2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
33 #include "intel_drv.h"
36 #include "drm_dp_helper.h"
38 #include "drm_crtc_helper.h"
40 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
42 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
43 static void intel_update_watermarks(struct drm_device *dev);
44 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
67 #define INTEL_P2_NUM 2
68 typedef struct intel_limit intel_limit_t;
70 intel_range_t dot, vco, n, m, m1, m2, p, p1;
72 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
73 int, int, intel_clock_t *);
76 #define I8XX_DOT_MIN 25000
77 #define I8XX_DOT_MAX 350000
78 #define I8XX_VCO_MIN 930000
79 #define I8XX_VCO_MAX 1400000
83 #define I8XX_M_MAX 140
84 #define I8XX_M1_MIN 18
85 #define I8XX_M1_MAX 26
87 #define I8XX_M2_MAX 16
89 #define I8XX_P_MAX 128
91 #define I8XX_P1_MAX 33
92 #define I8XX_P1_LVDS_MIN 1
93 #define I8XX_P1_LVDS_MAX 6
94 #define I8XX_P2_SLOW 4
95 #define I8XX_P2_FAST 2
96 #define I8XX_P2_LVDS_SLOW 14
97 #define I8XX_P2_LVDS_FAST 7
98 #define I8XX_P2_SLOW_LIMIT 165000
100 #define I9XX_DOT_MIN 20000
101 #define I9XX_DOT_MAX 400000
102 #define I9XX_VCO_MIN 1400000
103 #define I9XX_VCO_MAX 2800000
104 #define PINEVIEW_VCO_MIN 1700000
105 #define PINEVIEW_VCO_MAX 3500000
108 /* Pineview's Ncounter is a ring counter */
109 #define PINEVIEW_N_MIN 3
110 #define PINEVIEW_N_MAX 6
111 #define I9XX_M_MIN 70
112 #define I9XX_M_MAX 120
113 #define PINEVIEW_M_MIN 2
114 #define PINEVIEW_M_MAX 256
115 #define I9XX_M1_MIN 10
116 #define I9XX_M1_MAX 22
117 #define I9XX_M2_MIN 5
118 #define I9XX_M2_MAX 9
119 /* Pineview M1 is reserved, and must be 0 */
120 #define PINEVIEW_M1_MIN 0
121 #define PINEVIEW_M1_MAX 0
122 #define PINEVIEW_M2_MIN 0
123 #define PINEVIEW_M2_MAX 254
124 #define I9XX_P_SDVO_DAC_MIN 5
125 #define I9XX_P_SDVO_DAC_MAX 80
126 #define I9XX_P_LVDS_MIN 7
127 #define I9XX_P_LVDS_MAX 98
128 #define PINEVIEW_P_LVDS_MIN 7
129 #define PINEVIEW_P_LVDS_MAX 112
130 #define I9XX_P1_MIN 1
131 #define I9XX_P1_MAX 8
132 #define I9XX_P2_SDVO_DAC_SLOW 10
133 #define I9XX_P2_SDVO_DAC_FAST 5
134 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
135 #define I9XX_P2_LVDS_SLOW 14
136 #define I9XX_P2_LVDS_FAST 7
137 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
139 /*The parameter is for SDVO on G4x platform*/
140 #define G4X_DOT_SDVO_MIN 25000
141 #define G4X_DOT_SDVO_MAX 270000
142 #define G4X_VCO_MIN 1750000
143 #define G4X_VCO_MAX 3500000
144 #define G4X_N_SDVO_MIN 1
145 #define G4X_N_SDVO_MAX 4
146 #define G4X_M_SDVO_MIN 104
147 #define G4X_M_SDVO_MAX 138
148 #define G4X_M1_SDVO_MIN 17
149 #define G4X_M1_SDVO_MAX 23
150 #define G4X_M2_SDVO_MIN 5
151 #define G4X_M2_SDVO_MAX 11
152 #define G4X_P_SDVO_MIN 10
153 #define G4X_P_SDVO_MAX 30
154 #define G4X_P1_SDVO_MIN 1
155 #define G4X_P1_SDVO_MAX 3
156 #define G4X_P2_SDVO_SLOW 10
157 #define G4X_P2_SDVO_FAST 10
158 #define G4X_P2_SDVO_LIMIT 270000
160 /*The parameter is for HDMI_DAC on G4x platform*/
161 #define G4X_DOT_HDMI_DAC_MIN 22000
162 #define G4X_DOT_HDMI_DAC_MAX 400000
163 #define G4X_N_HDMI_DAC_MIN 1
164 #define G4X_N_HDMI_DAC_MAX 4
165 #define G4X_M_HDMI_DAC_MIN 104
166 #define G4X_M_HDMI_DAC_MAX 138
167 #define G4X_M1_HDMI_DAC_MIN 16
168 #define G4X_M1_HDMI_DAC_MAX 23
169 #define G4X_M2_HDMI_DAC_MIN 5
170 #define G4X_M2_HDMI_DAC_MAX 11
171 #define G4X_P_HDMI_DAC_MIN 5
172 #define G4X_P_HDMI_DAC_MAX 80
173 #define G4X_P1_HDMI_DAC_MIN 1
174 #define G4X_P1_HDMI_DAC_MAX 8
175 #define G4X_P2_HDMI_DAC_SLOW 10
176 #define G4X_P2_HDMI_DAC_FAST 5
177 #define G4X_P2_HDMI_DAC_LIMIT 165000
179 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
180 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
182 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
184 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
186 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
188 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
190 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
192 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
194 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
198 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
199 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
201 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
202 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
203 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
204 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
205 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
207 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
209 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
210 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
211 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
213 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
214 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
217 /*The parameter is for DISPLAY PORT on G4x platform*/
218 #define G4X_DOT_DISPLAY_PORT_MIN 161670
219 #define G4X_DOT_DISPLAY_PORT_MAX 227000
220 #define G4X_N_DISPLAY_PORT_MIN 1
221 #define G4X_N_DISPLAY_PORT_MAX 2
222 #define G4X_M_DISPLAY_PORT_MIN 97
223 #define G4X_M_DISPLAY_PORT_MAX 108
224 #define G4X_M1_DISPLAY_PORT_MIN 0x10
225 #define G4X_M1_DISPLAY_PORT_MAX 0x12
226 #define G4X_M2_DISPLAY_PORT_MIN 0x05
227 #define G4X_M2_DISPLAY_PORT_MAX 0x06
228 #define G4X_P_DISPLAY_PORT_MIN 10
229 #define G4X_P_DISPLAY_PORT_MAX 20
230 #define G4X_P1_DISPLAY_PORT_MIN 1
231 #define G4X_P1_DISPLAY_PORT_MAX 2
232 #define G4X_P2_DISPLAY_PORT_SLOW 10
233 #define G4X_P2_DISPLAY_PORT_FAST 10
234 #define G4X_P2_DISPLAY_PORT_LIMIT 0
236 /* Ironlake / Sandybridge */
237 /* as we calculate clock using (register_value + 2) for
238 N/M1/M2, so here the range value for them is (actual_value-2).
240 #define IRONLAKE_DOT_MIN 25000
241 #define IRONLAKE_DOT_MAX 350000
242 #define IRONLAKE_VCO_MIN 1760000
243 #define IRONLAKE_VCO_MAX 3510000
244 #define IRONLAKE_M1_MIN 12
245 #define IRONLAKE_M1_MAX 22
246 #define IRONLAKE_M2_MIN 5
247 #define IRONLAKE_M2_MAX 9
248 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
250 /* We have parameter ranges for different type of outputs. */
252 /* DAC & HDMI Refclk 120Mhz */
253 #define IRONLAKE_DAC_N_MIN 1
254 #define IRONLAKE_DAC_N_MAX 5
255 #define IRONLAKE_DAC_M_MIN 79
256 #define IRONLAKE_DAC_M_MAX 127
257 #define IRONLAKE_DAC_P_MIN 5
258 #define IRONLAKE_DAC_P_MAX 80
259 #define IRONLAKE_DAC_P1_MIN 1
260 #define IRONLAKE_DAC_P1_MAX 8
261 #define IRONLAKE_DAC_P2_SLOW 10
262 #define IRONLAKE_DAC_P2_FAST 5
264 /* LVDS single-channel 120Mhz refclk */
265 #define IRONLAKE_LVDS_S_N_MIN 1
266 #define IRONLAKE_LVDS_S_N_MAX 3
267 #define IRONLAKE_LVDS_S_M_MIN 79
268 #define IRONLAKE_LVDS_S_M_MAX 118
269 #define IRONLAKE_LVDS_S_P_MIN 28
270 #define IRONLAKE_LVDS_S_P_MAX 112
271 #define IRONLAKE_LVDS_S_P1_MIN 2
272 #define IRONLAKE_LVDS_S_P1_MAX 8
273 #define IRONLAKE_LVDS_S_P2_SLOW 14
274 #define IRONLAKE_LVDS_S_P2_FAST 14
276 /* LVDS dual-channel 120Mhz refclk */
277 #define IRONLAKE_LVDS_D_N_MIN 1
278 #define IRONLAKE_LVDS_D_N_MAX 3
279 #define IRONLAKE_LVDS_D_M_MIN 79
280 #define IRONLAKE_LVDS_D_M_MAX 127
281 #define IRONLAKE_LVDS_D_P_MIN 14
282 #define IRONLAKE_LVDS_D_P_MAX 56
283 #define IRONLAKE_LVDS_D_P1_MIN 2
284 #define IRONLAKE_LVDS_D_P1_MAX 8
285 #define IRONLAKE_LVDS_D_P2_SLOW 7
286 #define IRONLAKE_LVDS_D_P2_FAST 7
288 /* LVDS single-channel 100Mhz refclk */
289 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
290 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
291 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
292 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
293 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
294 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
295 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
296 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
297 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
298 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
300 /* LVDS dual-channel 100Mhz refclk */
301 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
302 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
303 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
304 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
305 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
306 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
307 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
308 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
309 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
310 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
313 #define IRONLAKE_DP_N_MIN 1
314 #define IRONLAKE_DP_N_MAX 2
315 #define IRONLAKE_DP_M_MIN 81
316 #define IRONLAKE_DP_M_MAX 90
317 #define IRONLAKE_DP_P_MIN 10
318 #define IRONLAKE_DP_P_MAX 20
319 #define IRONLAKE_DP_P2_FAST 10
320 #define IRONLAKE_DP_P2_SLOW 10
321 #define IRONLAKE_DP_P2_LIMIT 0
322 #define IRONLAKE_DP_P1_MIN 1
323 #define IRONLAKE_DP_P1_MAX 2
326 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
327 int target, int refclk, intel_clock_t *best_clock);
329 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
330 int target, int refclk, intel_clock_t *best_clock);
333 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
334 int target, int refclk, intel_clock_t *best_clock);
336 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
337 int target, int refclk, intel_clock_t *best_clock);
339 static const intel_limit_t intel_limits_i8xx_dvo = {
340 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
341 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
342 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
343 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
344 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
345 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
346 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
347 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
348 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
349 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
350 .find_pll = intel_find_best_PLL,
353 static const intel_limit_t intel_limits_i8xx_lvds = {
354 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
355 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
356 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
357 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
358 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
359 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
360 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
361 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
362 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
363 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
364 .find_pll = intel_find_best_PLL,
367 static const intel_limit_t intel_limits_i9xx_sdvo = {
368 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
369 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
370 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
371 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
372 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
373 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
374 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
375 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
376 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
377 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
378 .find_pll = intel_find_best_PLL,
381 static const intel_limit_t intel_limits_i9xx_lvds = {
382 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
383 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
384 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
385 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
386 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
387 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
388 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
389 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
390 /* The single-channel range is 25-112Mhz, and dual-channel
391 * is 80-224Mhz. Prefer single channel as much as possible.
393 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
394 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
395 .find_pll = intel_find_best_PLL,
398 /* below parameter and function is for G4X Chipset Family*/
399 static const intel_limit_t intel_limits_g4x_sdvo = {
400 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
401 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
402 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
403 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
404 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
405 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
406 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
407 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
408 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
409 .p2_slow = G4X_P2_SDVO_SLOW,
410 .p2_fast = G4X_P2_SDVO_FAST
412 .find_pll = intel_g4x_find_best_PLL,
415 static const intel_limit_t intel_limits_g4x_hdmi = {
416 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
417 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
418 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
419 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
420 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
421 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
422 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
423 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
424 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
425 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
426 .p2_fast = G4X_P2_HDMI_DAC_FAST
428 .find_pll = intel_g4x_find_best_PLL,
431 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
432 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
433 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
434 .vco = { .min = G4X_VCO_MIN,
435 .max = G4X_VCO_MAX },
436 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
437 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
438 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
439 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
440 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
441 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
442 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
443 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
444 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
445 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
446 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
447 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
448 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
449 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
450 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
452 .find_pll = intel_g4x_find_best_PLL,
455 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
456 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
457 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
458 .vco = { .min = G4X_VCO_MIN,
459 .max = G4X_VCO_MAX },
460 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
461 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
462 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
463 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
464 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
465 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
466 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
467 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
468 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
469 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
470 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
471 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
472 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
473 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
474 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
476 .find_pll = intel_g4x_find_best_PLL,
479 static const intel_limit_t intel_limits_g4x_display_port = {
480 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
481 .max = G4X_DOT_DISPLAY_PORT_MAX },
482 .vco = { .min = G4X_VCO_MIN,
484 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
485 .max = G4X_N_DISPLAY_PORT_MAX },
486 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
487 .max = G4X_M_DISPLAY_PORT_MAX },
488 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
489 .max = G4X_M1_DISPLAY_PORT_MAX },
490 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
491 .max = G4X_M2_DISPLAY_PORT_MAX },
492 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
493 .max = G4X_P_DISPLAY_PORT_MAX },
494 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
495 .max = G4X_P1_DISPLAY_PORT_MAX},
496 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
497 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
498 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
499 .find_pll = intel_find_pll_g4x_dp,
502 static const intel_limit_t intel_limits_pineview_sdvo = {
503 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
504 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
505 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
506 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
507 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
508 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
509 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
510 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
511 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
512 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
513 .find_pll = intel_find_best_PLL,
516 static const intel_limit_t intel_limits_pineview_lvds = {
517 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
518 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
519 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
520 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
521 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
522 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
523 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
524 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
525 /* Pineview only supports single-channel mode. */
526 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
527 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
528 .find_pll = intel_find_best_PLL,
531 static const intel_limit_t intel_limits_ironlake_dac = {
532 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
533 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
534 .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
535 .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
536 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
537 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
538 .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
539 .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
540 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
541 .p2_slow = IRONLAKE_DAC_P2_SLOW,
542 .p2_fast = IRONLAKE_DAC_P2_FAST },
543 .find_pll = intel_g4x_find_best_PLL,
546 static const intel_limit_t intel_limits_ironlake_single_lvds = {
547 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
548 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
549 .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
550 .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
551 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
552 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
553 .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
554 .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
555 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
556 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
557 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
558 .find_pll = intel_g4x_find_best_PLL,
561 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
562 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
563 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
564 .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
565 .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
566 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
567 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
568 .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
569 .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
570 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
571 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
572 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
573 .find_pll = intel_g4x_find_best_PLL,
576 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
577 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
578 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
579 .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
580 .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
581 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
582 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
583 .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
584 .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
585 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
586 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
587 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
588 .find_pll = intel_g4x_find_best_PLL,
591 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
592 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
593 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
594 .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
595 .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
596 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
597 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
598 .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
599 .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
600 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
601 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
602 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
603 .find_pll = intel_g4x_find_best_PLL,
606 static const intel_limit_t intel_limits_ironlake_display_port = {
607 .dot = { .min = IRONLAKE_DOT_MIN,
608 .max = IRONLAKE_DOT_MAX },
609 .vco = { .min = IRONLAKE_VCO_MIN,
610 .max = IRONLAKE_VCO_MAX},
611 .n = { .min = IRONLAKE_DP_N_MIN,
612 .max = IRONLAKE_DP_N_MAX },
613 .m = { .min = IRONLAKE_DP_M_MIN,
614 .max = IRONLAKE_DP_M_MAX },
615 .m1 = { .min = IRONLAKE_M1_MIN,
616 .max = IRONLAKE_M1_MAX },
617 .m2 = { .min = IRONLAKE_M2_MIN,
618 .max = IRONLAKE_M2_MAX },
619 .p = { .min = IRONLAKE_DP_P_MIN,
620 .max = IRONLAKE_DP_P_MAX },
621 .p1 = { .min = IRONLAKE_DP_P1_MIN,
622 .max = IRONLAKE_DP_P1_MAX},
623 .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
624 .p2_slow = IRONLAKE_DP_P2_SLOW,
625 .p2_fast = IRONLAKE_DP_P2_FAST },
626 .find_pll = intel_find_pll_ironlake_dp,
629 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
631 struct drm_device *dev = crtc->dev;
632 struct drm_i915_private *dev_priv = dev->dev_private;
633 const intel_limit_t *limit;
636 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
637 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
640 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
641 LVDS_CLKB_POWER_UP) {
642 /* LVDS dual channel */
644 limit = &intel_limits_ironlake_dual_lvds_100m;
646 limit = &intel_limits_ironlake_dual_lvds;
649 limit = &intel_limits_ironlake_single_lvds_100m;
651 limit = &intel_limits_ironlake_single_lvds;
653 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
655 limit = &intel_limits_ironlake_display_port;
657 limit = &intel_limits_ironlake_dac;
662 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
664 struct drm_device *dev = crtc->dev;
665 struct drm_i915_private *dev_priv = dev->dev_private;
666 const intel_limit_t *limit;
668 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
669 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
671 /* LVDS with dual channel */
672 limit = &intel_limits_g4x_dual_channel_lvds;
674 /* LVDS with dual channel */
675 limit = &intel_limits_g4x_single_channel_lvds;
676 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
677 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
678 limit = &intel_limits_g4x_hdmi;
679 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
680 limit = &intel_limits_g4x_sdvo;
681 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
682 limit = &intel_limits_g4x_display_port;
683 } else /* The option is for other outputs */
684 limit = &intel_limits_i9xx_sdvo;
689 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
691 struct drm_device *dev = crtc->dev;
692 const intel_limit_t *limit;
694 if (HAS_PCH_SPLIT(dev))
695 limit = intel_ironlake_limit(crtc);
696 else if (IS_G4X(dev)) {
697 limit = intel_g4x_limit(crtc);
698 } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
699 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
700 limit = &intel_limits_i9xx_lvds;
702 limit = &intel_limits_i9xx_sdvo;
703 } else if (IS_PINEVIEW(dev)) {
704 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
705 limit = &intel_limits_pineview_lvds;
707 limit = &intel_limits_pineview_sdvo;
709 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
710 limit = &intel_limits_i8xx_lvds;
712 limit = &intel_limits_i8xx_dvo;
717 /* m1 is reserved as 0 in Pineview, n is a ring counter */
718 static void pineview_clock(int refclk, intel_clock_t *clock)
720 clock->m = clock->m2 + 2;
721 clock->p = clock->p1 * clock->p2;
722 clock->vco = refclk * clock->m / clock->n;
723 clock->dot = clock->vco / clock->p;
726 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
728 if (IS_PINEVIEW(dev)) {
729 pineview_clock(refclk, clock);
732 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
733 clock->p = clock->p1 * clock->p2;
734 clock->vco = refclk * clock->m / (clock->n + 2);
735 clock->dot = clock->vco / clock->p;
739 * Returns whether any output on the specified pipe is of the specified type
741 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
743 struct drm_device *dev = crtc->dev;
744 struct drm_mode_config *mode_config = &dev->mode_config;
745 struct drm_encoder *l_entry;
747 list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
748 if (l_entry && l_entry->crtc == crtc) {
749 struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
750 if (intel_encoder->type == type)
757 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
759 * Returns whether the given set of divisors are valid for a given refclk with
760 * the given connectors.
763 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
765 const intel_limit_t *limit = intel_limit (crtc);
766 struct drm_device *dev = crtc->dev;
768 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
769 INTELPllInvalid ("p1 out of range\n");
770 if (clock->p < limit->p.min || limit->p.max < clock->p)
771 INTELPllInvalid ("p out of range\n");
772 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
773 INTELPllInvalid ("m2 out of range\n");
774 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
775 INTELPllInvalid ("m1 out of range\n");
776 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
777 INTELPllInvalid ("m1 <= m2\n");
778 if (clock->m < limit->m.min || limit->m.max < clock->m)
779 INTELPllInvalid ("m out of range\n");
780 if (clock->n < limit->n.min || limit->n.max < clock->n)
781 INTELPllInvalid ("n out of range\n");
782 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
783 INTELPllInvalid ("vco out of range\n");
784 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
785 * connector, etc., rather than just a single range.
787 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
788 INTELPllInvalid ("dot out of range\n");
794 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
795 int target, int refclk, intel_clock_t *best_clock)
798 struct drm_device *dev = crtc->dev;
799 struct drm_i915_private *dev_priv = dev->dev_private;
803 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
804 (I915_READ(LVDS)) != 0) {
806 * For LVDS, if the panel is on, just rely on its current
807 * settings for dual-channel. We haven't figured out how to
808 * reliably set up different single/dual channel state, if we
811 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
813 clock.p2 = limit->p2.p2_fast;
815 clock.p2 = limit->p2.p2_slow;
817 if (target < limit->p2.dot_limit)
818 clock.p2 = limit->p2.p2_slow;
820 clock.p2 = limit->p2.p2_fast;
823 memset (best_clock, 0, sizeof (*best_clock));
825 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
827 for (clock.m2 = limit->m2.min;
828 clock.m2 <= limit->m2.max; clock.m2++) {
829 /* m1 is always 0 in Pineview */
830 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
832 for (clock.n = limit->n.min;
833 clock.n <= limit->n.max; clock.n++) {
834 for (clock.p1 = limit->p1.min;
835 clock.p1 <= limit->p1.max; clock.p1++) {
838 intel_clock(dev, refclk, &clock);
840 if (!intel_PLL_is_valid(crtc, &clock))
843 this_err = abs(clock.dot - target);
844 if (this_err < err) {
853 return (err != target);
857 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
858 int target, int refclk, intel_clock_t *best_clock)
860 struct drm_device *dev = crtc->dev;
861 struct drm_i915_private *dev_priv = dev->dev_private;
865 /* approximately equals target * 0.00488 */
866 int err_most = (target >> 8) + (target >> 10);
869 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
872 if (HAS_PCH_SPLIT(dev))
876 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
878 clock.p2 = limit->p2.p2_fast;
880 clock.p2 = limit->p2.p2_slow;
882 if (target < limit->p2.dot_limit)
883 clock.p2 = limit->p2.p2_slow;
885 clock.p2 = limit->p2.p2_fast;
888 memset(best_clock, 0, sizeof(*best_clock));
889 max_n = limit->n.max;
890 /* based on hardware requirement, prefer smaller n to precision */
891 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
892 /* based on hardware requirement, prefere larger m1,m2 */
893 for (clock.m1 = limit->m1.max;
894 clock.m1 >= limit->m1.min; clock.m1--) {
895 for (clock.m2 = limit->m2.max;
896 clock.m2 >= limit->m2.min; clock.m2--) {
897 for (clock.p1 = limit->p1.max;
898 clock.p1 >= limit->p1.min; clock.p1--) {
901 intel_clock(dev, refclk, &clock);
902 if (!intel_PLL_is_valid(crtc, &clock))
904 this_err = abs(clock.dot - target) ;
905 if (this_err < err_most) {
919 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
920 int target, int refclk, intel_clock_t *best_clock)
922 struct drm_device *dev = crtc->dev;
925 /* return directly when it is eDP */
929 if (target < 200000) {
942 intel_clock(dev, refclk, &clock);
943 memcpy(best_clock, &clock, sizeof(intel_clock_t));
947 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
949 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
950 int target, int refclk, intel_clock_t *best_clock)
953 if (target < 200000) {
966 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
967 clock.p = (clock.p1 * clock.p2);
968 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
970 memcpy(best_clock, &clock, sizeof(intel_clock_t));
975 intel_wait_for_vblank(struct drm_device *dev)
977 /* Wait for 20ms, i.e. one cycle at 50hz. */
981 /* Parameters have changed, update FBC info */
982 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
984 struct drm_device *dev = crtc->dev;
985 struct drm_i915_private *dev_priv = dev->dev_private;
986 struct drm_framebuffer *fb = crtc->fb;
987 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
988 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
989 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
991 u32 fbc_ctl, fbc_ctl2;
993 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
995 if (fb->pitch < dev_priv->cfb_pitch)
996 dev_priv->cfb_pitch = fb->pitch;
998 /* FBC_CTL wants 64B units */
999 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1000 dev_priv->cfb_fence = obj_priv->fence_reg;
1001 dev_priv->cfb_plane = intel_crtc->plane;
1002 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1004 /* Clear old tags */
1005 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1006 I915_WRITE(FBC_TAG + (i * 4), 0);
1009 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1010 if (obj_priv->tiling_mode != I915_TILING_NONE)
1011 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1012 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1013 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1016 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1018 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1019 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1020 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1021 if (obj_priv->tiling_mode != I915_TILING_NONE)
1022 fbc_ctl |= dev_priv->cfb_fence;
1023 I915_WRITE(FBC_CONTROL, fbc_ctl);
1025 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1026 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1029 void i8xx_disable_fbc(struct drm_device *dev)
1031 struct drm_i915_private *dev_priv = dev->dev_private;
1032 unsigned long timeout = jiffies + msecs_to_jiffies(1);
1035 if (!I915_HAS_FBC(dev))
1038 if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
1039 return; /* Already off, just return */
1041 /* Disable compression */
1042 fbc_ctl = I915_READ(FBC_CONTROL);
1043 fbc_ctl &= ~FBC_CTL_EN;
1044 I915_WRITE(FBC_CONTROL, fbc_ctl);
1046 /* Wait for compressing bit to clear */
1047 while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) {
1048 if (time_after(jiffies, timeout)) {
1049 DRM_DEBUG_DRIVER("FBC idle timed out\n");
1055 intel_wait_for_vblank(dev);
1057 DRM_DEBUG_KMS("disabled FBC\n");
1060 static bool i8xx_fbc_enabled(struct drm_device *dev)
1062 struct drm_i915_private *dev_priv = dev->dev_private;
1064 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1067 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1069 struct drm_device *dev = crtc->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 struct drm_framebuffer *fb = crtc->fb;
1072 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1073 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1074 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1075 int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1077 unsigned long stall_watermark = 200;
1080 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1081 dev_priv->cfb_fence = obj_priv->fence_reg;
1082 dev_priv->cfb_plane = intel_crtc->plane;
1084 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1085 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1086 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1087 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1089 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1092 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1093 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1094 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1095 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1096 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1099 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1101 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1104 void g4x_disable_fbc(struct drm_device *dev)
1106 struct drm_i915_private *dev_priv = dev->dev_private;
1109 /* Disable compression */
1110 dpfc_ctl = I915_READ(DPFC_CONTROL);
1111 dpfc_ctl &= ~DPFC_CTL_EN;
1112 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1113 intel_wait_for_vblank(dev);
1115 DRM_DEBUG_KMS("disabled FBC\n");
1118 static bool g4x_fbc_enabled(struct drm_device *dev)
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1122 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1125 bool intel_fbc_enabled(struct drm_device *dev)
1127 struct drm_i915_private *dev_priv = dev->dev_private;
1129 if (!dev_priv->display.fbc_enabled)
1132 return dev_priv->display.fbc_enabled(dev);
1135 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1137 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1139 if (!dev_priv->display.enable_fbc)
1142 dev_priv->display.enable_fbc(crtc, interval);
1145 void intel_disable_fbc(struct drm_device *dev)
1147 struct drm_i915_private *dev_priv = dev->dev_private;
1149 if (!dev_priv->display.disable_fbc)
1152 dev_priv->display.disable_fbc(dev);
1156 * intel_update_fbc - enable/disable FBC as needed
1157 * @crtc: CRTC to point the compressor at
1158 * @mode: mode in use
1160 * Set up the framebuffer compression hardware at mode set time. We
1161 * enable it if possible:
1162 * - plane A only (on pre-965)
1163 * - no pixel mulitply/line duplication
1164 * - no alpha buffer discard
1166 * - framebuffer <= 2048 in width, 1536 in height
1168 * We can't assume that any compression will take place (worst case),
1169 * so the compressed buffer has to be the same size as the uncompressed
1170 * one. It also must reside (along with the line length buffer) in
1173 * We need to enable/disable FBC on a global basis.
1175 static void intel_update_fbc(struct drm_crtc *crtc,
1176 struct drm_display_mode *mode)
1178 struct drm_device *dev = crtc->dev;
1179 struct drm_i915_private *dev_priv = dev->dev_private;
1180 struct drm_framebuffer *fb = crtc->fb;
1181 struct intel_framebuffer *intel_fb;
1182 struct drm_i915_gem_object *obj_priv;
1183 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1184 int plane = intel_crtc->plane;
1186 if (!i915_powersave)
1189 if (!I915_HAS_FBC(dev))
1195 intel_fb = to_intel_framebuffer(fb);
1196 obj_priv = to_intel_bo(intel_fb->obj);
1199 * If FBC is already on, we just have to verify that we can
1200 * keep it that way...
1201 * Need to disable if:
1202 * - changing FBC params (stride, fence, mode)
1203 * - new fb is too large to fit in compressed buffer
1204 * - going to an unsupported config (interlace, pixel multiply, etc.)
1206 if (intel_fb->obj->size > dev_priv->cfb_size) {
1207 DRM_DEBUG_KMS("framebuffer too large, disabling "
1209 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1212 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1213 (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1214 DRM_DEBUG_KMS("mode incompatible with compression, "
1216 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1219 if ((mode->hdisplay > 2048) ||
1220 (mode->vdisplay > 1536)) {
1221 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1222 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1225 if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1226 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1227 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1230 if (obj_priv->tiling_mode != I915_TILING_X) {
1231 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1232 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1236 if (intel_fbc_enabled(dev)) {
1237 /* We can re-enable it in this case, but need to update pitch */
1238 if ((fb->pitch > dev_priv->cfb_pitch) ||
1239 (obj_priv->fence_reg != dev_priv->cfb_fence) ||
1240 (plane != dev_priv->cfb_plane))
1241 intel_disable_fbc(dev);
1244 /* Now try to turn it back on if possible */
1245 if (!intel_fbc_enabled(dev))
1246 intel_enable_fbc(crtc, 500);
1251 /* Multiple disables should be harmless */
1252 if (intel_fbc_enabled(dev)) {
1253 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1254 intel_disable_fbc(dev);
1259 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1261 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1265 switch (obj_priv->tiling_mode) {
1266 case I915_TILING_NONE:
1267 alignment = 64 * 1024;
1270 /* pin() will align the object as required by fence */
1274 /* FIXME: Is this true? */
1275 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1281 ret = i915_gem_object_pin(obj, alignment);
1285 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1286 * fence, whereas 965+ only requires a fence if using
1287 * framebuffer compression. For simplicity, we always install
1288 * a fence as the cost is not that onerous.
1290 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1291 obj_priv->tiling_mode != I915_TILING_NONE) {
1292 ret = i915_gem_object_get_fence_reg(obj);
1294 i915_gem_object_unpin(obj);
1303 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1304 struct drm_framebuffer *old_fb)
1306 struct drm_device *dev = crtc->dev;
1307 struct drm_i915_private *dev_priv = dev->dev_private;
1308 struct drm_i915_master_private *master_priv;
1309 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1310 struct intel_framebuffer *intel_fb;
1311 struct drm_i915_gem_object *obj_priv;
1312 struct drm_gem_object *obj;
1313 int pipe = intel_crtc->pipe;
1314 int plane = intel_crtc->plane;
1315 unsigned long Start, Offset;
1316 int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1317 int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1318 int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1319 int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1320 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1326 DRM_DEBUG_KMS("No FB bound\n");
1335 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1339 intel_fb = to_intel_framebuffer(crtc->fb);
1340 obj = intel_fb->obj;
1341 obj_priv = to_intel_bo(obj);
1343 mutex_lock(&dev->struct_mutex);
1344 ret = intel_pin_and_fence_fb_obj(dev, obj);
1346 mutex_unlock(&dev->struct_mutex);
1350 ret = i915_gem_object_set_to_display_plane(obj);
1352 i915_gem_object_unpin(obj);
1353 mutex_unlock(&dev->struct_mutex);
1357 dspcntr = I915_READ(dspcntr_reg);
1358 /* Mask out pixel format bits in case we change it */
1359 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1360 switch (crtc->fb->bits_per_pixel) {
1362 dspcntr |= DISPPLANE_8BPP;
1365 if (crtc->fb->depth == 15)
1366 dspcntr |= DISPPLANE_15_16BPP;
1368 dspcntr |= DISPPLANE_16BPP;
1372 if (crtc->fb->depth == 30)
1373 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1375 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1378 DRM_ERROR("Unknown color depth\n");
1379 i915_gem_object_unpin(obj);
1380 mutex_unlock(&dev->struct_mutex);
1383 if (IS_I965G(dev)) {
1384 if (obj_priv->tiling_mode != I915_TILING_NONE)
1385 dspcntr |= DISPPLANE_TILED;
1387 dspcntr &= ~DISPPLANE_TILED;
1390 if (HAS_PCH_SPLIT(dev))
1392 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1394 I915_WRITE(dspcntr_reg, dspcntr);
1396 Start = obj_priv->gtt_offset;
1397 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1399 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1400 Start, Offset, x, y, crtc->fb->pitch);
1401 I915_WRITE(dspstride, crtc->fb->pitch);
1402 if (IS_I965G(dev)) {
1403 I915_WRITE(dspbase, Offset);
1405 I915_WRITE(dspsurf, Start);
1407 I915_WRITE(dsptileoff, (y << 16) | x);
1409 I915_WRITE(dspbase, Start + Offset);
1413 if ((IS_I965G(dev) || plane == 0))
1414 intel_update_fbc(crtc, &crtc->mode);
1416 intel_wait_for_vblank(dev);
1419 intel_fb = to_intel_framebuffer(old_fb);
1420 obj_priv = to_intel_bo(intel_fb->obj);
1421 i915_gem_object_unpin(intel_fb->obj);
1423 intel_increase_pllclock(crtc, true);
1425 mutex_unlock(&dev->struct_mutex);
1427 if (!dev->primary->master)
1430 master_priv = dev->primary->master->driver_priv;
1431 if (!master_priv->sarea_priv)
1435 master_priv->sarea_priv->pipeB_x = x;
1436 master_priv->sarea_priv->pipeB_y = y;
1438 master_priv->sarea_priv->pipeA_x = x;
1439 master_priv->sarea_priv->pipeA_y = y;
1445 /* Disable the VGA plane that we never use */
1446 static void i915_disable_vga (struct drm_device *dev)
1448 struct drm_i915_private *dev_priv = dev->dev_private;
1452 if (HAS_PCH_SPLIT(dev))
1453 vga_reg = CPU_VGACNTRL;
1457 if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1460 I915_WRITE8(VGA_SR_INDEX, 1);
1461 sr1 = I915_READ8(VGA_SR_DATA);
1462 I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1465 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1468 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1470 struct drm_device *dev = crtc->dev;
1471 struct drm_i915_private *dev_priv = dev->dev_private;
1474 DRM_DEBUG_KMS("\n");
1475 dpa_ctl = I915_READ(DP_A);
1476 dpa_ctl &= ~DP_PLL_ENABLE;
1477 I915_WRITE(DP_A, dpa_ctl);
1480 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1482 struct drm_device *dev = crtc->dev;
1483 struct drm_i915_private *dev_priv = dev->dev_private;
1486 dpa_ctl = I915_READ(DP_A);
1487 dpa_ctl |= DP_PLL_ENABLE;
1488 I915_WRITE(DP_A, dpa_ctl);
1493 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1495 struct drm_device *dev = crtc->dev;
1496 struct drm_i915_private *dev_priv = dev->dev_private;
1499 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1500 dpa_ctl = I915_READ(DP_A);
1501 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1503 if (clock < 200000) {
1505 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1506 /* workaround for 160Mhz:
1507 1) program 0x4600c bits 15:0 = 0x8124
1508 2) program 0x46010 bit 0 = 1
1509 3) program 0x46034 bit 24 = 1
1510 4) program 0x64000 bit 14 = 1
1512 temp = I915_READ(0x4600c);
1514 I915_WRITE(0x4600c, temp | 0x8124);
1516 temp = I915_READ(0x46010);
1517 I915_WRITE(0x46010, temp | 1);
1519 temp = I915_READ(0x46034);
1520 I915_WRITE(0x46034, temp | (1 << 24));
1522 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1524 I915_WRITE(DP_A, dpa_ctl);
1529 /* The FDI link training functions for ILK/Ibexpeak. */
1530 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1532 struct drm_device *dev = crtc->dev;
1533 struct drm_i915_private *dev_priv = dev->dev_private;
1534 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1535 int pipe = intel_crtc->pipe;
1536 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1537 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1538 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1539 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1540 u32 temp, tries = 0;
1542 /* enable CPU FDI TX and PCH FDI RX */
1543 temp = I915_READ(fdi_tx_reg);
1544 temp |= FDI_TX_ENABLE;
1546 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1547 temp &= ~FDI_LINK_TRAIN_NONE;
1548 temp |= FDI_LINK_TRAIN_PATTERN_1;
1549 I915_WRITE(fdi_tx_reg, temp);
1550 I915_READ(fdi_tx_reg);
1552 temp = I915_READ(fdi_rx_reg);
1553 temp &= ~FDI_LINK_TRAIN_NONE;
1554 temp |= FDI_LINK_TRAIN_PATTERN_1;
1555 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1556 I915_READ(fdi_rx_reg);
1559 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1561 temp = I915_READ(fdi_rx_imr_reg);
1562 temp &= ~FDI_RX_SYMBOL_LOCK;
1563 temp &= ~FDI_RX_BIT_LOCK;
1564 I915_WRITE(fdi_rx_imr_reg, temp);
1565 I915_READ(fdi_rx_imr_reg);
1569 temp = I915_READ(fdi_rx_iir_reg);
1570 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1572 if ((temp & FDI_RX_BIT_LOCK)) {
1573 DRM_DEBUG_KMS("FDI train 1 done.\n");
1574 I915_WRITE(fdi_rx_iir_reg,
1575 temp | FDI_RX_BIT_LOCK);
1582 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1588 temp = I915_READ(fdi_tx_reg);
1589 temp &= ~FDI_LINK_TRAIN_NONE;
1590 temp |= FDI_LINK_TRAIN_PATTERN_2;
1591 I915_WRITE(fdi_tx_reg, temp);
1593 temp = I915_READ(fdi_rx_reg);
1594 temp &= ~FDI_LINK_TRAIN_NONE;
1595 temp |= FDI_LINK_TRAIN_PATTERN_2;
1596 I915_WRITE(fdi_rx_reg, temp);
1602 temp = I915_READ(fdi_rx_iir_reg);
1603 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1605 if (temp & FDI_RX_SYMBOL_LOCK) {
1606 I915_WRITE(fdi_rx_iir_reg,
1607 temp | FDI_RX_SYMBOL_LOCK);
1608 DRM_DEBUG_KMS("FDI train 2 done.\n");
1615 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1620 DRM_DEBUG_KMS("FDI train done\n");
1623 static int snb_b_fdi_train_param [] = {
1624 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1625 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1626 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1627 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1630 /* The FDI link training functions for SNB/Cougarpoint. */
1631 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1633 struct drm_device *dev = crtc->dev;
1634 struct drm_i915_private *dev_priv = dev->dev_private;
1635 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1636 int pipe = intel_crtc->pipe;
1637 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1638 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1639 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1640 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1643 /* enable CPU FDI TX and PCH FDI RX */
1644 temp = I915_READ(fdi_tx_reg);
1645 temp |= FDI_TX_ENABLE;
1647 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1648 temp &= ~FDI_LINK_TRAIN_NONE;
1649 temp |= FDI_LINK_TRAIN_PATTERN_1;
1650 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1652 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1653 I915_WRITE(fdi_tx_reg, temp);
1654 I915_READ(fdi_tx_reg);
1656 temp = I915_READ(fdi_rx_reg);
1657 if (HAS_PCH_CPT(dev)) {
1658 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1659 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1661 temp &= ~FDI_LINK_TRAIN_NONE;
1662 temp |= FDI_LINK_TRAIN_PATTERN_1;
1664 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1665 I915_READ(fdi_rx_reg);
1668 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1670 temp = I915_READ(fdi_rx_imr_reg);
1671 temp &= ~FDI_RX_SYMBOL_LOCK;
1672 temp &= ~FDI_RX_BIT_LOCK;
1673 I915_WRITE(fdi_rx_imr_reg, temp);
1674 I915_READ(fdi_rx_imr_reg);
1677 for (i = 0; i < 4; i++ ) {
1678 temp = I915_READ(fdi_tx_reg);
1679 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1680 temp |= snb_b_fdi_train_param[i];
1681 I915_WRITE(fdi_tx_reg, temp);
1684 temp = I915_READ(fdi_rx_iir_reg);
1685 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1687 if (temp & FDI_RX_BIT_LOCK) {
1688 I915_WRITE(fdi_rx_iir_reg,
1689 temp | FDI_RX_BIT_LOCK);
1690 DRM_DEBUG_KMS("FDI train 1 done.\n");
1695 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1698 temp = I915_READ(fdi_tx_reg);
1699 temp &= ~FDI_LINK_TRAIN_NONE;
1700 temp |= FDI_LINK_TRAIN_PATTERN_2;
1702 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1704 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1706 I915_WRITE(fdi_tx_reg, temp);
1708 temp = I915_READ(fdi_rx_reg);
1709 if (HAS_PCH_CPT(dev)) {
1710 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1711 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1713 temp &= ~FDI_LINK_TRAIN_NONE;
1714 temp |= FDI_LINK_TRAIN_PATTERN_2;
1716 I915_WRITE(fdi_rx_reg, temp);
1719 for (i = 0; i < 4; i++ ) {
1720 temp = I915_READ(fdi_tx_reg);
1721 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1722 temp |= snb_b_fdi_train_param[i];
1723 I915_WRITE(fdi_tx_reg, temp);
1726 temp = I915_READ(fdi_rx_iir_reg);
1727 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1729 if (temp & FDI_RX_SYMBOL_LOCK) {
1730 I915_WRITE(fdi_rx_iir_reg,
1731 temp | FDI_RX_SYMBOL_LOCK);
1732 DRM_DEBUG_KMS("FDI train 2 done.\n");
1737 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1739 DRM_DEBUG_KMS("FDI train done.\n");
1742 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1744 struct drm_device *dev = crtc->dev;
1745 struct drm_i915_private *dev_priv = dev->dev_private;
1746 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1747 int pipe = intel_crtc->pipe;
1748 int plane = intel_crtc->plane;
1749 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1750 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1751 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1752 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1753 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1754 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1755 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1756 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1757 int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1758 int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1759 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1760 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1761 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1762 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1763 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1764 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1765 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1766 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1767 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1768 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1769 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1770 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1771 int trans_dpll_sel = (pipe == 0) ? 0 : 1;
1776 temp = I915_READ(pipeconf_reg);
1777 pipe_bpc = temp & PIPE_BPC_MASK;
1779 /* XXX: When our outputs are all unaware of DPMS modes other than off
1780 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1783 case DRM_MODE_DPMS_ON:
1784 case DRM_MODE_DPMS_STANDBY:
1785 case DRM_MODE_DPMS_SUSPEND:
1786 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1788 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1789 temp = I915_READ(PCH_LVDS);
1790 if ((temp & LVDS_PORT_EN) == 0) {
1791 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1792 POSTING_READ(PCH_LVDS);
1797 /* enable eDP PLL */
1798 ironlake_enable_pll_edp(crtc);
1801 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1802 temp = I915_READ(fdi_rx_reg);
1804 * make the BPC in FDI Rx be consistent with that in
1807 temp &= ~(0x7 << 16);
1808 temp |= (pipe_bpc << 11);
1810 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1811 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
1812 I915_READ(fdi_rx_reg);
1815 /* Switch from Rawclk to PCDclk */
1816 temp = I915_READ(fdi_rx_reg);
1817 I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
1818 I915_READ(fdi_rx_reg);
1821 /* Enable CPU FDI TX PLL, always on for Ironlake */
1822 temp = I915_READ(fdi_tx_reg);
1823 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1824 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1825 I915_READ(fdi_tx_reg);
1830 /* Enable panel fitting for LVDS */
1831 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1832 temp = I915_READ(pf_ctl_reg);
1833 I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1835 /* currently full aspect */
1836 I915_WRITE(pf_win_pos, 0);
1838 I915_WRITE(pf_win_size,
1839 (dev_priv->panel_fixed_mode->hdisplay << 16) |
1840 (dev_priv->panel_fixed_mode->vdisplay));
1843 /* Enable CPU pipe */
1844 temp = I915_READ(pipeconf_reg);
1845 if ((temp & PIPEACONF_ENABLE) == 0) {
1846 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1847 I915_READ(pipeconf_reg);
1851 /* configure and enable CPU plane */
1852 temp = I915_READ(dspcntr_reg);
1853 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1854 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1855 /* Flush the plane changes */
1856 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1860 /* For PCH output, training FDI link */
1862 gen6_fdi_link_train(crtc);
1864 ironlake_fdi_link_train(crtc);
1866 /* enable PCH DPLL */
1867 temp = I915_READ(pch_dpll_reg);
1868 if ((temp & DPLL_VCO_ENABLE) == 0) {
1869 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1870 I915_READ(pch_dpll_reg);
1874 if (HAS_PCH_CPT(dev)) {
1875 /* Be sure PCH DPLL SEL is set */
1876 temp = I915_READ(PCH_DPLL_SEL);
1877 if (trans_dpll_sel == 0 &&
1878 (temp & TRANSA_DPLL_ENABLE) == 0)
1879 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
1880 else if (trans_dpll_sel == 1 &&
1881 (temp & TRANSB_DPLL_ENABLE) == 0)
1882 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
1883 I915_WRITE(PCH_DPLL_SEL, temp);
1884 I915_READ(PCH_DPLL_SEL);
1887 /* set transcoder timing */
1888 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1889 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1890 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1892 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1893 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1894 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1896 /* enable normal train */
1897 temp = I915_READ(fdi_tx_reg);
1898 temp &= ~FDI_LINK_TRAIN_NONE;
1899 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1900 FDI_TX_ENHANCE_FRAME_ENABLE);
1901 I915_READ(fdi_tx_reg);
1903 temp = I915_READ(fdi_rx_reg);
1904 if (HAS_PCH_CPT(dev)) {
1905 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1906 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1908 temp &= ~FDI_LINK_TRAIN_NONE;
1909 temp |= FDI_LINK_TRAIN_NONE;
1911 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1912 I915_READ(fdi_rx_reg);
1914 /* wait one idle pattern time */
1917 /* For PCH DP, enable TRANS_DP_CTL */
1918 if (HAS_PCH_CPT(dev) &&
1919 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
1920 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
1923 reg = I915_READ(trans_dp_ctl);
1924 reg &= ~TRANS_DP_PORT_SEL_MASK;
1925 reg = TRANS_DP_OUTPUT_ENABLE |
1926 TRANS_DP_ENH_FRAMING |
1927 TRANS_DP_VSYNC_ACTIVE_HIGH |
1928 TRANS_DP_HSYNC_ACTIVE_HIGH;
1930 switch (intel_trans_dp_port_sel(crtc)) {
1932 reg |= TRANS_DP_PORT_SEL_B;
1935 reg |= TRANS_DP_PORT_SEL_C;
1938 reg |= TRANS_DP_PORT_SEL_D;
1941 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
1942 reg |= TRANS_DP_PORT_SEL_B;
1946 I915_WRITE(trans_dp_ctl, reg);
1947 POSTING_READ(trans_dp_ctl);
1950 /* enable PCH transcoder */
1951 temp = I915_READ(transconf_reg);
1953 * make the BPC in transcoder be consistent with
1954 * that in pipeconf reg.
1956 temp &= ~PIPE_BPC_MASK;
1958 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1959 I915_READ(transconf_reg);
1961 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1966 intel_crtc_load_lut(crtc);
1969 case DRM_MODE_DPMS_OFF:
1970 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
1972 drm_vblank_off(dev, pipe);
1973 /* Disable display plane */
1974 temp = I915_READ(dspcntr_reg);
1975 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1976 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1977 /* Flush the plane changes */
1978 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1979 I915_READ(dspbase_reg);
1982 i915_disable_vga(dev);
1984 /* disable cpu pipe, disable after all planes disabled */
1985 temp = I915_READ(pipeconf_reg);
1986 if ((temp & PIPEACONF_ENABLE) != 0) {
1987 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1988 I915_READ(pipeconf_reg);
1990 /* wait for cpu pipe off, pipe state */
1991 while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1997 DRM_DEBUG_KMS("pipe %d off delay\n",
2003 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
2008 temp = I915_READ(pf_ctl_reg);
2009 if ((temp & PF_ENABLE) != 0) {
2010 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
2011 I915_READ(pf_ctl_reg);
2013 I915_WRITE(pf_win_size, 0);
2014 POSTING_READ(pf_win_size);
2017 /* disable CPU FDI tx and PCH FDI rx */
2018 temp = I915_READ(fdi_tx_reg);
2019 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
2020 I915_READ(fdi_tx_reg);
2022 temp = I915_READ(fdi_rx_reg);
2023 /* BPC in FDI rx is consistent with that in pipeconf */
2024 temp &= ~(0x07 << 16);
2025 temp |= (pipe_bpc << 11);
2026 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
2027 I915_READ(fdi_rx_reg);
2031 /* still set train pattern 1 */
2032 temp = I915_READ(fdi_tx_reg);
2033 temp &= ~FDI_LINK_TRAIN_NONE;
2034 temp |= FDI_LINK_TRAIN_PATTERN_1;
2035 I915_WRITE(fdi_tx_reg, temp);
2036 POSTING_READ(fdi_tx_reg);
2038 temp = I915_READ(fdi_rx_reg);
2039 if (HAS_PCH_CPT(dev)) {
2040 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2041 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2043 temp &= ~FDI_LINK_TRAIN_NONE;
2044 temp |= FDI_LINK_TRAIN_PATTERN_1;
2046 I915_WRITE(fdi_rx_reg, temp);
2047 POSTING_READ(fdi_rx_reg);
2051 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2052 temp = I915_READ(PCH_LVDS);
2053 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2054 I915_READ(PCH_LVDS);
2058 /* disable PCH transcoder */
2059 temp = I915_READ(transconf_reg);
2060 if ((temp & TRANS_ENABLE) != 0) {
2061 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
2062 I915_READ(transconf_reg);
2064 /* wait for PCH transcoder off, transcoder state */
2065 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
2071 DRM_DEBUG_KMS("transcoder %d off "
2078 temp = I915_READ(transconf_reg);
2079 /* BPC in transcoder is consistent with that in pipeconf */
2080 temp &= ~PIPE_BPC_MASK;
2082 I915_WRITE(transconf_reg, temp);
2083 I915_READ(transconf_reg);
2086 if (HAS_PCH_CPT(dev)) {
2087 /* disable TRANS_DP_CTL */
2088 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2091 reg = I915_READ(trans_dp_ctl);
2092 reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2093 I915_WRITE(trans_dp_ctl, reg);
2094 POSTING_READ(trans_dp_ctl);
2096 /* disable DPLL_SEL */
2097 temp = I915_READ(PCH_DPLL_SEL);
2098 if (trans_dpll_sel == 0)
2099 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2101 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2102 I915_WRITE(PCH_DPLL_SEL, temp);
2103 I915_READ(PCH_DPLL_SEL);
2107 /* disable PCH DPLL */
2108 temp = I915_READ(pch_dpll_reg);
2109 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
2110 I915_READ(pch_dpll_reg);
2113 ironlake_disable_pll_edp(crtc);
2116 /* Switch from PCDclk to Rawclk */
2117 temp = I915_READ(fdi_rx_reg);
2118 temp &= ~FDI_SEL_PCDCLK;
2119 I915_WRITE(fdi_rx_reg, temp);
2120 I915_READ(fdi_rx_reg);
2122 /* Disable CPU FDI TX PLL */
2123 temp = I915_READ(fdi_tx_reg);
2124 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
2125 I915_READ(fdi_tx_reg);
2128 temp = I915_READ(fdi_rx_reg);
2129 temp &= ~FDI_RX_PLL_ENABLE;
2130 I915_WRITE(fdi_rx_reg, temp);
2131 I915_READ(fdi_rx_reg);
2133 /* Wait for the clocks to turn off. */
2139 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2141 struct intel_overlay *overlay;
2144 if (!enable && intel_crtc->overlay) {
2145 overlay = intel_crtc->overlay;
2146 mutex_lock(&overlay->dev->struct_mutex);
2148 ret = intel_overlay_switch_off(overlay);
2152 ret = intel_overlay_recover_from_interrupt(overlay, 0);
2154 /* overlay doesn't react anymore. Usually
2155 * results in a black screen and an unkillable
2158 overlay->hw_wedged = HW_WEDGED;
2162 mutex_unlock(&overlay->dev->struct_mutex);
2164 /* Let userspace switch the overlay on again. In most cases userspace
2165 * has to recompute where to put it anyway. */
2170 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2172 struct drm_device *dev = crtc->dev;
2173 struct drm_i915_private *dev_priv = dev->dev_private;
2174 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2175 int pipe = intel_crtc->pipe;
2176 int plane = intel_crtc->plane;
2177 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2178 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2179 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
2180 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2183 /* XXX: When our outputs are all unaware of DPMS modes other than off
2184 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2187 case DRM_MODE_DPMS_ON:
2188 case DRM_MODE_DPMS_STANDBY:
2189 case DRM_MODE_DPMS_SUSPEND:
2190 intel_update_watermarks(dev);
2192 /* Enable the DPLL */
2193 temp = I915_READ(dpll_reg);
2194 if ((temp & DPLL_VCO_ENABLE) == 0) {
2195 I915_WRITE(dpll_reg, temp);
2196 I915_READ(dpll_reg);
2197 /* Wait for the clocks to stabilize. */
2199 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2200 I915_READ(dpll_reg);
2201 /* Wait for the clocks to stabilize. */
2203 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2204 I915_READ(dpll_reg);
2205 /* Wait for the clocks to stabilize. */
2209 /* Enable the pipe */
2210 temp = I915_READ(pipeconf_reg);
2211 if ((temp & PIPEACONF_ENABLE) == 0)
2212 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2214 /* Enable the plane */
2215 temp = I915_READ(dspcntr_reg);
2216 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2217 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2218 /* Flush the plane changes */
2219 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2222 intel_crtc_load_lut(crtc);
2224 if ((IS_I965G(dev) || plane == 0))
2225 intel_update_fbc(crtc, &crtc->mode);
2227 /* Give the overlay scaler a chance to enable if it's on this pipe */
2228 intel_crtc_dpms_overlay(intel_crtc, true);
2230 case DRM_MODE_DPMS_OFF:
2231 intel_update_watermarks(dev);
2233 /* Give the overlay scaler a chance to disable if it's on this pipe */
2234 intel_crtc_dpms_overlay(intel_crtc, false);
2235 drm_vblank_off(dev, pipe);
2237 if (dev_priv->cfb_plane == plane &&
2238 dev_priv->display.disable_fbc)
2239 dev_priv->display.disable_fbc(dev);
2241 /* Disable the VGA plane that we never use */
2242 i915_disable_vga(dev);
2244 /* Disable display plane */
2245 temp = I915_READ(dspcntr_reg);
2246 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2247 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2248 /* Flush the plane changes */
2249 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2250 I915_READ(dspbase_reg);
2253 if (!IS_I9XX(dev)) {
2254 /* Wait for vblank for the disable to take effect */
2255 intel_wait_for_vblank(dev);
2258 /* Next, disable display pipes */
2259 temp = I915_READ(pipeconf_reg);
2260 if ((temp & PIPEACONF_ENABLE) != 0) {
2261 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2262 I915_READ(pipeconf_reg);
2265 /* Wait for vblank for the disable to take effect. */
2266 intel_wait_for_vblank(dev);
2268 temp = I915_READ(dpll_reg);
2269 if ((temp & DPLL_VCO_ENABLE) != 0) {
2270 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2271 I915_READ(dpll_reg);
2274 /* Wait for the clocks to turn off. */
2281 * Sets the power management mode of the pipe and plane.
2283 * This code should probably grow support for turning the cursor off and back
2284 * on appropriately at the same time as we're turning the pipe off/on.
2286 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2288 struct drm_device *dev = crtc->dev;
2289 struct drm_i915_private *dev_priv = dev->dev_private;
2290 struct drm_i915_master_private *master_priv;
2291 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2292 int pipe = intel_crtc->pipe;
2295 dev_priv->display.dpms(crtc, mode);
2297 intel_crtc->dpms_mode = mode;
2299 if (!dev->primary->master)
2302 master_priv = dev->primary->master->driver_priv;
2303 if (!master_priv->sarea_priv)
2306 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2310 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2311 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2314 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2315 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2318 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2323 static void intel_crtc_prepare (struct drm_crtc *crtc)
2325 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2326 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2329 static void intel_crtc_commit (struct drm_crtc *crtc)
2331 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2332 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2335 void intel_encoder_prepare (struct drm_encoder *encoder)
2337 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2338 /* lvds has its own version of prepare see intel_lvds_prepare */
2339 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2342 void intel_encoder_commit (struct drm_encoder *encoder)
2344 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2345 /* lvds has its own version of commit see intel_lvds_commit */
2346 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2349 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2350 struct drm_display_mode *mode,
2351 struct drm_display_mode *adjusted_mode)
2353 struct drm_device *dev = crtc->dev;
2354 if (HAS_PCH_SPLIT(dev)) {
2355 /* FDI link clock is fixed at 2.7G */
2356 if (mode->clock * 3 > 27000 * 4)
2357 return MODE_CLOCK_HIGH;
2360 drm_mode_set_crtcinfo(adjusted_mode, 0);
2364 static int i945_get_display_clock_speed(struct drm_device *dev)
2369 static int i915_get_display_clock_speed(struct drm_device *dev)
2374 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2379 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2383 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2385 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2388 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2389 case GC_DISPLAY_CLOCK_333_MHZ:
2392 case GC_DISPLAY_CLOCK_190_200_MHZ:
2398 static int i865_get_display_clock_speed(struct drm_device *dev)
2403 static int i855_get_display_clock_speed(struct drm_device *dev)
2406 /* Assume that the hardware is in the high speed state. This
2407 * should be the default.
2409 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2410 case GC_CLOCK_133_200:
2411 case GC_CLOCK_100_200:
2413 case GC_CLOCK_166_250:
2415 case GC_CLOCK_100_133:
2419 /* Shouldn't happen */
2423 static int i830_get_display_clock_speed(struct drm_device *dev)
2429 * Return the pipe currently connected to the panel fitter,
2430 * or -1 if the panel fitter is not present or not in use
2432 int intel_panel_fitter_pipe (struct drm_device *dev)
2434 struct drm_i915_private *dev_priv = dev->dev_private;
2437 /* i830 doesn't have a panel fitter */
2441 pfit_control = I915_READ(PFIT_CONTROL);
2443 /* See if the panel fitter is in use */
2444 if ((pfit_control & PFIT_ENABLE) == 0)
2447 /* 965 can place panel fitter on either pipe */
2449 return (pfit_control >> 29) & 0x3;
2451 /* older chips can only use pipe 1 */
2464 fdi_reduce_ratio(u32 *num, u32 *den)
2466 while (*num > 0xffffff || *den > 0xffffff) {
2472 #define DATA_N 0x800000
2473 #define LINK_N 0x80000
2476 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2477 int link_clock, struct fdi_m_n *m_n)
2481 m_n->tu = 64; /* default size */
2483 temp = (u64) DATA_N * pixel_clock;
2484 temp = div_u64(temp, link_clock);
2485 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2486 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2487 m_n->gmch_n = DATA_N;
2488 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2490 temp = (u64) LINK_N * pixel_clock;
2491 m_n->link_m = div_u64(temp, link_clock);
2492 m_n->link_n = LINK_N;
2493 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2497 struct intel_watermark_params {
2498 unsigned long fifo_size;
2499 unsigned long max_wm;
2500 unsigned long default_wm;
2501 unsigned long guard_size;
2502 unsigned long cacheline_size;
2505 /* Pineview has different values for various configs */
2506 static struct intel_watermark_params pineview_display_wm = {
2507 PINEVIEW_DISPLAY_FIFO,
2511 PINEVIEW_FIFO_LINE_SIZE
2513 static struct intel_watermark_params pineview_display_hplloff_wm = {
2514 PINEVIEW_DISPLAY_FIFO,
2516 PINEVIEW_DFT_HPLLOFF_WM,
2518 PINEVIEW_FIFO_LINE_SIZE
2520 static struct intel_watermark_params pineview_cursor_wm = {
2521 PINEVIEW_CURSOR_FIFO,
2522 PINEVIEW_CURSOR_MAX_WM,
2523 PINEVIEW_CURSOR_DFT_WM,
2524 PINEVIEW_CURSOR_GUARD_WM,
2525 PINEVIEW_FIFO_LINE_SIZE,
2527 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2528 PINEVIEW_CURSOR_FIFO,
2529 PINEVIEW_CURSOR_MAX_WM,
2530 PINEVIEW_CURSOR_DFT_WM,
2531 PINEVIEW_CURSOR_GUARD_WM,
2532 PINEVIEW_FIFO_LINE_SIZE
2534 static struct intel_watermark_params g4x_wm_info = {
2541 static struct intel_watermark_params i945_wm_info = {
2548 static struct intel_watermark_params i915_wm_info = {
2555 static struct intel_watermark_params i855_wm_info = {
2562 static struct intel_watermark_params i830_wm_info = {
2570 static struct intel_watermark_params ironlake_display_wm_info = {
2578 static struct intel_watermark_params ironlake_display_srwm_info = {
2579 ILK_DISPLAY_SR_FIFO,
2580 ILK_DISPLAY_MAX_SRWM,
2581 ILK_DISPLAY_DFT_SRWM,
2586 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2588 ILK_CURSOR_MAX_SRWM,
2589 ILK_CURSOR_DFT_SRWM,
2595 * intel_calculate_wm - calculate watermark level
2596 * @clock_in_khz: pixel clock
2597 * @wm: chip FIFO params
2598 * @pixel_size: display pixel size
2599 * @latency_ns: memory latency for the platform
2601 * Calculate the watermark level (the level at which the display plane will
2602 * start fetching from memory again). Each chip has a different display
2603 * FIFO size and allocation, so the caller needs to figure that out and pass
2604 * in the correct intel_watermark_params structure.
2606 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2607 * on the pixel size. When it reaches the watermark level, it'll start
2608 * fetching FIFO line sized based chunks from memory until the FIFO fills
2609 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2610 * will occur, and a display engine hang could result.
2612 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2613 struct intel_watermark_params *wm,
2615 unsigned long latency_ns)
2617 long entries_required, wm_size;
2620 * Note: we need to make sure we don't overflow for various clock &
2622 * clocks go from a few thousand to several hundred thousand.
2623 * latency is usually a few thousand
2625 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2627 entries_required /= wm->cacheline_size;
2629 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2631 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2633 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2635 /* Don't promote wm_size to unsigned... */
2636 if (wm_size > (long)wm->max_wm)
2637 wm_size = wm->max_wm;
2639 wm_size = wm->default_wm;
2643 struct cxsr_latency {
2646 unsigned long fsb_freq;
2647 unsigned long mem_freq;
2648 unsigned long display_sr;
2649 unsigned long display_hpll_disable;
2650 unsigned long cursor_sr;
2651 unsigned long cursor_hpll_disable;
2654 static struct cxsr_latency cxsr_latency_table[] = {
2655 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2656 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2657 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2658 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
2659 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
2661 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2662 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2663 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2664 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
2665 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
2667 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2668 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2669 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2670 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
2671 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
2673 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2674 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2675 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2676 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
2677 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
2679 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2680 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2681 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2682 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
2683 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
2685 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2686 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2687 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2688 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
2689 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
2692 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int is_ddr3,
2696 struct cxsr_latency *latency;
2698 if (fsb == 0 || mem == 0)
2701 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2702 latency = &cxsr_latency_table[i];
2703 if (is_desktop == latency->is_desktop &&
2704 is_ddr3 == latency->is_ddr3 &&
2705 fsb == latency->fsb_freq && mem == latency->mem_freq)
2709 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2714 static void pineview_disable_cxsr(struct drm_device *dev)
2716 struct drm_i915_private *dev_priv = dev->dev_private;
2719 /* deactivate cxsr */
2720 reg = I915_READ(DSPFW3);
2721 reg &= ~(PINEVIEW_SELF_REFRESH_EN);
2722 I915_WRITE(DSPFW3, reg);
2723 DRM_INFO("Big FIFO is disabled\n");
2727 * Latency for FIFO fetches is dependent on several factors:
2728 * - memory configuration (speed, channels)
2730 * - current MCH state
2731 * It can be fairly high in some situations, so here we assume a fairly
2732 * pessimal value. It's a tradeoff between extra memory fetches (if we
2733 * set this value too high, the FIFO will fetch frequently to stay full)
2734 * and power consumption (set it too low to save power and we might see
2735 * FIFO underruns and display "flicker").
2737 * A value of 5us seems to be a good balance; safe for very low end
2738 * platforms but not overly aggressive on lower latency configs.
2740 static const int latency_ns = 5000;
2742 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2744 struct drm_i915_private *dev_priv = dev->dev_private;
2745 uint32_t dsparb = I915_READ(DSPARB);
2749 size = dsparb & 0x7f;
2751 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2754 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2755 plane ? "B" : "A", size);
2760 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2762 struct drm_i915_private *dev_priv = dev->dev_private;
2763 uint32_t dsparb = I915_READ(DSPARB);
2767 size = dsparb & 0x1ff;
2769 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2771 size >>= 1; /* Convert to cachelines */
2773 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2774 plane ? "B" : "A", size);
2779 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2781 struct drm_i915_private *dev_priv = dev->dev_private;
2782 uint32_t dsparb = I915_READ(DSPARB);
2785 size = dsparb & 0x7f;
2786 size >>= 2; /* Convert to cachelines */
2788 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2795 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2797 struct drm_i915_private *dev_priv = dev->dev_private;
2798 uint32_t dsparb = I915_READ(DSPARB);
2801 size = dsparb & 0x7f;
2802 size >>= 1; /* Convert to cachelines */
2804 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2805 plane ? "B" : "A", size);
2810 static void pineview_update_wm(struct drm_device *dev, int planea_clock,
2811 int planeb_clock, int sr_hdisplay, int pixel_size)
2813 struct drm_i915_private *dev_priv = dev->dev_private;
2816 struct cxsr_latency *latency;
2819 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
2820 dev_priv->fsb_freq, dev_priv->mem_freq);
2822 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2823 pineview_disable_cxsr(dev);
2827 if (!planea_clock || !planeb_clock) {
2828 sr_clock = planea_clock ? planea_clock : planeb_clock;
2831 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
2832 pixel_size, latency->display_sr);
2833 reg = I915_READ(DSPFW1);
2834 reg &= ~DSPFW_SR_MASK;
2835 reg |= wm << DSPFW_SR_SHIFT;
2836 I915_WRITE(DSPFW1, reg);
2837 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2840 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
2841 pixel_size, latency->cursor_sr);
2842 reg = I915_READ(DSPFW3);
2843 reg &= ~DSPFW_CURSOR_SR_MASK;
2844 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
2845 I915_WRITE(DSPFW3, reg);
2847 /* Display HPLL off SR */
2848 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
2849 pixel_size, latency->display_hpll_disable);
2850 reg = I915_READ(DSPFW3);
2851 reg &= ~DSPFW_HPLL_SR_MASK;
2852 reg |= wm & DSPFW_HPLL_SR_MASK;
2853 I915_WRITE(DSPFW3, reg);
2855 /* cursor HPLL off SR */
2856 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
2857 pixel_size, latency->cursor_hpll_disable);
2858 reg = I915_READ(DSPFW3);
2859 reg &= ~DSPFW_HPLL_CURSOR_MASK;
2860 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
2861 I915_WRITE(DSPFW3, reg);
2862 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2865 reg = I915_READ(DSPFW3);
2866 reg |= PINEVIEW_SELF_REFRESH_EN;
2867 I915_WRITE(DSPFW3, reg);
2868 DRM_DEBUG_KMS("Self-refresh is enabled\n");
2870 pineview_disable_cxsr(dev);
2871 DRM_DEBUG_KMS("Self-refresh is disabled\n");
2875 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
2876 int planeb_clock, int sr_hdisplay, int pixel_size)
2878 struct drm_i915_private *dev_priv = dev->dev_private;
2879 int total_size, cacheline_size;
2880 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2881 struct intel_watermark_params planea_params, planeb_params;
2882 unsigned long line_time_us;
2883 int sr_clock, sr_entries = 0, entries_required;
2885 /* Create copies of the base settings for each pipe */
2886 planea_params = planeb_params = g4x_wm_info;
2888 /* Grab a couple of global values before we overwrite them */
2889 total_size = planea_params.fifo_size;
2890 cacheline_size = planea_params.cacheline_size;
2893 * Note: we need to make sure we don't overflow for various clock &
2895 * clocks go from a few thousand to several hundred thousand.
2896 * latency is usually a few thousand
2898 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2900 entries_required /= G4X_FIFO_LINE_SIZE;
2901 planea_wm = entries_required + planea_params.guard_size;
2903 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2905 entries_required /= G4X_FIFO_LINE_SIZE;
2906 planeb_wm = entries_required + planeb_params.guard_size;
2908 cursora_wm = cursorb_wm = 16;
2911 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2913 /* Calc sr entries for one plane configs */
2914 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2915 /* self-refresh has much higher latency */
2916 static const int sr_latency_ns = 12000;
2918 sr_clock = planea_clock ? planea_clock : planeb_clock;
2919 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2921 /* Use ns/us then divide to preserve precision */
2922 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2923 pixel_size * sr_hdisplay) / 1000;
2924 sr_entries = roundup(sr_entries / cacheline_size, 1);
2925 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2926 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2928 /* Turn off self refresh if both pipes are enabled */
2929 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2933 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2934 planea_wm, planeb_wm, sr_entries);
2939 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2940 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2941 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2942 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2943 (cursora_wm << DSPFW_CURSORA_SHIFT));
2944 /* HPLL off in SR has some issues on G4x... disable it */
2945 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2946 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2949 static void i965_update_wm(struct drm_device *dev, int planea_clock,
2950 int planeb_clock, int sr_hdisplay, int pixel_size)
2952 struct drm_i915_private *dev_priv = dev->dev_private;
2953 unsigned long line_time_us;
2954 int sr_clock, sr_entries, srwm = 1;
2956 /* Calc sr entries for one plane configs */
2957 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2958 /* self-refresh has much higher latency */
2959 static const int sr_latency_ns = 12000;
2961 sr_clock = planea_clock ? planea_clock : planeb_clock;
2962 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2964 /* Use ns/us then divide to preserve precision */
2965 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2966 pixel_size * sr_hdisplay) / 1000;
2967 sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
2968 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2969 srwm = I945_FIFO_SIZE - sr_entries;
2973 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2975 /* Turn off self refresh if both pipes are enabled */
2976 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2980 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2983 /* 965 has limitations... */
2984 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
2986 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2989 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2990 int planeb_clock, int sr_hdisplay, int pixel_size)
2992 struct drm_i915_private *dev_priv = dev->dev_private;
2995 int total_size, cacheline_size, cwm, srwm = 1;
2996 int planea_wm, planeb_wm;
2997 struct intel_watermark_params planea_params, planeb_params;
2998 unsigned long line_time_us;