in flip command\n");
9124                 return -ENODEV;
9125         }
9126
9127         len = 4;
9128         if (ring->id == RCS) {
9129                 len += 6;
9130                 /*
9131                  * On Gen 8, SRM is now taking an extra dword to accommodate
9132                  * 48bits addresses, and we need a NOOP for the batch size to
9133                  * stay even.
9134                  */
9135                 if (IS_GEN8(dev))
9136                         len += 2;
9137         }
9138
9139         /*
9140          * BSpec MI_DISPLAY_FLIP for IVB:
9141          * "The full packet must be contained within the same cache line."
9142          *
9143          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9144          * cacheline, if we ever start emitting more commands before
9145          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9146          * then do the cacheline alignment, and finally emit the
9147          * MI_DISPLAY_FLIP.
9148          */
9149         ret = intel_ring_cacheline_align(ring);
9150         if (ret)
9151                 return ret;
9152
9153         ret = intel_ring_begin(ring, len);
9154         if (ret)
9155                 return ret;
9156
9157         /* Unmask the flip-done completion message. Note that the bspec says that
9158          * we should do this for both the BCS and RCS, and that we must not unmask
9159          * more than one flip event at any time (or ensure that one flip message
9160          * can be sent by waiting for flip-done prior to queueing new flips).
9161          * Experimentation says that BCS works despite DERRMR masking all
9162          * flip-done completion events and that unmasking all planes at once
9163          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9164          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9165          */
9166         if (ring->id == RCS) {
9167                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9168                 intel_ring_emit(ring, DERRMR);
9169                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9170                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9171                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9172                 if (IS_GEN8(dev))
9173                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9174                                               MI_SRM_LRM_GLOBAL_GTT);
9175                 else
9176                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9177                                               MI_SRM_LRM_GLOBAL_GTT);
9178                 intel_ring_emit(ring, DERRMR);
9179                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9180                 if (IS_GEN8(dev)) {
9181                         intel_ring_emit(ring, 0);
9182                         intel_ring_emit(ring, MI_NOOP);
9183                 }
9184         }
9185
9186         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9187         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9188         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9189         intel_ring_emit(ring, (MI_NOOP));
9190
9191         intel_mark_page_flip_active(intel_crtc);
9192         __intel_ring_advance(ring);
9193         return 0;
9194 }
9195
9196 static int intel_default_queue_flip(struct drm_device *dev,
9197                                     struct drm_crtc *crtc,
9198                                     struct drm_framebuffer *fb,
9199                                     struct drm_i915_gem_object *obj,
9200                                     struct intel_engine_cs *ring,
9201                                     uint32_t flags)
9202 {
9203         return -ENODEV;
9204 }
9205
9206 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9207                                 struct drm_framebuffer *fb,
9208                                 struct drm_pending_vblank_event *event,
9209                                 uint32_t page_flip_flags)
9210 {
9211         struct drm_device *dev = crtc->dev;
9212         struct drm_i915_private *dev_priv = dev->dev_private;
9213         struct drm_framebuffer *old_fb = crtc->primary->fb;
9214         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
9215         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9216         struct intel_unpin_work *work;
9217         struct intel_engine_cs *ring;
9218         unsigned long flags;
9219         int ret;
9220
9221         /* Can't change pixel format via MI display flips. */
9222         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9223                 return -EINVAL;
9224
9225         /*
9226          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9227          * Note that pitch changes could also affect these register.
9228          */
9229         if (INTEL_INFO(dev)->gen > 3 &&
9230             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9231              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9232                 return -EINVAL;
9233
9234         if (i915_terminally_wedged(&dev_priv->gpu_error))
9235                 goto out_hang;
9236
9237         work = kzalloc(sizeof(*work), GFP_KERNEL);
9238         if (work == NULL)
9239                 return -ENOMEM;
9240
9241         work->event = event;
9242         work->crtc = crtc;
9243         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
9244         INIT_WORK(&work->work, intel_unpin_work_fn);
9245
9246         ret = drm_crtc_vblank_get(crtc);
9247         if (ret)
9248                 goto free_work;
9249
9250         /* We borrow the event spin lock for protecting unpin_work */
9251         spin_lock_irqsave(&dev->event_lock, flags);
9252         if (intel_crtc->unpin_work) {
9253                 spin_unlock_irqrestore(&dev->event_lock, flags);
9254                 kfree(work);
9255                 drm_crtc_vblank_put(crtc);
9256
9257                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9258                 return -EBUSY;
9259         }
9260         intel_crtc->unpin_work = work;
9261         spin_unlock_irqrestore(&dev->event_lock, flags);
9262
9263         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9264                 flush_workqueue(dev_priv->wq);
9265
9266         ret = i915_mutex_lock_interruptible(dev);
9267         if (ret)
9268                 goto cleanup;
9269
9270         /* Reference the objects for the scheduled work. */
9271         drm_gem_object_reference(&work->old_fb_obj->base);
9272         drm_gem_object_reference(&obj->base);
9273
9274         crtc->primary->fb = fb;
9275
9276         work->pending_flip_obj = obj;
9277
9278         work->enable_stall_check = true;
9279
9280         atomic_inc(&intel_crtc->unpin_work_count);
9281         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9282
9283         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9284                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(intel_crtc->pipe)) + 1;
9285
9286         if (IS_VALLEYVIEW(dev)) {
9287                 ring = &dev_priv->ring[BCS];
9288         } else if (INTEL_INFO(dev)->gen >= 7) {
9289                 ring = obj->ring;
9290                 if (ring == NULL || ring->id != RCS)
9291                         ring = &dev_priv->ring[BCS];
9292         } else {
9293                 ring = &dev_priv->ring[RCS];
9294         }
9295
9296         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9297         if (ret)
9298                 goto cleanup_pending;
9299
9300         work->gtt_offset =
9301                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9302
9303         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring, page_flip_flags);
9304         if (ret)
9305                 goto cleanup_unpin;
9306
9307         intel_disable_fbc(dev);
9308         intel_mark_fb_busy(obj, NULL);
9309         mutex_unlock(&dev->struct_mutex);
9310
9311         trace_i915_flip_request(intel_crtc->plane, obj);
9312
9313         return 0;
9314
9315 cleanup_unpin:
9316         intel_unpin_fb_obj(obj);
9317 cleanup_pending:
9318         atomic_dec(&intel_crtc->unpin_work_count);
9319         crtc->primary->fb = old_fb;
9320         drm_gem_object_unreference(&work->old_fb_obj->base);
9321         drm_gem_object_unreference(&obj->base);
9322         mutex_unlock(&dev->struct_mutex);
9323
9324 cleanup:
9325         spin_lock_irqsave(&dev->event_lock, flags);
9326         intel_crtc->unpin_work = NULL;
9327         spin_unlock_irqrestore(&dev->event_lock, flags);
9328
9329         drm_crtc_vblank_put(crtc);
9330 free_work:
9331         kfree(work);
9332
9333         if (ret == -EIO) {
9334 out_hang:
9335                 intel_crtc_wait_for_pending_flips(crtc);
9336                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9337                 if (ret == 0 && event)
9338                         drm_send_vblank_event(dev, intel_crtc->pipe, event);
9339         }
9340         return ret;
9341 }
9342
9343 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9344         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9345         .load_lut = intel_crtc_load_lut,
9346 };
9347
9348 /**
9349  * intel_modeset_update_staged_output_state
9350  *
9351  * Updates the staged output configuration state, e.g. after we've read out the
9352  * current hw state.
9353  */
9354 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9355 {
9356         struct intel_crtc *crtc;
9357         struct intel_encoder *encoder;
9358         struct intel_connector *connector;
9359
9360         list_for_each_entry(connector, &dev->mode_config.connector_list,
9361                             base.head) {
9362                 connector->new_encoder =
9363                         to_intel_encoder(connector->base.encoder);
9364         }
9365
9366         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9367                             base.head) {
9368                 encoder->new_crtc =
9369                         to_intel_crtc(encoder->base.crtc);
9370         }
9371
9372         for_each_intel_crtc(dev, crtc) {
9373                 crtc->new_enabled = crtc->base.enabled;
9374
9375                 if (crtc->new_enabled)
9376                         crtc->new_config = &crtc->config;
9377                 else
9378                         crtc->new_config = NULL;
9379         }
9380 }
9381
9382 /**
9383  * intel_modeset_commit_output_state
9384  *
9385  * This function copies the stage display pipe configuration to the real one.
9386  */
9387 static void intel_modeset_commit_output_state(struct drm_device *dev)
9388 {
9389         struct intel_crtc *crtc;
9390         struct intel_encoder *encoder;
9391         struct intel_connector *connector;
9392
9393         list_for_each_entry(connector, &dev->mode_config.connector_list,
9394                             base.head) {
9395                 connector->base.encoder = &connector->new_encoder->base;
9396         }
9397
9398         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9399                             base.head) {
9400                 encoder->base.crtc = &encoder->new_crtc->base;
9401         }
9402
9403         for_each_intel_crtc(dev, crtc) {
9404                 crtc->base.enabled = crtc->new_enabled;
9405         }
9406 }
9407
9408 static void
9409 connected_sink_compute_bpp(struct intel_connector *connector,
9410                            struct intel_crtc_config *pipe_config)
9411 {
9412         int bpp = pipe_config->pipe_bpp;
9413
9414         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9415                 connector->base.base.id,
9416                 connector->base.name);
9417
9418         /* Don't use an invalid EDID bpc value */
9419         if (connector->base.display_info.bpc &&
9420             connector->base.display_info.bpc * 3 < bpp) {
9421                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9422                               bpp, connector->base.display_info.bpc*3);
9423                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9424         }
9425
9426         /* Clamp bpp to 8 on screens without EDID 1.4 */
9427         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9428                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9429                               bpp);
9430                 pipe_config->pipe_bpp = 24;
9431         }
9432 }
9433
9434 static int
9435 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9436                           struct drm_framebuffer *fb,
9437                           struct intel_crtc_config *pipe_config)
9438 {
9439         struct drm_device *dev = crtc->base.dev;
9440         struct intel_connector *connector;
9441         int bpp;
9442
9443         switch (fb->pixel_format) {
9444         case DRM_FORMAT_C8:
9445                 bpp = 8*3; /* since we go through a colormap */
9446                 break;
9447         case DRM_FORMAT_XRGB1555:
9448         case DRM_FORMAT_ARGB1555:
9449                 /* checked in intel_framebuffer_init already */
9450                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9451                         return -EINVAL;
9452         case DRM_FORMAT_RGB565:
9453                 bpp = 6*3; /* min is 18bpp */
9454                 break;
9455         case DRM_FORMAT_XBGR8888:
9456         case DRM_FORMAT_ABGR8888:
9457                 /* checked in intel_framebuffer_init already */
9458                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9459                         return -EINVAL;
9460         case DRM_FORMAT_XRGB8888:
9461         case DRM_FORMAT_ARGB8888:
9462                 bpp = 8*3;
9463                 break;
9464         case DRM_FORMAT_XRGB2101010:
9465         case DRM_FORMAT_ARGB2101010:
9466         case DRM_FORMAT_XBGR2101010:
9467         case DRM_FORMAT_ABGR2101010:
9468                 /* checked in intel_framebuffer_init already */
9469                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9470                         return -EINVAL;
9471                 bpp = 10*3;
9472                 break;
9473         /* TODO: gen4+ supports 16 bpc floating point, too. */
9474         default:
9475                 DRM_DEBUG_KMS("unsupported depth\n");
9476                 return -EINVAL;
9477         }
9478
9479         pipe_config->pipe_bpp = bpp;
9480
9481         /* Clamp display bpp to EDID value */
9482         list_for_each_entry(connector, &dev->mode_config.connector_list,
9483                             base.head) {
9484                 if (!connector->new_encoder ||
9485                     connector->new_encoder->new_crtc != crtc)
9486                         continue;
9487
9488                 connected_sink_compute_bpp(connector, pipe_config);
9489         }
9490
9491         return bpp;
9492 }
9493
9494 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9495 {
9496         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9497                         "type: 0x%x flags: 0x%x\n",
9498                 mode->crtc_clock,
9499                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9500                 mode->crtc_hsync_end, mode->crtc_htotal,
9501                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9502                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9503 }
9504
9505 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9506                                    struct intel_crtc_config *pipe_config,
9507                                    const char *context)
9508 {
9509         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9510                       context, pipe_name(crtc->pipe));
9511
9512         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9513         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9514                       pipe_config->pipe_bpp, pipe_config->dither);
9515         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9516                       pipe_config->has_pch_encoder,
9517                       pipe_config->fdi_lanes,
9518                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9519                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9520                       pipe_config->fdi_m_n.tu);
9521         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9522                       pipe_config->has_dp_encoder,
9523                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9524                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9525                       pipe_config->dp_m_n.tu);
9526         DRM_DEBUG_KMS("requested mode:\n");
9527         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9528         DRM_DEBUG_KMS("adjusted mode:\n");
9529         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9530         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9531         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9532         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9533                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9534         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9535                       pipe_config->gmch_pfit.control,
9536                       pipe_config->gmch_pfit.pgm_ratios,
9537                       pipe_config->gmch_pfit.lvds_border_bits);
9538         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9539                       pipe_config->pch_pfit.pos,
9540                       pipe_config->pch_pfit.size,
9541                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9542         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9543         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9544 }
9545
9546 static bool encoders_cloneable(const struct intel_encoder *a,
9547                                const struct intel_encoder *b)
9548 {
9549         /* masks could be asymmetric, so check both ways */
9550         return a == b || (a->cloneable & (1 << b->type) &&
9551                           b->cloneable & (1 << a->type));
9552 }
9553
9554 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9555                                          struct intel_encoder *encoder)
9556 {
9557         struct drm_device *dev = crtc->base.dev;
9558         struct intel_encoder *source_encoder;
9559
9560         list_for_each_entry(source_encoder,
9561                             &dev->mode_config.encoder_list, base.head) {
9562                 if (source_encoder->new_crtc != crtc)
9563                         continue;
9564
9565                 if (!encoders_cloneable(encoder, source_encoder))
9566                         return false;
9567         }
9568
9569         return true;
9570 }
9571
9572 static bool check_encoder_cloning(struct intel_crtc *crtc)
9573 {
9574         struct drm_device *dev = crtc->base.dev;
9575         struct intel_encoder *encoder;
9576
9577         list_for_each_entry(encoder,
9578                             &dev->mode_config.encoder_list, base.head) {
9579                 if (encoder->new_crtc != crtc)
9580                         continue;
9581
9582                 if (!check_single_encoder_cloning(crtc, encoder))
9583                         return false;
9584         }
9585
9586         return true;
9587 }
9588
9589 static struct intel_crtc_config *
9590 intel_modeset_pipe_config(struct drm_crtc *crtc,
9591                           struct drm_framebuffer *fb,
9592                           struct drm_display_mode *mode)
9593 {
9594         struct drm_device *dev = crtc->dev;
9595         struct intel_encoder *encoder;
9596         struct intel_crtc_config *pipe_config;
9597         int plane_bpp, ret = -EINVAL;
9598         bool retry = true;
9599
9600         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
9601                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9602                 return ERR_PTR(-EINVAL);
9603         }
9604
9605         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9606         if (!pipe_config)
9607                 return ERR_PTR(-ENOMEM);
9608
9609         drm_mode_copy(&pipe_config->adjusted_mode, mode);
9610         drm_mode_copy(&pipe_config->requested_mode, mode);
9611
9612         pipe_config->cpu_transcoder =
9613                 (enum transcoder) to_intel_crtc(crtc)->pipe;
9614         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9615
9616         /*
9617          * Sanitize sync polarity flags based on requested ones. If neither
9618          * positive or negative polarity is requested, treat this as meaning
9619          * negative polarity.
9620          */
9621         if (!(pipe_config->adjusted_mode.flags &
9622               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
9623                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
9624
9625         if (!(pipe_config->adjusted_mode.flags &
9626               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
9627                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
9628
9629         /* Compute a starting value for pipe_config->pipe_bpp taking the source
9630          * plane pixel format and any sink constraints into account. Returns the
9631          * source plane bpp so that dithering can be selected on mismatches
9632          * after encoders and crtc also have had their say. */
9633         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
9634                                               fb, pipe_config);
9635         if (plane_bpp < 0)
9636                 goto fail;
9637
9638         /*
9639          * Determine the real pipe dimensions. Note that stereo modes can
9640          * increase the actual pipe size due to the frame doubling and
9641          * insertion of additional space for blanks between the frame. This
9642          * is stored in the crtc timings. We use the requested mode to do this
9643          * computation to clearly distinguish it from the adjusted mode, which
9644          * can be changed by the connectors in the below retry loop.
9645          */
9646         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
9647         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
9648         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
9649
9650 encoder_retry:
9651         /* Ensure the port clock defaults are reset when retrying. */
9652         pipe_config->port_clock = 0;
9653         pipe_config->pixel_multiplier = 1;
9654
9655         /* Fill in default crtc timings, allow encoders to overwrite them. */
9656         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
9657
9658         /* Pass our mode to the connectors and the CRTC to give them a chance to
9659          * adjust it according to limitations or connector properties, and also
9660          * a chance to reject the mode entirely.
9661          */
9662         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9663                             base.head) {
9664
9665                 if (&encoder->new_crtc->base != crtc)
9666                         continue;
9667
9668                 if (!(encoder->compute_config(encoder, pipe_config))) {
9669                         DRM_DEBUG_KMS("Encoder config failure\n");
9670                         goto fail;
9671                 }
9672         }
9673
9674         /* Set default port clock if not overwritten by the encoder. Needs to be
9675          * done afterwards in case the encoder adjusts the mode. */
9676         if (!pipe_config->port_clock)
9677                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9678                         * pipe_config->pixel_multiplier;
9679
9680         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9681         if (ret < 0) {
9682                 DRM_DEBUG_KMS("CRTC fixup failed\n");
9683                 goto fail;
9684         }
9685
9686         if (ret == RETRY) {
9687                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
9688                         ret = -EINVAL;
9689                         goto fail;
9690                 }
9691
9692                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9693                 retry = false;
9694                 goto encoder_retry;
9695         }
9696
9697         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9698         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9699                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9700
9701         return pipe_config;
9702 fail:
9703         kfree(pipe_config);
9704         return ERR_PTR(ret);
9705 }
9706
9707 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
9708  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9709 static void
9710 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9711                              unsigned *prepare_pipes, unsigned *disable_pipes)
9712 {
9713         struct intel_crtc *intel_crtc;
9714         struct drm_device *dev = crtc->dev;
9715         struct intel_encoder *encoder;
9716         struct intel_connector *connector;
9717         struct drm_crtc *tmp_crtc;
9718
9719         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9720
9721         /* Check which crtcs have changed outputs connected to them, these need
9722          * to be part of the prepare_pipes mask. We don't (yet) support global
9723          * modeset across multiple crtcs, so modeset_pipes will only have one
9724          * bit set at most. */
9725         list_for_each_entry(connector, &dev->mode_config.connector_list,
9726                             base.head) {
9727                 if (connector->base.encoder == &connector->new_encoder->base)
9728                         continue;
9729
9730                 if (connector->base.encoder) {
9731                         tmp_crtc = connector->base.encoder->crtc;
9732
9733                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9734                 }
9735
9736                 if (connector->new_encoder)
9737                         *prepare_pipes |=
9738                                 1 << connector->new_encoder->new_crtc->pipe;
9739         }
9740
9741         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9742                             base.head) {
9743                 if (encoder->base.crtc == &encoder->new_crtc->base)
9744                         continue;
9745
9746                 if (encoder->base.crtc) {
9747                         tmp_crtc = encoder->base.crtc;
9748
9749                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9750                 }
9751
9752                 if (encoder->new_crtc)
9753                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9754         }
9755
9756         /* Check for pipes that will be enabled/disabled ... */
9757         for_each_intel_crtc(dev, intel_crtc) {
9758                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
9759                         continue;
9760
9761                 if (!intel_crtc->new_enabled)
9762                         *disable_pipes |= 1 << intel_crtc->pipe;
9763                 else
9764                         *prepare_pipes |= 1 << intel_crtc->pipe;
9765         }
9766
9767
9768         /* set_mode is also used to update properties on life display pipes. */
9769         intel_crtc = to_intel_crtc(crtc);
9770         if (intel_crtc->new_enabled)
9771                 *prepare_pipes |= 1 << intel_crtc->pipe;
9772
9773         /*
9774          * For simplicity do a full modeset on any pipe where the output routing
9775          * changed. We could be more clever, but that would require us to be
9776          * more careful with calling the relevant encoder->mode_set functions.
9777          */
9778         if (*prepare_pipes)
9779                 *modeset_pipes = *prepare_pipes;
9780
9781         /* ... and mask these out. */
9782         *modeset_pipes &= ~(*disable_pipes);
9783         *prepare_pipes &= ~(*disable_pipes);
9784
9785         /*
9786          * HACK: We don't (yet) fully support global modesets. intel_set_config
9787          * obies this rule, but the modeset restore mode of
9788          * intel_modeset_setup_hw_state does not.
9789          */
9790         *modeset_pipes &= 1 << intel_crtc->pipe;
9791         *prepare_pipes &= 1 << intel_crtc->pipe;
9792
9793         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9794                       *modeset_pipes, *prepare_pipes, *disable_pipes);
9795 }
9796
9797 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9798 {
9799         struct drm_encoder *encoder;
9800         struct drm_device *dev = crtc->dev;
9801
9802         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9803                 if (encoder->crtc == crtc)
9804                         return true;
9805
9806         return false;
9807 }
9808
9809 static void
9810 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9811 {
9812         struct intel_encoder *intel_encoder;
9813         struct intel_crtc *intel_crtc;
9814         struct drm_connector *connector;
9815
9816         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9817                             base.head) {
9818                 if (!intel_encoder->base.crtc)
9819                         continue;
9820
9821                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9822
9823                 if (prepare_pipes & (1 << intel_crtc->pipe))
9824                         intel_encoder->connectors_active = false;
9825         }
9826
9827         intel_modeset_commit_output_state(dev);
9828
9829         /* Double check state. */
9830         for_each_intel_crtc(dev, intel_crtc) {
9831                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
9832                 WARN_ON(intel_crtc->new_config &&
9833                         intel_crtc->new_config != &intel_crtc->config);
9834                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
9835         }
9836
9837         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9838                 if (!connector->encoder || !connector->encoder->crtc)
9839                         continue;
9840
9841                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9842
9843                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9844                         struct drm_property *dpms_property =
9845                                 dev->mode_config.dpms_property;
9846
9847                         connector->dpms = DRM_MODE_DPMS_ON;
9848                         drm_object_property_set_value(&connector->base,
9849                                                          dpms_property,
9850                                                          DRM_MODE_DPMS_ON);
9851
9852                         intel_encoder = to_intel_encoder(connector->encoder);
9853                         intel_encoder->connectors_active = true;
9854                 }
9855         }
9856
9857 }
9858
9859 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9860 {
9861         int diff;
9862
9863         if (clock1 == clock2)
9864                 return true;
9865
9866         if (!clock1 || !clock2)
9867                 return false;
9868
9869         diff = abs(clock1 - clock2);
9870
9871         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9872                 return true;
9873
9874         return false;
9875 }
9876
9877 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9878         list_for_each_entry((intel_crtc), \
9879                             &(dev)->mode_config.crtc_list, \
9880                             base.head) \
9881                 if (mask & (1 <<(intel_crtc)->pipe))
9882
9883 static bool
9884 intel_pipe_config_compare(struct drm_device *dev,
9885                           struct intel_crtc_config *current_config,
9886                           struct intel_crtc_config *pipe_config)
9887 {
9888 #define PIPE_CONF_CHECK_X(name) \
9889         if (current_config->name != pipe_config->name) { \
9890                 DRM_ERROR("mismatch in " #name " " \
9891                           "(expected 0x%08x, found 0x%08x)\n", \
9892                           current_config->name, \
9893                           pipe_config->name); \
9894                 return false; \
9895         }
9896
9897 #define PIPE_CONF_CHECK_I(name) \
9898         if (current_config->name != pipe_config->name) { \
9899                 DRM_ERROR("mismatch in " #name " " \
9900                           "(expected %i, found %i)\n", \
9901                           current_config->name, \
9902                           pipe_config->name); \
9903                 return false; \
9904         }
9905
9906 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
9907         if ((current_config->name ^ pipe_config->name) & (mask)) { \
9908                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
9909                           "(expected %i, found %i)\n", \
9910                           current_config->name & (mask), \
9911                           pipe_config->name & (mask)); \
9912                 return false; \
9913         }
9914
9915 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9916         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9917                 DRM_ERROR("mismatch in " #name " " \
9918                           "(expected %i, found %i)\n", \
9919                           current_config->name, \
9920                           pipe_config->name); \
9921                 return false; \
9922         }
9923
9924 #define PIPE_CONF_QUIRK(quirk)  \
9925         ((current_config->quirks | pipe_config->quirks) & (quirk))
9926
9927         PIPE_CONF_CHECK_I(cpu_transcoder);
9928
9929         PIPE_CONF_CHECK_I(has_pch_encoder);
9930         PIPE_CONF_CHECK_I(fdi_lanes);
9931         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9932         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9933         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9934         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9935         PIPE_CONF_CHECK_I(fdi_m_n.tu);
9936
9937         PIPE_CONF_CHECK_I(has_dp_encoder);
9938         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9939         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9940         PIPE_CONF_CHECK_I(dp_m_n.link_m);
9941         PIPE_CONF_CHECK_I(dp_m_n.link_n);
9942         PIPE_CONF_CHECK_I(dp_m_n.tu);
9943
9944         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9945         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9946         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9947         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9948         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9949         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9950
9951         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9952         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9953         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9954         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9955         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9956         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9957
9958         PIPE_CONF_CHECK_I(pixel_multiplier);
9959         PIPE_CONF_CHECK_I(has_hdmi_sink);
9960         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
9961             IS_VALLEYVIEW(dev))
9962                 PIPE_CONF_CHECK_I(limited_color_range);
9963
9964         PIPE_CONF_CHECK_I(has_audio);
9965
9966         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9967                               DRM_MODE_FLAG_INTERLACE);
9968
9969         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9970                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9971                                       DRM_MODE_FLAG_PHSYNC);
9972                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9973                                       DRM_MODE_FLAG_NHSYNC);
9974                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9975                                       DRM_MODE_FLAG_PVSYNC);
9976                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9977                                       DRM_MODE_FLAG_NVSYNC);
9978         }
9979
9980         PIPE_CONF_CHECK_I(pipe_src_w);
9981         PIPE_CONF_CHECK_I(pipe_src_h);
9982
9983         /*
9984          * FIXME: BIOS likes to set up a cloned config with lvds+external
9985          * screen. Since we don't yet re-compute the pipe config when moving
9986          * just the lvds port away to another pipe the sw tracking won't match.
9987          *
9988          * Proper atomic modesets with recomputed global state will fix this.
9989          * Until then just don't check gmch state for inherited modes.
9990          */
9991         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
9992                 PIPE_CONF_CHECK_I(gmch_pfit.control);
9993                 /* pfit ratios are autocomputed by the hw on gen4+ */
9994                 if (INTEL_INFO(dev)->gen < 4)
9995                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9996                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9997         }
9998
9999         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10000         if (current_config->pch_pfit.enabled) {
10001                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10002                 PIPE_CONF_CHECK_I(pch_pfit.size);
10003         }
10004
10005         /* BDW+ don't expose a synchronous way to read the state */
10006         if (IS_HASWELL(dev))
10007                 PIPE_CONF_CHECK_I(ips_enabled);
10008
10009         PIPE_CONF_CHECK_I(double_wide);
10010
10011         PIPE_CONF_CHECK_I(shared_dpll);
10012         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10013         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10014         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10015         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10016
10017         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10018                 PIPE_CONF_CHECK_I(pipe_bpp);
10019
10020         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10021         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10022
10023 #undef PIPE_CONF_CHECK_X
10024 #undef PIPE_CONF_CHECK_I
10025 #undef PIPE_CONF_CHECK_FLAGS
10026 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10027 #undef PIPE_CONF_QUIRK
10028
10029         return true;
10030 }
10031
10032 static void
10033 check_connector_state(struct drm_device *dev)
10034 {
10035         struct intel_connector *connector;
10036
10037         list_for_each_entry(connector, &dev->mode_config.connector_list,
10038                             base.head) {
10039                 /* This also checks the encoder/connector hw state with the
10040                  * ->get_hw_state callbacks. */
10041                 intel_connector_check_state(connector);
10042
10043                 WARN(&connector->new_encoder->base != connector->base.encoder,
10044                      "connector's staged encoder doesn't match current encoder\n");
10045         }
10046 }
10047
10048 static void
10049 check_encoder_state(struct drm_device *dev)
10050 {
10051         struct intel_encoder *encoder;
10052         struct intel_connector *connector;
10053
10054         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10055                             base.head) {
10056                 bool enabled = false;
10057                 bool active = false;
10058                 enum pipe pipe, tracked_pipe;
10059
10060                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10061                               encoder->base.base.id,
10062                               encoder->base.name);
10063
10064                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10065                      "encoder's stage crtc doesn't match current crtc\n");
10066                 WARN(encoder->connectors_active && !encoder->base.crtc,
10067                      "encoder's active_connectors set, but no crtc\n");
10068
10069                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10070                                     base.head) {
10071                         if (connector->base.encoder != &encoder->base)
10072                                 continue;
10073                         enabled = true;
10074                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10075                                 active = true;
10076                 }
10077                 WARN(!!encoder->base.crtc != enabled,
10078                      "encoder's enabled state mismatch "
10079                      "(expected %i, found %i)\n",
10080                      !!encoder->base.crtc, enabled);
10081                 WARN(active && !encoder->base.crtc,
10082                      "active encoder with no crtc\n");
10083
10084                 WARN(encoder->connectors_active != active,
10085                      "encoder's computed active state doesn't match tracked active state "
10086                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10087
10088                 active = encoder->get_hw_state(encoder, &pipe);
10089                 WARN(active != encoder->connectors_active,
10090                      "encoder's hw state doesn't match sw tracking "
10091                      "(expected %i, found %i)\n",
10092                      encoder->connectors_active, active);
10093
10094                 if (!encoder->base.crtc)
10095                         continue;
10096
10097                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10098                 WARN(active && pipe != tracked_pipe,
10099                      "active encoder's pipe doesn't match"
10100                      "(expected %i, found %i)\n",
10101                      tracked_pipe, pipe);
10102
10103         }
10104 }
10105
10106 static void
10107 check_crtc_state(struct drm_device *dev)
10108 {
10109         struct drm_i915_private *dev_priv = dev->dev_private;
10110         struct intel_crtc *crtc;
10111         struct intel_encoder *encoder;
10112         struct intel_crtc_config pipe_config;
10113
10114         for_each_intel_crtc(dev, crtc) {
10115                 bool enabled = false;
10116                 bool active = false;
10117
10118                 memset(&pipe_config, 0, sizeof(pipe_config));
10119
10120                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10121                               crtc->base.base.id);
10122
10123                 WARN(crtc->active && !crtc->base.enabled,
10124                      "active crtc, but not enabled in sw tracking\n");
10125
10126                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10127                                     base.head) {
10128                         if (encoder->base.crtc != &crtc->base)
10129                                 continue;
10130                         enabled = true;
10131                         if (encoder->connectors_active)
10132                                 active = true;
10133                 }
10134
10135                 WARN(active != crtc->active,
10136                      "crtc's computed active state doesn't match tracked active state "
10137                      "(expected %i, found %i)\n", active, crtc->active);
10138                 WARN(enabled != crtc->base.enabled,
10139                      "crtc's computed enabled state doesn't match tracked enabled state "
10140                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10141
10142                 active = dev_priv->display.get_pipe_config(crtc,
10143                                                            &pipe_config);
10144
10145                 /* hw state is inconsistent with the pipe A quirk */
10146                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10147                         active = crtc->active;
10148
10149                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10150                                     base.head) {
10151                         enum pipe pipe;
10152                         if (encoder->base.crtc != &crtc->base)
10153                                 continue;
10154                         if (encoder->get_hw_state(encoder, &pipe))
10155                                 encoder->get_config(encoder, &pipe_config);
10156                 }
10157
10158                 WARN(crtc->active != active,
10159                      "crtc active state doesn't match with hw state "
10160                      "(expected %i, found %i)\n", crtc->active, active);
10161
10162                 if (active &&
10163                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10164                         WARN(1, "pipe state doesn't match!\n");
10165                         intel_dump_pipe_config(crtc, &pipe_config,
10166                                                "[hw state]");
10167                         intel_dump_pipe_config(crtc, &crtc->config,
10168                                                "[sw state]");
10169                 }
10170         }
10171 }
10172
10173 static void
10174 check_shared_dpll_state(struct drm_device *dev)
10175 {
10176         struct drm_i915_private *dev_priv = dev->dev_private;
10177         struct intel_crtc *crtc;
10178         struct intel_dpll_hw_state dpll_hw_state;
10179         int i;
10180
10181         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10182                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10183                 int enabled_crtcs = 0, active_crtcs = 0;
10184                 bool active;
10185
10186                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10187
10188                 DRM_DEBUG_KMS("%s\n", pll->name);
10189
10190                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10191
10192                 WARN(pll->active > pll->refcount,
10193                      "more active pll users than references: %i vs %i\n",
10194                      pll->active, pll->refcount);
10195                 WARN(pll->active && !pll->on,
10196                      "pll in active use but not on in sw tracking\n");
10197                 WARN(pll->on && !pll->active,
10198                      "pll in on but not on in use in sw tracking\n");
10199                 WARN(pll->on != active,
10200                      "pll on state mismatch (expected %i, found %i)\n",
10201                      pll->on, active);
10202
10203                 for_each_intel_crtc(dev, crtc) {
10204                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10205                                 enabled_crtcs++;
10206                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10207                                 active_crtcs++;
10208                 }
10209                 WARN(pll->active != active_crtcs,
10210                      "pll active crtcs mismatch (expected %i, found %i)\n",
10211                      pll->active, active_crtcs);
10212                 WARN(pll->refcount != enabled_crtcs,
10213                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10214                      pll->refcount, enabled_crtcs);
10215
10216                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10217                                        sizeof(dpll_hw_state)),
10218                      "pll hw state mismatch\n");
10219         }
10220 }
10221
10222 void
10223 intel_modeset_check_state(struct drm_device *dev)
10224 {
10225         check_connector_state(dev);
10226         check_encoder_state(dev);
10227         check_crtc_state(dev);
10228         check_shared_dpll_state(dev);
10229 }
10230
10231 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10232                                      int dotclock)
10233 {
10234         /*
10235          * FDI already provided one idea for the dotclock.
10236          * Yell if the encoder disagrees.
10237          */
10238         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10239              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10240              pipe_config->adjusted_mode.crtc_clock, dotclock);
10241 }
10242
10243 static void update_scanline_offset(struct intel_crtc *crtc)
10244 {
10245         struct drm_device *dev = crtc->base.dev;
10246
10247         /*
10248          * The scanline counter increments at the leading edge of hsync.
10249          *
10250          * On most platforms it starts counting from vtotal-1 on the
10251          * first active line. That means the scanline counter value is
10252          * always one less than what we would expect. Ie. just after
10253          * start of vblank, which also occurs at start of hsync (on the
10254          * last active line), the scanline counter will read vblank_start-1.
10255          *
10256          * On gen2 the scanline counter starts counting from 1 instead
10257          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10258          * to keep the value positive), instead of adding one.
10259          *
10260          * On HSW+ the behaviour of the scanline counter depends on the output
10261          * type. For DP ports it behaves like most other platforms, but on HDMI
10262          * there's an extra 1 line difference. So we need to add two instead of
10263          * one to the value.
10264          */
10265         if (IS_GEN2(dev)) {
10266                 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10267                 int vtotal;
10268
10269                 vtotal = mode->crtc_vtotal;
10270                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10271                         vtotal /= 2;
10272
10273                 crtc->scanline_offset = vtotal - 1;
10274         } else if (HAS_DDI(dev) &&
10275                    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10276                 crtc->scanline_offset = 2;
10277         } else
10278                 crtc->scanline_offset = 1;
10279 }
10280
10281 static int __intel_set_mode(struct drm_crtc *crtc,
10282                             struct drm_display_mode *mode,
10283                             int x, int y, struct drm_framebuffer *fb)
10284 {
10285         struct drm_device *dev = crtc->dev;
10286         struct drm_i915_private *dev_priv = dev->dev_private;
10287         struct drm_display_mode *saved_mode;
10288         struct intel_crtc_config *pipe_config = NULL;
10289         struct intel_crtc *intel_crtc;
10290         unsigned disable_pipes, prepare_pipes, modeset_pipes;
10291         int ret = 0;
10292
10293         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10294         if (!saved_mode)
10295                 return -ENOMEM;
10296
10297         intel_modeset_affected_pipes(crtc, &modeset_pipes,
10298                                      &prepare_pipes, &disable_pipes);
10299
10300         *saved_mode = crtc->mode;
10301
10302         /* Hack: Because we don't (yet) support global modeset on multiple
10303          * crtcs, we don't keep track of the new mode for more than one crtc.
10304          * Hence simply check whether any bit is set in modeset_pipes in all the
10305          * pieces of code that are not yet converted to deal with mutliple crtcs
10306          * changing their mode at the same time. */
10307         if (modeset_pipes) {
10308                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10309                 if (IS_ERR(pipe_config)) {
10310                         ret = PTR_ERR(pipe_config);
10311                         pipe_config = NULL;
10312
10313                         goto out;
10314                 }
10315                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10316                                        "[modeset]");
10317                 to_intel_crtc(crtc)->new_config = pipe_config;
10318         }
10319
10320         /*
10321          * See if the config requires any additional preparation, e.g.
10322          * to adjust global state with pipes off.  We need to do this
10323          * here so we can get the modeset_pipe updated config for the new
10324          * mode set on this crtc.  For other crtcs we need to use the
10325          * adjusted_mode bits in the crtc directly.
10326          */
10327         if (IS_VALLEYVIEW(dev)) {
10328                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10329
10330                 /* may have added more to prepare_pipes than we should */
10331                 prepare_pipes &= ~disable_pipes;
10332         }
10333
10334         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10335                 intel_crtc_disable(&intel_crtc->base);
10336
10337         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10338                 if (intel_crtc->base.enabled)
10339                         dev_priv->display.crtc_disable(&intel_crtc->base);
10340         }
10341
10342         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10343          * to set it here already despite that we pass it down the callchain.
10344          */
10345         if (modeset_pipes) {
10346                 crtc->mode = *mode;
10347                 /* mode_set/enable/disable functions rely on a correct pipe
10348                  * config. */
10349                 to_intel_crtc(crtc)->config = *pipe_config;
10350                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10351
10352                 /*
10353                  * Calculate and store various constants which
10354                  * are later needed by vblank and swap-completion
10355                  * timestamping. They are derived from true hwmode.
10356                  */
10357                 drm_calc_timestamping_constants(crtc,
10358                                                 &pipe_config->adjusted_mode);
10359         }
10360
10361         /* Only after disabling all output pipelines that will be changed can we
10362          * update the the output configuration. */
10363         intel_modeset_update_state(dev, prepare_pipes);
10364
10365         if (dev_priv->display.modeset_global_resources)
10366                 dev_priv->display.modeset_global_resources(dev);
10367
10368         /* Set up the DPLL and any encoders state that needs to adjust or depend
10369          * on the DPLL.
10370          */
10371         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10372                 struct drm_framebuffer *old_fb;
10373
10374                 mutex_lock(&dev->struct_mutex);
10375                 ret = intel_pin_and_fence_fb_obj(dev,
10376                                                  to_intel_framebuffer(fb)->obj,
10377                                                  NULL);
10378                 if (ret != 0) {
10379                         DRM_ERROR("pin & fence failed\n");
10380                         mutex_unlock(&dev->struct_mutex);
10381                         goto done;
10382                 }
10383                 old_fb = crtc->primary->fb;
10384                 if (old_fb)
10385                         intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
10386                 mutex_unlock(&dev->struct_mutex);
10387
10388                 crtc->primary->fb = fb;
10389                 crtc->x = x;
10390                 crtc->y = y;
10391
10392                 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10393                                                       x, y, fb);
10394                 if (ret)
10395                         goto done;
10396         }
10397
10398         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10399         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10400                 update_scanline_offset(intel_crtc);
10401
10402                 dev_priv->display.crtc_enable(&intel_crtc->base);
10403         }
10404
10405         /* FIXME: add subpixel order */
10406 done:
10407         if (ret && crtc->enabled)
10408                 crtc->mode = *saved_mode;
10409
10410 out:
10411         kfree(pipe_config);
10412         kfree(saved_mode);
10413         return ret;
10414 }
10415
10416 static int intel_set_mode(struct drm_crtc *crtc,
10417                           struct drm_display_mode *mode,
10418                           int x, int y, struct drm_framebuffer *fb)
10419 {
10420         int ret;
10421
10422         ret = __intel_set_mode(crtc, mode, x, y, fb);
10423
10424         if (ret == 0)
10425                 intel_modeset_check_state(crtc->dev);
10426
10427         return ret;
10428 }
10429
10430 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10431 {
10432         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10433 }
10434
10435 #undef for_each_intel_crtc_masked
10436
10437 static void intel_set_config_free(struct intel_set_config *config)
10438 {
10439         if (!config)
10440                 return;
10441
10442         kfree(config->save_connector_encoders);
10443         kfree(config->save_encoder_crtcs);
10444         kfree(config->save_crtc_enabled);
10445         kfree(config);
10446 }
10447
10448 static int intel_set_config_save_state(struct drm_device *dev,
10449                                        struct intel_set_config *config)
10450 {
10451         struct drm_crtc *crtc;
10452         struct drm_encoder *encoder;
10453         struct drm_connector *connector;
10454         int count;
10455
10456         config->save_crtc_enabled =
10457                 kcalloc(dev->mode_config.num_crtc,
10458                         sizeof(bool), GFP_KERNEL);
10459         if (!config->save_crtc_enabled)
10460                 return -ENOMEM;
10461
10462         config->save_encoder_crtcs =
10463                 kcalloc(dev->mode_config.num_encoder,
10464                         sizeof(struct drm_crtc *), GFP_KERNEL);
10465         if (!config->save_encoder_crtcs)
10466                 return -ENOMEM;
10467
10468         config->save_connector_encoders =
10469                 kcalloc(dev->mode_config.num_connector,
10470                         sizeof(struct drm_encoder *), GFP_KERNEL);
10471         if (!config->save_connector_encoders)
10472                 return -ENOMEM;
10473
10474         /* Copy data. Note that driver private data is not affected.
10475          * Should anything bad happen only the expected state is
10476          * restored, not the drivers personal bookkeeping.
10477          */
10478         count = 0;
10479         for_each_crtc(dev, crtc) {
10480                 config->save_crtc_enabled[count++] = crtc->enabled;
10481         }
10482
10483         count = 0;
10484         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10485                 config->save_encoder_crtcs[count++] = encoder->crtc;
10486         }
10487
10488         count = 0;
10489         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10490                 config->save_connector_encoders[count++] = connector->encoder;
10491         }
10492
10493         return 0;
10494 }
10495
10496 static void intel_set_config_restore_state(struct drm_device *dev,
10497                                            struct intel_set_config *config)
10498 {
10499         struct intel_crtc *crtc;
10500         struct intel_encoder *encoder;
10501         struct intel_connector *connector;
10502         int count;
10503
10504         count = 0;
10505         for_each_intel_crtc(dev, crtc) {
10506                 crtc->new_enabled = config->save_crtc_enabled[count++];
10507
10508                 if (crtc->new_enabled)
10509                         crtc->new_config = &crtc->config;
10510                 else
10511                         crtc->new_config = NULL;
10512         }
10513
10514         count = 0;
10515         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10516                 encoder->new_crtc =
10517                         to_intel_crtc(config->save_encoder_crtcs[count++]);
10518         }
10519
10520         count = 0;
10521         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10522                 connector->new_encoder =
10523                         to_intel_encoder(config->save_connector_encoders[count++]);
10524         }
10525 }
10526
10527 static bool
10528 is_crtc_connector_off(struct drm_mode_set *set)
10529 {
10530         int i;
10531
10532         if (set->num_connectors == 0)
10533                 return false;
10534
10535         if (WARN_ON(set->connectors == NULL))
10536                 return false;
10537
10538         for (i = 0; i < set->num_connectors; i++)
10539                 if (set->connectors[i]->encoder &&
10540                     set->connectors[i]->encoder->crtc == set->crtc &&
10541                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
10542                         return true;
10543
10544         return false;
10545 }
10546
10547 static void
10548 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10549                                       struct intel_set_config *config)
10550 {
10551
10552         /* We should be able to check here if the fb has the same properties
10553          * and then just flip_or_move it */
10554         if (is_crtc_connector_off(set)) {
10555                 config->mode_changed = true;
10556         } else if (set->crtc->primary->fb != set->fb) {
10557                 /* If we have no fb then treat it as a full mode set */
10558                 if (set->crtc->primary->fb == NULL) {
10559                         struct intel_crtc *intel_crtc =
10560                                 to_intel_crtc(set->crtc);
10561
10562                         if (intel_crtc->active && i915.fastboot) {
10563                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10564                                 config->fb_changed = true;
10565                         } else {
10566                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10567                                 config->mode_changed = true;
10568                         }
10569                 } else if (set->fb == NULL) {
10570                         config->mode_changed = true;
10571                 } else if (set->fb->pixel_format !=
10572                            set->crtc->primary->fb->pixel_format) {
10573                         config->mode_changed = true;
10574                 } else {
10575                         config->fb_changed = true;
10576                 }
10577         }
10578
10579         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
10580                 config->fb_changed = true;
10581
10582         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10583                 DRM_DEBUG_KMS("modes are different, full mode set\n");
10584                 drm_mode_debug_printmodeline(&set->crtc->mode);
10585                 drm_mode_debug_printmodeline(set->mode);
10586                 config->mode_changed = true;
10587         }
10588
10589         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10590                         set->crtc->base.id, config->mode_changed, config->fb_changed);
10591 }
10592
10593 static int
10594 intel_modeset_stage_output_state(struct drm_device *dev,
10595                                  struct drm_mode_set *set,
10596                                  struct intel_set_config *config)
10597 {
10598         struct intel_connector *connector;
10599         struct intel_encoder *encoder;
10600         struct intel_crtc *crtc;
10601         int ro;
10602
10603         /* The upper layers ensure that we either disable a crtc or have a list
10604          * of connectors. For paranoia, double-check this. */
10605         WARN_ON(!set->fb && (set->num_connectors != 0));
10606         WARN_ON(set->fb && (set->num_connectors == 0));
10607
10608         list_for_each_entry(connector, &dev->mode_config.connector_list,
10609                             base.head) {
10610                 /* Otherwise traverse passed in connector list and get encoders
10611                  * for them. */
10612                 for (ro = 0; ro < set->num_connectors; ro++) {
10613                         if (set->connectors[ro] == &connector->base) {
10614                                 connector->new_encoder = connector->encoder;
10615                                 break;
10616                         }
10617                 }
10618
10619                 /* If we disable the crtc, disable all its connectors. Also, if
10620                  * the connector is on the changing crtc but not on the new
10621                  * connector list, disable it. */
10622                 if ((!set->fb || ro == set->num_connectors) &&
10623                     connector->base.encoder &&
10624                     connector->base.encoder->crtc == set->crtc) {
10625                         connector->new_encoder = NULL;
10626
10627                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
10628                                 connector->base.base.id,
10629                                 connector->base.name);
10630                 }
10631
10632
10633                 if (&connector->new_encoder->base != connector->base.encoder) {
10634                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
10635                         config->mode_changed = true;
10636                 }
10637         }
10638         /* connector->new_encoder is now updated for all connectors. */
10639
10640         /* Update crtc of enabled connectors. */
10641         list_for_each_entry(connector, &dev->mode_config.connector_list,
10642                             base.head) {
10643                 struct drm_crtc *new_crtc;
10644
10645                 if (!connector->new_encoder)
10646                         continue;
10647
10648                 new_crtc = connector->new_encoder->base.crtc;
10649
10650                 for (ro = 0; ro < set->num_connectors; ro++) {
10651                         if (set->connectors[ro] == &connector->base)
10652                                 new_crtc = set->crtc;
10653                 }
10654
10655                 /* Make sure the new CRTC will work with the encoder */
10656                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
10657                                          new_crtc)) {
10658                         return -EINVAL;
10659                 }
10660                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
10661
10662                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
10663                         connector->base.base.id,
10664                         connector->base.name,
10665                         new_crtc->base.id);
10666         }
10667
10668         /* Check for any encoders that needs to be disabled. */
10669         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10670                             base.head) {
10671                 int num_connectors = 0;
10672                 list_for_each_entry(connector,
10673                                     &dev->mode_config.connector_list,
10674                                     base.head) {
10675                         if (connector->new_encoder == encoder) {
10676                                 WARN_ON(!connector->new_encoder->new_crtc);
10677                                 num_connectors++;
10678                         }
10679                 }
10680
10681                 if (num_connectors == 0)
10682                         encoder->new_crtc = NULL;
10683                 else if (num_connectors > 1)
10684                         return -EINVAL;
10685
10686                 /* Only now check for crtc changes so we don't miss encoders
10687                  * that will be disabled. */
10688                 if (&encoder->new_crtc->base != encoder->base.crtc) {
10689                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
10690                         config->mode_changed = true;
10691                 }
10692         }
10693         /* Now we've also updated encoder->new_crtc for all encoders. */
10694
10695         for_each_intel_crtc(dev, crtc) {
10696                 crtc->new_enabled = false;
10697
10698                 list_for_each_entry(encoder,
10699                                     &dev->mode_config.encoder_list,
10700                                     base.head) {
10701                         if (encoder->new_crtc == crtc) {
10702                                 crtc->new_enabled = true;
10703                                 break;
10704                         }
10705                 }
10706
10707                 if (crtc->new_enabled != crtc->base.enabled) {
10708                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
10709                                       crtc->new_enabled ? "en" : "dis");
10710                         config->mode_changed = true;
10711                 }
10712
10713                 if (crtc->new_enabled)
10714                         crtc->new_config = &crtc->config;
10715                 else
10716                         crtc->new_config = NULL;
10717         }
10718
10719         return 0;
10720 }
10721
10722 static void disable_crtc_nofb(struct intel_crtc *crtc)
10723 {
10724         struct drm_device *dev = crtc->base.dev;
10725         struct intel_encoder *encoder;
10726         struct intel_connector *connector;
10727
10728         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
10729                       pipe_name(crtc->pipe));
10730
10731         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10732                 if (connector->new_encoder &&
10733                     connector->new_encoder->new_crtc == crtc)
10734                         connector->new_encoder = NULL;
10735         }
10736
10737         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10738                 if (encoder->new_crtc == crtc)
10739                         encoder->new_crtc = NULL;
10740         }
10741
10742         crtc->new_enabled = false;
10743         crtc->new_config = NULL;
10744 }
10745
10746 static int intel_crtc_set_config(struct drm_mode_set *set)
10747 {
10748         struct drm_device *dev;
10749         struct drm_mode_set save_set;
10750         struct intel_set_config *config;
10751         int ret;
10752
10753         BUG_ON(!set);
10754         BUG_ON(!set->crtc);
10755         BUG_ON(!set->crtc->helper_private);
10756
10757         /* Enforce sane interface api - has been abused by the fb helper. */
10758         BUG_ON(!set->mode && set->fb);
10759         BUG_ON(set->fb && set->num_connectors == 0);
10760
10761         if (set->fb) {
10762                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
10763                                 set->crtc->base.id, set->fb->base.id,
10764                                 (int)set->num_connectors, set->x, set->y);
10765         } else {
10766                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
10767         }
10768
10769         dev = set->crtc->dev;
10770
10771         ret = -ENOMEM;
10772         config = kzalloc(sizeof(*config), GFP_KERNEL);
10773         if (!config)
10774                 goto out_config;
10775
10776         ret = intel_set_config_save_state(dev, config);
10777         if (ret)
10778                 goto out_config;
10779
10780         save_set.crtc = set->crtc;
10781         save_set.mode = &set->crtc->mode;
10782         save_set.x = set->crtc->x;
10783         save_set.y = set->crtc->y;
10784         save_set.fb = set->crtc->primary->fb;
10785
10786         /* Compute whether we need a full modeset, only an fb base update or no
10787          * change at all. In the future we might also check whether only the
10788          * mode changed, e.g. for LVDS where we only change the panel fitter in
10789          * such cases. */
10790         intel_set_config_compute_mode_changes(set, config);
10791
10792         ret = intel_modeset_stage_output_state(dev, set, config);
10793         if (ret)
10794                 goto fail;
10795
10796         if (config->mode_changed) {
10797                 ret = intel_set_mode(set->crtc, set->mode,
10798                                      set->x, set->y, set->fb);
10799         } else if (config->fb_changed) {
10800                 intel_crtc_wait_for_pending_flips(set->crtc);
10801
10802                 ret = intel_pipe_set_base(set->crtc,
10803                                           set->x, set->y, set->fb);
10804                 /*
10805                  * In the fastboot case this may be our only check of the
10806                  * state after boot.  It would be better to only do it on
10807                  * the first update, but we don't have a nice way of doing that
10808                  * (and really, set_config isn't used much for high freq page
10809                  * flipping, so increasing its cost here shouldn't be a big
10810                  * deal).
10811                  */
10812                 if (i915.fastboot && ret == 0)
10813                         intel_modeset_check_state(set->crtc->dev);
10814         }
10815
10816         if (ret) {
10817                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
10818                               set->crtc->base.id, ret);
10819 fail:
10820                 intel_set_config_restore_state(dev, config);
10821
10822                 /*
10823                  * HACK: if the pipe was on, but we didn't have a framebuffer,
10824                  * force the pipe off to avoid oopsing in the modeset code
10825                  * due to fb==NULL. This should only happen during boot since
10826                  * we don't yet reconstruct the FB from the hardware state.
10827                  */
10828                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
10829                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
10830
10831                 /* Try to restore the config */
10832                 if (config->mode_changed &&
10833                     intel_set_mode(save_set.crtc, save_set.mode,
10834                                    save_set.x, save_set.y, save_set.fb))
10835                         DRM_ERROR("failed to restore config after modeset failure\n");
10836         }
10837
10838 out_config:
10839         intel_set_config_free(config);
10840         return ret;
10841 }
10842
10843 static const struct drm_crtc_funcs intel_crtc_funcs = {
10844         .cursor_set = intel_crtc_cursor_set,
10845         .cursor_move = intel_crtc_cursor_move,
10846         .gamma_set = intel_crtc_gamma_set,
10847         .set_config = intel_crtc_set_config,
10848         .destroy = intel_crtc_destroy,
10849         .page_flip = intel_crtc_page_flip,
10850 };
10851
10852 static void intel_cpu_pll_init(struct drm_device *dev)
10853 {
10854         if (HAS_DDI(dev))
10855                 intel_ddi_pll_init(dev);
10856 }
10857
10858 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
10859                                       struct intel_shared_dpll *pll,
10860                                       struct intel_dpll_hw_state *hw_state)
10861 {
10862         uint32_t val;
10863
10864         val = I915_READ(PCH_DPLL(pll->id));
10865         hw_state->dpll = val;
10866         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
10867         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10868
10869         return val & DPLL_VCO_ENABLE;
10870 }
10871
10872 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10873                                   struct intel_shared_dpll *pll)
10874 {
10875         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10876         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10877 }
10878
10879 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10880                                 struct intel_shared_dpll *pll)
10881 {
10882         /* PCH refclock must be enabled first */
10883         ibx_assert_pch_refclk_enabled(dev_priv);
10884
10885         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10886
10887         /* Wait for the clocks to stabilize. */
10888         POSTING_READ(PCH_DPLL(pll->id));
10889         udelay(150);
10890
10891         /* The pixel multiplier can only be updated once the
10892          * DPLL is enabled and the clocks are stable.
10893          *
10894          * So write it again.
10895          */
10896         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10897         POSTING_READ(PCH_DPLL(pll->id));
10898         udelay(200);
10899 }
10900
10901 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10902                                  struct intel_shared_dpll *pll)
10903 {
10904         struct drm_device *dev = dev_priv->dev;
10905         struct intel_crtc *crtc;
10906
10907         /* Make sure no transcoder isn't still depending on us. */
10908         for_each_intel_crtc(dev, crtc) {
10909                 if (intel_crtc_to_shared_dpll(crtc) == pll)
10910                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10911         }
10912
10913         I915_WRITE(PCH_DPLL(pll->id), 0);
10914         POSTING_READ(PCH_DPLL(pll->id));
10915         udelay(200);
10916 }
10917
10918 static char *ibx_pch_dpll_names[] = {
10919         "PCH DPLL A",
10920         "PCH DPLL B",
10921 };
10922
10923 static void ibx_pch_dpll_init(struct drm_device *dev)
10924 {
10925         struct drm_i915_private *dev_priv = dev->dev_private;
10926         int i;
10927
10928         dev_priv->num_shared_dpll = 2;
10929
10930         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10931                 dev_priv->shared_dplls[i].id = i;
10932                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10933                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10934                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10935                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10936                 dev_priv->shared_dplls[i].get_hw_state =
10937                         ibx_pch_dpll_get_hw_state;
10938         }
10939 }
10940
10941 static void intel_shared_dpll_init(struct drm_device *dev)
10942 {
10943         struct drm_i915_private *dev_priv = dev->dev_private;
10944
10945         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10946                 ibx_pch_dpll_init(dev);
10947         else
10948                 dev_priv->num_shared_dpll = 0;
10949
10950         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10951 }
10952
10953 static void intel_crtc_init(struct drm_device *dev, int pipe)
10954 {
10955         struct drm_i915_private *dev_priv = dev->dev_private;
10956         struct intel_crtc *intel_crtc;
10957         int i;
10958
10959         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10960         if (intel_crtc == NULL)
10961                 return;
10962
10963         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10964
10965         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10966         for (i = 0; i < 256; i++) {
10967                 intel_crtc->lut_r[i] = i;
10968                 intel_crtc->lut_g[i] = i;
10969                 intel_crtc->lut_b[i] = i;
10970         }
10971
10972         /*
10973          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
10974          * is hooked to plane B. Hence we want plane A feeding pipe B.
10975          */
10976         intel_crtc->pipe = pipe;
10977         intel_crtc->plane = pipe;
10978         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
10979                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10980                 intel_crtc->plane = !pipe;
10981         }
10982
10983         intel_crtc->cursor_base = ~0;
10984         intel_crtc->cursor_cntl = ~0;
10985
10986         init_waitqueue_head(&intel_crtc->vbl_wait);
10987
10988         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10989                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10990         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10991         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10992
10993         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10994
10995         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
10996 }
10997
10998 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10999 {
11000         struct drm_encoder *encoder = connector->base.encoder;
11001         struct drm_device *dev = connector->base.dev;
11002
11003         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
11004
11005         if (!encoder)
11006                 return INVALID_PIPE;
11007
11008         return to_intel_crtc(encoder->crtc)->pipe;
11009 }
11010
11011 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
11012                                 struct drm_file *file)
11013 {
11014         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
11015         struct drm_mode_object *drmmode_obj;
11016         struct intel_crtc *crtc;
11017
11018         if (!drm_core_check_feature(dev, DRIVER_MODESET))
11019                 return -ENODEV;
11020
11021         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
11022                         DRM_MODE_OBJECT_CRTC);
11023
11024         if (!drmmode_obj) {
11025                 DRM_ERROR("no such CRTC id\n");
11026                 return -ENOENT;
11027         }
11028
11029         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
11030         pipe_from_crtc_id->pipe = crtc->pipe;
11031
11032         return 0;
11033 }
11034
11035 static int intel_encoder_clones(struct intel_encoder *encoder)
11036 {
11037         struct drm_device *dev = encoder->base.dev;
11038         struct intel_encoder *source_encoder;
11039         int index_mask = 0;
11040         int entry = 0;
11041
11042         list_for_each_entry(source_encoder,
11043                             &dev->mode_config.encoder_list, base.head) {
11044                 if (encoders_cloneable(encoder, source_encoder))
11045                         index_mask |= (1 << entry);
11046
11047                 entry++;
11048         }
11049
11050         return index_mask;
11051 }
11052
11053 static bool has_edp_a(struct drm_device *dev)
11054 {
11055         struct drm_i915_private *dev_priv = dev->dev_private;
11056
11057         if (!IS_MOBILE(dev))
11058                 return false;
11059
11060         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11061                 return false;
11062
11063         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
11064                 return false;
11065
11066         return true;
11067 }
11068
11069 const char *intel_output_name(int output)
11070 {
11071         static const char *names[] = {
11072                 [INTEL_OUTPUT_UNUSED] = "Unused",
11073                 [INTEL_OUTPUT_ANALOG] = "Analog",
11074                 [INTEL_OUTPUT_DVO] = "DVO",
11075                 [INTEL_OUTPUT_SDVO] = "SDVO",
11076                 [INTEL_OUTPUT_LVDS] = "LVDS",
11077                 [INTEL_OUTPUT_TVOUT] = "TV",
11078                 [INTEL_OUTPUT_HDMI] = "HDMI",
11079                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11080                 [INTEL_OUTPUT_EDP] = "eDP",
11081                 [INTEL_OUTPUT_DSI] = "DSI",
11082                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11083         };
11084
11085         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11086                 return "Invalid";
11087
11088         return names[output];
11089 }
11090
11091 static void intel_setup_outputs(struct drm_device *dev)
11092 {
11093         struct drm_i915_private *dev_priv = dev->dev_private;
11094         struct intel_encoder *encoder;
11095         bool dpd_is_edp = false;
11096
11097         intel_lvds_init(dev);
11098
11099         if (!IS_ULT(dev) && !IS_CHERRYVIEW(dev) && dev_priv->vbt.int_crt_support)
11100                 intel_crt_init(dev);
11101
11102         if (HAS_DDI(dev)) {
11103                 int found;
11104
11105                 /* Haswell uses DDI functions to detect digital outputs */
11106                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11107                 /* DDI A only supports eDP */
11108                 if (found)
11109                         intel_ddi_init(dev, PORT_A);
11110
11111                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11112                  * register */
11113                 found = I915_READ(SFUSE_STRAP);
11114
11115                 if (found & SFUSE_STRAP_DDIB_DETECTED)
11116                         intel_ddi_init(dev, PORT_B);
11117                 if (found & SFUSE_STRAP_DDIC_DETECTED)
11118                         intel_ddi_init(dev, PORT_C);
11119                 if (found & SFUSE_STRAP_DDID_DETECTED)
11120                         intel_ddi_init(dev, PORT_D);
11121         } else if (HAS_PCH_SPLIT(dev)) {
11122                 int found;
11123                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
11124
11125                 if (has_edp_a(dev))
11126                         intel_dp_init(dev, DP_A, PORT_A);
11127
11128                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
11129                         /* PCH SDVOB multiplex with HDMIB */
11130                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
11131                         if (!found)
11132                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
11133                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
11134                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
11135                 }
11136
11137                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
11138                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
11139
11140                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
11141                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
11142
11143                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
11144                         intel_dp_init(dev, PCH_DP_C, PORT_C);
11145
11146                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
11147                         intel_dp_init(dev, PCH_DP_D, PORT_D);
11148         } else if (IS_VALLEYVIEW(dev)) {
11149                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11150                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11151                                         PORT_B);
11152                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11153                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11154                 }
11155
11156                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11157                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11158                                         PORT_C);
11159                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
11160                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
11161                 }
11162
11163                 if (IS_CHERRYVIEW(dev)) {
11164                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
11165                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
11166                                                 PORT_D);
11167                                 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
11168                                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
11169                         }
11170                 }
11171
11172                 intel_dsi_init(dev);
11173         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
11174                 bool found = false;
11175
11176                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
11177                         DRM_DEBUG_KMS("probing SDVOB\n");
11178                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
11179                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11180                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
11181                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
11182                         }
11183
11184                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
11185                                 intel_dp_init(dev, DP_B, PORT_B);
11186                 }
11187
11188                 /* Before G4X SDVOC doesn't have its own detect register */
11189
11190                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
11191                         DRM_DEBUG_KMS("probing SDVOC\n");
11192                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
11193                 }
11194
11195                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
11196
11197                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11198                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
11199                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
11200                         }
11201                         if (SUPPORTS_INTEGRATED_DP(dev))
11202                                 intel_dp_init(dev, DP_C, PORT_C);
11203                 }
11204
11205                 if (SUPPORTS_INTEGRATED_DP(dev) &&
11206                     (I915_READ(DP_D) & DP_DETECTED))
11207                         intel_dp_init(dev, DP_D, PORT_D);
11208         } else if (IS_GEN2(dev))
11209                 intel_dvo_init(dev);
11210
11211         if (SUPPORTS_TV(dev))
11212                 intel_tv_init(dev);
11213
11214         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11215                 encoder->base.possible_crtcs = encoder->crtc_mask;
11216                 encoder->base.possible_clones =
11217                         intel_encoder_clones(encoder);
11218         }
11219
11220         intel_init_pch_refclk(dev);
11221
11222         drm_helper_move_panel_connectors_to_head(dev);
11223 }
11224
11225 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
11226 {
11227         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11228
11229         drm_framebuffer_cleanup(fb);
11230         WARN_ON(!intel_fb->obj->framebuffer_references--);
11231         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
11232         kfree(intel_fb);
11233 }
11234
11235 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
11236                                                 struct drm_file *file,
11237                                                 unsigned int *handle)
11238 {
11239         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11240         struct drm_i915_gem_object *obj = intel_fb->obj;
11241
11242         return drm_gem_handle_create(file, &obj->base, handle);
11243 }
11244
11245 static const struct drm_framebuffer_funcs intel_fb_funcs = {
11246         .destroy = intel_user_framebuffer_destroy,
11247         .create_handle = intel_user_framebuffer_create_handle,
11248 };
11249
11250 static int intel_framebuffer_init(struct drm_device *dev,
11251                                   struct intel_framebuffer *intel_fb,
11252                                   struct drm_mode_fb_cmd2 *mode_cmd,
11253                                   struct drm_i915_gem_object *obj)
11254 {
11255         int aligned_height;
11256         int pitch_limit;
11257         int ret;
11258
11259         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
11260
11261         if (obj->tiling_mode == I915_TILING_Y) {
11262                 DRM_DEBUG("hardware does not support tiling Y\n");
11263                 return -EINVAL;
11264         }
11265
11266         if (mode_cmd->pitches[0] & 63) {
11267                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
11268                           mode_cmd->pitches[0]);
11269                 return -EINVAL;
11270         }
11271
11272         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
11273                 pitch_limit = 32*1024;
11274         } else if (INTEL_INFO(dev)->gen >= 4) {
11275                 if (obj->tiling_mode)
11276                         pitch_limit = 16*1024;
11277                 else
11278                         pitch_limit = 32*1024;
11279         } else if (INTEL_INFO(dev)->gen >= 3) {
11280                 if (obj->tiling_mode)
11281                         pitch_limit = 8*1024;
11282                 else
11283                         pitch_limit = 16*1024;
11284         } else
11285                 /* XXX DSPC is limited to 4k tiled */
11286                 pitch_limit = 8*1024;
11287
11288         if (mode_cmd->pitches[0] > pitch_limit) {
11289                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
11290                           obj->tiling_mode ? "tiled" : "linear",
11291                           mode_cmd->pitches[0], pitch_limit);
11292                 return -EINVAL;
11293         }
11294
11295         if (obj->tiling_mode != I915_TILING_NONE &&
11296             mode_cmd->pitches[0] != obj->stride) {
11297                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
11298                           mode_cmd->pitches[0], obj->stride);
11299                 return -EINVAL;
11300         }
11301
11302         /* Reject formats not supported by any plane early. */
11303         switch (mode_cmd->pixel_format) {
11304         case DRM_FORMAT_C8:
11305         case DRM_FORMAT_RGB565:
11306         case DRM_FORMAT_XRGB8888:
11307         case DRM_FORMAT_ARGB8888:
11308                 break;
11309         case DRM_FORMAT_XRGB1555:
11310         case DRM_FORMAT_ARGB1555:
11311                 if (INTEL_INFO(dev)->gen > 3) {
11312                         DRM_DEBUG("unsupported pixel format: %s\n",
11313                                   drm_get_format_name(mode_cmd->pixel_format));
11314                         return -EINVAL;
11315                 }
11316                 break;
11317         case DRM_FORMAT_XBGR8888:
11318         case DRM_FORMAT_ABGR8888:
11319         case DRM_FORMAT_XRGB2101010:
11320         case DRM_FORMAT_ARGB2101010:
11321         case DRM_FORMAT_XBGR2101010:
11322         case DRM_FORMAT_ABGR2101010:
11323                 if (INTEL_INFO(dev)->gen < 4) {
11324                         DRM_DEBUG("unsupported pixel format: %s\n",
11325                                   drm_get_format_name(mode_cmd->pixel_format));
11326                         return -EINVAL;
11327                 }
11328                 break;
11329         case DRM_FORMAT_YUYV:
11330         case DRM_FORMAT_UYVY:
11331         case DRM_FORMAT_YVYU:
11332         case DRM_FORMAT_VYUY:
11333                 if (INTEL_INFO(dev)->gen < 5) {
11334                         DRM_DEBUG("unsupported pixel format: %s\n",
11335                                   drm_get_format_name(mode_cmd->pixel_format));
11336                         return -EINVAL;
11337                 }
11338                 break;
11339         default:
11340                 DRM_DEBUG("unsupported pixel format: %s\n",
11341                           drm_get_format_name(mode_cmd->pixel_format));
11342                 return -EINVAL;
11343         }
11344
11345         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
11346         if (mode_cmd->offsets[0] != 0)
11347                 return -EINVAL;
11348
11349         aligned_height = intel_align_height(dev, mode_cmd->height,
11350                                             obj->tiling_mode);
11351         /* FIXME drm helper for size checks (especially planar formats)? */
11352         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
11353                 return -EINVAL;
11354
11355         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
11356         intel_fb->obj = obj;
11357         intel_fb->obj->framebuffer_references++;
11358
11359         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
11360         if (ret) {
11361                 DRM_ERROR("framebuffer init failed %d\n", ret);
11362                 return ret;
11363         }
11364
11365         return 0;
11366 }
11367
11368 static struct drm_framebuffer *
11369 intel_user_framebuffer_create(struct drm_device *dev,
11370                               struct drm_file *filp,
11371                               struct drm_mode_fb_cmd2 *mode_cmd)
11372 {
11373         struct drm_i915_gem_object *obj;
11374
11375         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
11376                                                 mode_cmd->handles[0]));
11377         if (&obj->base == NULL)
11378                 return ERR_PTR(-ENOENT);
11379
11380         return intel_framebuffer_create(dev, mode_cmd, obj);
11381 }
11382
11383 #ifndef CONFIG_DRM_I915_FBDEV
11384 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
11385 {
11386 }
11387 #endif
11388
11389 static const struct drm_mode_config_funcs intel_mode_funcs = {
11390         .fb_create = intel_user_framebuffer_create,
11391         .output_poll_changed = intel_fbdev_output_poll_changed,
11392 };
11393
11394 /* Set up chip specific display functions */
11395 static void intel_init_display(struct drm_device *dev)
11396 {
11397         struct drm_i915_private *dev_priv = dev->dev_private;
11398
11399         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
11400                 dev_priv->display.find_dpll = g4x_find_best_dpll;
11401         else if (IS_CHERRYVIEW(dev))
11402                 dev_priv->display.find_dpll = chv_find_best_dpll;
11403         else if (IS_VALLEYVIEW(dev))
11404                 dev_priv->display.find_dpll = vlv_find_best_dpll;
11405         else if (IS_PINEVIEW(dev))
11406                 dev_priv->display.find_dpll = pnv_find_best_dpll;
11407         else
11408                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
11409
11410         if (HAS_DDI(dev)) {
11411                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
11412                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11413                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
11414                 dev_priv->display.crtc_enable = haswell_crtc_enable;
11415                 dev_priv->display.crtc_disable = haswell_crtc_disable;
11416                 dev_priv->display.off = haswell_crtc_off;
11417                 dev_priv->display.update_primary_plane =
11418                         ironlake_update_primary_plane;
11419         } else if (HAS_PCH_SPLIT(dev)) {
11420                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
11421                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11422                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
11423                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
11424                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
11425                 dev_priv->display.off = ironlake_crtc_off;
11426                 dev_priv->display.update_primary_plane =
11427                         ironlake_update_primary_plane;
11428         } else if (IS_VALLEYVIEW(dev)) {
11429                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11430                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11431                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11432                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
11433                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11434                 dev_priv->display.off = i9xx_crtc_off;
11435                 dev_priv->display.update_primary_plane =
11436                         i9xx_update_primary_plane;
11437         } else {
11438                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11439                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11440                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11441                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
11442                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11443                 dev_priv->display.off = i9xx_crtc_off;
11444                 dev_priv->display.update_primary_plane =
11445                         i9xx_update_primary_plane;
11446         }
11447
11448         /* Returns the core display clock speed */
11449         if (IS_VALLEYVIEW(dev))
11450                 dev_priv->display.get_display_clock_speed =
11451                         valleyview_get_display_clock_speed;
11452         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
11453                 dev_priv->display.get_display_clock_speed =
11454                         i945_get_display_clock_speed;
11455         else if (IS_I915G(dev))
11456                 dev_priv->display.get_display_clock_speed =
11457                         i915_get_display_clock_speed;
11458         else if (IS_I945GM(dev) || IS_845G(dev))
11459                 dev_priv->display.get_display_clock_speed =
11460                         i9xx_misc_get_display_clock_speed;
11461         else if (IS_PINEVIEW(dev))
11462                 dev_priv->display.get_display_clock_speed =
11463                         pnv_get_display_clock_speed;
11464         else if (IS_I915GM(dev))
11465                 dev_priv->display.get_display_clock_speed =
11466                         i915gm_get_display_clock_speed;
11467         else if (IS_I865G(dev))
11468                 dev_priv->display.get_display_clock_speed =
11469                         i865_get_display_clock_speed;
11470         else if (IS_I85X(dev))
11471                 dev_priv->display.get_display_clock_speed =
11472                         i855_get_display_clock_speed;
11473         else /* 852, 830 */
11474                 dev_priv->display.get_display_clock_speed =
11475                         i830_get_display_clock_speed;
11476
11477         if (HAS_PCH_SPLIT(dev)) {
11478                 if (IS_GEN5(dev)) {
11479                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
11480                         dev_priv->display.write_eld = ironlake_write_eld;
11481                 } else if (IS_GEN6(dev)) {
11482                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
11483                         dev_priv->display.write_eld = ironlake_write_eld;
11484                         dev_priv->display.modeset_global_resources =
11485                                 snb_modeset_global_resources;
11486                 } else if (IS_IVYBRIDGE(dev)) {
11487                         /* FIXME: detect B0+ stepping and use auto training */
11488                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
11489                         dev_priv->display.write_eld = ironlake_write_eld;
11490                         dev_priv->display.modeset_global_resources =
11491                                 ivb_modeset_global_resources;
11492                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
11493                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
11494                         dev_priv->display.write_eld = haswell_write_eld;
11495                         dev_priv->display.modeset_global_resources =
11496                                 haswell_modeset_global_resources;
11497                 }
11498         } else if (IS_G4X(dev)) {
11499                 dev_priv->display.write_eld = g4x_write_eld;
11500         } else if (IS_VALLEYVIEW(dev)) {
11501                 dev_priv->display.modeset_global_resources =
11502                         valleyview_modeset_global_resources;
11503                 dev_priv->display.write_eld = ironlake_write_eld;
11504         }
11505
11506         /* Default just returns -ENODEV to indicate unsupported */
11507         dev_priv->display.queue_flip = intel_default_queue_flip;
11508
11509         switch (INTEL_INFO(dev)->gen) {
11510         case 2:
11511                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
11512                 break;
11513
11514         case 3:
11515                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
11516                 break;
11517
11518         case 4:
11519         case 5:
11520                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
11521                 break;
11522
11523         case 6:
11524                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
11525                 break;
11526         case 7:
11527         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
11528                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
11529                 break;
11530         }
11531
11532         intel_panel_init_backlight_funcs(dev);
11533 }
11534
11535 /*
11536  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
11537  * resume, or other times.  This quirk makes sure that's the case for
11538  * affected systems.
11539  */
11540 static void quirk_pipea_force(struct drm_device *dev)
11541 {
11542         struct drm_i915_private *dev_priv = dev->dev_private;
11543
11544         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
11545         DRM_INFO("applying pipe a force quirk\n");
11546 }
11547
11548 /*
11549  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
11550  */
11551 static void quirk_ssc_force_disable(struct drm_device *dev)
11552 {
11553         struct drm_i915_private *dev_priv = dev->dev_private;
11554         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
11555         DRM_INFO("applying lvds SSC disable quirk\n");
11556 }
11557
11558 /*
11559  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
11560  * brightness value
11561  */
11562 static void quirk_invert_brightness(struct drm_device *dev)
11563 {
11564         struct drm_i915_private *dev_priv = dev->dev_private;
11565         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
11566         DRM_INFO("applying inverted panel brightness quirk\n");
11567 }
11568
11569 struct intel_quirk {
11570         int device;
11571         int subsystem_vendor;
11572         int subsystem_device;
11573         void (*hook)(struct drm_device *dev);
11574 };
11575
11576 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
11577 struct intel_dmi_quirk {
11578         void (*hook)(struct drm_device *dev);
11579         const struct dmi_system_id (*dmi_id_list)[];
11580 };
11581
11582 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
11583 {
11584         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
11585         return 1;
11586 }
11587
11588 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
11589         {
11590                 .dmi_id_list = &(const struct dmi_system_id[]) {
11591                         {
11592                                 .callback = intel_dmi_reverse_brightness,
11593                                 .ident = "NCR Corporation",
11594                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
11595                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
11596                                 },
11597                         },
11598                         { }  /* terminating entry */
11599                 },
11600                 .hook = quirk_invert_brightness,
11601         },
11602 };
11603
11604 static struct intel_quirk intel_quirks[] = {
11605         /* HP Mini needs pipe A force quirk (LP: #322104) */
11606         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
11607
11608         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
11609         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
11610
11611         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
11612         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
11613
11614         /* Lenovo U160 cannot use SSC on LVDS */
11615         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
11616
11617         /* Sony Vaio Y cannot use SSC on LVDS */
11618         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
11619
11620         /* Acer Aspire 5734Z must invert backlight brightness */
11621         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
11622
11623         /* Acer/eMachines G725 */
11624         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
11625
11626         /* Acer/eMachines e725 */
11627         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
11628
11629         /* Acer/Packard Bell NCL20 */
11630         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
11631
11632         /* Acer Aspire 4736Z */
11633         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
11634
11635         /* Acer Aspire 5336 */
11636         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
11637 };
11638
11639 static void intel_init_quirks(struct drm_device *dev)
11640 {
11641         struct pci_dev *d = dev->pdev;
11642         int i;
11643
11644         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
11645                 struct intel_quirk *q = &intel_quirks[i];
11646
11647                 if (d->device == q->device &&
11648                     (d->subsystem_vendor == q->subsystem_vendor ||
11649                      q->subsystem_vendor == PCI_ANY_ID) &&
11650                     (d->subsystem_device == q->subsystem_device ||
11651                      q->subsystem_device == PCI_ANY_ID))
11652                         q->hook(dev);
11653         }
11654         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
11655                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
11656                         intel_dmi_quirks[i].hook(dev);
11657         }
11658 }
11659
11660 /* Disable the VGA plane that we never use */
11661 static void i915_disable_vga(struct drm_device *dev)
11662 {
11663         struct drm_i915_private *dev_priv = dev->dev_private;
11664         u8 sr1;
11665         u32 vga_reg = i915_vgacntrl_reg(dev);
11666
11667         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
11668         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
11669         outb(SR01, VGA_SR_INDEX);
11670         sr1 = inb(VGA_SR_DATA);
11671         outb(sr1 | 1<<5, VGA_SR_DATA);
11672         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
11673         udelay(300);
11674
11675         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
11676         POSTING_READ(vga_reg);
11677 }
11678
11679 void intel_modeset_init_hw(struct drm_device *dev)
11680 {
11681         intel_prepare_ddi(dev);
11682
11683         intel_init_clock_gating(dev);
11684
11685         intel_reset_dpio(dev);
11686
11687         intel_enable_gt_powersave(dev);
11688 }
11689
11690 void intel_modeset_suspend_hw(struct drm_device *dev)
11691 {
11692         intel_suspend_hw(dev);
11693 }
11694
11695 void intel_modeset_init(struct drm_device *dev)
11696 {
11697         struct drm_i915_private *dev_priv = dev->dev_private;
11698         int sprite, ret;
11699         enum pipe pipe;
11700         struct intel_crtc *crtc;
11701
11702         drm_mode_config_init(dev);
11703
11704         dev->mode_config.min_width = 0;
11705         dev->mode_config.min_height = 0;
11706
11707         dev->mode_config.preferred_depth = 24;
11708         dev->mode_config.prefer_shadow = 1;
11709
11710         dev->mode_config.funcs = &intel_mode_funcs;
11711
11712         intel_init_quirks(dev);
11713
11714         intel_init_pm(dev);
11715
11716         if (INTEL_INFO(dev)->num_pipes == 0)
11717                 return;
11718
11719         intel_init_display(dev);
11720
11721         if (IS_GEN2(dev)) {
11722                 dev->mode_config.max_width = 2048;
11723                 dev->mode_config.max_height = 2048;
11724         } else if (IS_GEN3(dev)) {
11725                 dev->mode_config.max_width = 4096;
11726                 dev->mode_config.max_height = 4096;
11727         } else {
11728                 dev->mode_config.max_width = 8192;
11729                 dev->mode_config.max_height = 8192;
11730         }
11731
11732         if (IS_GEN2(dev)) {
11733                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
11734                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
11735         } else {
11736                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
11737                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
11738         }
11739
11740         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
11741
11742         DRM_DEBUG_KMS("%d display pipe%s available.\n",
11743                       INTEL_INFO(dev)->num_pipes,
11744                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
11745
11746         for_each_pipe(pipe) {
11747                 intel_crtc_init(dev, pipe);
11748                 for_each_sprite(pipe, sprite) {
11749                         ret = intel_plane_init(dev, pipe, sprite);
11750                         if (ret)
11751                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
11752                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
11753                 }
11754         }
11755
11756         intel_init_dpio(dev);
11757         intel_reset_dpio(dev);
11758
11759         intel_cpu_pll_init(dev);
11760         intel_shared_dpll_init(dev);
11761
11762         /* Just disable it once at startup */
11763         i915_disable_vga(dev);
11764         intel_setup_outputs(dev);
11765
11766         /* Just in case the BIOS is doing something questionable. */
11767         intel_disable_fbc(dev);
11768
11769         drm_modeset_lock_all(dev);
11770         intel_modeset_setup_hw_state(dev, false);
11771         drm_modeset_unlock_all(dev);
11772
11773         for_each_intel_crtc(dev, crtc) {
11774                 if (!crtc->active)
11775                         continue;
11776
11777                 /*
11778                  * Note that reserving the BIOS fb up front prevents us
11779                  * from stuffing other stolen allocations like the ring
11780                  * on top.  This prevents some ugliness at boot time, and
11781                  * can even allow for smooth boot transitions if the BIOS
11782                  * fb is large enough for the active pipe configuration.
11783                  */
11784                 if (dev_priv->display.get_plane_config) {
11785                         dev_priv->display.get_plane_config(crtc,
11786                                                            &crtc->plane_config);
11787                         /*
11788                          * If the fb is shared between multiple heads, we'll
11789                          * just get the first one.
11790                          */
11791                         intel_find_plane_obj(crtc, &crtc->plane_config);
11792                 }
11793         }
11794 }
11795
11796 static void intel_enable_pipe_a(struct drm_device *dev)
11797 {
11798         struct intel_connector *connector;
11799         struct drm_connector *crt = NULL;
11800         struct intel_load_detect_pipe load_detect_temp;
11801         struct drm_modeset_acquire_ctx ctx;
11802
11803         /* We can't just switch on the pipe A, we need to set things up with a
11804          * proper mode and output configuration. As a gross hack, enable pipe A
11805          * by enabling the load detect pipe once. */
11806         list_for_each_entry(connector,
11807                             &dev->mode_config.connector_list,
11808                             base.head) {
11809                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
11810                         crt = &connector->base;
11811                         break;
11812                 }
11813         }
11814
11815         if (!crt)
11816                 return;
11817
11818         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
11819                 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
11820
11821
11822 }
11823
11824 static bool
11825 intel_check_plane_mapping(struct intel_crtc *crtc)
11826 {
11827         struct drm_device *dev = crtc->base.dev;
11828         struct drm_i915_private *dev_priv = dev->dev_private;
11829         u32 reg, val;
11830
11831         if (INTEL_INFO(dev)->num_pipes == 1)
11832                 return true;
11833
11834         reg = DSPCNTR(!crtc->plane);
11835         val = I915_READ(reg);
11836
11837         if ((val & DISPLAY_PLANE_ENABLE) &&
11838             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
11839                 return false;
11840
11841         return true;
11842 }
11843
11844 static void intel_sanitize_crtc(struct intel_crtc *crtc)
11845 {
11846         struct drm_device *dev = crtc->base.dev;
11847         struct drm_i915_private *dev_priv = dev->dev_private;
11848         u32 reg;
11849
11850         /* Clear any frame start delays used for debugging left by the BIOS */
11851         reg = PIPECONF(crtc->config.cpu_transcoder);
11852         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
11853
11854         /* restore vblank interrupts to correct state */
11855         if (crtc->active)
11856                 drm_vblank_on(dev, crtc->pipe);
11857         else
11858                 drm_vblank_off(dev, crtc->pipe);
11859
11860         /* We need to sanitize the plane -> pipe mapping first because this will
11861          * disable the crtc (and hence change the state) if it is wrong. Note
11862          * that gen4+ has a fixed plane -> pipe mapping.  */
11863         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
11864                 struct intel_connector *connector;
11865                 bool plane;
11866
11867                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
11868                               crtc->base.base.id);
11869
11870                 /* Pipe has the wrong plane attached and the plane is active.
11871                  * Temporarily change the plane mapping and disable everything
11872                  * ...  */
11873                 plane = crtc->plane;
11874                 crtc->plane = !plane;
11875                 dev_priv->display.crtc_disable(&crtc->base);
11876                 crtc->plane = plane;
11877
11878                 /* ... and break all links. */
11879                 list_for_each_entry(connector, &dev->mode_config.connector_list,
11880                                     base.head) {
11881                         if (connector->encoder->base.crtc != &crtc->base)
11882                                 continue;
11883
11884                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11885                         connector->base.encoder = NULL;
11886                 }
11887                 /* multiple connectors may have the same encoder:
11888                  *  handle them and break crtc link separately */
11889                 list_for_each_entry(connector, &dev->mode_config.connector_list,
11890                                     base.head)
11891                         if (connector->encoder->base.crtc == &crtc->base) {
11892                                 connector->encoder->base.crtc = NULL;
11893                                 connector->encoder->connectors_active = false;
11894                         }
11895
11896                 WARN_ON(crtc->active);
11897                 crtc->base.enabled = false;
11898         }
11899
11900         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
11901             crtc->pipe == PIPE_A && !crtc->active) {
11902                 /* BIOS forgot to enable pipe A, this mostly happens after
11903                  * resume. Force-enable the pipe to fix this, the update_dpms
11904                  * call below we restore the pipe to the right state, but leave
11905                  * the required bits on. */
11906                 intel_enable_pipe_a(dev);
11907         }
11908
11909         /* Adjust the state of the output pipe according to whether we
11910          * have active connectors/encoders. */
11911         intel_crtc_update_dpms(&crtc->base);
11912
11913         if (crtc->active != crtc->base.enabled) {
11914                 struct intel_encoder *encoder;
11915
11916                 /* This can happen either due to bugs in the get_hw_state
11917                  * functions or because the pipe is force-enabled due to the
11918                  * pipe A quirk. */
11919                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
11920                               crtc->base.base.id,
11921                               crtc->base.enabled ? "enabled" : "disabled",
11922                               crtc->active ? "enabled" : "disabled");
11923
11924                 crtc->base.enabled = crtc->active;
11925
11926                 /* Because we only establish the connector -> encoder ->
11927                  * crtc links if something is active, this means the
11928                  * crtc is now deactivated. Break the links. connector
11929                  * -> encoder links are only establish when things are
11930                  *  actually up, hence no need to break them. */
11931                 WARN_ON(crtc->active);
11932
11933                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
11934                         WARN_ON(encoder->connectors_active);
11935                         encoder->base.crtc = NULL;
11936                 }
11937         }
11938
11939         if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
11940                 /*
11941                  * We start out with underrun reporting disabled to avoid races.
11942                  * For correct bookkeeping mark this on active crtcs.
11943                  *
11944                  * Also on gmch platforms we dont have any hardware bits to
11945                  * disable the underrun reporting. Which means we need to start
11946                  * out with underrun reporting disabled also on inactive pipes,
11947                  * since otherwise we'll complain about the garbage we read when
11948                  * e.g. coming up after runtime pm.
11949                  *
11950                  * No protection against concurrent access is required - at
11951                  * worst a fifo underrun happens which also sets this to false.
11952                  */
11953                 crtc->cpu_fifo_underrun_disabled = true;
11954                 crtc->pch_fifo_underrun_disabled = true;
11955
11956                 update_scanline_offset(crtc);
11957         }
11958 }
11959
11960 static void intel_sanitize_encoder(struct intel_encoder *encoder)
11961 {
11962         struct intel_connector *connector;
11963         struct drm_device *dev = encoder->base.dev;
11964
11965         /* We need to check both for a crtc link (meaning that the
11966          * encoder is active and trying to read from a pipe) and the
11967          * pipe itself being active. */
11968         bool has_active_crtc = encoder->base.crtc &&
11969                 to_intel_crtc(encoder->base.crtc)->active;
11970
11971         if (encoder->connectors_active && !has_active_crtc) {
11972                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
11973                               encoder->base.base.id,
11974                               encoder->base.name);
11975
11976                 /* Connector is active, but has no active pipe. This is
11977                  * fallout from our resume register restoring. Disable
11978                  * the encoder manually again. */
11979                 if (encoder->base.crtc) {
11980                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11981                                       encoder->base.base.id,
11982                                       encoder->base.name);
11983                         encoder->disable(encoder);
11984                 }
11985                 encoder->base.crtc = NULL;
11986                 encoder->connectors_active = false;
11987
11988                 /* Inconsistent output/port/pipe state happens presumably due to
11989                  * a bug in one of the get_hw_state functions. Or someplace else
11990                  * in our code, like the register restore mess on resume. Clamp
11991                  * things to off as a safer default. */
11992                 list_for_each_entry(connector,
11993                                     &dev->mode_config.connector_list,
11994                                     base.head) {
11995                         if (connector->encoder != encoder)
11996                                 continue;
11997                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11998                         connector->base.encoder = NULL;
11999                 }
12000         }
12001         /* Enabled encoders without active connectors will be fixed in
12002          * the crtc fixup. */
12003 }
12004
12005 void i915_redisable_vga_power_on(struct drm_device *dev)
12006 {
12007         struct drm_i915_private *dev_priv = dev->dev_private;
12008         u32 vga_reg = i915_vgacntrl_reg(dev);
12009
12010         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12011                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12012                 i915_disable_vga(dev);
12013         }
12014 }
12015
12016 void i915_redisable_vga(struct drm_device *dev)
12017 {
12018         struct drm_i915_private *dev_priv = dev->dev_private;
12019
12020         /* This function can be called both from intel_modeset_setup_hw_state or
12021          * at a very early point in our resume sequence, where the power well
12022          * structures are not yet restored. Since this function is at a very
12023          * paranoid "someone might have enabled VGA while we were not looking"
12024          * level, just check if the power well is enabled instead of trying to
12025          * follow the "don't touch the power well if we don't need it" policy
12026          * the rest of the driver uses. */
12027         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
12028                 return;
12029
12030         i915_redisable_vga_power_on(dev);
12031 }
12032
12033 static bool primary_get_hw_state(struct intel_crtc *crtc)
12034 {
12035         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12036
12037         if (!crtc->active)
12038                 return false;
12039
12040         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12041 }
12042
12043 static void intel_modeset_readout_hw_state(struct drm_device *dev)
12044 {
12045         struct drm_i915_private *dev_priv = dev->dev_private;
12046         enum pipe pipe;
12047         struct intel_crtc *crtc;
12048         struct intel_encoder *encoder;
12049         struct intel_connector *connector;
12050         int i;
12051
12052         for_each_intel_crtc(dev, crtc) {
12053                 memset(&crtc->config, 0, sizeof(crtc->config));
12054
12055                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12056
12057                 crtc->active = dev_priv->display.get_pipe_config(crtc,
12058                                                                  &crtc->config);
12059
12060                 crtc->base.enabled = crtc->active;
12061                 crtc->primary_enabled = primary_get_hw_state(crtc);
12062
12063                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12064                               crtc->base.base.id,
12065                               crtc->active ? "enabled" : "disabled");
12066         }
12067
12068         /* FIXME: Smash this into the new shared dpll infrastructure. */
12069         if (HAS_DDI(dev))
12070                 intel_ddi_setup_hw_pll_state(dev);
12071
12072         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12073                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12074
12075                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12076                 pll->active = 0;
12077                 for_each_intel_crtc(dev, crtc) {
12078                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12079                                 pll->active++;
12080                 }
12081                 pll->refcount = pll->active;
12082
12083                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12084                               pll->name, pll->refcount, pll->on);
12085         }
12086
12087         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12088                             base.head) {
12089                 pipe = 0;
12090
12091                 if (encoder->get_hw_state(encoder, &pipe)) {
12092                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12093                         encoder->base.crtc = &crtc->base;
12094                         encoder->get_config(encoder, &crtc->config);
12095                 } else {
12096                         encoder->base.crtc = NULL;
12097                 }
12098
12099                 encoder->connectors_active = false;
12100                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
12101                               encoder->base.base.id,
12102                               encoder->base.name,
12103                               encoder->base.crtc ? "enabled" : "disabled",
12104                               pipe_name(pipe));
12105         }
12106
12107         list_for_each_entry(connector, &dev->mode_config.connector_list,
12108                             base.head) {
12109                 if (connector->get_hw_state(connector)) {
12110                         connector->base.dpms = DRM_MODE_DPMS_ON;
12111                         connector->encoder->connectors_active = true;
12112                         connector->base.encoder = &connector->encoder->base;
12113                 } else {
12114                         connector->base.dpms = DRM_MODE_DPMS_OFF;
12115                         connector->base.encoder = NULL;
12116                 }
12117                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12118                               connector->base.base.id,
12119                               connector->base.name,
12120                               connector->base.encoder ? "enabled" : "disabled");
12121         }
12122 }
12123
12124 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12125  * and i915 state tracking structures. */
12126 void intel_modeset_setup_hw_state(struct drm_device *dev,
12127                                   bool force_restore)
12128 {
12129         struct drm_i915_private *dev_priv = dev->dev_private;
12130         enum pipe pipe;
12131         struct intel_crtc *crtc;
12132         struct intel_encoder *encoder;
12133         int i;
12134
12135         intel_modeset_readout_hw_state(dev);
12136
12137         /*
12138          * Now that we have the config, copy it to each CRTC struct
12139          * Note that this could go away if we move to using crtc_config
12140          * checking everywhere.
12141          */
12142         for_each_intel_crtc(dev, crtc) {
12143                 if (crtc->active && i915.fastboot) {
12144                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
12145                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
12146                                       crtc->base.base.id);
12147                         drm_mode_debug_printmodeline(&crtc->base.mode);
12148                 }
12149         }
12150
12151         /* HW state is read out, now we need to sanitize this mess. */
12152         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12153                             base.head) {
12154                 intel_sanitize_encoder(encoder);
12155         }
12156
12157         for_each_pipe(pipe) {
12158                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12159                 intel_sanitize_crtc(crtc);
12160                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
12161         }
12162
12163         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12164                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12165
12166                 if (!pll->on || pll->active)
12167                         continue;
12168
12169                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
12170
12171                 pll->disable(dev_priv, pll);
12172                 pll->on = false;
12173         }
12174
12175         if (HAS_PCH_SPLIT(dev))
12176                 ilk_wm_get_hw_state(dev);
12177
12178         if (force_restore) {
12179                 i915_redisable_vga(dev);
12180
12181                 /*
12182                  * We need to use raw interfaces for restoring state to avoid
12183                  * checking (bogus) intermediate states.
12184                  */
12185                 for_each_pipe(pipe) {
12186                         struct drm_crtc *crtc =
12187                                 dev_priv->pipe_to_crtc_mapping[pipe];
12188
12189                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
12190                                          crtc->primary->fb);
12191                 }
12192         } else {
12193                 intel_modeset_update_staged_output_state(dev);
12194         }
12195
12196         intel_modeset_check_state(dev);
12197 }
12198
12199 void intel_modeset_gem_init(struct drm_device *dev)
12200 {
12201         struct drm_crtc *c;
12202         struct intel_framebuffer *fb;
12203
12204         mutex_lock(&dev->struct_mutex);
12205         intel_init_gt_powersave(dev);
12206         mutex_unlock(&dev->struct_mutex);
12207
12208         intel_modeset_init_hw(dev);
12209
12210         intel_setup_overlay(dev);
12211
12212         /*
12213          * Make sure any fbs we allocated at startup are properly
12214          * pinned & fenced.  When we do the allocation it's too early
12215          * for this.
12216          */
12217         mutex_lock(&dev->struct_mutex);
12218         for_each_crtc(dev, c) {
12219                 if (!c->primary->fb)
12220                         continue;
12221
12222                 fb = to_intel_framebuffer(c->primary->fb);
12223                 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
12224                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
12225                                   to_intel_crtc(c)->pipe);
12226                         drm_framebuffer_unreference(c->primary->fb);
12227                         c->primary->fb = NULL;
12228                 }
12229         }
12230         mutex_unlock(&dev->struct_mutex);
12231 }
12232
12233 void intel_connector_unregister(struct intel_connector *intel_connector)
12234 {
12235         struct drm_connector *connector = &intel_connector->base;
12236
12237         intel_panel_destroy_backlight(connector);
12238         drm_sysfs_connector_remove(connector);
12239 }
12240
12241 void intel_modeset_cleanup(struct drm_device *dev)
12242 {
12243         struct drm_i915_private *dev_priv = dev->dev_private;
12244         struct drm_crtc *crtc;
12245         struct drm_connector *connector;
12246
12247         /*
12248          * Interrupts and polling as the first thing to avoid creating havoc.
12249          * Too much stuff here (turning of rps, connectors, ...) would
12250          * experience fancy races otherwise.
12251          */
12252         drm_irq_uninstall(dev);
12253         cancel_work_sync(&dev_priv->hotplug_work);
12254         /*
12255          * Due to the hpd irq storm handling the hotplug work can re-arm the
12256          * poll handlers. Hence disable polling after hpd handling is shut down.
12257          */
12258         drm_kms_helper_poll_fini(dev);
12259
12260         mutex_lock(&dev->struct_mutex);
12261
12262         intel_unregister_dsm_handler();
12263
12264         for_each_crtc(dev, crtc) {
12265                 /* Skip inactive CRTCs */
12266                 if (!crtc->primary->fb)
12267                         continue;
12268
12269                 intel_increase_pllclock(crtc);
12270         }
12271
12272         intel_disable_fbc(dev);
12273
12274         intel_disable_gt_powersave(dev);
12275
12276         ironlake_teardown_rc6(dev);
12277
12278         mutex_unlock(&dev->struct_mutex);
12279
12280         /* flush any delayed tasks or pending work */
12281         flush_scheduled_work();
12282
12283         /* destroy the backlight and sysfs files before encoders/connectors */
12284         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12285                 struct intel_connector *intel_connector;
12286
12287                 intel_connector = to_intel_connector(connector);
12288                 intel_connector->unregister(intel_connector);
12289         }
12290
12291         drm_mode_config_cleanup(dev);
12292
12293         intel_cleanup_overlay(dev);
12294
12295         mutex_lock(&dev->struct_mutex);
12296         intel_cleanup_gt_powersave(dev);
12297         mutex_unlock(&dev->struct_mutex);
12298 }
12299
12300 /*
12301  * Return which encoder is currently attached for connector.
12302  */
12303 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
12304 {
12305         return &intel_attached_encoder(connector)->base;
12306 }
12307
12308 void intel_connector_attach_encoder(struct intel_connector *connector,
12309                                     struct intel_encoder *encoder)
12310 {
12311         connector->encoder = encoder;
12312         drm_mode_connector_attach_encoder(&connector->base,
12313                                           &encoder->base);
12314 }
12315
12316 /*
12317  * set vga decode state - true == enable VGA decode
12318  */
12319 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
12320 {
12321         struct drm_i915_private *dev_priv = dev->dev_private;
12322         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
12323         u16 gmch_ctrl;
12324
12325         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
12326                 DRM_ERROR("failed to read control word\n");
12327                 return -EIO;
12328         }
12329
12330         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
12331                 return 0;
12332
12333         if (state)
12334                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
12335         else
12336                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
12337
12338         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
12339                 DRM_ERROR("failed to write control word\n");
12340                 return -EIO;
12341         }
12342
12343         return 0;
12344 }
12345
12346 struct intel_display_error_state {
12347
12348         u32 power_well_driver;
12349
12350         int num_transcoders;
12351
12352         struct intel_cursor_error_state {
12353                 u32 control;
12354                 u32 position;
12355                 u32 base;
12356                 u32 size;
12357         } cursor[I915_MAX_PIPES];
12358
12359         struct intel_pipe_error_state {
12360                 bool power_domain_on;
12361                 u32 source;
12362                 u32 stat;
12363         } pipe[I915_MAX_PIPES];
12364
12365         struct intel_plane_error_state {
12366                 u32 control;
12367                 u32 stride;
12368                 u32 size;
12369                 u32 pos;
12370                 u32 addr;
12371                 u32 surface;
12372                 u32 tile_offset;
12373         } plane[I915_MAX_PIPES];
12374
12375         struct intel_transcoder_error_state {
12376                 bool power_domain_on;
12377                 enum transcoder cpu_transcoder;
12378
12379                 u32 conf;
12380
12381                 u32 htotal;
12382                 u32 hblank;
12383                 u32 hsync;
12384                 u32 vtotal;
12385                 u32 vblank;
12386                 u32 vsync;
12387         } transcoder[4];
12388 };
12389
12390 struct intel_display_error_state *
12391 intel_display_capture_error_state(struct drm_device *dev)
12392 {
12393         struct drm_i915_private *dev_priv = dev->dev_private;
12394         struct intel_display_error_state *error;
12395         int transcoders[] = {
12396                 TRANSCODER_A,
12397                 TRANSCODER_B,
12398                 TRANSCODER_C,
12399                 TRANSCODER_EDP,
12400         };
12401         int i;
12402
12403         if (INTEL_INFO(dev)->num_pipes == 0)
12404                 return NULL;
12405
12406         error = kzalloc(sizeof(*error), GFP_ATOMIC);
12407         if (error == NULL)
12408                 return NULL;
12409
12410         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12411                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
12412
12413         for_each_pipe(i) {
12414                 error->pipe[i].power_domain_on =
12415                         intel_display_power_enabled_unlocked(dev_priv,
12416                                                            POWER_DOMAIN_PIPE(i));
12417                 if (!error->pipe[i].power_domain_on)
12418                         continue;
12419
12420                 error->cursor[i].control = I915_READ(CURCNTR(i));
12421                 error->cursor[i].position = I915_READ(CURPOS(i));
12422                 error->cursor[i].base = I915_READ(CURBASE(i));
12423
12424                 error->plane[i].control = I915_READ(DSPCNTR(i));
12425                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
12426                 if (INTEL_INFO(dev)->gen <= 3) {
12427                         error->plane[i].size = I915_READ(DSPSIZE(i));
12428                         error->plane[i].pos = I915_READ(DSPPOS(i));
12429                 }
12430                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12431                         error->plane[i].addr = I915_READ(DSPADDR(i));
12432                 if (INTEL_INFO(dev)->gen >= 4) {
12433                         error->plane[i].surface = I915_READ(DSPSURF(i));
12434                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
12435                 }
12436
12437                 error->pipe[i].source = I915_READ(PIPESRC(i));
12438
12439                 if (!HAS_PCH_SPLIT(dev))
12440                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
12441         }
12442
12443         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
12444         if (HAS_DDI(dev_priv->dev))
12445                 error->num_transcoders++; /* Account for eDP. */
12446
12447         for (i = 0; i < error->num_transcoders; i++) {
12448                 enum transcoder cpu_transcoder = transcoders[i];
12449
12450                 error->transcoder[i].power_domain_on =
12451                         intel_display_power_enabled_unlocked(dev_priv,
12452                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
12453                 if (!error->transcoder[i].power_domain_on)
12454                         continue;
12455
12456                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
12457
12458                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
12459                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
12460                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
12461                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
12462                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
12463                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
12464                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
12465         }
12466
12467         return error;
12468 }
12469
12470 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
12471
12472 void
12473 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
12474                                 struct drm_device *dev,
12475                                 struct intel_display_error_state *error)
12476 {
12477         int i;
12478
12479         if (!error)
12480                 return;
12481
12482         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
12483         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12484                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
12485                            error->power_well_driver);
12486         for_each_pipe(i) {
12487                 err_printf(m, "Pipe [%d]:\n", i);
12488                 err_printf(m, "  Power: %s\n",
12489                            error->pipe[i].power_domain_on ? "on" : "off");
12490                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
12491                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
12492
12493                 err_printf(m, "Plane [%d]:\n", i);
12494                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
12495                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
12496                 if (INTEL_INFO(dev)->gen <= 3) {
12497                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
12498                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
12499                 }
12500                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12501                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
12502                 if (INTEL_INFO(dev)->gen >= 4) {
12503                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
12504                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
12505                 }
12506
12507                 err_printf(m, "Cursor [%d]:\n", i);
12508                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
12509                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
12510                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
12511         }
12512
12513         for (i = 0; i < error->num_transcoders; i++) {
12514                 err_printf(m, "CPU transcoder: %c\n",
12515                            transcoder_name(error->transcoder[i].cpu_transcoder));
12516                 err_printf(m, "  Power: %s\n",
12517                            error->transcoder[i].power_domain_on ? "on" : "off");
12518                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
12519                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
12520                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
12521                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
12522                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
12523                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
12524                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
12525         }
12526 }