cpufreq: docs: Add missing cpuinfo_cur_freq description
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_clflush.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51
52 static bool is_mmio_work(struct intel_flip_work *work)
53 {
54         return work->mmio_work.func;
55 }
56
57 /* Primary plane formats for gen <= 3 */
58 static const uint32_t i8xx_primary_formats[] = {
59         DRM_FORMAT_C8,
60         DRM_FORMAT_RGB565,
61         DRM_FORMAT_XRGB1555,
62         DRM_FORMAT_XRGB8888,
63 };
64
65 /* Primary plane formats for gen >= 4 */
66 static const uint32_t i965_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_XRGB2101010,
72         DRM_FORMAT_XBGR2101010,
73 };
74
75 static const uint32_t skl_primary_formats[] = {
76         DRM_FORMAT_C8,
77         DRM_FORMAT_RGB565,
78         DRM_FORMAT_XRGB8888,
79         DRM_FORMAT_XBGR8888,
80         DRM_FORMAT_ARGB8888,
81         DRM_FORMAT_ABGR8888,
82         DRM_FORMAT_XRGB2101010,
83         DRM_FORMAT_XBGR2101010,
84         DRM_FORMAT_YUYV,
85         DRM_FORMAT_YVYU,
86         DRM_FORMAT_UYVY,
87         DRM_FORMAT_VYUY,
88 };
89
90 /* Cursor formats */
91 static const uint32_t intel_cursor_formats[] = {
92         DRM_FORMAT_ARGB8888,
93 };
94
95 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
96                                 struct intel_crtc_state *pipe_config);
97 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
98                                    struct intel_crtc_state *pipe_config);
99
100 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
101                                   struct drm_i915_gem_object *obj,
102                                   struct drm_mode_fb_cmd2 *mode_cmd);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107                                          struct intel_link_m_n *m_n,
108                                          struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113                             const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115                             const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
119                                     struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev,
124                                          struct drm_modeset_acquire_ctx *ctx);
125 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126
127 struct intel_limit {
128         struct {
129                 int min, max;
130         } dot, vco, n, m, m1, m2, p, p1;
131
132         struct {
133                 int dot_limit;
134                 int p2_slow, p2_fast;
135         } p2;
136 };
137
138 /* returns HPLL frequency in kHz */
139 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
140 {
141         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
142
143         /* Obtain SKU information */
144         mutex_lock(&dev_priv->sb_lock);
145         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
146                 CCK_FUSE_HPLL_FREQ_MASK;
147         mutex_unlock(&dev_priv->sb_lock);
148
149         return vco_freq[hpll_freq] * 1000;
150 }
151
152 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
153                       const char *name, u32 reg, int ref_freq)
154 {
155         u32 val;
156         int divider;
157
158         mutex_lock(&dev_priv->sb_lock);
159         val = vlv_cck_read(dev_priv, reg);
160         mutex_unlock(&dev_priv->sb_lock);
161
162         divider = val & CCK_FREQUENCY_VALUES;
163
164         WARN((val & CCK_FREQUENCY_STATUS) !=
165              (divider << CCK_FREQUENCY_STATUS_SHIFT),
166              "%s change in progress\n", name);
167
168         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
169 }
170
171 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
172                            const char *name, u32 reg)
173 {
174         if (dev_priv->hpll_freq == 0)
175                 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
176
177         return vlv_get_cck_clock(dev_priv, name, reg,
178                                  dev_priv->hpll_freq);
179 }
180
181 static void intel_update_czclk(struct drm_i915_private *dev_priv)
182 {
183         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
184                 return;
185
186         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
187                                                       CCK_CZ_CLOCK_CONTROL);
188
189         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
190 }
191
192 static inline u32 /* units of 100MHz */
193 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
194                     const struct intel_crtc_state *pipe_config)
195 {
196         if (HAS_DDI(dev_priv))
197                 return pipe_config->port_clock; /* SPLL */
198         else if (IS_GEN5(dev_priv))
199                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
200         else
201                 return 270000;
202 }
203
204 static const struct intel_limit intel_limits_i8xx_dac = {
205         .dot = { .min = 25000, .max = 350000 },
206         .vco = { .min = 908000, .max = 1512000 },
207         .n = { .min = 2, .max = 16 },
208         .m = { .min = 96, .max = 140 },
209         .m1 = { .min = 18, .max = 26 },
210         .m2 = { .min = 6, .max = 16 },
211         .p = { .min = 4, .max = 128 },
212         .p1 = { .min = 2, .max = 33 },
213         .p2 = { .dot_limit = 165000,
214                 .p2_slow = 4, .p2_fast = 2 },
215 };
216
217 static const struct intel_limit intel_limits_i8xx_dvo = {
218         .dot = { .min = 25000, .max = 350000 },
219         .vco = { .min = 908000, .max = 1512000 },
220         .n = { .min = 2, .max = 16 },
221         .m = { .min = 96, .max = 140 },
222         .m1 = { .min = 18, .max = 26 },
223         .m2 = { .min = 6, .max = 16 },
224         .p = { .min = 4, .max = 128 },
225         .p1 = { .min = 2, .max = 33 },
226         .p2 = { .dot_limit = 165000,
227                 .p2_slow = 4, .p2_fast = 4 },
228 };
229
230 static const struct intel_limit intel_limits_i8xx_lvds = {
231         .dot = { .min = 25000, .max = 350000 },
232         .vco = { .min = 908000, .max = 1512000 },
233         .n = { .min = 2, .max = 16 },
234         .m = { .min = 96, .max = 140 },
235         .m1 = { .min = 18, .max = 26 },
236         .m2 = { .min = 6, .max = 16 },
237         .p = { .min = 4, .max = 128 },
238         .p1 = { .min = 1, .max = 6 },
239         .p2 = { .dot_limit = 165000,
240                 .p2_slow = 14, .p2_fast = 7 },
241 };
242
243 static const struct intel_limit intel_limits_i9xx_sdvo = {
244         .dot = { .min = 20000, .max = 400000 },
245         .vco = { .min = 1400000, .max = 2800000 },
246         .n = { .min = 1, .max = 6 },
247         .m = { .min = 70, .max = 120 },
248         .m1 = { .min = 8, .max = 18 },
249         .m2 = { .min = 3, .max = 7 },
250         .p = { .min = 5, .max = 80 },
251         .p1 = { .min = 1, .max = 8 },
252         .p2 = { .dot_limit = 200000,
253                 .p2_slow = 10, .p2_fast = 5 },
254 };
255
256 static const struct intel_limit intel_limits_i9xx_lvds = {
257         .dot = { .min = 20000, .max = 400000 },
258         .vco = { .min = 1400000, .max = 2800000 },
259         .n = { .min = 1, .max = 6 },
260         .m = { .min = 70, .max = 120 },
261         .m1 = { .min = 8, .max = 18 },
262         .m2 = { .min = 3, .max = 7 },
263         .p = { .min = 7, .max = 98 },
264         .p1 = { .min = 1, .max = 8 },
265         .p2 = { .dot_limit = 112000,
266                 .p2_slow = 14, .p2_fast = 7 },
267 };
268
269
270 static const struct intel_limit intel_limits_g4x_sdvo = {
271         .dot = { .min = 25000, .max = 270000 },
272         .vco = { .min = 1750000, .max = 3500000},
273         .n = { .min = 1, .max = 4 },
274         .m = { .min = 104, .max = 138 },
275         .m1 = { .min = 17, .max = 23 },
276         .m2 = { .min = 5, .max = 11 },
277         .p = { .min = 10, .max = 30 },
278         .p1 = { .min = 1, .max = 3},
279         .p2 = { .dot_limit = 270000,
280                 .p2_slow = 10,
281                 .p2_fast = 10
282         },
283 };
284
285 static const struct intel_limit intel_limits_g4x_hdmi = {
286         .dot = { .min = 22000, .max = 400000 },
287         .vco = { .min = 1750000, .max = 3500000},
288         .n = { .min = 1, .max = 4 },
289         .m = { .min = 104, .max = 138 },
290         .m1 = { .min = 16, .max = 23 },
291         .m2 = { .min = 5, .max = 11 },
292         .p = { .min = 5, .max = 80 },
293         .p1 = { .min = 1, .max = 8},
294         .p2 = { .dot_limit = 165000,
295                 .p2_slow = 10, .p2_fast = 5 },
296 };
297
298 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
299         .dot = { .min = 20000, .max = 115000 },
300         .vco = { .min = 1750000, .max = 3500000 },
301         .n = { .min = 1, .max = 3 },
302         .m = { .min = 104, .max = 138 },
303         .m1 = { .min = 17, .max = 23 },
304         .m2 = { .min = 5, .max = 11 },
305         .p = { .min = 28, .max = 112 },
306         .p1 = { .min = 2, .max = 8 },
307         .p2 = { .dot_limit = 0,
308                 .p2_slow = 14, .p2_fast = 14
309         },
310 };
311
312 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
313         .dot = { .min = 80000, .max = 224000 },
314         .vco = { .min = 1750000, .max = 3500000 },
315         .n = { .min = 1, .max = 3 },
316         .m = { .min = 104, .max = 138 },
317         .m1 = { .min = 17, .max = 23 },
318         .m2 = { .min = 5, .max = 11 },
319         .p = { .min = 14, .max = 42 },
320         .p1 = { .min = 2, .max = 6 },
321         .p2 = { .dot_limit = 0,
322                 .p2_slow = 7, .p2_fast = 7
323         },
324 };
325
326 static const struct intel_limit intel_limits_pineview_sdvo = {
327         .dot = { .min = 20000, .max = 400000},
328         .vco = { .min = 1700000, .max = 3500000 },
329         /* Pineview's Ncounter is a ring counter */
330         .n = { .min = 3, .max = 6 },
331         .m = { .min = 2, .max = 256 },
332         /* Pineview only has one combined m divider, which we treat as m2. */
333         .m1 = { .min = 0, .max = 0 },
334         .m2 = { .min = 0, .max = 254 },
335         .p = { .min = 5, .max = 80 },
336         .p1 = { .min = 1, .max = 8 },
337         .p2 = { .dot_limit = 200000,
338                 .p2_slow = 10, .p2_fast = 5 },
339 };
340
341 static const struct intel_limit intel_limits_pineview_lvds = {
342         .dot = { .min = 20000, .max = 400000 },
343         .vco = { .min = 1700000, .max = 3500000 },
344         .n = { .min = 3, .max = 6 },
345         .m = { .min = 2, .max = 256 },
346         .m1 = { .min = 0, .max = 0 },
347         .m2 = { .min = 0, .max = 254 },
348         .p = { .min = 7, .max = 112 },
349         .p1 = { .min = 1, .max = 8 },
350         .p2 = { .dot_limit = 112000,
351                 .p2_slow = 14, .p2_fast = 14 },
352 };
353
354 /* Ironlake / Sandybridge
355  *
356  * We calculate clock using (register_value + 2) for N/M1/M2, so here
357  * the range value for them is (actual_value - 2).
358  */
359 static const struct intel_limit intel_limits_ironlake_dac = {
360         .dot = { .min = 25000, .max = 350000 },
361         .vco = { .min = 1760000, .max = 3510000 },
362         .n = { .min = 1, .max = 5 },
363         .m = { .min = 79, .max = 127 },
364         .m1 = { .min = 12, .max = 22 },
365         .m2 = { .min = 5, .max = 9 },
366         .p = { .min = 5, .max = 80 },
367         .p1 = { .min = 1, .max = 8 },
368         .p2 = { .dot_limit = 225000,
369                 .p2_slow = 10, .p2_fast = 5 },
370 };
371
372 static const struct intel_limit intel_limits_ironlake_single_lvds = {
373         .dot = { .min = 25000, .max = 350000 },
374         .vco = { .min = 1760000, .max = 3510000 },
375         .n = { .min = 1, .max = 3 },
376         .m = { .min = 79, .max = 118 },
377         .m1 = { .min = 12, .max = 22 },
378         .m2 = { .min = 5, .max = 9 },
379         .p = { .min = 28, .max = 112 },
380         .p1 = { .min = 2, .max = 8 },
381         .p2 = { .dot_limit = 225000,
382                 .p2_slow = 14, .p2_fast = 14 },
383 };
384
385 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
386         .dot = { .min = 25000, .max = 350000 },
387         .vco = { .min = 1760000, .max = 3510000 },
388         .n = { .min = 1, .max = 3 },
389         .m = { .min = 79, .max = 127 },
390         .m1 = { .min = 12, .max = 22 },
391         .m2 = { .min = 5, .max = 9 },
392         .p = { .min = 14, .max = 56 },
393         .p1 = { .min = 2, .max = 8 },
394         .p2 = { .dot_limit = 225000,
395                 .p2_slow = 7, .p2_fast = 7 },
396 };
397
398 /* LVDS 100mhz refclk limits. */
399 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
400         .dot = { .min = 25000, .max = 350000 },
401         .vco = { .min = 1760000, .max = 3510000 },
402         .n = { .min = 1, .max = 2 },
403         .m = { .min = 79, .max = 126 },
404         .m1 = { .min = 12, .max = 22 },
405         .m2 = { .min = 5, .max = 9 },
406         .p = { .min = 28, .max = 112 },
407         .p1 = { .min = 2, .max = 8 },
408         .p2 = { .dot_limit = 225000,
409                 .p2_slow = 14, .p2_fast = 14 },
410 };
411
412 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
413         .dot = { .min = 25000, .max = 350000 },
414         .vco = { .min = 1760000, .max = 3510000 },
415         .n = { .min = 1, .max = 3 },
416         .m = { .min = 79, .max = 126 },
417         .m1 = { .min = 12, .max = 22 },
418         .m2 = { .min = 5, .max = 9 },
419         .p = { .min = 14, .max = 42 },
420         .p1 = { .min = 2, .max = 6 },
421         .p2 = { .dot_limit = 225000,
422                 .p2_slow = 7, .p2_fast = 7 },
423 };
424
425 static const struct intel_limit intel_limits_vlv = {
426          /*
427           * These are the data rate limits (measured in fast clocks)
428           * since those are the strictest limits we have. The fast
429           * clock and actual rate limits are more relaxed, so checking
430           * them would make no difference.
431           */
432         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
433         .vco = { .min = 4000000, .max = 6000000 },
434         .n = { .min = 1, .max = 7 },
435         .m1 = { .min = 2, .max = 3 },
436         .m2 = { .min = 11, .max = 156 },
437         .p1 = { .min = 2, .max = 3 },
438         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
439 };
440
441 static const struct intel_limit intel_limits_chv = {
442         /*
443          * These are the data rate limits (measured in fast clocks)
444          * since those are the strictest limits we have.  The fast
445          * clock and actual rate limits are more relaxed, so checking
446          * them would make no difference.
447          */
448         .dot = { .min = 25000 * 5, .max = 540000 * 5},
449         .vco = { .min = 4800000, .max = 6480000 },
450         .n = { .min = 1, .max = 1 },
451         .m1 = { .min = 2, .max = 2 },
452         .m2 = { .min = 24 << 22, .max = 175 << 22 },
453         .p1 = { .min = 2, .max = 4 },
454         .p2 = { .p2_slow = 1, .p2_fast = 14 },
455 };
456
457 static const struct intel_limit intel_limits_bxt = {
458         /* FIXME: find real dot limits */
459         .dot = { .min = 0, .max = INT_MAX },
460         .vco = { .min = 4800000, .max = 6700000 },
461         .n = { .min = 1, .max = 1 },
462         .m1 = { .min = 2, .max = 2 },
463         /* FIXME: find real m2 limits */
464         .m2 = { .min = 2 << 22, .max = 255 << 22 },
465         .p1 = { .min = 2, .max = 4 },
466         .p2 = { .p2_slow = 1, .p2_fast = 20 },
467 };
468
469 static bool
470 needs_modeset(struct drm_crtc_state *state)
471 {
472         return drm_atomic_crtc_needs_modeset(state);
473 }
474
475 /*
476  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
477  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
478  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
479  * The helpers' return value is the rate of the clock that is fed to the
480  * display engine's pipe which can be the above fast dot clock rate or a
481  * divided-down version of it.
482  */
483 /* m1 is reserved as 0 in Pineview, n is a ring counter */
484 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
485 {
486         clock->m = clock->m2 + 2;
487         clock->p = clock->p1 * clock->p2;
488         if (WARN_ON(clock->n == 0 || clock->p == 0))
489                 return 0;
490         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
491         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
492
493         return clock->dot;
494 }
495
496 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
497 {
498         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
499 }
500
501 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
502 {
503         clock->m = i9xx_dpll_compute_m(clock);
504         clock->p = clock->p1 * clock->p2;
505         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
506                 return 0;
507         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
508         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
509
510         return clock->dot;
511 }
512
513 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
514 {
515         clock->m = clock->m1 * clock->m2;
516         clock->p = clock->p1 * clock->p2;
517         if (WARN_ON(clock->n == 0 || clock->p == 0))
518                 return 0;
519         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
520         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
521
522         return clock->dot / 5;
523 }
524
525 int chv_calc_dpll_params(int refclk, struct dpll *clock)
526 {
527         clock->m = clock->m1 * clock->m2;
528         clock->p = clock->p1 * clock->p2;
529         if (WARN_ON(clock->n == 0 || clock->p == 0))
530                 return 0;
531         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
532                         clock->n << 22);
533         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
534
535         return clock->dot / 5;
536 }
537
538 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
539 /**
540  * Returns whether the given set of divisors are valid for a given refclk with
541  * the given connectors.
542  */
543
544 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
545                                const struct intel_limit *limit,
546                                const struct dpll *clock)
547 {
548         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
549                 INTELPllInvalid("n out of range\n");
550         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
551                 INTELPllInvalid("p1 out of range\n");
552         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
553                 INTELPllInvalid("m2 out of range\n");
554         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
555                 INTELPllInvalid("m1 out of range\n");
556
557         if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
558             !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
559                 if (clock->m1 <= clock->m2)
560                         INTELPllInvalid("m1 <= m2\n");
561
562         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
563             !IS_GEN9_LP(dev_priv)) {
564                 if (clock->p < limit->p.min || limit->p.max < clock->p)
565                         INTELPllInvalid("p out of range\n");
566                 if (clock->m < limit->m.min || limit->m.max < clock->m)
567                         INTELPllInvalid("m out of range\n");
568         }
569
570         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
571                 INTELPllInvalid("vco out of range\n");
572         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
573          * connector, etc., rather than just a single range.
574          */
575         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
576                 INTELPllInvalid("dot out of range\n");
577
578         return true;
579 }
580
581 static int
582 i9xx_select_p2_div(const struct intel_limit *limit,
583                    const struct intel_crtc_state *crtc_state,
584                    int target)
585 {
586         struct drm_device *dev = crtc_state->base.crtc->dev;
587
588         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
589                 /*
590                  * For LVDS just rely on its current settings for dual-channel.
591                  * We haven't figured out how to reliably set up different
592                  * single/dual channel state, if we even can.
593                  */
594                 if (intel_is_dual_link_lvds(dev))
595                         return limit->p2.p2_fast;
596                 else
597                         return limit->p2.p2_slow;
598         } else {
599                 if (target < limit->p2.dot_limit)
600                         return limit->p2.p2_slow;
601                 else
602                         return limit->p2.p2_fast;
603         }
604 }
605
606 /*
607  * Returns a set of divisors for the desired target clock with the given
608  * refclk, or FALSE.  The returned values represent the clock equation:
609  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
610  *
611  * Target and reference clocks are specified in kHz.
612  *
613  * If match_clock is provided, then best_clock P divider must match the P
614  * divider from @match_clock used for LVDS downclocking.
615  */
616 static bool
617 i9xx_find_best_dpll(const struct intel_limit *limit,
618                     struct intel_crtc_state *crtc_state,
619                     int target, int refclk, struct dpll *match_clock,
620                     struct dpll *best_clock)
621 {
622         struct drm_device *dev = crtc_state->base.crtc->dev;
623         struct dpll clock;
624         int err = target;
625
626         memset(best_clock, 0, sizeof(*best_clock));
627
628         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
629
630         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
631              clock.m1++) {
632                 for (clock.m2 = limit->m2.min;
633                      clock.m2 <= limit->m2.max; clock.m2++) {
634                         if (clock.m2 >= clock.m1)
635                                 break;
636                         for (clock.n = limit->n.min;
637                              clock.n <= limit->n.max; clock.n++) {
638                                 for (clock.p1 = limit->p1.min;
639                                         clock.p1 <= limit->p1.max; clock.p1++) {
640                                         int this_err;
641
642                                         i9xx_calc_dpll_params(refclk, &clock);
643                                         if (!intel_PLL_is_valid(to_i915(dev),
644                                                                 limit,
645                                                                 &clock))
646                                                 continue;
647                                         if (match_clock &&
648                                             clock.p != match_clock->p)
649                                                 continue;
650
651                                         this_err = abs(clock.dot - target);
652                                         if (this_err < err) {
653                                                 *best_clock = clock;
654                                                 err = this_err;
655                                         }
656                                 }
657                         }
658                 }
659         }
660
661         return (err != target);
662 }
663
664 /*
665  * Returns a set of divisors for the desired target clock with the given
666  * refclk, or FALSE.  The returned values represent the clock equation:
667  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
668  *
669  * Target and reference clocks are specified in kHz.
670  *
671  * If match_clock is provided, then best_clock P divider must match the P
672  * divider from @match_clock used for LVDS downclocking.
673  */
674 static bool
675 pnv_find_best_dpll(const struct intel_limit *limit,
676                    struct intel_crtc_state *crtc_state,
677                    int target, int refclk, struct dpll *match_clock,
678                    struct dpll *best_clock)
679 {
680         struct drm_device *dev = crtc_state->base.crtc->dev;
681         struct dpll clock;
682         int err = target;
683
684         memset(best_clock, 0, sizeof(*best_clock));
685
686         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
687
688         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
689              clock.m1++) {
690                 for (clock.m2 = limit->m2.min;
691                      clock.m2 <= limit->m2.max; clock.m2++) {
692                         for (clock.n = limit->n.min;
693                              clock.n <= limit->n.max; clock.n++) {
694                                 for (clock.p1 = limit->p1.min;
695                                         clock.p1 <= limit->p1.max; clock.p1++) {
696                                         int this_err;
697
698                                         pnv_calc_dpll_params(refclk, &clock);
699                                         if (!intel_PLL_is_valid(to_i915(dev),
700                                                                 limit,
701                                                                 &clock))
702                                                 continue;
703                                         if (match_clock &&
704                                             clock.p != match_clock->p)
705                                                 continue;
706
707                                         this_err = abs(clock.dot - target);
708                                         if (this_err < err) {
709                                                 *best_clock = clock;
710                                                 err = this_err;
711                                         }
712                                 }
713                         }
714                 }
715         }
716
717         return (err != target);
718 }
719
720 /*
721  * Returns a set of divisors for the desired target clock with the given
722  * refclk, or FALSE.  The returned values represent the clock equation:
723  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
724  *
725  * Target and reference clocks are specified in kHz.
726  *
727  * If match_clock is provided, then best_clock P divider must match the P
728  * divider from @match_clock used for LVDS downclocking.
729  */
730 static bool
731 g4x_find_best_dpll(const struct intel_limit *limit,
732                    struct intel_crtc_state *crtc_state,
733                    int target, int refclk, struct dpll *match_clock,
734                    struct dpll *best_clock)
735 {
736         struct drm_device *dev = crtc_state->base.crtc->dev;
737         struct dpll clock;
738         int max_n;
739         bool found = false;
740         /* approximately equals target * 0.00585 */
741         int err_most = (target >> 8) + (target >> 9);
742
743         memset(best_clock, 0, sizeof(*best_clock));
744
745         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
746
747         max_n = limit->n.max;
748         /* based on hardware requirement, prefer smaller n to precision */
749         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
750                 /* based on hardware requirement, prefere larger m1,m2 */
751                 for (clock.m1 = limit->m1.max;
752                      clock.m1 >= limit->m1.min; clock.m1--) {
753                         for (clock.m2 = limit->m2.max;
754                              clock.m2 >= limit->m2.min; clock.m2--) {
755                                 for (clock.p1 = limit->p1.max;
756                                      clock.p1 >= limit->p1.min; clock.p1--) {
757                                         int this_err;
758
759                                         i9xx_calc_dpll_params(refclk, &clock);
760                                         if (!intel_PLL_is_valid(to_i915(dev),
761                                                                 limit,
762                                                                 &clock))
763                                                 continue;
764
765                                         this_err = abs(clock.dot - target);
766                                         if (this_err < err_most) {
767                                                 *best_clock = clock;
768                                                 err_most = this_err;
769                                                 max_n = clock.n;
770                                                 found = true;
771                                         }
772                                 }
773                         }
774                 }
775         }
776         return found;
777 }
778
779 /*
780  * Check if the calculated PLL configuration is more optimal compared to the
781  * best configuration and error found so far. Return the calculated error.
782  */
783 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
784                                const struct dpll *calculated_clock,
785                                const struct dpll *best_clock,
786                                unsigned int best_error_ppm,
787                                unsigned int *error_ppm)
788 {
789         /*
790          * For CHV ignore the error and consider only the P value.
791          * Prefer a bigger P value based on HW requirements.
792          */
793         if (IS_CHERRYVIEW(to_i915(dev))) {
794                 *error_ppm = 0;
795
796                 return calculated_clock->p > best_clock->p;
797         }
798
799         if (WARN_ON_ONCE(!target_freq))
800                 return false;
801
802         *error_ppm = div_u64(1000000ULL *
803                                 abs(target_freq - calculated_clock->dot),
804                              target_freq);
805         /*
806          * Prefer a better P value over a better (smaller) error if the error
807          * is small. Ensure this preference for future configurations too by
808          * setting the error to 0.
809          */
810         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
811                 *error_ppm = 0;
812
813                 return true;
814         }
815
816         return *error_ppm + 10 < best_error_ppm;
817 }
818
819 /*
820  * Returns a set of divisors for the desired target clock with the given
821  * refclk, or FALSE.  The returned values represent the clock equation:
822  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
823  */
824 static bool
825 vlv_find_best_dpll(const struct intel_limit *limit,
826                    struct intel_crtc_state *crtc_state,
827                    int target, int refclk, struct dpll *match_clock,
828                    struct dpll *best_clock)
829 {
830         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
831         struct drm_device *dev = crtc->base.dev;
832         struct dpll clock;
833         unsigned int bestppm = 1000000;
834         /* min update 19.2 MHz */
835         int max_n = min(limit->n.max, refclk / 19200);
836         bool found = false;
837
838         target *= 5; /* fast clock */
839
840         memset(best_clock, 0, sizeof(*best_clock));
841
842         /* based on hardware requirement, prefer smaller n to precision */
843         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
844                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
845                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
846                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
847                                 clock.p = clock.p1 * clock.p2;
848                                 /* based on hardware requirement, prefer bigger m1,m2 values */
849                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
850                                         unsigned int ppm;
851
852                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
853                                                                      refclk * clock.m1);
854
855                                         vlv_calc_dpll_params(refclk, &clock);
856
857                                         if (!intel_PLL_is_valid(to_i915(dev),
858                                                                 limit,
859                                                                 &clock))
860                                                 continue;
861
862                                         if (!vlv_PLL_is_optimal(dev, target,
863                                                                 &clock,
864                                                                 best_clock,
865                                                                 bestppm, &ppm))
866                                                 continue;
867
868                                         *best_clock = clock;
869                                         bestppm = ppm;
870                                         found = true;
871                                 }
872                         }
873                 }
874         }
875
876         return found;
877 }
878
879 /*
880  * Returns a set of divisors for the desired target clock with the given
881  * refclk, or FALSE.  The returned values represent the clock equation:
882  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
883  */
884 static bool
885 chv_find_best_dpll(const struct intel_limit *limit,
886                    struct intel_crtc_state *crtc_state,
887                    int target, int refclk, struct dpll *match_clock,
888                    struct dpll *best_clock)
889 {
890         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
891         struct drm_device *dev = crtc->base.dev;
892         unsigned int best_error_ppm;
893         struct dpll clock;
894         uint64_t m2;
895         int found = false;
896
897         memset(best_clock, 0, sizeof(*best_clock));
898         best_error_ppm = 1000000;
899
900         /*
901          * Based on hardware doc, the n always set to 1, and m1 always
902          * set to 2.  If requires to support 200Mhz refclk, we need to
903          * revisit this because n may not 1 anymore.
904          */
905         clock.n = 1, clock.m1 = 2;
906         target *= 5;    /* fast clock */
907
908         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
909                 for (clock.p2 = limit->p2.p2_fast;
910                                 clock.p2 >= limit->p2.p2_slow;
911                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
912                         unsigned int error_ppm;
913
914                         clock.p = clock.p1 * clock.p2;
915
916                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
917                                         clock.n) << 22, refclk * clock.m1);
918
919                         if (m2 > INT_MAX/clock.m1)
920                                 continue;
921
922                         clock.m2 = m2;
923
924                         chv_calc_dpll_params(refclk, &clock);
925
926                         if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
927                                 continue;
928
929                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
930                                                 best_error_ppm, &error_ppm))
931                                 continue;
932
933                         *best_clock = clock;
934                         best_error_ppm = error_ppm;
935                         found = true;
936                 }
937         }
938
939         return found;
940 }
941
942 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
943                         struct dpll *best_clock)
944 {
945         int refclk = 100000;
946         const struct intel_limit *limit = &intel_limits_bxt;
947
948         return chv_find_best_dpll(limit, crtc_state,
949                                   target_clock, refclk, NULL, best_clock);
950 }
951
952 bool intel_crtc_active(struct intel_crtc *crtc)
953 {
954         /* Be paranoid as we can arrive here with only partial
955          * state retrieved from the hardware during setup.
956          *
957          * We can ditch the adjusted_mode.crtc_clock check as soon
958          * as Haswell has gained clock readout/fastboot support.
959          *
960          * We can ditch the crtc->primary->fb check as soon as we can
961          * properly reconstruct framebuffers.
962          *
963          * FIXME: The intel_crtc->active here should be switched to
964          * crtc->state->active once we have proper CRTC states wired up
965          * for atomic.
966          */
967         return crtc->active && crtc->base.primary->state->fb &&
968                 crtc->config->base.adjusted_mode.crtc_clock;
969 }
970
971 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
972                                              enum pipe pipe)
973 {
974         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
975
976         return crtc->config->cpu_transcoder;
977 }
978
979 static bool pipe_dsl_stopped(struct drm_i915_private *dev_priv, enum pipe pipe)
980 {
981         i915_reg_t reg = PIPEDSL(pipe);
982         u32 line1, line2;
983         u32 line_mask;
984
985         if (IS_GEN2(dev_priv))
986                 line_mask = DSL_LINEMASK_GEN2;
987         else
988                 line_mask = DSL_LINEMASK_GEN3;
989
990         line1 = I915_READ(reg) & line_mask;
991         msleep(5);
992         line2 = I915_READ(reg) & line_mask;
993
994         return line1 == line2;
995 }
996
997 /*
998  * intel_wait_for_pipe_off - wait for pipe to turn off
999  * @crtc: crtc whose pipe to wait for
1000  *
1001  * After disabling a pipe, we can't wait for vblank in the usual way,
1002  * spinning on the vblank interrupt status bit, since we won't actually
1003  * see an interrupt when the pipe is disabled.
1004  *
1005  * On Gen4 and above:
1006  *   wait for the pipe register state bit to turn off
1007  *
1008  * Otherwise:
1009  *   wait for the display line value to settle (it usually
1010  *   ends up stopping at the start of the next frame).
1011  *
1012  */
1013 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1014 {
1015         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1016         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1017         enum pipe pipe = crtc->pipe;
1018
1019         if (INTEL_GEN(dev_priv) >= 4) {
1020                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1021
1022                 /* Wait for the Pipe State to go off */
1023                 if (intel_wait_for_register(dev_priv,
1024                                             reg, I965_PIPECONF_ACTIVE, 0,
1025                                             100))
1026                         WARN(1, "pipe_off wait timed out\n");
1027         } else {
1028                 /* Wait for the display line to settle */
1029                 if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
1030                         WARN(1, "pipe_off wait timed out\n");
1031         }
1032 }
1033
1034 /* Only for pre-ILK configs */
1035 void assert_pll(struct drm_i915_private *dev_priv,
1036                 enum pipe pipe, bool state)
1037 {
1038         u32 val;
1039         bool cur_state;
1040
1041         val = I915_READ(DPLL(pipe));
1042         cur_state = !!(val & DPLL_VCO_ENABLE);
1043         I915_STATE_WARN(cur_state != state,
1044              "PLL state assertion failure (expected %s, current %s)\n",
1045                         onoff(state), onoff(cur_state));
1046 }
1047
1048 /* XXX: the dsi pll is shared between MIPI DSI ports */
1049 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1050 {
1051         u32 val;
1052         bool cur_state;
1053
1054         mutex_lock(&dev_priv->sb_lock);
1055         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1056         mutex_unlock(&dev_priv->sb_lock);
1057
1058         cur_state = val & DSI_PLL_VCO_EN;
1059         I915_STATE_WARN(cur_state != state,
1060              "DSI PLL state assertion failure (expected %s, current %s)\n",
1061                         onoff(state), onoff(cur_state));
1062 }
1063
1064 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1065                           enum pipe pipe, bool state)
1066 {
1067         bool cur_state;
1068         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1069                                                                       pipe);
1070
1071         if (HAS_DDI(dev_priv)) {
1072                 /* DDI does not have a specific FDI_TX register */
1073                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1074                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1075         } else {
1076                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1077                 cur_state = !!(val & FDI_TX_ENABLE);
1078         }
1079         I915_STATE_WARN(cur_state != state,
1080              "FDI TX state assertion failure (expected %s, current %s)\n",
1081                         onoff(state), onoff(cur_state));
1082 }
1083 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1084 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1085
1086 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1087                           enum pipe pipe, bool state)
1088 {
1089         u32 val;
1090         bool cur_state;
1091
1092         val = I915_READ(FDI_RX_CTL(pipe));
1093         cur_state = !!(val & FDI_RX_ENABLE);
1094         I915_STATE_WARN(cur_state != state,
1095              "FDI RX state assertion failure (expected %s, current %s)\n",
1096                         onoff(state), onoff(cur_state));
1097 }
1098 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1099 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1100
1101 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1102                                       enum pipe pipe)
1103 {
1104         u32 val;
1105
1106         /* ILK FDI PLL is always enabled */
1107         if (IS_GEN5(dev_priv))
1108                 return;
1109
1110         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1111         if (HAS_DDI(dev_priv))
1112                 return;
1113
1114         val = I915_READ(FDI_TX_CTL(pipe));
1115         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1116 }
1117
1118 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1119                        enum pipe pipe, bool state)
1120 {
1121         u32 val;
1122         bool cur_state;
1123
1124         val = I915_READ(FDI_RX_CTL(pipe));
1125         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1126         I915_STATE_WARN(cur_state != state,
1127              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1128                         onoff(state), onoff(cur_state));
1129 }
1130
1131 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1132 {
1133         i915_reg_t pp_reg;
1134         u32 val;
1135         enum pipe panel_pipe = PIPE_A;
1136         bool locked = true;
1137
1138         if (WARN_ON(HAS_DDI(dev_priv)))
1139                 return;
1140
1141         if (HAS_PCH_SPLIT(dev_priv)) {
1142                 u32 port_sel;
1143
1144                 pp_reg = PP_CONTROL(0);
1145                 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1146
1147                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1148                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1149                         panel_pipe = PIPE_B;
1150                 /* XXX: else fix for eDP */
1151         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1152                 /* presumably write lock depends on pipe, not port select */
1153                 pp_reg = PP_CONTROL(pipe);
1154                 panel_pipe = pipe;
1155         } else {
1156                 pp_reg = PP_CONTROL(0);
1157                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1158                         panel_pipe = PIPE_B;
1159         }
1160
1161         val = I915_READ(pp_reg);
1162         if (!(val & PANEL_POWER_ON) ||
1163             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1164                 locked = false;
1165
1166         I915_STATE_WARN(panel_pipe == pipe && locked,
1167              "panel assertion failure, pipe %c regs locked\n",
1168              pipe_name(pipe));
1169 }
1170
1171 static void assert_cursor(struct drm_i915_private *dev_priv,
1172                           enum pipe pipe, bool state)
1173 {
1174         bool cur_state;
1175
1176         if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
1177                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1178         else
1179                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1180
1181         I915_STATE_WARN(cur_state != state,
1182              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1183                         pipe_name(pipe), onoff(state), onoff(cur_state));
1184 }
1185 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1186 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1187
1188 void assert_pipe(struct drm_i915_private *dev_priv,
1189                  enum pipe pipe, bool state)
1190 {
1191         bool cur_state;
1192         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1193                                                                       pipe);
1194         enum intel_display_power_domain power_domain;
1195
1196         /* we keep both pipes enabled on 830 */
1197         if (IS_I830(dev_priv))
1198                 state = true;
1199
1200         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1201         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1202                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1203                 cur_state = !!(val & PIPECONF_ENABLE);
1204
1205                 intel_display_power_put(dev_priv, power_domain);
1206         } else {
1207                 cur_state = false;
1208         }
1209
1210         I915_STATE_WARN(cur_state != state,
1211              "pipe %c assertion failure (expected %s, current %s)\n",
1212                         pipe_name(pipe), onoff(state), onoff(cur_state));
1213 }
1214
1215 static void assert_plane(struct drm_i915_private *dev_priv,
1216                          enum plane plane, bool state)
1217 {
1218         u32 val;
1219         bool cur_state;
1220
1221         val = I915_READ(DSPCNTR(plane));
1222         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1223         I915_STATE_WARN(cur_state != state,
1224              "plane %c assertion failure (expected %s, current %s)\n",
1225                         plane_name(plane), onoff(state), onoff(cur_state));
1226 }
1227
1228 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1229 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1230
1231 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1232                                    enum pipe pipe)
1233 {
1234         int i;
1235
1236         /* Primary planes are fixed to pipes on gen4+ */
1237         if (INTEL_GEN(dev_priv) >= 4) {
1238                 u32 val = I915_READ(DSPCNTR(pipe));
1239                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1240                      "plane %c assertion failure, should be disabled but not\n",
1241                      plane_name(pipe));
1242                 return;
1243         }
1244
1245         /* Need to check both planes against the pipe */
1246         for_each_pipe(dev_priv, i) {
1247                 u32 val = I915_READ(DSPCNTR(i));
1248                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1249                         DISPPLANE_SEL_PIPE_SHIFT;
1250                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1251                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1252                      plane_name(i), pipe_name(pipe));
1253         }
1254 }
1255
1256 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1257                                     enum pipe pipe)
1258 {
1259         int sprite;
1260
1261         if (INTEL_GEN(dev_priv) >= 9) {
1262                 for_each_sprite(dev_priv, pipe, sprite) {
1263                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1264                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1265                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1266                              sprite, pipe_name(pipe));
1267                 }
1268         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1269                 for_each_sprite(dev_priv, pipe, sprite) {
1270                         u32 val = I915_READ(SPCNTR(pipe, PLANE_SPRITE0 + sprite));
1271                         I915_STATE_WARN(val & SP_ENABLE,
1272                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1273                              sprite_name(pipe, sprite), pipe_name(pipe));
1274                 }
1275         } else if (INTEL_GEN(dev_priv) >= 7) {
1276                 u32 val = I915_READ(SPRCTL(pipe));
1277                 I915_STATE_WARN(val & SPRITE_ENABLE,
1278                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1279                      plane_name(pipe), pipe_name(pipe));
1280         } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
1281                 u32 val = I915_READ(DVSCNTR(pipe));
1282                 I915_STATE_WARN(val & DVS_ENABLE,
1283                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1284                      plane_name(pipe), pipe_name(pipe));
1285         }
1286 }
1287
1288 static void assert_vblank_disabled(struct drm_crtc *crtc)
1289 {
1290         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1291                 drm_crtc_vblank_put(crtc);
1292 }
1293
1294 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1295                                     enum pipe pipe)
1296 {
1297         u32 val;
1298         bool enabled;
1299
1300         val = I915_READ(PCH_TRANSCONF(pipe));
1301         enabled = !!(val & TRANS_ENABLE);
1302         I915_STATE_WARN(enabled,
1303              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1304              pipe_name(pipe));
1305 }
1306
1307 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1308                             enum pipe pipe, u32 port_sel, u32 val)
1309 {
1310         if ((val & DP_PORT_EN) == 0)
1311                 return false;
1312
1313         if (HAS_PCH_CPT(dev_priv)) {
1314                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1315                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316                         return false;
1317         } else if (IS_CHERRYVIEW(dev_priv)) {
1318                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1319                         return false;
1320         } else {
1321                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1322                         return false;
1323         }
1324         return true;
1325 }
1326
1327 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1328                               enum pipe pipe, u32 val)
1329 {
1330         if ((val & SDVO_ENABLE) == 0)
1331                 return false;
1332
1333         if (HAS_PCH_CPT(dev_priv)) {
1334                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1335                         return false;
1336         } else if (IS_CHERRYVIEW(dev_priv)) {
1337                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1338                         return false;
1339         } else {
1340                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1341                         return false;
1342         }
1343         return true;
1344 }
1345
1346 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1347                               enum pipe pipe, u32 val)
1348 {
1349         if ((val & LVDS_PORT_EN) == 0)
1350                 return false;
1351
1352         if (HAS_PCH_CPT(dev_priv)) {
1353                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1354                         return false;
1355         } else {
1356                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1357                         return false;
1358         }
1359         return true;
1360 }
1361
1362 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1363                               enum pipe pipe, u32 val)
1364 {
1365         if ((val & ADPA_DAC_ENABLE) == 0)
1366                 return false;
1367         if (HAS_PCH_CPT(dev_priv)) {
1368                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1369                         return false;
1370         } else {
1371                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1372                         return false;
1373         }
1374         return true;
1375 }
1376
1377 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1378                                    enum pipe pipe, i915_reg_t reg,
1379                                    u32 port_sel)
1380 {
1381         u32 val = I915_READ(reg);
1382         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1383              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1384              i915_mmio_reg_offset(reg), pipe_name(pipe));
1385
1386         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1387              && (val & DP_PIPEB_SELECT),
1388              "IBX PCH dp port still using transcoder B\n");
1389 }
1390
1391 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1392                                      enum pipe pipe, i915_reg_t reg)
1393 {
1394         u32 val = I915_READ(reg);
1395         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1396              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1397              i915_mmio_reg_offset(reg), pipe_name(pipe));
1398
1399         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1400              && (val & SDVO_PIPE_B_SELECT),
1401              "IBX PCH hdmi port still using transcoder B\n");
1402 }
1403
1404 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1405                                       enum pipe pipe)
1406 {
1407         u32 val;
1408
1409         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1410         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1411         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1412
1413         val = I915_READ(PCH_ADPA);
1414         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1415              "PCH VGA enabled on transcoder %c, should be disabled\n",
1416              pipe_name(pipe));
1417
1418         val = I915_READ(PCH_LVDS);
1419         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1420              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1421              pipe_name(pipe));
1422
1423         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1424         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1425         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1426 }
1427
1428 static void _vlv_enable_pll(struct intel_crtc *crtc,
1429                             const struct intel_crtc_state *pipe_config)
1430 {
1431         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1432         enum pipe pipe = crtc->pipe;
1433
1434         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1435         POSTING_READ(DPLL(pipe));
1436         udelay(150);
1437
1438         if (intel_wait_for_register(dev_priv,
1439                                     DPLL(pipe),
1440                                     DPLL_LOCK_VLV,
1441                                     DPLL_LOCK_VLV,
1442                                     1))
1443                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1444 }
1445
1446 static void vlv_enable_pll(struct intel_crtc *crtc,
1447                            const struct intel_crtc_state *pipe_config)
1448 {
1449         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1450         enum pipe pipe = crtc->pipe;
1451
1452         assert_pipe_disabled(dev_priv, pipe);
1453
1454         /* PLL is protected by panel, make sure we can write it */
1455         assert_panel_unlocked(dev_priv, pipe);
1456
1457         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1458                 _vlv_enable_pll(crtc, pipe_config);
1459
1460         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1461         POSTING_READ(DPLL_MD(pipe));
1462 }
1463
1464
1465 static void _chv_enable_pll(struct intel_crtc *crtc,
1466                             const struct intel_crtc_state *pipe_config)
1467 {
1468         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1469         enum pipe pipe = crtc->pipe;
1470         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1471         u32 tmp;
1472
1473         mutex_lock(&dev_priv->sb_lock);
1474
1475         /* Enable back the 10bit clock to display controller */
1476         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1477         tmp |= DPIO_DCLKP_EN;
1478         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1479
1480         mutex_unlock(&dev_priv->sb_lock);
1481
1482         /*
1483          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1484          */
1485         udelay(1);
1486
1487         /* Enable PLL */
1488         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1489
1490         /* Check PLL is locked */
1491         if (intel_wait_for_register(dev_priv,
1492                                     DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1493                                     1))
1494                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1495 }
1496
1497 static void chv_enable_pll(struct intel_crtc *crtc,
1498                            const struct intel_crtc_state *pipe_config)
1499 {
1500         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1501         enum pipe pipe = crtc->pipe;
1502
1503         assert_pipe_disabled(dev_priv, pipe);
1504
1505         /* PLL is protected by panel, make sure we can write it */
1506         assert_panel_unlocked(dev_priv, pipe);
1507
1508         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1509                 _chv_enable_pll(crtc, pipe_config);
1510
1511         if (pipe != PIPE_A) {
1512                 /*
1513                  * WaPixelRepeatModeFixForC0:chv
1514                  *
1515                  * DPLLCMD is AWOL. Use chicken bits to propagate
1516                  * the value from DPLLBMD to either pipe B or C.
1517                  */
1518                 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1519                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1520                 I915_WRITE(CBR4_VLV, 0);
1521                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1522
1523                 /*
1524                  * DPLLB VGA mode also seems to cause problems.
1525                  * We should always have it disabled.
1526                  */
1527                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1528         } else {
1529                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1530                 POSTING_READ(DPLL_MD(pipe));
1531         }
1532 }
1533
1534 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1535 {
1536         struct intel_crtc *crtc;
1537         int count = 0;
1538
1539         for_each_intel_crtc(&dev_priv->drm, crtc) {
1540                 count += crtc->base.state->active &&
1541                         intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1542         }
1543
1544         return count;
1545 }
1546
1547 static void i9xx_enable_pll(struct intel_crtc *crtc)
1548 {
1549         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1550         i915_reg_t reg = DPLL(crtc->pipe);
1551         u32 dpll = crtc->config->dpll_hw_state.dpll;
1552         int i;
1553
1554         assert_pipe_disabled(dev_priv, crtc->pipe);
1555
1556         /* PLL is protected by panel, make sure we can write it */
1557         if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1558                 assert_panel_unlocked(dev_priv, crtc->pipe);
1559
1560         /* Enable DVO 2x clock on both PLLs if necessary */
1561         if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1562                 /*
1563                  * It appears to be important that we don't enable this
1564                  * for the current pipe before otherwise configuring the
1565                  * PLL. No idea how this should be handled if multiple
1566                  * DVO outputs are enabled simultaneosly.
1567                  */
1568                 dpll |= DPLL_DVO_2X_MODE;
1569                 I915_WRITE(DPLL(!crtc->pipe),
1570                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1571         }
1572
1573         /*
1574          * Apparently we need to have VGA mode enabled prior to changing
1575          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1576          * dividers, even though the register value does change.
1577          */
1578         I915_WRITE(reg, 0);
1579
1580         I915_WRITE(reg, dpll);
1581
1582         /* Wait for the clocks to stabilize. */
1583         POSTING_READ(reg);
1584         udelay(150);
1585
1586         if (INTEL_GEN(dev_priv) >= 4) {
1587                 I915_WRITE(DPLL_MD(crtc->pipe),
1588                            crtc->config->dpll_hw_state.dpll_md);
1589         } else {
1590                 /* The pixel multiplier can only be updated once the
1591                  * DPLL is enabled and the clocks are stable.
1592                  *
1593                  * So write it again.
1594                  */
1595                 I915_WRITE(reg, dpll);
1596         }
1597
1598         /* We do this three times for luck */
1599         for (i = 0; i < 3; i++) {
1600                 I915_WRITE(reg, dpll);
1601                 POSTING_READ(reg);
1602                 udelay(150); /* wait for warmup */
1603         }
1604 }
1605
1606 /**
1607  * i9xx_disable_pll - disable a PLL
1608  * @dev_priv: i915 private structure
1609  * @pipe: pipe PLL to disable
1610  *
1611  * Disable the PLL for @pipe, making sure the pipe is off first.
1612  *
1613  * Note!  This is for pre-ILK only.
1614  */
1615 static void i9xx_disable_pll(struct intel_crtc *crtc)
1616 {
1617         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1618         enum pipe pipe = crtc->pipe;
1619
1620         /* Disable DVO 2x clock on both PLLs if necessary */
1621         if (IS_I830(dev_priv) &&
1622             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1623             !intel_num_dvo_pipes(dev_priv)) {
1624                 I915_WRITE(DPLL(PIPE_B),
1625                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1626                 I915_WRITE(DPLL(PIPE_A),
1627                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1628         }
1629
1630         /* Don't disable pipe or pipe PLLs if needed */
1631         if (IS_I830(dev_priv))
1632                 return;
1633
1634         /* Make sure the pipe isn't still relying on us */
1635         assert_pipe_disabled(dev_priv, pipe);
1636
1637         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1638         POSTING_READ(DPLL(pipe));
1639 }
1640
1641 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1642 {
1643         u32 val;
1644
1645         /* Make sure the pipe isn't still relying on us */
1646         assert_pipe_disabled(dev_priv, pipe);
1647
1648         val = DPLL_INTEGRATED_REF_CLK_VLV |
1649                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1650         if (pipe != PIPE_A)
1651                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1652
1653         I915_WRITE(DPLL(pipe), val);
1654         POSTING_READ(DPLL(pipe));
1655 }
1656
1657 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1658 {
1659         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1660         u32 val;
1661
1662         /* Make sure the pipe isn't still relying on us */
1663         assert_pipe_disabled(dev_priv, pipe);
1664
1665         val = DPLL_SSC_REF_CLK_CHV |
1666                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1667         if (pipe != PIPE_A)
1668                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1669
1670         I915_WRITE(DPLL(pipe), val);
1671         POSTING_READ(DPLL(pipe));
1672
1673         mutex_lock(&dev_priv->sb_lock);
1674
1675         /* Disable 10bit clock to display controller */
1676         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1677         val &= ~DPIO_DCLKP_EN;
1678         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1679
1680         mutex_unlock(&dev_priv->sb_lock);
1681 }
1682
1683 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1684                          struct intel_digital_port *dport,
1685                          unsigned int expected_mask)
1686 {
1687         u32 port_mask;
1688         i915_reg_t dpll_reg;
1689
1690         switch (dport->port) {
1691         case PORT_B:
1692                 port_mask = DPLL_PORTB_READY_MASK;
1693                 dpll_reg = DPLL(0);
1694                 break;
1695         case PORT_C:
1696                 port_mask = DPLL_PORTC_READY_MASK;
1697                 dpll_reg = DPLL(0);
1698                 expected_mask <<= 4;
1699                 break;
1700         case PORT_D:
1701                 port_mask = DPLL_PORTD_READY_MASK;
1702                 dpll_reg = DPIO_PHY_STATUS;
1703                 break;
1704         default:
1705                 BUG();
1706         }
1707
1708         if (intel_wait_for_register(dev_priv,
1709                                     dpll_reg, port_mask, expected_mask,
1710                                     1000))
1711                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1712                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1713 }
1714
1715 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1716                                            enum pipe pipe)
1717 {
1718         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1719                                                                 pipe);
1720         i915_reg_t reg;
1721         uint32_t val, pipeconf_val;
1722
1723         /* Make sure PCH DPLL is enabled */
1724         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1725
1726         /* FDI must be feeding us bits for PCH ports */
1727         assert_fdi_tx_enabled(dev_priv, pipe);
1728         assert_fdi_rx_enabled(dev_priv, pipe);
1729
1730         if (HAS_PCH_CPT(dev_priv)) {
1731                 /* Workaround: Set the timing override bit before enabling the
1732                  * pch transcoder. */
1733                 reg = TRANS_CHICKEN2(pipe);
1734                 val = I915_READ(reg);
1735                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1736                 I915_WRITE(reg, val);
1737         }
1738
1739         reg = PCH_TRANSCONF(pipe);
1740         val = I915_READ(reg);
1741         pipeconf_val = I915_READ(PIPECONF(pipe));
1742
1743         if (HAS_PCH_IBX(dev_priv)) {
1744                 /*
1745                  * Make the BPC in transcoder be consistent with
1746                  * that in pipeconf reg. For HDMI we must use 8bpc
1747                  * here for both 8bpc and 12bpc.
1748                  */
1749                 val &= ~PIPECONF_BPC_MASK;
1750                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1751                         val |= PIPECONF_8BPC;
1752                 else
1753                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1754         }
1755
1756         val &= ~TRANS_INTERLACE_MASK;
1757         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1758                 if (HAS_PCH_IBX(dev_priv) &&
1759                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1760                         val |= TRANS_LEGACY_INTERLACED_ILK;
1761                 else
1762                         val |= TRANS_INTERLACED;
1763         else
1764                 val |= TRANS_PROGRESSIVE;
1765
1766         I915_WRITE(reg, val | TRANS_ENABLE);
1767         if (intel_wait_for_register(dev_priv,
1768                                     reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1769                                     100))
1770                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1771 }
1772
1773 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1774                                       enum transcoder cpu_transcoder)
1775 {
1776         u32 val, pipeconf_val;
1777
1778         /* FDI must be feeding us bits for PCH ports */
1779         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1780         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1781
1782         /* Workaround: set timing override bit. */
1783         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1784         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1785         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1786
1787         val = TRANS_ENABLE;
1788         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1789
1790         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1791             PIPECONF_INTERLACED_ILK)
1792                 val |= TRANS_INTERLACED;
1793         else
1794                 val |= TRANS_PROGRESSIVE;
1795
1796         I915_WRITE(LPT_TRANSCONF, val);
1797         if (intel_wait_for_register(dev_priv,
1798                                     LPT_TRANSCONF,
1799                                     TRANS_STATE_ENABLE,
1800                                     TRANS_STATE_ENABLE,
1801                                     100))
1802                 DRM_ERROR("Failed to enable PCH transcoder\n");
1803 }
1804
1805 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1806                                             enum pipe pipe)
1807 {
1808         i915_reg_t reg;
1809         uint32_t val;
1810
1811         /* FDI relies on the transcoder */
1812         assert_fdi_tx_disabled(dev_priv, pipe);
1813         assert_fdi_rx_disabled(dev_priv, pipe);
1814
1815         /* Ports must be off as well */
1816         assert_pch_ports_disabled(dev_priv, pipe);
1817
1818         reg = PCH_TRANSCONF(pipe);
1819         val = I915_READ(reg);
1820         val &= ~TRANS_ENABLE;
1821         I915_WRITE(reg, val);
1822         /* wait for PCH transcoder off, transcoder state */
1823         if (intel_wait_for_register(dev_priv,
1824                                     reg, TRANS_STATE_ENABLE, 0,
1825                                     50))
1826                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1827
1828         if (HAS_PCH_CPT(dev_priv)) {
1829                 /* Workaround: Clear the timing override chicken bit again. */
1830                 reg = TRANS_CHICKEN2(pipe);
1831                 val = I915_READ(reg);
1832                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1833                 I915_WRITE(reg, val);
1834         }
1835 }
1836
1837 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1838 {
1839         u32 val;
1840
1841         val = I915_READ(LPT_TRANSCONF);
1842         val &= ~TRANS_ENABLE;
1843         I915_WRITE(LPT_TRANSCONF, val);
1844         /* wait for PCH transcoder off, transcoder state */
1845         if (intel_wait_for_register(dev_priv,
1846                                     LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1847                                     50))
1848                 DRM_ERROR("Failed to disable PCH transcoder\n");
1849
1850         /* Workaround: clear timing override bit. */
1851         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1852         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1853         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1854 }
1855
1856 enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1857 {
1858         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1859
1860         WARN_ON(!crtc->config->has_pch_encoder);
1861
1862         if (HAS_PCH_LPT(dev_priv))
1863                 return TRANSCODER_A;
1864         else
1865                 return (enum transcoder) crtc->pipe;
1866 }
1867
1868 /**
1869  * intel_enable_pipe - enable a pipe, asserting requirements
1870  * @crtc: crtc responsible for the pipe
1871  *
1872  * Enable @crtc's pipe, making sure that various hardware specific requirements
1873  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1874  */
1875 static void intel_enable_pipe(struct intel_crtc *crtc)
1876 {
1877         struct drm_device *dev = crtc->base.dev;
1878         struct drm_i915_private *dev_priv = to_i915(dev);
1879         enum pipe pipe = crtc->pipe;
1880         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1881         i915_reg_t reg;
1882         u32 val;
1883
1884         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1885
1886         assert_planes_disabled(dev_priv, pipe);
1887         assert_cursor_disabled(dev_priv, pipe);
1888         assert_sprites_disabled(dev_priv, pipe);
1889
1890         /*
1891          * A pipe without a PLL won't actually be able to drive bits from
1892          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1893          * need the check.
1894          */
1895         if (HAS_GMCH_DISPLAY(dev_priv)) {
1896                 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1897                         assert_dsi_pll_enabled(dev_priv);
1898                 else
1899                         assert_pll_enabled(dev_priv, pipe);
1900         } else {
1901                 if (crtc->config->has_pch_encoder) {
1902                         /* if driving the PCH, we need FDI enabled */
1903                         assert_fdi_rx_pll_enabled(dev_priv,
1904                                                   (enum pipe) intel_crtc_pch_transcoder(crtc));
1905                         assert_fdi_tx_pll_enabled(dev_priv,
1906                                                   (enum pipe) cpu_transcoder);
1907                 }
1908                 /* FIXME: assert CPU port conditions for SNB+ */
1909         }
1910
1911         reg = PIPECONF(cpu_transcoder);
1912         val = I915_READ(reg);
1913         if (val & PIPECONF_ENABLE) {
1914                 /* we keep both pipes enabled on 830 */
1915                 WARN_ON(!IS_I830(dev_priv));
1916                 return;
1917         }
1918
1919         I915_WRITE(reg, val | PIPECONF_ENABLE);
1920         POSTING_READ(reg);
1921
1922         /*
1923          * Until the pipe starts DSL will read as 0, which would cause
1924          * an apparent vblank timestamp jump, which messes up also the
1925          * frame count when it's derived from the timestamps. So let's
1926          * wait for the pipe to start properly before we call
1927          * drm_crtc_vblank_on()
1928          */
1929         if (dev->max_vblank_count == 0 &&
1930             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1931                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1932 }
1933
1934 /**
1935  * intel_disable_pipe - disable a pipe, asserting requirements
1936  * @crtc: crtc whose pipes is to be disabled
1937  *
1938  * Disable the pipe of @crtc, making sure that various hardware
1939  * specific requirements are met, if applicable, e.g. plane
1940  * disabled, panel fitter off, etc.
1941  *
1942  * Will wait until the pipe has shut down before returning.
1943  */
1944 static void intel_disable_pipe(struct intel_crtc *crtc)
1945 {
1946         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1947         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1948         enum pipe pipe = crtc->pipe;
1949         i915_reg_t reg;
1950         u32 val;
1951
1952         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1953
1954         /*
1955          * Make sure planes won't keep trying to pump pixels to us,
1956          * or we might hang the display.
1957          */
1958         assert_planes_disabled(dev_priv, pipe);
1959         assert_cursor_disabled(dev_priv, pipe);
1960         assert_sprites_disabled(dev_priv, pipe);
1961
1962         reg = PIPECONF(cpu_transcoder);
1963         val = I915_READ(reg);
1964         if ((val & PIPECONF_ENABLE) == 0)
1965                 return;
1966
1967         /*
1968          * Double wide has implications for planes
1969          * so best keep it disabled when not needed.
1970          */
1971         if (crtc->config->double_wide)
1972                 val &= ~PIPECONF_DOUBLE_WIDE;
1973
1974         /* Don't disable pipe or pipe PLLs if needed */
1975         if (!IS_I830(dev_priv))
1976                 val &= ~PIPECONF_ENABLE;
1977
1978         I915_WRITE(reg, val);
1979         if ((val & PIPECONF_ENABLE) == 0)
1980                 intel_wait_for_pipe_off(crtc);
1981 }
1982
1983 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1984 {
1985         return IS_GEN2(dev_priv) ? 2048 : 4096;
1986 }
1987
1988 static unsigned int
1989 intel_tile_width_bytes(const struct drm_framebuffer *fb, int plane)
1990 {
1991         struct drm_i915_private *dev_priv = to_i915(fb->dev);
1992         unsigned int cpp = fb->format->cpp[plane];
1993
1994         switch (fb->modifier) {
1995         case DRM_FORMAT_MOD_LINEAR:
1996                 return cpp;
1997         case I915_FORMAT_MOD_X_TILED:
1998                 if (IS_GEN2(dev_priv))
1999                         return 128;
2000                 else
2001                         return 512;
2002         case I915_FORMAT_MOD_Y_TILED:
2003                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2004                         return 128;
2005                 else
2006                         return 512;
2007         case I915_FORMAT_MOD_Yf_TILED:
2008                 switch (cpp) {
2009                 case 1:
2010                         return 64;
2011                 case 2:
2012                 case 4:
2013                         return 128;
2014                 case 8:
2015                 case 16:
2016                         return 256;
2017                 default:
2018                         MISSING_CASE(cpp);
2019                         return cpp;
2020                 }
2021                 break;
2022         default:
2023                 MISSING_CASE(fb->modifier);
2024                 return cpp;
2025         }
2026 }
2027
2028 static unsigned int
2029 intel_tile_height(const struct drm_framebuffer *fb, int plane)
2030 {
2031         if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
2032                 return 1;
2033         else
2034                 return intel_tile_size(to_i915(fb->dev)) /
2035                         intel_tile_width_bytes(fb, plane);
2036 }
2037
2038 /* Return the tile dimensions in pixel units */
2039 static void intel_tile_dims(const struct drm_framebuffer *fb, int plane,
2040                             unsigned int *tile_width,
2041                             unsigned int *tile_height)
2042 {
2043         unsigned int tile_width_bytes = intel_tile_width_bytes(fb, plane);
2044         unsigned int cpp = fb->format->cpp[plane];
2045
2046         *tile_width = tile_width_bytes / cpp;
2047         *tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes;
2048 }
2049
2050 unsigned int
2051 intel_fb_align_height(const struct drm_framebuffer *fb,
2052                       int plane, unsigned int height)
2053 {
2054         unsigned int tile_height = intel_tile_height(fb, plane);
2055
2056         return ALIGN(height, tile_height);
2057 }
2058
2059 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2060 {
2061         unsigned int size = 0;
2062         int i;
2063
2064         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2065                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2066
2067         return size;
2068 }
2069
2070 static void
2071 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2072                         const struct drm_framebuffer *fb,
2073                         unsigned int rotation)
2074 {
2075         view->type = I915_GGTT_VIEW_NORMAL;
2076         if (drm_rotation_90_or_270(rotation)) {
2077                 view->type = I915_GGTT_VIEW_ROTATED;
2078                 view->rotated = to_intel_framebuffer(fb)->rot_info;
2079         }
2080 }
2081
2082 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2083 {
2084         if (IS_I830(dev_priv))
2085                 return 16 * 1024;
2086         else if (IS_I85X(dev_priv))
2087                 return 256;
2088         else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2089                 return 32;
2090         else
2091                 return 4 * 1024;
2092 }
2093
2094 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2095 {
2096         if (INTEL_INFO(dev_priv)->gen >= 9)
2097                 return 256 * 1024;
2098         else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2099                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2100                 return 128 * 1024;
2101         else if (INTEL_INFO(dev_priv)->gen >= 4)
2102                 return 4 * 1024;
2103         else
2104                 return 0;
2105 }
2106
2107 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2108                                          int plane)
2109 {
2110         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2111
2112         /* AUX_DIST needs only 4K alignment */
2113         if (fb->format->format == DRM_FORMAT_NV12 && plane == 1)
2114                 return 4096;
2115
2116         switch (fb->modifier) {
2117         case DRM_FORMAT_MOD_LINEAR:
2118                 return intel_linear_alignment(dev_priv);
2119         case I915_FORMAT_MOD_X_TILED:
2120                 if (INTEL_GEN(dev_priv) >= 9)
2121                         return 256 * 1024;
2122                 return 0;
2123         case I915_FORMAT_MOD_Y_TILED:
2124         case I915_FORMAT_MOD_Yf_TILED:
2125                 return 1 * 1024 * 1024;
2126         default:
2127                 MISSING_CASE(fb->modifier);
2128                 return 0;
2129         }
2130 }
2131
2132 struct i915_vma *
2133 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2134 {
2135         struct drm_device *dev = fb->dev;
2136         struct drm_i915_private *dev_priv = to_i915(dev);
2137         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2138         struct i915_ggtt_view view;
2139         struct i915_vma *vma;
2140         u32 alignment;
2141
2142         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2143
2144         alignment = intel_surf_alignment(fb, 0);
2145
2146         intel_fill_fb_ggtt_view(&view, fb, rotation);
2147
2148         /* Note that the w/a also requires 64 PTE of padding following the
2149          * bo. We currently fill all unused PTE with the shadow page and so
2150          * we should always have valid PTE following the scanout preventing
2151          * the VT-d warning.
2152          */
2153         if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2154                 alignment = 256 * 1024;
2155
2156         /*
2157          * Global gtt pte registers are special registers which actually forward
2158          * writes to a chunk of system memory. Which means that there is no risk
2159          * that the register values disappear as soon as we call
2160          * intel_runtime_pm_put(), so it is correct to wrap only the
2161          * pin/unpin/fence and not more.
2162          */
2163         intel_runtime_pm_get(dev_priv);
2164
2165         vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2166         if (IS_ERR(vma))
2167                 goto err;
2168
2169         if (i915_vma_is_map_and_fenceable(vma)) {
2170                 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2171                  * fence, whereas 965+ only requires a fence if using
2172                  * framebuffer compression.  For simplicity, we always, when
2173                  * possible, install a fence as the cost is not that onerous.
2174                  *
2175                  * If we fail to fence the tiled scanout, then either the
2176                  * modeset will reject the change (which is highly unlikely as
2177                  * the affected systems, all but one, do not have unmappable
2178                  * space) or we will not be able to enable full powersaving
2179                  * techniques (also likely not to apply due to various limits
2180                  * FBC and the like impose on the size of the buffer, which
2181                  * presumably we violated anyway with this unmappable buffer).
2182                  * Anyway, it is presumably better to stumble onwards with
2183                  * something and try to run the system in a "less than optimal"
2184                  * mode that matches the user configuration.
2185                  */
2186                 if (i915_vma_get_fence(vma) == 0)
2187                         i915_vma_pin_fence(vma);
2188         }
2189
2190         i915_vma_get(vma);
2191 err:
2192         intel_runtime_pm_put(dev_priv);
2193         return vma;
2194 }
2195
2196 void intel_unpin_fb_vma(struct i915_vma *vma)
2197 {
2198         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
2199
2200         i915_vma_unpin_fence(vma);
2201         i915_gem_object_unpin_from_display_plane(vma);
2202         i915_vma_put(vma);
2203 }
2204
2205 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2206                           unsigned int rotation)
2207 {
2208         if (drm_rotation_90_or_270(rotation))
2209                 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2210         else
2211                 return fb->pitches[plane];
2212 }
2213
2214 /*
2215  * Convert the x/y offsets into a linear offset.
2216  * Only valid with 0/180 degree rotation, which is fine since linear
2217  * offset is only used with linear buffers on pre-hsw and tiled buffers
2218  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2219  */
2220 u32 intel_fb_xy_to_linear(int x, int y,
2221                           const struct intel_plane_state *state,
2222                           int plane)
2223 {
2224         const struct drm_framebuffer *fb = state->base.fb;
2225         unsigned int cpp = fb->format->cpp[plane];
2226         unsigned int pitch = fb->pitches[plane];
2227
2228         return y * pitch + x * cpp;
2229 }
2230
2231 /*
2232  * Add the x/y offsets derived from fb->offsets[] to the user
2233  * specified plane src x/y offsets. The resulting x/y offsets
2234  * specify the start of scanout from the beginning of the gtt mapping.
2235  */
2236 void intel_add_fb_offsets(int *x, int *y,
2237                           const struct intel_plane_state *state,
2238                           int plane)
2239
2240 {
2241         const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2242         unsigned int rotation = state->base.rotation;
2243
2244         if (drm_rotation_90_or_270(rotation)) {
2245                 *x += intel_fb->rotated[plane].x;
2246                 *y += intel_fb->rotated[plane].y;
2247         } else {
2248                 *x += intel_fb->normal[plane].x;
2249                 *y += intel_fb->normal[plane].y;
2250         }
2251 }
2252
2253 /*
2254  * Input tile dimensions and pitch must already be
2255  * rotated to match x and y, and in pixel units.
2256  */
2257 static u32 _intel_adjust_tile_offset(int *x, int *y,
2258                                      unsigned int tile_width,
2259                                      unsigned int tile_height,
2260                                      unsigned int tile_size,
2261                                      unsigned int pitch_tiles,
2262                                      u32 old_offset,
2263                                      u32 new_offset)
2264 {
2265         unsigned int pitch_pixels = pitch_tiles * tile_width;
2266         unsigned int tiles;
2267
2268         WARN_ON(old_offset & (tile_size - 1));
2269         WARN_ON(new_offset & (tile_size - 1));
2270         WARN_ON(new_offset > old_offset);
2271
2272         tiles = (old_offset - new_offset) / tile_size;
2273
2274         *y += tiles / pitch_tiles * tile_height;
2275         *x += tiles % pitch_tiles * tile_width;
2276
2277         /* minimize x in case it got needlessly big */
2278         *y += *x / pitch_pixels * tile_height;
2279         *x %= pitch_pixels;
2280
2281         return new_offset;
2282 }
2283
2284 /*
2285  * Adjust the tile offset by moving the difference into
2286  * the x/y offsets.
2287  */
2288 static u32 intel_adjust_tile_offset(int *x, int *y,
2289                                     const struct intel_plane_state *state, int plane,
2290                                     u32 old_offset, u32 new_offset)
2291 {
2292         const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2293         const struct drm_framebuffer *fb = state->base.fb;
2294         unsigned int cpp = fb->format->cpp[plane];
2295         unsigned int rotation = state->base.rotation;
2296         unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2297
2298         WARN_ON(new_offset > old_offset);
2299
2300         if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2301                 unsigned int tile_size, tile_width, tile_height;
2302                 unsigned int pitch_tiles;
2303
2304                 tile_size = intel_tile_size(dev_priv);
2305                 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2306
2307                 if (drm_rotation_90_or_270(rotation)) {
2308                         pitch_tiles = pitch / tile_height;
2309                         swap(tile_width, tile_height);
2310                 } else {
2311                         pitch_tiles = pitch / (tile_width * cpp);
2312                 }
2313
2314                 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2315                                           tile_size, pitch_tiles,
2316                                           old_offset, new_offset);
2317         } else {
2318                 old_offset += *y * pitch + *x * cpp;
2319
2320                 *y = (old_offset - new_offset) / pitch;
2321                 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2322         }
2323
2324         return new_offset;
2325 }
2326
2327 /*
2328  * Computes the linear offset to the base tile and adjusts
2329  * x, y. bytes per pixel is assumed to be a power-of-two.
2330  *
2331  * In the 90/270 rotated case, x and y are assumed
2332  * to be already rotated to match the rotated GTT view, and
2333  * pitch is the tile_height aligned framebuffer height.
2334  *
2335  * This function is used when computing the derived information
2336  * under intel_framebuffer, so using any of that information
2337  * here is not allowed. Anything under drm_framebuffer can be
2338  * used. This is why the user has to pass in the pitch since it
2339  * is specified in the rotated orientation.
2340  */
2341 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2342                                       int *x, int *y,
2343                                       const struct drm_framebuffer *fb, int plane,
2344                                       unsigned int pitch,
2345                                       unsigned int rotation,
2346                                       u32 alignment)
2347 {
2348         uint64_t fb_modifier = fb->modifier;
2349         unsigned int cpp = fb->format->cpp[plane];
2350         u32 offset, offset_aligned;
2351
2352         if (alignment)
2353                 alignment--;
2354
2355         if (fb_modifier != DRM_FORMAT_MOD_LINEAR) {
2356                 unsigned int tile_size, tile_width, tile_height;
2357                 unsigned int tile_rows, tiles, pitch_tiles;
2358
2359                 tile_size = intel_tile_size(dev_priv);
2360                 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2361
2362                 if (drm_rotation_90_or_270(rotation)) {
2363                         pitch_tiles = pitch / tile_height;
2364                         swap(tile_width, tile_height);
2365                 } else {
2366                         pitch_tiles = pitch / (tile_width * cpp);
2367                 }
2368
2369                 tile_rows = *y / tile_height;
2370                 *y %= tile_height;
2371
2372                 tiles = *x / tile_width;
2373                 *x %= tile_width;
2374
2375                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2376                 offset_aligned = offset & ~alignment;
2377
2378                 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2379                                           tile_size, pitch_tiles,
2380                                           offset, offset_aligned);
2381         } else {
2382                 offset = *y * pitch + *x * cpp;
2383                 offset_aligned = offset & ~alignment;
2384
2385                 *y = (offset & alignment) / pitch;
2386                 *x = ((offset & alignment) - *y * pitch) / cpp;
2387         }
2388
2389         return offset_aligned;
2390 }
2391
2392 u32 intel_compute_tile_offset(int *x, int *y,
2393                               const struct intel_plane_state *state,
2394                               int plane)
2395 {
2396         struct intel_plane *intel_plane = to_intel_plane(state->base.plane);
2397         struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2398         const struct drm_framebuffer *fb = state->base.fb;
2399         unsigned int rotation = state->base.rotation;
2400         int pitch = intel_fb_pitch(fb, plane, rotation);
2401         u32 alignment;
2402
2403         if (intel_plane->id == PLANE_CURSOR)
2404                 alignment = intel_cursor_alignment(dev_priv);
2405         else
2406                 alignment = intel_surf_alignment(fb, plane);
2407
2408         return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2409                                           rotation, alignment);
2410 }
2411
2412 /* Convert the fb->offset[] linear offset into x/y offsets */
2413 static void intel_fb_offset_to_xy(int *x, int *y,
2414                                   const struct drm_framebuffer *fb, int plane)
2415 {
2416         unsigned int cpp = fb->format->cpp[plane];
2417         unsigned int pitch = fb->pitches[plane];
2418         u32 linear_offset = fb->offsets[plane];
2419
2420         *y = linear_offset / pitch;
2421         *x = linear_offset % pitch / cpp;
2422 }
2423
2424 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2425 {
2426         switch (fb_modifier) {
2427         case I915_FORMAT_MOD_X_TILED:
2428                 return I915_TILING_X;
2429         case I915_FORMAT_MOD_Y_TILED:
2430                 return I915_TILING_Y;
2431         default:
2432                 return I915_TILING_NONE;
2433         }
2434 }
2435
2436 static int
2437 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2438                    struct drm_framebuffer *fb)
2439 {
2440         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2441         struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2442         u32 gtt_offset_rotated = 0;
2443         unsigned int max_size = 0;
2444         int i, num_planes = fb->format->num_planes;
2445         unsigned int tile_size = intel_tile_size(dev_priv);
2446
2447         for (i = 0; i < num_planes; i++) {
2448                 unsigned int width, height;
2449                 unsigned int cpp, size;
2450                 u32 offset;
2451                 int x, y;
2452
2453                 cpp = fb->format->cpp[i];
2454                 width = drm_framebuffer_plane_width(fb->width, fb, i);
2455                 height = drm_framebuffer_plane_height(fb->height, fb, i);
2456
2457                 intel_fb_offset_to_xy(&x, &y, fb, i);
2458
2459                 /*
2460                  * The fence (if used) is aligned to the start of the object
2461                  * so having the framebuffer wrap around across the edge of the
2462                  * fenced region doesn't really work. We have no API to configure
2463                  * the fence start offset within the object (nor could we probably
2464                  * on gen2/3). So it's just easier if we just require that the
2465                  * fb layout agrees with the fence layout. We already check that the
2466                  * fb stride matches the fence stride elsewhere.
2467                  */
2468                 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2469                     (x + width) * cpp > fb->pitches[i]) {
2470                         DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2471                                       i, fb->offsets[i]);
2472                         return -EINVAL;
2473                 }
2474
2475                 /*
2476                  * First pixel of the framebuffer from
2477                  * the start of the normal gtt mapping.
2478                  */
2479                 intel_fb->normal[i].x = x;
2480                 intel_fb->normal[i].y = y;
2481
2482                 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2483                                                     fb, i, fb->pitches[i],
2484                                                     DRM_MODE_ROTATE_0, tile_size);
2485                 offset /= tile_size;
2486
2487                 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2488                         unsigned int tile_width, tile_height;
2489                         unsigned int pitch_tiles;
2490                         struct drm_rect r;
2491
2492                         intel_tile_dims(fb, i, &tile_width, &tile_height);
2493
2494                         rot_info->plane[i].offset = offset;
2495                         rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2496                         rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2497                         rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2498
2499                         intel_fb->rotated[i].pitch =
2500                                 rot_info->plane[i].height * tile_height;
2501
2502                         /* how many tiles does this plane need */
2503                         size = rot_info->plane[i].stride * rot_info->plane[i].height;
2504                         /*
2505                          * If the plane isn't horizontally tile aligned,
2506                          * we need one more tile.
2507                          */
2508                         if (x != 0)
2509                                 size++;
2510
2511                         /* rotate the x/y offsets to match the GTT view */
2512                         r.x1 = x;
2513                         r.y1 = y;
2514                         r.x2 = x + width;
2515                         r.y2 = y + height;
2516                         drm_rect_rotate(&r,
2517                                         rot_info->plane[i].width * tile_width,
2518                                         rot_info->plane[i].height * tile_height,
2519                                         DRM_MODE_ROTATE_270);
2520                         x = r.x1;
2521                         y = r.y1;
2522
2523                         /* rotate the tile dimensions to match the GTT view */
2524                         pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2525                         swap(tile_width, tile_height);
2526
2527                         /*
2528                          * We only keep the x/y offsets, so push all of the
2529                          * gtt offset into the x/y offsets.
2530                          */
2531                         _intel_adjust_tile_offset(&x, &y,
2532                                                   tile_width, tile_height,
2533                                                   tile_size, pitch_tiles,
2534                                                   gtt_offset_rotated * tile_size, 0);
2535
2536                         gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2537
2538                         /*
2539                          * First pixel of the framebuffer from
2540                          * the start of the rotated gtt mapping.
2541                          */
2542                         intel_fb->rotated[i].x = x;
2543                         intel_fb->rotated[i].y = y;
2544                 } else {
2545                         size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2546                                             x * cpp, tile_size);
2547                 }
2548
2549                 /* how many tiles in total needed in the bo */
2550                 max_size = max(max_size, offset + size);
2551         }
2552
2553         if (max_size * tile_size > intel_fb->obj->base.size) {
2554                 DRM_DEBUG_KMS("fb too big for bo (need %u bytes, have %zu bytes)\n",
2555                               max_size * tile_size, intel_fb->obj->base.size);
2556                 return -EINVAL;
2557         }
2558
2559         return 0;
2560 }
2561
2562 static int i9xx_format_to_fourcc(int format)
2563 {
2564         switch (format) {
2565         case DISPPLANE_8BPP:
2566                 return DRM_FORMAT_C8;
2567         case DISPPLANE_BGRX555:
2568                 return DRM_FORMAT_XRGB1555;
2569         case DISPPLANE_BGRX565:
2570                 return DRM_FORMAT_RGB565;
2571         default:
2572         case DISPPLANE_BGRX888:
2573                 return DRM_FORMAT_XRGB8888;
2574         case DISPPLANE_RGBX888:
2575                 return DRM_FORMAT_XBGR8888;
2576         case DISPPLANE_BGRX101010:
2577                 return DRM_FORMAT_XRGB2101010;
2578         case DISPPLANE_RGBX101010:
2579                 return DRM_FORMAT_XBGR2101010;
2580         }
2581 }
2582
2583 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2584 {
2585         switch (format) {
2586         case PLANE_CTL_FORMAT_RGB_565:
2587                 return DRM_FORMAT_RGB565;
2588         default:
2589         case PLANE_CTL_FORMAT_XRGB_8888:
2590                 if (rgb_order) {
2591                         if (alpha)
2592                                 return DRM_FORMAT_ABGR8888;
2593                         else
2594                                 return DRM_FORMAT_XBGR8888;
2595                 } else {
2596                         if (alpha)
2597                                 return DRM_FORMAT_ARGB8888;
2598                         else
2599                                 return DRM_FORMAT_XRGB8888;
2600                 }
2601         case PLANE_CTL_FORMAT_XRGB_2101010:
2602                 if (rgb_order)
2603                         return DRM_FORMAT_XBGR2101010;
2604                 else
2605                         return DRM_FORMAT_XRGB2101010;
2606         }
2607 }
2608
2609 static bool
2610 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2611                               struct intel_initial_plane_config *plane_config)
2612 {
2613         struct drm_device *dev = crtc->base.dev;
2614         struct drm_i915_private *dev_priv = to_i915(dev);
2615         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2616         struct drm_i915_gem_object *obj = NULL;
2617         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2618         struct drm_framebuffer *fb = &plane_config->fb->base;
2619         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2620         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2621                                     PAGE_SIZE);
2622
2623         size_aligned -= base_aligned;
2624
2625         if (plane_config->size == 0)
2626                 return false;
2627
2628         /* If the FB is too big, just don't use it since fbdev is not very
2629          * important and we should probably use that space with FBC or other
2630          * features. */
2631         if (size_aligned * 2 > ggtt->stolen_usable_size)
2632                 return false;
2633
2634         mutex_lock(&dev->struct_mutex);
2635         obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
2636                                                              base_aligned,
2637                                                              base_aligned,
2638                                                              size_aligned);
2639         mutex_unlock(&dev->struct_mutex);
2640         if (!obj)
2641                 return false;
2642
2643         if (plane_config->tiling == I915_TILING_X)
2644                 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2645
2646         mode_cmd.pixel_format = fb->format->format;
2647         mode_cmd.width = fb->width;
2648         mode_cmd.height = fb->height;
2649         mode_cmd.pitches[0] = fb->pitches[0];
2650         mode_cmd.modifier[0] = fb->modifier;
2651         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2652
2653         if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
2654                 DRM_DEBUG_KMS("intel fb init failed\n");
2655                 goto out_unref_obj;
2656         }
2657
2658
2659         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2660         return true;
2661
2662 out_unref_obj:
2663         i915_gem_object_put(obj);
2664         return false;
2665 }
2666
2667 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2668 static void
2669 update_state_fb(struct drm_plane *plane)
2670 {
2671         if (plane->fb == plane->state->fb)
2672                 return;
2673
2674         if (plane->state->fb)
2675                 drm_framebuffer_unreference(plane->state->fb);
2676         plane->state->fb = plane->fb;
2677         if (plane->state->fb)
2678                 drm_framebuffer_reference(plane->state->fb);
2679 }
2680
2681 static void
2682 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
2683                         struct intel_plane_state *plane_state,
2684                         bool visible)
2685 {
2686         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2687
2688         plane_state->base.visible = visible;
2689
2690         /* FIXME pre-g4x don't work like this */
2691         if (visible) {
2692                 crtc_state->base.plane_mask |= BIT(drm_plane_index(&plane->base));
2693                 crtc_state->active_planes |= BIT(plane->id);
2694         } else {
2695                 crtc_state->base.plane_mask &= ~BIT(drm_plane_index(&plane->base));
2696                 crtc_state->active_planes &= ~BIT(plane->id);
2697         }
2698
2699         DRM_DEBUG_KMS("%s active planes 0x%x\n",
2700                       crtc_state->base.crtc->name,
2701                       crtc_state->active_planes);
2702 }
2703
2704 static void
2705 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2706                              struct intel_initial_plane_config *plane_config)
2707 {
2708         struct drm_device *dev = intel_crtc->base.dev;
2709         struct drm_i915_private *dev_priv = to_i915(dev);
2710         struct drm_crtc *c;
2711         struct drm_i915_gem_object *obj;
2712         struct drm_plane *primary = intel_crtc->base.primary;
2713         struct drm_plane_state *plane_state = primary->state;
2714         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2715         struct intel_plane *intel_plane = to_intel_plane(primary);
2716         struct intel_plane_state *intel_state =
2717                 to_intel_plane_state(plane_state);
2718         struct drm_framebuffer *fb;
2719
2720         if (!plane_config->fb)
2721                 return;
2722
2723         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2724                 fb = &plane_config->fb->base;
2725                 goto valid_fb;
2726         }
2727
2728         kfree(plane_config->fb);
2729
2730         /*
2731          * Failed to alloc the obj, check to see if we should share
2732          * an fb with another CRTC instead
2733          */
2734         for_each_crtc(dev, c) {
2735                 struct intel_plane_state *state;
2736
2737                 if (c == &intel_crtc->base)
2738                         continue;
2739
2740                 if (!to_intel_crtc(c)->active)
2741                         continue;
2742
2743                 state = to_intel_plane_state(c->primary->state);
2744                 if (!state->vma)
2745                         continue;
2746
2747                 if (intel_plane_ggtt_offset(state) == plane_config->base) {
2748                         fb = c->primary->fb;
2749                         drm_framebuffer_reference(fb);
2750                         goto valid_fb;
2751                 }
2752         }
2753
2754         /*
2755          * We've failed to reconstruct the BIOS FB.  Current display state
2756          * indicates that the primary plane is visible, but has a NULL FB,
2757          * which will lead to problems later if we don't fix it up.  The
2758          * simplest solution is to just disable the primary plane now and
2759          * pretend the BIOS never had it enabled.
2760          */
2761         intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2762                                 to_intel_plane_state(plane_state),
2763                                 false);
2764         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2765         trace_intel_disable_plane(primary, intel_crtc);
2766         intel_plane->disable_plane(intel_plane, intel_crtc);
2767
2768         return;
2769
2770 valid_fb:
2771         mutex_lock(&dev->struct_mutex);
2772         intel_state->vma =
2773                 intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2774         mutex_unlock(&dev->struct_mutex);
2775         if (IS_ERR(intel_state->vma)) {
2776                 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2777                           intel_crtc->pipe, PTR_ERR(intel_state->vma));
2778
2779                 intel_state->vma = NULL;
2780                 drm_framebuffer_unreference(fb);
2781                 return;
2782         }
2783
2784         plane_state->src_x = 0;
2785         plane_state->src_y = 0;
2786         plane_state->src_w = fb->width << 16;
2787         plane_state->src_h = fb->height << 16;
2788
2789         plane_state->crtc_x = 0;
2790         plane_state->crtc_y = 0;
2791         plane_state->crtc_w = fb->width;
2792         plane_state->crtc_h = fb->height;
2793
2794         intel_state->base.src = drm_plane_state_src(plane_state);
2795         intel_state->base.dst = drm_plane_state_dest(plane_state);
2796
2797         obj = intel_fb_obj(fb);
2798         if (i915_gem_object_is_tiled(obj))
2799                 dev_priv->preserve_bios_swizzle = true;
2800
2801         drm_framebuffer_reference(fb);
2802         primary->fb = primary->state->fb = fb;
2803         primary->crtc = primary->state->crtc = &intel_crtc->base;
2804
2805         intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2806                                 to_intel_plane_state(plane_state),
2807                                 true);
2808
2809         atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2810                   &obj->frontbuffer_bits);
2811 }
2812
2813 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2814                                unsigned int rotation)
2815 {
2816         int cpp = fb->format->cpp[plane];
2817
2818         switch (fb->modifier) {
2819         case DRM_FORMAT_MOD_LINEAR:
2820         case I915_FORMAT_MOD_X_TILED:
2821                 switch (cpp) {
2822                 case 8:
2823                         return 4096;
2824                 case 4:
2825                 case 2:
2826                 case 1:
2827                         return 8192;
2828                 default:
2829                         MISSING_CASE(cpp);
2830                         break;
2831                 }
2832                 break;
2833         case I915_FORMAT_MOD_Y_TILED:
2834         case I915_FORMAT_MOD_Yf_TILED:
2835                 switch (cpp) {
2836                 case 8:
2837                         return 2048;
2838                 case 4:
2839                         return 4096;
2840                 case 2:
2841                 case 1:
2842                         return 8192;
2843                 default:
2844                         MISSING_CASE(cpp);
2845                         break;
2846                 }
2847                 break;
2848         default:
2849                 MISSING_CASE(fb->modifier);
2850         }
2851
2852         return 2048;
2853 }
2854
2855 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2856 {
2857         const struct drm_framebuffer *fb = plane_state->base.fb;
2858         unsigned int rotation = plane_state->base.rotation;
2859         int x = plane_state->base.src.x1 >> 16;
2860         int y = plane_state->base.src.y1 >> 16;
2861         int w = drm_rect_width(&plane_state->base.src) >> 16;
2862         int h = drm_rect_height(&plane_state->base.src) >> 16;
2863         int max_width = skl_max_plane_width(fb, 0, rotation);
2864         int max_height = 4096;
2865         u32 alignment, offset, aux_offset = plane_state->aux.offset;
2866
2867         if (w > max_width || h > max_height) {
2868                 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2869                               w, h, max_width, max_height);
2870                 return -EINVAL;
2871         }
2872
2873         intel_add_fb_offsets(&x, &y, plane_state, 0);
2874         offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2875         alignment = intel_surf_alignment(fb, 0);
2876
2877         /*
2878          * AUX surface offset is specified as the distance from the
2879          * main surface offset, and it must be non-negative. Make
2880          * sure that is what we will get.
2881          */
2882         if (offset > aux_offset)
2883                 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2884                                                   offset, aux_offset & ~(alignment - 1));
2885
2886         /*
2887          * When using an X-tiled surface, the plane blows up
2888          * if the x offset + width exceed the stride.
2889          *
2890          * TODO: linear and Y-tiled seem fine, Yf untested,
2891          */
2892         if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2893                 int cpp = fb->format->cpp[0];
2894
2895                 while ((x + w) * cpp > fb->pitches[0]) {
2896                         if (offset == 0) {
2897                                 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2898                                 return -EINVAL;
2899                         }
2900
2901                         offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2902                                                           offset, offset - alignment);
2903                 }
2904         }
2905
2906         plane_state->main.offset = offset;
2907         plane_state->main.x = x;
2908         plane_state->main.y = y;
2909
2910         return 0;
2911 }
2912
2913 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2914 {
2915         const struct drm_framebuffer *fb = plane_state->base.fb;
2916         unsigned int rotation = plane_state->base.rotation;
2917         int max_width = skl_max_plane_width(fb, 1, rotation);
2918         int max_height = 4096;
2919         int x = plane_state->base.src.x1 >> 17;
2920         int y = plane_state->base.src.y1 >> 17;
2921         int w = drm_rect_width(&plane_state->base.src) >> 17;
2922         int h = drm_rect_height(&plane_state->base.src) >> 17;
2923         u32 offset;
2924
2925         intel_add_fb_offsets(&x, &y, plane_state, 1);
2926         offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2927
2928         /* FIXME not quite sure how/if these apply to the chroma plane */
2929         if (w > max_width || h > max_height) {
2930                 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2931                               w, h, max_width, max_height);
2932                 return -EINVAL;
2933         }
2934
2935         plane_state->aux.offset = offset;
2936         plane_state->aux.x = x;
2937         plane_state->aux.y = y;
2938
2939         return 0;
2940 }
2941
2942 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2943 {
2944         const struct drm_framebuffer *fb = plane_state->base.fb;
2945         unsigned int rotation = plane_state->base.rotation;
2946         int ret;
2947
2948         if (!plane_state->base.visible)
2949                 return 0;
2950
2951         /* Rotate src coordinates to match rotated GTT view */
2952         if (drm_rotation_90_or_270(rotation))
2953                 drm_rect_rotate(&plane_state->base.src,
2954                                 fb->width << 16, fb->height << 16,
2955                                 DRM_MODE_ROTATE_270);
2956
2957         /*
2958          * Handle the AUX surface first since
2959          * the main surface setup depends on it.
2960          */
2961         if (fb->format->format == DRM_FORMAT_NV12) {
2962                 ret = skl_check_nv12_aux_surface(plane_state);
2963                 if (ret)
2964                         return ret;
2965         } else {
2966                 plane_state->aux.offset = ~0xfff;
2967                 plane_state->aux.x = 0;
2968                 plane_state->aux.y = 0;
2969         }
2970
2971         ret = skl_check_main_surface(plane_state);
2972         if (ret)
2973                 return ret;
2974
2975         return 0;
2976 }
2977
2978 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
2979                           const struct intel_plane_state *plane_state)
2980 {
2981         struct drm_i915_private *dev_priv =
2982                 to_i915(plane_state->base.plane->dev);
2983         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2984         const struct drm_framebuffer *fb = plane_state->base.fb;
2985         unsigned int rotation = plane_state->base.rotation;
2986         u32 dspcntr;
2987
2988         dspcntr = DISPLAY_PLANE_ENABLE | DISPPLANE_GAMMA_ENABLE;
2989
2990         if (IS_G4X(dev_priv) || IS_GEN5(dev_priv) ||
2991             IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
2992                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2993
2994         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2995                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2996
2997         if (INTEL_GEN(dev_priv) < 4)
2998                 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
2999
3000         switch (fb->format->format) {
3001         case DRM_FORMAT_C8:
3002                 dspcntr |= DISPPLANE_8BPP;
3003                 break;
3004         case DRM_FORMAT_XRGB1555:
3005                 dspcntr |= DISPPLANE_BGRX555;
3006                 break;
3007         case DRM_FORMAT_RGB565:
3008                 dspcntr |= DISPPLANE_BGRX565;
3009                 break;
3010         case DRM_FORMAT_XRGB8888:
3011                 dspcntr |= DISPPLANE_BGRX888;
3012                 break;
3013         case DRM_FORMAT_XBGR8888:
3014                 dspcntr |= DISPPLANE_RGBX888;
3015                 break;
3016         case DRM_FORMAT_XRGB2101010:
3017                 dspcntr |= DISPPLANE_BGRX101010;
3018                 break;
3019         case DRM_FORMAT_XBGR2101010:
3020                 dspcntr |= DISPPLANE_RGBX101010;
3021                 break;
3022         default:
3023                 MISSING_CASE(fb->format->format);
3024                 return 0;
3025         }
3026
3027         if (INTEL_GEN(dev_priv) >= 4 &&
3028             fb->modifier == I915_FORMAT_MOD_X_TILED)
3029                 dspcntr |= DISPPLANE_TILED;
3030
3031         if (rotation & DRM_MODE_ROTATE_180)
3032                 dspcntr |= DISPPLANE_ROTATE_180;
3033
3034         if (rotation & DRM_MODE_REFLECT_X)
3035                 dspcntr |= DISPPLANE_MIRROR;
3036
3037         return dspcntr;
3038 }
3039
3040 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
3041 {
3042         struct drm_i915_private *dev_priv =
3043                 to_i915(plane_state->base.plane->dev);
3044         int src_x = plane_state->base.src.x1 >> 16;
3045         int src_y = plane_state->base.src.y1 >> 16;
3046         u32 offset;
3047
3048         intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
3049
3050         if (INTEL_GEN(dev_priv) >= 4)
3051                 offset = intel_compute_tile_offset(&src_x, &src_y,
3052                                                    plane_state, 0);
3053         else
3054                 offset = 0;
3055
3056         /* HSW/BDW do this automagically in hardware */
3057         if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
3058                 unsigned int rotation = plane_state->base.rotation;
3059                 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3060                 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3061
3062                 if (rotation & DRM_MODE_ROTATE_180) {
3063                         src_x += src_w - 1;
3064                         src_y += src_h - 1;
3065                 } else if (rotation & DRM_MODE_REFLECT_X) {
3066                         src_x += src_w - 1;
3067                 }
3068         }
3069
3070         plane_state->main.offset = offset;
3071         plane_state->main.x = src_x;
3072         plane_state->main.y = src_y;
3073
3074         return 0;
3075 }
3076
3077 static void i9xx_update_primary_plane(struct intel_plane *primary,
3078                                       const struct intel_crtc_state *crtc_state,
3079                                       const struct intel_plane_state *plane_state)
3080 {
3081         struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3082         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3083         const struct drm_framebuffer *fb = plane_state->base.fb;
3084         enum plane plane = primary->plane;
3085         u32 linear_offset;
3086         u32 dspcntr = plane_state->ctl;
3087         i915_reg_t reg = DSPCNTR(plane);
3088         int x = plane_state->main.x;
3089         int y = plane_state->main.y;
3090         unsigned long irqflags;
3091
3092         linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3093
3094         if (INTEL_GEN(dev_priv) >= 4)
3095                 crtc->dspaddr_offset = plane_state->main.offset;
3096         else
3097                 crtc->dspaddr_offset = linear_offset;
3098
3099         crtc->adjusted_x = x;
3100         crtc->adjusted_y = y;
3101
3102         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3103
3104         if (INTEL_GEN(dev_priv) < 4) {
3105                 /* pipesrc and dspsize control the size that is scaled from,
3106                  * which should always be the user's requested size.
3107                  */
3108                 I915_WRITE_FW(DSPSIZE(plane),
3109                               ((crtc_state->pipe_src_h - 1) << 16) |
3110                               (crtc_state->pipe_src_w - 1));
3111                 I915_WRITE_FW(DSPPOS(plane), 0);
3112         } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3113                 I915_WRITE_FW(PRIMSIZE(plane),
3114                               ((crtc_state->pipe_src_h - 1) << 16) |
3115                               (crtc_state->pipe_src_w - 1));
3116                 I915_WRITE_FW(PRIMPOS(plane), 0);
3117                 I915_WRITE_FW(PRIMCNSTALPHA(plane), 0);
3118         }
3119
3120         I915_WRITE_FW(reg, dspcntr);
3121
3122         I915_WRITE_FW(DSPSTRIDE(plane), fb->pitches[0]);
3123         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3124                 I915_WRITE_FW(DSPSURF(plane),
3125                               intel_plane_ggtt_offset(plane_state) +
3126                               crtc->dspaddr_offset);
3127                 I915_WRITE_FW(DSPOFFSET(plane), (y << 16) | x);
3128         } else if (INTEL_GEN(dev_priv) >= 4) {
3129                 I915_WRITE_FW(DSPSURF(plane),
3130                               intel_plane_ggtt_offset(plane_state) +
3131                               crtc->dspaddr_offset);
3132                 I915_WRITE_FW(DSPTILEOFF(plane), (y << 16) | x);
3133                 I915_WRITE_FW(DSPLINOFF(plane), linear_offset);
3134         } else {
3135                 I915_WRITE_FW(DSPADDR(plane),
3136                               intel_plane_ggtt_offset(plane_state) +
3137                               crtc->dspaddr_offset);
3138         }
3139         POSTING_READ_FW(reg);
3140
3141         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3142 }
3143
3144 static void i9xx_disable_primary_plane(struct intel_plane *primary,
3145                                        struct intel_crtc *crtc)
3146 {
3147         struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3148         enum plane plane = primary->plane;
3149         unsigned long irqflags;
3150
3151         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3152
3153         I915_WRITE_FW(DSPCNTR(plane), 0);
3154         if (INTEL_INFO(dev_priv)->gen >= 4)
3155                 I915_WRITE_FW(DSPSURF(plane), 0);
3156         else
3157                 I915_WRITE_FW(DSPADDR(plane), 0);
3158         POSTING_READ_FW(DSPCNTR(plane));
3159
3160         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3161 }
3162
3163 static u32
3164 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int plane)
3165 {
3166         if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
3167                 return 64;
3168         else
3169                 return intel_tile_width_bytes(fb, plane);
3170 }
3171
3172 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3173 {
3174         struct drm_device *dev = intel_crtc->base.dev;
3175         struct drm_i915_private *dev_priv = to_i915(dev);
3176
3177         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3178         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3179         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3180 }
3181
3182 /*
3183  * This function detaches (aka. unbinds) unused scalers in hardware
3184  */
3185 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3186 {
3187         struct intel_crtc_scaler_state *scaler_state;
3188         int i;
3189
3190         scaler_state = &intel_crtc->config->scaler_state;
3191
3192         /* loop through and disable scalers that aren't in use */
3193         for (i = 0; i < intel_crtc->num_scalers; i++) {
3194                 if (!scaler_state->scalers[i].in_use)
3195                         skl_detach_scaler(intel_crtc, i);
3196         }
3197 }
3198
3199 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3200                      unsigned int rotation)
3201 {
3202         u32 stride;
3203
3204         if (plane >= fb->format->num_planes)
3205                 return 0;
3206
3207         stride = intel_fb_pitch(fb, plane, rotation);
3208
3209         /*
3210          * The stride is either expressed as a multiple of 64 bytes chunks for
3211          * linear buffers or in number of tiles for tiled buffers.
3212          */
3213         if (drm_rotation_90_or_270(rotation))
3214                 stride /= intel_tile_height(fb, plane);
3215         else
3216                 stride /= intel_fb_stride_alignment(fb, plane);
3217
3218         return stride;
3219 }
3220
3221 static u32 skl_plane_ctl_format(uint32_t pixel_format)
3222 {
3223         switch (pixel_format) {
3224         case DRM_FORMAT_C8:
3225                 return PLANE_CTL_FORMAT_INDEXED;
3226         case DRM_FORMAT_RGB565:
3227                 return PLANE_CTL_FORMAT_RGB_565;
3228         case DRM_FORMAT_XBGR8888:
3229                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3230         case DRM_FORMAT_XRGB8888:
3231                 return PLANE_CTL_FORMAT_XRGB_8888;
3232         /*
3233          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3234          * to be already pre-multiplied. We need to add a knob (or a different
3235          * DRM_FORMAT) for user-space to configure that.
3236          */
3237         case DRM_FORMAT_ABGR8888:
3238                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3239                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3240         case DRM_FORMAT_ARGB8888:
3241                 return PLANE_CTL_FORMAT_XRGB_8888 |
3242                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3243         case DRM_FORMAT_XRGB2101010:
3244                 return PLANE_CTL_FORMAT_XRGB_2101010;
3245         case DRM_FORMAT_XBGR2101010:
3246                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3247         case DRM_FORMAT_YUYV:
3248                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3249         case DRM_FORMAT_YVYU:
3250                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3251         case DRM_FORMAT_UYVY:
3252                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3253         case DRM_FORMAT_VYUY:
3254                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3255         default:
3256                 MISSING_CASE(pixel_format);
3257         }
3258
3259         return 0;
3260 }
3261
3262 static u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3263 {
3264         switch (fb_modifier) {
3265         case DRM_FORMAT_MOD_LINEAR:
3266                 break;
3267         case I915_FORMAT_MOD_X_TILED:
3268                 return PLANE_CTL_TILED_X;
3269         case I915_FORMAT_MOD_Y_TILED:
3270                 return PLANE_CTL_TILED_Y;
3271         case I915_FORMAT_MOD_Yf_TILED:
3272                 return PLANE_CTL_TILED_YF;
3273         default:
3274                 MISSING_CASE(fb_modifier);
3275         }
3276
3277         return 0;
3278 }
3279
3280 static u32 skl_plane_ctl_rotation(unsigned int rotation)
3281 {
3282         switch (rotation) {
3283         case DRM_MODE_ROTATE_0:
3284                 break;
3285         /*
3286          * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
3287          * while i915 HW rotation is clockwise, thats why this swapping.
3288          */
3289         case DRM_MODE_ROTATE_90:
3290                 return PLANE_CTL_ROTATE_270;
3291         case DRM_MODE_ROTATE_180:
3292                 return PLANE_CTL_ROTATE_180;
3293         case DRM_MODE_ROTATE_270:
3294                 return PLANE_CTL_ROTATE_90;
3295         default:
3296                 MISSING_CASE(rotation);
3297         }
3298
3299         return 0;
3300 }
3301
3302 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
3303                   const struct intel_plane_state *plane_state)
3304 {
3305         struct drm_i915_private *dev_priv =
3306                 to_i915(plane_state->base.plane->dev);
3307         const struct drm_framebuffer *fb = plane_state->base.fb;
3308         unsigned int rotation = plane_state->base.rotation;
3309         const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
3310         u32 plane_ctl;
3311
3312         plane_ctl = PLANE_CTL_ENABLE;
3313
3314         if (!IS_GEMINILAKE(dev_priv)) {
3315                 plane_ctl |=
3316                         PLANE_CTL_PIPE_GAMMA_ENABLE |
3317                         PLANE_CTL_PIPE_CSC_ENABLE |
3318                         PLANE_CTL_PLANE_GAMMA_DISABLE;
3319         }
3320
3321         plane_ctl |= skl_plane_ctl_format(fb->format->format);
3322         plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3323         plane_ctl |= skl_plane_ctl_rotation(rotation);
3324
3325         if (key->flags & I915_SET_COLORKEY_DESTINATION)
3326                 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
3327         else if (key->flags & I915_SET_COLORKEY_SOURCE)
3328                 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
3329
3330         return plane_ctl;
3331 }
3332
3333 static void skylake_update_primary_plane(struct intel_plane *plane,
3334                                          const struct intel_crtc_state *crtc_state,
3335                                          const struct intel_plane_state *plane_state)
3336 {
3337         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3338         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3339         const struct drm_framebuffer *fb = plane_state->base.fb;
3340         enum plane_id plane_id = plane->id;
3341         enum pipe pipe = plane->pipe;
3342         u32 plane_ctl = plane_state->ctl;
3343         unsigned int rotation = plane_state->base.rotation;
3344         u32 stride = skl_plane_stride(fb, 0, rotation);
3345         u32 surf_addr = plane_state->main.offset;
3346         int scaler_id = plane_state->scaler_id;
3347         int src_x = plane_state->main.x;
3348         int src_y = plane_state->main.y;
3349         int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3350         int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3351         int dst_x = plane_state->base.dst.x1;
3352         int dst_y = plane_state->base.dst.y1;
3353         int dst_w = drm_rect_width(&plane_state->base.dst);
3354         int dst_h = drm_rect_height(&plane_state->base.dst);
3355         unsigned long irqflags;
3356
3357         /* Sizes are 0 based */
3358         src_w--;
3359         src_h--;
3360         dst_w--;
3361         dst_h--;
3362
3363         crtc->dspaddr_offset = surf_addr;
3364
3365         crtc->adjusted_x = src_x;
3366         crtc->adjusted_y = src_y;
3367
3368         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3369
3370         if (IS_GEMINILAKE(dev_priv)) {
3371                 I915_WRITE_FW(PLANE_COLOR_CTL(pipe, plane_id),
3372                               PLANE_COLOR_PIPE_GAMMA_ENABLE |
3373                               PLANE_COLOR_PIPE_CSC_ENABLE |
3374                               PLANE_COLOR_PLANE_GAMMA_DISABLE);
3375         }
3376
3377         I915_WRITE_FW(PLANE_CTL(pipe, plane_id), plane_ctl);
3378         I915_WRITE_FW(PLANE_OFFSET(pipe, plane_id), (src_y << 16) | src_x);
3379         I915_WRITE_FW(PLANE_STRIDE(pipe, plane_id), stride);
3380         I915_WRITE_FW(PLANE_SIZE(pipe, plane_id), (src_h << 16) | src_w);
3381
3382         if (scaler_id >= 0) {
3383                 uint32_t ps_ctrl = 0;
3384
3385                 WARN_ON(!dst_w || !dst_h);
3386                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(plane_id) |
3387                         crtc_state->scaler_state.scalers[scaler_id].mode;
3388                 I915_WRITE_FW(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3389                 I915_WRITE_FW(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3390                 I915_WRITE_FW(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3391                 I915_WRITE_FW(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3392                 I915_WRITE_FW(PLANE_POS(pipe, plane_id), 0);
3393         } else {
3394                 I915_WRITE_FW(PLANE_POS(pipe, plane_id), (dst_y << 16) | dst_x);
3395         }
3396
3397         I915_WRITE_FW(PLANE_SURF(pipe, plane_id),
3398                       intel_plane_ggtt_offset(plane_state) + surf_addr);
3399
3400         POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3401
3402         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3403 }
3404
3405 static void skylake_disable_primary_plane(struct intel_plane *primary,
3406                                           struct intel_crtc *crtc)
3407 {
3408         struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3409         enum plane_id plane_id = primary->id;
3410         enum pipe pipe = primary->pipe;
3411         unsigned long irqflags;
3412
3413         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3414
3415         I915_WRITE_FW(PLANE_CTL(pipe, plane_id), 0);
3416         I915_WRITE_FW(PLANE_SURF(pipe, plane_id), 0);
3417         POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3418
3419         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3420 }
3421
3422 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3423 {
3424         struct intel_crtc *crtc;
3425
3426         for_each_intel_crtc(&dev_priv->drm, crtc)
3427                 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3428 }
3429
3430 static void intel_update_primary_planes(struct drm_device *dev)
3431 {
3432         struct drm_crtc *crtc;
3433
3434         for_each_crtc(dev, crtc) {
3435                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3436                 struct intel_plane_state *plane_state =
3437                         to_intel_plane_state(plane->base.state);
3438
3439                 if (plane_state->base.visible) {
3440                         trace_intel_update_plane(&plane->base,
3441                                                  to_intel_crtc(crtc));
3442
3443                         plane->update_plane(plane,
3444                                             to_intel_crtc_state(crtc->state),
3445                                             plane_state);
3446                 }
3447         }
3448 }
3449
3450 static int
3451 __intel_display_resume(struct drm_device *dev,
3452                        struct drm_atomic_state *state,
3453                        struct drm_modeset_acquire_ctx *ctx)
3454 {
3455         struct drm_crtc_state *crtc_state;
3456         struct drm_crtc *crtc;
3457         int i, ret;
3458
3459         intel_modeset_setup_hw_state(dev, ctx);
3460         i915_redisable_vga(to_i915(dev));
3461
3462         if (!state)
3463                 return 0;
3464
3465         /*
3466          * We've duplicated the state, pointers to the old state are invalid.
3467          *
3468          * Don't attempt to use the old state until we commit the duplicated state.
3469          */
3470         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
3471                 /*
3472                  * Force recalculation even if we restore
3473                  * current state. With fast modeset this may not result
3474                  * in a modeset when the state is compatible.
3475                  */
3476                 crtc_state->mode_changed = true;
3477         }
3478
3479         /* ignore any reset values/BIOS leftovers in the WM registers */
3480         if (!HAS_GMCH_DISPLAY(to_i915(dev)))
3481                 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3482
3483         ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
3484
3485         WARN_ON(ret == -EDEADLK);
3486         return ret;
3487 }
3488
3489 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3490 {
3491         return intel_has_gpu_reset(dev_priv) &&
3492                 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3493 }
3494
3495 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3496 {
3497         struct drm_device *dev = &dev_priv->drm;
3498         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3499         struct drm_atomic_state *state;
3500         int ret;
3501
3502         /*
3503          * Need mode_config.mutex so that we don't
3504          * trample ongoing ->detect() and whatnot.
3505          */
3506         mutex_lock(&dev->mode_config.mutex);
3507         drm_modeset_acquire_init(ctx, 0);
3508         while (1) {
3509                 ret = drm_modeset_lock_all_ctx(dev, ctx);
3510                 if (ret != -EDEADLK)
3511                         break;
3512
3513                 drm_modeset_backoff(ctx);
3514         }
3515
3516         /* reset doesn't touch the display, but flips might get nuked anyway, */
3517         if (!i915.force_reset_modeset_test &&
3518             !gpu_reset_clobbers_display(dev_priv))
3519                 return;
3520
3521         /*
3522          * Disabling the crtcs gracefully seems nicer. Also the
3523          * g33 docs say we should at least disable all the planes.
3524          */
3525         state = drm_atomic_helper_duplicate_state(dev, ctx);
3526         if (IS_ERR(state)) {
3527                 ret = PTR_ERR(state);
3528                 DRM_ERROR("Duplicating state failed with %i\n", ret);
3529                 return;
3530         }
3531
3532         ret = drm_atomic_helper_disable_all(dev, ctx);
3533         if (ret) {
3534                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3535                 drm_atomic_state_put(state);
3536                 return;
3537         }
3538
3539         dev_priv->modeset_restore_state = state;
3540         state->acquire_ctx = ctx;
3541 }
3542
3543 void intel_finish_reset(struct drm_i915_private *dev_priv)
3544 {
3545         struct drm_device *dev = &dev_priv->drm;
3546         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3547         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3548         int ret;
3549
3550         /*
3551          * Flips in the rings will be nuked by the reset,
3552          * so complete all pending flips so that user space
3553          * will get its events and not get stuck.
3554          */
3555         intel_complete_page_flips(dev_priv);
3556
3557         dev_priv->modeset_restore_state = NULL;
3558
3559         /* reset doesn't touch the display */
3560         if (!gpu_reset_clobbers_display(dev_priv)) {
3561                 if (!state) {
3562                         /*
3563                          * Flips in the rings have been nuked by the reset,
3564                          * so update the base address of all primary
3565                          * planes to the the last fb to make sure we're
3566                          * showing the correct fb after a reset.
3567                          *
3568                          * FIXME: Atomic will make this obsolete since we won't schedule
3569                          * CS-based flips (which might get lost in gpu resets) any more.
3570                          */
3571                         intel_update_primary_planes(dev);
3572                 } else {
3573                         ret = __intel_display_resume(dev, state, ctx);
3574                         if (ret)
3575                                 DRM_ERROR("Restoring old state failed with %i\n", ret);
3576                 }
3577         } else {
3578                 /*
3579                  * The display has been reset as well,
3580                  * so need a full re-initialization.
3581                  */
3582                 intel_runtime_pm_disable_interrupts(dev_priv);
3583                 intel_runtime_pm_enable_interrupts(dev_priv);
3584
3585                 intel_pps_unlock_regs_wa(dev_priv);
3586                 intel_modeset_init_hw(dev);
3587
3588                 spin_lock_irq(&dev_priv->irq_lock);
3589                 if (dev_priv->display.hpd_irq_setup)
3590                         dev_priv->display.hpd_irq_setup(dev_priv);
3591                 spin_unlock_irq(&dev_priv->irq_lock);
3592
3593                 ret = __intel_display_resume(dev, state, ctx);
3594                 if (ret)
3595                         DRM_ERROR("Restoring old state failed with %i\n", ret);
3596
3597                 intel_hpd_init(dev_priv);
3598         }
3599
3600         if (state)
3601                 drm_atomic_state_put(state);
3602         drm_modeset_drop_locks(ctx);
3603         drm_modeset_acquire_fini(ctx);
3604         mutex_unlock(&dev->mode_config.mutex);
3605 }
3606
3607 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3608 {
3609         struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3610
3611         if (i915_reset_backoff(error))
3612                 return true;
3613
3614         if (crtc->reset_count != i915_reset_count(error))
3615                 return true;
3616
3617         return false;
3618 }
3619
3620 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3621 {
3622         struct drm_device *dev = crtc->dev;
3623         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3624         bool pending;
3625
3626         if (abort_flip_on_reset(intel_crtc))
3627                 return false;
3628
3629         spin_lock_irq(&dev->event_lock);
3630         pending = to_intel_crtc(crtc)->flip_work != NULL;
3631         spin_unlock_irq(&dev->event_lock);
3632
3633         return pending;
3634 }
3635
3636 static void intel_update_pipe_config(struct intel_crtc *crtc,
3637                                      struct intel_crtc_state *old_crtc_state)
3638 {
3639         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3640         struct intel_crtc_state *pipe_config =
3641                 to_intel_crtc_state(crtc->base.state);
3642
3643         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3644         crtc->base.mode = crtc->base.state->mode;
3645
3646         /*
3647          * Update pipe size and adjust fitter if needed: the reason for this is
3648          * that in compute_mode_changes we check the native mode (not the pfit
3649          * mode) to see if we can flip rather than do a full mode set. In the
3650          * fastboot case, we'll flip, but if we don't update the pipesrc and
3651          * pfit state, we'll end up with a big fb scanned out into the wrong
3652          * sized surface.
3653          */
3654
3655         I915_WRITE(PIPESRC(crtc->pipe),
3656                    ((pipe_config->pipe_src_w - 1) << 16) |
3657                    (pipe_config->pipe_src_h - 1));
3658
3659         /* on skylake this is done by detaching scalers */
3660         if (INTEL_GEN(dev_priv) >= 9) {
3661                 skl_detach_scalers(crtc);
3662
3663                 if (pipe_config->pch_pfit.enabled)
3664                         skylake_pfit_enable(crtc);
3665         } else if (HAS_PCH_SPLIT(dev_priv)) {
3666                 if (pipe_config->pch_pfit.enabled)
3667                         ironlake_pfit_enable(crtc);
3668                 else if (old_crtc_state->pch_pfit.enabled)
3669                         ironlake_pfit_disable(crtc, true);
3670         }
3671 }
3672
3673 static void intel_fdi_normal_train(struct intel_crtc *crtc)
3674 {
3675         struct drm_device *dev = crtc->base.dev;
3676         struct drm_i915_private *dev_priv = to_i915(dev);
3677         int pipe = crtc->pipe;
3678         i915_reg_t reg;
3679         u32 temp;
3680
3681         /* enable normal train */
3682         reg = FDI_TX_CTL(pipe);
3683         temp = I915_READ(reg);
3684         if (IS_IVYBRIDGE(dev_priv)) {
3685                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3686                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3687         } else {
3688                 temp &= ~FDI_LINK_TRAIN_NONE;
3689                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3690         }
3691         I915_WRITE(reg, temp);
3692
3693         reg = FDI_RX_CTL(pipe);
3694         temp = I915_READ(reg);
3695         if (HAS_PCH_CPT(dev_priv)) {
3696                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3697                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3698         } else {
3699                 temp &= ~FDI_LINK_TRAIN_NONE;
3700                 temp |= FDI_LINK_TRAIN_NONE;
3701         }
3702         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3703
3704         /* wait one idle pattern time */
3705         POSTING_READ(reg);
3706         udelay(1000);
3707
3708         /* IVB wants error correction enabled */
3709         if (IS_IVYBRIDGE(dev_priv))
3710                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3711                            FDI_FE_ERRC_ENABLE);
3712 }
3713
3714 /* The FDI link training functions for ILK/Ibexpeak. */
3715 static void ironlake_fdi_link_train(struct intel_crtc *crtc,
3716                                     const struct intel_crtc_state *crtc_state)
3717 {
3718         struct drm_device *dev = crtc->base.dev;
3719         struct drm_i915_private *dev_priv = to_i915(dev);
3720         int pipe = crtc->pipe;
3721         i915_reg_t reg;
3722         u32 temp, tries;
3723
3724         /* FDI needs bits from pipe first */
3725         assert_pipe_enabled(dev_priv, pipe);
3726
3727         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3728            for train result */
3729         reg = FDI_RX_IMR(pipe);
3730         temp = I915_READ(reg);
3731         temp &= ~FDI_RX_SYMBOL_LOCK;
3732         temp &= ~FDI_RX_BIT_LOCK;
3733         I915_WRITE(reg, temp);
3734         I915_READ(reg);
3735         udelay(150);
3736
3737         /* enable CPU FDI TX and PCH FDI RX */
3738         reg = FDI_TX_CTL(pipe);
3739         temp = I915_READ(reg);
3740         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3741         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3742         temp &= ~FDI_LINK_TRAIN_NONE;
3743         temp |= FDI_LINK_TRAIN_PATTERN_1;
3744         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3745
3746         reg = FDI_RX_CTL(pipe);
3747         temp = I915_READ(reg);
3748         temp &= ~FDI_LINK_TRAIN_NONE;
3749         temp |= FDI_LINK_TRAIN_PATTERN_1;
3750         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3751
3752         POSTING_READ(reg);
3753         udelay(150);
3754
3755         /* Ironlake workaround, enable clock pointer after FDI enable*/
3756         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3757         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3758                    FDI_RX_PHASE_SYNC_POINTER_EN);
3759
3760         reg = FDI_RX_IIR(pipe);
3761         for (tries = 0; tries < 5; tries++) {
3762                 temp = I915_READ(reg);
3763                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3764
3765                 if ((temp & FDI_RX_BIT_LOCK)) {
3766                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3767                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3768                         break;
3769                 }
3770         }
3771         if (tries == 5)
3772                 DRM_ERROR("FDI train 1 fail!\n");
3773
3774         /* Train 2 */
3775         reg = FDI_TX_CTL(pipe);
3776         temp = I915_READ(reg);
3777         temp &= ~FDI_LINK_TRAIN_NONE;
3778         temp |= FDI_LINK_TRAIN_PATTERN_2;
3779         I915_WRITE(reg, temp);
3780
3781         reg = FDI_RX_CTL(pipe);
3782         temp = I915_READ(reg);
3783         temp &= ~FDI_LINK_TRAIN_NONE;
3784         temp |= FDI_LINK_TRAIN_PATTERN_2;
3785         I915_WRITE(reg, temp);
3786
3787         POSTING_READ(reg);
3788         udelay(150);
3789
3790         reg = FDI_RX_IIR(pipe);
3791         for (tries = 0; tries < 5; tries++) {
3792                 temp = I915_READ(reg);
3793                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3794
3795                 if (temp & FDI_RX_SYMBOL_LOCK) {
3796                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3797                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3798                         break;
3799                 }
3800         }
3801         if (tries == 5)
3802                 DRM_ERROR("FDI train 2 fail!\n");
3803
3804         DRM_DEBUG_KMS("FDI train done\n");
3805
3806 }
3807
3808 static const int snb_b_fdi_train_param[] = {
3809         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3810         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3811         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3812         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3813 };
3814
3815 /* The FDI link training functions for SNB/Cougarpoint. */
3816 static void gen6_fdi_link_train(struct intel_crtc *crtc,
3817                                 const struct intel_crtc_state *crtc_state)
3818 {
3819         struct drm_device *dev = crtc->base.dev;
3820         struct drm_i915_private *dev_priv = to_i915(dev);
3821         int pipe = crtc->pipe;
3822         i915_reg_t reg;
3823         u32 temp, i, retry;
3824
3825         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3826            for train result */
3827         reg = FDI_RX_IMR(pipe);
3828         temp = I915_READ(reg);
3829         temp &= ~FDI_RX_SYMBOL_LOCK;
3830         temp &= ~FDI_RX_BIT_LOCK;
3831         I915_WRITE(reg, temp);
3832
3833         POSTING_READ(reg);
3834         udelay(150);
3835
3836         /* enable CPU FDI TX and PCH FDI RX */
3837         reg = FDI_TX_CTL(pipe);
3838         temp = I915_READ(reg);
3839         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3840         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3841         temp &= ~FDI_LINK_TRAIN_NONE;
3842         temp |= FDI_LINK_TRAIN_PATTERN_1;
3843         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3844         /* SNB-B */
3845         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3846         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3847
3848         I915_WRITE(FDI_RX_MISC(pipe),
3849                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3850
3851         reg = FDI_RX_CTL(pipe);
3852         temp = I915_READ(reg);
3853         if (HAS_PCH_CPT(dev_priv)) {
3854                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3855                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3856         } else {
3857                 temp &= ~FDI_LINK_TRAIN_NONE;
3858                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3859         }
3860         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3861
3862         POSTING_READ(reg);
3863         udelay(150);
3864
3865         for (i = 0; i < 4; i++) {
3866                 reg = FDI_TX_CTL(pipe);
3867                 temp = I915_READ(reg);
3868                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3869                 temp |= snb_b_fdi_train_param[i];
3870                 I915_WRITE(reg, temp);
3871
3872                 POSTING_READ(reg);
3873                 udelay(500);
3874
3875                 for (retry = 0; retry < 5; retry++) {
3876                         reg = FDI_RX_IIR(pipe);
3877                         temp = I915_READ(reg);
3878                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3879                         if (temp & FDI_RX_BIT_LOCK) {
3880                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3881                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3882                                 break;
3883                         }
3884                         udelay(50);
3885                 }
3886                 if (retry < 5)
3887                         break;
3888         }
3889         if (i == 4)
3890                 DRM_ERROR("FDI train 1 fail!\n");
3891
3892         /* Train 2 */
3893         reg = FDI_TX_CTL(pipe);
3894         temp = I915_READ(reg);
3895         temp &= ~FDI_LINK_TRAIN_NONE;
3896         temp |= FDI_LINK_TRAIN_PATTERN_2;
3897         if (IS_GEN6(dev_priv)) {
3898                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3899                 /* SNB-B */
3900                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3901         }
3902         I915_WRITE(reg, temp);
3903
3904         reg = FDI_RX_CTL(pipe);
3905         temp = I915_READ(reg);
3906         if (HAS_PCH_CPT(dev_priv)) {
3907                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3908                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3909         } else {
3910                 temp &= ~FDI_LINK_TRAIN_NONE;
3911                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3912         }
3913         I915_WRITE(reg, temp);
3914
3915         POSTING_READ(reg);
3916         udelay(150);
3917
3918         for (i = 0; i < 4; i++) {
3919                 reg = FDI_TX_CTL(pipe);
3920                 temp = I915_READ(reg);
3921                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3922                 temp |= snb_b_fdi_train_param[i];
3923                 I915_WRITE(reg, temp);
3924
3925                 POSTING_READ(reg);
3926                 udelay(500);
3927
3928                 for (retry = 0; retry < 5; retry++) {
3929                         reg = FDI_RX_IIR(pipe);
3930                         temp = I915_READ(reg);
3931                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3932                         if (temp & FDI_RX_SYMBOL_LOCK) {
3933                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3934                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3935                                 break;
3936                         }
3937                         udelay(50);
3938                 }
3939                 if (retry < 5)
3940                         break;
3941         }
3942         if (i == 4)
3943                 DRM_ERROR("FDI train 2 fail!\n");
3944
3945         DRM_DEBUG_KMS("FDI train done.\n");
3946 }
3947
3948 /* Manual link training for Ivy Bridge A0 parts */
3949 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
3950                                       const struct intel_crtc_state *crtc_state)
3951 {
3952         struct drm_device *dev = crtc->base.dev;
3953         struct drm_i915_private *dev_priv = to_i915(dev);
3954         int pipe = crtc->pipe;
3955         i915_reg_t reg;
3956         u32 temp, i, j;
3957
3958         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3959            for train result */
3960         reg = FDI_RX_IMR(pipe);
3961         temp = I915_READ(reg);
3962         temp &= ~FDI_RX_SYMBOL_LOCK;
3963         temp &= ~FDI_RX_BIT_LOCK;
3964         I915_WRITE(reg, temp);
3965
3966         POSTING_READ(reg);
3967         udelay(150);
3968
3969         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3970                       I915_READ(FDI_RX_IIR(pipe)));
3971
3972         /* Try each vswing and preemphasis setting twice before moving on */
3973         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3974                 /* disable first in case we need to retry */
3975                 reg = FDI_TX_CTL(pipe);
3976                 temp = I915_READ(reg);
3977                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3978                 temp &= ~FDI_TX_ENABLE;
3979                 I915_WRITE(reg, temp);
3980
3981                 reg = FDI_RX_CTL(pipe);
3982                 temp = I915_READ(reg);
3983                 temp &= ~FDI_LINK_TRAIN_AUTO;
3984                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3985                 temp &= ~FDI_RX_ENABLE;
3986                 I915_WRITE(reg, temp);
3987
3988                 /* enable CPU FDI TX and PCH FDI RX */
3989                 reg = FDI_TX_CTL(pipe);
3990                 temp = I915_READ(reg);
3991                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3992                 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3993                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3994                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3995                 temp |= snb_b_fdi_train_param[j/2];
3996                 temp |= FDI_COMPOSITE_SYNC;
3997                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3998
3999                 I915_WRITE(FDI_RX_MISC(pipe),
4000                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4001
4002                 reg = FDI_RX_CTL(pipe);
4003                 temp = I915_READ(reg);
4004                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4005                 temp |= FDI_COMPOSITE_SYNC;
4006                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4007
4008                 POSTING_READ(reg);
4009                 udelay(1); /* should be 0.5us */
4010
4011                 for (i = 0; i < 4; i++) {
4012                         reg = FDI_RX_IIR(pipe);
4013                         temp = I915_READ(reg);
4014                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4015
4016                         if (temp & FDI_RX_BIT_LOCK ||
4017                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4018                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4019                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4020                                               i);
4021                                 break;
4022                         }
4023                         udelay(1); /* should be 0.5us */
4024                 }
4025                 if (i == 4) {
4026                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4027                         continue;
4028                 }
4029
4030                 /* Train 2 */
4031                 reg = FDI_TX_CTL(pipe);
4032                 temp = I915_READ(reg);
4033                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4034                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4035                 I915_WRITE(reg, temp);
4036
4037                 reg = FDI_RX_CTL(pipe);
4038                 temp = I915_READ(reg);
4039                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4040                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4041                 I915_WRITE(reg, temp);
4042
4043                 POSTING_READ(reg);
4044                 udelay(2); /* should be 1.5us */
4045
4046                 for (i = 0; i < 4; i++) {
4047                         reg = FDI_RX_IIR(pipe);
4048                         temp = I915_READ(reg);
4049                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4050
4051                         if (temp & FDI_RX_SYMBOL_LOCK ||
4052                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4053                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4054                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4055                                               i);
4056                                 goto train_done;
4057                         }
4058                         udelay(2); /* should be 1.5us */
4059                 }
4060                 if (i == 4)
4061                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4062         }
4063
4064 train_done:
4065         DRM_DEBUG_KMS("FDI train done.\n");
4066 }
4067
4068 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4069 {
4070         struct drm_device *dev = intel_crtc->base.dev;
4071         struct drm_i915_private *dev_priv = to_i915(dev);
4072         int pipe = intel_crtc->pipe;
4073         i915_reg_t reg;
4074         u32 temp;
4075
4076         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4077         reg = FDI_RX_CTL(pipe);
4078         temp = I915_READ(reg);
4079         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4080         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4081         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4082         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4083
4084         POSTING_READ(reg);
4085         udelay(200);
4086
4087         /* Switch from Rawclk to PCDclk */
4088         temp = I915_READ(reg);
4089         I915_WRITE(reg, temp | FDI_PCDCLK);
4090
4091         POSTING_READ(reg);
4092         udelay(200);
4093
4094         /* Enable CPU FDI TX PLL, always on for Ironlake */
4095         reg = FDI_TX_CTL(pipe);
4096         temp = I915_READ(reg);
4097         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4098                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4099
4100                 POSTING_READ(reg);
4101                 udelay(100);
4102         }
4103 }
4104
4105 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4106 {
4107         struct drm_device *dev = intel_crtc->base.dev;
4108         struct drm_i915_private *dev_priv = to_i915(dev);
4109         int pipe = intel_crtc->pipe;
4110         i915_reg_t reg;
4111         u32 temp;
4112
4113         /* Switch from PCDclk to Rawclk */
4114         reg = FDI_RX_CTL(pipe);
4115         temp = I915_READ(reg);
4116         I915_WRITE(reg, temp & ~FDI_PCDCLK);
4117
4118         /* Disable CPU FDI TX PLL */
4119         reg = FDI_TX_CTL(pipe);
4120         temp = I915_READ(reg);
4121         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4122
4123         POSTING_READ(reg);
4124         udelay(100);
4125
4126         reg = FDI_RX_CTL(pipe);
4127         temp = I915_READ(reg);
4128         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4129
4130         /* Wait for the clocks to turn off. */
4131         POSTING_READ(reg);
4132         udelay(100);
4133 }
4134
4135 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4136 {
4137         struct drm_device *dev = crtc->dev;
4138         struct drm_i915_private *dev_priv = to_i915(dev);
4139         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4140         int pipe = intel_crtc->pipe;
4141         i915_reg_t reg;
4142         u32 temp;
4143
4144         /* disable CPU FDI tx and PCH FDI rx */
4145         reg = FDI_TX_CTL(pipe);
4146         temp = I915_READ(reg);
4147         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4148         POSTING_READ(reg);
4149
4150         reg = FDI_RX_CTL(pipe);
4151         temp = I915_READ(reg);
4152         temp &= ~(0x7 << 16);
4153         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4154         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4155
4156         POSTING_READ(reg);
4157         udelay(100);
4158
4159         /* Ironlake workaround, disable clock pointer after downing FDI */
4160         if (HAS_PCH_IBX(dev_priv))
4161                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4162
4163         /* still set train pattern 1 */
4164         reg = FDI_TX_CTL(pipe);
4165         temp = I915_READ(reg);
4166         temp &= ~FDI_LINK_TRAIN_NONE;
4167         temp |= FDI_LINK_TRAIN_PATTERN_1;
4168         I915_WRITE(reg, temp);
4169
4170         reg = FDI_RX_CTL(pipe);
4171         temp = I915_READ(reg);
4172         if (HAS_PCH_CPT(dev_priv)) {
4173                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4174                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4175         } else {
4176                 temp &= ~FDI_LINK_TRAIN_NONE;
4177                 temp |= FDI_LINK_TRAIN_PATTERN_1;
4178         }
4179         /* BPC in FDI rx is consistent with that in PIPECONF */
4180         temp &= ~(0x07 << 16);
4181         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4182         I915_WRITE(reg, temp);
4183
4184         POSTING_READ(reg);
4185         udelay(100);
4186 }
4187
4188 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4189 {
4190         struct intel_crtc *crtc;
4191
4192         /* Note that we don't need to be called with mode_config.lock here
4193          * as our list of CRTC objects is static for the lifetime of the
4194          * device and so cannot disappear as we iterate. Similarly, we can
4195          * happily treat the predicates as racy, atomic checks as userspace
4196          * cannot claim and pin a new fb without at least acquring the
4197          * struct_mutex and so serialising with us.
4198          */
4199         for_each_intel_crtc(&dev_priv->drm, crtc) {
4200                 if (atomic_read(&crtc->unpin_work_count) == 0)
4201                         continue;
4202
4203                 if (crtc->flip_work)
4204                         intel_wait_for_vblank(dev_priv, crtc->pipe);
4205
4206                 return true;
4207         }
4208
4209         return false;
4210 }
4211
4212 static void page_flip_completed(struct intel_crtc *intel_crtc)
4213 {
4214         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4215         struct intel_flip_work *work = intel_crtc->flip_work;
4216
4217         intel_crtc->flip_work = NULL;
4218
4219         if (work->event)
4220                 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4221
4222         drm_crtc_vblank_put(&intel_crtc->base);
4223
4224         wake_up_all(&dev_priv->pending_flip_queue);
4225         trace_i915_flip_complete(intel_crtc->plane,
4226                                  work->pending_flip_obj);
4227
4228         queue_work(dev_priv->wq, &work->unpin_work);
4229 }
4230
4231 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4232 {
4233         struct drm_device *dev = crtc->dev;
4234         struct drm_i915_private *dev_priv = to_i915(dev);
4235         long ret;
4236
4237         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4238
4239         ret = wait_event_interruptible_timeout(
4240                                         dev_priv->pending_flip_queue,
4241                                         !intel_crtc_has_pending_flip(crtc),
4242                                         60*HZ);
4243
4244         if (ret < 0)
4245                 return ret;
4246
4247         if (ret == 0) {
4248                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4249                 struct intel_flip_work *work;
4250
4251                 spin_lock_irq(&dev->event_lock);
4252                 work = intel_crtc->flip_work;
4253                 if (work && !is_mmio_work(work)) {
4254                         WARN_ONCE(1, "Removing stuck page flip\n");
4255                         page_flip_completed(intel_crtc);
4256                 }
4257                 spin_unlock_irq(&dev->event_lock);
4258         }
4259
4260         return 0;
4261 }
4262
4263 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4264 {
4265         u32 temp;
4266
4267         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4268
4269         mutex_lock(&dev_priv->sb_lock);
4270
4271         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4272         temp |= SBI_SSCCTL_DISABLE;
4273         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4274
4275         mutex_unlock(&dev_priv->sb_lock);
4276 }
4277
4278 /* Program iCLKIP clock to the desired frequency */
4279 static void lpt_program_iclkip(struct intel_crtc *crtc)
4280 {
4281         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4282         int clock = crtc->config->base.adjusted_mode.crtc_clock;
4283         u32 divsel, phaseinc, auxdiv, phasedir = 0;
4284         u32 temp;
4285
4286         lpt_disable_iclkip(dev_priv);
4287
4288         /* The iCLK virtual clock root frequency is in MHz,
4289          * but the adjusted_mode->crtc_clock in in KHz. To get the
4290          * divisors, it is necessary to divide one by another, so we
4291          * convert the virtual clock precision to KHz here for higher
4292          * precision.
4293          */
4294         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4295                 u32 iclk_virtual_root_freq = 172800 * 1000;
4296                 u32 iclk_pi_range = 64;
4297                 u32 desired_divisor;
4298
4299                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4300                                                     clock << auxdiv);
4301                 divsel = (desired_divisor / iclk_pi_range) - 2;
4302                 phaseinc = desired_divisor % iclk_pi_range;
4303
4304                 /*
4305                  * Near 20MHz is a corner case which is
4306                  * out of range for the 7-bit divisor
4307                  */
4308                 if (divsel <= 0x7f)
4309                         break;
4310         }
4311
4312         /* This should not happen with any sane values */
4313         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4314                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4315         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4316                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4317
4318         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4319                         clock,
4320                         auxdiv,
4321                         divsel,
4322                         phasedir,
4323                         phaseinc);
4324
4325         mutex_lock(&dev_priv->sb_lock);
4326
4327         /* Program SSCDIVINTPHASE6 */
4328         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4329         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4330         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4331         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4332         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4333         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4334         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4335         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4336
4337         /* Program SSCAUXDIV */
4338         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4339         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4340         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4341         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4342
4343         /* Enable modulator and associated divider */
4344         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4345         temp &= ~SBI_SSCCTL_DISABLE;
4346         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4347
4348         mutex_unlock(&dev_priv->sb_lock);
4349
4350         /* Wait for initialization time */
4351         udelay(24);
4352
4353         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4354 }
4355
4356 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4357 {
4358         u32 divsel, phaseinc, auxdiv;
4359         u32 iclk_virtual_root_freq = 172800 * 1000;
4360         u32 iclk_pi_range = 64;
4361         u32 desired_divisor;
4362         u32 temp;
4363
4364         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4365                 return 0;
4366
4367         mutex_lock(&dev_priv->sb_lock);
4368
4369         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4370         if (temp & SBI_SSCCTL_DISABLE) {
4371                 mutex_unlock(&dev_priv->sb_lock);
4372                 return 0;
4373         }
4374
4375         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4376         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4377                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4378         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4379                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4380
4381         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4382         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4383                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4384
4385         mutex_unlock(&dev_priv->sb_lock);
4386
4387         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4388
4389         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4390                                  desired_divisor << auxdiv);
4391 }
4392
4393 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4394                                                 enum pipe pch_transcoder)
4395 {
4396         struct drm_device *dev = crtc->base.dev;
4397         struct drm_i915_private *dev_priv = to_i915(dev);
4398         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4399
4400         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4401                    I915_READ(HTOTAL(cpu_transcoder)));
4402         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4403                    I915_READ(HBLANK(cpu_transcoder)));
4404         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4405                    I915_READ(HSYNC(cpu_transcoder)));
4406
4407         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4408                    I915_READ(VTOTAL(cpu_transcoder)));
4409         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4410                    I915_READ(VBLANK(cpu_transcoder)));
4411         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4412                    I915_READ(VSYNC(cpu_transcoder)));
4413         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4414                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4415 }
4416
4417 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4418 {
4419         struct drm_i915_private *dev_priv = to_i915(dev);
4420         uint32_t temp;
4421
4422         temp = I915_READ(SOUTH_CHICKEN1);
4423         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4424                 return;
4425
4426         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4427         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4428
4429         temp &= ~FDI_BC_BIFURCATION_SELECT;
4430         if (enable)
4431                 temp |= FDI_BC_BIFURCATION_SELECT;
4432
4433         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4434         I915_WRITE(SOUTH_CHICKEN1, temp);
4435         POSTING_READ(SOUTH_CHICKEN1);
4436 }
4437
4438 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4439 {
4440         struct drm_device *dev = intel_crtc->base.dev;
4441
4442         switch (intel_crtc->pipe) {
4443         case PIPE_A:
4444                 break;
4445         case PIPE_B:
4446                 if (intel_crtc->config->fdi_lanes > 2)
4447                         cpt_set_fdi_bc_bifurcation(dev, false);
4448                 else
4449                         cpt_set_fdi_bc_bifurcation(dev, true);
4450
4451                 break;
4452         case PIPE_C:
4453                 cpt_set_fdi_bc_bifurcation(dev, true);
4454
4455                 break;
4456         default:
4457                 BUG();
4458         }
4459 }
4460
4461 /* Return which DP Port should be selected for Transcoder DP control */
4462 static enum port
4463 intel_trans_dp_port_sel(struct intel_crtc *crtc)
4464 {
4465         struct drm_device *dev = crtc->base.dev;
4466         struct intel_encoder *encoder;
4467
4468         for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
4469                 if (encoder->type == INTEL_OUTPUT_DP ||
4470                     encoder->type == INTEL_OUTPUT_EDP)
4471                         return enc_to_dig_port(&encoder->base)->port;
4472         }
4473
4474         return -1;
4475 }
4476
4477 /*
4478  * Enable PCH resources required for PCH ports:
4479  *   - PCH PLLs
4480  *   - FDI training & RX/TX
4481  *   - update transcoder timings
4482  *   - DP transcoding bits
4483  *   - transcoder
4484  */
4485 static void ironlake_pch_enable(const struct intel_crtc_state *crtc_state)
4486 {
4487         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4488         struct drm_device *dev = crtc->base.dev;
4489         struct drm_i915_private *dev_priv = to_i915(dev);
4490         int pipe = crtc->pipe;
4491         u32 temp;
4492
4493         assert_pch_transcoder_disabled(dev_priv, pipe);
4494
4495         if (IS_IVYBRIDGE(dev_priv))
4496                 ivybridge_update_fdi_bc_bifurcation(crtc);
4497
4498         /* Write the TU size bits before fdi link training, so that error
4499          * detection works. */
4500         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4501                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4502
4503         /* For PCH output, training FDI link */
4504         dev_priv->display.fdi_link_train(crtc, crtc_state);
4505
4506         /* We need to program the right clock selection before writing the pixel
4507          * mutliplier into the DPLL. */
4508         if (HAS_PCH_CPT(dev_priv)) {
4509                 u32 sel;
4510
4511                 temp = I915_READ(PCH_DPLL_SEL);
4512                 temp |= TRANS_DPLL_ENABLE(pipe);
4513                 sel = TRANS_DPLLB_SEL(pipe);
4514                 if (crtc_state->shared_dpll ==
4515                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4516                         temp |= sel;
4517                 else
4518                         temp &= ~sel;
4519                 I915_WRITE(PCH_DPLL_SEL, temp);
4520         }
4521
4522         /* XXX: pch pll's can be enabled any time before we enable the PCH
4523          * transcoder, and we actually should do this to not upset any PCH
4524          * transcoder that already use the clock when we share it.
4525          *
4526          * Note that enable_shared_dpll tries to do the right thing, but
4527          * get_shared_dpll unconditionally resets the pll - we need that to have
4528          * the right LVDS enable sequence. */
4529         intel_enable_shared_dpll(crtc);
4530
4531         /* set transcoder timing, panel must allow it */
4532         assert_panel_unlocked(dev_priv, pipe);
4533         ironlake_pch_transcoder_set_timings(crtc, pipe);
4534
4535         intel_fdi_normal_train(crtc);
4536
4537         /* For PCH DP, enable TRANS_DP_CTL */
4538         if (HAS_PCH_CPT(dev_priv) &&
4539             intel_crtc_has_dp_encoder(crtc_state)) {
4540                 const struct drm_display_mode *adjusted_mode =
4541                         &crtc_state->base.adjusted_mode;
4542                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4543                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4544                 temp = I915_READ(reg);
4545                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4546                           TRANS_DP_SYNC_MASK |
4547                           TRANS_DP_BPC_MASK);
4548                 temp |= TRANS_DP_OUTPUT_ENABLE;
4549                 temp |= bpc << 9; /* same format but at 11:9 */
4550
4551                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4552                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4553                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4554                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4555
4556                 switch (intel_trans_dp_port_sel(crtc)) {
4557                 case PORT_B:
4558                         temp |= TRANS_DP_PORT_SEL_B;
4559                         break;
4560                 case PORT_C:
4561                         temp |= TRANS_DP_PORT_SEL_C;
4562                         break;
4563                 case PORT_D:
4564                         temp |= TRANS_DP_PORT_SEL_D;
4565                         break;
4566                 default:
4567                         BUG();
4568                 }
4569
4570                 I915_WRITE(reg, temp);
4571         }
4572
4573         ironlake_enable_pch_transcoder(dev_priv, pipe);
4574 }
4575
4576 static void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
4577 {
4578         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4579         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4580         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
4581
4582         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4583
4584         lpt_program_iclkip(crtc);
4585
4586         /* Set transcoder timing. */
4587         ironlake_pch_transcoder_set_timings(crtc, PIPE_A);
4588
4589         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4590 }
4591
4592 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4593 {
4594         struct drm_i915_private *dev_priv = to_i915(dev);
4595         i915_reg_t dslreg = PIPEDSL(pipe);
4596         u32 temp;
4597
4598         temp = I915_READ(dslreg);
4599         udelay(500);
4600         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4601                 if (wait_for(I915_READ(dslreg) != temp, 5))
4602                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4603         }
4604 }
4605
4606 static int
4607 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4608                   unsigned int scaler_user, int *scaler_id,
4609                   int src_w, int src_h, int dst_w, int dst_h)
4610 {
4611         struct intel_crtc_scaler_state *scaler_state =
4612                 &crtc_state->scaler_state;
4613         struct intel_crtc *intel_crtc =
4614                 to_intel_crtc(crtc_state->base.crtc);
4615         int need_scaling;
4616
4617         /*
4618          * Src coordinates are already rotated by 270 degrees for
4619          * the 90/270 degree plane rotation cases (to match the
4620          * GTT mapping), hence no need to account for rotation here.
4621          */
4622         need_scaling = src_w != dst_w || src_h != dst_h;
4623
4624         /*
4625          * if plane is being disabled or scaler is no more required or force detach
4626          *  - free scaler binded to this plane/crtc
4627          *  - in order to do this, update crtc->scaler_usage
4628          *
4629          * Here scaler state in crtc_state is set free so that
4630          * scaler can be assigned to other user. Actual register
4631          * update to free the scaler is done in plane/panel-fit programming.
4632          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4633          */
4634         if (force_detach || !need_scaling) {
4635                 if (*scaler_id >= 0) {
4636                         scaler_state->scaler_users &= ~(1 << scaler_user);
4637                         scaler_state->scalers[*scaler_id].in_use = 0;
4638
4639                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4640                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4641                                 intel_crtc->pipe, scaler_user, *scaler_id,
4642                                 scaler_state->scaler_users);
4643                         *scaler_id = -1;
4644                 }
4645                 return 0;
4646         }
4647
4648         /* range checks */
4649         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4650                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4651
4652                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4653                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4654                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4655                         "size is out of scaler range\n",
4656                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4657                 return -EINVAL;
4658         }
4659
4660         /* mark this plane as a scaler user in crtc_state */
4661         scaler_state->scaler_users |= (1 << scaler_user);
4662         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4663                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4664                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4665                 scaler_state->scaler_users);
4666
4667         return 0;
4668 }
4669
4670 /**
4671  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4672  *
4673  * @state: crtc's scaler state
4674  *
4675  * Return
4676  *     0 - scaler_usage updated successfully
4677  *    error - requested scaling cannot be supported or other error condition
4678  */
4679 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4680 {
4681         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4682
4683         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4684                 &state->scaler_state.scaler_id,
4685                 state->pipe_src_w, state->pipe_src_h,
4686                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4687 }
4688
4689 /**
4690  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4691  *
4692  * @state: crtc's scaler state
4693  * @plane_state: atomic plane state to update
4694  *
4695  * Return
4696  *     0 - scaler_usage updated successfully
4697  *    error - requested scaling cannot be supported or other error condition
4698  */
4699 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4700                                    struct intel_plane_state *plane_state)
4701 {
4702
4703         struct intel_plane *intel_plane =
4704                 to_intel_plane(plane_state->base.plane);
4705         struct drm_framebuffer *fb = plane_state->base.fb;
4706         int ret;
4707
4708         bool force_detach = !fb || !plane_state->base.visible;
4709
4710         ret = skl_update_scaler(crtc_state, force_detach,
4711                                 drm_plane_index(&intel_plane->base),
4712                                 &plane_state->scaler_id,
4713                                 drm_rect_width(&plane_state->base.src) >> 16,
4714                                 drm_rect_height(&plane_state->base.src) >> 16,
4715                                 drm_rect_width(&plane_state->base.dst),
4716                                 drm_rect_height(&plane_state->base.dst));
4717
4718         if (ret || plane_state->scaler_id < 0)
4719                 return ret;
4720
4721         /* check colorkey */
4722         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4723                 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4724                               intel_plane->base.base.id,
4725                               intel_plane->base.name);
4726                 return -EINVAL;
4727         }
4728
4729         /* Check src format */
4730         switch (fb->format->format) {
4731         case DRM_FORMAT_RGB565:
4732         case DRM_FORMAT_XBGR8888:
4733         case DRM_FORMAT_XRGB8888:
4734         case DRM_FORMAT_ABGR8888:
4735         case DRM_FORMAT_ARGB8888:
4736         case DRM_FORMAT_XRGB2101010:
4737         case DRM_FORMAT_XBGR2101010:
4738         case DRM_FORMAT_YUYV:
4739         case DRM_FORMAT_YVYU:
4740         case DRM_FORMAT_UYVY:
4741         case DRM_FORMAT_VYUY:
4742                 break;
4743         default:
4744                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4745                               intel_plane->base.base.id, intel_plane->base.name,
4746                               fb->base.id, fb->format->format);
4747                 return -EINVAL;
4748         }
4749
4750         return 0;
4751 }
4752
4753 static void skylake_scaler_disable(struct intel_crtc *crtc)
4754 {
4755         int i;
4756
4757         for (i = 0; i < crtc->num_scalers; i++)
4758                 skl_detach_scaler(crtc, i);
4759 }
4760
4761 static void skylake_pfit_enable(struct intel_crtc *crtc)
4762 {
4763         struct drm_device *dev = crtc->base.dev;
4764         struct drm_i915_private *dev_priv = to_i915(dev);
4765         int pipe = crtc->pipe;
4766         struct intel_crtc_scaler_state *scaler_state =
4767                 &crtc->config->scaler_state;
4768
4769         if (crtc->config->pch_pfit.enabled) {
4770                 int id;
4771
4772                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0))
4773                         return;
4774
4775                 id = scaler_state->scaler_id;
4776                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4777                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4778                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4779                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4780         }
4781 }
4782
4783 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4784 {
4785         struct drm_device *dev = crtc->base.dev;
4786         struct drm_i915_private *dev_priv = to_i915(dev);
4787         int pipe = crtc->pipe;
4788
4789         if (crtc->config->pch_pfit.enabled) {
4790                 /* Force use of hard-coded filter coefficients
4791                  * as some pre-programmed values are broken,
4792                  * e.g. x201.
4793                  */
4794                 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4795                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4796                                                  PF_PIPE_SEL_IVB(pipe));
4797                 else
4798                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4799                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4800                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4801         }
4802 }
4803
4804 void hsw_enable_ips(struct intel_crtc *crtc)
4805 {
4806         struct drm_device *dev = crtc->base.dev;
4807         struct drm_i915_private *dev_priv = to_i915(dev);
4808
4809         if (!crtc->config->ips_enabled)
4810                 return;
4811
4812         /*
4813          * We can only enable IPS after we enable a plane and wait for a vblank
4814          * This function is called from post_plane_update, which is run after
4815          * a vblank wait.
4816          */
4817
4818         assert_plane_enabled(dev_priv, crtc->plane);
4819         if (IS_BROADWELL(dev_priv)) {
4820                 mutex_lock(&dev_priv->rps.hw_lock);
4821                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4822                 mutex_unlock(&dev_priv->rps.hw_lock);
4823                 /* Quoting Art Runyan: "its not safe to expect any particular
4824                  * value in IPS_CTL bit 31 after enabling IPS through the
4825                  * mailbox." Moreover, the mailbox may return a bogus state,
4826                  * so we need to just enable it and continue on.
4827                  */
4828         } else {
4829                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4830                 /* The bit only becomes 1 in the next vblank, so this wait here
4831                  * is essentially intel_wait_for_vblank. If we don't have this
4832                  * and don't wait for vblanks until the end of crtc_enable, then
4833                  * the HW state readout code will complain that the expected
4834                  * IPS_CTL value is not the one we read. */
4835                 if (intel_wait_for_register(dev_priv,
4836                                             IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4837                                             50))
4838                         DRM_ERROR("Timed out waiting for IPS enable\n");
4839         }
4840 }
4841
4842 void hsw_disable_ips(struct intel_crtc *crtc)
4843 {
4844         struct drm_device *dev = crtc->base.dev;
4845         struct drm_i915_private *dev_priv = to_i915(dev);
4846
4847         if (!crtc->config->ips_enabled)
4848                 return;
4849
4850         assert_plane_enabled(dev_priv, crtc->plane);
4851         if (IS_BROADWELL(dev_priv)) {
4852                 mutex_lock(&dev_priv->rps.hw_lock);
4853                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4854                 mutex_unlock(&dev_priv->rps.hw_lock);
4855                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4856                 if (intel_wait_for_register(dev_priv,
4857                                             IPS_CTL, IPS_ENABLE, 0,
4858                                             42))
4859                         DRM_ERROR("Timed out waiting for IPS disable\n");
4860         } else {
4861                 I915_WRITE(IPS_CTL, 0);
4862                 POSTING_READ(IPS_CTL);
4863         }
4864
4865         /* We need to wait for a vblank before we can disable the plane. */
4866         intel_wait_for_vblank(dev_priv, crtc->pipe);
4867 }
4868
4869 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4870 {
4871         if (intel_crtc->overlay) {
4872                 struct drm_device *dev = intel_crtc->base.dev;
4873
4874                 mutex_lock(&dev->struct_mutex);
4875                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4876                 mutex_unlock(&dev->struct_mutex);
4877         }
4878
4879         /* Let userspace switch the overlay on again. In most cases userspace
4880          * has to recompute where to put it anyway.
4881          */
4882 }
4883
4884 /**
4885  * intel_post_enable_primary - Perform operations after enabling primary plane
4886  * @crtc: the CRTC whose primary plane was just enabled
4887  *
4888  * Performs potentially sleeping operations that must be done after the primary
4889  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4890  * called due to an explicit primary plane update, or due to an implicit
4891  * re-enable that is caused when a sprite plane is updated to no longer
4892  * completely hide the primary plane.
4893  */
4894 static void
4895 intel_post_enable_primary(struct drm_crtc *crtc)
4896 {
4897         struct drm_device *dev = crtc->dev;
4898         struct drm_i915_private *dev_priv = to_i915(dev);
4899         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4900         int pipe = intel_crtc->pipe;
4901
4902         /*
4903          * FIXME IPS should be fine as long as one plane is
4904          * enabled, but in practice it seems to have problems
4905          * when going from primary only to sprite only and vice
4906          * versa.
4907          */
4908         hsw_enable_ips(intel_crtc);
4909
4910         /*
4911          * Gen2 reports pipe underruns whenever all planes are disabled.
4912          * So don't enable underrun reporting before at least some planes
4913          * are enabled.
4914          * FIXME: Need to fix the logic to work when we turn off all planes
4915          * but leave the pipe running.
4916          */
4917         if (IS_GEN2(dev_priv))
4918                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4919
4920         /* Underruns don't always raise interrupts, so check manually. */
4921         intel_check_cpu_fifo_underruns(dev_priv);
4922         intel_check_pch_fifo_underruns(dev_priv);
4923 }
4924
4925 /* FIXME move all this to pre_plane_update() with proper state tracking */
4926 static void
4927 intel_pre_disable_primary(struct drm_crtc *crtc)
4928 {
4929         struct drm_device *dev = crtc->dev;
4930         struct drm_i915_private *dev_priv = to_i915(dev);
4931         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4932         int pipe = intel_crtc->pipe;
4933
4934         /*
4935          * Gen2 reports pipe underruns whenever all planes are disabled.
4936          * So diasble underrun reporting before all the planes get disabled.
4937          * FIXME: Need to fix the logic to work when we turn off all planes
4938          * but leave the pipe running.
4939          */
4940         if (IS_GEN2(dev_priv))
4941                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4942
4943         /*
4944          * FIXME IPS should be fine as long as one plane is
4945          * enabled, but in practice it seems to have problems
4946          * when going from primary only to sprite only and vice
4947          * versa.
4948          */
4949         hsw_disable_ips(intel_crtc);
4950 }
4951
4952 /* FIXME get rid of this and use pre_plane_update */
4953 static void
4954 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4955 {
4956         struct drm_device *dev = crtc->dev;
4957         struct drm_i915_private *dev_priv = to_i915(dev);
4958         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4959         int pipe = intel_crtc->pipe;
4960
4961         intel_pre_disable_primary(crtc);
4962
4963         /*
4964          * Vblank time updates from the shadow to live plane control register
4965          * are blocked if the memory self-refresh mode is active at that
4966          * moment. So to make sure the plane gets truly disabled, disable
4967          * first the self-refresh mode. The self-refresh enable bit in turn
4968          * will be checked/applied by the HW only at the next frame start
4969          * event which is after the vblank start event, so we need to have a
4970          * wait-for-vblank between disabling the plane and the pipe.
4971          */
4972         if (HAS_GMCH_DISPLAY(dev_priv) &&
4973             intel_set_memory_cxsr(dev_priv, false))
4974                 intel_wait_for_vblank(dev_priv, pipe);
4975 }
4976
4977 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4978 {
4979         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4980         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4981         struct intel_crtc_state *pipe_config =
4982                 to_intel_crtc_state(crtc->base.state);
4983         struct drm_plane *primary = crtc->base.primary;
4984         struct drm_plane_state *old_pri_state =
4985                 drm_atomic_get_existing_plane_state(old_state, primary);
4986
4987         intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
4988
4989         if (pipe_config->update_wm_post && pipe_config->base.active)
4990                 intel_update_watermarks(crtc);
4991
4992         if (old_pri_state) {
4993                 struct intel_plane_state *primary_state =
4994                         to_intel_plane_state(primary->state);
4995                 struct intel_plane_state *old_primary_state =
4996                         to_intel_plane_state(old_pri_state);
4997
4998                 intel_fbc_post_update(crtc);
4999
5000                 if (primary_state->base.visible &&
5001                     (needs_modeset(&pipe_config->base) ||
5002                      !old_primary_state->base.visible))
5003                         intel_post_enable_primary(&crtc->base);
5004         }
5005 }
5006
5007 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state,
5008                                    struct intel_crtc_state *pipe_config)
5009 {
5010         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5011         struct drm_device *dev = crtc->base.dev;
5012         struct drm_i915_private *dev_priv = to_i915(dev);
5013         struct drm_atomic_state *old_state = old_crtc_state->base.state;
5014         struct drm_plane *primary = crtc->base.primary;
5015         struct drm_plane_state *old_pri_state =
5016                 drm_atomic_get_existing_plane_state(old_state, primary);
5017         bool modeset = needs_modeset(&pipe_config->base);
5018         struct intel_atomic_state *old_intel_state =
5019                 to_intel_atomic_state(old_state);
5020
5021         if (old_pri_state) {
5022                 struct intel_plane_state *primary_state =
5023                         to_intel_plane_state(primary->state);
5024                 struct intel_plane_state *old_primary_state =
5025                         to_intel_plane_state(old_pri_state);
5026
5027                 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5028
5029                 if (old_primary_state->base.visible &&
5030                     (modeset || !primary_state->base.visible))
5031                         intel_pre_disable_primary(&crtc->base);
5032         }
5033
5034         /*
5035          * Vblank time updates from the shadow to live plane control register
5036          * are blocked if the memory self-refresh mode is active at that
5037          * moment. So to make sure the plane gets truly disabled, disable
5038          * first the self-refresh mode. The self-refresh enable bit in turn
5039          * will be checked/applied by the HW only at the next frame start
5040          * event which is after the vblank start event, so we need to have a
5041          * wait-for-vblank between disabling the plane and the pipe.
5042          */
5043         if (HAS_GMCH_DISPLAY(dev_priv) && old_crtc_state->base.active &&
5044             pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
5045                 intel_wait_for_vblank(dev_priv, crtc->pipe);
5046
5047         /*
5048          * IVB workaround: must disable low power watermarks for at least
5049          * one frame before enabling scaling.  LP watermarks can be re-enabled
5050          * when scaling is disabled.
5051          *
5052          * WaCxSRDisabledForSpriteScaling:ivb
5053          */
5054         if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev))
5055                 intel_wait_for_vblank(dev_priv, crtc->pipe);
5056
5057         /*
5058          * If we're doing a modeset, we're done.  No need to do any pre-vblank
5059          * watermark programming here.
5060          */
5061         if (needs_modeset(&pipe_config->base))
5062                 return;
5063
5064         /*
5065          * For platforms that support atomic watermarks, program the
5066          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
5067          * will be the intermediate values that are safe for both pre- and
5068          * post- vblank; when vblank happens, the 'active' values will be set
5069          * to the final 'target' values and we'll do this again to get the
5070          * optimal watermarks.  For gen9+ platforms, the values we program here
5071          * will be the final target values which will get automatically latched
5072          * at vblank time; no further programming will be necessary.
5073          *
5074          * If a platform hasn't been transitioned to atomic watermarks yet,
5075          * we'll continue to update watermarks the old way, if flags tell
5076          * us to.
5077          */
5078         if (dev_priv->display.initial_watermarks != NULL)
5079                 dev_priv->display.initial_watermarks(old_intel_state,
5080                                                      pipe_config);
5081         else if (pipe_config->update_wm_pre)
5082                 intel_update_watermarks(crtc);
5083 }
5084
5085 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5086 {
5087         struct drm_device *dev = crtc->dev;
5088         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5089         struct drm_plane *p;
5090         int pipe = intel_crtc->pipe;
5091
5092         intel_crtc_dpms_overlay_disable(intel_crtc);
5093
5094         drm_for_each_plane_mask(p, dev, plane_mask)
5095                 to_intel_plane(p)->disable_plane(to_intel_plane(p), intel_crtc);
5096
5097         /*
5098          * FIXME: Once we grow proper nuclear flip support out of this we need
5099          * to compute the mask of flip planes precisely. For the time being
5100          * consider this a flip to a NULL plane.
5101          */
5102         intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5103 }
5104
5105 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5106                                           struct intel_crtc_state *crtc_state,
5107                                           struct drm_atomic_state *old_state)
5108 {
5109         struct drm_connector_state *conn_state;
5110         struct drm_connector *conn;
5111         int i;
5112
5113         for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5114                 struct intel_encoder *encoder =
5115                         to_intel_encoder(conn_state->best_encoder);
5116
5117                 if (conn_state->crtc != crtc)
5118                         continue;
5119
5120                 if (encoder->pre_pll_enable)
5121                         encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5122         }
5123 }
5124
5125 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5126                                       struct intel_crtc_state *crtc_state,
5127                                       struct drm_atomic_state *old_state)
5128 {
5129         struct drm_connector_state *conn_state;
5130         struct drm_connector *conn;
5131         int i;
5132
5133         for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5134                 struct intel_encoder *encoder =
5135                         to_intel_encoder(conn_state->best_encoder);
5136
5137                 if (conn_state->crtc != crtc)
5138                         continue;
5139
5140                 if (encoder->pre_enable)
5141                         encoder->pre_enable(encoder, crtc_state, conn_state);
5142         }
5143 }
5144
5145 static void intel_encoders_enable(struct drm_crtc *crtc,
5146                                   struct intel_crtc_state *crtc_state,
5147                                   struct drm_atomic_state *old_state)
5148 {
5149         struct drm_connector_state *conn_state;
5150         struct drm_connector *conn;
5151         int i;
5152
5153         for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5154                 struct intel_encoder *encoder =
5155                         to_intel_encoder(conn_state->best_encoder);
5156
5157                 if (conn_state->crtc != crtc)
5158                         continue;
5159
5160                 encoder->enable(encoder, crtc_state, conn_state);
5161                 intel_opregion_notify_encoder(encoder, true);
5162         }
5163 }
5164
5165 static void intel_encoders_disable(struct drm_crtc *crtc,
5166                                    struct intel_crtc_state *old_crtc_state,
5167                                    struct drm_atomic_state *old_state)
5168 {
5169         struct drm_connector_state *old_conn_state;
5170         struct drm_connector *conn;
5171         int i;
5172
5173         for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5174                 struct intel_encoder *encoder =
5175                         to_intel_encoder(old_conn_state->best_encoder);
5176
5177                 if (old_conn_state->crtc != crtc)
5178                         continue;
5179
5180                 intel_opregion_notify_encoder(encoder, false);
5181                 encoder->disable(encoder, old_crtc_state, old_conn_state);
5182         }
5183 }
5184
5185 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5186                                         struct intel_crtc_state *old_crtc_state,
5187                                         struct drm_atomic_state *old_state)
5188 {
5189         struct drm_connector_state *old_conn_state;
5190         struct drm_connector *conn;
5191         int i;
5192
5193         for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5194                 struct intel_encoder *encoder =
5195                         to_intel_encoder(old_conn_state->best_encoder);
5196
5197                 if (old_conn_state->crtc != crtc)
5198                         continue;
5199
5200                 if (encoder->post_disable)
5201                         encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5202         }
5203 }
5204
5205 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5206                                             struct intel_crtc_state *old_crtc_state,
5207                                             struct drm_atomic_state *old_state)
5208 {
5209         struct drm_connector_state *old_conn_state;
5210         struct drm_connector *conn;
5211         int i;
5212
5213         for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5214                 struct intel_encoder *encoder =
5215                         to_intel_encoder(old_conn_state->best_encoder);
5216
5217                 if (old_conn_state->crtc != crtc)
5218                         continue;
5219
5220                 if (encoder->post_pll_disable)
5221                         encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5222         }
5223 }
5224
5225 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5226                                  struct drm_atomic_state *old_state)
5227 {
5228         struct drm_crtc *crtc = pipe_config->base.crtc;
5229         struct drm_device *dev = crtc->dev;
5230         struct drm_i915_private *dev_priv = to_i915(dev);
5231         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5232         int pipe = intel_crtc->pipe;
5233         struct intel_atomic_state *old_intel_state =
5234                 to_intel_atomic_state(old_state);
5235
5236         if (WARN_ON(intel_crtc->active))
5237                 return;
5238
5239         /*
5240          * Sometimes spurious CPU pipe underruns happen during FDI
5241          * training, at least with VGA+HDMI cloning. Suppress them.
5242          *
5243          * On ILK we get an occasional spurious CPU pipe underruns
5244          * between eDP port A enable and vdd enable. Also PCH port
5245          * enable seems to result in the occasional CPU pipe underrun.
5246          *
5247          * Spurious PCH underruns also occur during PCH enabling.
5248          */
5249         if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5250                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5251         if (intel_crtc->config->has_pch_encoder)
5252                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5253
5254         if (intel_crtc->config->has_pch_encoder)
5255                 intel_prepare_shared_dpll(intel_crtc);
5256
5257         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5258                 intel_dp_set_m_n(intel_crtc, M1_N1);
5259
5260         intel_set_pipe_timings(intel_crtc);
5261         intel_set_pipe_src_size(intel_crtc);
5262
5263         if (intel_crtc->config->has_pch_encoder) {
5264                 intel_cpu_transcoder_set_m_n(intel_crtc,
5265                                      &intel_crtc->config->fdi_m_n, NULL);
5266         }
5267
5268         ironlake_set_pipeconf(crtc);
5269
5270         intel_crtc->active = true;
5271
5272         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5273
5274         if (intel_crtc->config->has_pch_encoder) {
5275                 /* Note: FDI PLL enabling _must_ be done before we enable the
5276                  * cpu pipes, hence this is separate from all the other fdi/pch
5277                  * enabling. */
5278                 ironlake_fdi_pll_enable(intel_crtc);
5279         } else {
5280                 assert_fdi_tx_disabled(dev_priv, pipe);
5281                 assert_fdi_rx_disabled(dev_priv, pipe);
5282         }
5283
5284         ironlake_pfit_enable(intel_crtc);
5285
5286         /*
5287          * On ILK+ LUT must be loaded before the pipe is running but with
5288          * clocks enabled
5289          */
5290         intel_color_load_luts(&pipe_config->base);
5291
5292         if (dev_priv->display.initial_watermarks != NULL)
5293                 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5294         intel_enable_pipe(intel_crtc);
5295
5296         if (intel_crtc->config->has_pch_encoder)
5297                 ironlake_pch_enable(pipe_config);
5298
5299         assert_vblank_disabled(crtc);
5300         drm_crtc_vblank_on(crtc);
5301
5302         intel_encoders_enable(crtc, pipe_config, old_state);
5303
5304         if (HAS_PCH_CPT(dev_priv))
5305                 cpt_verify_modeset(dev, intel_crtc->pipe);
5306
5307         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5308         if (intel_crtc->config->has_pch_encoder)
5309                 intel_wait_for_vblank(dev_priv, pipe);
5310         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5311         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5312 }
5313
5314 /* IPS only exists on ULT machines and is tied to pipe A. */
5315 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5316 {
5317         return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5318 }
5319
5320 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5321                                 struct drm_atomic_state *old_state)
5322 {
5323         struct drm_crtc *crtc = pipe_config->base.crtc;
5324         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5325         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5326         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5327         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5328         struct intel_atomic_state *old_intel_state =
5329                 to_intel_atomic_state(old_state);
5330
5331         if (WARN_ON(intel_crtc->active))
5332                 return;
5333
5334         if (intel_crtc->config->has_pch_encoder)
5335                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5336                                                       false);
5337
5338         intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5339
5340         if (intel_crtc->config->shared_dpll)
5341                 intel_enable_shared_dpll(intel_crtc);
5342
5343         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5344                 intel_dp_set_m_n(intel_crtc, M1_N1);
5345
5346         if (!transcoder_is_dsi(cpu_transcoder))
5347                 intel_set_pipe_timings(intel_crtc);
5348
5349         intel_set_pipe_src_size(intel_crtc);
5350
5351         if (cpu_transcoder != TRANSCODER_EDP &&
5352             !transcoder_is_dsi(cpu_transcoder)) {
5353                 I915_WRITE(PIPE_MULT(cpu_transcoder),
5354                            intel_crtc->config->pixel_multiplier - 1);
5355         }
5356
5357         if (intel_crtc->config->has_pch_encoder) {
5358                 intel_cpu_transcoder_set_m_n(intel_crtc,
5359                                      &intel_crtc->config->fdi_m_n, NULL);
5360         }
5361
5362         if (!transcoder_is_dsi(cpu_transcoder))
5363                 haswell_set_pipeconf(crtc);
5364
5365         haswell_set_pipemisc(crtc);
5366
5367         intel_color_set_csc(&pipe_config->base);
5368
5369         intel_crtc->active = true;
5370
5371         if (intel_crtc->config->has_pch_encoder)
5372                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5373         else
5374                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5375
5376         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5377
5378         if (intel_crtc->config->has_pch_encoder)
5379                 dev_priv->display.fdi_link_train(intel_crtc, pipe_config);
5380
5381         if (!transcoder_is_dsi(cpu_transcoder))
5382                 intel_ddi_enable_pipe_clock(pipe_config);
5383
5384         if (INTEL_GEN(dev_priv) >= 9)
5385                 skylake_pfit_enable(intel_crtc);
5386         else
5387                 ironlake_pfit_enable(intel_crtc);
5388
5389         /*
5390          * On ILK+ LUT must be loaded before the pipe is running but with
5391          * clocks enabled
5392          */
5393         intel_color_load_luts(&pipe_config->base);
5394
5395         intel_ddi_set_pipe_settings(pipe_config);
5396         if (!transcoder_is_dsi(cpu_transcoder))
5397                 intel_ddi_enable_transcoder_func(pipe_config);
5398
5399         if (dev_priv->display.initial_watermarks != NULL)
5400                 dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
5401
5402         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5403         if (!transcoder_is_dsi(cpu_transcoder))
5404                 intel_enable_pipe(intel_crtc);
5405
5406         if (intel_crtc->config->has_pch_encoder)
5407                 lpt_pch_enable(pipe_config);
5408
5409         if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5410                 intel_ddi_set_vc_payload_alloc(pipe_config, true);
5411
5412         assert_vblank_disabled(crtc);
5413         drm_crtc_vblank_on(crtc);
5414
5415         intel_encoders_enable(crtc, pipe_config, old_state);
5416
5417         if (intel_crtc->config->has_pch_encoder) {
5418                 intel_wait_for_vblank(dev_priv, pipe);
5419                 intel_wait_for_vblank(dev_priv, pipe);
5420                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5421                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5422                                                       true);
5423         }
5424
5425         /* If we change the relative order between pipe/planes enabling, we need
5426          * to change the workaround. */
5427         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5428         if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5429                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5430                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5431         }
5432 }
5433
5434 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5435 {
5436         struct drm_device *dev = crtc->base.dev;
5437         struct drm_i915_private *dev_priv = to_i915(dev);
5438         int pipe = crtc->pipe;
5439
5440         /* To avoid upsetting the power well on haswell only disable the pfit if
5441          * it's in use. The hw state code will make sure we get this right. */
5442         if (force || crtc->config->pch_pfit.enabled) {
5443                 I915_WRITE(PF_CTL(pipe), 0);
5444                 I915_WRITE(PF_WIN_POS(pipe), 0);
5445                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5446         }
5447 }
5448
5449 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5450                                   struct drm_atomic_state *old_state)
5451 {
5452         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5453         struct drm_device *dev = crtc->dev;
5454         struct drm_i915_private *dev_priv = to_i915(dev);
5455         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5456         int pipe = intel_crtc->pipe;
5457
5458         /*
5459          * Sometimes spurious CPU pipe underruns happen when the
5460          * pipe is already disabled, but FDI RX/TX is still enabled.
5461          * Happens at least with VGA+HDMI cloning. Suppress them.
5462          */
5463         if (intel_crtc->config->has_pch_encoder) {
5464                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5465                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5466         }
5467
5468         intel_encoders_disable(crtc, old_crtc_state, old_state);
5469
5470         drm_crtc_vblank_off(crtc);
5471         assert_vblank_disabled(crtc);
5472
5473         intel_disable_pipe(intel_crtc);
5474
5475         ironlake_pfit_disable(intel_crtc, false);
5476
5477         if (intel_crtc->config->has_pch_encoder)
5478                 ironlake_fdi_disable(crtc);
5479
5480         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5481
5482         if (intel_crtc->config->has_pch_encoder) {
5483                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5484
5485                 if (HAS_PCH_CPT(dev_priv)) {
5486                         i915_reg_t reg;
5487                         u32 temp;
5488
5489                         /* disable TRANS_DP_CTL */
5490                         reg = TRANS_DP_CTL(pipe);
5491                         temp = I915_READ(reg);
5492                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5493                                   TRANS_DP_PORT_SEL_MASK);
5494                         temp |= TRANS_DP_PORT_SEL_NONE;
5495                         I915_WRITE(reg, temp);
5496
5497                         /* disable DPLL_SEL */
5498                         temp = I915_READ(PCH_DPLL_SEL);
5499                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5500                         I915_WRITE(PCH_DPLL_SEL, temp);
5501                 }
5502
5503                 ironlake_fdi_pll_disable(intel_crtc);
5504         }
5505
5506         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5507         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5508 }
5509
5510 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5511                                  struct drm_atomic_state *old_state)
5512 {
5513         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5514         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5515         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5516         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5517
5518         if (intel_crtc->config->has_pch_encoder)
5519                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5520                                                       false);
5521
5522         intel_encoders_disable(crtc, old_crtc_state, old_state);
5523
5524         drm_crtc_vblank_off(crtc);
5525         assert_vblank_disabled(crtc);
5526
5527         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5528         if (!transcoder_is_dsi(cpu_transcoder))
5529                 intel_disable_pipe(intel_crtc);
5530
5531         if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5532                 intel_ddi_set_vc_payload_alloc(intel_crtc->config, false);
5533
5534         if (!transcoder_is_dsi(cpu_transcoder))
5535                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5536
5537         if (INTEL_GEN(dev_priv) >= 9)
5538                 skylake_scaler_disable(intel_crtc);
5539         else
5540                 ironlake_pfit_disable(intel_crtc, false);
5541
5542         if (!transcoder_is_dsi(cpu_transcoder))
5543                 intel_ddi_disable_pipe_clock(intel_crtc->config);
5544
5545         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5546
5547         if (old_crtc_state->has_pch_encoder)
5548                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5549                                                       true);
5550 }
5551
5552 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5553 {
5554         struct drm_device *dev = crtc->base.dev;
5555         struct drm_i915_private *dev_priv = to_i915(dev);
5556         struct intel_crtc_state *pipe_config = crtc->config;
5557
5558         if (!pipe_config->gmch_pfit.control)
5559                 return;
5560
5561         /*
5562          * The panel fitter should only be adjusted whilst the pipe is disabled,
5563          * according to register description and PRM.
5564          */
5565         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5566         assert_pipe_disabled(dev_priv, crtc->pipe);
5567
5568         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5569         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5570
5571         /* Border color in case we don't scale up to the full screen. Black by
5572          * default, change to something else for debugging. */
5573         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5574 }
5575
5576 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
5577 {
5578         switch (port) {
5579         case PORT_A:
5580                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5581         case PORT_B:
5582                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5583         case PORT_C:
5584                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5585         case PORT_D:
5586                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5587         case PORT_E:
5588                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5589         default:
5590                 MISSING_CASE(port);
5591                 return POWER_DOMAIN_PORT_OTHER;
5592         }
5593 }
5594
5595 static u64 get_crtc_power_domains(struct drm_crtc *crtc,
5596                                   struct intel_crtc_state *crtc_state)
5597 {
5598         struct drm_device *dev = crtc->dev;
5599         struct drm_i915_private *dev_priv = to_i915(dev);
5600         struct drm_encoder *encoder;
5601         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5602         enum pipe pipe = intel_crtc->pipe;
5603         u64 mask;
5604         enum transcoder transcoder = crtc_state->cpu_transcoder;
5605
5606         if (!crtc_state->base.active)
5607                 return 0;
5608
5609         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5610         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5611         if (crtc_state->pch_pfit.enabled ||
5612             crtc_state->pch_pfit.force_thru)
5613                 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5614
5615         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5616                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5617
5618                 mask |= BIT_ULL(intel_encoder->power_domain);
5619         }
5620
5621         if (HAS_DDI(dev_priv) && crtc_state->has_audio)
5622                 mask |= BIT(POWER_DOMAIN_AUDIO);
5623
5624         if (crtc_state->shared_dpll)
5625                 mask |= BIT_ULL(POWER_DOMAIN_PLLS);
5626
5627         return mask;
5628 }
5629
5630 static u64
5631 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5632                                struct intel_crtc_state *crtc_state)
5633 {
5634         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5635         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5636         enum intel_display_power_domain domain;
5637         u64 domains, new_domains, old_domains;
5638
5639         old_domains = intel_crtc->enabled_power_domains;
5640         intel_crtc->enabled_power_domains = new_domains =
5641                 get_crtc_power_domains(crtc, crtc_state);
5642
5643         domains = new_domains & ~old_domains;
5644
5645         for_each_power_domain(domain, domains)
5646                 intel_display_power_get(dev_priv, domain);
5647
5648         return old_domains & ~new_domains;
5649 }
5650
5651 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5652                                       u64 domains)
5653 {
5654         enum intel_display_power_domain domain;
5655
5656         for_each_power_domain(domain, domains)
5657                 intel_display_power_put(dev_priv, domain);
5658 }
5659
5660 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
5661                                    struct drm_atomic_state *old_state)
5662 {
5663         struct intel_atomic_state *old_intel_state =
5664                 to_intel_atomic_state(old_state);
5665         struct drm_crtc *crtc = pipe_config->base.crtc;
5666         struct drm_device *dev = crtc->dev;
5667         struct drm_i915_private *dev_priv = to_i915(dev);
5668         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5669         int pipe = intel_crtc->pipe;
5670
5671         if (WARN_ON(intel_crtc->active))
5672                 return;
5673
5674         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5675                 intel_dp_set_m_n(intel_crtc, M1_N1);
5676
5677         intel_set_pipe_timings(intel_crtc);
5678         intel_set_pipe_src_size(intel_crtc);
5679
5680         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
5681                 struct drm_i915_private *dev_priv = to_i915(dev);
5682
5683                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5684                 I915_WRITE(CHV_CANVAS(pipe), 0);
5685         }
5686
5687         i9xx_set_pipeconf(intel_crtc);
5688
5689         intel_crtc->active = true;
5690
5691         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5692
5693         intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5694
5695         if (IS_CHERRYVIEW(dev_priv)) {
5696                 chv_prepare_pll(intel_crtc, intel_crtc->config);
5697                 chv_enable_pll(intel_crtc, intel_crtc->config);
5698         } else {
5699                 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5700                 vlv_enable_pll(intel_crtc, intel_crtc->config);
5701         }
5702
5703         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5704
5705         i9xx_pfit_enable(intel_crtc);
5706
5707         intel_color_load_luts(&pipe_config->base);
5708
5709         dev_priv->display.initial_watermarks(old_intel_state,
5710                                              pipe_config);
5711         intel_enable_pipe(intel_crtc);
5712
5713         assert_vblank_disabled(crtc);
5714         drm_crtc_vblank_on(crtc);
5715
5716         intel_encoders_enable(crtc, pipe_config, old_state);
5717 }
5718
5719 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5720 {
5721         struct drm_device *dev = crtc->base.dev;
5722         struct drm_i915_private *dev_priv = to_i915(dev);
5723
5724         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5725         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5726 }
5727
5728 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
5729                              struct drm_atomic_state *old_state)
5730 {
5731         struct intel_atomic_state *old_intel_state =
5732                 to_intel_atomic_state(old_state);
5733         struct drm_crtc *crtc = pipe_config->base.crtc;
5734         struct drm_device *dev = crtc->dev;
5735         struct drm_i915_private *dev_priv = to_i915(dev);
5736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5737         enum pipe pipe = intel_crtc->pipe;
5738
5739         if (WARN_ON(intel_crtc->active))
5740                 return;
5741
5742         i9xx_set_pll_dividers(intel_crtc);
5743
5744         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5745                 intel_dp_set_m_n(intel_crtc, M1_N1);
5746
5747         intel_set_pipe_timings(intel_crtc);
5748         intel_set_pipe_src_size(intel_crtc);
5749
5750         i9xx_set_pipeconf(intel_crtc);
5751
5752         intel_crtc->active = true;
5753
5754         if (!IS_GEN2(dev_priv))
5755                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5756
5757         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5758
5759         i9xx_enable_pll(intel_crtc);
5760
5761         i9xx_pfit_enable(intel_crtc);
5762
5763         intel_color_load_luts(&pipe_config->base);
5764
5765         if (dev_priv->display.initial_watermarks != NULL)
5766                 dev_priv->display.initial_watermarks(old_intel_state,
5767                                                      intel_crtc->config);
5768         else
5769                 intel_update_watermarks(intel_crtc);
5770         intel_enable_pipe(intel_crtc);
5771
5772         assert_vblank_disabled(crtc);
5773         drm_crtc_vblank_on(crtc);
5774
5775         intel_encoders_enable(crtc, pipe_config, old_state);
5776 }
5777
5778 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5779 {
5780         struct drm_device *dev = crtc->base.dev;
5781         struct drm_i915_private *dev_priv = to_i915(dev);
5782
5783         if (!crtc->config->gmch_pfit.control)
5784                 return;
5785
5786         assert_pipe_disabled(dev_priv, crtc->pipe);
5787
5788         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5789                          I915_READ(PFIT_CONTROL));
5790         I915_WRITE(PFIT_CONTROL, 0);
5791 }
5792
5793 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
5794                               struct drm_atomic_state *old_state)
5795 {
5796         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5797         struct drm_device *dev = crtc->dev;
5798         struct drm_i915_private *dev_priv = to_i915(dev);
5799         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5800         int pipe = intel_crtc->pipe;
5801
5802         /*
5803          * On gen2 planes are double buffered but the pipe isn't, so we must
5804          * wait for planes to fully turn off before disabling the pipe.
5805          */
5806         if (IS_GEN2(dev_priv))
5807                 intel_wait_for_vblank(dev_priv, pipe);
5808
5809         intel_encoders_disable(crtc, old_crtc_state, old_state);
5810
5811         drm_crtc_vblank_off(crtc);
5812         assert_vblank_disabled(crtc);
5813
5814         intel_disable_pipe(intel_crtc);
5815
5816         i9xx_pfit_disable(intel_crtc);
5817
5818         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5819
5820         if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
5821                 if (IS_CHERRYVIEW(dev_priv))
5822                         chv_disable_pll(dev_priv, pipe);
5823                 else if (IS_VALLEYVIEW(dev_priv))
5824                         vlv_disable_pll(dev_priv, pipe);
5825                 else
5826                         i9xx_disable_pll(intel_crtc);
5827         }
5828
5829         intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
5830
5831         if (!IS_GEN2(dev_priv))
5832                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5833
5834         if (!dev_priv->display.initial_watermarks)
5835                 intel_update_watermarks(intel_crtc);
5836
5837         /* clock the pipe down to 640x480@60 to potentially save power */
5838         if (IS_I830(dev_priv))
5839                 i830_enable_pipe(dev_priv, pipe);
5840 }
5841
5842 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc,
5843                                         struct drm_modeset_acquire_ctx *ctx)
5844 {
5845         struct intel_encoder *encoder;
5846         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5847         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5848         enum intel_display_power_domain domain;
5849         u64 domains;
5850         struct drm_atomic_state *state;
5851         struct intel_crtc_state *crtc_state;
5852         int ret;
5853
5854         if (!intel_crtc->active)
5855                 return;
5856
5857         if (crtc->primary->state->visible) {
5858                 WARN_ON(intel_crtc->flip_work);
5859
5860                 intel_pre_disable_primary_noatomic(crtc);
5861
5862                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
5863                 crtc->primary->state->visible = false;
5864         }
5865
5866         state = drm_atomic_state_alloc(crtc->dev);
5867         if (!state) {
5868                 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
5869                               crtc->base.id, crtc->name);
5870                 return;
5871         }
5872
5873         state->acquire_ctx = ctx;
5874
5875         /* Everything's already locked, -EDEADLK can't happen. */
5876         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5877         ret = drm_atomic_add_affected_connectors(state, crtc);
5878
5879         WARN_ON(IS_ERR(crtc_state) || ret);
5880
5881         dev_priv->display.crtc_disable(crtc_state, state);
5882
5883         drm_atomic_state_put(state);
5884
5885         DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
5886                       crtc->base.id, crtc->name);
5887
5888         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
5889         crtc->state->active = false;
5890         intel_crtc->active = false;
5891         crtc->enabled = false;
5892         crtc->state->connector_mask = 0;
5893         crtc->state->encoder_mask = 0;
5894
5895         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
5896                 encoder->base.crtc = NULL;
5897
5898         intel_fbc_disable(intel_crtc);
5899         intel_update_watermarks(intel_crtc);
5900         intel_disable_shared_dpll(intel_crtc);
5901
5902         domains = intel_crtc->enabled_power_domains;
5903         for_each_power_domain(domain, domains)
5904                 intel_display_power_put(dev_priv, domain);
5905         intel_crtc->enabled_power_domains = 0;
5906
5907         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
5908         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
5909 }
5910
5911 /*
5912  * turn all crtc's off, but do not adjust state
5913  * This has to be paired with a call to intel_modeset_setup_hw_state.
5914  */
5915 int intel_display_suspend(struct drm_device *dev)
5916 {
5917         struct drm_i915_private *dev_priv = to_i915(dev);
5918         struct drm_atomic_state *state;
5919         int ret;
5920
5921         state = drm_atomic_helper_suspend(dev);
5922         ret = PTR_ERR_OR_ZERO(state);
5923         if (ret)
5924                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
5925         else
5926                 dev_priv->modeset_restore_state = state;
5927         return ret;
5928 }
5929
5930 void intel_encoder_destroy(struct drm_encoder *encoder)
5931 {
5932         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5933
5934         drm_encoder_cleanup(encoder);
5935         kfree(intel_encoder);
5936 }
5937
5938 /* Cross check the actual hw state with our own modeset state tracking (and it's
5939  * internal consistency). */
5940 static void intel_connector_verify_state(struct drm_crtc_state *crtc_state,
5941                                          struct drm_connector_state *conn_state)
5942 {
5943         struct intel_connector *connector = to_intel_connector(conn_state->connector);
5944
5945         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5946                       connector->base.base.id,
5947                       connector->base.name);
5948
5949         if (connector->get_hw_state(connector)) {
5950                 struct intel_encoder *encoder = connector->encoder;
5951
5952                 I915_STATE_WARN(!crtc_state,
5953                          "connector enabled without attached crtc\n");
5954
5955                 if (!crtc_state)
5956                         return;
5957
5958                 I915_STATE_WARN(!crtc_state->active,
5959                       "connector is active, but attached crtc isn't\n");
5960
5961                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
5962                         return;
5963
5964                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
5965                         "atomic encoder doesn't match attached encoder\n");
5966
5967                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
5968                         "attached encoder crtc differs from connector crtc\n");
5969         } else {
5970                 I915_STATE_WARN(crtc_state && crtc_state->active,
5971                         "attached crtc is active, but connector isn't\n");
5972                 I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
5973                         "best encoder set without crtc!\n");
5974         }
5975 }
5976
5977 int intel_connector_init(struct intel_connector *connector)
5978 {
5979         struct intel_digital_connector_state *conn_state;
5980
5981         /*
5982          * Allocate enough memory to hold intel_digital_connector_state,
5983          * This might be a few bytes too many, but for connectors that don't
5984          * need it we'll free the state and allocate a smaller one on the first
5985          * succesful commit anyway.
5986          */
5987         conn_state = kzalloc(sizeof(*conn_state), GFP_KERNEL);
5988         if (!conn_state)
5989                 return -ENOMEM;
5990
5991         __drm_atomic_helper_connector_reset(&connector->base,
5992                                             &conn_state->base);
5993
5994         return 0;
5995 }
5996
5997 struct intel_connector *intel_connector_alloc(void)
5998 {
5999         struct intel_connector *connector;
6000
6001         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6002         if (!connector)
6003                 return NULL;
6004
6005         if (intel_connector_init(connector) < 0) {
6006                 kfree(connector);
6007                 return NULL;
6008         }
6009
6010         return connector;
6011 }
6012
6013 /* Simple connector->get_hw_state implementation for encoders that support only
6014  * one connector and no cloning and hence the encoder state determines the state
6015  * of the connector. */
6016 bool intel_connector_get_hw_state(struct intel_connector *connector)
6017 {
6018         enum pipe pipe = 0;
6019         struct intel_encoder *encoder = connector->encoder;
6020
6021         return encoder->get_hw_state(encoder, &pipe);
6022 }
6023
6024 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6025 {
6026         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6027                 return crtc_state->fdi_lanes;
6028
6029         return 0;
6030 }
6031
6032 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6033                                      struct intel_crtc_state *pipe_config)
6034 {
6035         struct drm_i915_private *dev_priv = to_i915(dev);
6036         struct drm_atomic_state *state = pipe_config->base.state;
6037         struct intel_crtc *other_crtc;
6038         struct intel_crtc_state *other_crtc_state;
6039
6040         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6041                       pipe_name(pipe), pipe_config->fdi_lanes);
6042         if (pipe_config->fdi_lanes > 4) {
6043                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6044                               pipe_name(pipe), pipe_config->fdi_lanes);
6045                 return -EINVAL;
6046         }
6047
6048         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
6049                 if (pipe_config->fdi_lanes > 2) {
6050                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6051                                       pipe_config->fdi_lanes);
6052                         return -EINVAL;
6053                 } else {
6054                         return 0;
6055                 }
6056         }
6057
6058         if (INTEL_INFO(dev_priv)->num_pipes == 2)
6059                 return 0;
6060
6061         /* Ivybridge 3 pipe is really complicated */
6062         switch (pipe) {
6063         case PIPE_A:
6064                 return 0;
6065         case PIPE_B:
6066                 if (pipe_config->fdi_lanes <= 2)
6067                         return 0;
6068
6069                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
6070                 other_crtc_state =
6071                         intel_atomic_get_crtc_state(state, other_crtc);
6072                 if (IS_ERR(other_crtc_state))
6073                         return PTR_ERR(other_crtc_state);
6074
6075                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6076                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6077                                       pipe_name(pipe), pipe_config->fdi_lanes);
6078                         return -EINVAL;
6079                 }
6080                 return 0;
6081         case PIPE_C:
6082                 if (pipe_config->fdi_lanes > 2) {
6083                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6084                                       pipe_name(pipe), pipe_config->fdi_lanes);
6085                         return -EINVAL;
6086                 }
6087
6088                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
6089                 other_crtc_state =
6090                         intel_atomic_get_crtc_state(state, other_crtc);
6091                 if (IS_ERR(other_crtc_state))
6092                         return PTR_ERR(other_crtc_state);
6093
6094                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6095                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6096                         return -EINVAL;
6097                 }
6098                 return 0;
6099         default:
6100                 BUG();
6101         }
6102 }
6103
6104 #define RETRY 1
6105 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6106                                        struct intel_crtc_state *pipe_config)
6107 {
6108         struct drm_device *dev = intel_crtc->base.dev;
6109         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6110         int lane, link_bw, fdi_dotclock, ret;
6111         bool needs_recompute = false;
6112
6113 retry:
6114         /* FDI is a binary signal running at ~2.7GHz, encoding
6115          * each output octet as 10 bits. The actual frequency
6116          * is stored as a divider into a 100MHz clock, and the
6117          * mode pixel clock is stored in units of 1KHz.
6118          * Hence the bw of each lane in terms of the mode signal
6119          * is:
6120          */
6121         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6122
6123         fdi_dotclock = adjusted_mode->crtc_clock;
6124
6125         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6126                                            pipe_config->pipe_bpp);
6127
6128         pipe_config->fdi_lanes = lane;
6129
6130         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6131                                link_bw, &pipe_config->fdi_m_n, false);
6132
6133         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6134         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6135                 pipe_config->pipe_bpp -= 2*3;
6136                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6137                               pipe_config->pipe_bpp);
6138                 needs_recompute = true;
6139                 pipe_config->bw_constrained = true;
6140
6141                 goto retry;
6142         }
6143
6144         if (needs_recompute)
6145                 return RETRY;
6146
6147         return ret;
6148 }
6149
6150 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6151                                      struct intel_crtc_state *pipe_config)
6152 {
6153         if (pipe_config->pipe_bpp > 24)
6154                 return false;
6155
6156         /* HSW can handle pixel rate up to cdclk? */
6157         if (IS_HASWELL(dev_priv))
6158                 return true;
6159
6160         /*
6161          * We compare against max which means we must take
6162          * the increased cdclk requirement into account when
6163          * calculating the new cdclk.
6164          *
6165          * Should measure whether using a lower cdclk w/o IPS
6166          */
6167         return pipe_config->pixel_rate <=
6168                 dev_priv->max_cdclk_freq * 95 / 100;
6169 }
6170
6171 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6172                                    struct intel_crtc_state *pipe_config)
6173 {
6174         struct drm_device *dev = crtc->base.dev;
6175         struct drm_i915_private *dev_priv = to_i915(dev);
6176
6177         pipe_config->ips_enabled = i915.enable_ips &&
6178                 hsw_crtc_supports_ips(crtc) &&
6179                 pipe_config_supports_ips(dev_priv, pipe_config);
6180 }
6181
6182 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6183 {
6184         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6185
6186         /* GDG double wide on either pipe, otherwise pipe A only */
6187         return INTEL_INFO(dev_priv)->gen < 4 &&
6188                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6189 }
6190
6191 static uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
6192 {
6193         uint32_t pixel_rate;
6194
6195         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
6196
6197         /*
6198          * We only use IF-ID interlacing. If we ever use
6199          * PF-ID we'll need to adjust the pixel_rate here.
6200          */
6201
6202         if (pipe_config->pch_pfit.enabled) {
6203                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
6204                 uint32_t pfit_size = pipe_config->pch_pfit.size;
6205
6206                 pipe_w = pipe_config->pipe_src_w;
6207                 pipe_h = pipe_config->pipe_src_h;
6208
6209                 pfit_w = (pfit_size >> 16) & 0xFFFF;
6210                 pfit_h = pfit_size & 0xFFFF;
6211                 if (pipe_w < pfit_w)
6212                         pipe_w = pfit_w;
6213                 if (pipe_h < pfit_h)
6214                         pipe_h = pfit_h;
6215
6216                 if (WARN_ON(!pfit_w || !pfit_h))
6217                         return pixel_rate;
6218
6219                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
6220                                      pfit_w * pfit_h);
6221         }
6222
6223         return pixel_rate;
6224 }
6225
6226 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
6227 {
6228         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
6229
6230         if (HAS_GMCH_DISPLAY(dev_priv))
6231                 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
6232                 crtc_state->pixel_rate =
6233                         crtc_state->base.adjusted_mode.crtc_clock;
6234         else
6235                 crtc_state->pixel_rate =
6236                         ilk_pipe_pixel_rate(crtc_state);
6237 }
6238
6239 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6240                                      struct intel_crtc_state *pipe_config)
6241 {
6242         struct drm_device *dev = crtc->base.dev;
6243         struct drm_i915_private *dev_priv = to_i915(dev);
6244         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6245         int clock_limit = dev_priv->max_dotclk_freq;
6246
6247         if (INTEL_GEN(dev_priv) < 4) {
6248                 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6249
6250                 /*
6251                  * Enable double wide mode when the dot clock
6252                  * is > 90% of the (display) core speed.
6253                  */
6254                 if (intel_crtc_supports_double_wide(crtc) &&
6255                     adjusted_mode->crtc_clock > clock_limit) {
6256                         clock_limit = dev_priv->max_dotclk_freq;
6257                         pipe_config->double_wide = true;
6258                 }
6259         }
6260
6261         if (adjusted_mode->crtc_clock > clock_limit) {
6262                 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6263                               adjusted_mode->crtc_clock, clock_limit,
6264                               yesno(pipe_config->double_wide));
6265                 return -EINVAL;
6266         }
6267
6268         /*
6269          * Pipe horizontal size must be even in:
6270          * - DVO ganged mode
6271          * - LVDS dual channel mode
6272          * - Double wide pipe
6273          */
6274         if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6275              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6276                 pipe_config->pipe_src_w &= ~1;
6277
6278         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6279          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6280          */
6281         if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
6282                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6283                 return -EINVAL;
6284
6285         intel_crtc_compute_pixel_rate(pipe_config);
6286
6287         if (HAS_IPS(dev_priv))
6288                 hsw_compute_ips_config(crtc, pipe_config);
6289
6290         if (pipe_config->has_pch_encoder)
6291                 return ironlake_fdi_compute_config(crtc, pipe_config);
6292
6293         return 0;
6294 }
6295
6296 static void
6297 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6298 {
6299         while (*num > DATA_LINK_M_N_MASK ||
6300                *den > DATA_LINK_M_N_MASK) {
6301                 *num >>= 1;
6302                 *den >>= 1;
6303         }
6304 }
6305
6306 static void compute_m_n(unsigned int m, unsigned int n,
6307                         uint32_t *ret_m, uint32_t *ret_n,
6308                         bool reduce_m_n)
6309 {
6310         /*
6311          * Reduce M/N as much as possible without loss in precision. Several DP
6312          * dongles in particular seem to be fussy about too large *link* M/N
6313          * values. The passed in values are more likely to have the least
6314          * significant bits zero than M after rounding below, so do this first.
6315          */
6316         if (reduce_m_n) {
6317                 while ((m & 1) == 0 && (n & 1) == 0) {
6318                         m >>= 1;
6319                         n >>= 1;
6320                 }
6321         }
6322
6323         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6324         *ret_m = div_u64((uint64_t) m * *ret_n, n);
6325         intel_reduce_m_n_ratio(ret_m, ret_n);
6326 }
6327
6328 void
6329 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6330                        int pixel_clock, int link_clock,
6331                        struct intel_link_m_n *m_n,
6332                        bool reduce_m_n)
6333 {
6334         m_n->tu = 64;
6335
6336         compute_m_n(bits_per_pixel * pixel_clock,
6337                     link_clock * nlanes * 8,
6338                     &m_n->gmch_m, &m_n->gmch_n,
6339                     reduce_m_n);
6340
6341         compute_m_n(pixel_clock, link_clock,
6342                     &m_n->link_m, &m_n->link_n,
6343                     reduce_m_n);
6344 }
6345
6346 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6347 {
6348         if (i915.panel_use_ssc >= 0)
6349                 return i915.panel_use_ssc != 0;
6350         return dev_priv->vbt.lvds_use_ssc
6351                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6352 }
6353
6354 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6355 {
6356         return (1 << dpll->n) << 16 | dpll->m2;
6357 }
6358
6359 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6360 {
6361         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6362 }
6363
6364 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6365                                      struct intel_crtc_state *crtc_state,
6366                                      struct dpll *reduced_clock)
6367 {
6368         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6369         u32 fp, fp2 = 0;
6370
6371         if (IS_PINEVIEW(dev_priv)) {
6372                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6373                 if (reduced_clock)
6374                         fp2 = pnv_dpll_compute_fp(reduced_clock);
6375         } else {
6376                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6377                 if (reduced_clock)
6378                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
6379         }
6380
6381         crtc_state->dpll_hw_state.fp0 = fp;
6382
6383         crtc->lowfreq_avail = false;
6384         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6385             reduced_clock) {
6386                 crtc_state->dpll_hw_state.fp1 = fp2;
6387                 crtc->lowfreq_avail = true;
6388         } else {
6389                 crtc_state->dpll_hw_state.fp1 = fp;
6390         }
6391 }
6392
6393 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6394                 pipe)
6395 {
6396         u32 reg_val;
6397
6398         /*
6399          * PLLB opamp always calibrates to max value of 0x3f, force enable it
6400          * and set it to a reasonable value instead.
6401          */
6402         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6403         reg_val &= 0xffffff00;
6404         reg_val |= 0x00000030;
6405         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6406
6407         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6408         reg_val &= 0x00ffffff;
6409         reg_val |= 0x8c000000;
6410         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6411
6412         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6413         reg_val &= 0xffffff00;
6414         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6415
6416         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6417         reg_val &= 0x00ffffff;
6418         reg_val |= 0xb0000000;
6419         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6420 }
6421
6422 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6423                                          struct intel_link_m_n *m_n)
6424 {
6425         struct drm_device *dev = crtc->base.dev;
6426         struct drm_i915_private *dev_priv = to_i915(dev);
6427         int pipe = crtc->pipe;
6428
6429         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6430         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6431         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6432         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6433 }
6434
6435 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6436                                          struct intel_link_m_n *m_n,
6437                                          struct intel_link_m_n *m2_n2)
6438 {
6439         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6440         int pipe = crtc->pipe;
6441         enum transcoder transcoder = crtc->config->cpu_transcoder;
6442
6443         if (INTEL_GEN(dev_priv) >= 5) {
6444                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6445                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6446                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6447                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6448                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6449                  * for gen < 8) and if DRRS is supported (to make sure the
6450                  * registers are not unnecessarily accessed).
6451                  */
6452                 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
6453                     INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
6454                         I915_WRITE(PIPE_DATA_M2(transcoder),
6455                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6456                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6457                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6458                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6459                 }
6460         } else {
6461                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6462                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6463                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6464                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6465         }
6466 }
6467
6468 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6469 {
6470         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6471
6472         if (m_n == M1_N1) {
6473                 dp_m_n = &crtc->config->dp_m_n;
6474                 dp_m2_n2 = &crtc->config->dp_m2_n2;
6475         } else if (m_n == M2_N2) {
6476
6477                 /*
6478                  * M2_N2 registers are not supported. Hence m2_n2 divider value
6479                  * needs to be programmed into M1_N1.
6480                  */
6481                 dp_m_n = &crtc->config->dp_m2_n2;
6482         } else {
6483                 DRM_ERROR("Unsupported divider value\n");
6484                 return;
6485         }
6486
6487         if (crtc->config->has_pch_encoder)
6488                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6489         else
6490                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6491 }
6492
6493 static void vlv_compute_dpll(struct intel_crtc *crtc,
6494                              struct intel_crtc_state *pipe_config)
6495 {
6496         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
6497                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6498         if (crtc->pipe != PIPE_A)
6499                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6500
6501         /* DPLL not used with DSI, but still need the rest set up */
6502         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6503                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
6504                         DPLL_EXT_BUFFER_ENABLE_VLV;
6505
6506         pipe_config->dpll_hw_state.dpll_md =
6507                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6508 }
6509
6510 static void chv_compute_dpll(struct intel_crtc *crtc,
6511                              struct intel_crtc_state *pipe_config)
6512 {
6513         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
6514                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6515         if (crtc->pipe != PIPE_A)
6516                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6517
6518         /* DPLL not used with DSI, but still need the rest set up */
6519         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6520                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
6521
6522         pipe_config->dpll_hw_state.dpll_md =
6523                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6524 }
6525
6526 static void vlv_prepare_pll(struct intel_crtc *crtc,
6527                             const struct intel_crtc_state *pipe_config)
6528 {
6529         struct drm_device *dev = crtc->base.dev;
6530         struct drm_i915_private *dev_priv = to_i915(dev);
6531         enum pipe pipe = crtc->pipe;
6532         u32 mdiv;
6533         u32 bestn, bestm1, bestm2, bestp1, bestp2;
6534         u32 coreclk, reg_val;
6535
6536         /* Enable Refclk */
6537         I915_WRITE(DPLL(pipe),
6538                    pipe_config->dpll_hw_state.dpll &
6539                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
6540
6541         /* No need to actually set up the DPLL with DSI */
6542         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6543                 return;
6544
6545         mutex_lock(&dev_priv->sb_lock);
6546
6547         bestn = pipe_config->dpll.n;
6548         bestm1 = pipe_config->dpll.m1;
6549         bestm2 = pipe_config->dpll.m2;
6550         bestp1 = pipe_config->dpll.p1;
6551         bestp2 = pipe_config->dpll.p2;
6552
6553         /* See eDP HDMI DPIO driver vbios notes doc */
6554
6555         /* PLL B needs special handling */
6556         if (pipe == PIPE_B)
6557                 vlv_pllb_recal_opamp(dev_priv, pipe);
6558
6559         /* Set up Tx target for periodic Rcomp update */
6560         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6561
6562         /* Disable target IRef on PLL */
6563         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6564         reg_val &= 0x00ffffff;
6565         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6566
6567         /* Disable fast lock */
6568         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6569
6570         /* Set idtafcrecal before PLL is enabled */
6571         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6572         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6573         mdiv |= ((bestn << DPIO_N_SHIFT));
6574         mdiv |= (1 << DPIO_K_SHIFT);
6575
6576         /*
6577          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6578          * but we don't support that).
6579          * Note: don't use the DAC post divider as it seems unstable.
6580          */
6581         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6582         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6583
6584         mdiv |= DPIO_ENABLE_CALIBRATION;
6585         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6586
6587         /* Set HBR and RBR LPF coefficients */
6588         if (pipe_config->port_clock == 162000 ||
6589             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
6590             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
6591                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6592                                  0x009f0003);
6593         else
6594                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6595                                  0x00d0000f);
6596
6597         if (intel_crtc_has_dp_encoder(pipe_config)) {
6598                 /* Use SSC source */
6599                 if (pipe == PIPE_A)
6600                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6601                                          0x0df40000);
6602                 else
6603                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6604                                          0x0df70000);
6605         } else { /* HDMI or VGA */
6606                 /* Use bend source */
6607                 if (pipe == PIPE_A)
6608                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6609                                          0x0df70000);
6610                 else
6611                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6612                                          0x0df40000);
6613         }
6614
6615         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6616         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6617         if (intel_crtc_has_dp_encoder(crtc->config))
6618                 coreclk |= 0x01000000;
6619         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6620
6621         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6622         mutex_unlock(&dev_priv->sb_lock);
6623 }
6624
6625 static void chv_prepare_pll(struct intel_crtc *crtc,
6626                             const struct intel_crtc_state *pipe_config)
6627 {
6628         struct drm_device *dev = crtc->base.dev;
6629         struct drm_i915_private *dev_priv = to_i915(dev);
6630         enum pipe pipe = crtc->pipe;
6631         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6632         u32 loopfilter, tribuf_calcntr;
6633         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6634         u32 dpio_val;
6635         int vco;
6636
6637         /* Enable Refclk and SSC */
6638         I915_WRITE(DPLL(pipe),
6639                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6640
6641         /* No need to actually set up the DPLL with DSI */
6642         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6643                 return;
6644
6645         bestn = pipe_config->dpll.n;
6646         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6647         bestm1 = pipe_config->dpll.m1;
6648         bestm2 = pipe_config->dpll.m2 >> 22;
6649         bestp1 = pipe_config->dpll.p1;
6650         bestp2 = pipe_config->dpll.p2;
6651         vco = pipe_config->dpll.vco;
6652         dpio_val = 0;
6653         loopfilter = 0;
6654
6655         mutex_lock(&dev_priv->sb_lock);
6656
6657         /* p1 and p2 divider */
6658         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6659                         5 << DPIO_CHV_S1_DIV_SHIFT |
6660                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6661                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6662                         1 << DPIO_CHV_K_DIV_SHIFT);
6663
6664         /* Feedback post-divider - m2 */
6665         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6666
6667         /* Feedback refclk divider - n and m1 */
6668         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6669                         DPIO_CHV_M1_DIV_BY_2 |
6670                         1 << DPIO_CHV_N_DIV_SHIFT);
6671
6672         /* M2 fraction division */
6673         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6674
6675         /* M2 fraction division enable */
6676         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6677         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6678         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6679         if (bestm2_frac)
6680                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6681         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6682
6683         /* Program digital lock detect threshold */
6684         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6685         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6686                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6687         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6688         if (!bestm2_frac)
6689                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6690         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6691
6692         /* Loop filter */
6693         if (vco == 5400000) {
6694                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6695                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6696                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6697                 tribuf_calcntr = 0x9;
6698         } else if (vco <= 6200000) {
6699                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6700                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6701                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6702                 tribuf_calcntr = 0x9;
6703         } else if (vco <= 6480000) {
6704                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6705                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6706                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6707                 tribuf_calcntr = 0x8;
6708         } else {
6709                 /* Not supported. Apply the same limits as in the max case */
6710                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6711                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6712                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6713                 tribuf_calcntr = 0;
6714         }
6715         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6716
6717         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6718         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6719         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6720         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6721
6722         /* AFC Recal */
6723         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6724                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6725                         DPIO_AFC_RECAL);
6726
6727         mutex_unlock(&dev_priv->sb_lock);
6728 }
6729
6730 /**
6731  * vlv_force_pll_on - forcibly enable just the PLL
6732  * @dev_priv: i915 private structure
6733  * @pipe: pipe PLL to enable
6734  * @dpll: PLL configuration
6735  *
6736  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6737  * in cases where we need the PLL enabled even when @pipe is not going to
6738  * be enabled.
6739  */
6740 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
6741                      const struct dpll *dpll)
6742 {
6743         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
6744         struct intel_crtc_state *pipe_config;
6745
6746         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
6747         if (!pipe_config)
6748                 return -ENOMEM;
6749
6750         pipe_config->base.crtc = &crtc->base;
6751         pipe_config->pixel_multiplier = 1;
6752         pipe_config->dpll = *dpll;
6753
6754         if (IS_CHERRYVIEW(dev_priv)) {
6755                 chv_compute_dpll(crtc, pipe_config);
6756                 chv_prepare_pll(crtc, pipe_config);
6757                 chv_enable_pll(crtc, pipe_config);
6758         } else {
6759                 vlv_compute_dpll(crtc, pipe_config);
6760                 vlv_prepare_pll(crtc, pipe_config);
6761                 vlv_enable_pll(crtc, pipe_config);
6762         }
6763
6764         kfree(pipe_config);
6765
6766         return 0;
6767 }
6768
6769 /**
6770  * vlv_force_pll_off - forcibly disable just the PLL
6771  * @dev_priv: i915 private structure
6772  * @pipe: pipe PLL to disable
6773  *
6774  * Disable the PLL for @pipe. To be used in cases where we need
6775  * the PLL enabled even when @pipe is not going to be enabled.
6776  */
6777 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
6778 {
6779         if (IS_CHERRYVIEW(dev_priv))
6780                 chv_disable_pll(dev_priv, pipe);
6781         else
6782                 vlv_disable_pll(dev_priv, pipe);
6783 }
6784
6785 static void i9xx_compute_dpll(struct intel_crtc *crtc,
6786                               struct intel_crtc_state *crtc_state,
6787                               struct dpll *reduced_clock)
6788 {
6789         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6790         u32 dpll;
6791         struct dpll *clock = &crtc_state->dpll;
6792
6793         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6794
6795         dpll = DPLL_VGA_MODE_DIS;
6796
6797         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
6798                 dpll |= DPLLB_MODE_LVDS;
6799         else
6800                 dpll |= DPLLB_MODE_DAC_SERIAL;
6801
6802         if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
6803             IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
6804                 dpll |= (crtc_state->pixel_multiplier - 1)
6805                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6806         }
6807
6808         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
6809             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
6810                 dpll |= DPLL_SDVO_HIGH_SPEED;
6811
6812         if (intel_crtc_has_dp_encoder(crtc_state))
6813                 dpll |= DPLL_SDVO_HIGH_SPEED;
6814
6815         /* compute bitmask from p1 value */
6816         if (IS_PINEVIEW(dev_priv))
6817                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6818         else {
6819                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6820                 if (IS_G4X(dev_priv) && reduced_clock)
6821                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6822         }
6823         switch (clock->p2) {
6824         case 5:
6825                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6826                 break;
6827         case 7:
6828                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6829                 break;
6830         case 10:
6831                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6832                 break;
6833         case 14:
6834                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6835                 break;
6836         }
6837         if (INTEL_GEN(dev_priv) >= 4)
6838                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6839
6840         if (crtc_state->sdvo_tv_clock)
6841                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6842         else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6843                  intel_panel_use_ssc(dev_priv))
6844                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6845         else
6846                 dpll |= PLL_REF_INPUT_DREFCLK;
6847
6848         dpll |= DPLL_VCO_ENABLE;
6849         crtc_state->dpll_hw_state.dpll = dpll;
6850
6851         if (INTEL_GEN(dev_priv) >= 4) {
6852                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6853                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6854                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6855         }
6856 }
6857
6858 static void i8xx_compute_dpll(struct intel_crtc *crtc,
6859                               struct intel_crtc_state *crtc_state,
6860                               struct dpll *reduced_clock)
6861 {
6862         struct drm_device *dev = crtc->base.dev;
6863         struct drm_i915_private *dev_priv = to_i915(dev);
6864         u32 dpll;
6865         struct dpll *clock = &crtc_state->dpll;
6866
6867         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6868
6869         dpll = DPLL_VGA_MODE_DIS;
6870
6871         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
6872                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6873         } else {
6874                 if (clock->p1 == 2)
6875                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6876                 else
6877                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6878                 if (clock->p2 == 4)
6879                         dpll |= PLL_P2_DIVIDE_BY_4;
6880         }
6881
6882         if (!IS_I830(dev_priv) &&
6883             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
6884                 dpll |= DPLL_DVO_2X_MODE;
6885
6886         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6887             intel_panel_use_ssc(dev_priv))
6888                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6889         else
6890                 dpll |= PLL_REF_INPUT_DREFCLK;
6891
6892         dpll |= DPLL_VCO_ENABLE;
6893         crtc_state->dpll_hw_state.dpll = dpll;
6894 }
6895
6896 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6897 {
6898         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
6899         enum pipe pipe = intel_crtc->pipe;
6900         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6901         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
6902         uint32_t crtc_vtotal, crtc_vblank_end;
6903         int vsyncshift = 0;
6904
6905         /* We need to be careful not to changed the adjusted mode, for otherwise
6906          * the hw state checker will get angry at the mismatch. */
6907         crtc_vtotal = adjusted_mode->crtc_vtotal;
6908         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6909
6910         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6911                 /* the chip adds 2 halflines automatically */
6912                 crtc_vtotal -= 1;
6913                 crtc_vblank_end -= 1;
6914
6915                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
6916                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6917                 else
6918                         vsyncshift = adjusted_mode->crtc_hsync_start -
6919                                 adjusted_mode->crtc_htotal / 2;
6920                 if (vsyncshift < 0)
6921                         vsyncshift += adjusted_mode->crtc_htotal;
6922         }
6923
6924         if (INTEL_GEN(dev_priv) > 3)
6925                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6926
6927         I915_WRITE(HTOTAL(cpu_transcoder),
6928                    (adjusted_mode->crtc_hdisplay - 1) |
6929                    ((adjusted_mode->crtc_htotal - 1) << 16));
6930         I915_WRITE(HBLANK(cpu_transcoder),
6931                    (adjusted_mode->crtc_hblank_start - 1) |
6932                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6933         I915_WRITE(HSYNC(cpu_transcoder),
6934                    (adjusted_mode->crtc_hsync_start - 1) |
6935                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6936
6937         I915_WRITE(VTOTAL(cpu_transcoder),
6938                    (adjusted_mode->crtc_vdisplay - 1) |
6939                    ((crtc_vtotal - 1) << 16));
6940         I915_WRITE(VBLANK(cpu_transcoder),
6941                    (adjusted_mode->crtc_vblank_start - 1) |
6942                    ((crtc_vblank_end - 1) << 16));
6943         I915_WRITE(VSYNC(cpu_transcoder),
6944                    (adjusted_mode->crtc_vsync_start - 1) |
6945                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6946
6947         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6948          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6949          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6950          * bits. */
6951         if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
6952             (pipe == PIPE_B || pipe == PIPE_C))
6953                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6954
6955 }
6956
6957 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
6958 {
6959         struct drm_device *dev = intel_crtc->base.dev;
6960         struct drm_i915_private *dev_priv = to_i915(dev);
6961         enum pipe pipe = intel_crtc->pipe;
6962
6963         /* pipesrc controls the size that is scaled from, which should
6964          * always be the user's requested size.
6965          */
6966         I915_WRITE(PIPESRC(pipe),
6967                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
6968                    (intel_crtc->config->pipe_src_h - 1));
6969 }
6970
6971 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6972                                    struct intel_crtc_state *pipe_config)
6973 {
6974         struct drm_device *dev = crtc->base.dev;
6975         struct drm_i915_private *dev_priv = to_i915(dev);
6976         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6977         uint32_t tmp;
6978
6979         tmp = I915_READ(HTOTAL(cpu_transcoder));
6980         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6981         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6982         tmp = I915_READ(HBLANK(cpu_transcoder));
6983         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6984         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6985         tmp = I915_READ(HSYNC(cpu_transcoder));
6986         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6987         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6988
6989         tmp = I915_READ(VTOTAL(cpu_transcoder));
6990         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6991         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6992         tmp = I915_READ(VBLANK(cpu_transcoder));
6993         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6994         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6995         tmp = I915_READ(VSYNC(cpu_transcoder));
6996         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6997         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6998
6999         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7000                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7001                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7002                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7003         }
7004 }
7005
7006 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7007                                     struct intel_crtc_state *pipe_config)
7008 {
7009         struct drm_device *dev = crtc->base.dev;
7010         struct drm_i915_private *dev_priv = to_i915(dev);
7011         u32 tmp;
7012
7013         tmp = I915_READ(PIPESRC(crtc->pipe));
7014         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7015         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7016
7017         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7018         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7019 }
7020
7021 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7022                                  struct intel_crtc_state *pipe_config)
7023 {
7024         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7025         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7026         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7027         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7028
7029         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7030         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7031         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7032         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7033
7034         mode->flags = pipe_config->base.adjusted_mode.flags;
7035         mode->type = DRM_MODE_TYPE_DRIVER;
7036
7037         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7038
7039         mode->hsync = drm_mode_hsync(mode);
7040         mode->vrefresh = drm_mode_vrefresh(mode);
7041         drm_mode_set_name(mode);
7042 }
7043
7044 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7045 {
7046         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
7047         uint32_t pipeconf;
7048
7049         pipeconf = 0;
7050
7051         /* we keep both pipes enabled on 830 */
7052         if (IS_I830(dev_priv))
7053                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7054
7055         if (intel_crtc->config->double_wide)
7056                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7057
7058         /* only g4x and later have fancy bpc/dither controls */
7059         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7060             IS_CHERRYVIEW(dev_priv)) {
7061                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7062                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7063                         pipeconf |= PIPECONF_DITHER_EN |
7064                                     PIPECONF_DITHER_TYPE_SP;
7065
7066                 switch (intel_crtc->config->pipe_bpp) {
7067                 case 18:
7068                         pipeconf |= PIPECONF_6BPC;
7069                         break;
7070                 case 24:
7071                         pipeconf |= PIPECONF_8BPC;
7072                         break;
7073                 case 30:
7074                         pipeconf |= PIPECONF_10BPC;
7075                         break;
7076                 default:
7077                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7078                         BUG();
7079                 }
7080         }
7081
7082         if (HAS_PIPE_CXSR(dev_priv)) {
7083                 if (intel_crtc->lowfreq_avail) {
7084                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7085                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7086                 } else {
7087                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7088                 }
7089         }
7090
7091         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7092                 if (INTEL_GEN(dev_priv) < 4 ||
7093                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7094                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7095                 else
7096                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7097         } else
7098                 pipeconf |= PIPECONF_PROGRESSIVE;
7099
7100         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7101              intel_crtc->config->limited_color_range)
7102                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7103
7104         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7105         POSTING_READ(PIPECONF(intel_crtc->pipe));
7106 }
7107
7108 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7109                                    struct intel_crtc_state *crtc_state)
7110 {
7111         struct drm_device *dev = crtc->base.dev;
7112         struct drm_i915_private *dev_priv = to_i915(dev);
7113         const struct intel_limit *limit;
7114         int refclk = 48000;
7115
7116         memset(&crtc_state->dpll_hw_state, 0,
7117                sizeof(crtc_state->dpll_hw_state));
7118
7119         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7120                 if (intel_panel_use_ssc(dev_priv)) {
7121                         refclk = dev_priv->vbt.lvds_ssc_freq;
7122                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7123                 }
7124
7125                 limit = &intel_limits_i8xx_lvds;
7126         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7127                 limit = &intel_limits_i8xx_dvo;
7128         } else {
7129                 limit = &intel_limits_i8xx_dac;
7130         }
7131
7132         if (!crtc_state->clock_set &&
7133             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7134                                  refclk, NULL, &crtc_state->dpll)) {
7135                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7136                 return -EINVAL;
7137         }
7138
7139         i8xx_compute_dpll(crtc, crtc_state, NULL);
7140
7141         return 0;
7142 }
7143
7144 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7145                                   struct intel_crtc_state *crtc_state)
7146 {
7147         struct drm_device *dev = crtc->base.dev;
7148         struct drm_i915_private *dev_priv = to_i915(dev);
7149         const struct intel_limit *limit;
7150         int refclk = 96000;
7151
7152         memset(&crtc_state->dpll_hw_state, 0,
7153                sizeof(crtc_state->dpll_hw_state));
7154
7155         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7156                 if (intel_panel_use_ssc(dev_priv)) {
7157                         refclk = dev_priv->vbt.lvds_ssc_freq;
7158                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7159                 }
7160
7161                 if (intel_is_dual_link_lvds(dev))
7162                         limit = &intel_limits_g4x_dual_channel_lvds;
7163                 else
7164                         limit = &intel_limits_g4x_single_channel_lvds;
7165         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7166                    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7167                 limit = &intel_limits_g4x_hdmi;
7168         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7169                 limit = &intel_limits_g4x_sdvo;
7170         } else {
7171                 /* The option is for other outputs */
7172                 limit = &intel_limits_i9xx_sdvo;
7173         }
7174
7175         if (!crtc_state->clock_set &&
7176             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7177                                 refclk, NULL, &crtc_state->dpll)) {
7178                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7179                 return -EINVAL;
7180         }
7181
7182         i9xx_compute_dpll(crtc, crtc_state, NULL);
7183
7184         return 0;
7185 }
7186
7187 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7188                                   struct intel_crtc_state *crtc_state)
7189 {
7190         struct drm_device *dev = crtc->base.dev;
7191         struct drm_i915_private *dev_priv = to_i915(dev);
7192         const struct intel_limit *limit;
7193         int refclk = 96000;
7194
7195         memset(&crtc_state->dpll_hw_state, 0,
7196                sizeof(crtc_state->dpll_hw_state));
7197
7198         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7199                 if (intel_panel_use_ssc(dev_priv)) {
7200                         refclk = dev_priv->vbt.lvds_ssc_freq;
7201                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7202                 }
7203
7204                 limit = &intel_limits_pineview_lvds;
7205         } else {
7206                 limit = &intel_limits_pineview_sdvo;
7207         }
7208
7209         if (!crtc_state->clock_set &&
7210             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7211                                 refclk, NULL, &crtc_state->dpll)) {
7212                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7213                 return -EINVAL;
7214         }
7215
7216         i9xx_compute_dpll(crtc, crtc_state, NULL);
7217
7218         return 0;
7219 }
7220
7221 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7222                                    struct intel_crtc_state *crtc_state)
7223 {
7224         struct drm_device *dev = crtc->base.dev;
7225         struct drm_i915_private *dev_priv = to_i915(dev);
7226         const struct intel_limit *limit;
7227         int refclk = 96000;
7228
7229         memset(&crtc_state->dpll_hw_state, 0,
7230                sizeof(crtc_state->dpll_hw_state));
7231
7232         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7233                 if (intel_panel_use_ssc(dev_priv)) {
7234                         refclk = dev_priv->vbt.lvds_ssc_freq;
7235                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7236                 }
7237
7238                 limit = &intel_limits_i9xx_lvds;
7239         } else {
7240                 limit = &intel_limits_i9xx_sdvo;
7241         }
7242
7243         if (!crtc_state->clock_set &&
7244             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7245                                  refclk, NULL, &crtc_state->dpll)) {
7246                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7247                 return -EINVAL;
7248         }
7249
7250         i9xx_compute_dpll(crtc, crtc_state, NULL);
7251
7252         return 0;
7253 }
7254
7255 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7256                                   struct intel_crtc_state *crtc_state)
7257 {
7258         int refclk = 100000;
7259         const struct intel_limit *limit = &intel_limits_chv;
7260
7261         memset(&crtc_state->dpll_hw_state, 0,
7262                sizeof(crtc_state->dpll_hw_state));
7263
7264         if (!crtc_state->clock_set &&
7265             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7266                                 refclk, NULL, &crtc_state->dpll)) {
7267                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7268                 return -EINVAL;
7269         }
7270
7271         chv_compute_dpll(crtc, crtc_state);
7272
7273         return 0;
7274 }
7275
7276 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7277                                   struct intel_crtc_state *crtc_state)
7278 {
7279         int refclk = 100000;
7280         const struct intel_limit *limit = &intel_limits_vlv;
7281
7282         memset(&crtc_state->dpll_hw_state, 0,
7283                sizeof(crtc_state->dpll_hw_state));
7284
7285         if (!crtc_state->clock_set &&
7286             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7287                                 refclk, NULL, &crtc_state->dpll)) {
7288                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7289                 return -EINVAL;
7290         }
7291
7292         vlv_compute_dpll(crtc, crtc_state);
7293
7294         return 0;
7295 }
7296
7297 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7298                                  struct intel_crtc_state *pipe_config)
7299 {
7300         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7301         uint32_t tmp;
7302
7303         if (INTEL_GEN(dev_priv) <= 3 &&
7304             (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
7305                 return;
7306
7307         tmp = I915_READ(PFIT_CONTROL);
7308         if (!(tmp & PFIT_ENABLE))
7309                 return;
7310
7311         /* Check whether the pfit is attached to our pipe. */
7312         if (INTEL_GEN(dev_priv) < 4) {
7313                 if (crtc->pipe != PIPE_B)
7314                         return;
7315         } else {
7316                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7317                         return;
7318         }
7319
7320         pipe_config->gmch_pfit.control = tmp;
7321         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7322 }
7323
7324 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7325                                struct intel_crtc_state *pipe_config)
7326 {
7327         struct drm_device *dev = crtc->base.dev;
7328         struct drm_i915_private *dev_priv = to_i915(dev);
7329         int pipe = pipe_config->cpu_transcoder;
7330         struct dpll clock;
7331         u32 mdiv;
7332         int refclk = 100000;
7333
7334         /* In case of DSI, DPLL will not be used */
7335         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7336                 return;
7337
7338         mutex_lock(&dev_priv->sb_lock);
7339         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7340         mutex_unlock(&dev_priv->sb_lock);
7341
7342         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7343         clock.m2 = mdiv & DPIO_M2DIV_MASK;
7344         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7345         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7346         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7347
7348         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7349 }
7350
7351 static void
7352 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7353                               struct intel_initial_plane_config *plane_config)
7354 {
7355         struct drm_device *dev = crtc->base.dev;
7356         struct drm_i915_private *dev_priv = to_i915(dev);
7357         u32 val, base, offset;
7358         int pipe = crtc->pipe, plane = crtc->plane;
7359         int fourcc, pixel_format;
7360         unsigned int aligned_height;
7361         struct drm_framebuffer *fb;
7362         struct intel_framebuffer *intel_fb;
7363
7364         val = I915_READ(DSPCNTR(plane));
7365         if (!(val & DISPLAY_PLANE_ENABLE))
7366                 return;
7367
7368         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7369         if (!intel_fb) {
7370                 DRM_DEBUG_KMS("failed to alloc fb\n");
7371                 return;
7372         }
7373
7374         fb = &intel_fb->base;
7375
7376         fb->dev = dev;
7377
7378         if (INTEL_GEN(dev_priv) >= 4) {
7379                 if (val & DISPPLANE_TILED) {
7380                         plane_config->tiling = I915_TILING_X;
7381                         fb->modifier = I915_FORMAT_MOD_X_TILED;
7382                 }
7383         }
7384
7385         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7386         fourcc = i9xx_format_to_fourcc(pixel_format);
7387         fb->format = drm_format_info(fourcc);
7388
7389         if (INTEL_GEN(dev_priv) >= 4) {
7390                 if (plane_config->tiling)
7391                         offset = I915_READ(DSPTILEOFF(plane));
7392                 else
7393                         offset = I915_READ(DSPLINOFF(plane));
7394                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7395         } else {
7396                 base = I915_READ(DSPADDR(plane));
7397         }
7398         plane_config->base = base;
7399
7400         val = I915_READ(PIPESRC(pipe));
7401         fb->width = ((val >> 16) & 0xfff) + 1;
7402         fb->height = ((val >> 0) & 0xfff) + 1;
7403
7404         val = I915_READ(DSPSTRIDE(pipe));
7405         fb->pitches[0] = val & 0xffffffc0;
7406
7407         aligned_height = intel_fb_align_height(fb, 0, fb->height);
7408
7409         plane_config->size = fb->pitches[0] * aligned_height;
7410
7411         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7412                       pipe_name(pipe), plane, fb->width, fb->height,
7413                       fb->format->cpp[0] * 8, base, fb->pitches[0],
7414                       plane_config->size);
7415
7416         plane_config->fb = intel_fb;
7417 }
7418
7419 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7420                                struct intel_crtc_state *pipe_config)
7421 {
7422         struct drm_device *dev = crtc->base.dev;
7423         struct drm_i915_private *dev_priv = to_i915(dev);
7424         int pipe = pipe_config->cpu_transcoder;
7425         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7426         struct dpll clock;
7427         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
7428         int refclk = 100000;
7429
7430         /* In case of DSI, DPLL will not be used */
7431         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7432                 return;
7433
7434         mutex_lock(&dev_priv->sb_lock);
7435         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7436         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7437         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7438         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7439         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7440         mutex_unlock(&dev_priv->sb_lock);
7441
7442         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7443         clock.m2 = (pll_dw0 & 0xff) << 22;
7444         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
7445                 clock.m2 |= pll_dw2 & 0x3fffff;
7446         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7447         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7448         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7449
7450         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
7451 }
7452
7453 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7454                                  struct intel_crtc_state *pipe_config)
7455 {
7456         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7457         enum intel_display_power_domain power_domain;
7458         uint32_t tmp;
7459         bool ret;
7460
7461         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
7462         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
7463                 return false;
7464
7465         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7466         pipe_config->shared_dpll = NULL;
7467
7468         ret = false;
7469
7470         tmp = I915_READ(PIPECONF(crtc->pipe));
7471         if (!(tmp & PIPECONF_ENABLE))
7472                 goto out;
7473
7474         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7475             IS_CHERRYVIEW(dev_priv)) {
7476                 switch (tmp & PIPECONF_BPC_MASK) {
7477                 case PIPECONF_6BPC:
7478                         pipe_config->pipe_bpp = 18;
7479                         break;
7480                 case PIPECONF_8BPC:
7481                         pipe_config->pipe_bpp = 24;
7482                         break;
7483                 case PIPECONF_10BPC:
7484                         pipe_config->pipe_bpp = 30;
7485                         break;
7486                 default:
7487                         break;
7488                 }
7489         }
7490
7491         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7492             (tmp & PIPECONF_COLOR_RANGE_SELECT))
7493                 pipe_config->limited_color_range = true;
7494
7495         if (INTEL_GEN(dev_priv) < 4)
7496                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7497
7498         intel_get_pipe_timings(crtc, pipe_config);
7499         intel_get_pipe_src_size(crtc, pipe_config);
7500
7501         i9xx_get_pfit_config(crtc, pipe_config);
7502
7503         if (INTEL_GEN(dev_priv) >= 4) {
7504                 /* No way to read it out on pipes B and C */
7505                 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
7506                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
7507                 else
7508                         tmp = I915_READ(DPLL_MD(crtc->pipe));
7509                 pipe_config->pixel_multiplier =
7510                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7511                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7512                 pipe_config->dpll_hw_state.dpll_md = tmp;
7513         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
7514                    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
7515                 tmp = I915_READ(DPLL(crtc->pipe));
7516                 pipe_config->pixel_multiplier =
7517                         ((tmp & SDVO_MULTIPLIER_MASK)
7518                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7519         } else {
7520                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7521                  * port and will be fixed up in the encoder->get_config
7522                  * function. */
7523                 pipe_config->pixel_multiplier = 1;
7524         }
7525         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7526         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
7527                 /*
7528                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7529                  * on 830. Filter it out here so that we don't
7530                  * report errors due to that.
7531                  */
7532                 if (IS_I830(dev_priv))
7533                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7534
7535                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7536                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7537         } else {
7538                 /* Mask out read-only status bits. */
7539                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7540                                                      DPLL_PORTC_READY_MASK |
7541                                                      DPLL_PORTB_READY_MASK);
7542         }
7543
7544         if (IS_CHERRYVIEW(dev_priv))
7545                 chv_crtc_clock_get(crtc, pipe_config);
7546         else if (IS_VALLEYVIEW(dev_priv))
7547                 vlv_crtc_clock_get(crtc, pipe_config);
7548         else
7549                 i9xx_crtc_clock_get(crtc, pipe_config);
7550
7551         /*
7552          * Normally the dotclock is filled in by the encoder .get_config()
7553          * but in case the pipe is enabled w/o any ports we need a sane
7554          * default.
7555          */
7556         pipe_config->base.adjusted_mode.crtc_clock =
7557                 pipe_config->port_clock / pipe_config->pixel_multiplier;
7558
7559         ret = true;
7560
7561 out:
7562         intel_display_power_put(dev_priv, power_domain);
7563
7564         return ret;
7565 }
7566
7567 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
7568 {
7569         struct intel_encoder *encoder;
7570         int i;
7571         u32 val, final;
7572         bool has_lvds = false;
7573         bool has_cpu_edp = false;
7574         bool has_panel = false;
7575         bool has_ck505 = false;
7576         bool can_ssc = false;
7577         bool using_ssc_source = false;
7578
7579         /* We need to take the global config into account */
7580         for_each_intel_encoder(&dev_priv->drm, encoder) {
7581                 switch (encoder->type) {
7582                 case INTEL_OUTPUT_LVDS:
7583                         has_panel = true;
7584                         has_lvds = true;
7585                         break;
7586                 case INTEL_OUTPUT_EDP:
7587                         has_panel = true;
7588                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7589                                 has_cpu_edp = true;
7590                         break;
7591                 default:
7592                         break;
7593                 }
7594         }
7595
7596         if (HAS_PCH_IBX(dev_priv)) {
7597                 has_ck505 = dev_priv->vbt.display_clock_mode;
7598                 can_ssc = has_ck505;
7599         } else {
7600                 has_ck505 = false;
7601                 can_ssc = true;
7602         }
7603
7604         /* Check if any DPLLs are using the SSC source */
7605         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
7606                 u32 temp = I915_READ(PCH_DPLL(i));
7607
7608                 if (!(temp & DPLL_VCO_ENABLE))
7609                         continue;
7610
7611                 if ((temp & PLL_REF_INPUT_MASK) ==
7612                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7613                         using_ssc_source = true;
7614                         break;
7615                 }
7616         }
7617
7618         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
7619                       has_panel, has_lvds, has_ck505, using_ssc_source);
7620
7621         /* Ironlake: try to setup display ref clock before DPLL
7622          * enabling. This is only under driver's control after
7623          * PCH B stepping, previous chipset stepping should be
7624          * ignoring this setting.
7625          */
7626         val = I915_READ(PCH_DREF_CONTROL);
7627
7628         /* As we must carefully and slowly disable/enable each source in turn,
7629          * compute the final state we want first and check if we need to
7630          * make any changes at all.
7631          */
7632         final = val;
7633         final &= ~DREF_NONSPREAD_SOURCE_MASK;
7634         if (has_ck505)
7635                 final |= DREF_NONSPREAD_CK505_ENABLE;
7636         else
7637                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7638
7639         final &= ~DREF_SSC_SOURCE_MASK;
7640         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7641         final &= ~DREF_SSC1_ENABLE;
7642
7643         if (has_panel) {
7644                 final |= DREF_SSC_SOURCE_ENABLE;
7645
7646                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7647                         final |= DREF_SSC1_ENABLE;
7648
7649                 if (has_cpu_edp) {
7650                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
7651                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7652                         else
7653                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7654                 } else
7655                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7656         } else if (using_ssc_source) {
7657                 final |= DREF_SSC_SOURCE_ENABLE;
7658                 final |= DREF_SSC1_ENABLE;
7659         }
7660
7661         if (final == val)
7662                 return;
7663
7664         /* Always enable nonspread source */
7665         val &= ~DREF_NONSPREAD_SOURCE_MASK;
7666
7667         if (has_ck505)
7668                 val |= DREF_NONSPREAD_CK505_ENABLE;
7669         else
7670                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7671
7672         if (has_panel) {
7673                 val &= ~DREF_SSC_SOURCE_MASK;
7674                 val |= DREF_SSC_SOURCE_ENABLE;
7675
7676                 /* SSC must be turned on before enabling the CPU output  */
7677                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7678                         DRM_DEBUG_KMS("Using SSC on panel\n");
7679                         val |= DREF_SSC1_ENABLE;
7680                 } else
7681                         val &= ~DREF_SSC1_ENABLE;
7682
7683                 /* Get SSC going before enabling the outputs */
7684                 I915_WRITE(PCH_DREF_CONTROL, val);
7685                 POSTING_READ(PCH_DREF_CONTROL);
7686                 udelay(200);
7687
7688                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7689
7690                 /* Enable CPU source on CPU attached eDP */
7691                 if (has_cpu_edp) {
7692                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7693                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
7694                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7695                         } else
7696                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7697                 } else
7698                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7699
7700                 I915_WRITE(PCH_DREF_CONTROL, val);
7701                 POSTING_READ(PCH_DREF_CONTROL);
7702                 udelay(200);
7703         } else {
7704                 DRM_DEBUG_KMS("Disabling CPU source output\n");
7705
7706                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7707
7708                 /* Turn off CPU output */
7709                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7710
7711                 I915_WRITE(PCH_DREF_CONTROL, val);
7712                 POSTING_READ(PCH_DREF_CONTROL);
7713                 udelay(200);
7714
7715                 if (!using_ssc_source) {
7716                         DRM_DEBUG_KMS("Disabling SSC source\n");
7717
7718                         /* Turn off the SSC source */
7719                         val &= ~DREF_SSC_SOURCE_MASK;
7720                         val |= DREF_SSC_SOURCE_DISABLE;
7721
7722                         /* Turn off SSC1 */
7723                         val &= ~DREF_SSC1_ENABLE;
7724
7725                         I915_WRITE(PCH_DREF_CONTROL, val);
7726                         POSTING_READ(PCH_DREF_CONTROL);
7727                         udelay(200);
7728                 }
7729         }
7730
7731         BUG_ON(val != final);
7732 }
7733
7734 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7735 {
7736         uint32_t tmp;
7737
7738         tmp = I915_READ(SOUTH_CHICKEN2);
7739         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7740         I915_WRITE(SOUTH_CHICKEN2, tmp);
7741
7742         if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
7743                         FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7744                 DRM_ERROR("FDI mPHY reset assert timeout\n");
7745
7746         tmp = I915_READ(SOUTH_CHICKEN2);
7747         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7748         I915_WRITE(SOUTH_CHICKEN2, tmp);
7749
7750         if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
7751                          FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7752                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7753 }
7754
7755 /* WaMPhyProgramming:hsw */
7756 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7757 {
7758         uint32_t tmp;
7759
7760         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7761         tmp &= ~(0xFF << 24);
7762         tmp |= (0x12 << 24);
7763         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7764
7765         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7766         tmp |= (1 << 11);
7767         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7768
7769         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7770         tmp |= (1 << 11);
7771         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7772
7773         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7774         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7775         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7776
7777         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7778         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7779         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7780
7781         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7782         tmp &= ~(7 << 13);
7783         tmp |= (5 << 13);
7784         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7785
7786         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7787         tmp &= ~(7 << 13);
7788         tmp |= (5 << 13);
7789         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7790
7791         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7792         tmp &= ~0xFF;
7793         tmp |= 0x1C;
7794         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7795
7796         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7797         tmp &= ~0xFF;
7798         tmp |= 0x1C;
7799         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7800
7801         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7802         tmp &= ~(0xFF << 16);
7803         tmp |= (0x1C << 16);
7804         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7805
7806         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7807         tmp &= ~(0xFF << 16);
7808         tmp |= (0x1C << 16);
7809         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7810
7811         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7812         tmp |= (1 << 27);
7813         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7814
7815         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7816         tmp |= (1 << 27);
7817         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7818
7819         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7820         tmp &= ~(0xF << 28);
7821         tmp |= (4 << 28);
7822         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7823
7824         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7825         tmp &= ~(0xF << 28);
7826         tmp |= (4 << 28);
7827         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7828 }
7829
7830 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7831  * Programming" based on the parameters passed:
7832  * - Sequence to enable CLKOUT_DP
7833  * - Sequence to enable CLKOUT_DP without spread
7834  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7835  */
7836 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
7837                                  bool with_spread, bool with_fdi)
7838 {
7839         uint32_t reg, tmp;
7840
7841         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7842                 with_spread = true;
7843         if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
7844             with_fdi, "LP PCH doesn't have FDI\n"))
7845                 with_fdi = false;
7846
7847         mutex_lock(&dev_priv->sb_lock);
7848
7849         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7850         tmp &= ~SBI_SSCCTL_DISABLE;
7851         tmp |= SBI_SSCCTL_PATHALT;
7852         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7853
7854         udelay(24);
7855
7856         if (with_spread) {
7857                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7858                 tmp &= ~SBI_SSCCTL_PATHALT;
7859                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7860
7861                 if (with_fdi) {
7862                         lpt_reset_fdi_mphy(dev_priv);
7863                         lpt_program_fdi_mphy(dev_priv);
7864                 }
7865         }
7866
7867         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7868         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7869         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7870         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7871
7872         mutex_unlock(&dev_priv->sb_lock);
7873 }
7874
7875 /* Sequence to disable CLKOUT_DP */
7876 static void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
7877 {
7878         uint32_t reg, tmp;
7879
7880         mutex_lock(&dev_priv->sb_lock);
7881
7882         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7883         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7884         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7885         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7886
7887         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7888         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7889                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7890                         tmp |= SBI_SSCCTL_PATHALT;
7891                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7892                         udelay(32);
7893                 }
7894                 tmp |= SBI_SSCCTL_DISABLE;
7895                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7896         }
7897
7898         mutex_unlock(&dev_priv->sb_lock);
7899 }
7900
7901 #define BEND_IDX(steps) ((50 + (steps)) / 5)
7902
7903 static const uint16_t sscdivintphase[] = {
7904         [BEND_IDX( 50)] = 0x3B23,
7905         [BEND_IDX( 45)] = 0x3B23,
7906         [BEND_IDX( 40)] = 0x3C23,
7907         [BEND_IDX( 35)] = 0x3C23,
7908         [BEND_IDX( 30)] = 0x3D23,
7909         [BEND_IDX( 25)] = 0x3D23,
7910         [BEND_IDX( 20)] = 0x3E23,
7911         [BEND_IDX( 15)] = 0x3E23,
7912         [BEND_IDX( 10)] = 0x3F23,
7913         [BEND_IDX(  5)] = 0x3F23,
7914         [BEND_IDX(  0)] = 0x0025,
7915         [BEND_IDX( -5)] = 0x0025,
7916         [BEND_IDX(-10)] = 0x0125,
7917         [BEND_IDX(-15)] = 0x0125,
7918         [BEND_IDX(-20)] = 0x0225,
7919         [BEND_IDX(-25)] = 0x0225,
7920         [BEND_IDX(-30)] = 0x0325,
7921         [BEND_IDX(-35)] = 0x0325,
7922         [BEND_IDX(-40)] = 0x0425,
7923         [BEND_IDX(-45)] = 0x0425,
7924         [BEND_IDX(-50)] = 0x0525,
7925 };
7926
7927 /*
7928  * Bend CLKOUT_DP
7929  * steps -50 to 50 inclusive, in steps of 5
7930  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
7931  * change in clock period = -(steps / 10) * 5.787 ps
7932  */
7933 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
7934 {
7935         uint32_t tmp;
7936         int idx = BEND_IDX(steps);
7937
7938         if (WARN_ON(steps % 5 != 0))
7939                 return;
7940
7941         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
7942                 return;
7943
7944         mutex_lock(&dev_priv->sb_lock);
7945
7946         if (steps % 10 != 0)
7947                 tmp = 0xAAAAAAAB;
7948         else
7949                 tmp = 0x00000000;
7950         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
7951
7952         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
7953         tmp &= 0xffff0000;
7954         tmp |= sscdivintphase[idx];
7955         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
7956
7957         mutex_unlock(&dev_priv->sb_lock);
7958 }
7959
7960 #undef BEND_IDX
7961
7962 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
7963 {
7964         struct intel_encoder *encoder;
7965         bool has_vga = false;
7966
7967         for_each_intel_encoder(&dev_priv->drm, encoder) {
7968                 switch (encoder->type) {
7969                 case INTEL_OUTPUT_ANALOG:
7970                         has_vga = true;
7971                         break;
7972                 default:
7973                         break;
7974                 }
7975         }
7976
7977         if (has_vga) {
7978                 lpt_bend_clkout_dp(dev_priv, 0);
7979                 lpt_enable_clkout_dp(dev_priv, true, true);
7980         } else {
7981                 lpt_disable_clkout_dp(dev_priv);
7982         }
7983 }
7984
7985 /*
7986  * Initialize reference clocks when the driver loads
7987  */
7988 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
7989 {
7990         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
7991                 ironlake_init_pch_refclk(dev_priv);
7992         else if (HAS_PCH_LPT(dev_priv))
7993                 lpt_init_pch_refclk(dev_priv);
7994 }
7995
7996 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7997 {
7998         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
7999         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8000         int pipe = intel_crtc->pipe;
8001         uint32_t val;
8002
8003         val = 0;
8004
8005         switch (intel_crtc->config->pipe_bpp) {
8006         case 18:
8007                 val |= PIPECONF_6BPC;
8008                 break;
8009         case 24:
8010                 val |= PIPECONF_8BPC;
8011                 break;
8012         case 30:
8013                 val |= PIPECONF_10BPC;
8014                 break;
8015         case 36:
8016                 val |= PIPECONF_12BPC;
8017                 break;
8018         default:
8019                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8020                 BUG();
8021         }
8022
8023         if (intel_crtc->config->dither)
8024                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8025
8026         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8027                 val |= PIPECONF_INTERLACED_ILK;
8028         else
8029                 val |= PIPECONF_PROGRESSIVE;
8030
8031         if (intel_crtc->config->limited_color_range)
8032                 val |= PIPECONF_COLOR_RANGE_SELECT;
8033
8034         I915_WRITE(PIPECONF(pipe), val);
8035         POSTING_READ(PIPECONF(pipe));
8036 }
8037
8038 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8039 {
8040         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8041         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8042         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8043         u32 val = 0;
8044
8045         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8046                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8047
8048         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8049                 val |= PIPECONF_INTERLACED_ILK;
8050         else
8051                 val |= PIPECONF_PROGRESSIVE;
8052
8053         I915_WRITE(PIPECONF(cpu_transcoder), val);
8054         POSTING_READ(PIPECONF(cpu_transcoder));
8055 }
8056
8057 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8058 {
8059         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8060         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8061
8062         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8063                 u32 val = 0;
8064
8065                 switch (intel_crtc->config->pipe_bpp) {
8066                 case 18:
8067                         val |= PIPEMISC_DITHER_6_BPC;
8068                         break;
8069                 case 24:
8070                         val |= PIPEMISC_DITHER_8_BPC;
8071                         break;
8072                 case 30:
8073                         val |= PIPEMISC_DITHER_10_BPC;
8074                         break;
8075                 case 36:
8076                         val |= PIPEMISC_DITHER_12_BPC;
8077                         break;
8078                 default:
8079                         /* Case prevented by pipe_config_set_bpp. */
8080                         BUG();
8081                 }
8082
8083                 if (intel_crtc->config->dither)
8084                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8085
8086                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8087         }
8088 }
8089
8090 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8091 {
8092         /*
8093          * Account for spread spectrum to avoid
8094          * oversubscribing the link. Max center spread
8095          * is 2.5%; use 5% for safety's sake.
8096          */
8097         u32 bps = target_clock * bpp * 21 / 20;
8098         return DIV_ROUND_UP(bps, link_bw * 8);
8099 }
8100
8101 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8102 {
8103         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8104 }
8105
8106 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8107                                   struct intel_crtc_state *crtc_state,
8108                                   struct dpll *reduced_clock)
8109 {
8110         struct drm_crtc *crtc = &intel_crtc->base;
8111         struct drm_device *dev = crtc->dev;
8112         struct drm_i915_private *dev_priv = to_i915(dev);
8113         u32 dpll, fp, fp2;
8114         int factor;
8115
8116         /* Enable autotuning of the PLL clock (if permissible) */
8117         factor = 21;
8118         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8119                 if ((intel_panel_use_ssc(dev_priv) &&
8120                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8121                     (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
8122                         factor = 25;
8123         } else if (crtc_state->sdvo_tv_clock)
8124                 factor = 20;
8125
8126         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8127
8128         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8129                 fp |= FP_CB_TUNE;
8130
8131         if (reduced_clock) {
8132                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8133
8134                 if (reduced_clock->m < factor * reduced_clock->n)
8135                         fp2 |= FP_CB_TUNE;
8136         } else {
8137                 fp2 = fp;
8138         }
8139
8140         dpll = 0;
8141
8142         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8143                 dpll |= DPLLB_MODE_LVDS;
8144         else
8145                 dpll |= DPLLB_MODE_DAC_SERIAL;
8146
8147         dpll |= (crtc_state->pixel_multiplier - 1)
8148                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8149
8150         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8151             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8152                 dpll |= DPLL_SDVO_HIGH_SPEED;
8153
8154         if (intel_crtc_has_dp_encoder(crtc_state))
8155                 dpll |= DPLL_SDVO_HIGH_SPEED;
8156
8157         /*
8158          * The high speed IO clock is only really required for
8159          * SDVO/HDMI/DP, but we also enable it for CRT to make it
8160          * possible to share the DPLL between CRT and HDMI. Enabling
8161          * the clock needlessly does no real harm, except use up a
8162          * bit of power potentially.
8163          *
8164          * We'll limit this to IVB with 3 pipes, since it has only two
8165          * DPLLs and so DPLL sharing is the only way to get three pipes
8166          * driving PCH ports at the same time. On SNB we could do this,
8167          * and potentially avoid enabling the second DPLL, but it's not
8168          * clear if it''s a win or loss power wise. No point in doing
8169          * this on ILK at all since it has a fixed DPLL<->pipe mapping.
8170          */
8171         if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
8172             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
8173                 dpll |= DPLL_SDVO_HIGH_SPEED;
8174
8175         /* compute bitmask from p1 value */
8176         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8177         /* also FPA1 */
8178         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8179
8180         switch (crtc_state->dpll.p2) {
8181         case 5:
8182                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8183                 break;
8184         case 7:
8185                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8186                 break;
8187         case 10:
8188                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8189                 break;
8190         case 14:
8191                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8192                 break;
8193         }
8194
8195         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8196             intel_panel_use_ssc(dev_priv))
8197                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8198         else
8199                 dpll |= PLL_REF_INPUT_DREFCLK;
8200
8201         dpll |= DPLL_VCO_ENABLE;
8202
8203         crtc_state->dpll_hw_state.dpll = dpll;
8204         crtc_state->dpll_hw_state.fp0 = fp;
8205         crtc_state->dpll_hw_state.fp1 = fp2;
8206 }
8207
8208 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8209                                        struct intel_crtc_state *crtc_state)
8210 {
8211         struct drm_device *dev = crtc->base.dev;
8212         struct drm_i915_private *dev_priv = to_i915(dev);
8213         const struct intel_limit *limit;
8214         int refclk = 120000;
8215
8216         memset(&crtc_state->dpll_hw_state, 0,
8217                sizeof(crtc_state->dpll_hw_state));
8218
8219         crtc->lowfreq_avail = false;
8220
8221         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8222         if (!crtc_state->has_pch_encoder)
8223                 return 0;
8224
8225         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8226                 if (intel_panel_use_ssc(dev_priv)) {
8227                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8228                                       dev_priv->vbt.lvds_ssc_freq);
8229                         refclk = dev_priv->vbt.lvds_ssc_freq;
8230                 }
8231
8232                 if (intel_is_dual_link_lvds(dev)) {
8233                         if (refclk == 100000)
8234                                 limit = &intel_limits_ironlake_dual_lvds_100m;
8235                         else
8236                                 limit = &intel_limits_ironlake_dual_lvds;
8237                 } else {
8238                         if (refclk == 100000)
8239                                 limit = &intel_limits_ironlake_single_lvds_100m;
8240                         else
8241                                 limit = &intel_limits_ironlake_single_lvds;
8242                 }
8243         } else {
8244                 limit = &intel_limits_ironlake_dac;
8245         }
8246
8247         if (!crtc_state->clock_set &&
8248             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8249                                 refclk, NULL, &crtc_state->dpll)) {
8250                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8251                 return -EINVAL;
8252         }
8253
8254         ironlake_compute_dpll(crtc, crtc_state, NULL);
8255
8256         if (!intel_get_shared_dpll(crtc, crtc_state, NULL)) {
8257                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8258                                  pipe_name(crtc->pipe));
8259                 return -EINVAL;
8260         }
8261
8262         return 0;
8263 }
8264
8265 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8266                                          struct intel_link_m_n *m_n)
8267 {
8268         struct drm_device *dev = crtc->base.dev;
8269         struct drm_i915_private *dev_priv = to_i915(dev);
8270         enum pipe pipe = crtc->pipe;
8271
8272         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8273         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8274         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8275                 & ~TU_SIZE_MASK;
8276         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8277         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8278                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8279 }
8280
8281 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8282                                          enum transcoder transcoder,
8283                                          struct intel_link_m_n *m_n,
8284                                          struct intel_link_m_n *m2_n2)
8285 {
8286         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8287         enum pipe pipe = crtc->pipe;
8288
8289         if (INTEL_GEN(dev_priv) >= 5) {
8290                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8291                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8292                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8293                         & ~TU_SIZE_MASK;
8294                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8295                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8296                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8297                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8298                  * gen < 8) and if DRRS is supported (to make sure the
8299                  * registers are not unnecessarily read).
8300                  */
8301                 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
8302                         crtc->config->has_drrs) {
8303                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8304                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8305                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8306                                         & ~TU_SIZE_MASK;
8307                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8308                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8309                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8310                 }
8311         } else {
8312                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8313                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8314                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8315                         & ~TU_SIZE_MASK;
8316                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8317                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8318                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8319         }
8320 }
8321
8322 void intel_dp_get_m_n(struct intel_crtc *crtc,
8323                       struct intel_crtc_state *pipe_config)
8324 {
8325         if (pipe_config->has_pch_encoder)
8326                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8327         else
8328                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8329                                              &pipe_config->dp_m_n,
8330                                              &pipe_config->dp_m2_n2);
8331 }
8332
8333 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8334                                         struct intel_crtc_state *pipe_config)
8335 {
8336         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8337                                      &pipe_config->fdi_m_n, NULL);
8338 }
8339
8340 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8341                                     struct intel_crtc_state *pipe_config)
8342 {
8343         struct drm_device *dev = crtc->base.dev;
8344         struct drm_i915_private *dev_priv = to_i915(dev);
8345         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8346         uint32_t ps_ctrl = 0;
8347         int id = -1;
8348         int i;
8349
8350         /* find scaler attached to this pipe */
8351         for (i = 0; i < crtc->num_scalers; i++) {
8352                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8353                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8354                         id = i;
8355                         pipe_config->pch_pfit.enabled = true;
8356                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8357                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8358                         break;
8359                 }
8360         }
8361
8362         scaler_state->scaler_id = id;
8363         if (id >= 0) {
8364                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8365         } else {
8366                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8367         }
8368 }
8369
8370 static void
8371 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8372                                  struct intel_initial_plane_config *plane_config)
8373 {
8374         struct drm_device *dev = crtc->base.dev;
8375         struct drm_i915_private *dev_priv = to_i915(dev);
8376         u32 val, base, offset, stride_mult, tiling;
8377         int pipe = crtc->pipe;
8378         int fourcc, pixel_format;
8379         unsigned int aligned_height;
8380         struct drm_framebuffer *fb;
8381         struct intel_framebuffer *intel_fb;
8382
8383         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8384         if (!intel_fb) {
8385                 DRM_DEBUG_KMS("failed to alloc fb\n");
8386                 return;
8387         }
8388
8389         fb = &intel_fb->base;
8390
8391         fb->dev = dev;
8392
8393         val = I915_READ(PLANE_CTL(pipe, 0));
8394         if (!(val & PLANE_CTL_ENABLE))
8395                 goto error;
8396
8397         pixel_format = val & PLANE_CTL_FORMAT_MASK;
8398         fourcc = skl_format_to_fourcc(pixel_format,
8399                                       val & PLANE_CTL_ORDER_RGBX,
8400                                       val & PLANE_CTL_ALPHA_MASK);
8401         fb->format = drm_format_info(fourcc);
8402
8403         tiling = val & PLANE_CTL_TILED_MASK;
8404         switch (tiling) {
8405         case PLANE_CTL_TILED_LINEAR:
8406                 fb->modifier = DRM_FORMAT_MOD_LINEAR;
8407                 break;
8408         case PLANE_CTL_TILED_X:
8409                 plane_config->tiling = I915_TILING_X;
8410                 fb->modifier = I915_FORMAT_MOD_X_TILED;
8411                 break;
8412         case PLANE_CTL_TILED_Y:
8413                 fb->modifier = I915_FORMAT_MOD_Y_TILED;
8414                 break;
8415         case PLANE_CTL_TILED_YF:
8416                 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
8417                 break;
8418         default:
8419                 MISSING_CASE(tiling);
8420                 goto error;
8421         }
8422
8423         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8424         plane_config->base = base;
8425
8426         offset = I915_READ(PLANE_OFFSET(pipe, 0));
8427
8428         val = I915_READ(PLANE_SIZE(pipe, 0));
8429         fb->height = ((val >> 16) & 0xfff) + 1;
8430         fb->width = ((val >> 0) & 0x1fff) + 1;
8431
8432         val = I915_READ(PLANE_STRIDE(pipe, 0));
8433         stride_mult = intel_fb_stride_alignment(fb, 0);
8434         fb->pitches[0] = (val & 0x3ff) * stride_mult;
8435
8436         aligned_height = intel_fb_align_height(fb, 0, fb->height);
8437
8438         plane_config->size = fb->pitches[0] * aligned_height;
8439
8440         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8441                       pipe_name(pipe), fb->width, fb->height,
8442                       fb->format->cpp[0] * 8, base, fb->pitches[0],
8443                       plane_config->size);
8444
8445         plane_config->fb = intel_fb;
8446         return;
8447
8448 error:
8449         kfree(intel_fb);
8450 }
8451
8452 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8453                                      struct intel_crtc_state *pipe_config)
8454 {
8455         struct drm_device *dev = crtc->base.dev;
8456         struct drm_i915_private *dev_priv = to_i915(dev);
8457         uint32_t tmp;
8458
8459         tmp = I915_READ(PF_CTL(crtc->pipe));
8460
8461         if (tmp & PF_ENABLE) {
8462                 pipe_config->pch_pfit.enabled = true;
8463                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8464                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8465
8466                 /* We currently do not free assignements of panel fitters on
8467                  * ivb/hsw (since we don't use the higher upscaling modes which
8468                  * differentiates them) so just WARN about this case for now. */
8469                 if (IS_GEN7(dev_priv)) {
8470                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8471                                 PF_PIPE_SEL_IVB(crtc->pipe));
8472                 }
8473         }
8474 }
8475
8476 static void
8477 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8478                                   struct intel_initial_plane_config *plane_config)
8479 {
8480         struct drm_device *dev = crtc->base.dev;
8481         struct drm_i915_private *dev_priv = to_i915(dev);
8482         u32 val, base, offset;
8483         int pipe = crtc->pipe;
8484         int fourcc, pixel_format;
8485         unsigned int aligned_height;
8486         struct drm_framebuffer *fb;
8487         struct intel_framebuffer *intel_fb;
8488
8489         val = I915_READ(DSPCNTR(pipe));
8490         if (!(val & DISPLAY_PLANE_ENABLE))
8491                 return;
8492
8493         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8494         if (!intel_fb) {
8495                 DRM_DEBUG_KMS("failed to alloc fb\n");
8496                 return;
8497         }
8498
8499         fb = &intel_fb->base;
8500
8501         fb->dev = dev;
8502
8503         if (INTEL_GEN(dev_priv) >= 4) {
8504                 if (val & DISPPLANE_TILED) {
8505                         plane_config->tiling = I915_TILING_X;
8506                         fb->modifier = I915_FORMAT_MOD_X_TILED;
8507                 }
8508         }
8509
8510         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8511         fourcc = i9xx_format_to_fourcc(pixel_format);
8512         fb->format = drm_format_info(fourcc);
8513
8514         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8515         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
8516                 offset = I915_READ(DSPOFFSET(pipe));
8517         } else {
8518                 if (plane_config->tiling)
8519                         offset = I915_READ(DSPTILEOFF(pipe));
8520                 else
8521                         offset = I915_READ(DSPLINOFF(pipe));
8522         }
8523         plane_config->base = base;
8524
8525         val = I915_READ(PIPESRC(pipe));
8526         fb->width = ((val >> 16) & 0xfff) + 1;
8527         fb->height = ((val >> 0) & 0xfff) + 1;
8528
8529         val = I915_READ(DSPSTRIDE(pipe));
8530         fb->pitches[0] = val & 0xffffffc0;
8531
8532         aligned_height = intel_fb_align_height(fb, 0, fb->height);
8533
8534         plane_config->size = fb->pitches[0] * aligned_height;
8535
8536         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8537                       pipe_name(pipe), fb->width, fb->height,
8538                       fb->format->cpp[0] * 8, base, fb->pitches[0],
8539                       plane_config->size);
8540
8541         plane_config->fb = intel_fb;
8542 }
8543
8544 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8545                                      struct intel_crtc_state *pipe_config)
8546 {
8547         struct drm_device *dev = crtc->base.dev;
8548         struct drm_i915_private *dev_priv = to_i915(dev);
8549         enum intel_display_power_domain power_domain;
8550         uint32_t tmp;
8551         bool ret;
8552
8553         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8554         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8555                 return false;
8556
8557         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8558         pipe_config->shared_dpll = NULL;
8559
8560         ret = false;
8561         tmp = I915_READ(PIPECONF(crtc->pipe));
8562         if (!(tmp & PIPECONF_ENABLE))
8563                 goto out;
8564
8565         switch (tmp & PIPECONF_BPC_MASK) {
8566         case PIPECONF_6BPC:
8567                 pipe_config->pipe_bpp = 18;
8568                 break;
8569         case PIPECONF_8BPC:
8570                 pipe_config->pipe_bpp = 24;
8571                 break;
8572         case PIPECONF_10BPC:
8573                 pipe_config->pipe_bpp = 30;
8574                 break;
8575         case PIPECONF_12BPC:
8576                 pipe_config->pipe_bpp = 36;
8577                 break;
8578         default:
8579                 break;
8580         }
8581
8582         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8583                 pipe_config->limited_color_range = true;
8584
8585         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8586                 struct intel_shared_dpll *pll;
8587                 enum intel_dpll_id pll_id;
8588
8589                 pipe_config->has_pch_encoder = true;
8590
8591                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8592                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8593                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8594
8595                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8596
8597                 if (HAS_PCH_IBX(dev_priv)) {
8598                         /*
8599                          * The pipe->pch transcoder and pch transcoder->pll
8600                          * mapping is fixed.
8601                          */
8602                         pll_id = (enum intel_dpll_id) crtc->pipe;
8603                 } else {
8604                         tmp = I915_READ(PCH_DPLL_SEL);
8605                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8606                                 pll_id = DPLL_ID_PCH_PLL_B;
8607                         else
8608                                 pll_id= DPLL_ID_PCH_PLL_A;
8609                 }
8610
8611                 pipe_config->shared_dpll =
8612                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
8613                 pll = pipe_config->shared_dpll;
8614
8615                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
8616                                                  &pipe_config->dpll_hw_state));
8617
8618                 tmp = pipe_config->dpll_hw_state.dpll;
8619                 pipe_config->pixel_multiplier =
8620                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8621                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8622
8623                 ironlake_pch_clock_get(crtc, pipe_config);
8624         } else {
8625                 pipe_config->pixel_multiplier = 1;
8626         }
8627
8628         intel_get_pipe_timings(crtc, pipe_config);
8629         intel_get_pipe_src_size(crtc, pipe_config);
8630
8631         ironlake_get_pfit_config(crtc, pipe_config);
8632
8633         ret = true;
8634
8635 out:
8636         intel_display_power_put(dev_priv, power_domain);
8637
8638         return ret;
8639 }
8640
8641 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8642 {
8643         struct drm_device *dev = &dev_priv->drm;
8644         struct intel_crtc *crtc;
8645
8646         for_each_intel_crtc(dev, crtc)
8647                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8648                      pipe_name(crtc->pipe));
8649
8650         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8651         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8652         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8653         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8654         I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
8655         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8656              "CPU PWM1 enabled\n");
8657         if (IS_HASWELL(dev_priv))
8658                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8659                      "CPU PWM2 enabled\n");
8660         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8661              "PCH PWM1 enabled\n");
8662         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8663              "Utility pin enabled\n");
8664         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8665
8666         /*
8667          * In theory we can still leave IRQs enabled, as long as only the HPD
8668          * interrupts remain enabled. We used to check for that, but since it's
8669          * gen-specific and since we only disable LCPLL after we fully disable
8670          * the interrupts, the check below should be enough.
8671          */
8672         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8673 }
8674
8675 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8676 {
8677         if (IS_HASWELL(dev_priv))
8678                 return I915_READ(D_COMP_HSW);
8679         else
8680                 return I915_READ(D_COMP_BDW);
8681 }
8682
8683 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8684 {
8685         if (IS_HASWELL(dev_priv)) {
8686                 mutex_lock(&dev_priv->rps.hw_lock);
8687                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8688                                             val))
8689                         DRM_DEBUG_KMS("Failed to write to D_COMP\n");
8690                 mutex_unlock(&dev_priv->rps.hw_lock);
8691         } else {
8692                 I915_WRITE(D_COMP_BDW, val);
8693                 POSTING_READ(D_COMP_BDW);
8694         }
8695 }
8696
8697 /*
8698  * This function implements pieces of two sequences from BSpec:
8699  * - Sequence for display software to disable LCPLL
8700  * - Sequence for display software to allow package C8+
8701  * The steps implemented here are just the steps that actually touch the LCPLL
8702  * register. Callers should take care of disabling all the display engine
8703  * functions, doing the mode unset, fixing interrupts, etc.
8704  */
8705 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8706                               bool switch_to_fclk, bool allow_power_down)
8707 {
8708         uint32_t val;
8709
8710         assert_can_disable_lcpll(dev_priv);
8711
8712         val = I915_READ(LCPLL_CTL);
8713
8714         if (switch_to_fclk) {
8715                 val |= LCPLL_CD_SOURCE_FCLK;
8716                 I915_WRITE(LCPLL_CTL, val);
8717
8718                 if (wait_for_us(I915_READ(LCPLL_CTL) &
8719                                 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8720                         DRM_ERROR("Switching to FCLK failed\n");
8721
8722                 val = I915_READ(LCPLL_CTL);
8723         }
8724
8725         val |= LCPLL_PLL_DISABLE;
8726         I915_WRITE(LCPLL_CTL, val);
8727         POSTING_READ(LCPLL_CTL);
8728
8729         if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
8730                 DRM_ERROR("LCPLL still locked\n");
8731
8732         val = hsw_read_dcomp(dev_priv);
8733         val |= D_COMP_COMP_DISABLE;
8734         hsw_write_dcomp(dev_priv, val);
8735         ndelay(100);
8736
8737         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8738                      1))
8739                 DRM_ERROR("D_COMP RCOMP still in progress\n");
8740
8741         if (allow_power_down) {
8742                 val = I915_READ(LCPLL_CTL);
8743                 val |= LCPLL_POWER_DOWN_ALLOW;
8744                 I915_WRITE(LCPLL_CTL, val);
8745                 POSTING_READ(LCPLL_CTL);
8746         }
8747 }
8748
8749 /*
8750  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8751  * source.
8752  */
8753 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8754 {
8755         uint32_t val;
8756
8757         val = I915_READ(LCPLL_CTL);
8758
8759         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8760                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8761                 return;
8762
8763         /*
8764          * Make sure we're not on PC8 state before disabling PC8, otherwise
8765          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8766          */
8767         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8768
8769         if (val & LCPLL_POWER_DOWN_ALLOW) {
8770                 val &= ~LCPLL_POWER_DOWN_ALLOW;
8771                 I915_WRITE(LCPLL_CTL, val);
8772                 POSTING_READ(LCPLL_CTL);
8773         }
8774
8775         val = hsw_read_dcomp(dev_priv);
8776         val |= D_COMP_COMP_FORCE;
8777         val &= ~D_COMP_COMP_DISABLE;
8778         hsw_write_dcomp(dev_priv, val);
8779
8780         val = I915_READ(LCPLL_CTL);
8781         val &= ~LCPLL_PLL_DISABLE;
8782         I915_WRITE(LCPLL_CTL, val);
8783
8784         if (intel_wait_for_register(dev_priv,
8785                                     LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
8786                                     5))
8787                 DRM_ERROR("LCPLL not locked yet\n");
8788
8789         if (val & LCPLL_CD_SOURCE_FCLK) {
8790                 val = I915_READ(LCPLL_CTL);
8791                 val &= ~LCPLL_CD_SOURCE_FCLK;
8792                 I915_WRITE(LCPLL_CTL, val);
8793
8794                 if (wait_for_us((I915_READ(LCPLL_CTL) &
8795                                  LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8796                         DRM_ERROR("Switching back to LCPLL failed\n");
8797         }
8798
8799         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8800         intel_update_cdclk(dev_priv);
8801 }
8802
8803 /*
8804  * Package states C8 and deeper are really deep PC states that can only be
8805  * reached when all the devices on the system allow it, so even if the graphics
8806  * device allows PC8+, it doesn't mean the system will actually get to these
8807  * states. Our driver only allows PC8+ when going into runtime PM.
8808  *
8809  * The requirements for PC8+ are that all the outputs are disabled, the power
8810  * well is disabled and most interrupts are disabled, and these are also
8811  * requirements for runtime PM. When these conditions are met, we manually do
8812  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8813  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8814  * hang the machine.
8815  *
8816  * When we really reach PC8 or deeper states (not just when we allow it) we lose
8817  * the state of some registers, so when we come back from PC8+ we need to
8818  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8819  * need to take care of the registers kept by RC6. Notice that this happens even
8820  * if we don't put the device in PCI D3 state (which is what currently happens
8821  * because of the runtime PM support).
8822  *
8823  * For more, read "Display Sequences for Package C8" on the hardware
8824  * documentation.
8825  */
8826 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8827 {
8828         uint32_t val;
8829
8830         DRM_DEBUG_KMS("Enabling package C8+\n");
8831
8832         if (HAS_PCH_LPT_LP(dev_priv)) {
8833                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8834                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8835                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8836         }
8837
8838         lpt_disable_clkout_dp(dev_priv);
8839         hsw_disable_lcpll(dev_priv, true, true);
8840 }
8841
8842 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8843 {
8844         uint32_t val;
8845
8846         DRM_DEBUG_KMS("Disabling package C8+\n");
8847
8848         hsw_restore_lcpll(dev_priv);
8849         lpt_init_pch_refclk(dev_priv);
8850
8851         if (HAS_PCH_LPT_LP(dev_priv)) {
8852                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8853                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8854                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8855         }
8856 }
8857
8858 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8859                                       struct intel_crtc_state *crtc_state)
8860 {
8861         if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
8862                 struct intel_encoder *encoder =
8863                         intel_ddi_get_crtc_new_encoder(crtc_state);
8864
8865                 if (!intel_get_shared_dpll(crtc, crtc_state, encoder)) {
8866                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8867                                          pipe_name(crtc->pipe));
8868                         return -EINVAL;
8869                 }
8870         }
8871
8872         crtc->lowfreq_avail = false;
8873
8874         return 0;
8875 }
8876
8877 static void cannonlake_get_ddi_pll(struct drm_i915_private *dev_priv,
8878                                    enum port port,
8879                                    struct intel_crtc_state *pipe_config)
8880 {
8881         enum intel_dpll_id id;
8882         u32 temp;
8883
8884         temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
8885         id = temp >> (port * 2);
8886
8887         if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2))
8888                 return;
8889
8890         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8891 }
8892
8893 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
8894                                 enum port port,
8895                                 struct intel_crtc_state *pipe_config)
8896 {
8897         enum intel_dpll_id id;
8898
8899         switch (port) {
8900         case PORT_A:
8901                 id = DPLL_ID_SKL_DPLL0;
8902                 break;
8903         case PORT_B:
8904                 id = DPLL_ID_SKL_DPLL1;
8905                 break;
8906         case PORT_C:
8907                 id = DPLL_ID_SKL_DPLL2;
8908                 break;
8909         default:
8910                 DRM_ERROR("Incorrect port type\n");
8911                 return;
8912         }
8913
8914         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8915 }
8916
8917 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8918                                 enum port port,
8919                                 struct intel_crtc_state *pipe_config)
8920 {
8921         enum intel_dpll_id id;
8922         u32 temp;
8923
8924         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8925         id = temp >> (port * 3 + 1);
8926
8927         if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
8928                 return;
8929
8930         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8931 }
8932
8933 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8934                                 enum port port,
8935                                 struct intel_crtc_state *pipe_config)
8936 {
8937         enum intel_dpll_id id;
8938         uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8939
8940         switch (ddi_pll_sel) {
8941         case PORT_CLK_SEL_WRPLL1:
8942                 id = DPLL_ID_WRPLL1;
8943                 break;
8944         case PORT_CLK_SEL_WRPLL2:
8945                 id = DPLL_ID_WRPLL2;
8946                 break;
8947         case PORT_CLK_SEL_SPLL:
8948                 id = DPLL_ID_SPLL;
8949                 break;
8950         case PORT_CLK_SEL_LCPLL_810:
8951                 id = DPLL_ID_LCPLL_810;
8952                 break;
8953         case PORT_CLK_SEL_LCPLL_1350:
8954                 id = DPLL_ID_LCPLL_1350;
8955                 break;
8956         case PORT_CLK_SEL_LCPLL_2700:
8957                 id = DPLL_ID_LCPLL_2700;
8958                 break;
8959         default:
8960                 MISSING_CASE(ddi_pll_sel);
8961                 /* fall through */
8962         case PORT_CLK_SEL_NONE:
8963                 return;
8964         }
8965
8966         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8967 }
8968
8969 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
8970                                      struct intel_crtc_state *pipe_config,
8971                                      u64 *power_domain_mask)
8972 {
8973         struct drm_device *dev = crtc->base.dev;
8974         struct drm_i915_private *dev_priv = to_i915(dev);
8975         enum intel_display_power_domain power_domain;
8976         u32 tmp;
8977
8978         /*
8979          * The pipe->transcoder mapping is fixed with the exception of the eDP
8980          * transcoder handled below.
8981          */
8982         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8983
8984         /*
8985          * XXX: Do intel_display_power_get_if_enabled before reading this (for
8986          * consistency and less surprising code; it's in always on power).
8987          */
8988         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8989         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8990                 enum pipe trans_edp_pipe;
8991                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8992                 default:
8993                         WARN(1, "unknown pipe linked to edp transcoder\n");
8994                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8995                 case TRANS_DDI_EDP_INPUT_A_ON:
8996                         trans_edp_pipe = PIPE_A;
8997                         break;
8998                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8999                         trans_edp_pipe = PIPE_B;
9000                         break;
9001                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9002                         trans_edp_pipe = PIPE_C;
9003                         break;
9004                 }
9005
9006                 if (trans_edp_pipe == crtc->pipe)
9007                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9008         }
9009
9010         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9011         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9012                 return false;
9013         *power_domain_mask |= BIT_ULL(power_domain);
9014
9015         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9016
9017         return tmp & PIPECONF_ENABLE;
9018 }
9019
9020 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9021                                          struct intel_crtc_state *pipe_config,
9022                                          u64 *power_domain_mask)
9023 {
9024         struct drm_device *dev = crtc->base.dev;
9025         struct drm_i915_private *dev_priv = to_i915(dev);
9026         enum intel_display_power_domain power_domain;
9027         enum port port;
9028         enum transcoder cpu_transcoder;
9029         u32 tmp;
9030
9031         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9032                 if (port == PORT_A)
9033                         cpu_transcoder = TRANSCODER_DSI_A;
9034                 else
9035                         cpu_transcoder = TRANSCODER_DSI_C;
9036
9037                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9038                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9039                         continue;
9040                 *power_domain_mask |= BIT_ULL(power_domain);
9041
9042                 /*
9043                  * The PLL needs to be enabled with a valid divider
9044                  * configuration, otherwise accessing DSI registers will hang
9045                  * the machine. See BSpec North Display Engine
9046                  * registers/MIPI[BXT]. We can break out here early, since we
9047                  * need the same DSI PLL to be enabled for both DSI ports.
9048                  */
9049                 if (!intel_dsi_pll_is_enabled(dev_priv))
9050                         break;
9051
9052                 /* XXX: this works for video mode only */
9053                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9054                 if (!(tmp & DPI_ENABLE))
9055                         continue;
9056
9057                 tmp = I915_READ(MIPI_CTRL(port));
9058                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9059                         continue;
9060
9061                 pipe_config->cpu_transcoder = cpu_transcoder;
9062                 break;
9063         }
9064
9065         return transcoder_is_dsi(pipe_config->cpu_transcoder);
9066 }
9067
9068 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9069                                        struct intel_crtc_state *pipe_config)
9070 {
9071         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9072         struct intel_shared_dpll *pll;
9073         enum port port;
9074         uint32_t tmp;
9075
9076         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9077
9078         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9079
9080         if (IS_CANNONLAKE(dev_priv))
9081                 cannonlake_get_ddi_pll(dev_priv, port, pipe_config);
9082         else if (IS_GEN9_BC(dev_priv))
9083                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9084         else if (IS_GEN9_LP(dev_priv))
9085                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9086         else
9087                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9088
9089         pll = pipe_config->shared_dpll;
9090         if (pll) {
9091                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9092                                                  &pipe_config->dpll_hw_state));
9093         }
9094
9095         /*
9096          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9097          * DDI E. So just check whether this pipe is wired to DDI E and whether
9098          * the PCH transcoder is on.
9099          */
9100         if (INTEL_GEN(dev_priv) < 9 &&
9101             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9102                 pipe_config->has_pch_encoder = true;
9103
9104                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9105                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9106                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9107
9108                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9109         }
9110 }
9111
9112 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9113                                     struct intel_crtc_state *pipe_config)
9114 {
9115         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9116         enum intel_display_power_domain power_domain;
9117         u64 power_domain_mask;
9118         bool active;
9119
9120         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9121         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9122                 return false;
9123         power_domain_mask = BIT_ULL(power_domain);
9124
9125         pipe_config->shared_dpll = NULL;
9126
9127         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9128
9129         if (IS_GEN9_LP(dev_priv) &&
9130             bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
9131                 WARN_ON(active);
9132                 active = true;
9133         }
9134
9135         if (!active)
9136                 goto out;
9137
9138         if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9139                 haswell_get_ddi_port_state(crtc, pipe_config);
9140                 intel_get_pipe_timings(crtc, pipe_config);
9141         }
9142
9143         intel_get_pipe_src_size(crtc, pipe_config);
9144
9145         pipe_config->gamma_mode =
9146                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
9147
9148         if (INTEL_GEN(dev_priv) >= 9) {
9149                 intel_crtc_init_scalers(crtc, pipe_config);
9150
9151                 pipe_config->scaler_state.scaler_id = -1;
9152                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9153         }
9154
9155         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9156         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9157                 power_domain_mask |= BIT_ULL(power_domain);
9158                 if (INTEL_GEN(dev_priv) >= 9)
9159                         skylake_get_pfit_config(crtc, pipe_config);
9160                 else
9161                         ironlake_get_pfit_config(crtc, pipe_config);
9162         }
9163
9164         if (IS_HASWELL(dev_priv))
9165                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9166                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9167
9168         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
9169             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9170                 pipe_config->pixel_multiplier =
9171                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9172         } else {
9173                 pipe_config->pixel_multiplier = 1;
9174         }
9175
9176 out:
9177         for_each_power_domain(power_domain, power_domain_mask)
9178                 intel_display_power_put(dev_priv, power_domain);
9179
9180         return active;
9181 }
9182
9183 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
9184 {
9185         struct drm_i915_private *dev_priv =
9186                 to_i915(plane_state->base.plane->dev);
9187         const struct drm_framebuffer *fb = plane_state->base.fb;
9188         const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9189         u32 base;
9190
9191         if (INTEL_INFO(dev_priv)->cursor_needs_physical)
9192                 base = obj->phys_handle->busaddr;
9193         else
9194                 base = intel_plane_ggtt_offset(plane_state);
9195
9196         base += plane_state->main.offset;
9197
9198         /* ILK+ do this automagically */
9199         if (HAS_GMCH_DISPLAY(dev_priv) &&
9200             plane_state->base.rotation & DRM_MODE_ROTATE_180)
9201                 base += (plane_state->base.crtc_h *
9202                          plane_state->base.crtc_w - 1) * fb->format->cpp[0];
9203
9204         return base;
9205 }
9206
9207 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
9208 {
9209         int x = plane_state->base.crtc_x;
9210         int y = plane_state->base.crtc_y;
9211         u32 pos = 0;
9212
9213         if (x < 0) {
9214                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9215                 x = -x;
9216         }
9217         pos |= x << CURSOR_X_SHIFT;
9218
9219         if (y < 0) {
9220                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9221                 y = -y;
9222         }
9223         pos |= y << CURSOR_Y_SHIFT;
9224
9225         return pos;
9226 }
9227
9228 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
9229 {
9230         const struct drm_mode_config *config =
9231                 &plane_state->base.plane->dev->mode_config;
9232         int width = plane_state->base.crtc_w;
9233         int height = plane_state->base.crtc_h;
9234
9235         return width > 0 && width <= config->cursor_width &&
9236                 height > 0 && height <= config->cursor_height;
9237 }
9238
9239 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
9240                               struct intel_plane_state *plane_state)
9241 {
9242         const struct drm_framebuffer *fb = plane_state->base.fb;
9243         int src_x, src_y;
9244         u32 offset;
9245         int ret;
9246
9247         ret = drm_plane_helper_check_state(&plane_state->base,
9248                                            &plane_state->clip,
9249                                            DRM_PLANE_HELPER_NO_SCALING,
9250                                            DRM_PLANE_HELPER_NO_SCALING,
9251                                            true, true);
9252         if (ret)
9253                 return ret;
9254
9255         if (!fb)
9256                 return 0;
9257
9258         if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
9259                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
9260                 return -EINVAL;
9261         }
9262
9263         src_x = plane_state->base.src_x >> 16;
9264         src_y = plane_state->base.src_y >> 16;
9265
9266         intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
9267         offset = intel_compute_tile_offset(&src_x, &src_y, plane_state, 0);
9268
9269         if (src_x != 0 || src_y != 0) {
9270                 DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n");
9271                 return -EINVAL;
9272         }
9273
9274         plane_state->main.offset = offset;
9275
9276         return 0;
9277 }
9278
9279 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
9280                            const struct intel_plane_state *plane_state)
9281 {
9282         const struct drm_framebuffer *fb = plane_state->base.fb;
9283
9284         return CURSOR_ENABLE |
9285                 CURSOR_GAMMA_ENABLE |
9286                 CURSOR_FORMAT_ARGB |
9287                 CURSOR_STRIDE(fb->pitches[0]);
9288 }
9289
9290 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
9291 {
9292         int width = plane_state->base.crtc_w;
9293
9294         /*
9295          * 845g/865g are only limited by the width of their cursors,
9296          * the height is arbitrary up to the precision of the register.
9297          */
9298         return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
9299 }
9300
9301 static int i845_check_cursor(struct intel_plane *plane,
9302                              struct intel_crtc_state *crtc_state,
9303                              struct intel_plane_state *plane_state)
9304 {
9305         const struct drm_framebuffer *fb = plane_state->base.fb;
9306         int ret;
9307
9308         ret = intel_check_cursor(crtc_state, plane_state);
9309         if (ret)
9310                 return ret;
9311
9312         /* if we want to turn off the cursor ignore width and height */
9313         if (!fb)
9314                 return 0;
9315
9316         /* Check for which cursor types we support */
9317         if (!i845_cursor_size_ok(plane_state)) {
9318                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9319                           plane_state->base.crtc_w,
9320                           plane_state->base.crtc_h);
9321                 return -EINVAL;
9322         }
9323
9324         switch (fb->pitches[0]) {
9325         case 256:
9326         case 512:
9327         case 1024:
9328         case 2048:
9329                 break;
9330         default:
9331                 DRM_DEBUG_KMS("Invalid cursor stride (%u)\n",
9332                               fb->pitches[0]);
9333                 return -EINVAL;
9334         }
9335
9336         plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
9337
9338         return 0;
9339 }
9340
9341 static void i845_update_cursor(struct intel_plane *plane,
9342                                const struct intel_crtc_state *crtc_state,
9343                                const struct intel_plane_state *plane_state)
9344 {
9345         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9346         u32 cntl = 0, base = 0, pos = 0, size = 0;
9347         unsigned long irqflags;
9348
9349         if (plane_state && plane_state->base.visible) {
9350                 unsigned int width = plane_state->base.crtc_w;
9351                 unsigned int height = plane_state->base.crtc_h;
9352
9353                 cntl = plane_state->ctl;
9354                 size = (height << 12) | width;
9355
9356                 base = intel_cursor_base(plane_state);
9357                 pos = intel_cursor_position(plane_state);
9358         }
9359
9360         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9361
9362         /* On these chipsets we can only modify the base/size/stride
9363          * whilst the cursor is disabled.
9364          */
9365         if (plane->cursor.base != base ||
9366             plane->cursor.size != size ||
9367             plane->cursor.cntl != cntl) {
9368                 I915_WRITE_FW(CURCNTR(PIPE_A), 0);
9369                 I915_WRITE_FW(CURBASE(PIPE_A), base);
9370                 I915_WRITE_FW(CURSIZE, size);
9371                 I915_WRITE_FW(CURPOS(PIPE_A), pos);
9372                 I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
9373
9374                 plane->cursor.base = base;
9375                 plane->cursor.size = size;
9376                 plane->cursor.cntl = cntl;
9377         } else {
9378                 I915_WRITE_FW(CURPOS(PIPE_A), pos);
9379         }
9380
9381         POSTING_READ_FW(CURCNTR(PIPE_A));
9382
9383         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9384 }
9385
9386 static void i845_disable_cursor(struct intel_plane *plane,
9387                                 struct intel_crtc *crtc)
9388 {
9389         i845_update_cursor(plane, NULL, NULL);
9390 }
9391
9392 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
9393                            const struct intel_plane_state *plane_state)
9394 {
9395         struct drm_i915_private *dev_priv =
9396                 to_i915(plane_state->base.plane->dev);
9397         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9398         u32 cntl;
9399
9400         cntl = MCURSOR_GAMMA_ENABLE;
9401
9402         if (HAS_DDI(dev_priv))
9403                 cntl |= CURSOR_PIPE_CSC_ENABLE;
9404
9405         cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
9406
9407         switch (plane_state->base.crtc_w) {
9408         case 64:
9409                 cntl |= CURSOR_MODE_64_ARGB_AX;
9410                 break;
9411         case 128:
9412                 cntl |= CURSOR_MODE_128_ARGB_AX;
9413                 break;
9414         case 256:
9415                 cntl |= CURSOR_MODE_256_ARGB_AX;
9416                 break;
9417         default:
9418                 MISSING_CASE(plane_state->base.crtc_w);
9419                 return 0;
9420         }
9421
9422         if (plane_state->base.rotation & DRM_MODE_ROTATE_180)
9423                 cntl |= CURSOR_ROTATE_180;
9424
9425         return cntl;
9426 }
9427
9428 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
9429 {
9430         struct drm_i915_private *dev_priv =
9431                 to_i915(plane_state->base.plane->dev);
9432         int width = plane_state->base.crtc_w;
9433         int height = plane_state->base.crtc_h;
9434
9435         if (!intel_cursor_size_ok(plane_state))
9436                 return false;
9437
9438         /* Cursor width is limited to a few power-of-two sizes */
9439         switch (width) {
9440         case 256:
9441         case 128:
9442         case 64:
9443                 break;
9444         default:
9445                 return false;
9446         }
9447
9448         /*
9449          * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
9450          * height from 8 lines up to the cursor width, when the
9451          * cursor is not rotated. Everything else requires square
9452          * cursors.
9453          */
9454         if (HAS_CUR_FBC(dev_priv) &&
9455             plane_state->base.rotation & DRM_MODE_ROTATE_0) {
9456                 if (height < 8 || height > width)
9457                         return false;
9458         } else {
9459                 if (height != width)
9460                         return false;
9461         }
9462
9463         return true;
9464 }
9465
9466 static int i9xx_check_cursor(struct intel_plane *plane,
9467                              struct intel_crtc_state *crtc_state,
9468                              struct intel_plane_state *plane_state)
9469 {
9470         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9471         const struct drm_framebuffer *fb = plane_state->base.fb;
9472         enum pipe pipe = plane->pipe;
9473         int ret;
9474
9475         ret = intel_check_cursor(crtc_state, plane_state);
9476         if (ret)
9477                 return ret;
9478
9479         /* if we want to turn off the cursor ignore width and height */
9480         if (!fb)
9481                 return 0;
9482
9483         /* Check for which cursor types we support */
9484         if (!i9xx_cursor_size_ok(plane_state)) {
9485                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9486                           plane_state->base.crtc_w,
9487                           plane_state->base.crtc_h);
9488                 return -EINVAL;
9489         }
9490
9491         if (fb->pitches[0] != plane_state->base.crtc_w * fb->format->cpp[0]) {
9492                 DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n",
9493                               fb->pitches[0], plane_state->base.crtc_w);
9494                 return -EINVAL;
9495         }
9496
9497         /*
9498          * There's something wrong with the cursor on CHV pipe C.
9499          * If it straddles the left edge of the screen then
9500          * moving it away from the edge or disabling it often
9501          * results in a pipe underrun, and often that can lead to
9502          * dead pipe (constant underrun reported, and it scans
9503          * out just a solid color). To recover from that, the
9504          * display power well must be turned off and on again.
9505          * Refuse the put the cursor into that compromised position.
9506          */
9507         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
9508             plane_state->base.visible && plane_state->base.crtc_x < 0) {
9509                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
9510                 return -EINVAL;
9511         }
9512
9513         plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
9514
9515         return 0;
9516 }
9517
9518 static void i9xx_update_cursor(struct intel_plane *plane,
9519                                const struct intel_crtc_state *crtc_state,
9520                                const struct intel_plane_state *plane_state)
9521 {
9522         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9523         enum pipe pipe = plane->pipe;
9524         u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
9525         unsigned long irqflags;
9526
9527         if (plane_state && plane_state->base.visible) {
9528                 cntl = plane_state->ctl;
9529
9530                 if (plane_state->base.crtc_h != plane_state->base.crtc_w)
9531                         fbc_ctl = CUR_FBC_CTL_EN | (plane_state->base.crtc_h - 1);
9532
9533                 base = intel_cursor_base(plane_state);
9534                 pos = intel_cursor_position(plane_state);
9535         }
9536
9537         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9538
9539         /*
9540          * On some platforms writing CURCNTR first will also
9541          * cause CURPOS to be armed by the CURBASE write.
9542          * Without the CURCNTR write the CURPOS write would
9543          * arm itself.
9544          *
9545          * CURCNTR and CUR_FBC_CTL are always
9546          * armed by the CURBASE write only.
9547          */
9548         if (plane->cursor.base != base ||
9549             plane->cursor.size != fbc_ctl ||
9550             plane->cursor.cntl != cntl) {
9551                 I915_WRITE_FW(CURCNTR(pipe), cntl);
9552                 if (HAS_CUR_FBC(dev_priv))
9553                         I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl);
9554                 I915_WRITE_FW(CURPOS(pipe), pos);
9555                 I915_WRITE_FW(CURBASE(pipe), base);
9556
9557                 plane->cursor.base = base;
9558                 plane->cursor.size = fbc_ctl;
9559                 plane->cursor.cntl = cntl;
9560         } else {
9561                 I915_WRITE_FW(CURPOS(pipe), pos);
9562         }
9563
9564         POSTING_READ_FW(CURBASE(pipe));
9565
9566         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9567 }
9568
9569 static void i9xx_disable_cursor(struct intel_plane *plane,
9570                                 struct intel_crtc *crtc)
9571 {
9572         i9xx_update_cursor(plane, NULL, NULL);
9573 }
9574
9575
9576 /* VESA 640x480x72Hz mode to set on the pipe */
9577 static struct drm_display_mode load_detect_mode = {
9578         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9579                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9580 };
9581
9582 struct drm_framebuffer *
9583 intel_framebuffer_create(struct drm_i915_gem_object *obj,
9584                          struct drm_mode_fb_cmd2 *mode_cmd)
9585 {
9586         struct intel_framebuffer *intel_fb;
9587         int ret;
9588
9589         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9590         if (!intel_fb)
9591                 return ERR_PTR(-ENOMEM);
9592
9593         ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
9594         if (ret)
9595                 goto err;
9596
9597         return &intel_fb->base;
9598
9599 err:
9600         kfree(intel_fb);
9601         return ERR_PTR(ret);
9602 }
9603
9604 static u32
9605 intel_framebuffer_pitch_for_width(int width, int bpp)
9606 {
9607         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9608         return ALIGN(pitch, 64);
9609 }
9610
9611 static u32
9612 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9613 {
9614         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9615         return PAGE_ALIGN(pitch * mode->vdisplay);
9616 }
9617
9618 static struct drm_framebuffer *
9619 intel_framebuffer_create_for_mode(struct drm_device *dev,
9620                                   struct drm_display_mode *mode,
9621                                   int depth, int bpp)
9622 {
9623         struct drm_framebuffer *fb;
9624         struct drm_i915_gem_object *obj;
9625         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9626
9627         obj = i915_gem_object_create(to_i915(dev),
9628                                     intel_framebuffer_size_for_mode(mode, bpp));
9629         if (IS_ERR(obj))
9630                 return ERR_CAST(obj);
9631
9632         mode_cmd.width = mode->hdisplay;
9633         mode_cmd.height = mode->vdisplay;
9634         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9635                                                                 bpp);
9636         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9637
9638         fb = intel_framebuffer_create(obj, &mode_cmd);
9639         if (IS_ERR(fb))
9640                 i915_gem_object_put(obj);
9641
9642         return fb;
9643 }
9644
9645 static struct drm_framebuffer *
9646 mode_fits_in_fbdev(struct drm_device *dev,
9647                    struct drm_display_mode *mode)
9648 {
9649 #ifdef CONFIG_DRM_FBDEV_EMULATION
9650         struct drm_i915_private *dev_priv = to_i915(dev);
9651         struct drm_i915_gem_object *obj;
9652         struct drm_framebuffer *fb;
9653
9654         if (!dev_priv->fbdev)
9655                 return NULL;
9656
9657         if (!dev_priv->fbdev->fb)
9658                 return NULL;
9659
9660         obj = dev_priv->fbdev->fb->obj;
9661         BUG_ON(!obj);
9662
9663         fb = &dev_priv->fbdev->fb->base;
9664         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9665                                                                fb->format->cpp[0] * 8))
9666                 return NULL;
9667
9668         if (obj->base.size < mode->vdisplay * fb->pitches[0])
9669                 return NULL;
9670
9671         drm_framebuffer_reference(fb);
9672         return fb;
9673 #else
9674         return NULL;
9675 #endif
9676 }
9677
9678 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9679                                            struct drm_crtc *crtc,
9680                                            struct drm_display_mode *mode,
9681                                            struct drm_framebuffer *fb,
9682                                            int x, int y)
9683 {
9684         struct drm_plane_state *plane_state;
9685         int hdisplay, vdisplay;
9686         int ret;
9687
9688         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9689         if (IS_ERR(plane_state))
9690                 return PTR_ERR(plane_state);
9691
9692         if (mode)
9693                 drm_mode_get_hv_timing(mode, &hdisplay, &vdisplay);
9694         else
9695                 hdisplay = vdisplay = 0;
9696
9697         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9698         if (ret)
9699                 return ret;
9700         drm_atomic_set_fb_for_plane(plane_state, fb);
9701         plane_state->crtc_x = 0;
9702         plane_state->crtc_y = 0;
9703         plane_state->crtc_w = hdisplay;
9704         plane_state->crtc_h = vdisplay;
9705         plane_state->src_x = x << 16;
9706         plane_state->src_y = y << 16;
9707         plane_state->src_w = hdisplay << 16;
9708         plane_state->src_h = vdisplay << 16;
9709
9710         return 0;
9711 }
9712
9713 int intel_get_load_detect_pipe(struct drm_connector *connector,
9714                                struct drm_display_mode *mode,
9715                                struct intel_load_detect_pipe *old,
9716                                struct drm_modeset_acquire_ctx *ctx)
9717 {
9718         struct intel_crtc *intel_crtc;
9719         struct intel_encoder *intel_encoder =
9720                 intel_attached_encoder(connector);
9721         struct drm_crtc *possible_crtc;
9722         struct drm_encoder *encoder = &intel_encoder->base;
9723         struct drm_crtc *crtc = NULL;
9724         struct drm_device *dev = encoder->dev;
9725         struct drm_i915_private *dev_priv = to_i915(dev);
9726         struct drm_framebuffer *fb;
9727         struct drm_mode_config *config = &dev->mode_config;
9728         struct drm_atomic_state *state = NULL, *restore_state = NULL;
9729         struct drm_connector_state *connector_state;
9730         struct intel_crtc_state *crtc_state;
9731         int ret, i = -1;
9732
9733         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9734                       connector->base.id, connector->name,
9735                       encoder->base.id, encoder->name);
9736
9737         old->restore_state = NULL;
9738
9739         WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
9740
9741         /*
9742          * Algorithm gets a little messy:
9743          *
9744          *   - if the connector already has an assigned crtc, use it (but make
9745          *     sure it's on first)
9746          *
9747          *   - try to find the first unused crtc that can drive this connector,
9748          *     and use that if we find one
9749          */
9750
9751         /* See if we already have a CRTC for this connector */
9752         if (connector->state->crtc) {
9753                 crtc = connector->state->crtc;
9754
9755                 ret = drm_modeset_lock(&crtc->mutex, ctx);
9756                 if (ret)
9757                         goto fail;
9758
9759                 /* Make sure the crtc and connector are running */
9760                 goto found;
9761         }
9762
9763         /* Find an unused one (if possible) */
9764         for_each_crtc(dev, possible_crtc) {
9765                 i++;
9766                 if (!(encoder->possible_crtcs & (1 << i)))
9767                         continue;
9768
9769                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
9770                 if (ret)
9771                         goto fail;
9772
9773                 if (possible_crtc->state->enable) {
9774                         drm_modeset_unlock(&possible_crtc->mutex);
9775                         continue;
9776                 }
9777
9778                 crtc = possible_crtc;
9779                 break;
9780         }
9781
9782         /*
9783          * If we didn't find an unused CRTC, don't use any.
9784          */
9785         if (!crtc) {
9786                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9787                 ret = -ENODEV;
9788                 goto fail;
9789         }
9790
9791 found:
9792         intel_crtc = to_intel_crtc(crtc);
9793
9794         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9795         if (ret)
9796                 goto fail;
9797
9798         state = drm_atomic_state_alloc(dev);
9799         restore_state = drm_atomic_state_alloc(dev);
9800         if (!state || !restore_state) {
9801                 ret = -ENOMEM;
9802                 goto fail;
9803         }
9804
9805         state->acquire_ctx = ctx;
9806         restore_state->acquire_ctx = ctx;
9807
9808         connector_state = drm_atomic_get_connector_state(state, connector);
9809         if (IS_ERR(connector_state)) {
9810                 ret = PTR_ERR(connector_state);
9811                 goto fail;
9812         }
9813
9814         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
9815         if (ret)
9816                 goto fail;
9817
9818         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9819         if (IS_ERR(crtc_state)) {
9820                 ret = PTR_ERR(crtc_state);
9821                 goto fail;
9822         }
9823
9824         crtc_state->base.active = crtc_state->base.enable = true;
9825
9826         if (!mode)
9827                 mode = &load_detect_mode;
9828
9829         /* We need a framebuffer large enough to accommodate all accesses
9830          * that the plane may generate whilst we perform load detection.
9831          * We can not rely on the fbcon either being present (we get called
9832          * during its initialisation to detect all boot displays, or it may
9833          * not even exist) or that it is large enough to satisfy the
9834          * requested mode.
9835          */
9836         fb = mode_fits_in_fbdev(dev, mode);
9837         if (fb == NULL) {
9838                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9839                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9840         } else
9841                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9842         if (IS_ERR(fb)) {
9843                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9844                 ret = PTR_ERR(fb);
9845                 goto fail;
9846         }
9847
9848         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
9849         if (ret)
9850                 goto fail;
9851
9852         drm_framebuffer_unreference(fb);
9853
9854         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
9855         if (ret)
9856                 goto fail;
9857
9858         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
9859         if (!ret)
9860                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
9861         if (!ret)
9862                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
9863         if (ret) {
9864                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
9865                 goto fail;
9866         }
9867
9868         ret = drm_atomic_commit(state);
9869         if (ret) {
9870                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9871                 goto fail;
9872         }
9873
9874         old->restore_state = restore_state;
9875         drm_atomic_state_put(state);
9876
9877         /* let the connector get through one full cycle before testing */
9878         intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
9879         return true;
9880
9881 fail:
9882         if (state) {
9883                 drm_atomic_state_put(state);
9884                 state = NULL;
9885         }
9886         if (restore_state) {
9887                 drm_atomic_state_put(restore_state);
9888                 restore_state = NULL;
9889         }
9890
9891         if (ret == -EDEADLK)
9892                 return ret;
9893
9894         return false;
9895 }
9896
9897 void intel_release_load_detect_pipe(struct drm_connector *connector,
9898                                     struct intel_load_detect_pipe *old,
9899                                     struct drm_modeset_acquire_ctx *ctx)
9900 {
9901         struct intel_encoder *intel_encoder =
9902                 intel_attached_encoder(connector);
9903         struct drm_encoder *encoder = &intel_encoder->base;
9904         struct drm_atomic_state *state = old->restore_state;
9905         int ret;
9906
9907         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9908                       connector->base.id, connector->name,
9909                       encoder->base.id, encoder->name);
9910
9911         if (!state)
9912                 return;
9913
9914         ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
9915         if (ret)
9916                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
9917         drm_atomic_state_put(state);
9918 }
9919
9920 static int i9xx_pll_refclk(struct drm_device *dev,
9921                            const struct intel_crtc_state *pipe_config)
9922 {
9923         struct drm_i915_private *dev_priv = to_i915(dev);
9924         u32 dpll = pipe_config->dpll_hw_state.dpll;
9925
9926         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9927                 return dev_priv->vbt.lvds_ssc_freq;
9928         else if (HAS_PCH_SPLIT(dev_priv))
9929                 return 120000;
9930         else if (!IS_GEN2(dev_priv))
9931                 return 96000;
9932         else
9933                 return 48000;
9934 }
9935
9936 /* Returns the clock of the currently programmed mode of the given pipe. */
9937 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9938                                 struct intel_crtc_state *pipe_config)
9939 {
9940         struct drm_device *dev = crtc->base.dev;
9941         struct drm_i915_private *dev_priv = to_i915(dev);
9942         int pipe = pipe_config->cpu_transcoder;
9943         u32 dpll = pipe_config->dpll_hw_state.dpll;
9944         u32 fp;
9945         struct dpll clock;
9946         int port_clock;
9947         int refclk = i9xx_pll_refclk(dev, pipe_config);
9948
9949         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9950                 fp = pipe_config->dpll_hw_state.fp0;
9951         else
9952                 fp = pipe_config->dpll_hw_state.fp1;
9953
9954         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9955         if (IS_PINEVIEW(dev_priv)) {
9956                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9957                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9958         } else {
9959                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9960                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9961         }
9962
9963         if (!IS_GEN2(dev_priv)) {
9964                 if (IS_PINEVIEW(dev_priv))
9965                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9966                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9967                 else
9968                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9969                                DPLL_FPA01_P1_POST_DIV_SHIFT);
9970
9971                 switch (dpll & DPLL_MODE_MASK) {
9972                 case DPLLB_MODE_DAC_SERIAL:
9973                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9974                                 5 : 10;
9975                         break;
9976                 case DPLLB_MODE_LVDS:
9977                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9978                                 7 : 14;
9979                         break;
9980                 default:
9981                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9982                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
9983                         return;
9984                 }
9985
9986                 if (IS_PINEVIEW(dev_priv))
9987                         port_clock = pnv_calc_dpll_params(refclk, &clock);
9988                 else
9989                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
9990         } else {
9991                 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
9992                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9993
9994                 if (is_lvds) {
9995                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9996                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
9997
9998                         if (lvds & LVDS_CLKB_POWER_UP)
9999                                 clock.p2 = 7;
10000                         else
10001                                 clock.p2 = 14;
10002                 } else {
10003                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10004                                 clock.p1 = 2;
10005                         else {
10006                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10007                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10008                         }
10009                         if (dpll & PLL_P2_DIVIDE_BY_4)
10010                                 clock.p2 = 4;
10011                         else
10012                                 clock.p2 = 2;
10013                 }
10014
10015                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10016         }
10017
10018         /*
10019          * This value includes pixel_multiplier. We will use
10020          * port_clock to compute adjusted_mode.crtc_clock in the
10021          * encoder's get_config() function.
10022          */
10023         pipe_config->port_clock = port_clock;
10024 }
10025
10026 int intel_dotclock_calculate(int link_freq,
10027                              const struct intel_link_m_n *m_n)
10028 {
10029         /*
10030          * The calculation for the data clock is:
10031          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10032          * But we want to avoid losing precison if possible, so:
10033          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10034          *
10035          * and the link clock is simpler:
10036          * link_clock = (m * link_clock) / n
10037          */
10038
10039         if (!m_n->link_n)
10040                 return 0;
10041
10042         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10043 }
10044
10045 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10046                                    struct intel_crtc_state *pipe_config)
10047 {
10048         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10049
10050         /* read out port_clock from the DPLL */
10051         i9xx_crtc_clock_get(crtc, pipe_config);
10052
10053         /*
10054          * In case there is an active pipe without active ports,
10055          * we may need some idea for the dotclock anyway.
10056          * Calculate one based on the FDI configuration.
10057          */
10058         pipe_config->base.adjusted_mode.crtc_clock =
10059                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10060                                          &pipe_config->fdi_m_n);
10061 }
10062
10063 /** Returns the currently programmed mode of the given pipe. */
10064 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10065                                              struct drm_crtc *crtc)
10066 {
10067         struct drm_i915_private *dev_priv = to_i915(dev);
10068         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10069         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10070         struct drm_display_mode *mode;
10071         struct intel_crtc_state *pipe_config;
10072         int htot = I915_READ(HTOTAL(cpu_transcoder));
10073         int hsync = I915_READ(HSYNC(cpu_transcoder));
10074         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10075         int vsync = I915_READ(VSYNC(cpu_transcoder));
10076         enum pipe pipe = intel_crtc->pipe;
10077
10078         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10079         if (!mode)
10080                 return NULL;
10081
10082         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10083         if (!pipe_config) {
10084                 kfree(mode);
10085                 return NULL;
10086         }
10087
10088         /*
10089          * Construct a pipe_config sufficient for getting the clock info
10090          * back out of crtc_clock_get.
10091          *
10092          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10093          * to use a real value here instead.
10094          */
10095         pipe_config->cpu_transcoder = (enum transcoder) pipe;
10096         pipe_config->pixel_multiplier = 1;
10097         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10098         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10099         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10100         i9xx_crtc_clock_get(intel_crtc, pipe_config);
10101
10102         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10103         mode->hdisplay = (htot & 0xffff) + 1;
10104         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10105         mode->hsync_start = (hsync & 0xffff) + 1;
10106         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10107         mode->vdisplay = (vtot & 0xffff) + 1;
10108         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10109         mode->vsync_start = (vsync & 0xffff) + 1;
10110         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10111
10112         drm_mode_set_name(mode);
10113
10114         kfree(pipe_config);
10115
10116         return mode;
10117 }
10118
10119 static void intel_crtc_destroy(struct drm_crtc *crtc)
10120 {
10121         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10122         struct drm_device *dev = crtc->dev;
10123         struct intel_flip_work *work;
10124
10125         spin_lock_irq(&dev->event_lock);
10126         work = intel_crtc->flip_work;
10127         intel_crtc->flip_work = NULL;
10128         spin_unlock_irq(&dev->event_lock);
10129
10130         if (work) {
10131                 cancel_work_sync(&work->mmio_work);
10132                 cancel_work_sync(&work->unpin_work);
10133                 kfree(work);
10134         }
10135
10136         drm_crtc_cleanup(crtc);
10137
10138         kfree(intel_crtc);
10139 }
10140
10141 static void intel_unpin_work_fn(struct work_struct *__work)
10142 {
10143         struct intel_flip_work *work =
10144                 container_of(__work, struct intel_flip_work, unpin_work);
10145         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10146         struct drm_device *dev = crtc->base.dev;
10147         struct drm_plane *primary = crtc->base.primary;
10148
10149         if (is_mmio_work(work))
10150                 flush_work(&work->mmio_work);
10151
10152         mutex_lock(&dev->struct_mutex);
10153         intel_unpin_fb_vma(work->old_vma);
10154         i915_gem_object_put(work->pending_flip_obj);
10155         mutex_unlock(&dev->struct_mutex);
10156
10157         i915_gem_request_put(work->flip_queued_req);
10158
10159         intel_frontbuffer_flip_complete(to_i915(dev),
10160                                         to_intel_plane(primary)->frontbuffer_bit);
10161         intel_fbc_post_update(crtc);
10162         drm_framebuffer_unreference(work->old_fb);
10163
10164         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10165         atomic_dec(&crtc->unpin_work_count);
10166
10167         kfree(work);
10168 }
10169
10170 /* Is 'a' after or equal to 'b'? */
10171 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10172 {
10173         return !((a - b) & 0x80000000);
10174 }
10175
10176 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
10177                                    struct intel_flip_work *work)
10178 {
10179         struct drm_device *dev = crtc->base.dev;
10180         struct drm_i915_private *dev_priv = to_i915(dev);
10181
10182         if (abort_flip_on_reset(crtc))
10183                 return true;
10184
10185         /*
10186          * The relevant registers doen't exist on pre-ctg.
10187          * As the flip done interrupt doesn't trigger for mmio
10188          * flips on gmch platforms, a flip count check isn't
10189          * really needed there. But since ctg has the registers,
10190          * include it in the check anyway.
10191          */
10192         if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
10193                 return true;
10194
10195         /*
10196          * BDW signals flip done immediately if the plane
10197          * is disabled, even if the plane enable is already
10198          * armed to occur at the next vblank :(
10199          */
10200
10201         /*
10202          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10203          * used the same base address. In that case the mmio flip might
10204          * have completed, but the CS hasn't even executed the flip yet.
10205          *
10206          * A flip count check isn't enough as the CS might have updated
10207          * the base address just after start of vblank, but before we
10208          * managed to process the interrupt. This means we'd complete the
10209          * CS flip too soon.
10210          *
10211          * Combining both checks should get us a good enough result. It may
10212          * still happen that the CS flip has been executed, but has not
10213          * yet actually completed. But in case the base address is the same
10214          * anyway, we don't really care.
10215          */
10216         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10217                 crtc->flip_work->gtt_offset &&
10218                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10219                                     crtc->flip_work->flip_count);
10220 }
10221
10222 static bool
10223 __pageflip_finished_mmio(struct intel_crtc *crtc,
10224                                struct intel_flip_work *work)
10225 {
10226         /*
10227          * MMIO work completes when vblank is different from
10228          * flip_queued_vblank.
10229          *
10230          * Reset counter value doesn't matter, this is handled by
10231          * i915_wait_request finishing early, so no need to handle
10232          * reset here.
10233          */
10234         return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
10235 }
10236
10237
10238 static bool pageflip_finished(struct intel_crtc *crtc,
10239                               struct intel_flip_work *work)
10240 {
10241         if (!atomic_read(&work->pending))
10242                 return false;
10243
10244         smp_rmb();
10245
10246         if (is_mmio_work(work))
10247                 return __pageflip_finished_mmio(crtc, work);
10248         else
10249                 return __pageflip_finished_cs(crtc, work);
10250 }
10251
10252 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
10253 {
10254         struct drm_device *dev = &dev_priv->drm;
10255         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10256         struct intel_flip_work *work;
10257         unsigned long flags;
10258
10259         /* Ignore early vblank irqs */
10260         if (!crtc)
10261                 return;
10262
10263         /*
10264          * This is called both by irq handlers and the reset code (to complete
10265          * lost pageflips) so needs the full irqsave spinlocks.
10266          */
10267         spin_lock_irqsave(&dev->event_lock, flags);
10268         work = crtc->flip_work;
10269
10270         if (work != NULL &&
10271             !is_mmio_work(work) &&
10272             pageflip_finished(crtc, work))
10273                 page_flip_completed(crtc);
10274
10275         spin_unlock_irqrestore(&dev->event_lock, flags);
10276 }
10277
10278 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
10279 {
10280         struct drm_device *dev = &dev_priv->drm;
10281         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10282         struct intel_flip_work *work;
10283         unsigned long flags;
10284
10285         /* Ignore early vblank irqs */
10286         if (!crtc)
10287                 return;
10288
10289         /*
10290          * This is called both by irq handlers and the reset code (to complete
10291          * lost pageflips) so needs the full irqsave spinlocks.
10292          */
10293         spin_lock_irqsave(&dev->event_lock, flags);
10294         work = crtc->flip_work;
10295
10296         if (work != NULL &&
10297             is_mmio_work(work) &&
10298             pageflip_finished(crtc, work))
10299                 page_flip_completed(crtc);
10300
10301         spin_unlock_irqrestore(&dev->event_lock, flags);
10302 }
10303
10304 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
10305                                                struct intel_flip_work *work)
10306 {
10307         work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
10308
10309         /* Ensure that the work item is consistent when activating it ... */
10310         smp_mb__before_atomic();
10311         atomic_set(&work->pending, 1);
10312 }
10313
10314 static int intel_gen2_queue_flip(struct drm_device *dev,
10315                                  struct drm_crtc *crtc,
10316                                  struct drm_framebuffer *fb,
10317                                  struct drm_i915_gem_object *obj,
10318                                  struct drm_i915_gem_request *req,
10319                                  uint32_t flags)
10320 {
10321         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10322         u32 flip_mask, *cs;
10323
10324         cs = intel_ring_begin(req, 6);
10325         if (IS_ERR(cs))
10326                 return PTR_ERR(cs);
10327
10328         /* Can't queue multiple flips, so wait for the previous
10329          * one to finish before executing the next.
10330          */
10331         if (intel_crtc->plane)
10332                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10333         else
10334                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10335         *cs++ = MI_WAIT_FOR_EVENT | flip_mask;
10336         *cs++ = MI_NOOP;
10337         *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10338         *cs++ = fb->pitches[0];
10339         *cs++ = intel_crtc->flip_work->gtt_offset;
10340         *cs++ = 0; /* aux display base address, unused */
10341
10342         return 0;
10343 }
10344
10345 static int intel_gen3_queue_flip(struct drm_device *dev,
10346                                  struct drm_crtc *crtc,
10347                                  struct drm_framebuffer *fb,
10348                                  struct drm_i915_gem_object *obj,
10349                                  struct drm_i915_gem_request *req,
10350                                  uint32_t flags)
10351 {
10352         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10353         u32 flip_mask, *cs;
10354
10355         cs = intel_ring_begin(req, 6);
10356         if (IS_ERR(cs))
10357                 return PTR_ERR(cs);
10358
10359         if (intel_crtc->plane)
10360                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10361         else
10362                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10363         *cs++ = MI_WAIT_FOR_EVENT | flip_mask;
10364         *cs++ = MI_NOOP;
10365         *cs++ = MI_DISPLAY_FLIP_I915 | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10366         *cs++ = fb->pitches[0];
10367         *cs++ = intel_crtc->flip_work->gtt_offset;
10368         *cs++ = MI_NOOP;
10369
10370         return 0;
10371 }
10372
10373 static int intel_gen4_queue_flip(struct drm_device *dev,
10374                                  struct drm_crtc *crtc,
10375                                  struct drm_framebuffer *fb,
10376                                  struct drm_i915_gem_object *obj,
10377                                  struct drm_i915_gem_request *req,
10378                                  uint32_t flags)
10379 {
10380         struct drm_i915_private *dev_priv = to_i915(dev);
10381         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10382         u32 pf, pipesrc, *cs;
10383
10384         cs = intel_ring_begin(req, 4);
10385         if (IS_ERR(cs))
10386                 return PTR_ERR(cs);
10387
10388         /* i965+ uses the linear or tiled offsets from the
10389          * Display Registers (which do not change across a page-flip)
10390          * so we need only reprogram the base address.
10391          */
10392         *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10393         *cs++ = fb->pitches[0];
10394         *cs++ = intel_crtc->flip_work->gtt_offset |
10395                 intel_fb_modifier_to_tiling(fb->modifier);
10396
10397         /* XXX Enabling the panel-fitter across page-flip is so far
10398          * untested on non-native modes, so ignore it for now.
10399          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10400          */
10401         pf = 0;
10402         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10403         *cs++ = pf | pipesrc;
10404
10405         return 0;
10406 }
10407
10408 static int intel_gen6_queue_flip(struct drm_device *dev,
10409                                  struct drm_crtc *crtc,
10410                                  struct drm_framebuffer *fb,
10411                                  struct drm_i915_gem_object *obj,
10412                                  struct drm_i915_gem_request *req,
10413                                  uint32_t flags)
10414 {
10415         struct drm_i915_private *dev_priv = to_i915(dev);
10416         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10417         u32 pf, pipesrc, *cs;
10418
10419         cs = intel_ring_begin(req, 4);
10420         if (IS_ERR(cs))
10421                 return PTR_ERR(cs);
10422
10423         *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10424         *cs++ = fb->pitches[0] | intel_fb_modifier_to_tiling(fb->modifier);
10425         *cs++ = intel_crtc->flip_work->gtt_offset;
10426
10427         /* Contrary to the suggestions in the documentation,
10428          * "Enable Panel Fitter" does not seem to be required when page
10429          * flipping with a non-native mode, and worse causes a normal
10430          * modeset to fail.
10431          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10432          */
10433         pf = 0;
10434         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10435         *cs++ = pf | pipesrc;
10436
10437         return 0;
10438 }
10439
10440 static int intel_gen7_queue_flip(struct drm_device *dev,
10441                                  struct drm_crtc *crtc,
10442                                  struct drm_framebuffer *fb,
10443                                  struct drm_i915_gem_object *obj,
10444                                  struct drm_i915_gem_request *req,
10445                                  uint32_t flags)
10446 {
10447         struct drm_i915_private *dev_priv = to_i915(dev);
10448         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10449         u32 *cs, plane_bit = 0;
10450         int len, ret;
10451
10452         switch (intel_crtc->plane) {
10453         case PLANE_A:
10454                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10455                 break;
10456         case PLANE_B:
10457                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10458                 break;
10459         case PLANE_C:
10460                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10461                 break;
10462         default:
10463                 WARN_ONCE(1, "unknown plane in flip command\n");
10464                 return -ENODEV;
10465         }
10466
10467         len = 4;
10468         if (req->engine->id == RCS) {
10469                 len += 6;
10470                 /*
10471                  * On Gen 8, SRM is now taking an extra dword to accommodate
10472                  * 48bits addresses, and we need a NOOP for the batch size to
10473                  * stay even.
10474                  */
10475                 if (IS_GEN8(dev_priv))
10476                         len += 2;
10477         }
10478
10479         /*
10480          * BSpec MI_DISPLAY_FLIP for IVB:
10481          * "The full packet must be contained within the same cache line."
10482          *
10483          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10484          * cacheline, if we ever start emitting more commands before
10485          * the MI_DISPLAY_FLIP we may need to first emit everything else,
10486          * then do the cacheline alignment, and finally emit the
10487          * MI_DISPLAY_FLIP.
10488          */
10489         ret = intel_ring_cacheline_align(req);
10490         if (ret)
10491                 return ret;
10492
10493         cs = intel_ring_begin(req, len);
10494         if (IS_ERR(cs))
10495                 return PTR_ERR(cs);
10496
10497         /* Unmask the flip-done completion message. Note that the bspec says that
10498          * we should do this for both the BCS and RCS, and that we must not unmask
10499          * more than one flip event at any time (or ensure that one flip message
10500          * can be sent by waiting for flip-done prior to queueing new flips).
10501          * Experimentation says that BCS works despite DERRMR masking all
10502          * flip-done completion events and that unmasking all planes at once
10503          * for the RCS also doesn't appear to drop events. Setting the DERRMR
10504          * to zero does lead to lockups within MI_DISPLAY_FLIP.
10505          */
10506         if (req->engine->id == RCS) {
10507                 *cs++ = MI_LOAD_REGISTER_IMM(1);
10508                 *cs++ = i915_mmio_reg_offset(DERRMR);
10509                 *cs++ = ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10510                           DERRMR_PIPEB_PRI_FLIP_DONE |
10511                           DERRMR_PIPEC_PRI_FLIP_DONE);
10512                 if (IS_GEN8(dev_priv))
10513                         *cs++ = MI_STORE_REGISTER_MEM_GEN8 |
10514                                 MI_SRM_LRM_GLOBAL_GTT;
10515                 else
10516                         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
10517                 *cs++ = i915_mmio_reg_offset(DERRMR);
10518                 *cs++ = i915_ggtt_offset(req->engine->scratch) + 256;
10519                 if (IS_GEN8(dev_priv)) {
10520                         *cs++ = 0;
10521                         *cs++ = MI_NOOP;
10522                 }
10523         }
10524
10525         *cs++ = MI_DISPLAY_FLIP_I915 | plane_bit;
10526         *cs++ = fb->pitches[0] | intel_fb_modifier_to_tiling(fb->modifier);
10527         *cs++ = intel_crtc->flip_work->gtt_offset;
10528         *cs++ = MI_NOOP;
10529
10530         return 0;
10531 }
10532
10533 static bool use_mmio_flip(struct intel_engine_cs *engine,
10534                           struct drm_i915_gem_object *obj)
10535 {
10536         /*
10537          * This is not being used for older platforms, because
10538          * non-availability of flip done interrupt forces us to use
10539          * CS flips. Older platforms derive flip done using some clever
10540          * tricks involving the flip_pending status bits and vblank irqs.
10541          * So using MMIO flips there would disrupt this mechanism.
10542          */
10543
10544         if (engine == NULL)
10545                 return true;
10546
10547         if (INTEL_GEN(engine->i915) < 5)
10548                 return false;
10549
10550         if (i915.use_mmio_flip < 0)
10551                 return false;
10552         else if (i915.use_mmio_flip > 0)
10553                 return true;
10554         else if (i915.enable_execlists)
10555                 return true;
10556
10557         return engine != i915_gem_object_last_write_engine(obj);
10558 }
10559
10560 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
10561                              unsigned int rotation,
10562                              struct intel_flip_work *work)
10563 {
10564         struct drm_device *dev = intel_crtc->base.dev;
10565         struct drm_i915_private *dev_priv = to_i915(dev);
10566         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10567         const enum pipe pipe = intel_crtc->pipe;
10568         u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
10569
10570         ctl = I915_READ(PLANE_CTL(pipe, 0));
10571         ctl &= ~PLANE_CTL_TILED_MASK;
10572         switch (fb->modifier) {
10573         case DRM_FORMAT_MOD_LINEAR:
10574                 break;
10575         case I915_FORMAT_MOD_X_TILED:
10576                 ctl |= PLANE_CTL_TILED_X;
10577                 break;
10578         case I915_FORMAT_MOD_Y_TILED:
10579                 ctl |= PLANE_CTL_TILED_Y;
10580                 break;
10581         case I915_FORMAT_MOD_Yf_TILED:
10582                 ctl |= PLANE_CTL_TILED_YF;
10583                 break;
10584         default:
10585                 MISSING_CASE(fb->modifier);
10586         }
10587
10588         /*
10589          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10590          * PLANE_SURF updates, the update is then guaranteed to be atomic.
10591          */
10592         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10593         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10594
10595         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
10596         POSTING_READ(PLANE_SURF(pipe, 0));
10597 }
10598
10599 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
10600                              struct intel_flip_work *work)
10601 {
10602         struct drm_device *dev = intel_crtc->base.dev;
10603         struct drm_i915_private *dev_priv = to_i915(dev);
10604         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10605         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
10606         u32 dspcntr;
10607
10608         dspcntr = I915_READ(reg);
10609
10610         if (fb->modifier == I915_FORMAT_MOD_X_TILED)
10611                 dspcntr |= DISPPLANE_TILED;
10612         else
10613                 dspcntr &= ~DISPPLANE_TILED;
10614
10615         I915_WRITE(reg, dspcntr);
10616
10617         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
10618         POSTING_READ(DSPSURF(intel_crtc->plane));
10619 }
10620
10621 static void intel_mmio_flip_work_func(struct work_struct *w)
10622 {
10623         struct intel_flip_work *work =
10624                 container_of(w, struct intel_flip_work, mmio_work);
10625         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10626         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10627         struct intel_framebuffer *intel_fb =
10628                 to_intel_framebuffer(crtc->base.primary->fb);
10629         struct drm_i915_gem_object *obj = intel_fb->obj;
10630
10631         WARN_ON(i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT, NULL) < 0);
10632
10633         intel_pipe_update_start(crtc);
10634
10635         if (INTEL_GEN(dev_priv) >= 9)
10636                 skl_do_mmio_flip(crtc, work->rotation, work);
10637         else
10638                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10639                 ilk_do_mmio_flip(crtc, work);
10640
10641         intel_pipe_update_end(crtc, work);
10642 }
10643
10644 static int intel_default_queue_flip(struct drm_device *dev,
10645                                     struct drm_crtc *crtc,
10646                                     struct drm_framebuffer *fb,
10647                                     struct drm_i915_gem_object *obj,
10648                                     struct drm_i915_gem_request *req,
10649                                     uint32_t flags)
10650 {
10651         return -ENODEV;
10652 }
10653
10654 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
10655                                       struct intel_crtc *intel_crtc,
10656                                       struct intel_flip_work *work)
10657 {
10658         u32 addr, vblank;
10659
10660         if (!atomic_read(&work->pending))
10661                 return false;
10662
10663         smp_rmb();
10664
10665         vblank = intel_crtc_get_vblank_counter(intel_crtc);
10666         if (work->flip_ready_vblank == 0) {
10667                 if (work->flip_queued_req &&
10668                     !i915_gem_request_completed(work->flip_queued_req))
10669                         return false;
10670
10671                 work->flip_ready_vblank = vblank;
10672         }
10673
10674         if (vblank - work->flip_ready_vblank < 3)
10675                 return false;
10676
10677         /* Potential stall - if we see that the flip has happened,
10678          * assume a missed interrupt. */
10679         if (INTEL_GEN(dev_priv) >= 4)
10680                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10681         else
10682                 addr = I915_READ(DSPADDR(intel_crtc->plane));
10683
10684         /* There is a potential issue here with a false positive after a flip
10685          * to the same address. We could address this by checking for a
10686          * non-incrementing frame counter.
10687          */
10688         return addr == work->gtt_offset;
10689 }
10690
10691 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
10692 {
10693         struct drm_device *dev = &dev_priv->drm;
10694         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10695         struct intel_flip_work *work;
10696
10697         WARN_ON(!in_interrupt());
10698
10699         if (crtc == NULL)
10700                 return;
10701
10702         spin_lock(&dev->event_lock);
10703         work = crtc->flip_work;
10704
10705         if (work != NULL && !is_mmio_work(work) &&
10706             __pageflip_stall_check_cs(dev_priv, crtc, work)) {
10707                 WARN_ONCE(1,
10708                           "Kicking stuck page flip: queued at %d, now %d\n",
10709                         work->flip_queued_vblank, intel_crtc_get_vblank_counter(crtc));
10710                 page_flip_completed(crtc);
10711                 work = NULL;
10712         }
10713
10714         if (work != NULL && !is_mmio_work(work) &&
10715             intel_crtc_get_vblank_counter(crtc) - work->flip_queued_vblank > 1)
10716                 intel_queue_rps_boost_for_request(work->flip_queued_req);
10717         spin_unlock(&dev->event_lock);
10718 }
10719
10720 __maybe_unused
10721 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10722                                 struct drm_framebuffer *fb,
10723                                 struct drm_pending_vblank_event *event,
10724                                 uint32_t page_flip_flags)
10725 {
10726         struct drm_device *dev = crtc->dev;
10727         struct drm_i915_private *dev_priv = to_i915(dev);
10728         struct drm_framebuffer *old_fb = crtc->primary->fb;
10729         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10730         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10731         struct drm_plane *primary = crtc->primary;
10732         enum pipe pipe = intel_crtc->pipe;
10733         struct intel_flip_work *work;
10734         struct intel_engine_cs *engine;
10735         bool mmio_flip;
10736         struct drm_i915_gem_request *request;
10737         struct i915_vma *vma;
10738         int ret;
10739
10740         /*
10741          * drm_mode_page_flip_ioctl() should already catch this, but double
10742          * check to be safe.  In the future we may enable pageflipping from
10743          * a disabled primary plane.
10744          */
10745         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10746                 return -EBUSY;
10747
10748         /* Can't change pixel format via MI display flips. */
10749         if (fb->format != crtc->primary->fb->format)
10750                 return -EINVAL;
10751
10752         /*
10753          * TILEOFF/LINOFF registers can't be changed via MI display flips.
10754          * Note that pitch changes could also affect these register.
10755          */
10756         if (INTEL_GEN(dev_priv) > 3 &&
10757             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10758              fb->pitches[0] != crtc->primary->fb->pitches[0]))
10759                 return -EINVAL;
10760
10761         if (i915_terminally_wedged(&dev_priv->gpu_error))
10762                 goto out_hang;
10763
10764         work = kzalloc(sizeof(*work), GFP_KERNEL);
10765         if (work == NULL)
10766                 return -ENOMEM;
10767
10768         work->event = event;
10769         work->crtc = crtc;
10770         work->old_fb = old_fb;
10771         INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
10772
10773         ret = drm_crtc_vblank_get(crtc);
10774         if (ret)
10775                 goto free_work;
10776
10777         /* We borrow the event spin lock for protecting flip_work */
10778         spin_lock_irq(&dev->event_lock);
10779         if (intel_crtc->flip_work) {
10780                 /* Before declaring the flip queue wedged, check if
10781                  * the hardware completed the operation behind our backs.
10782                  */
10783                 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
10784                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10785                         page_flip_completed(intel_crtc);
10786                 } else {
10787                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10788                         spin_unlock_irq(&dev->event_lock);
10789
10790                         drm_crtc_vblank_put(crtc);
10791                         kfree(work);
10792                         return -EBUSY;
10793                 }
10794         }
10795         intel_crtc->flip_work = work;
10796         spin_unlock_irq(&dev->event_lock);
10797
10798         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10799                 flush_workqueue(dev_priv->wq);
10800
10801         /* Reference the objects for the scheduled work. */
10802         drm_framebuffer_reference(work->old_fb);
10803
10804         crtc->primary->fb = fb;
10805         update_state_fb(crtc->primary);
10806
10807         work->pending_flip_obj = i915_gem_object_get(obj);
10808
10809         ret = i915_mutex_lock_interruptible(dev);
10810         if (ret)
10811                 goto cleanup;
10812
10813         intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
10814         if (i915_reset_backoff_or_wedged(&dev_priv->gpu_error)) {
10815                 ret = -EIO;
10816                 goto unlock;
10817         }
10818
10819         atomic_inc(&intel_crtc->unpin_work_count);
10820
10821         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
10822                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
10823
10824         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
10825                 engine = dev_priv->engine[BCS];
10826                 if (fb->modifier != old_fb->modifier)
10827                         /* vlv: DISPLAY_FLIP fails to change tiling */
10828                         engine = NULL;
10829         } else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
10830                 engine = dev_priv->engine[BCS];
10831         } else if (INTEL_GEN(dev_priv) >= 7) {
10832                 engine = i915_gem_object_last_write_engine(obj);
10833                 if (engine == NULL || engine->id != RCS)
10834                         engine = dev_priv->engine[BCS];
10835         } else {
10836                 engine = dev_priv->engine[RCS];
10837         }
10838
10839         mmio_flip = use_mmio_flip(engine, obj);
10840
10841         vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
10842         if (IS_ERR(vma)) {
10843                 ret = PTR_ERR(vma);
10844                 goto cleanup_pending;
10845         }
10846
10847         work->old_vma = to_intel_plane_state(primary->state)->vma;
10848         to_intel_plane_state(primary->state)->vma = vma;
10849
10850         work->gtt_offset = i915_ggtt_offset(vma) + intel_crtc->dspaddr_offset;
10851         work->rotation = crtc->primary->state->rotation;
10852
10853         /*
10854          * There's the potential that the next frame will not be compatible with
10855          * FBC, so we want to call pre_update() before the actual page flip.
10856          * The problem is that pre_update() caches some information about the fb
10857          * object, so we want to do this only after the object is pinned. Let's
10858          * be on the safe side and do this immediately before scheduling the
10859          * flip.
10860          */
10861         intel_fbc_pre_update(intel_crtc, intel_crtc->config,
10862                              to_intel_plane_state(primary->state));
10863
10864         if (mmio_flip) {
10865                 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
10866                 queue_work(system_unbound_wq, &work->mmio_work);
10867         } else {
10868                 request = i915_gem_request_alloc(engine,
10869                                                  dev_priv->kernel_context);
10870                 if (IS_ERR(request)) {
10871                         ret = PTR_ERR(request);
10872                         goto cleanup_unpin;
10873                 }
10874
10875                 ret = i915_gem_request_await_object(request, obj, false);
10876                 if (ret)
10877                         goto cleanup_request;
10878
10879                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
10880                                                    page_flip_flags);
10881                 if (ret)
10882                         goto cleanup_request;
10883
10884                 intel_mark_page_flip_active(intel_crtc, work);
10885
10886                 work->flip_queued_req = i915_gem_request_get(request);
10887                 i915_add_request(request);
10888         }
10889
10890         i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
10891         i915_gem_track_fb(intel_fb_obj(old_fb), obj,
10892                           to_intel_plane(primary)->frontbuffer_bit);
10893         mutex_unlock(&dev->struct_mutex);
10894
10895         intel_frontbuffer_flip_prepare(to_i915(dev),
10896                                        to_intel_plane(primary)->frontbuffer_bit);
10897
10898         trace_i915_flip_request(intel_crtc->plane, obj);
10899
10900         return 0;
10901
10902 cleanup_request:
10903         i915_add_request(request);
10904 cleanup_unpin:
10905         to_intel_plane_state(primary->state)->vma = work->old_vma;
10906         intel_unpin_fb_vma(vma);
10907 cleanup_pending:
10908         atomic_dec(&intel_crtc->unpin_work_count);
10909 unlock:
10910         mutex_unlock(&dev->struct_mutex);
10911 cleanup:
10912         crtc->primary->fb = old_fb;
10913         update_state_fb(crtc->primary);
10914
10915         i915_gem_object_put(obj);
10916         drm_framebuffer_unreference(work->old_fb);
10917
10918         spin_lock_irq(&dev->event_lock);
10919         intel_crtc->flip_work = NULL;
10920         spin_unlock_irq(&dev->event_lock);
10921
10922         drm_crtc_vblank_put(crtc);
10923 free_work:
10924         kfree(work);
10925
10926         if (ret == -EIO) {
10927                 struct drm_atomic_state *state;
10928                 struct drm_plane_state *plane_state;
10929
10930 out_hang:
10931                 state = drm_atomic_state_alloc(dev);
10932                 if (!state)
10933                         return -ENOMEM;
10934                 state->acquire_ctx = dev->mode_config.acquire_ctx;
10935
10936 retry:
10937                 plane_state = drm_atomic_get_plane_state(state, primary);
10938                 ret = PTR_ERR_OR_ZERO(plane_state);
10939                 if (!ret) {
10940                         drm_atomic_set_fb_for_plane(plane_state, fb);
10941
10942                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
10943                         if (!ret)
10944                                 ret = drm_atomic_commit(state);
10945                 }
10946
10947                 if (ret == -EDEADLK) {
10948                         drm_modeset_backoff(state->acquire_ctx);
10949                         drm_atomic_state_clear(state);
10950                         goto retry;
10951                 }
10952
10953                 drm_atomic_state_put(state);
10954
10955                 if (ret == 0 && event) {
10956                         spin_lock_irq(&dev->event_lock);
10957                         drm_crtc_send_vblank_event(crtc, event);
10958                         spin_unlock_irq(&dev->event_lock);
10959                 }
10960         }
10961         return ret;
10962 }
10963
10964
10965 /**
10966  * intel_wm_need_update - Check whether watermarks need updating
10967  * @plane: drm plane
10968  * @state: new plane state
10969  *
10970  * Check current plane state versus the new one to determine whether
10971  * watermarks need to be recalculated.
10972  *
10973  * Returns true or false.
10974  */
10975 static bool intel_wm_need_update(struct drm_plane *plane,
10976                                  struct drm_plane_state *state)
10977 {
10978         struct intel_plane_state *new = to_intel_plane_state(state);
10979         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
10980
10981         /* Update watermarks on tiling or size changes. */
10982         if (new->base.visible != cur->base.visible)
10983                 return true;
10984
10985         if (!cur->base.fb || !new->base.fb)
10986                 return false;
10987
10988         if (cur->base.fb->modifier != new->base.fb->modifier ||
10989             cur->base.rotation != new->base.rotation ||
10990             drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
10991             drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
10992             drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
10993             drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
10994                 return true;
10995
10996         return false;
10997 }
10998
10999 static bool needs_scaling(struct intel_plane_state *state)
11000 {
11001         int src_w = drm_rect_width(&state->base.src) >> 16;
11002         int src_h = drm_rect_height(&state->base.src) >> 16;
11003         int dst_w = drm_rect_width(&state->base.dst);
11004         int dst_h = drm_rect_height(&state->base.dst);
11005
11006         return (src_w != dst_w || src_h != dst_h);
11007 }
11008
11009 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11010                                     struct drm_plane_state *plane_state)
11011 {
11012         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11013         struct drm_crtc *crtc = crtc_state->crtc;
11014         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11015         struct intel_plane *plane = to_intel_plane(plane_state->plane);
11016         struct drm_device *dev = crtc->dev;
11017         struct drm_i915_private *dev_priv = to_i915(dev);
11018         struct intel_plane_state *old_plane_state =
11019                 to_intel_plane_state(plane->base.state);
11020         bool mode_changed = needs_modeset(crtc_state);
11021         bool was_crtc_enabled = crtc->state->active;
11022         bool is_crtc_enabled = crtc_state->active;
11023         bool turn_off, turn_on, visible, was_visible;
11024         struct drm_framebuffer *fb = plane_state->fb;
11025         int ret;
11026
11027         if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
11028                 ret = skl_update_scaler_plane(
11029                         to_intel_crtc_state(crtc_state),
11030                         to_intel_plane_state(plane_state));
11031                 if (ret)
11032                         return ret;
11033         }
11034
11035         was_visible = old_plane_state->base.visible;
11036         visible = plane_state->visible;
11037
11038         if (!was_crtc_enabled && WARN_ON(was_visible))
11039                 was_visible = false;
11040
11041         /*
11042          * Visibility is calculated as if the crtc was on, but
11043          * after scaler setup everything depends on it being off
11044          * when the crtc isn't active.
11045          *
11046          * FIXME this is wrong for watermarks. Watermarks should also
11047          * be computed as if the pipe would be active. Perhaps move
11048          * per-plane wm computation to the .check_plane() hook, and
11049          * only combine the results from all planes in the current place?
11050          */
11051         if (!is_crtc_enabled) {
11052                 plane_state->visible = visible = false;
11053                 to_intel_crtc_state(crtc_state)->active_planes &= ~BIT(plane->id);
11054         }
11055
11056         if (!was_visible && !visible)
11057                 return 0;
11058
11059         if (fb != old_plane_state->base.fb)
11060                 pipe_config->fb_changed = true;
11061
11062         turn_off = was_visible && (!visible || mode_changed);
11063         turn_on = visible && (!was_visible || mode_changed);
11064
11065         DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
11066                          intel_crtc->base.base.id, intel_crtc->base.name,
11067                          plane->base.base.id, plane->base.name,
11068                          fb ? fb->base.id : -1);
11069
11070         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
11071                          plane->base.base.id, plane->base.name,
11072                          was_visible, visible,
11073                          turn_off, turn_on, mode_changed);
11074
11075         if (turn_on) {
11076                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11077                         pipe_config->update_wm_pre = true;
11078
11079                 /* must disable cxsr around plane enable/disable */
11080                 if (plane->id != PLANE_CURSOR)
11081                         pipe_config->disable_cxsr = true;
11082         } else if (turn_off) {
11083                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11084                         pipe_config->update_wm_post = true;
11085
11086                 /* must disable cxsr around plane enable/disable */
11087                 if (plane->id != PLANE_CURSOR)
11088                         pipe_config->disable_cxsr = true;
11089         } else if (intel_wm_need_update(&plane->base, plane_state)) {
11090                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
11091                         /* FIXME bollocks */
11092                         pipe_config->update_wm_pre = true;
11093                         pipe_config->update_wm_post = true;
11094                 }
11095         }
11096
11097         if (visible || was_visible)
11098                 pipe_config->fb_bits |= plane->frontbuffer_bit;
11099
11100         /*
11101          * WaCxSRDisabledForSpriteScaling:ivb
11102          *
11103          * cstate->update_wm was already set above, so this flag will
11104          * take effect when we commit and program watermarks.
11105          */
11106         if (plane->id == PLANE_SPRITE0 && IS_IVYBRIDGE(dev_priv) &&
11107             needs_scaling(to_intel_plane_state(plane_state)) &&
11108             !needs_scaling(old_plane_state))
11109                 pipe_config->disable_lp_wm = true;
11110
11111         return 0;
11112 }
11113
11114 static bool encoders_cloneable(const struct intel_encoder *a,
11115                                const struct intel_encoder *b)
11116 {
11117         /* masks could be asymmetric, so check both ways */
11118         return a == b || (a->cloneable & (1 << b->type) &&
11119                           b->cloneable & (1 << a->type));
11120 }
11121
11122 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11123                                          struct intel_crtc *crtc,
11124                                          struct intel_encoder *encoder)
11125 {
11126         struct intel_encoder *source_encoder;
11127         struct drm_connector *connector;
11128         struct drm_connector_state *connector_state;
11129         int i;
11130
11131         for_each_new_connector_in_state(state, connector, connector_state, i) {
11132                 if (connector_state->crtc != &crtc->base)
11133                         continue;
11134
11135                 source_encoder =
11136                         to_intel_encoder(connector_state->best_encoder);
11137                 if (!encoders_cloneable(encoder, source_encoder))
11138                         return false;
11139         }
11140
11141         return true;
11142 }
11143
11144 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11145                                    struct drm_crtc_state *crtc_state)
11146 {
11147         struct drm_device *dev = crtc->dev;
11148         struct drm_i915_private *dev_priv = to_i915(dev);
11149         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11150         struct intel_crtc_state *pipe_config =
11151                 to_intel_crtc_state(crtc_state);
11152         struct drm_atomic_state *state = crtc_state->state;
11153         int ret;
11154         bool mode_changed = needs_modeset(crtc_state);
11155
11156         if (mode_changed && !crtc_state->active)
11157                 pipe_config->update_wm_post = true;
11158
11159         if (mode_changed && crtc_state->enable &&
11160             dev_priv->display.crtc_compute_clock &&
11161             !WARN_ON(pipe_config->shared_dpll)) {
11162                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11163                                                            pipe_config);
11164                 if (ret)
11165                         return ret;
11166         }
11167
11168         if (crtc_state->color_mgmt_changed) {
11169                 ret = intel_color_check(crtc, crtc_state);
11170                 if (ret)
11171                         return ret;
11172
11173                 /*
11174                  * Changing color management on Intel hardware is
11175                  * handled as part of planes update.
11176                  */
11177                 crtc_state->planes_changed = true;
11178         }
11179
11180         ret = 0;
11181         if (dev_priv->display.compute_pipe_wm) {
11182                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
11183                 if (ret) {
11184                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11185                         return ret;
11186                 }
11187         }
11188
11189         if (dev_priv->display.compute_intermediate_wm &&
11190             !to_intel_atomic_state(state)->skip_intermediate_wm) {
11191                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11192                         return 0;
11193
11194                 /*
11195                  * Calculate 'intermediate' watermarks that satisfy both the
11196                  * old state and the new state.  We can program these
11197                  * immediately.
11198                  */
11199                 ret = dev_priv->display.compute_intermediate_wm(dev,
11200                                                                 intel_crtc,
11201                                                                 pipe_config);
11202                 if (ret) {
11203                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
11204                         return ret;
11205                 }
11206         } else if (dev_priv->display.compute_intermediate_wm) {
11207                 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
11208                         pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
11209         }
11210
11211         if (INTEL_GEN(dev_priv) >= 9) {
11212                 if (mode_changed)
11213                         ret = skl_update_scaler_crtc(pipe_config);
11214
11215                 if (!ret)
11216                         ret = skl_check_pipe_max_pixel_rate(intel_crtc,
11217                                                             pipe_config);
11218                 if (!ret)
11219                         ret = intel_atomic_setup_scalers(dev_priv, intel_crtc,
11220                                                          pipe_config);
11221         }
11222
11223         return ret;
11224 }
11225
11226 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11227         .atomic_begin = intel_begin_crtc_commit,
11228         .atomic_flush = intel_finish_crtc_commit,
11229         .atomic_check = intel_crtc_atomic_check,
11230 };
11231
11232 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11233 {
11234         struct intel_connector *connector;
11235         struct drm_connector_list_iter conn_iter;
11236
11237         drm_connector_list_iter_begin(dev, &conn_iter);
11238         for_each_intel_connector_iter(connector, &conn_iter) {
11239                 if (connector->base.state->crtc)
11240                         drm_connector_unreference(&connector->base);
11241
11242                 if (connector->base.encoder) {
11243                         connector->base.state->best_encoder =
11244                                 connector->base.encoder;
11245                         connector->base.state->crtc =
11246                                 connector->base.encoder->crtc;
11247
11248                         drm_connector_reference(&connector->base);
11249                 } else {
11250                         connector->base.state->best_encoder = NULL;
11251                         connector->base.state->crtc = NULL;
11252                 }
11253         }
11254         drm_connector_list_iter_end(&conn_iter);
11255 }
11256
11257 static void
11258 connected_sink_compute_bpp(struct intel_connector *connector,
11259                            struct intel_crtc_state *pipe_config)
11260 {
11261         const struct drm_display_info *info = &connector->base.display_info;
11262         int bpp = pipe_config->pipe_bpp;
11263
11264         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11265                       connector->base.base.id,
11266                       connector->base.name);
11267
11268         /* Don't use an invalid EDID bpc value */
11269         if (info->bpc != 0 && info->bpc * 3 < bpp) {
11270                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11271                               bpp, info->bpc * 3);
11272                 pipe_config->pipe_bpp = info->bpc * 3;
11273         }
11274
11275         /* Clamp bpp to 8 on screens without EDID 1.4 */
11276         if (info->bpc == 0 && bpp > 24) {
11277                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11278                               bpp);
11279                 pipe_config->pipe_bpp = 24;
11280         }
11281 }
11282
11283 static int
11284 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11285                           struct intel_crtc_state *pipe_config)
11286 {
11287         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11288         struct drm_atomic_state *state;
11289         struct drm_connector *connector;
11290         struct drm_connector_state *connector_state;
11291         int bpp, i;
11292
11293         if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
11294             IS_CHERRYVIEW(dev_priv)))
11295                 bpp = 10*3;
11296         else if (INTEL_GEN(dev_priv) >= 5)
11297                 bpp = 12*3;
11298         else
11299                 bpp = 8*3;
11300
11301
11302         pipe_config->pipe_bpp = bpp;
11303
11304         state = pipe_config->base.state;
11305
11306         /* Clamp display bpp to EDID value */
11307         for_each_new_connector_in_state(state, connector, connector_state, i) {
11308                 if (connector_state->crtc != &crtc->base)
11309                         continue;
11310
11311                 connected_sink_compute_bpp(to_intel_connector(connector),
11312                                            pipe_config);
11313         }
11314
11315         return bpp;
11316 }
11317
11318 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11319 {
11320         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11321                         "type: 0x%x flags: 0x%x\n",
11322                 mode->crtc_clock,
11323                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11324                 mode->crtc_hsync_end, mode->crtc_htotal,
11325                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11326                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11327 }
11328
11329 static inline void
11330 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
11331                       unsigned int lane_count, struct intel_link_m_n *m_n)
11332 {
11333         DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11334                       id, lane_count,
11335                       m_n->gmch_m, m_n->gmch_n,
11336                       m_n->link_m, m_n->link_n, m_n->tu);
11337 }
11338
11339 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11340                                    struct intel_crtc_state *pipe_config,
11341                                    const char *context)
11342 {
11343         struct drm_device *dev = crtc->base.dev;
11344         struct drm_i915_private *dev_priv = to_i915(dev);
11345         struct drm_plane *plane;
11346         struct intel_plane *intel_plane;
11347         struct intel_plane_state *state;
11348         struct drm_framebuffer *fb;
11349
11350         DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
11351                       crtc->base.base.id, crtc->base.name, context);
11352
11353         DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
11354                       transcoder_name(pipe_config->cpu_transcoder),
11355                       pipe_config->pipe_bpp, pipe_config->dither);
11356
11357         if (pipe_config->has_pch_encoder)
11358                 intel_dump_m_n_config(pipe_config, "fdi",
11359                                       pipe_config->fdi_lanes,
11360                                       &pipe_config->fdi_m_n);
11361
11362         if (intel_crtc_has_dp_encoder(pipe_config)) {
11363                 intel_dump_m_n_config(pipe_config, "dp m_n",
11364                                 pipe_config->lane_count, &pipe_config->dp_m_n);
11365                 if (pipe_config->has_drrs)
11366                         intel_dump_m_n_config(pipe_config, "dp m2_n2",
11367                                               pipe_config->lane_count,
11368                                               &pipe_config->dp_m2_n2);
11369         }
11370
11371         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11372                       pipe_config->has_audio, pipe_config->has_infoframe);
11373
11374         DRM_DEBUG_KMS("requested mode:\n");
11375         drm_mode_debug_printmodeline(&pipe_config->base.mode);
11376         DRM_DEBUG_KMS("adjusted mode:\n");
11377         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11378         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11379         DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
11380                       pipe_config->port_clock,
11381                       pipe_config->pipe_src_w, pipe_config->pipe_src_h,
11382                       pipe_config->pixel_rate);
11383
11384         if (INTEL_GEN(dev_priv) >= 9)
11385                 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11386                               crtc->num_scalers,
11387                               pipe_config->scaler_state.scaler_users,
11388                               pipe_config->scaler_state.scaler_id);
11389
11390         if (HAS_GMCH_DISPLAY(dev_priv))
11391                 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11392                               pipe_config->gmch_pfit.control,
11393                               pipe_config->gmch_pfit.pgm_ratios,
11394                               pipe_config->gmch_pfit.lvds_border_bits);
11395         else
11396                 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11397                               pipe_config->pch_pfit.pos,
11398                               pipe_config->pch_pfit.size,
11399                               enableddisabled(pipe_config->pch_pfit.enabled));
11400
11401         DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
11402                       pipe_config->ips_enabled, pipe_config->double_wide);
11403
11404         intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
11405
11406         DRM_DEBUG_KMS("planes on this crtc\n");
11407         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11408                 struct drm_format_name_buf format_name;
11409                 intel_plane = to_intel_plane(plane);
11410                 if (intel_plane->pipe != crtc->pipe)
11411                         continue;
11412
11413                 state = to_intel_plane_state(plane->state);
11414                 fb = state->base.fb;
11415                 if (!fb) {
11416                         DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
11417                                       plane->base.id, plane->name, state->scaler_id);
11418                         continue;
11419                 }
11420
11421                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
11422                               plane->base.id, plane->name,
11423                               fb->base.id, fb->width, fb->height,
11424                               drm_get_format_name(fb->format->format, &format_name));
11425                 if (INTEL_GEN(dev_priv) >= 9)
11426                         DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
11427                                       state->scaler_id,
11428                                       state->base.src.x1 >> 16,
11429                                       state->base.src.y1 >> 16,
11430                                       drm_rect_width(&state->base.src) >> 16,
11431                                       drm_rect_height(&state->base.src) >> 16,
11432                                       state->base.dst.x1, state->base.dst.y1,
11433                                       drm_rect_width(&state->base.dst),
11434                                       drm_rect_height(&state->base.dst));
11435         }
11436 }
11437
11438 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11439 {
11440         struct drm_device *dev = state->dev;
11441         struct drm_connector *connector;
11442         struct drm_connector_list_iter conn_iter;
11443         unsigned int used_ports = 0;
11444         unsigned int used_mst_ports = 0;
11445
11446         /*
11447          * Walk the connector list instead of the encoder
11448          * list to detect the problem on ddi platforms
11449          * where there's just one encoder per digital port.
11450          */
11451         drm_connector_list_iter_begin(dev, &conn_iter);
11452         drm_for_each_connector_iter(connector, &conn_iter) {
11453                 struct drm_connector_state *connector_state;
11454                 struct intel_encoder *encoder;
11455
11456                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
11457                 if (!connector_state)
11458                         connector_state = connector->state;
11459
11460                 if (!connector_state->best_encoder)
11461                         continue;
11462
11463                 encoder = to_intel_encoder(connector_state->best_encoder);
11464
11465                 WARN_ON(!connector_state->crtc);
11466
11467                 switch (encoder->type) {
11468                         unsigned int port_mask;
11469                 case INTEL_OUTPUT_UNKNOWN:
11470                         if (WARN_ON(!HAS_DDI(to_i915(dev))))
11471                                 break;
11472                 case INTEL_OUTPUT_DP:
11473                 case INTEL_OUTPUT_HDMI:
11474                 case INTEL_OUTPUT_EDP:
11475                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11476
11477                         /* the same port mustn't appear more than once */
11478                         if (used_ports & port_mask)
11479                                 return false;
11480
11481                         used_ports |= port_mask;
11482                         break;
11483                 case INTEL_OUTPUT_DP_MST:
11484                         used_mst_ports |=
11485                                 1 << enc_to_mst(&encoder->base)->primary->port;
11486                         break;
11487                 default:
11488                         break;
11489                 }
11490         }
11491         drm_connector_list_iter_end(&conn_iter);
11492
11493         /* can't mix MST and SST/HDMI on the same port */
11494         if (used_ports & used_mst_ports)
11495                 return false;
11496
11497         return true;
11498 }
11499
11500 static void
11501 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11502 {
11503         struct drm_i915_private *dev_priv =
11504                 to_i915(crtc_state->base.crtc->dev);
11505         struct intel_crtc_scaler_state scaler_state;
11506         struct intel_dpll_hw_state dpll_hw_state;
11507         struct intel_shared_dpll *shared_dpll;
11508         struct intel_crtc_wm_state wm_state;
11509         bool force_thru;
11510
11511         /* FIXME: before the switch to atomic started, a new pipe_config was
11512          * kzalloc'd. Code that depends on any field being zero should be
11513          * fixed, so that the crtc_state can be safely duplicated. For now,
11514          * only fields that are know to not cause problems are preserved. */
11515
11516         scaler_state = crtc_state->scaler_state;
11517         shared_dpll = crtc_state->shared_dpll;
11518         dpll_hw_state = crtc_state->dpll_hw_state;
11519         force_thru = crtc_state->pch_pfit.force_thru;
11520         if (IS_G4X(dev_priv) ||
11521             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11522                 wm_state = crtc_state->wm;
11523
11524         /* Keep base drm_crtc_state intact, only clear our extended struct */
11525         BUILD_BUG_ON(offsetof(struct intel_crtc_state, base));
11526         memset(&crtc_state->base + 1, 0,
11527                sizeof(*crtc_state) - sizeof(crtc_state->base));
11528
11529         crtc_state->scaler_state = scaler_state;
11530         crtc_state->shared_dpll = shared_dpll;
11531         crtc_state->dpll_hw_state = dpll_hw_state;
11532         crtc_state->pch_pfit.force_thru = force_thru;
11533         if (IS_G4X(dev_priv) ||
11534             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11535                 crtc_state->wm = wm_state;
11536 }
11537
11538 static int
11539 intel_modeset_pipe_config(struct drm_crtc *crtc,
11540                           struct intel_crtc_state *pipe_config)
11541 {
11542         struct drm_atomic_state *state = pipe_config->base.state;
11543         struct intel_encoder *encoder;
11544         struct drm_connector *connector;
11545         struct drm_connector_state *connector_state;
11546         int base_bpp, ret = -EINVAL;
11547         int i;
11548         bool retry = true;
11549
11550         clear_intel_crtc_state(pipe_config);
11551
11552         pipe_config->cpu_transcoder =
11553                 (enum transcoder) to_intel_crtc(crtc)->pipe;
11554
11555         /*
11556          * Sanitize sync polarity flags based on requested ones. If neither
11557          * positive or negative polarity is requested, treat this as meaning
11558          * negative polarity.
11559          */
11560         if (!(pipe_config->base.adjusted_mode.flags &
11561               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
11562                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
11563
11564         if (!(pipe_config->base.adjusted_mode.flags &
11565               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
11566                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
11567
11568         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11569                                              pipe_config);
11570         if (base_bpp < 0)
11571                 goto fail;
11572
11573         /*
11574          * Determine the real pipe dimensions. Note that stereo modes can
11575          * increase the actual pipe size due to the frame doubling and
11576          * insertion of additional space for blanks between the frame. This
11577          * is stored in the crtc timings. We use the requested mode to do this
11578          * computation to clearly distinguish it from the adjusted mode, which
11579          * can be changed by the connectors in the below retry loop.
11580          */
11581         drm_mode_get_hv_timing(&pipe_config->base.mode,
11582                                &pipe_config->pipe_src_w,
11583                                &pipe_config->pipe_src_h);
11584
11585         for_each_new_connector_in_state(state, connector, connector_state, i) {
11586                 if (connector_state->crtc != crtc)
11587                         continue;
11588
11589                 encoder = to_intel_encoder(connector_state->best_encoder);
11590
11591                 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
11592                         DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11593                         goto fail;
11594                 }
11595
11596                 /*
11597                  * Determine output_types before calling the .compute_config()
11598                  * hooks so that the hooks can use this information safely.
11599                  */
11600                 pipe_config->output_types |= 1 << encoder->type;
11601         }
11602
11603 encoder_retry:
11604         /* Ensure the port clock defaults are reset when retrying. */
11605         pipe_config->port_clock = 0;
11606         pipe_config->pixel_multiplier = 1;
11607
11608         /* Fill in default crtc timings, allow encoders to overwrite them. */
11609         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11610                               CRTC_STEREO_DOUBLE);
11611
11612         /* Pass our mode to the connectors and the CRTC to give them a chance to
11613          * adjust it according to limitations or connector properties, and also
11614          * a chance to reject the mode entirely.
11615          */
11616         for_each_new_connector_in_state(state, connector, connector_state, i) {
11617                 if (connector_state->crtc != crtc)
11618                         continue;
11619
11620                 encoder = to_intel_encoder(connector_state->best_encoder);
11621
11622                 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
11623                         DRM_DEBUG_KMS("Encoder config failure\n");
11624                         goto fail;
11625                 }
11626         }
11627
11628         /* Set default port clock if not overwritten by the encoder. Needs to be
11629          * done afterwards in case the encoder adjusts the mode. */
11630         if (!pipe_config->port_clock)
11631                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11632                         * pipe_config->pixel_multiplier;
11633
11634         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11635         if (ret < 0) {
11636                 DRM_DEBUG_KMS("CRTC fixup failed\n");
11637                 goto fail;
11638         }
11639
11640         if (ret == RETRY) {
11641                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11642                         ret = -EINVAL;
11643                         goto fail;
11644                 }
11645
11646                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11647                 retry = false;
11648                 goto encoder_retry;
11649         }
11650
11651         /* Dithering seems to not pass-through bits correctly when it should, so
11652          * only enable it on 6bpc panels and when its not a compliance
11653          * test requesting 6bpc video pattern.
11654          */
11655         pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
11656                 !pipe_config->dither_force_disable;
11657         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
11658                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11659
11660 fail:
11661         return ret;
11662 }
11663
11664 static void
11665 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
11666 {
11667         struct drm_crtc *crtc;
11668         struct drm_crtc_state *new_crtc_state;
11669         int i;
11670
11671         /* Double check state. */
11672         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
11673                 to_intel_crtc(crtc)->config = to_intel_crtc_state(new_crtc_state);
11674
11675                 /*
11676                  * Update legacy state to satisfy fbc code. This can
11677                  * be removed when fbc uses the atomic state.
11678                  */
11679                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
11680                         struct drm_plane_state *plane_state = crtc->primary->state;
11681
11682                         crtc->primary->fb = plane_state->fb;
11683                         crtc->x = plane_state->src_x >> 16;
11684                         crtc->y = plane_state->src_y >> 16;
11685                 }
11686         }
11687 }
11688
11689 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11690 {
11691         int diff;
11692
11693         if (clock1 == clock2)
11694                 return true;
11695
11696         if (!clock1 || !clock2)
11697                 return false;
11698
11699         diff = abs(clock1 - clock2);
11700
11701         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11702                 return true;
11703
11704         return false;
11705 }
11706
11707 static bool
11708 intel_compare_m_n(unsigned int m, unsigned int n,
11709                   unsigned int m2, unsigned int n2,
11710                   bool exact)
11711 {
11712         if (m == m2 && n == n2)
11713                 return true;
11714
11715         if (exact || !m || !n || !m2 || !n2)
11716                 return false;
11717
11718         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
11719
11720         if (n > n2) {
11721                 while (n > n2) {
11722                         m2 <<= 1;
11723                         n2 <<= 1;
11724                 }
11725         } else if (n < n2) {
11726                 while (n < n2) {
11727                         m <<= 1;
11728                         n <<= 1;
11729                 }
11730         }
11731
11732         if (n != n2)
11733                 return false;
11734
11735         return intel_fuzzy_clock_check(m, m2);
11736 }
11737
11738 static bool
11739 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
11740                        struct intel_link_m_n *m2_n2,
11741                        bool adjust)
11742 {
11743         if (m_n->tu == m2_n2->tu &&
11744             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
11745                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
11746             intel_compare_m_n(m_n->link_m, m_n->link_n,
11747                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
11748                 if (adjust)
11749                         *m2_n2 = *m_n;
11750
11751                 return true;
11752         }
11753
11754         return false;
11755 }
11756
11757 static void __printf(3, 4)
11758 pipe_config_err(bool adjust, const char *name, const char *format, ...)
11759 {
11760         char *level;
11761         unsigned int category;
11762         struct va_format vaf;
11763         va_list args;
11764
11765         if (adjust) {
11766                 level = KERN_DEBUG;
11767                 category = DRM_UT_KMS;
11768         } else {
11769                 level = KERN_ERR;
11770                 category = DRM_UT_NONE;
11771         }
11772
11773         va_start(args, format);
11774         vaf.fmt = format;
11775         vaf.va = &args;
11776
11777         drm_printk(level, category, "mismatch in %s %pV", name, &vaf);
11778
11779         va_end(args);
11780 }
11781
11782 static bool
11783 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
11784                           struct intel_crtc_state *current_config,
11785                           struct intel_crtc_state *pipe_config,
11786                           bool adjust)
11787 {
11788         bool ret = true;
11789
11790 #define PIPE_CONF_CHECK_X(name) \
11791         if (current_config->name != pipe_config->name) { \
11792                 pipe_config_err(adjust, __stringify(name), \
11793                           "(expected 0x%08x, found 0x%08x)\n", \
11794                           current_config->name, \
11795                           pipe_config->name); \
11796                 ret = false; \
11797         }
11798
11799 #define PIPE_CONF_CHECK_I(name) \
11800         if (current_config->name != pipe_config->name) { \
11801                 pipe_config_err(adjust, __stringify(name), \
11802                           "(expected %i, found %i)\n", \
11803                           current_config->name, \
11804                           pipe_config->name); \
11805                 ret = false; \
11806         }
11807
11808 #define PIPE_CONF_CHECK_P(name) \
11809         if (current_config->name != pipe_config->name) { \
11810                 pipe_config_err(adjust, __stringify(name), \
11811                           "(expected %p, found %p)\n", \
11812                           current_config->name, \
11813                           pipe_config->name); \
11814                 ret = false; \
11815         }
11816
11817 #define PIPE_CONF_CHECK_M_N(name) \
11818         if (!intel_compare_link_m_n(&current_config->name, \
11819                                     &pipe_config->name,\
11820                                     adjust)) { \
11821                 pipe_config_err(adjust, __stringify(name), \
11822                           "(expected tu %i gmch %i/%i link %i/%i, " \
11823                           "found tu %i, gmch %i/%i link %i/%i)\n", \
11824                           current_config->name.tu, \
11825                           current_config->name.gmch_m, \
11826                           current_config->name.gmch_n, \
11827                           current_config->name.link_m, \
11828                           current_config->name.link_n, \
11829                           pipe_config->name.tu, \
11830                           pipe_config->name.gmch_m, \
11831                           pipe_config->name.gmch_n, \
11832                           pipe_config->name.link_m, \
11833                           pipe_config->name.link_n); \
11834                 ret = false; \
11835         }
11836
11837 /* This is required for BDW+ where there is only one set of registers for
11838  * switching between high and low RR.
11839  * This macro can be used whenever a comparison has to be made between one
11840  * hw state and multiple sw state variables.
11841  */
11842 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
11843         if (!intel_compare_link_m_n(&current_config->name, \
11844                                     &pipe_config->name, adjust) && \
11845             !intel_compare_link_m_n(&current_config->alt_name, \
11846                                     &pipe_config->name, adjust)) { \
11847                 pipe_config_err(adjust, __stringify(name), \
11848                           "(expected tu %i gmch %i/%i link %i/%i, " \
11849                           "or tu %i gmch %i/%i link %i/%i, " \
11850                           "found tu %i, gmch %i/%i link %i/%i)\n", \
11851                           current_config->name.tu, \
11852                           current_config->name.gmch_m, \
11853                           current_config->name.gmch_n, \
11854                           current_config->name.link_m, \
11855                           current_config->name.link_n, \
11856                           current_config->alt_name.tu, \
11857                           current_config->alt_name.gmch_m, \
11858                           current_config->alt_name.gmch_n, \
11859                           current_config->alt_name.link_m, \
11860                           current_config->alt_name.link_n, \
11861                           pipe_config->name.tu, \
11862                           pipe_config->name.gmch_m, \
11863                           pipe_config->name.gmch_n, \
11864                           pipe_config->name.link_m, \
11865                           pipe_config->name.link_n); \
11866                 ret = false; \
11867         }
11868
11869 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
11870         if ((current_config->name ^ pipe_config->name) & (mask)) { \
11871                 pipe_config_err(adjust, __stringify(name), \
11872                           "(%x) (expected %i, found %i)\n", \
11873                           (mask), \
11874                           current_config->name & (mask), \
11875                           pipe_config->name & (mask)); \
11876                 ret = false; \
11877         }
11878
11879 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11880         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11881                 pipe_config_err(adjust, __stringify(name), \
11882                           "(expected %i, found %i)\n", \
11883                           current_config->name, \
11884                           pipe_config->name); \
11885                 ret = false; \
11886         }
11887
11888 #define PIPE_CONF_QUIRK(quirk)  \
11889         ((current_config->quirks | pipe_config->quirks) & (quirk))
11890
11891         PIPE_CONF_CHECK_I(cpu_transcoder);
11892
11893         PIPE_CONF_CHECK_I(has_pch_encoder);
11894         PIPE_CONF_CHECK_I(fdi_lanes);
11895         PIPE_CONF_CHECK_M_N(fdi_m_n);
11896
11897         PIPE_CONF_CHECK_I(lane_count);
11898         PIPE_CONF_CHECK_X(lane_lat_optim_mask);
11899
11900         if (INTEL_GEN(dev_priv) < 8) {
11901                 PIPE_CONF_CHECK_M_N(dp_m_n);
11902
11903                 if (current_config->has_drrs)
11904                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
11905         } else
11906                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
11907
11908         PIPE_CONF_CHECK_X(output_types);
11909
11910         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11911         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11912         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11913         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11914         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11915         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11916
11917         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11918         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11919         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11920         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11921         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11922         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11923
11924         PIPE_CONF_CHECK_I(pixel_multiplier);
11925         PIPE_CONF_CHECK_I(has_hdmi_sink);
11926         if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
11927             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11928                 PIPE_CONF_CHECK_I(limited_color_range);
11929
11930         PIPE_CONF_CHECK_I(hdmi_scrambling);
11931         PIPE_CONF_CHECK_I(hdmi_high_tmds_clock_ratio);
11932         PIPE_CONF_CHECK_I(has_infoframe);
11933
11934         PIPE_CONF_CHECK_I(has_audio);
11935
11936         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11937                               DRM_MODE_FLAG_INTERLACE);
11938
11939         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11940                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11941                                       DRM_MODE_FLAG_PHSYNC);
11942                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11943                                       DRM_MODE_FLAG_NHSYNC);
11944                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11945                                       DRM_MODE_FLAG_PVSYNC);
11946                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11947                                       DRM_MODE_FLAG_NVSYNC);
11948         }
11949
11950         PIPE_CONF_CHECK_X(gmch_pfit.control);
11951         /* pfit ratios are autocomputed by the hw on gen4+ */
11952         if (INTEL_GEN(dev_priv) < 4)
11953                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
11954         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
11955
11956         if (!adjust) {
11957                 PIPE_CONF_CHECK_I(pipe_src_w);
11958                 PIPE_CONF_CHECK_I(pipe_src_h);
11959
11960                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11961                 if (current_config->pch_pfit.enabled) {
11962                         PIPE_CONF_CHECK_X(pch_pfit.pos);
11963                         PIPE_CONF_CHECK_X(pch_pfit.size);
11964                 }
11965
11966                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11967                 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
11968         }
11969
11970         /* BDW+ don't expose a synchronous way to read the state */
11971         if (IS_HASWELL(dev_priv))
11972                 PIPE_CONF_CHECK_I(ips_enabled);
11973
11974         PIPE_CONF_CHECK_I(double_wide);
11975
11976         PIPE_CONF_CHECK_P(shared_dpll);
11977         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11978         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11979         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11980         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11981         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11982         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
11983         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11984         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11985         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11986
11987         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
11988         PIPE_CONF_CHECK_X(dsi_pll.div);
11989
11990         if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
11991                 PIPE_CONF_CHECK_I(pipe_bpp);
11992
11993         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11994         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11995
11996 #undef PIPE_CONF_CHECK_X
11997 #undef PIPE_CONF_CHECK_I
11998 #undef PIPE_CONF_CHECK_P
11999 #undef PIPE_CONF_CHECK_FLAGS
12000 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12001 #undef PIPE_CONF_QUIRK
12002
12003         return ret;
12004 }
12005
12006 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12007                                            const struct intel_crtc_state *pipe_config)
12008 {
12009         if (pipe_config->has_pch_encoder) {
12010                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12011                                                             &pipe_config->fdi_m_n);
12012                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12013
12014                 /*
12015                  * FDI already provided one idea for the dotclock.
12016                  * Yell if the encoder disagrees.
12017                  */
12018                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12019                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12020                      fdi_dotclock, dotclock);
12021         }
12022 }
12023
12024 static void verify_wm_state(struct drm_crtc *crtc,
12025                             struct drm_crtc_state *new_state)
12026 {
12027         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
12028         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12029         struct skl_pipe_wm hw_wm, *sw_wm;
12030         struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
12031         struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
12032         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12033         const enum pipe pipe = intel_crtc->pipe;
12034         int plane, level, max_level = ilk_wm_max_level(dev_priv);
12035
12036         if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
12037                 return;
12038
12039         skl_pipe_wm_get_hw_state(crtc, &hw_wm);
12040         sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
12041
12042         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12043         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12044
12045         /* planes */
12046         for_each_universal_plane(dev_priv, pipe, plane) {
12047                 hw_plane_wm = &hw_wm.planes[plane];
12048                 sw_plane_wm = &sw_wm->planes[plane];
12049
12050                 /* Watermarks */
12051                 for (level = 0; level <= max_level; level++) {
12052                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
12053                                                 &sw_plane_wm->wm[level]))
12054                                 continue;
12055
12056                         DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12057                                   pipe_name(pipe), plane + 1, level,
12058                                   sw_plane_wm->wm[level].plane_en,
12059                                   sw_plane_wm->wm[level].plane_res_b,
12060                                   sw_plane_wm->wm[level].plane_res_l,
12061                                   hw_plane_wm->wm[level].plane_en,
12062                                   hw_plane_wm->wm[level].plane_res_b,
12063                                   hw_plane_wm->wm[level].plane_res_l);
12064                 }
12065
12066                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
12067                                          &sw_plane_wm->trans_wm)) {
12068                         DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12069                                   pipe_name(pipe), plane + 1,
12070                                   sw_plane_wm->trans_wm.plane_en,
12071                                   sw_plane_wm->trans_wm.plane_res_b,
12072                                   sw_plane_wm->trans_wm.plane_res_l,
12073                                   hw_plane_wm->trans_wm.plane_en,
12074                                   hw_plane_wm->trans_wm.plane_res_b,
12075                                   hw_plane_wm->trans_wm.plane_res_l);
12076                 }
12077
12078                 /* DDB */
12079                 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
12080                 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
12081
12082                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
12083                         DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
12084                                   pipe_name(pipe), plane + 1,
12085                                   sw_ddb_entry->start, sw_ddb_entry->end,
12086                                   hw_ddb_entry->start, hw_ddb_entry->end);
12087                 }
12088         }
12089
12090         /*
12091          * cursor
12092          * If the cursor plane isn't active, we may not have updated it's ddb
12093          * allocation. In that case since the ddb allocation will be updated
12094          * once the plane becomes visible, we can skip this check
12095          */
12096         if (1) {
12097                 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
12098                 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
12099
12100                 /* Watermarks */
12101                 for (level = 0; level <= max_level; level++) {
12102                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
12103                                                 &sw_plane_wm->wm[level]))
12104                                 continue;
12105
12106                         DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12107                                   pipe_name(pipe), level,
12108                                   sw_plane_wm->wm[level].plane_en,
12109                                   sw_plane_wm->wm[level].plane_res_b,
12110                                   sw_plane_wm->wm[level].plane_res_l,
12111                                   hw_plane_wm->wm[level].plane_en,
12112                                   hw_plane_wm->wm[level].plane_res_b,
12113                                   hw_plane_wm->wm[level].plane_res_l);
12114                 }
12115
12116                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
12117                                          &sw_plane_wm->trans_wm)) {
12118                         DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12119                                   pipe_name(pipe),
12120                                   sw_plane_wm->trans_wm.plane_en,
12121                                   sw_plane_wm->trans_wm.plane_res_b,
12122                                   sw_plane_wm->trans_wm.plane_res_l,
12123                                   hw_plane_wm->trans_wm.plane_en,
12124                                   hw_plane_wm->trans_wm.plane_res_b,
12125                                   hw_plane_wm->trans_wm.plane_res_l);
12126                 }
12127
12128                 /* DDB */
12129                 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12130                 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12131
12132                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
12133                         DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
12134                                   pipe_name(pipe),
12135                                   sw_ddb_entry->start, sw_ddb_entry->end,
12136                                   hw_ddb_entry->start, hw_ddb_entry->end);
12137                 }
12138         }
12139 }
12140
12141 static void
12142 verify_connector_state(struct drm_device *dev,
12143                        struct drm_atomic_state *state,
12144                        struct drm_crtc *crtc)
12145 {
12146         struct drm_connector *connector;
12147         struct drm_connector_state *new_conn_state;
12148         int i;
12149
12150         for_each_new_connector_in_state(state, connector, new_conn_state, i) {
12151                 struct drm_encoder *encoder = connector->encoder;
12152                 struct drm_crtc_state *crtc_state = NULL;
12153
12154                 if (new_conn_state->crtc != crtc)
12155                         continue;
12156
12157                 if (crtc)
12158                         crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc);
12159
12160                 intel_connector_verify_state(crtc_state, new_conn_state);
12161
12162                 I915_STATE_WARN(new_conn_state->best_encoder != encoder,
12163                      "connector's atomic encoder doesn't match legacy encoder\n");
12164         }
12165 }
12166
12167 static void
12168 verify_encoder_state(struct drm_device *dev, struct drm_atomic_state *state)
12169 {
12170         struct intel_encoder *encoder;
12171         struct drm_connector *connector;
12172         struct drm_connector_state *old_conn_state, *new_conn_state;
12173         int i;
12174
12175         for_each_intel_encoder(dev, encoder) {
12176                 bool enabled = false, found = false;
12177                 enum pipe pipe;
12178
12179                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12180                               encoder->base.base.id,
12181                               encoder->base.name);
12182
12183                 for_each_oldnew_connector_in_state(state, connector, old_conn_state,
12184                                                    new_conn_state, i) {
12185                         if (old_conn_state->best_encoder == &encoder->base)
12186                                 found = true;
12187
12188                         if (new_conn_state->best_encoder != &encoder->base)
12189                                 continue;
12190                         found = enabled = true;
12191
12192                         I915_STATE_WARN(new_conn_state->crtc !=
12193                                         encoder->base.crtc,
12194                              "connector's crtc doesn't match encoder crtc\n");
12195                 }
12196
12197                 if (!found)
12198                         continue;
12199
12200                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12201                      "encoder's enabled state mismatch "
12202                      "(expected %i, found %i)\n",
12203                      !!encoder->base.crtc, enabled);
12204
12205                 if (!encoder->base.crtc) {
12206                         bool active;
12207
12208                         active = encoder->get_hw_state(encoder, &pipe);
12209                         I915_STATE_WARN(active,
12210                              "encoder detached but still enabled on pipe %c.\n",
12211                              pipe_name(pipe));
12212                 }
12213         }
12214 }
12215
12216 static void
12217 verify_crtc_state(struct drm_crtc *crtc,
12218                   struct drm_crtc_state *old_crtc_state,
12219                   struct drm_crtc_state *new_crtc_state)
12220 {
12221         struct drm_device *dev = crtc->dev;
12222         struct drm_i915_private *dev_priv = to_i915(dev);
12223         struct intel_encoder *encoder;
12224         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12225         struct intel_crtc_state *pipe_config, *sw_config;
12226         struct drm_atomic_state *old_state;
12227         bool active;
12228
12229         old_state = old_crtc_state->state;
12230         __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
12231         pipe_config = to_intel_crtc_state(old_crtc_state);
12232         memset(pipe_config, 0, sizeof(*pipe_config));
12233         pipe_config->base.crtc = crtc;
12234         pipe_config->base.state = old_state;
12235
12236         DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
12237
12238         active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12239
12240         /* we keep both pipes enabled on 830 */
12241         if (IS_I830(dev_priv))
12242                 active = new_crtc_state->active;
12243
12244         I915_STATE_WARN(new_crtc_state->active != active,
12245              "crtc active state doesn't match with hw state "
12246              "(expected %i, found %i)\n", new_crtc_state->active, active);
12247
12248         I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12249              "transitional active state does not match atomic hw state "
12250              "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12251
12252         for_each_encoder_on_crtc(dev, crtc, encoder) {
12253                 enum pipe pipe;
12254
12255                 active = encoder->get_hw_state(encoder, &pipe);
12256                 I915_STATE_WARN(active != new_crtc_state->active,
12257                         "[ENCODER:%i] active %i with crtc active %i\n",
12258                         encoder->base.base.id, active, new_crtc_state->active);
12259
12260                 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12261                                 "Encoder connected to wrong pipe %c\n",
12262                                 pipe_name(pipe));
12263
12264                 if (active) {
12265                         pipe_config->output_types |= 1 << encoder->type;
12266                         encoder->get_config(encoder, pipe_config);
12267                 }
12268         }
12269
12270         intel_crtc_compute_pixel_rate(pipe_config);
12271
12272         if (!new_crtc_state->active)
12273                 return;
12274
12275         intel_pipe_config_sanity_check(dev_priv, pipe_config);
12276
12277         sw_config = to_intel_crtc_state(new_crtc_state);
12278         if (!intel_pipe_config_compare(dev_priv, sw_config,
12279                                        pipe_config, false)) {
12280                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12281                 intel_dump_pipe_config(intel_crtc, pipe_config,
12282                                        "[hw state]");
12283                 intel_dump_pipe_config(intel_crtc, sw_config,
12284                                        "[sw state]");
12285         }
12286 }
12287
12288 static void
12289 verify_single_dpll_state(struct drm_i915_private *dev_priv,
12290                          struct intel_shared_dpll *pll,
12291                          struct drm_crtc *crtc,
12292                          struct drm_crtc_state *new_state)
12293 {
12294         struct intel_dpll_hw_state dpll_hw_state;
12295         unsigned crtc_mask;
12296         bool active;
12297
12298         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12299
12300         DRM_DEBUG_KMS("%s\n", pll->name);
12301
12302         active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
12303
12304         if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12305                 I915_STATE_WARN(!pll->on && pll->active_mask,
12306                      "pll in active use but not on in sw tracking\n");
12307                 I915_STATE_WARN(pll->on && !pll->active_mask,
12308                      "pll is on but not used by any active crtc\n");
12309                 I915_STATE_WARN(pll->on != active,
12310                      "pll on state mismatch (expected %i, found %i)\n",
12311                      pll->on, active);
12312         }
12313
12314         if (!crtc) {
12315                 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
12316                                 "more active pll users than references: %x vs %x\n",
12317                                 pll->active_mask, pll->state.crtc_mask);
12318
12319                 return;
12320         }
12321
12322         crtc_mask = 1 << drm_crtc_index(crtc);
12323
12324         if (new_state->active)
12325                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
12326                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
12327                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12328         else
12329                 I915_STATE_WARN(pll->active_mask & crtc_mask,
12330                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
12331                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12332
12333         I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
12334                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
12335                         crtc_mask, pll->state.crtc_mask);
12336
12337         I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
12338                                           &dpll_hw_state,
12339                                           sizeof(dpll_hw_state)),
12340                         "pll hw state mismatch\n");
12341 }
12342
12343 static void
12344 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
12345                          struct drm_crtc_state *old_crtc_state,
12346                          struct drm_crtc_state *new_crtc_state)
12347 {
12348         struct drm_i915_private *dev_priv = to_i915(dev);
12349         struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
12350         struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
12351
12352         if (new_state->shared_dpll)
12353                 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
12354
12355         if (old_state->shared_dpll &&
12356             old_state->shared_dpll != new_state->shared_dpll) {
12357                 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
12358                 struct intel_shared_dpll *pll = old_state->shared_dpll;
12359
12360                 I915_STATE_WARN(pll->active_mask & crtc_mask,
12361                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
12362                                 pipe_name(drm_crtc_index(crtc)));
12363                 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
12364                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
12365                                 pipe_name(drm_crtc_index(crtc)));
12366         }
12367 }
12368
12369 static void
12370 intel_modeset_verify_crtc(struct drm_crtc *crtc,
12371                           struct drm_atomic_state *state,
12372                           struct drm_crtc_state *old_state,
12373                           struct drm_crtc_state *new_state)
12374 {
12375         if (!needs_modeset(new_state) &&
12376             !to_intel_crtc_state(new_state)->update_pipe)
12377                 return;
12378
12379         verify_wm_state(crtc, new_state);
12380         verify_connector_state(crtc->dev, state, crtc);
12381         verify_crtc_state(crtc, old_state, new_state);
12382         verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
12383 }
12384
12385 static void
12386 verify_disabled_dpll_state(struct drm_device *dev)
12387 {
12388         struct drm_i915_private *dev_priv = to_i915(dev);
12389         int i;
12390
12391         for (i = 0; i < dev_priv->num_shared_dpll; i++)
12392                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
12393 }
12394
12395 static void
12396 intel_modeset_verify_disabled(struct drm_device *dev,
12397                               struct drm_atomic_state *state)
12398 {
12399         verify_encoder_state(dev, state);
12400         verify_connector_state(dev, state, NULL);
12401         verify_disabled_dpll_state(dev);
12402 }
12403
12404 static void update_scanline_offset(struct intel_crtc *crtc)
12405 {
12406         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12407
12408         /*
12409          * The scanline counter increments at the leading edge of hsync.
12410          *
12411          * On most platforms it starts counting from vtotal-1 on the
12412          * first active line. That means the scanline counter value is
12413          * always one less than what we would expect. Ie. just after
12414          * start of vblank, which also occurs at start of hsync (on the
12415          * last active line), the scanline counter will read vblank_start-1.
12416          *
12417          * On gen2 the scanline counter starts counting from 1 instead
12418          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12419          * to keep the value positive), instead of adding one.
12420          *
12421          * On HSW+ the behaviour of the scanline counter depends on the output
12422          * type. For DP ports it behaves like most other platforms, but on HDMI
12423          * there's an extra 1 line difference. So we need to add two instead of
12424          * one to the value.
12425          *
12426          * On VLV/CHV DSI the scanline counter would appear to increment
12427          * approx. 1/3 of a scanline before start of vblank. Unfortunately
12428          * that means we can't tell whether we're in vblank or not while
12429          * we're on that particular line. We must still set scanline_offset
12430          * to 1 so that the vblank timestamps come out correct when we query
12431          * the scanline counter from within the vblank interrupt handler.
12432          * However if queried just before the start of vblank we'll get an
12433          * answer that's slightly in the future.
12434          */
12435         if (IS_GEN2(dev_priv)) {
12436                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12437                 int vtotal;
12438
12439                 vtotal = adjusted_mode->crtc_vtotal;
12440                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12441                         vtotal /= 2;
12442
12443                 crtc->scanline_offset = vtotal - 1;
12444         } else if (HAS_DDI(dev_priv) &&
12445                    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
12446                 crtc->scanline_offset = 2;
12447         } else
12448                 crtc->scanline_offset = 1;
12449 }
12450
12451 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12452 {
12453         struct drm_device *dev = state->dev;
12454         struct drm_i915_private *dev_priv = to_i915(dev);
12455         struct drm_crtc *crtc;
12456         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12457         int i;
12458
12459         if (!dev_priv->display.crtc_compute_clock)
12460                 return;
12461
12462         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12463                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12464                 struct intel_shared_dpll *old_dpll =
12465                         to_intel_crtc_state(old_crtc_state)->shared_dpll;
12466
12467                 if (!needs_modeset(new_crtc_state))
12468                         continue;
12469
12470                 to_intel_crtc_state(new_crtc_state)->shared_dpll = NULL;
12471
12472                 if (!old_dpll)
12473                         continue;
12474
12475                 intel_release_shared_dpll(old_dpll, intel_crtc, state);
12476         }
12477 }
12478
12479 /*
12480  * This implements the workaround described in the "notes" section of the mode
12481  * set sequence documentation. When going from no pipes or single pipe to
12482  * multiple pipes, and planes are enabled after the pipe, we need to wait at
12483  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12484  */
12485 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12486 {
12487         struct drm_crtc_state *crtc_state;
12488         struct intel_crtc *intel_crtc;
12489         struct drm_crtc *crtc;
12490         struct intel_crtc_state *first_crtc_state = NULL;
12491         struct intel_crtc_state *other_crtc_state = NULL;
12492         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12493         int i;
12494
12495         /* look at all crtc's that are going to be enabled in during modeset */
12496         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
12497                 intel_crtc = to_intel_crtc(crtc);
12498
12499                 if (!crtc_state->active || !needs_modeset(crtc_state))
12500                         continue;
12501
12502                 if (first_crtc_state) {
12503                         other_crtc_state = to_intel_crtc_state(crtc_state);
12504                         break;
12505                 } else {
12506                         first_crtc_state = to_intel_crtc_state(crtc_state);
12507                         first_pipe = intel_crtc->pipe;
12508                 }
12509         }
12510
12511         /* No workaround needed? */
12512         if (!first_crtc_state)
12513                 return 0;
12514
12515         /* w/a possibly needed, check how many crtc's are already enabled. */
12516         for_each_intel_crtc(state->dev, intel_crtc) {
12517                 struct intel_crtc_state *pipe_config;
12518
12519                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12520                 if (IS_ERR(pipe_config))
12521                         return PTR_ERR(pipe_config);
12522
12523                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12524
12525                 if (!pipe_config->base.active ||
12526                     needs_modeset(&pipe_config->base))
12527                         continue;
12528
12529                 /* 2 or more enabled crtcs means no need for w/a */
12530                 if (enabled_pipe != INVALID_PIPE)
12531                         return 0;
12532
12533                 enabled_pipe = intel_crtc->pipe;
12534         }
12535
12536         if (enabled_pipe != INVALID_PIPE)
12537                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12538         else if (other_crtc_state)
12539                 other_crtc_state->hsw_workaround_pipe = first_pipe;
12540
12541         return 0;
12542 }
12543
12544 static int intel_lock_all_pipes(struct drm_atomic_state *state)
12545 {
12546         struct drm_crtc *crtc;
12547
12548         /* Add all pipes to the state */
12549         for_each_crtc(state->dev, crtc) {
12550                 struct drm_crtc_state *crtc_state;
12551
12552                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12553                 if (IS_ERR(crtc_state))
12554                         return PTR_ERR(crtc_state);
12555         }
12556
12557         return 0;
12558 }
12559
12560 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12561 {
12562         struct drm_crtc *crtc;
12563
12564         /*
12565          * Add all pipes to the state, and force
12566          * a modeset on all the active ones.
12567          */
12568         for_each_crtc(state->dev, crtc) {
12569                 struct drm_crtc_state *crtc_state;
12570                 int ret;
12571
12572                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12573                 if (IS_ERR(crtc_state))
12574                         return PTR_ERR(crtc_state);
12575
12576                 if (!crtc_state->active || needs_modeset(crtc_state))
12577                         continue;
12578
12579                 crtc_state->mode_changed = true;
12580
12581                 ret = drm_atomic_add_affected_connectors(state, crtc);
12582                 if (ret)
12583                         return ret;
12584
12585                 ret = drm_atomic_add_affected_planes(state, crtc);
12586                 if (ret)
12587                         return ret;
12588         }
12589
12590         return 0;
12591 }
12592
12593 static int intel_modeset_checks(struct drm_atomic_state *state)
12594 {
12595         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12596         struct drm_i915_private *dev_priv = to_i915(state->dev);
12597         struct drm_crtc *crtc;
12598         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12599         int ret = 0, i;
12600
12601         if (!check_digital_port_conflicts(state)) {
12602                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12603                 return -EINVAL;
12604         }
12605
12606         intel_state->modeset = true;
12607         intel_state->active_crtcs = dev_priv->active_crtcs;
12608         intel_state->cdclk.logical = dev_priv->cdclk.logical;
12609         intel_state->cdclk.actual = dev_priv->cdclk.actual;
12610
12611         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12612                 if (new_crtc_state->active)
12613                         intel_state->active_crtcs |= 1 << i;
12614                 else
12615                         intel_state->active_crtcs &= ~(1 << i);
12616
12617                 if (old_crtc_state->active != new_crtc_state->active)
12618                         intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
12619         }
12620
12621         /*
12622          * See if the config requires any additional preparation, e.g.
12623          * to adjust global state with pipes off.  We need to do this
12624          * here so we can get the modeset_pipe updated config for the new
12625          * mode set on this crtc.  For other crtcs we need to use the
12626          * adjusted_mode bits in the crtc directly.
12627          */
12628         if (dev_priv->display.modeset_calc_cdclk) {
12629                 ret = dev_priv->display.modeset_calc_cdclk(state);
12630                 if (ret < 0)
12631                         return ret;
12632
12633                 /*
12634                  * Writes to dev_priv->cdclk.logical must protected by
12635                  * holding all the crtc locks, even if we don't end up
12636                  * touching the hardware
12637                  */
12638                 if (!intel_cdclk_state_compare(&dev_priv->cdclk.logical,
12639                                                &intel_state->cdclk.logical)) {
12640                         ret = intel_lock_all_pipes(state);
12641                         if (ret < 0)
12642                                 return ret;
12643                 }
12644
12645                 /* All pipes must be switched off while we change the cdclk. */
12646                 if (!intel_cdclk_state_compare(&dev_priv->cdclk.actual,
12647                                                &intel_state->cdclk.actual)) {
12648                         ret = intel_modeset_all_pipes(state);
12649                         if (ret < 0)
12650                                 return ret;
12651                 }
12652
12653                 DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n",
12654                               intel_state->cdclk.logical.cdclk,
12655                               intel_state->cdclk.actual.cdclk);
12656         } else {
12657                 to_intel_atomic_state(state)->cdclk.logical = dev_priv->cdclk.logical;
12658         }
12659
12660         intel_modeset_clear_plls(state);
12661
12662         if (IS_HASWELL(dev_priv))
12663                 return haswell_mode_set_planes_workaround(state);
12664
12665         return 0;
12666 }
12667
12668 /*
12669  * Handle calculation of various watermark data at the end of the atomic check
12670  * phase.  The code here should be run after the per-crtc and per-plane 'check'
12671  * handlers to ensure that all derived state has been updated.
12672  */
12673 static int calc_watermark_data(struct drm_atomic_state *state)
12674 {
12675         struct drm_device *dev = state->dev;
12676         struct drm_i915_private *dev_priv = to_i915(dev);
12677
12678         /* Is there platform-specific watermark information to calculate? */
12679         if (dev_priv->display.compute_global_watermarks)
12680                 return dev_priv->display.compute_global_watermarks(state);
12681
12682         return 0;
12683 }
12684
12685 /**
12686  * intel_atomic_check - validate state object
12687  * @dev: drm device
12688  * @state: state to validate
12689  */
12690 static int intel_atomic_check(struct drm_device *dev,
12691                               struct drm_atomic_state *state)
12692 {
12693         struct drm_i915_private *dev_priv = to_i915(dev);
12694         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12695         struct drm_crtc *crtc;
12696         struct drm_crtc_state *old_crtc_state, *crtc_state;
12697         int ret, i;
12698         bool any_ms = false;
12699
12700         ret = drm_atomic_helper_check_modeset(dev, state);
12701         if (ret)
12702                 return ret;
12703
12704         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, crtc_state, i) {
12705                 struct intel_crtc_state *pipe_config =
12706                         to_intel_crtc_state(crtc_state);
12707
12708                 /* Catch I915_MODE_FLAG_INHERITED */
12709                 if (crtc_state->mode.private_flags != old_crtc_state->mode.private_flags)
12710                         crtc_state->mode_changed = true;
12711
12712                 if (!needs_modeset(crtc_state))
12713                         continue;
12714
12715                 if (!crtc_state->enable) {
12716                         any_ms = true;
12717                         continue;
12718                 }
12719
12720                 /* FIXME: For only active_changed we shouldn't need to do any
12721                  * state recomputation at all. */
12722
12723                 ret = drm_atomic_add_affected_connectors(state, crtc);
12724                 if (ret)
12725                         return ret;
12726
12727                 ret = intel_modeset_pipe_config(crtc, pipe_config);
12728                 if (ret) {
12729                         intel_dump_pipe_config(to_intel_crtc(crtc),
12730                                                pipe_config, "[failed]");
12731                         return ret;
12732                 }
12733
12734                 if (i915.fastboot &&
12735                     intel_pipe_config_compare(dev_priv,
12736                                         to_intel_crtc_state(old_crtc_state),
12737                                         pipe_config, true)) {
12738                         crtc_state->mode_changed = false;
12739                         pipe_config->update_pipe = true;
12740                 }
12741
12742                 if (needs_modeset(crtc_state))
12743                         any_ms = true;
12744
12745                 ret = drm_atomic_add_affected_planes(state, crtc);
12746                 if (ret)
12747                         return ret;
12748
12749                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
12750                                        needs_modeset(crtc_state) ?
12751                                        "[modeset]" : "[fastset]");
12752         }
12753
12754         if (any_ms) {
12755                 ret = intel_modeset_checks(state);
12756
12757                 if (ret)
12758                         return ret;
12759         } else {
12760                 intel_state->cdclk.logical = dev_priv->cdclk.logical;
12761         }
12762
12763         ret = drm_atomic_helper_check_planes(dev, state);
12764         if (ret)
12765                 return ret;
12766
12767         intel_fbc_choose_crtc(dev_priv, state);
12768         return calc_watermark_data(state);
12769 }
12770
12771 static int intel_atomic_prepare_commit(struct drm_device *dev,
12772                                        struct drm_atomic_state *state)
12773 {
12774         struct drm_i915_private *dev_priv = to_i915(dev);
12775         struct drm_crtc_state *crtc_state;
12776         struct drm_crtc *crtc;
12777         int i, ret;
12778
12779         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
12780                 if (state->legacy_cursor_update)
12781                         continue;
12782
12783                 ret = intel_crtc_wait_for_pending_flips(crtc);
12784                 if (ret)
12785                         return ret;
12786
12787                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
12788                         flush_workqueue(dev_priv->wq);
12789         }
12790
12791         ret = mutex_lock_interruptible(&dev->struct_mutex);
12792         if (ret)
12793                 return ret;
12794
12795         ret = drm_atomic_helper_prepare_planes(dev, state);
12796         mutex_unlock(&dev->struct_mutex);
12797
12798         return ret;
12799 }
12800
12801 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
12802 {
12803         struct drm_device *dev = crtc->base.dev;
12804
12805         if (!dev->max_vblank_count)
12806                 return drm_accurate_vblank_count(&crtc->base);
12807
12808         return dev->driver->get_vblank_counter(dev, crtc->pipe);
12809 }
12810
12811 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
12812                                           struct drm_i915_private *dev_priv,
12813                                           unsigned crtc_mask)
12814 {
12815         unsigned last_vblank_count[I915_MAX_PIPES];
12816         enum pipe pipe;
12817         int ret;
12818
12819         if (!crtc_mask)
12820                 return;
12821
12822         for_each_pipe(dev_priv, pipe) {
12823                 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12824                                                                   pipe);
12825
12826                 if (!((1 << pipe) & crtc_mask))
12827                         continue;
12828
12829                 ret = drm_crtc_vblank_get(&crtc->base);
12830                 if (WARN_ON(ret != 0)) {
12831                         crtc_mask &= ~(1 << pipe);
12832                         continue;
12833                 }
12834
12835                 last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
12836         }
12837
12838         for_each_pipe(dev_priv, pipe) {
12839                 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12840                                                                   pipe);
12841                 long lret;
12842
12843                 if (!((1 << pipe) & crtc_mask))
12844                         continue;
12845
12846                 lret = wait_event_timeout(dev->vblank[pipe].queue,
12847                                 last_vblank_count[pipe] !=
12848                                         drm_crtc_vblank_count(&crtc->base),
12849                                 msecs_to_jiffies(50));
12850
12851                 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
12852
12853                 drm_crtc_vblank_put(&crtc->base);
12854         }
12855 }
12856
12857 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
12858 {
12859         /* fb updated, need to unpin old fb */
12860         if (crtc_state->fb_changed)
12861                 return true;
12862
12863         /* wm changes, need vblank before final wm's */
12864         if (crtc_state->update_wm_post)
12865                 return true;
12866
12867         if (crtc_state->wm.need_postvbl_update)
12868                 return true;
12869
12870         return false;
12871 }
12872
12873 static void intel_update_crtc(struct drm_crtc *crtc,
12874                               struct drm_atomic_state *state,
12875                               struct drm_crtc_state *old_crtc_state,
12876                               struct drm_crtc_state *new_crtc_state,
12877                               unsigned int *crtc_vblank_mask)
12878 {
12879         struct drm_device *dev = crtc->dev;
12880         struct drm_i915_private *dev_priv = to_i915(dev);
12881         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12882         struct intel_crtc_state *pipe_config = to_intel_crtc_state(new_crtc_state);
12883         bool modeset = needs_modeset(new_crtc_state);
12884
12885         if (modeset) {
12886                 update_scanline_offset(intel_crtc);
12887                 dev_priv->display.crtc_enable(pipe_config, state);
12888         } else {
12889                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12890                                        pipe_config);
12891         }
12892
12893         if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12894                 intel_fbc_enable(
12895                     intel_crtc, pipe_config,
12896                     to_intel_plane_state(crtc->primary->state));
12897         }
12898
12899         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
12900
12901         if (needs_vblank_wait(pipe_config))
12902                 *crtc_vblank_mask |= drm_crtc_mask(crtc);
12903 }
12904
12905 static void intel_update_crtcs(struct drm_atomic_state *state,
12906                                unsigned int *crtc_vblank_mask)
12907 {
12908         struct drm_crtc *crtc;
12909         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12910         int i;
12911
12912         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12913                 if (!new_crtc_state->active)
12914                         continue;
12915
12916                 intel_update_crtc(crtc, state, old_crtc_state,
12917                                   new_crtc_state, crtc_vblank_mask);
12918         }
12919 }
12920
12921 static void skl_update_crtcs(struct drm_atomic_state *state,
12922                              unsigned int *crtc_vblank_mask)
12923 {
12924         struct drm_i915_private *dev_priv = to_i915(state->dev);
12925         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12926         struct drm_crtc *crtc;
12927         struct intel_crtc *intel_crtc;
12928         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12929         struct intel_crtc_state *cstate;
12930         unsigned int updated = 0;
12931         bool progress;
12932         enum pipe pipe;
12933         int i;
12934
12935         const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
12936
12937         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i)
12938                 /* ignore allocations for crtc's that have been turned off. */
12939                 if (new_crtc_state->active)
12940                         entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
12941
12942         /*
12943          * Whenever the number of active pipes changes, we need to make sure we
12944          * update the pipes in the right order so that their ddb allocations
12945          * never overlap with eachother inbetween CRTC updates. Otherwise we'll
12946          * cause pipe underruns and other bad stuff.
12947          */
12948         do {
12949                 progress = false;
12950
12951                 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12952                         bool vbl_wait = false;
12953                         unsigned int cmask = drm_crtc_mask(crtc);
12954
12955                         intel_crtc = to_intel_crtc(crtc);
12956                         cstate = to_intel_crtc_state(crtc->state);
12957                         pipe = intel_crtc->pipe;
12958
12959                         if (updated & cmask || !cstate->base.active)
12960                                 continue;
12961
12962                         if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
12963                                 continue;
12964
12965                         updated |= cmask;
12966                         entries[i] = &cstate->wm.skl.ddb;
12967
12968                         /*
12969                          * If this is an already active pipe, it's DDB changed,
12970                          * and this isn't the last pipe that needs updating
12971                          * then we need to wait for a vblank to pass for the
12972                          * new ddb allocation to take effect.
12973                          */
12974                         if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
12975                                                  &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
12976                             !new_crtc_state->active_changed &&
12977                             intel_state->wm_results.dirty_pipes != updated)
12978                                 vbl_wait = true;
12979
12980                         intel_update_crtc(crtc, state, old_crtc_state,
12981                                           new_crtc_state, crtc_vblank_mask);
12982
12983                         if (vbl_wait)
12984                                 intel_wait_for_vblank(dev_priv, pipe);
12985
12986                         progress = true;
12987                 }
12988         } while (progress);
12989 }
12990
12991 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
12992 {
12993         struct intel_atomic_state *state, *next;
12994         struct llist_node *freed;
12995
12996         freed = llist_del_all(&dev_priv->atomic_helper.free_list);
12997         llist_for_each_entry_safe(state, next, freed, freed)
12998                 drm_atomic_state_put(&state->base);
12999 }
13000
13001 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
13002 {
13003         struct drm_i915_private *dev_priv =
13004                 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
13005
13006         intel_atomic_helper_free_state(dev_priv);
13007 }
13008
13009 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
13010 {
13011         struct drm_device *dev = state->dev;
13012         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13013         struct drm_i915_private *dev_priv = to_i915(dev);
13014         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
13015         struct drm_crtc *crtc;
13016         struct intel_crtc_state *intel_cstate;
13017         bool hw_check = intel_state->modeset;
13018         u64 put_domains[I915_MAX_PIPES] = {};
13019         unsigned crtc_vblank_mask = 0;
13020         int i;
13021
13022         drm_atomic_helper_wait_for_dependencies(state);
13023
13024         if (intel_state->modeset)
13025                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13026
13027         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
13028                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13029
13030                 if (needs_modeset(new_crtc_state) ||
13031                     to_intel_crtc_state(new_crtc_state)->update_pipe) {
13032                         hw_check = true;
13033
13034                         put_domains[to_intel_crtc(crtc)->pipe] =
13035                                 modeset_get_crtc_power_domains(crtc,
13036                                         to_intel_crtc_state(new_crtc_state));
13037                 }
13038
13039                 if (!needs_modeset(new_crtc_state))
13040                         continue;
13041
13042                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
13043                                        to_intel_crtc_state(new_crtc_state));
13044
13045                 if (old_crtc_state->active) {
13046                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13047                         dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
13048                         intel_crtc->active = false;
13049                         intel_fbc_disable(intel_crtc);
13050                         intel_disable_shared_dpll(intel_crtc);
13051
13052                         /*
13053                          * Underruns don't always raise
13054                          * interrupts, so check manually.
13055                          */
13056                         intel_check_cpu_fifo_underruns(dev_priv);
13057                         intel_check_pch_fifo_underruns(dev_priv);
13058
13059                         if (!crtc->state->active) {
13060                                 /*
13061                                  * Make sure we don't call initial_watermarks
13062                                  * for ILK-style watermark updates.
13063                                  *
13064                                  * No clue what this is supposed to achieve.
13065                                  */
13066                                 if (INTEL_GEN(dev_priv) >= 9)
13067                                         dev_priv->display.initial_watermarks(intel_state,
13068                                                                              to_intel_crtc_state(crtc->state));
13069                         }
13070                 }
13071         }
13072
13073         /* Only after disabling all output pipelines that will be changed can we
13074          * update the the output configuration. */
13075         intel_modeset_update_crtc_state(state);
13076
13077         if (intel_state->modeset) {
13078                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13079
13080                 intel_set_cdclk(dev_priv, &dev_priv->cdclk.actual);
13081
13082                 /*
13083                  * SKL workaround: bspec recommends we disable the SAGV when we
13084                  * have more then one pipe enabled
13085                  */
13086                 if (!intel_can_enable_sagv(state))
13087                         intel_disable_sagv(dev_priv);
13088
13089                 intel_modeset_verify_disabled(dev, state);
13090         }
13091
13092         /* Complete the events for pipes that have now been disabled */
13093         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
13094                 bool modeset = needs_modeset(new_crtc_state);
13095
13096                 /* Complete events for now disable pipes here. */
13097                 if (modeset && !new_crtc_state->active && new_crtc_state->event) {
13098                         spin_lock_irq(&dev->event_lock);
13099                         drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
13100                         spin_unlock_irq(&dev->event_lock);
13101
13102                         new_crtc_state->event = NULL;
13103                 }
13104         }
13105
13106         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13107         dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
13108
13109         /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
13110          * already, but still need the state for the delayed optimization. To
13111          * fix this:
13112          * - wrap the optimization/post_plane_update stuff into a per-crtc work.
13113          * - schedule that vblank worker _before_ calling hw_done
13114          * - at the start of commit_tail, cancel it _synchrously
13115          * - switch over to the vblank wait helper in the core after that since
13116          *   we don't need out special handling any more.
13117          */
13118         if (!state->legacy_cursor_update)
13119                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13120
13121         /*
13122          * Now that the vblank has passed, we can go ahead and program the
13123          * optimal watermarks on platforms that need two-step watermark
13124          * programming.
13125          *
13126          * TODO: Move this (and other cleanup) to an async worker eventually.
13127          */
13128         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
13129                 intel_cstate = to_intel_crtc_state(new_crtc_state);
13130
13131                 if (dev_priv->display.optimize_watermarks)
13132                         dev_priv->display.optimize_watermarks(intel_state,
13133                                                               intel_cstate);
13134         }
13135
13136         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
13137                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13138
13139                 if (put_domains[i])
13140                         modeset_put_power_domains(dev_priv, put_domains[i]);
13141
13142                 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
13143         }
13144
13145         if (intel_state->modeset && intel_can_enable_sagv(state))
13146                 intel_enable_sagv(dev_priv);
13147
13148         drm_atomic_helper_commit_hw_done(state);
13149
13150         if (intel_state->modeset) {
13151                 /* As one of the primary mmio accessors, KMS has a high
13152                  * likelihood of triggering bugs in unclaimed access. After we
13153                  * finish modesetting, see if an error has been flagged, and if
13154                  * so enable debugging for the next modeset - and hope we catch
13155                  * the culprit.
13156                  */
13157                 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13158                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13159         }
13160
13161         mutex_lock(&dev->struct_mutex);
13162         drm_atomic_helper_cleanup_planes(dev, state);
13163         mutex_unlock(&dev->struct_mutex);
13164
13165         drm_atomic_helper_commit_cleanup_done(state);
13166
13167         drm_atomic_state_put(state);
13168
13169         intel_atomic_helper_free_state(dev_priv);
13170 }
13171
13172 static void intel_atomic_commit_work(struct work_struct *work)
13173 {
13174         struct drm_atomic_state *state =
13175                 container_of(work, struct drm_atomic_state, commit_work);
13176
13177         intel_atomic_commit_tail(state);
13178 }
13179
13180 static int __i915_sw_fence_call
13181 intel_atomic_commit_ready(struct i915_sw_fence *fence,
13182                           enum i915_sw_fence_notify notify)
13183 {
13184         struct intel_atomic_state *state =
13185                 container_of(fence, struct intel_atomic_state, commit_ready);
13186
13187         switch (notify) {
13188         case FENCE_COMPLETE:
13189                 if (state->base.commit_work.func)
13190                         queue_work(system_unbound_wq, &state->base.commit_work);
13191                 break;
13192
13193         case FENCE_FREE:
13194                 {
13195                         struct intel_atomic_helper *helper =
13196                                 &to_i915(state->base.dev)->atomic_helper;
13197
13198                         if (llist_add(&state->freed, &helper->free_list))
13199                                 schedule_work(&helper->free_work);
13200                         break;
13201                 }
13202         }
13203
13204         return NOTIFY_DONE;
13205 }
13206
13207 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
13208 {
13209         struct drm_plane_state *old_plane_state, *new_plane_state;
13210         struct drm_plane *plane;
13211         int i;
13212
13213         for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i)
13214                 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
13215                                   intel_fb_obj(new_plane_state->fb),
13216                                   to_intel_plane(plane)->frontbuffer_bit);
13217 }
13218
13219 /**
13220  * intel_atomic_commit - commit validated state object
13221  * @dev: DRM device
13222  * @state: the top-level driver state object
13223  * @nonblock: nonblocking commit
13224  *
13225  * This function commits a top-level state object that has been validated
13226  * with drm_atomic_helper_check().
13227  *
13228  * RETURNS
13229  * Zero for success or -errno.
13230  */
13231 static int intel_atomic_commit(struct drm_device *dev,
13232                                struct drm_atomic_state *state,
13233                                bool nonblock)
13234 {
13235         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13236         struct drm_i915_private *dev_priv = to_i915(dev);
13237         int ret = 0;
13238
13239         ret = drm_atomic_helper_setup_commit(state, nonblock);
13240         if (ret)
13241                 return ret;
13242
13243         drm_atomic_state_get(state);
13244         i915_sw_fence_init(&intel_state->commit_ready,
13245                            intel_atomic_commit_ready);
13246
13247         ret = intel_atomic_prepare_commit(dev, state);
13248         if (ret) {
13249                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13250                 i915_sw_fence_commit(&intel_state->commit_ready);
13251                 return ret;
13252         }
13253
13254         /*
13255          * The intel_legacy_cursor_update() fast path takes care
13256          * of avoiding the vblank waits for simple cursor
13257          * movement and flips. For cursor on/off and size changes,
13258          * we want to perform the vblank waits so that watermark
13259          * updates happen during the correct frames. Gen9+ have
13260          * double buffered watermarks and so shouldn't need this.
13261          *
13262          * Do this after drm_atomic_helper_setup_commit() and
13263          * intel_atomic_prepare_commit() because we still want
13264          * to skip the flip and fb cleanup waits. Although that
13265          * does risk yanking the mapping from under the display
13266          * engine.
13267          *
13268          * FIXME doing watermarks and fb cleanup from a vblank worker
13269          * (assuming we had any) would solve these problems.
13270          */
13271         if (INTEL_GEN(dev_priv) < 9)
13272                 state->legacy_cursor_update = false;
13273
13274         drm_atomic_helper_swap_state(state, true);
13275         dev_priv->wm.distrust_bios_wm = false;
13276         intel_shared_dpll_swap_state(state);
13277         intel_atomic_track_fbs(state);
13278
13279         if (intel_state->modeset) {
13280                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13281                        sizeof(intel_state->min_pixclk));
13282                 dev_priv->active_crtcs = intel_state->active_crtcs;
13283                 dev_priv->cdclk.logical = intel_state->cdclk.logical;
13284                 dev_priv->cdclk.actual = intel_state->cdclk.actual;
13285         }
13286
13287         drm_atomic_state_get(state);
13288         INIT_WORK(&state->commit_work,
13289                   nonblock ? intel_atomic_commit_work : NULL);
13290
13291         i915_sw_fence_commit(&intel_state->commit_ready);
13292         if (!nonblock) {
13293                 i915_sw_fence_wait(&intel_state->commit_ready);
13294                 intel_atomic_commit_tail(state);
13295         }
13296
13297         return 0;
13298 }
13299
13300 static const struct drm_crtc_funcs intel_crtc_funcs = {
13301         .gamma_set = drm_atomic_helper_legacy_gamma_set,
13302         .set_config = drm_atomic_helper_set_config,
13303         .set_property = drm_atomic_helper_crtc_set_property,
13304         .destroy = intel_crtc_destroy,
13305         .page_flip = drm_atomic_helper_page_flip,
13306         .atomic_duplicate_state = intel_crtc_duplicate_state,
13307         .atomic_destroy_state = intel_crtc_destroy_state,
13308         .set_crc_source = intel_crtc_set_crc_source,
13309 };
13310
13311 /**
13312  * intel_prepare_plane_fb - Prepare fb for usage on plane
13313  * @plane: drm plane to prepare for
13314  * @fb: framebuffer to prepare for presentation
13315  *
13316  * Prepares a framebuffer for usage on a display plane.  Generally this
13317  * involves pinning the underlying object and updating the frontbuffer tracking
13318  * bits.  Some older platforms need special physical address handling for
13319  * cursor planes.
13320  *
13321  * Must be called with struct_mutex held.
13322  *
13323  * Returns 0 on success, negative error code on failure.
13324  */
13325 int
13326 intel_prepare_plane_fb(struct drm_plane *plane,
13327                        struct drm_plane_state *new_state)
13328 {
13329         struct intel_atomic_state *intel_state =
13330                 to_intel_atomic_state(new_state->state);
13331         struct drm_i915_private *dev_priv = to_i915(plane->dev);
13332         struct drm_framebuffer *fb = new_state->fb;
13333         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13334         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13335         int ret;
13336
13337         if (obj) {
13338                 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13339                     INTEL_INFO(dev_priv)->cursor_needs_physical) {
13340                         const int align = intel_cursor_alignment(dev_priv);
13341
13342                         ret = i915_gem_object_attach_phys(obj, align);
13343                         if (ret) {
13344                                 DRM_DEBUG_KMS("failed to attach phys object\n");
13345                                 return ret;
13346                         }
13347                 } else {
13348                         struct i915_vma *vma;
13349
13350                         vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13351                         if (IS_ERR(vma)) {
13352                                 DRM_DEBUG_KMS("failed to pin object\n");
13353                                 return PTR_ERR(vma);
13354                         }
13355
13356                         to_intel_plane_state(new_state)->vma = vma;
13357                 }
13358         }
13359
13360         if (!obj && !old_obj)
13361                 return 0;
13362
13363         if (old_obj) {
13364                 struct drm_crtc_state *crtc_state =
13365                         drm_atomic_get_existing_crtc_state(new_state->state,
13366                                                            plane->state->crtc);
13367
13368                 /* Big Hammer, we also need to ensure that any pending
13369                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13370                  * current scanout is retired before unpinning the old
13371                  * framebuffer. Note that we rely on userspace rendering
13372                  * into the buffer attached to the pipe they are waiting
13373                  * on. If not, userspace generates a GPU hang with IPEHR
13374                  * point to the MI_WAIT_FOR_EVENT.
13375                  *
13376                  * This should only fail upon a hung GPU, in which case we
13377                  * can safely continue.
13378                  */
13379                 if (needs_modeset(crtc_state)) {
13380                         ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
13381                                                               old_obj->resv, NULL,
13382                                                               false, 0,
13383                                                               GFP_KERNEL);
13384                         if (ret < 0)
13385                                 return ret;
13386                 }
13387         }
13388
13389         if (new_state->fence) { /* explicit fencing */
13390                 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
13391                                                     new_state->fence,
13392                                                     I915_FENCE_TIMEOUT,
13393                                                     GFP_KERNEL);
13394                 if (ret < 0)
13395                         return ret;
13396         }
13397
13398         if (!obj)
13399                 return 0;
13400
13401         if (!new_state->fence) { /* implicit fencing */
13402                 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
13403                                                       obj->resv, NULL,
13404                                                       false, I915_FENCE_TIMEOUT,
13405                                                       GFP_KERNEL);
13406                 if (ret < 0)
13407                         return ret;
13408
13409                 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
13410         }
13411
13412         return 0;
13413 }
13414
13415 /**
13416  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13417  * @plane: drm plane to clean up for
13418  * @fb: old framebuffer that was on plane
13419  *
13420  * Cleans up a framebuffer that has just been removed from a plane.
13421  *
13422  * Must be called with struct_mutex held.
13423  */
13424 void
13425 intel_cleanup_plane_fb(struct drm_plane *plane,
13426                        struct drm_plane_state *old_state)
13427 {
13428         struct i915_vma *vma;
13429
13430         /* Should only be called after a successful intel_prepare_plane_fb()! */
13431         vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
13432         if (vma)
13433                 intel_unpin_fb_vma(vma);
13434 }
13435
13436 int
13437 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13438 {
13439         struct drm_i915_private *dev_priv;
13440         int max_scale;
13441         int crtc_clock, max_dotclk;
13442
13443         if (!intel_crtc || !crtc_state->base.enable)
13444                 return DRM_PLANE_HELPER_NO_SCALING;
13445
13446         dev_priv = to_i915(intel_crtc->base.dev);
13447
13448         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13449         max_dotclk = to_intel_atomic_state(crtc_state->base.state)->cdclk.logical.cdclk;
13450
13451         if (IS_GEMINILAKE(dev_priv))
13452                 max_dotclk *= 2;
13453
13454         if (WARN_ON_ONCE(!crtc_clock || max_dotclk < crtc_clock))
13455                 return DRM_PLANE_HELPER_NO_SCALING;
13456
13457         /*
13458          * skl max scale is lower of:
13459          *    close to 3 but not 3, -1 is for that purpose
13460          *            or
13461          *    cdclk/crtc_clock
13462          */
13463         max_scale = min((1 << 16) * 3 - 1,
13464                         (1 << 8) * ((max_dotclk << 8) / crtc_clock));
13465
13466         return max_scale;
13467 }
13468
13469 static int
13470 intel_check_primary_plane(struct intel_plane *plane,
13471                           struct intel_crtc_state *crtc_state,
13472                           struct intel_plane_state *state)
13473 {
13474         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
13475         struct drm_crtc *crtc = state->base.crtc;
13476         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13477         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13478         bool can_position = false;
13479         int ret;
13480
13481         if (INTEL_GEN(dev_priv) >= 9) {
13482                 /* use scaler when colorkey is not required */
13483                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13484                         min_scale = 1;
13485                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13486                 }
13487                 can_position = true;
13488         }
13489
13490         ret = drm_plane_helper_check_state(&state->base,
13491                                            &state->clip,
13492                                            min_scale, max_scale,
13493                                            can_position, true);
13494         if (ret)
13495                 return ret;
13496
13497         if (!state->base.fb)
13498                 return 0;
13499
13500         if (INTEL_GEN(dev_priv) >= 9) {
13501                 ret = skl_check_plane_surface(state);
13502                 if (ret)
13503                         return ret;
13504
13505                 state->ctl = skl_plane_ctl(crtc_state, state);
13506         } else {
13507                 ret = i9xx_check_plane_surface(state);
13508                 if (ret)
13509                         return ret;
13510
13511                 state->ctl = i9xx_plane_ctl(crtc_state, state);
13512         }
13513
13514         return 0;
13515 }
13516
13517 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13518                                     struct drm_crtc_state *old_crtc_state)
13519 {
13520         struct drm_device *dev = crtc->dev;
13521         struct drm_i915_private *dev_priv = to_i915(dev);
13522         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13523         struct intel_crtc_state *intel_cstate =
13524                 to_intel_crtc_state(crtc->state);
13525         struct intel_crtc_state *old_intel_cstate =
13526                 to_intel_crtc_state(old_crtc_state);
13527         struct intel_atomic_state *old_intel_state =
13528                 to_intel_atomic_state(old_crtc_state->state);
13529         bool modeset = needs_modeset(crtc->state);
13530
13531         if (!modeset &&
13532             (intel_cstate->base.color_mgmt_changed ||
13533              intel_cstate->update_pipe)) {
13534                 intel_color_set_csc(crtc->state);
13535                 intel_color_load_luts(crtc->state);
13536         }
13537
13538         /* Perform vblank evasion around commit operation */
13539         intel_pipe_update_start(intel_crtc);
13540
13541         if (modeset)
13542                 goto out;
13543
13544         if (intel_cstate->update_pipe)
13545                 intel_update_pipe_config(intel_crtc, old_intel_cstate);
13546         else if (INTEL_GEN(dev_priv) >= 9)
13547                 skl_detach_scalers(intel_crtc);
13548
13549 out:
13550         if (dev_priv->display.atomic_update_watermarks)
13551                 dev_priv->display.atomic_update_watermarks(old_intel_state,
13552                                                            intel_cstate);
13553 }
13554
13555 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13556                                      struct drm_crtc_state *old_crtc_state)
13557 {
13558         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13559
13560         intel_pipe_update_end(intel_crtc, NULL);
13561 }
13562
13563 /**
13564  * intel_plane_destroy - destroy a plane
13565  * @plane: plane to destroy
13566  *
13567  * Common destruction function for all types of planes (primary, cursor,
13568  * sprite).
13569  */
13570 void intel_plane_destroy(struct drm_plane *plane)
13571 {
13572         drm_plane_cleanup(plane);
13573         kfree(to_intel_plane(plane));
13574 }
13575
13576 const struct drm_plane_funcs intel_plane_funcs = {
13577         .update_plane = drm_atomic_helper_update_plane,
13578         .disable_plane = drm_atomic_helper_disable_plane,
13579         .destroy = intel_plane_destroy,
13580         .set_property = drm_atomic_helper_plane_set_property,
13581         .atomic_get_property = intel_plane_atomic_get_property,
13582         .atomic_set_property = intel_plane_atomic_set_property,
13583         .atomic_duplicate_state = intel_plane_duplicate_state,
13584         .atomic_destroy_state = intel_plane_destroy_state,
13585 };
13586
13587 static int
13588 intel_legacy_cursor_update(struct drm_plane *plane,
13589                            struct drm_crtc *crtc,
13590                            struct drm_framebuffer *fb,
13591                            int crtc_x, int crtc_y,
13592                            unsigned int crtc_w, unsigned int crtc_h,
13593                            uint32_t src_x, uint32_t src_y,
13594                            uint32_t src_w, uint32_t src_h,
13595                            struct drm_modeset_acquire_ctx *ctx)
13596 {
13597         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13598         int ret;
13599         struct drm_plane_state *old_plane_state, *new_plane_state;
13600         struct intel_plane *intel_plane = to_intel_plane(plane);
13601         struct drm_framebuffer *old_fb;
13602         struct drm_crtc_state *crtc_state = crtc->state;
13603         struct i915_vma *old_vma;
13604
13605         /*
13606          * When crtc is inactive or there is a modeset pending,
13607          * wait for it to complete in the slowpath
13608          */
13609         if (!crtc_state->active || needs_modeset(crtc_state) ||
13610             to_intel_crtc_state(crtc_state)->update_pipe)
13611                 goto slow;
13612
13613         old_plane_state = plane->state;
13614
13615         /*
13616          * If any parameters change that may affect watermarks,
13617          * take the slowpath. Only changing fb or position should be
13618          * in the fastpath.
13619          */
13620         if (old_plane_state->crtc != crtc ||
13621             old_plane_state->src_w != src_w ||
13622             old_plane_state->src_h != src_h ||
13623             old_plane_state->crtc_w != crtc_w ||
13624             old_plane_state->crtc_h != crtc_h ||
13625             !old_plane_state->fb != !fb)
13626                 goto slow;
13627
13628         new_plane_state = intel_plane_duplicate_state(plane);
13629         if (!new_plane_state)
13630                 return -ENOMEM;
13631
13632         drm_atomic_set_fb_for_plane(new_plane_state, fb);
13633
13634         new_plane_state->src_x = src_x;
13635         new_plane_state->src_y = src_y;
13636         new_plane_state->src_w = src_w;
13637         new_plane_state->src_h = src_h;
13638         new_plane_state->crtc_x = crtc_x;
13639         new_plane_state->crtc_y = crtc_y;
13640         new_plane_state->crtc_w = crtc_w;
13641         new_plane_state->crtc_h = crtc_h;
13642
13643         ret = intel_plane_atomic_check_with_state(to_intel_crtc_state(crtc->state),
13644                                                   to_intel_plane_state(new_plane_state));
13645         if (ret)
13646                 goto out_free;
13647
13648         ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
13649         if (ret)
13650                 goto out_free;
13651
13652         if (INTEL_INFO(dev_priv)->cursor_needs_physical) {
13653                 int align = intel_cursor_alignment(dev_priv);
13654
13655                 ret = i915_gem_object_attach_phys(intel_fb_obj(fb), align);
13656                 if (ret) {
13657                         DRM_DEBUG_KMS("failed to attach phys object\n");
13658                         goto out_unlock;
13659                 }
13660         } else {
13661                 struct i915_vma *vma;
13662
13663                 vma = intel_pin_and_fence_fb_obj(fb, new_plane_state->rotation);
13664                 if (IS_ERR(vma)) {
13665                         DRM_DEBUG_KMS("failed to pin object\n");
13666
13667                         ret = PTR_ERR(vma);
13668                         goto out_unlock;
13669                 }
13670
13671                 to_intel_plane_state(new_plane_state)->vma = vma;
13672         }
13673
13674         old_fb = old_plane_state->fb;
13675         old_vma = to_intel_plane_state(old_plane_state)->vma;
13676
13677         i915_gem_track_fb(intel_fb_obj(old_fb), intel_fb_obj(fb),
13678                           intel_plane->frontbuffer_bit);
13679
13680         /* Swap plane state */
13681         new_plane_state->fence = old_plane_state->fence;
13682         *to_intel_plane_state(old_plane_state) = *to_intel_plane_state(new_plane_state);
13683         new_plane_state->fence = NULL;
13684         new_plane_state->fb = old_fb;
13685         to_intel_plane_state(new_plane_state)->vma = old_vma;
13686
13687         if (plane->state->visible) {
13688                 trace_intel_update_plane(plane, to_intel_crtc(crtc));
13689                 intel_plane->update_plane(intel_plane,
13690                                           to_intel_crtc_state(crtc->state),
13691                                           to_intel_plane_state(plane->state));
13692         } else {
13693                 trace_intel_disable_plane(plane, to_intel_crtc(crtc));
13694                 intel_plane->disable_plane(intel_plane, to_intel_crtc(crtc));
13695         }
13696
13697         intel_cleanup_plane_fb(plane, new_plane_state);
13698
13699 out_unlock:
13700         mutex_unlock(&dev_priv->drm.struct_mutex);
13701 out_free:
13702         intel_plane_destroy_state(plane, new_plane_state);
13703         return ret;
13704
13705 slow:
13706         return drm_atomic_helper_update_plane(plane, crtc, fb,
13707                                               crtc_x, crtc_y, crtc_w, crtc_h,
13708                                               src_x, src_y, src_w, src_h, ctx);
13709 }
13710
13711 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
13712         .update_plane = intel_legacy_cursor_update,
13713         .disable_plane = drm_atomic_helper_disable_plane,
13714         .destroy = intel_plane_destroy,
13715         .set_property = drm_atomic_helper_plane_set_property,
13716         .atomic_get_property = intel_plane_atomic_get_property,
13717         .atomic_set_property = intel_plane_atomic_set_property,
13718         .atomic_duplicate_state = intel_plane_duplicate_state,
13719         .atomic_destroy_state = intel_plane_destroy_state,
13720 };
13721
13722 static struct intel_plane *
13723 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
13724 {
13725         struct intel_plane *primary = NULL;
13726         struct intel_plane_state *state = NULL;
13727         const uint32_t *intel_primary_formats;
13728         unsigned int supported_rotations;
13729         unsigned int num_formats;
13730         int ret;
13731
13732         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13733         if (!primary) {
13734                 ret = -ENOMEM;
13735                 goto fail;
13736         }
13737
13738         state = intel_create_plane_state(&primary->base);
13739         if (!state) {
13740                 ret = -ENOMEM;
13741                 goto fail;
13742         }
13743
13744         primary->base.state = &state->base;
13745
13746         primary->can_scale = false;
13747         primary->max_downscale = 1;
13748         if (INTEL_GEN(dev_priv) >= 9) {
13749                 primary->can_scale = true;
13750                 state->scaler_id = -1;
13751         }
13752         primary->pipe = pipe;
13753         /*
13754          * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
13755          * port is hooked to pipe B. Hence we want plane A feeding pipe B.
13756          */
13757         if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
13758                 primary->plane = (enum plane) !pipe;
13759         else
13760                 primary->plane = (enum plane) pipe;
13761         primary->id = PLANE_PRIMARY;
13762         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13763         primary->check_plane = intel_check_primary_plane;
13764
13765         if (INTEL_GEN(dev_priv) >= 9) {
13766                 intel_primary_formats = skl_primary_formats;
13767                 num_formats = ARRAY_SIZE(skl_primary_formats);
13768
13769                 primary->update_plane = skylake_update_primary_plane;
13770                 primary->disable_plane = skylake_disable_primary_plane;
13771         } else if (INTEL_GEN(dev_priv) >= 4) {
13772                 intel_primary_formats = i965_primary_formats;
13773                 num_formats = ARRAY_SIZE(i965_primary_formats);
13774
13775                 primary->update_plane = i9xx_update_primary_plane;
13776                 primary->disable_plane = i9xx_disable_primary_plane;
13777         } else {
13778                 intel_primary_formats = i8xx_primary_formats;
13779                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13780
13781                 primary->update_plane = i9xx_update_primary_plane;
13782                 primary->disable_plane = i9xx_disable_primary_plane;
13783         }
13784
13785         if (INTEL_GEN(dev_priv) >= 9)
13786                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13787                                                0, &intel_plane_funcs,
13788                                                intel_primary_formats, num_formats,
13789                                                DRM_PLANE_TYPE_PRIMARY,
13790                                                "plane 1%c", pipe_name(pipe));
13791         else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
13792                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13793                                                0, &intel_plane_funcs,
13794                                                intel_primary_formats, num_formats,
13795                                                DRM_PLANE_TYPE_PRIMARY,
13796                                                "primary %c", pipe_name(pipe));
13797         else
13798                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13799                                                0, &intel_plane_funcs,
13800                                                intel_primary_formats, num_formats,
13801                                                DRM_PLANE_TYPE_PRIMARY,
13802                                                "plane %c", plane_name(primary->plane));
13803         if (ret)
13804                 goto fail;
13805
13806         if (INTEL_GEN(dev_priv) >= 9) {
13807                 supported_rotations =
13808                         DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_90 |
13809                         DRM_MODE_ROTATE_180 | DRM_MODE_ROTATE_270;
13810         } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
13811                 supported_rotations =
13812                         DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
13813                         DRM_MODE_REFLECT_X;
13814         } else if (INTEL_GEN(dev_priv) >= 4) {
13815                 supported_rotations =
13816                         DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
13817         } else {
13818                 supported_rotations = DRM_MODE_ROTATE_0;
13819         }
13820
13821         if (INTEL_GEN(dev_priv) >= 4)
13822                 drm_plane_create_rotation_property(&primary->base,
13823                                                    DRM_MODE_ROTATE_0,
13824                                                    supported_rotations);
13825
13826         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13827
13828         return primary;
13829
13830 fail:
13831         kfree(state);
13832         kfree(primary);
13833
13834         return ERR_PTR(ret);
13835 }
13836
13837 static struct intel_plane *
13838 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
13839                           enum pipe pipe)
13840 {
13841         struct intel_plane *cursor = NULL;
13842         struct intel_plane_state *state = NULL;
13843         int ret;
13844
13845         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13846         if (!cursor) {
13847                 ret = -ENOMEM;
13848                 goto fail;
13849         }
13850
13851         state = intel_create_plane_state(&cursor->base);
13852         if (!state) {
13853                 ret = -ENOMEM;
13854                 goto fail;
13855         }
13856
13857         cursor->base.state = &state->base;
13858
13859         cursor->can_scale = false;
13860         cursor->max_downscale = 1;
13861         cursor->pipe = pipe;
13862         cursor->plane = pipe;
13863         cursor->id = PLANE_CURSOR;
13864         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13865
13866         if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
13867                 cursor->update_plane = i845_update_cursor;
13868                 cursor->disable_plane = i845_disable_cursor;
13869                 cursor->check_plane = i845_check_cursor;
13870         } else {
13871                 cursor->update_plane = i9xx_update_cursor;
13872                 cursor->disable_plane = i9xx_disable_cursor;
13873                 cursor->check_plane = i9xx_check_cursor;
13874         }
13875
13876         cursor->cursor.base = ~0;
13877         cursor->cursor.cntl = ~0;
13878
13879         if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
13880                 cursor->cursor.size = ~0;
13881
13882         ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
13883                                        0, &intel_cursor_plane_funcs,
13884                                        intel_cursor_formats,
13885                                        ARRAY_SIZE(intel_cursor_formats),
13886                                        DRM_PLANE_TYPE_CURSOR,
13887                                        "cursor %c", pipe_name(pipe));
13888         if (ret)
13889                 goto fail;
13890
13891         if (INTEL_GEN(dev_priv) >= 4)
13892                 drm_plane_create_rotation_property(&cursor->base,
13893                                                    DRM_MODE_ROTATE_0,
13894                                                    DRM_MODE_ROTATE_0 |
13895                                                    DRM_MODE_ROTATE_180);
13896
13897         if (INTEL_GEN(dev_priv) >= 9)
13898                 state->scaler_id = -1;
13899
13900         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13901
13902         return cursor;
13903
13904 fail:
13905         kfree(state);
13906         kfree(cursor);
13907
13908         return ERR_PTR(ret);
13909 }
13910
13911 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
13912                                     struct intel_crtc_state *crtc_state)
13913 {
13914         struct intel_crtc_scaler_state *scaler_state =
13915                 &crtc_state->scaler_state;
13916         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13917         int i;
13918
13919         crtc->num_scalers = dev_priv->info.num_scalers[crtc->pipe];
13920         if (!crtc->num_scalers)
13921                 return;
13922
13923         for (i = 0; i < crtc->num_scalers; i++) {
13924                 struct intel_scaler *scaler = &scaler_state->scalers[i];
13925
13926                 scaler->in_use = 0;
13927                 scaler->mode = PS_SCALER_MODE_DYN;
13928         }
13929
13930         scaler_state->scaler_id = -1;
13931 }
13932
13933 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
13934 {
13935         struct intel_crtc *intel_crtc;
13936         struct intel_crtc_state *crtc_state = NULL;
13937         struct intel_plane *primary = NULL;
13938         struct intel_plane *cursor = NULL;
13939         int sprite, ret;
13940
13941         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13942         if (!intel_crtc)
13943                 return -ENOMEM;
13944
13945         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13946         if (!crtc_state) {
13947                 ret = -ENOMEM;
13948                 goto fail;
13949         }
13950         intel_crtc->config = crtc_state;
13951         intel_crtc->base.state = &crtc_state->base;
13952         crtc_state->base.crtc = &intel_crtc->base;
13953
13954         primary = intel_primary_plane_create(dev_priv, pipe);
13955         if (IS_ERR(primary)) {
13956                 ret = PTR_ERR(primary);
13957                 goto fail;
13958         }
13959         intel_crtc->plane_ids_mask |= BIT(primary->id);
13960
13961         for_each_sprite(dev_priv, pipe, sprite) {
13962                 struct intel_plane *plane;
13963
13964                 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
13965                 if (IS_ERR(plane)) {
13966                         ret = PTR_ERR(plane);
13967                         goto fail;
13968                 }
13969                 intel_crtc->plane_ids_mask |= BIT(plane->id);
13970         }
13971
13972         cursor = intel_cursor_plane_create(dev_priv, pipe);
13973         if (IS_ERR(cursor)) {
13974                 ret = PTR_ERR(cursor);
13975                 goto fail;
13976         }
13977         intel_crtc->plane_ids_mask |= BIT(cursor->id);
13978
13979         ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
13980                                         &primary->base, &cursor->base,
13981                                         &intel_crtc_funcs,
13982                                         "pipe %c", pipe_name(pipe));
13983         if (ret)
13984                 goto fail;
13985
13986         intel_crtc->pipe = pipe;
13987         intel_crtc->plane = primary->plane;
13988
13989         /* initialize shared scalers */
13990         intel_crtc_init_scalers(intel_crtc, crtc_state);
13991
13992         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13993                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13994         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
13995         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
13996
13997         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13998
13999         intel_color_init(&intel_crtc->base);
14000
14001         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14002
14003         return 0;
14004
14005 fail:
14006         /*
14007          * drm_mode_config_cleanup() will free up any
14008          * crtcs/planes already initialized.
14009          */
14010         kfree(crtc_state);
14011         kfree(intel_crtc);
14012
14013         return ret;
14014 }
14015
14016 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14017 {
14018         struct drm_device *dev = connector->base.dev;
14019
14020         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14021
14022         if (!connector->base.state->crtc)
14023                 return INVALID_PIPE;
14024
14025         return to_intel_crtc(connector->base.state->crtc)->pipe;
14026 }
14027
14028 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14029                                 struct drm_file *file)
14030 {
14031         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14032         struct drm_crtc *drmmode_crtc;
14033         struct intel_crtc *crtc;
14034
14035         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14036         if (!drmmode_crtc)
14037                 return -ENOENT;
14038
14039         crtc = to_intel_crtc(drmmode_crtc);
14040         pipe_from_crtc_id->pipe = crtc->pipe;
14041
14042         return 0;
14043 }
14044
14045 static int intel_encoder_clones(struct intel_encoder *encoder)
14046 {
14047         struct drm_device *dev = encoder->base.dev;
14048         struct intel_encoder *source_encoder;
14049         int index_mask = 0;
14050         int entry = 0;
14051
14052         for_each_intel_encoder(dev, source_encoder) {
14053                 if (encoders_cloneable(encoder, source_encoder))
14054                         index_mask |= (1 << entry);
14055
14056                 entry++;
14057         }
14058
14059         return index_mask;
14060 }
14061
14062 static bool has_edp_a(struct drm_i915_private *dev_priv)
14063 {
14064         if (!IS_MOBILE(dev_priv))
14065                 return false;
14066
14067         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14068                 return false;
14069
14070         if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14071                 return false;
14072
14073         return true;
14074 }
14075
14076 static bool intel_crt_present(struct drm_i915_private *dev_priv)
14077 {
14078         if (INTEL_GEN(dev_priv) >= 9)
14079                 return false;
14080
14081         if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
14082                 return false;
14083
14084         if (IS_CHERRYVIEW(dev_priv))
14085                 return false;
14086
14087         if (HAS_PCH_LPT_H(dev_priv) &&
14088             I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14089                 return false;
14090
14091         /* DDI E can't be used if DDI A requires 4 lanes */
14092         if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14093                 return false;
14094
14095         if (!dev_priv->vbt.int_crt_support)
14096                 return false;
14097
14098         return true;
14099 }
14100
14101 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
14102 {
14103         int pps_num;
14104         int pps_idx;
14105
14106         if (HAS_DDI(dev_priv))
14107                 return;
14108         /*
14109          * This w/a is needed at least on CPT/PPT, but to be sure apply it
14110          * everywhere where registers can be write protected.
14111          */
14112         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14113                 pps_num = 2;
14114         else
14115                 pps_num = 1;
14116
14117         for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
14118                 u32 val = I915_READ(PP_CONTROL(pps_idx));
14119
14120                 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
14121                 I915_WRITE(PP_CONTROL(pps_idx), val);
14122         }
14123 }
14124
14125 static void intel_pps_init(struct drm_i915_private *dev_priv)
14126 {
14127         if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
14128                 dev_priv->pps_mmio_base = PCH_PPS_BASE;
14129         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14130                 dev_priv->pps_mmio_base = VLV_PPS_BASE;
14131         else
14132                 dev_priv->pps_mmio_base = PPS_BASE;
14133
14134         intel_pps_unlock_regs_wa(dev_priv);
14135 }
14136
14137 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
14138 {
14139         struct intel_encoder *encoder;
14140         bool dpd_is_edp = false;
14141
14142         intel_pps_init(dev_priv);
14143
14144         /*
14145          * intel_edp_init_connector() depends on this completing first, to
14146          * prevent the registeration of both eDP and LVDS and the incorrect
14147          * sharing of the PPS.
14148          */
14149         intel_lvds_init(dev_priv);
14150
14151         if (intel_crt_present(dev_priv))
14152                 intel_crt_init(dev_priv);
14153
14154         if (IS_GEN9_LP(dev_priv)) {
14155                 /*
14156                  * FIXME: Broxton doesn't support port detection via the
14157                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14158                  * detect the ports.
14159                  */
14160                 intel_ddi_init(dev_priv, PORT_A);
14161                 intel_ddi_init(dev_priv, PORT_B);
14162                 intel_ddi_init(dev_priv, PORT_C);
14163
14164                 intel_dsi_init(dev_priv);
14165         } else if (HAS_DDI(dev_priv)) {
14166                 int found;
14167
14168                 /*
14169                  * Haswell uses DDI functions to detect digital outputs.
14170                  * On SKL pre-D0 the strap isn't connected, so we assume
14171                  * it's there.
14172                  */
14173                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14174                 /* WaIgnoreDDIAStrap: skl */
14175                 if (found || IS_GEN9_BC(dev_priv))
14176                         intel_ddi_init(dev_priv, PORT_A);
14177
14178                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14179                  * register */
14180                 found = I915_READ(SFUSE_STRAP);
14181
14182                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14183                         intel_ddi_init(dev_priv, PORT_B);
14184                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14185                         intel_ddi_init(dev_priv, PORT_C);
14186                 if (found & SFUSE_STRAP_DDID_DETECTED)
14187                         intel_ddi_init(dev_priv, PORT_D);
14188                 /*
14189                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14190                  */
14191                 if (IS_GEN9_BC(dev_priv) &&
14192                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14193                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14194                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14195                         intel_ddi_init(dev_priv, PORT_E);
14196
14197         } else if (HAS_PCH_SPLIT(dev_priv)) {
14198                 int found;
14199                 dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
14200
14201                 if (has_edp_a(dev_priv))
14202                         intel_dp_init(dev_priv, DP_A, PORT_A);
14203
14204                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14205                         /* PCH SDVOB multiplex with HDMIB */
14206                         found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
14207                         if (!found)
14208                                 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
14209                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14210                                 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
14211                 }
14212
14213                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14214                         intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
14215
14216                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14217                         intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
14218
14219                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14220                         intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
14221
14222                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14223                         intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
14224         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
14225                 bool has_edp, has_port;
14226
14227                 /*
14228                  * The DP_DETECTED bit is the latched state of the DDC
14229                  * SDA pin at boot. However since eDP doesn't require DDC
14230                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14231                  * eDP ports may have been muxed to an alternate function.
14232                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14233                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14234                  * detect eDP ports.
14235                  *
14236                  * Sadly the straps seem to be missing sometimes even for HDMI
14237                  * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14238                  * and VBT for the presence of the port. Additionally we can't
14239                  * trust the port type the VBT declares as we've seen at least
14240                  * HDMI ports that the VBT claim are DP or eDP.
14241                  */
14242                 has_edp = intel_dp_is_edp(dev_priv, PORT_B);
14243                 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14244                 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14245                         has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
14246                 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14247                         intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
14248
14249                 has_edp = intel_dp_is_edp(dev_priv, PORT_C);
14250                 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14251                 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14252                         has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
14253                 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14254                         intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
14255
14256                 if (IS_CHERRYVIEW(dev_priv)) {
14257                         /*
14258                          * eDP not supported on port D,
14259                          * so no need to worry about it
14260                          */
14261                         has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14262                         if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14263                                 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
14264                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14265                                 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
14266                 }
14267
14268                 intel_dsi_init(dev_priv);
14269         } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
14270                 bool found = false;
14271
14272                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14273                         DRM_DEBUG_KMS("probing SDVOB\n");
14274                         found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
14275                         if (!found && IS_G4X(dev_priv)) {
14276                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14277                                 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
14278                         }
14279
14280                         if (!found && IS_G4X(dev_priv))
14281                                 intel_dp_init(dev_priv, DP_B, PORT_B);
14282                 }
14283
14284                 /* Before G4X SDVOC doesn't have its own detect register */
14285
14286                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14287                         DRM_DEBUG_KMS("probing SDVOC\n");
14288                         found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
14289                 }
14290
14291                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14292
14293                         if (IS_G4X(dev_priv)) {
14294                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14295                                 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
14296                         }
14297                         if (IS_G4X(dev_priv))
14298                                 intel_dp_init(dev_priv, DP_C, PORT_C);
14299                 }
14300
14301                 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
14302                         intel_dp_init(dev_priv, DP_D, PORT_D);
14303         } else if (IS_GEN2(dev_priv))
14304                 intel_dvo_init(dev_priv);
14305
14306         if (SUPPORTS_TV(dev_priv))
14307                 intel_tv_init(dev_priv);
14308
14309         intel_psr_init(dev_priv);
14310
14311         for_each_intel_encoder(&dev_priv->drm, encoder) {
14312                 encoder->base.possible_crtcs = encoder->crtc_mask;
14313                 encoder->base.possible_clones =
14314                         intel_encoder_clones(encoder);
14315         }
14316
14317         intel_init_pch_refclk(dev_priv);
14318
14319         drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
14320 }
14321
14322 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14323 {
14324         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14325
14326         drm_framebuffer_cleanup(fb);
14327
14328         i915_gem_object_lock(intel_fb->obj);
14329         WARN_ON(!intel_fb->obj->framebuffer_references--);
14330         i915_gem_object_unlock(intel_fb->obj);
14331
14332         i915_gem_object_put(intel_fb->obj);
14333
14334         kfree(intel_fb);
14335 }
14336
14337 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14338                                                 struct drm_file *file,
14339                                                 unsigned int *handle)
14340 {
14341         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14342         struct drm_i915_gem_object *obj = intel_fb->obj;
14343
14344         if (obj->userptr.mm) {
14345                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14346                 return -EINVAL;
14347         }
14348
14349         return drm_gem_handle_create(file, &obj->base, handle);
14350 }
14351
14352 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14353                                         struct drm_file *file,
14354                                         unsigned flags, unsigned color,
14355                                         struct drm_clip_rect *clips,
14356                                         unsigned num_clips)
14357 {
14358         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14359
14360         i915_gem_object_flush_if_display(obj);
14361         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
14362
14363         return 0;
14364 }
14365
14366 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14367         .destroy = intel_user_framebuffer_destroy,
14368         .create_handle = intel_user_framebuffer_create_handle,
14369         .dirty = intel_user_framebuffer_dirty,
14370 };
14371
14372 static
14373 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
14374                          uint64_t fb_modifier, uint32_t pixel_format)
14375 {
14376         u32 gen = INTEL_GEN(dev_priv);
14377
14378         if (gen >= 9) {
14379                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14380
14381                 /* "The stride in bytes must not exceed the of the size of 8K
14382                  *  pixels and 32K bytes."
14383                  */
14384                 return min(8192 * cpp, 32768);
14385         } else if (gen >= 5 && !HAS_GMCH_DISPLAY(dev_priv)) {
14386                 return 32*1024;
14387         } else if (gen >= 4) {
14388                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14389                         return 16*1024;
14390                 else
14391                         return 32*1024;
14392         } else if (gen >= 3) {
14393                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14394                         return 8*1024;
14395                 else
14396                         return 16*1024;
14397         } else {
14398                 /* XXX DSPC is limited to 4k tiled */
14399                 return 8*1024;
14400         }
14401 }
14402
14403 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
14404                                   struct drm_i915_gem_object *obj,
14405                                   struct drm_mode_fb_cmd2 *mode_cmd)
14406 {
14407         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
14408         struct drm_format_name_buf format_name;
14409         u32 pitch_limit, stride_alignment;
14410         unsigned int tiling, stride;
14411         int ret = -EINVAL;
14412
14413         i915_gem_object_lock(obj);
14414         obj->framebuffer_references++;
14415         tiling = i915_gem_object_get_tiling(obj);
14416         stride = i915_gem_object_get_stride(obj);
14417         i915_gem_object_unlock(obj);
14418
14419         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14420                 /*
14421                  * If there's a fence, enforce that
14422                  * the fb modifier and tiling mode match.
14423                  */
14424                 if (tiling != I915_TILING_NONE &&
14425                     tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
14426                         DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
14427                         goto err;
14428                 }
14429         } else {
14430                 if (tiling == I915_TILING_X) {
14431                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14432                 } else if (tiling == I915_TILING_Y) {
14433                         DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
14434                         goto err;
14435                 }
14436         }
14437
14438         /* Passed in modifier sanity checking. */
14439         switch (mode_cmd->modifier[0]) {
14440         case I915_FORMAT_MOD_Y_TILED:
14441         case I915_FORMAT_MOD_Yf_TILED:
14442                 if (INTEL_GEN(dev_priv) < 9) {
14443                         DRM_DEBUG_KMS("Unsupported tiling 0x%llx!\n",
14444                                       mode_cmd->modifier[0]);
14445                         goto err;
14446                 }
14447         case DRM_FORMAT_MOD_LINEAR:
14448         case I915_FORMAT_MOD_X_TILED:
14449                 break;
14450         default:
14451                 DRM_DEBUG_KMS("Unsupported fb modifier 0x%llx!\n",
14452                               mode_cmd->modifier[0]);
14453                 goto err;
14454         }
14455
14456         /*
14457          * gen2/3 display engine uses the fence if present,
14458          * so the tiling mode must match the fb modifier exactly.
14459          */
14460         if (INTEL_INFO(dev_priv)->gen < 4 &&
14461             tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
14462                 DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
14463                 goto err;
14464         }
14465
14466         pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
14467                                            mode_cmd->pixel_format);
14468         if (mode_cmd->pitches[0] > pitch_limit) {
14469                 DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
14470                               mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
14471                               "tiled" : "linear",
14472                               mode_cmd->pitches[0], pitch_limit);
14473                 goto err;
14474         }
14475
14476         /*
14477          * If there's a fence, enforce that
14478          * the fb pitch and fence stride match.
14479          */
14480         if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
14481                 DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
14482                               mode_cmd->pitches[0], stride);
14483                 goto err;
14484         }
14485
14486         /* Reject formats not supported by any plane early. */
14487         switch (mode_cmd->pixel_format) {
14488         case DRM_FORMAT_C8:
14489         case DRM_FORMAT_RGB565:
14490         case DRM_FORMAT_XRGB8888:
14491         case DRM_FORMAT_ARGB8888:
14492                 break;
14493         case DRM_FORMAT_XRGB1555:
14494                 if (INTEL_GEN(dev_priv) > 3) {
14495                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14496                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14497                         goto err;
14498                 }
14499                 break;
14500         case DRM_FORMAT_ABGR8888:
14501                 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
14502                     INTEL_GEN(dev_priv) < 9) {
14503                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14504                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14505                         goto err;
14506                 }
14507                 break;
14508         case DRM_FORMAT_XBGR8888:
14509         case DRM_FORMAT_XRGB2101010:
14510         case DRM_FORMAT_XBGR2101010:
14511                 if (INTEL_GEN(dev_priv) < 4) {
14512                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14513                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14514                         goto err;
14515                 }
14516                 break;
14517         case DRM_FORMAT_ABGR2101010:
14518                 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
14519                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14520                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14521                         goto err;
14522                 }
14523                 break;
14524         case DRM_FORMAT_YUYV:
14525         case DRM_FORMAT_UYVY:
14526         case DRM_FORMAT_YVYU:
14527         case DRM_FORMAT_VYUY:
14528                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
14529                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14530                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14531                         goto err;
14532                 }
14533                 break;
14534         default:
14535                 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14536                               drm_get_format_name(mode_cmd->pixel_format, &format_name));
14537                 goto err;
14538         }
14539
14540         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14541         if (mode_cmd->offsets[0] != 0)
14542                 goto err;
14543
14544         drm_helper_mode_fill_fb_struct(&dev_priv->drm,
14545                                        &intel_fb->base, mode_cmd);
14546
14547         stride_alignment = intel_fb_stride_alignment(&intel_fb->base, 0);
14548         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14549                 DRM_DEBUG_KMS("pitch (%d) must be at least %u byte aligned\n",
14550                               mode_cmd->pitches[0], stride_alignment);
14551                 goto err;
14552         }
14553
14554         intel_fb->obj = obj;
14555
14556         ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
14557         if (ret)
14558                 goto err;
14559
14560         ret = drm_framebuffer_init(obj->base.dev,
14561                                    &intel_fb->base,
14562                                    &intel_fb_funcs);
14563         if (ret) {
14564                 DRM_ERROR("framebuffer init failed %d\n", ret);
14565                 goto err;
14566         }
14567
14568         return 0;
14569
14570 err:
14571         i915_gem_object_lock(obj);
14572         obj->framebuffer_references--;
14573         i915_gem_object_unlock(obj);
14574         return ret;
14575 }
14576
14577 static struct drm_framebuffer *
14578 intel_user_framebuffer_create(struct drm_device *dev,
14579                               struct drm_file *filp,
14580                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14581 {
14582         struct drm_framebuffer *fb;
14583         struct drm_i915_gem_object *obj;
14584         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14585
14586         obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
14587         if (!obj)
14588                 return ERR_PTR(-ENOENT);
14589
14590         fb = intel_framebuffer_create(obj, &mode_cmd);
14591         if (IS_ERR(fb))
14592                 i915_gem_object_put(obj);
14593
14594         return fb;
14595 }
14596
14597 static void intel_atomic_state_free(struct drm_atomic_state *state)
14598 {
14599         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14600
14601         drm_atomic_state_default_release(state);
14602
14603         i915_sw_fence_fini(&intel_state->commit_ready);
14604
14605         kfree(state);
14606 }
14607
14608 static const struct drm_mode_config_funcs intel_mode_funcs = {
14609         .fb_create = intel_user_framebuffer_create,
14610         .output_poll_changed = intel_fbdev_output_poll_changed,
14611         .atomic_check = intel_atomic_check,
14612         .atomic_commit = intel_atomic_commit,
14613         .atomic_state_alloc = intel_atomic_state_alloc,
14614         .atomic_state_clear = intel_atomic_state_clear,
14615         .atomic_state_free = intel_atomic_state_free,
14616 };
14617
14618 /**
14619  * intel_init_display_hooks - initialize the display modesetting hooks
14620  * @dev_priv: device private
14621  */
14622 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14623 {
14624         intel_init_cdclk_hooks(dev_priv);
14625
14626         if (INTEL_INFO(dev_priv)->gen >= 9) {
14627                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14628                 dev_priv->display.get_initial_plane_config =
14629                         skylake_get_initial_plane_config;
14630                 dev_priv->display.crtc_compute_clock =
14631                         haswell_crtc_compute_clock;
14632                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14633                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14634         } else if (HAS_DDI(dev_priv)) {
14635                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14636                 dev_priv->display.get_initial_plane_config =
14637                         ironlake_get_initial_plane_config;
14638                 dev_priv->display.crtc_compute_clock =
14639                         haswell_crtc_compute_clock;
14640                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14641                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14642         } else if (HAS_PCH_SPLIT(dev_priv)) {
14643                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14644                 dev_priv->display.get_initial_plane_config =
14645                         ironlake_get_initial_plane_config;
14646                 dev_priv->display.crtc_compute_clock =
14647                         ironlake_crtc_compute_clock;
14648                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14649                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14650         } else if (IS_CHERRYVIEW(dev_priv)) {
14651                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14652                 dev_priv->display.get_initial_plane_config =
14653                         i9xx_get_initial_plane_config;
14654                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14655                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14656                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14657         } else if (IS_VALLEYVIEW(dev_priv)) {
14658                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14659                 dev_priv->display.get_initial_plane_config =
14660                         i9xx_get_initial_plane_config;
14661                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14662                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14663                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14664         } else if (IS_G4X(dev_priv)) {
14665                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14666                 dev_priv->display.get_initial_plane_config =
14667                         i9xx_get_initial_plane_config;
14668                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14669                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14670                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14671         } else if (IS_PINEVIEW(dev_priv)) {
14672                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14673                 dev_priv->display.get_initial_plane_config =
14674                         i9xx_get_initial_plane_config;
14675                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14676                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14677                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14678         } else if (!IS_GEN2(dev_priv)) {
14679                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14680                 dev_priv->display.get_initial_plane_config =
14681                         i9xx_get_initial_plane_config;
14682                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14683                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14684                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14685         } else {
14686                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14687                 dev_priv->display.get_initial_plane_config =
14688                         i9xx_get_initial_plane_config;
14689                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14690                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14691                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14692         }
14693
14694         if (IS_GEN5(dev_priv)) {
14695                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14696         } else if (IS_GEN6(dev_priv)) {
14697                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14698         } else if (IS_IVYBRIDGE(dev_priv)) {
14699                 /* FIXME: detect B0+ stepping and use auto training */
14700                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14701         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
14702                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14703         }
14704
14705         if (dev_priv->info.gen >= 9)
14706                 dev_priv->display.update_crtcs = skl_update_crtcs;
14707         else
14708                 dev_priv->display.update_crtcs = intel_update_crtcs;
14709
14710         switch (INTEL_INFO(dev_priv)->gen) {
14711         case 2:
14712                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14713                 break;
14714
14715         case 3:
14716                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14717                 break;
14718
14719         case 4:
14720         case 5:
14721                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14722                 break;
14723
14724         case 6:
14725                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14726                 break;
14727         case 7:
14728         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14729                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14730                 break;
14731         case 9:
14732                 /* Drop through - unsupported since execlist only. */
14733         default:
14734                 /* Default just returns -ENODEV to indicate unsupported */
14735                 dev_priv->display.queue_flip = intel_default_queue_flip;
14736         }
14737 }
14738
14739 /*
14740  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14741  */
14742 static void quirk_ssc_force_disable(struct drm_device *dev)
14743 {
14744         struct drm_i915_private *dev_priv = to_i915(dev);
14745         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14746         DRM_INFO("applying lvds SSC disable quirk\n");
14747 }
14748
14749 /*
14750  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14751  * brightness value
14752  */
14753 static void quirk_invert_brightness(struct drm_device *dev)
14754 {
14755         struct drm_i915_private *dev_priv = to_i915(dev);
14756         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14757         DRM_INFO("applying inverted panel brightness quirk\n");
14758 }
14759
14760 /* Some VBT's incorrectly indicate no backlight is present */
14761 static void quirk_backlight_present(struct drm_device *dev)
14762 {
14763         struct drm_i915_private *dev_priv = to_i915(dev);
14764         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14765         DRM_INFO("applying backlight present quirk\n");
14766 }
14767
14768 struct intel_quirk {
14769         int device;
14770         int subsystem_vendor;
14771         int subsystem_device;
14772         void (*hook)(struct drm_device *dev);
14773 };
14774
14775 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14776 struct intel_dmi_quirk {
14777         void (*hook)(struct drm_device *dev);
14778         const struct dmi_system_id (*dmi_id_list)[];
14779 };
14780
14781 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14782 {
14783         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14784         return 1;
14785 }
14786
14787 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14788         {
14789                 .dmi_id_list = &(const struct dmi_system_id[]) {
14790                         {
14791                                 .callback = intel_dmi_reverse_brightness,
14792                                 .ident = "NCR Corporation",
14793                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14794                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14795                                 },
14796                         },
14797                         { }  /* terminating entry */
14798                 },
14799                 .hook = quirk_invert_brightness,
14800         },
14801 };
14802
14803 static struct intel_quirk intel_quirks[] = {
14804         /* Lenovo U160 cannot use SSC on LVDS */
14805         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14806
14807         /* Sony Vaio Y cannot use SSC on LVDS */
14808         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14809
14810         /* Acer Aspire 5734Z must invert backlight brightness */
14811         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14812
14813         /* Acer/eMachines G725 */
14814         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14815
14816         /* Acer/eMachines e725 */
14817         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14818
14819         /* Acer/Packard Bell NCL20 */
14820         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14821
14822         /* Acer Aspire 4736Z */
14823         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14824
14825         /* Acer Aspire 5336 */
14826         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14827
14828         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14829         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14830
14831         /* Acer C720 Chromebook (Core i3 4005U) */
14832         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14833
14834         /* Apple Macbook 2,1 (Core 2 T7400) */
14835         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14836
14837         /* Apple Macbook 4,1 */
14838         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14839
14840         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14841         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14842
14843         /* HP Chromebook 14 (Celeron 2955U) */
14844         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14845
14846         /* Dell Chromebook 11 */
14847         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14848
14849         /* Dell Chromebook 11 (2015 version) */
14850         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14851 };
14852
14853 static void intel_init_quirks(struct drm_device *dev)
14854 {
14855         struct pci_dev *d = dev->pdev;
14856         int i;
14857
14858         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14859                 struct intel_quirk *q = &intel_quirks[i];
14860
14861                 if (d->device == q->device &&
14862                     (d->subsystem_vendor == q->subsystem_vendor ||
14863                      q->subsystem_vendor == PCI_ANY_ID) &&
14864                     (d->subsystem_device == q->subsystem_device ||
14865                      q->subsystem_device == PCI_ANY_ID))
14866                         q->hook(dev);
14867         }
14868         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14869                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14870                         intel_dmi_quirks[i].hook(dev);
14871         }
14872 }
14873
14874 /* Disable the VGA plane that we never use */
14875 static void i915_disable_vga(struct drm_i915_private *dev_priv)
14876 {
14877         struct pci_dev *pdev = dev_priv->drm.pdev;
14878         u8 sr1;
14879         i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
14880
14881         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14882         vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
14883         outb(SR01, VGA_SR_INDEX);
14884         sr1 = inb(VGA_SR_DATA);
14885         outb(sr1 | 1<<5, VGA_SR_DATA);
14886         vga_put(pdev, VGA_RSRC_LEGACY_IO);
14887         udelay(300);
14888
14889         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14890         POSTING_READ(vga_reg);
14891 }
14892
14893 void intel_modeset_init_hw(struct drm_device *dev)
14894 {
14895         struct drm_i915_private *dev_priv = to_i915(dev);
14896
14897         intel_update_cdclk(dev_priv);
14898         dev_priv->cdclk.logical = dev_priv->cdclk.actual = dev_priv->cdclk.hw;
14899
14900         intel_init_clock_gating(dev_priv);
14901 }
14902
14903 /*
14904  * Calculate what we think the watermarks should be for the state we've read
14905  * out of the hardware and then immediately program those watermarks so that
14906  * we ensure the hardware settings match our internal state.
14907  *
14908  * We can calculate what we think WM's should be by creating a duplicate of the
14909  * current state (which was constructed during hardware readout) and running it
14910  * through the atomic check code to calculate new watermark values in the
14911  * state object.
14912  */
14913 static void sanitize_watermarks(struct drm_device *dev)
14914 {
14915         struct drm_i915_private *dev_priv = to_i915(dev);
14916         struct drm_atomic_state *state;
14917         struct intel_atomic_state *intel_state;
14918         struct drm_crtc *crtc;
14919         struct drm_crtc_state *cstate;
14920         struct drm_modeset_acquire_ctx ctx;
14921         int ret;
14922         int i;
14923
14924         /* Only supported on platforms that use atomic watermark design */
14925         if (!dev_priv->display.optimize_watermarks)
14926                 return;
14927
14928         /*
14929          * We need to hold connection_mutex before calling duplicate_state so
14930          * that the connector loop is protected.
14931          */
14932         drm_modeset_acquire_init(&ctx, 0);
14933 retry:
14934         ret = drm_modeset_lock_all_ctx(dev, &ctx);
14935         if (ret == -EDEADLK) {
14936                 drm_modeset_backoff(&ctx);
14937                 goto retry;
14938         } else if (WARN_ON(ret)) {
14939                 goto fail;
14940         }
14941
14942         state = drm_atomic_helper_duplicate_state(dev, &ctx);
14943         if (WARN_ON(IS_ERR(state)))
14944                 goto fail;
14945
14946         intel_state = to_intel_atomic_state(state);
14947
14948         /*
14949          * Hardware readout is the only time we don't want to calculate
14950          * intermediate watermarks (since we don't trust the current
14951          * watermarks).
14952          */
14953         if (!HAS_GMCH_DISPLAY(dev_priv))
14954                 intel_state->skip_intermediate_wm = true;
14955
14956         ret = intel_atomic_check(dev, state);
14957         if (ret) {
14958                 /*
14959                  * If we fail here, it means that the hardware appears to be
14960                  * programmed in a way that shouldn't be possible, given our
14961                  * understanding of watermark requirements.  This might mean a
14962                  * mistake in the hardware readout code or a mistake in the
14963                  * watermark calculations for a given platform.  Raise a WARN
14964                  * so that this is noticeable.
14965                  *
14966                  * If this actually happens, we'll have to just leave the
14967                  * BIOS-programmed watermarks untouched and hope for the best.
14968                  */
14969                 WARN(true, "Could not determine valid watermarks for inherited state\n");
14970                 goto put_state;
14971         }
14972
14973         /* Write calculated watermark values back */
14974         for_each_new_crtc_in_state(state, crtc, cstate, i) {
14975                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
14976
14977                 cs->wm.need_postvbl_update = true;
14978                 dev_priv->display.optimize_watermarks(intel_state, cs);
14979         }
14980
14981 put_state:
14982         drm_atomic_state_put(state);
14983 fail:
14984         drm_modeset_drop_locks(&ctx);
14985         drm_modeset_acquire_fini(&ctx);
14986 }
14987
14988 int intel_modeset_init(struct drm_device *dev)
14989 {
14990         struct drm_i915_private *dev_priv = to_i915(dev);
14991         struct i915_ggtt *ggtt = &dev_priv->ggtt;
14992         enum pipe pipe;
14993         struct intel_crtc *crtc;
14994
14995         drm_mode_config_init(dev);
14996
14997         dev->mode_config.min_width = 0;
14998         dev->mode_config.min_height = 0;
14999
15000         dev->mode_config.preferred_depth = 24;
15001         dev->mode_config.prefer_shadow = 1;
15002
15003         dev->mode_config.allow_fb_modifiers = true;
15004
15005         dev->mode_config.funcs = &intel_mode_funcs;
15006
15007         init_llist_head(&dev_priv->atomic_helper.free_list);
15008         INIT_WORK(&dev_priv->atomic_helper.free_work,
15009                   intel_atomic_helper_free_state_worker);
15010
15011         intel_init_quirks(dev);
15012
15013         intel_init_pm(dev_priv);
15014
15015         if (INTEL_INFO(dev_priv)->num_pipes == 0)
15016                 return 0;
15017
15018         /*
15019          * There may be no VBT; and if the BIOS enabled SSC we can
15020          * just keep using it to avoid unnecessary flicker.  Whereas if the
15021          * BIOS isn't using it, don't assume it will work even if the VBT
15022          * indicates as much.
15023          */
15024         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
15025                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15026                                             DREF_SSC1_ENABLE);
15027
15028                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15029                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15030                                      bios_lvds_use_ssc ? "en" : "dis",
15031                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15032                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15033                 }
15034         }
15035
15036         if (IS_GEN2(dev_priv)) {
15037                 dev->mode_config.max_width = 2048;
15038                 dev->mode_config.max_height = 2048;
15039         } else if (IS_GEN3(dev_priv)) {
15040                 dev->mode_config.max_width = 4096;
15041                 dev->mode_config.max_height = 4096;
15042         } else {
15043                 dev->mode_config.max_width = 8192;
15044                 dev->mode_config.max_height = 8192;
15045         }
15046
15047         if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
15048                 dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
15049                 dev->mode_config.cursor_height = 1023;
15050         } else if (IS_GEN2(dev_priv)) {
15051                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15052                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15053         } else {
15054                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15055                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15056         }
15057
15058         dev->mode_config.fb_base = ggtt->mappable_base;
15059
15060         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15061                       INTEL_INFO(dev_priv)->num_pipes,
15062                       INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
15063
15064         for_each_pipe(dev_priv, pipe) {
15065                 int ret;
15066
15067                 ret = intel_crtc_init(dev_priv, pipe);
15068                 if (ret) {
15069                         drm_mode_config_cleanup(dev);
15070                         return ret;
15071                 }
15072         }
15073
15074         intel_shared_dpll_init(dev);
15075
15076         intel_update_czclk(dev_priv);
15077         intel_modeset_init_hw(dev);
15078
15079         if (dev_priv->max_cdclk_freq == 0)
15080                 intel_update_max_cdclk(dev_priv);
15081
15082         /* Just disable it once at startup */
15083         i915_disable_vga(dev_priv);
15084         intel_setup_outputs(dev_priv);
15085
15086         drm_modeset_lock_all(dev);
15087         intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
15088         drm_modeset_unlock_all(dev);
15089
15090         for_each_intel_crtc(dev, crtc) {
15091                 struct intel_initial_plane_config plane_config = {};
15092
15093                 if (!crtc->active)
15094                         continue;
15095
15096                 /*
15097                  * Note that reserving the BIOS fb up front prevents us
15098                  * from stuffing other stolen allocations like the ring
15099                  * on top.  This prevents some ugliness at boot time, and
15100                  * can even allow for smooth boot transitions if the BIOS
15101                  * fb is large enough for the active pipe configuration.
15102                  */
15103                 dev_priv->display.get_initial_plane_config(crtc,
15104                                                            &plane_config);
15105
15106                 /*
15107                  * If the fb is shared between multiple heads, we'll
15108                  * just get the first one.
15109                  */
15110                 intel_find_initial_plane_obj(crtc, &plane_config);
15111         }
15112
15113         /*
15114          * Make sure hardware watermarks really match the state we read out.
15115          * Note that we need to do this after reconstructing the BIOS fb's
15116          * since the watermark calculation done here will use pstate->fb.
15117          */
15118         if (!HAS_GMCH_DISPLAY(dev_priv))
15119                 sanitize_watermarks(dev);
15120
15121         return 0;
15122 }
15123
15124 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
15125 {
15126         /* 640x480@60Hz, ~25175 kHz */
15127         struct dpll clock = {
15128                 .m1 = 18,
15129                 .m2 = 7,
15130                 .p1 = 13,
15131                 .p2 = 4,
15132                 .n = 2,
15133         };
15134         u32 dpll, fp;
15135         int i;
15136
15137         WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154);
15138
15139         DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
15140                       pipe_name(pipe), clock.vco, clock.dot);
15141
15142         fp = i9xx_dpll_compute_fp(&clock);
15143         dpll = (I915_READ(DPLL(pipe)) & DPLL_DVO_2X_MODE) |
15144                 DPLL_VGA_MODE_DIS |
15145                 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
15146                 PLL_P2_DIVIDE_BY_4 |
15147                 PLL_REF_INPUT_DREFCLK |
15148                 DPLL_VCO_ENABLE;
15149
15150         I915_WRITE(FP0(pipe), fp);
15151         I915_WRITE(FP1(pipe), fp);
15152
15153         I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
15154         I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
15155         I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
15156         I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
15157         I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
15158         I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
15159         I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
15160
15161         /*
15162          * Apparently we need to have VGA mode enabled prior to changing
15163          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
15164          * dividers, even though the register value does change.
15165          */
15166         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
15167         I915_WRITE(DPLL(pipe), dpll);
15168
15169         /* Wait for the clocks to stabilize. */
15170         POSTING_READ(DPLL(pipe));
15171         udelay(150);
15172
15173         /* The pixel multiplier can only be updated once the
15174          * DPLL is enabled and the clocks are stable.
15175          *
15176          * So write it again.
15177          */
15178         I915_WRITE(DPLL(pipe), dpll);
15179
15180         /* We do this three times for luck */
15181         for (i = 0; i < 3 ; i++) {
15182                 I915_WRITE(DPLL(pipe), dpll);
15183                 POSTING_READ(DPLL(pipe));
15184                 udelay(150); /* wait for warmup */
15185         }
15186
15187         I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
15188         POSTING_READ(PIPECONF(pipe));
15189 }
15190
15191 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
15192 {
15193         DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n",
15194                       pipe_name(pipe));
15195
15196         assert_plane_disabled(dev_priv, PLANE_A);
15197         assert_plane_disabled(dev_priv, PLANE_B);
15198
15199         I915_WRITE(PIPECONF(pipe), 0);
15200         POSTING_READ(PIPECONF(pipe));
15201
15202         if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
15203                 DRM_ERROR("pipe %c off wait timed out\n", pipe_name(pipe));
15204
15205         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
15206         POSTING_READ(DPLL(pipe));
15207 }
15208
15209 static bool
15210 intel_check_plane_mapping(struct intel_crtc *crtc)
15211 {
15212         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15213         u32 val;
15214
15215         if (INTEL_INFO(dev_priv)->num_pipes == 1)
15216                 return true;
15217
15218         val = I915_READ(DSPCNTR(!crtc->plane));
15219
15220         if ((val & DISPLAY_PLANE_ENABLE) &&
15221             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15222                 return false;
15223
15224         return true;
15225 }
15226
15227 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15228 {
15229         struct drm_device *dev = crtc->base.dev;
15230         struct intel_encoder *encoder;
15231
15232         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15233                 return true;
15234
15235         return false;
15236 }
15237
15238 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
15239 {
15240         struct drm_device *dev = encoder->base.dev;
15241         struct intel_connector *connector;
15242
15243         for_each_connector_on_encoder(dev, &encoder->base, connector)
15244                 return connector;
15245
15246         return NULL;
15247 }
15248
15249 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
15250                               enum transcoder pch_transcoder)
15251 {
15252         return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
15253                 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
15254 }
15255
15256 static void intel_sanitize_crtc(struct intel_crtc *crtc,
15257                                 struct drm_modeset_acquire_ctx *ctx)
15258 {
15259         struct drm_device *dev = crtc->base.dev;
15260         struct drm_i915_private *dev_priv = to_i915(dev);
15261         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15262
15263         /* Clear any frame start delays used for debugging left by the BIOS */
15264         if (!transcoder_is_dsi(cpu_transcoder)) {
15265                 i915_reg_t reg = PIPECONF(cpu_transcoder);
15266
15267                 I915_WRITE(reg,
15268                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15269         }
15270
15271         /* restore vblank interrupts to correct state */
15272         drm_crtc_vblank_reset(&crtc->base);
15273         if (crtc->active) {
15274                 struct intel_plane *plane;
15275
15276                 drm_crtc_vblank_on(&crtc->base);
15277
15278                 /* Disable everything but the primary plane */
15279                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15280                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15281                                 continue;
15282
15283                         trace_intel_disable_plane(&plane->base, crtc);
15284                         plane->disable_plane(plane, crtc);
15285                 }
15286         }
15287
15288         /* We need to sanitize the plane -> pipe mapping first because this will
15289          * disable the crtc (and hence change the state) if it is wrong. Note
15290          * that gen4+ has a fixed plane -> pipe mapping.  */
15291         if (INTEL_GEN(dev_priv) < 4 && !intel_check_plane_mapping(crtc)) {
15292                 bool plane;
15293
15294                 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
15295                               crtc->base.base.id, crtc->base.name);
15296
15297                 /* Pipe has the wrong plane attached and the plane is active.
15298                  * Temporarily change the plane mapping and disable everything
15299                  * ...  */
15300                 plane = crtc->plane;
15301                 crtc->base.primary->state->visible = true;
15302                 crtc->plane = !plane;
15303                 intel_crtc_disable_noatomic(&crtc->base, ctx);
15304                 crtc->plane = plane;
15305         }
15306
15307         /* Adjust the state of the output pipe according to whether we
15308          * have active connectors/encoders. */
15309         if (crtc->active && !intel_crtc_has_encoders(crtc))
15310                 intel_crtc_disable_noatomic(&crtc->base, ctx);
15311
15312         if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
15313                 /*
15314                  * We start out with underrun reporting disabled to avoid races.
15315                  * For correct bookkeeping mark this on active crtcs.
15316                  *
15317                  * Also on gmch platforms we dont have any hardware bits to
15318                  * disable the underrun reporting. Which means we need to start
15319                  * out with underrun reporting disabled also on inactive pipes,
15320                  * since otherwise we'll complain about the garbage we read when
15321                  * e.g. coming up after runtime pm.
15322                  *
15323                  * No protection against concurrent access is required - at
15324                  * worst a fifo underrun happens which also sets this to false.
15325                  */
15326                 crtc->cpu_fifo_underrun_disabled = true;
15327                 /*
15328                  * We track the PCH trancoder underrun reporting state
15329                  * within the crtc. With crtc for pipe A housing the underrun
15330                  * reporting state for PCH transcoder A, crtc for pipe B housing
15331                  * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
15332                  * and marking underrun reporting as disabled for the non-existing
15333                  * PCH transcoders B and C would prevent enabling the south
15334                  * error interrupt (see cpt_can_enable_serr_int()).
15335                  */
15336                 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
15337                         crtc->pch_fifo_underrun_disabled = true;
15338         }
15339 }
15340
15341 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15342 {
15343         struct intel_connector *connector;
15344
15345         /* We need to check both for a crtc link (meaning that the
15346          * encoder is active and trying to read from a pipe) and the
15347          * pipe itself being active. */
15348         bool has_active_crtc = encoder->base.crtc &&
15349                 to_intel_crtc(encoder->base.crtc)->active;
15350
15351         connector = intel_encoder_find_connector(encoder);
15352         if (connector && !has_active_crtc) {
15353                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15354                               encoder->base.base.id,
15355                               encoder->base.name);
15356
15357                 /* Connector is active, but has no active pipe. This is
15358                  * fallout from our resume register restoring. Disable
15359                  * the encoder manually again. */
15360                 if (encoder->base.crtc) {
15361                         struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
15362
15363                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15364                                       encoder->base.base.id,
15365                                       encoder->base.name);
15366                         encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
15367                         if (encoder->post_disable)
15368                                 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
15369                 }
15370                 encoder->base.crtc = NULL;
15371
15372                 /* Inconsistent output/port/pipe state happens presumably due to
15373                  * a bug in one of the get_hw_state functions. Or someplace else
15374                  * in our code, like the register restore mess on resume. Clamp
15375                  * things to off as a safer default. */
15376
15377                 connector->base.dpms = DRM_MODE_DPMS_OFF;
15378                 connector->base.encoder = NULL;
15379         }
15380         /* Enabled encoders without active connectors will be fixed in
15381          * the crtc fixup. */
15382 }
15383
15384 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
15385 {
15386         i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
15387
15388         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15389                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15390                 i915_disable_vga(dev_priv);
15391         }
15392 }
15393
15394 void i915_redisable_vga(struct drm_i915_private *dev_priv)
15395 {
15396         /* This function can be called both from intel_modeset_setup_hw_state or
15397          * at a very early point in our resume sequence, where the power well
15398          * structures are not yet restored. Since this function is at a very
15399          * paranoid "someone might have enabled VGA while we were not looking"
15400          * level, just check if the power well is enabled instead of trying to
15401          * follow the "don't touch the power well if we don't need it" policy
15402          * the rest of the driver uses. */
15403         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15404                 return;
15405
15406         i915_redisable_vga_power_on(dev_priv);
15407
15408         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15409 }
15410
15411 static bool primary_get_hw_state(struct intel_plane *plane)
15412 {
15413         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15414
15415         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15416 }
15417
15418 /* FIXME read out full plane state for all planes */
15419 static void readout_plane_state(struct intel_crtc *crtc)
15420 {
15421         struct intel_plane *primary = to_intel_plane(crtc->base.primary);
15422         bool visible;
15423
15424         visible = crtc->active && primary_get_hw_state(primary);
15425
15426         intel_set_plane_visible(to_intel_crtc_state(crtc->base.state),
15427                                 to_intel_plane_state(primary->base.state),
15428                                 visible);
15429 }
15430
15431 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15432 {
15433         struct drm_i915_private *dev_priv = to_i915(dev);
15434         enum pipe pipe;
15435         struct intel_crtc *crtc;
15436         struct intel_encoder *encoder;
15437         struct intel_connector *connector;
15438         struct drm_connector_list_iter conn_iter;
15439         int i;
15440
15441         dev_priv->active_crtcs = 0;
15442
15443         for_each_intel_crtc(dev, crtc) {
15444                 struct intel_crtc_state *crtc_state =
15445                         to_intel_crtc_state(crtc->base.state);
15446
15447                 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
15448                 memset(crtc_state, 0, sizeof(*crtc_state));
15449                 crtc_state->base.crtc = &crtc->base;
15450
15451                 crtc_state->base.active = crtc_state->base.enable =
15452                         dev_priv->display.get_pipe_config(crtc, crtc_state);
15453
15454                 crtc->base.enabled = crtc_state->base.enable;
15455                 crtc->active = crtc_state->base.active;
15456
15457                 if (crtc_state->base.active)
15458                         dev_priv->active_crtcs |= 1 << crtc->pipe;
15459
15460                 readout_plane_state(crtc);
15461
15462                 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
15463                               crtc->base.base.id, crtc->base.name,
15464                               enableddisabled(crtc_state->base.active));
15465         }
15466
15467         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15468                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15469
15470                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15471                                                   &pll->state.hw_state);
15472                 pll->state.crtc_mask = 0;
15473                 for_each_intel_crtc(dev, crtc) {
15474                         struct intel_crtc_state *crtc_state =
15475                                 to_intel_crtc_state(crtc->base.state);
15476
15477                         if (crtc_state->base.active &&
15478                             crtc_state->shared_dpll == pll)
15479                                 pll->state.crtc_mask |= 1 << crtc->pipe;
15480                 }
15481                 pll->active_mask = pll->state.crtc_mask;
15482
15483                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15484                               pll->name, pll->state.crtc_mask, pll->on);
15485         }
15486
15487         for_each_intel_encoder(dev, encoder) {
15488                 pipe = 0;
15489
15490                 if (encoder->get_hw_state(encoder, &pipe)) {
15491                         struct intel_crtc_state *crtc_state;
15492
15493                         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15494                         crtc_state = to_intel_crtc_state(crtc->base.state);
15495
15496                         encoder->base.crtc = &crtc->base;
15497                         crtc_state->output_types |= 1 << encoder->type;
15498                         encoder->get_config(encoder, crtc_state);
15499                 } else {
15500                         encoder->base.crtc = NULL;
15501                 }
15502
15503                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15504                               encoder->base.base.id, encoder->base.name,
15505                               enableddisabled(encoder->base.crtc),
15506                               pipe_name(pipe));
15507         }
15508
15509         drm_connector_list_iter_begin(dev, &conn_iter);
15510         for_each_intel_connector_iter(connector, &conn_iter) {
15511                 if (connector->get_hw_state(connector)) {
15512                         connector->base.dpms = DRM_MODE_DPMS_ON;
15513
15514                         encoder = connector->encoder;
15515                         connector->base.encoder = &encoder->base;
15516
15517                         if (encoder->base.crtc &&
15518                             encoder->base.crtc->state->active) {
15519                                 /*
15520                                  * This has to be done during hardware readout
15521                                  * because anything calling .crtc_disable may
15522                                  * rely on the connector_mask being accurate.
15523                                  */
15524                                 encoder->base.crtc->state->connector_mask |=
15525                                         1 << drm_connector_index(&connector->base);
15526                                 encoder->base.crtc->state->encoder_mask |=
15527                                         1 << drm_encoder_index(&encoder->base);
15528                         }
15529
15530                 } else {
15531                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15532                         connector->base.encoder = NULL;
15533                 }
15534                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15535                               connector->base.base.id, connector->base.name,
15536                               enableddisabled(connector->base.encoder));
15537         }
15538         drm_connector_list_iter_end(&conn_iter);
15539
15540         for_each_intel_crtc(dev, crtc) {
15541                 struct intel_crtc_state *crtc_state =
15542                         to_intel_crtc_state(crtc->base.state);
15543                 int pixclk = 0;
15544
15545                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15546                 if (crtc_state->base.active) {
15547                         intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
15548                         intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
15549                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15550
15551                         /*
15552                          * The initial mode needs to be set in order to keep
15553                          * the atomic core happy. It wants a valid mode if the
15554                          * crtc's enabled, so we do the above call.
15555                          *
15556                          * But we don't set all the derived state fully, hence
15557                          * set a flag to indicate that a full recalculation is
15558                          * needed on the next commit.
15559                          */
15560                         crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
15561
15562                         intel_crtc_compute_pixel_rate(crtc_state);
15563
15564                         if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv) ||
15565                             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15566                                 pixclk = crtc_state->pixel_rate;
15567                         else
15568                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15569
15570                         /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15571                         if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
15572                                 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15573
15574                         drm_calc_timestamping_constants(&crtc->base,
15575                                                         &crtc_state->base.adjusted_mode);
15576                         update_scanline_offset(crtc);
15577                 }
15578
15579                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15580
15581                 intel_pipe_config_sanity_check(dev_priv, crtc_state);
15582         }
15583 }
15584
15585 static void
15586 get_encoder_power_domains(struct drm_i915_private *dev_priv)
15587 {
15588         struct intel_encoder *encoder;
15589
15590         for_each_intel_encoder(&dev_priv->drm, encoder) {
15591                 u64 get_domains;
15592                 enum intel_display_power_domain domain;
15593
15594                 if (!encoder->get_power_domains)
15595                         continue;
15596
15597                 get_domains = encoder->get_power_domains(encoder);
15598                 for_each_power_domain(domain, get_domains)
15599                         intel_display_power_get(dev_priv, domain);
15600         }
15601 }
15602
15603 /* Scan out the current hw modeset state,
15604  * and sanitizes it to the current state
15605  */
15606 static void
15607 intel_modeset_setup_hw_state(struct drm_device *dev,
15608                              struct drm_modeset_acquire_ctx *ctx)
15609 {
15610         struct drm_i915_private *dev_priv = to_i915(dev);
15611         enum pipe pipe;
15612         struct intel_crtc *crtc;
15613         struct intel_encoder *encoder;
15614         int i;
15615
15616         intel_modeset_readout_hw_state(dev);
15617
15618         /* HW state is read out, now we need to sanitize this mess. */
15619         get_encoder_power_domains(dev_priv);
15620
15621         for_each_intel_encoder(dev, encoder) {
15622                 intel_sanitize_encoder(encoder);
15623         }
15624
15625         for_each_pipe(dev_priv, pipe) {
15626                 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15627
15628                 intel_sanitize_crtc(crtc, ctx);
15629                 intel_dump_pipe_config(crtc, crtc->config,
15630                                        "[setup_hw_state]");
15631         }
15632
15633         intel_modeset_update_connector_atomic_state(dev);
15634
15635         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15636                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15637
15638                 if (!pll->on || pll->active_mask)
15639                         continue;
15640
15641                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15642
15643                 pll->funcs.disable(dev_priv, pll);
15644                 pll->on = false;
15645         }
15646
15647         if (IS_G4X(dev_priv)) {
15648                 g4x_wm_get_hw_state(dev);
15649                 g4x_wm_sanitize(dev_priv);
15650         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15651                 vlv_wm_get_hw_state(dev);
15652                 vlv_wm_sanitize(dev_priv);
15653         } else if (IS_GEN9(dev_priv)) {
15654                 skl_wm_get_hw_state(dev);
15655         } else if (HAS_PCH_SPLIT(dev_priv)) {
15656                 ilk_wm_get_hw_state(dev);
15657         }
15658
15659         for_each_intel_crtc(dev, crtc) {
15660                 u64 put_domains;
15661
15662                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15663                 if (WARN_ON(put_domains))
15664                         modeset_put_power_domains(dev_priv, put_domains);
15665         }
15666         intel_display_set_init_power(dev_priv, false);
15667
15668         intel_power_domains_verify_state(dev_priv);
15669
15670         intel_fbc_init_pipe_state(dev_priv);
15671 }
15672
15673 void intel_display_resume(struct drm_device *dev)
15674 {
15675         struct drm_i915_private *dev_priv = to_i915(dev);
15676         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15677         struct drm_modeset_acquire_ctx ctx;
15678         int ret;
15679
15680         dev_priv->modeset_restore_state = NULL;
15681         if (state)
15682                 state->acquire_ctx = &ctx;
15683
15684         drm_modeset_acquire_init(&ctx, 0);
15685
15686         while (1) {
15687                 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15688                 if (ret != -EDEADLK)
15689                         break;
15690
15691                 drm_modeset_backoff(&ctx);
15692         }
15693
15694         if (!ret)
15695                 ret = __intel_display_resume(dev, state, &ctx);
15696
15697         drm_modeset_drop_locks(&ctx);
15698         drm_modeset_acquire_fini(&ctx);
15699
15700         if (ret)
15701                 DRM_ERROR("Restoring old state failed with %i\n", ret);
15702         if (state)
15703                 drm_atomic_state_put(state);
15704 }
15705
15706 void intel_modeset_gem_init(struct drm_device *dev)
15707 {
15708         struct drm_i915_private *dev_priv = to_i915(dev);
15709
15710         intel_init_gt_powersave(dev_priv);
15711
15712         intel_setup_overlay(dev_priv);
15713 }
15714
15715 int intel_connector_register(struct drm_connector *connector)
15716 {
15717         struct intel_connector *intel_connector = to_intel_connector(connector);
15718         int ret;
15719
15720         ret = intel_backlight_device_register(intel_connector);
15721         if (ret)
15722                 goto err;
15723
15724         return 0;
15725
15726 err:
15727         return ret;
15728 }
15729
15730 void intel_connector_unregister(struct drm_connector *connector)
15731 {
15732         struct intel_connector *intel_connector = to_intel_connector(connector);
15733
15734         intel_backlight_device_unregister(intel_connector);
15735         intel_panel_destroy_backlight(connector);
15736 }
15737
15738 void intel_modeset_cleanup(struct drm_device *dev)
15739 {
15740         struct drm_i915_private *dev_priv = to_i915(dev);
15741
15742         flush_work(&dev_priv->atomic_helper.free_work);
15743         WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
15744
15745         intel_disable_gt_powersave(dev_priv);
15746
15747         /*
15748          * Interrupts and polling as the first thing to avoid creating havoc.
15749          * Too much stuff here (turning of connectors, ...) would
15750          * experience fancy races otherwise.
15751          */
15752         intel_irq_uninstall(dev_priv);
15753
15754         /*
15755          * Due to the hpd irq storm handling the hotplug work can re-arm the
15756          * poll handlers. Hence disable polling after hpd handling is shut down.
15757          */
15758         drm_kms_helper_poll_fini(dev);
15759
15760         intel_unregister_dsm_handler();
15761
15762         intel_fbc_global_disable(dev_priv);
15763
15764         /* flush any delayed tasks or pending work */
15765         flush_scheduled_work();
15766
15767         drm_mode_config_cleanup(dev);
15768
15769         intel_cleanup_overlay(dev_priv);
15770
15771         intel_cleanup_gt_powersave(dev_priv);
15772
15773         intel_teardown_gmbus(dev_priv);
15774 }
15775
15776 void intel_connector_attach_encoder(struct intel_connector *connector,
15777                                     struct intel_encoder *encoder)
15778 {
15779         connector->encoder = encoder;
15780         drm_mode_connector_attach_encoder(&connector->base,
15781                                           &encoder->base);
15782 }
15783
15784 /*
15785  * set vga decode state - true == enable VGA decode
15786  */
15787 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
15788 {
15789         unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15790         u16 gmch_ctrl;
15791
15792         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15793                 DRM_ERROR("failed to read control word\n");
15794                 return -EIO;
15795         }
15796
15797         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15798                 return 0;
15799
15800         if (state)
15801                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15802         else
15803                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15804
15805         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15806                 DRM_ERROR("failed to write control word\n");
15807                 return -EIO;
15808         }
15809
15810         return 0;
15811 }
15812
15813 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
15814
15815 struct intel_display_error_state {
15816
15817         u32 power_well_driver;
15818
15819         int num_transcoders;
15820
15821         struct intel_cursor_error_state {
15822                 u32 control;
15823                 u32 position;
15824                 u32 base;
15825                 u32 size;
15826         } cursor[I915_MAX_PIPES];
15827
15828         struct intel_pipe_error_state {
15829                 bool power_domain_on;
15830                 u32 source;
15831                 u32 stat;
15832         } pipe[I915_MAX_PIPES];
15833
15834         struct intel_plane_error_state {
15835                 u32 control;
15836                 u32 stride;
15837                 u32 size;
15838                 u32 pos;
15839                 u32 addr;
15840                 u32 surface;
15841                 u32 tile_offset;
15842         } plane[I915_MAX_PIPES];
15843
15844         struct intel_transcoder_error_state {
15845                 bool power_domain_on;
15846                 enum transcoder cpu_transcoder;
15847
15848                 u32 conf;
15849
15850                 u32 htotal;
15851                 u32 hblank;
15852                 u32 hsync;
15853                 u32 vtotal;
15854                 u32 vblank;
15855                 u32 vsync;
15856         } transcoder[4];
15857 };
15858
15859 struct intel_display_error_state *
15860 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
15861 {
15862         struct intel_display_error_state *error;
15863         int transcoders[] = {
15864                 TRANSCODER_A,
15865                 TRANSCODER_B,
15866                 TRANSCODER_C,
15867                 TRANSCODER_EDP,
15868         };
15869         int i;
15870
15871         if (INTEL_INFO(dev_priv)->num_pipes == 0)
15872                 return NULL;
15873
15874         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15875         if (error == NULL)
15876                 return NULL;
15877
15878         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15879                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15880
15881         for_each_pipe(dev_priv, i) {
15882                 error->pipe[i].power_domain_on =
15883                         __intel_display_power_is_enabled(dev_priv,
15884                                                          POWER_DOMAIN_PIPE(i));
15885                 if (!error->pipe[i].power_domain_on)
15886                         continue;
15887
15888                 error->cursor[i].control = I915_READ(CURCNTR(i));
15889                 error->cursor[i].position = I915_READ(CURPOS(i));
15890                 error->cursor[i].base = I915_READ(CURBASE(i));
15891
15892                 error->plane[i].control = I915_READ(DSPCNTR(i));
15893                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15894                 if (INTEL_GEN(dev_priv) <= 3) {
15895                         error->plane[i].size = I915_READ(DSPSIZE(i));
15896                         error->plane[i].pos = I915_READ(DSPPOS(i));
15897                 }
15898                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15899                         error->plane[i].addr = I915_READ(DSPADDR(i));
15900                 if (INTEL_GEN(dev_priv) >= 4) {
15901                         error->plane[i].surface = I915_READ(DSPSURF(i));
15902                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15903                 }
15904
15905                 error->pipe[i].source = I915_READ(PIPESRC(i));
15906
15907                 if (HAS_GMCH_DISPLAY(dev_priv))
15908                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15909         }
15910
15911         /* Note: this does not include DSI transcoders. */
15912         error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
15913         if (HAS_DDI(dev_priv))
15914                 error->num_transcoders++; /* Account for eDP. */
15915
15916         for (i = 0; i < error->num_transcoders; i++) {
15917                 enum transcoder cpu_transcoder = transcoders[i];
15918
15919                 error->transcoder[i].power_domain_on =
15920                         __intel_display_power_is_enabled(dev_priv,
15921                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15922                 if (!error->transcoder[i].power_domain_on)
15923                         continue;
15924
15925                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15926
15927                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15928                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15929                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15930                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15931                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15932                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15933                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15934         }
15935
15936         return error;
15937 }
15938
15939 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15940
15941 void
15942 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15943                                 struct intel_display_error_state *error)
15944 {
15945         struct drm_i915_private *dev_priv = m->i915;
15946         int i;
15947
15948         if (!error)
15949                 return;
15950
15951         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
15952         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15953                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15954                            error->power_well_driver);
15955         for_each_pipe(dev_priv, i) {
15956                 err_printf(m, "Pipe [%d]:\n", i);
15957                 err_printf(m, "  Power: %s\n",
15958                            onoff(error->pipe[i].power_domain_on));
15959                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15960                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15961
15962                 err_printf(m, "Plane [%d]:\n", i);
15963                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15964                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15965                 if (INTEL_GEN(dev_priv) <= 3) {
15966                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15967                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15968                 }
15969                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15970                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15971                 if (INTEL_GEN(dev_priv) >= 4) {
15972                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15973                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15974                 }
15975
15976                 err_printf(m, "Cursor [%d]:\n", i);
15977                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15978                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15979                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15980         }
15981
15982         for (i = 0; i < error->num_transcoders; i++) {
15983                 err_printf(m, "CPU transcoder: %s\n",
15984                            transcoder_name(error->transcoder[i].cpu_transcoder));
15985                 err_printf(m, "  Power: %s\n",
15986                            onoff(error->transcoder[i].power_domain_on));
15987                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15988                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15989                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15990                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15991                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15992                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15993                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15994         }
15995 }
15996
15997 #endif