Merge remote-tracking branches 'spi/topic/sh-msiof', 'spi/topic/stm32', 'spi/topic...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_clflush.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51
52 static bool is_mmio_work(struct intel_flip_work *work)
53 {
54         return work->mmio_work.func;
55 }
56
57 /* Primary plane formats for gen <= 3 */
58 static const uint32_t i8xx_primary_formats[] = {
59         DRM_FORMAT_C8,
60         DRM_FORMAT_RGB565,
61         DRM_FORMAT_XRGB1555,
62         DRM_FORMAT_XRGB8888,
63 };
64
65 /* Primary plane formats for gen >= 4 */
66 static const uint32_t i965_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_XRGB2101010,
72         DRM_FORMAT_XBGR2101010,
73 };
74
75 static const uint32_t skl_primary_formats[] = {
76         DRM_FORMAT_C8,
77         DRM_FORMAT_RGB565,
78         DRM_FORMAT_XRGB8888,
79         DRM_FORMAT_XBGR8888,
80         DRM_FORMAT_ARGB8888,
81         DRM_FORMAT_ABGR8888,
82         DRM_FORMAT_XRGB2101010,
83         DRM_FORMAT_XBGR2101010,
84         DRM_FORMAT_YUYV,
85         DRM_FORMAT_YVYU,
86         DRM_FORMAT_UYVY,
87         DRM_FORMAT_VYUY,
88 };
89
90 /* Cursor formats */
91 static const uint32_t intel_cursor_formats[] = {
92         DRM_FORMAT_ARGB8888,
93 };
94
95 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
96                                 struct intel_crtc_state *pipe_config);
97 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
98                                    struct intel_crtc_state *pipe_config);
99
100 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
101                                   struct drm_i915_gem_object *obj,
102                                   struct drm_mode_fb_cmd2 *mode_cmd);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107                                          struct intel_link_m_n *m_n,
108                                          struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113                             const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115                             const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
119                                     struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev,
124                                          struct drm_modeset_acquire_ctx *ctx);
125 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126
127 struct intel_limit {
128         struct {
129                 int min, max;
130         } dot, vco, n, m, m1, m2, p, p1;
131
132         struct {
133                 int dot_limit;
134                 int p2_slow, p2_fast;
135         } p2;
136 };
137
138 /* returns HPLL frequency in kHz */
139 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
140 {
141         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
142
143         /* Obtain SKU information */
144         mutex_lock(&dev_priv->sb_lock);
145         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
146                 CCK_FUSE_HPLL_FREQ_MASK;
147         mutex_unlock(&dev_priv->sb_lock);
148
149         return vco_freq[hpll_freq] * 1000;
150 }
151
152 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
153                       const char *name, u32 reg, int ref_freq)
154 {
155         u32 val;
156         int divider;
157
158         mutex_lock(&dev_priv->sb_lock);
159         val = vlv_cck_read(dev_priv, reg);
160         mutex_unlock(&dev_priv->sb_lock);
161
162         divider = val & CCK_FREQUENCY_VALUES;
163
164         WARN((val & CCK_FREQUENCY_STATUS) !=
165              (divider << CCK_FREQUENCY_STATUS_SHIFT),
166              "%s change in progress\n", name);
167
168         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
169 }
170
171 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
172                            const char *name, u32 reg)
173 {
174         if (dev_priv->hpll_freq == 0)
175                 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
176
177         return vlv_get_cck_clock(dev_priv, name, reg,
178                                  dev_priv->hpll_freq);
179 }
180
181 static void intel_update_czclk(struct drm_i915_private *dev_priv)
182 {
183         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
184                 return;
185
186         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
187                                                       CCK_CZ_CLOCK_CONTROL);
188
189         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
190 }
191
192 static inline u32 /* units of 100MHz */
193 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
194                     const struct intel_crtc_state *pipe_config)
195 {
196         if (HAS_DDI(dev_priv))
197                 return pipe_config->port_clock; /* SPLL */
198         else if (IS_GEN5(dev_priv))
199                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
200         else
201                 return 270000;
202 }
203
204 static const struct intel_limit intel_limits_i8xx_dac = {
205         .dot = { .min = 25000, .max = 350000 },
206         .vco = { .min = 908000, .max = 1512000 },
207         .n = { .min = 2, .max = 16 },
208         .m = { .min = 96, .max = 140 },
209         .m1 = { .min = 18, .max = 26 },
210         .m2 = { .min = 6, .max = 16 },
211         .p = { .min = 4, .max = 128 },
212         .p1 = { .min = 2, .max = 33 },
213         .p2 = { .dot_limit = 165000,
214                 .p2_slow = 4, .p2_fast = 2 },
215 };
216
217 static const struct intel_limit intel_limits_i8xx_dvo = {
218         .dot = { .min = 25000, .max = 350000 },
219         .vco = { .min = 908000, .max = 1512000 },
220         .n = { .min = 2, .max = 16 },
221         .m = { .min = 96, .max = 140 },
222         .m1 = { .min = 18, .max = 26 },
223         .m2 = { .min = 6, .max = 16 },
224         .p = { .min = 4, .max = 128 },
225         .p1 = { .min = 2, .max = 33 },
226         .p2 = { .dot_limit = 165000,
227                 .p2_slow = 4, .p2_fast = 4 },
228 };
229
230 static const struct intel_limit intel_limits_i8xx_lvds = {
231         .dot = { .min = 25000, .max = 350000 },
232         .vco = { .min = 908000, .max = 1512000 },
233         .n = { .min = 2, .max = 16 },
234         .m = { .min = 96, .max = 140 },
235         .m1 = { .min = 18, .max = 26 },
236         .m2 = { .min = 6, .max = 16 },
237         .p = { .min = 4, .max = 128 },
238         .p1 = { .min = 1, .max = 6 },
239         .p2 = { .dot_limit = 165000,
240                 .p2_slow = 14, .p2_fast = 7 },
241 };
242
243 static const struct intel_limit intel_limits_i9xx_sdvo = {
244         .dot = { .min = 20000, .max = 400000 },
245         .vco = { .min = 1400000, .max = 2800000 },
246         .n = { .min = 1, .max = 6 },
247         .m = { .min = 70, .max = 120 },
248         .m1 = { .min = 8, .max = 18 },
249         .m2 = { .min = 3, .max = 7 },
250         .p = { .min = 5, .max = 80 },
251         .p1 = { .min = 1, .max = 8 },
252         .p2 = { .dot_limit = 200000,
253                 .p2_slow = 10, .p2_fast = 5 },
254 };
255
256 static const struct intel_limit intel_limits_i9xx_lvds = {
257         .dot = { .min = 20000, .max = 400000 },
258         .vco = { .min = 1400000, .max = 2800000 },
259         .n = { .min = 1, .max = 6 },
260         .m = { .min = 70, .max = 120 },
261         .m1 = { .min = 8, .max = 18 },
262         .m2 = { .min = 3, .max = 7 },
263         .p = { .min = 7, .max = 98 },
264         .p1 = { .min = 1, .max = 8 },
265         .p2 = { .dot_limit = 112000,
266                 .p2_slow = 14, .p2_fast = 7 },
267 };
268
269
270 static const struct intel_limit intel_limits_g4x_sdvo = {
271         .dot = { .min = 25000, .max = 270000 },
272         .vco = { .min = 1750000, .max = 3500000},
273         .n = { .min = 1, .max = 4 },
274         .m = { .min = 104, .max = 138 },
275         .m1 = { .min = 17, .max = 23 },
276         .m2 = { .min = 5, .max = 11 },
277         .p = { .min = 10, .max = 30 },
278         .p1 = { .min = 1, .max = 3},
279         .p2 = { .dot_limit = 270000,
280                 .p2_slow = 10,
281                 .p2_fast = 10
282         },
283 };
284
285 static const struct intel_limit intel_limits_g4x_hdmi = {
286         .dot = { .min = 22000, .max = 400000 },
287         .vco = { .min = 1750000, .max = 3500000},
288         .n = { .min = 1, .max = 4 },
289         .m = { .min = 104, .max = 138 },
290         .m1 = { .min = 16, .max = 23 },
291         .m2 = { .min = 5, .max = 11 },
292         .p = { .min = 5, .max = 80 },
293         .p1 = { .min = 1, .max = 8},
294         .p2 = { .dot_limit = 165000,
295                 .p2_slow = 10, .p2_fast = 5 },
296 };
297
298 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
299         .dot = { .min = 20000, .max = 115000 },
300         .vco = { .min = 1750000, .max = 3500000 },
301         .n = { .min = 1, .max = 3 },
302         .m = { .min = 104, .max = 138 },
303         .m1 = { .min = 17, .max = 23 },
304         .m2 = { .min = 5, .max = 11 },
305         .p = { .min = 28, .max = 112 },
306         .p1 = { .min = 2, .max = 8 },
307         .p2 = { .dot_limit = 0,
308                 .p2_slow = 14, .p2_fast = 14
309         },
310 };
311
312 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
313         .dot = { .min = 80000, .max = 224000 },
314         .vco = { .min = 1750000, .max = 3500000 },
315         .n = { .min = 1, .max = 3 },
316         .m = { .min = 104, .max = 138 },
317         .m1 = { .min = 17, .max = 23 },
318         .m2 = { .min = 5, .max = 11 },
319         .p = { .min = 14, .max = 42 },
320         .p1 = { .min = 2, .max = 6 },
321         .p2 = { .dot_limit = 0,
322                 .p2_slow = 7, .p2_fast = 7
323         },
324 };
325
326 static const struct intel_limit intel_limits_pineview_sdvo = {
327         .dot = { .min = 20000, .max = 400000},
328         .vco = { .min = 1700000, .max = 3500000 },
329         /* Pineview's Ncounter is a ring counter */
330         .n = { .min = 3, .max = 6 },
331         .m = { .min = 2, .max = 256 },
332         /* Pineview only has one combined m divider, which we treat as m2. */
333         .m1 = { .min = 0, .max = 0 },
334         .m2 = { .min = 0, .max = 254 },
335         .p = { .min = 5, .max = 80 },
336         .p1 = { .min = 1, .max = 8 },
337         .p2 = { .dot_limit = 200000,
338                 .p2_slow = 10, .p2_fast = 5 },
339 };
340
341 static const struct intel_limit intel_limits_pineview_lvds = {
342         .dot = { .min = 20000, .max = 400000 },
343         .vco = { .min = 1700000, .max = 3500000 },
344         .n = { .min = 3, .max = 6 },
345         .m = { .min = 2, .max = 256 },
346         .m1 = { .min = 0, .max = 0 },
347         .m2 = { .min = 0, .max = 254 },
348         .p = { .min = 7, .max = 112 },
349         .p1 = { .min = 1, .max = 8 },
350         .p2 = { .dot_limit = 112000,
351                 .p2_slow = 14, .p2_fast = 14 },
352 };
353
354 /* Ironlake / Sandybridge
355  *
356  * We calculate clock using (register_value + 2) for N/M1/M2, so here
357  * the range value for them is (actual_value - 2).
358  */
359 static const struct intel_limit intel_limits_ironlake_dac = {
360         .dot = { .min = 25000, .max = 350000 },
361         .vco = { .min = 1760000, .max = 3510000 },
362         .n = { .min = 1, .max = 5 },
363         .m = { .min = 79, .max = 127 },
364         .m1 = { .min = 12, .max = 22 },
365         .m2 = { .min = 5, .max = 9 },
366         .p = { .min = 5, .max = 80 },
367         .p1 = { .min = 1, .max = 8 },
368         .p2 = { .dot_limit = 225000,
369                 .p2_slow = 10, .p2_fast = 5 },
370 };
371
372 static const struct intel_limit intel_limits_ironlake_single_lvds = {
373         .dot = { .min = 25000, .max = 350000 },
374         .vco = { .min = 1760000, .max = 3510000 },
375         .n = { .min = 1, .max = 3 },
376         .m = { .min = 79, .max = 118 },
377         .m1 = { .min = 12, .max = 22 },
378         .m2 = { .min = 5, .max = 9 },
379         .p = { .min = 28, .max = 112 },
380         .p1 = { .min = 2, .max = 8 },
381         .p2 = { .dot_limit = 225000,
382                 .p2_slow = 14, .p2_fast = 14 },
383 };
384
385 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
386         .dot = { .min = 25000, .max = 350000 },
387         .vco = { .min = 1760000, .max = 3510000 },
388         .n = { .min = 1, .max = 3 },
389         .m = { .min = 79, .max = 127 },
390         .m1 = { .min = 12, .max = 22 },
391         .m2 = { .min = 5, .max = 9 },
392         .p = { .min = 14, .max = 56 },
393         .p1 = { .min = 2, .max = 8 },
394         .p2 = { .dot_limit = 225000,
395                 .p2_slow = 7, .p2_fast = 7 },
396 };
397
398 /* LVDS 100mhz refclk limits. */
399 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
400         .dot = { .min = 25000, .max = 350000 },
401         .vco = { .min = 1760000, .max = 3510000 },
402         .n = { .min = 1, .max = 2 },
403         .m = { .min = 79, .max = 126 },
404         .m1 = { .min = 12, .max = 22 },
405         .m2 = { .min = 5, .max = 9 },
406         .p = { .min = 28, .max = 112 },
407         .p1 = { .min = 2, .max = 8 },
408         .p2 = { .dot_limit = 225000,
409                 .p2_slow = 14, .p2_fast = 14 },
410 };
411
412 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
413         .dot = { .min = 25000, .max = 350000 },
414         .vco = { .min = 1760000, .max = 3510000 },
415         .n = { .min = 1, .max = 3 },
416         .m = { .min = 79, .max = 126 },
417         .m1 = { .min = 12, .max = 22 },
418         .m2 = { .min = 5, .max = 9 },
419         .p = { .min = 14, .max = 42 },
420         .p1 = { .min = 2, .max = 6 },
421         .p2 = { .dot_limit = 225000,
422                 .p2_slow = 7, .p2_fast = 7 },
423 };
424
425 static const struct intel_limit intel_limits_vlv = {
426          /*
427           * These are the data rate limits (measured in fast clocks)
428           * since those are the strictest limits we have. The fast
429           * clock and actual rate limits are more relaxed, so checking
430           * them would make no difference.
431           */
432         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
433         .vco = { .min = 4000000, .max = 6000000 },
434         .n = { .min = 1, .max = 7 },
435         .m1 = { .min = 2, .max = 3 },
436         .m2 = { .min = 11, .max = 156 },
437         .p1 = { .min = 2, .max = 3 },
438         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
439 };
440
441 static const struct intel_limit intel_limits_chv = {
442         /*
443          * These are the data rate limits (measured in fast clocks)
444          * since those are the strictest limits we have.  The fast
445          * clock and actual rate limits are more relaxed, so checking
446          * them would make no difference.
447          */
448         .dot = { .min = 25000 * 5, .max = 540000 * 5},
449         .vco = { .min = 4800000, .max = 6480000 },
450         .n = { .min = 1, .max = 1 },
451         .m1 = { .min = 2, .max = 2 },
452         .m2 = { .min = 24 << 22, .max = 175 << 22 },
453         .p1 = { .min = 2, .max = 4 },
454         .p2 = { .p2_slow = 1, .p2_fast = 14 },
455 };
456
457 static const struct intel_limit intel_limits_bxt = {
458         /* FIXME: find real dot limits */
459         .dot = { .min = 0, .max = INT_MAX },
460         .vco = { .min = 4800000, .max = 6700000 },
461         .n = { .min = 1, .max = 1 },
462         .m1 = { .min = 2, .max = 2 },
463         /* FIXME: find real m2 limits */
464         .m2 = { .min = 2 << 22, .max = 255 << 22 },
465         .p1 = { .min = 2, .max = 4 },
466         .p2 = { .p2_slow = 1, .p2_fast = 20 },
467 };
468
469 static bool
470 needs_modeset(struct drm_crtc_state *state)
471 {
472         return drm_atomic_crtc_needs_modeset(state);
473 }
474
475 /*
476  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
477  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
478  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
479  * The helpers' return value is the rate of the clock that is fed to the
480  * display engine's pipe which can be the above fast dot clock rate or a
481  * divided-down version of it.
482  */
483 /* m1 is reserved as 0 in Pineview, n is a ring counter */
484 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
485 {
486         clock->m = clock->m2 + 2;
487         clock->p = clock->p1 * clock->p2;
488         if (WARN_ON(clock->n == 0 || clock->p == 0))
489                 return 0;
490         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
491         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
492
493         return clock->dot;
494 }
495
496 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
497 {
498         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
499 }
500
501 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
502 {
503         clock->m = i9xx_dpll_compute_m(clock);
504         clock->p = clock->p1 * clock->p2;
505         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
506                 return 0;
507         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
508         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
509
510         return clock->dot;
511 }
512
513 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
514 {
515         clock->m = clock->m1 * clock->m2;
516         clock->p = clock->p1 * clock->p2;
517         if (WARN_ON(clock->n == 0 || clock->p == 0))
518                 return 0;
519         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
520         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
521
522         return clock->dot / 5;
523 }
524
525 int chv_calc_dpll_params(int refclk, struct dpll *clock)
526 {
527         clock->m = clock->m1 * clock->m2;
528         clock->p = clock->p1 * clock->p2;
529         if (WARN_ON(clock->n == 0 || clock->p == 0))
530                 return 0;
531         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
532                         clock->n << 22);
533         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
534
535         return clock->dot / 5;
536 }
537
538 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
539 /**
540  * Returns whether the given set of divisors are valid for a given refclk with
541  * the given connectors.
542  */
543
544 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
545                                const struct intel_limit *limit,
546                                const struct dpll *clock)
547 {
548         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
549                 INTELPllInvalid("n out of range\n");
550         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
551                 INTELPllInvalid("p1 out of range\n");
552         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
553                 INTELPllInvalid("m2 out of range\n");
554         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
555                 INTELPllInvalid("m1 out of range\n");
556
557         if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
558             !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
559                 if (clock->m1 <= clock->m2)
560                         INTELPllInvalid("m1 <= m2\n");
561
562         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
563             !IS_GEN9_LP(dev_priv)) {
564                 if (clock->p < limit->p.min || limit->p.max < clock->p)
565                         INTELPllInvalid("p out of range\n");
566                 if (clock->m < limit->m.min || limit->m.max < clock->m)
567                         INTELPllInvalid("m out of range\n");
568         }
569
570         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
571                 INTELPllInvalid("vco out of range\n");
572         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
573          * connector, etc., rather than just a single range.
574          */
575         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
576                 INTELPllInvalid("dot out of range\n");
577
578         return true;
579 }
580
581 static int
582 i9xx_select_p2_div(const struct intel_limit *limit,
583                    const struct intel_crtc_state *crtc_state,
584                    int target)
585 {
586         struct drm_device *dev = crtc_state->base.crtc->dev;
587
588         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
589                 /*
590                  * For LVDS just rely on its current settings for dual-channel.
591                  * We haven't figured out how to reliably set up different
592                  * single/dual channel state, if we even can.
593                  */
594                 if (intel_is_dual_link_lvds(dev))
595                         return limit->p2.p2_fast;
596                 else
597                         return limit->p2.p2_slow;
598         } else {
599                 if (target < limit->p2.dot_limit)
600                         return limit->p2.p2_slow;
601                 else
602                         return limit->p2.p2_fast;
603         }
604 }
605
606 /*
607  * Returns a set of divisors for the desired target clock with the given
608  * refclk, or FALSE.  The returned values represent the clock equation:
609  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
610  *
611  * Target and reference clocks are specified in kHz.
612  *
613  * If match_clock is provided, then best_clock P divider must match the P
614  * divider from @match_clock used for LVDS downclocking.
615  */
616 static bool
617 i9xx_find_best_dpll(const struct intel_limit *limit,
618                     struct intel_crtc_state *crtc_state,
619                     int target, int refclk, struct dpll *match_clock,
620                     struct dpll *best_clock)
621 {
622         struct drm_device *dev = crtc_state->base.crtc->dev;
623         struct dpll clock;
624         int err = target;
625
626         memset(best_clock, 0, sizeof(*best_clock));
627
628         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
629
630         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
631              clock.m1++) {
632                 for (clock.m2 = limit->m2.min;
633                      clock.m2 <= limit->m2.max; clock.m2++) {
634                         if (clock.m2 >= clock.m1)
635                                 break;
636                         for (clock.n = limit->n.min;
637                              clock.n <= limit->n.max; clock.n++) {
638                                 for (clock.p1 = limit->p1.min;
639                                         clock.p1 <= limit->p1.max; clock.p1++) {
640                                         int this_err;
641
642                                         i9xx_calc_dpll_params(refclk, &clock);
643                                         if (!intel_PLL_is_valid(to_i915(dev),
644                                                                 limit,
645                                                                 &clock))
646                                                 continue;
647                                         if (match_clock &&
648                                             clock.p != match_clock->p)
649                                                 continue;
650
651                                         this_err = abs(clock.dot - target);
652                                         if (this_err < err) {
653                                                 *best_clock = clock;
654                                                 err = this_err;
655                                         }
656                                 }
657                         }
658                 }
659         }
660
661         return (err != target);
662 }
663
664 /*
665  * Returns a set of divisors for the desired target clock with the given
666  * refclk, or FALSE.  The returned values represent the clock equation:
667  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
668  *
669  * Target and reference clocks are specified in kHz.
670  *
671  * If match_clock is provided, then best_clock P divider must match the P
672  * divider from @match_clock used for LVDS downclocking.
673  */
674 static bool
675 pnv_find_best_dpll(const struct intel_limit *limit,
676                    struct intel_crtc_state *crtc_state,
677                    int target, int refclk, struct dpll *match_clock,
678                    struct dpll *best_clock)
679 {
680         struct drm_device *dev = crtc_state->base.crtc->dev;
681         struct dpll clock;
682         int err = target;
683
684         memset(best_clock, 0, sizeof(*best_clock));
685
686         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
687
688         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
689              clock.m1++) {
690                 for (clock.m2 = limit->m2.min;
691                      clock.m2 <= limit->m2.max; clock.m2++) {
692                         for (clock.n = limit->n.min;
693                              clock.n <= limit->n.max; clock.n++) {
694                                 for (clock.p1 = limit->p1.min;
695                                         clock.p1 <= limit->p1.max; clock.p1++) {
696                                         int this_err;
697
698                                         pnv_calc_dpll_params(refclk, &clock);
699                                         if (!intel_PLL_is_valid(to_i915(dev),
700                                                                 limit,
701                                                                 &clock))
702                                                 continue;
703                                         if (match_clock &&
704                                             clock.p != match_clock->p)
705                                                 continue;
706
707                                         this_err = abs(clock.dot - target);
708                                         if (this_err < err) {
709                                                 *best_clock = clock;
710                                                 err = this_err;
711                                         }
712                                 }
713                         }
714                 }
715         }
716
717         return (err != target);
718 }
719
720 /*
721  * Returns a set of divisors for the desired target clock with the given
722  * refclk, or FALSE.  The returned values represent the clock equation:
723  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
724  *
725  * Target and reference clocks are specified in kHz.
726  *
727  * If match_clock is provided, then best_clock P divider must match the P
728  * divider from @match_clock used for LVDS downclocking.
729  */
730 static bool
731 g4x_find_best_dpll(const struct intel_limit *limit,
732                    struct intel_crtc_state *crtc_state,
733                    int target, int refclk, struct dpll *match_clock,
734                    struct dpll *best_clock)
735 {
736         struct drm_device *dev = crtc_state->base.crtc->dev;
737         struct dpll clock;
738         int max_n;
739         bool found = false;
740         /* approximately equals target * 0.00585 */
741         int err_most = (target >> 8) + (target >> 9);
742
743         memset(best_clock, 0, sizeof(*best_clock));
744
745         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
746
747         max_n = limit->n.max;
748         /* based on hardware requirement, prefer smaller n to precision */
749         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
750                 /* based on hardware requirement, prefere larger m1,m2 */
751                 for (clock.m1 = limit->m1.max;
752                      clock.m1 >= limit->m1.min; clock.m1--) {
753                         for (clock.m2 = limit->m2.max;
754                              clock.m2 >= limit->m2.min; clock.m2--) {
755                                 for (clock.p1 = limit->p1.max;
756                                      clock.p1 >= limit->p1.min; clock.p1--) {
757                                         int this_err;
758
759                                         i9xx_calc_dpll_params(refclk, &clock);
760                                         if (!intel_PLL_is_valid(to_i915(dev),
761                                                                 limit,
762                                                                 &clock))
763                                                 continue;
764
765                                         this_err = abs(clock.dot - target);
766                                         if (this_err < err_most) {
767                                                 *best_clock = clock;
768                                                 err_most = this_err;
769                                                 max_n = clock.n;
770                                                 found = true;
771                                         }
772                                 }
773                         }
774                 }
775         }
776         return found;
777 }
778
779 /*
780  * Check if the calculated PLL configuration is more optimal compared to the
781  * best configuration and error found so far. Return the calculated error.
782  */
783 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
784                                const struct dpll *calculated_clock,
785                                const struct dpll *best_clock,
786                                unsigned int best_error_ppm,
787                                unsigned int *error_ppm)
788 {
789         /*
790          * For CHV ignore the error and consider only the P value.
791          * Prefer a bigger P value based on HW requirements.
792          */
793         if (IS_CHERRYVIEW(to_i915(dev))) {
794                 *error_ppm = 0;
795
796                 return calculated_clock->p > best_clock->p;
797         }
798
799         if (WARN_ON_ONCE(!target_freq))
800                 return false;
801
802         *error_ppm = div_u64(1000000ULL *
803                                 abs(target_freq - calculated_clock->dot),
804                              target_freq);
805         /*
806          * Prefer a better P value over a better (smaller) error if the error
807          * is small. Ensure this preference for future configurations too by
808          * setting the error to 0.
809          */
810         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
811                 *error_ppm = 0;
812
813                 return true;
814         }
815
816         return *error_ppm + 10 < best_error_ppm;
817 }
818
819 /*
820  * Returns a set of divisors for the desired target clock with the given
821  * refclk, or FALSE.  The returned values represent the clock equation:
822  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
823  */
824 static bool
825 vlv_find_best_dpll(const struct intel_limit *limit,
826                    struct intel_crtc_state *crtc_state,
827                    int target, int refclk, struct dpll *match_clock,
828                    struct dpll *best_clock)
829 {
830         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
831         struct drm_device *dev = crtc->base.dev;
832         struct dpll clock;
833         unsigned int bestppm = 1000000;
834         /* min update 19.2 MHz */
835         int max_n = min(limit->n.max, refclk / 19200);
836         bool found = false;
837
838         target *= 5; /* fast clock */
839
840         memset(best_clock, 0, sizeof(*best_clock));
841
842         /* based on hardware requirement, prefer smaller n to precision */
843         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
844                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
845                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
846                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
847                                 clock.p = clock.p1 * clock.p2;
848                                 /* based on hardware requirement, prefer bigger m1,m2 values */
849                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
850                                         unsigned int ppm;
851
852                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
853                                                                      refclk * clock.m1);
854
855                                         vlv_calc_dpll_params(refclk, &clock);
856
857                                         if (!intel_PLL_is_valid(to_i915(dev),
858                                                                 limit,
859                                                                 &clock))
860                                                 continue;
861
862                                         if (!vlv_PLL_is_optimal(dev, target,
863                                                                 &clock,
864                                                                 best_clock,
865                                                                 bestppm, &ppm))
866                                                 continue;
867
868                                         *best_clock = clock;
869                                         bestppm = ppm;
870                                         found = true;
871                                 }
872                         }
873                 }
874         }
875
876         return found;
877 }
878
879 /*
880  * Returns a set of divisors for the desired target clock with the given
881  * refclk, or FALSE.  The returned values represent the clock equation:
882  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
883  */
884 static bool
885 chv_find_best_dpll(const struct intel_limit *limit,
886                    struct intel_crtc_state *crtc_state,
887                    int target, int refclk, struct dpll *match_clock,
888                    struct dpll *best_clock)
889 {
890         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
891         struct drm_device *dev = crtc->base.dev;
892         unsigned int best_error_ppm;
893         struct dpll clock;
894         uint64_t m2;
895         int found = false;
896
897         memset(best_clock, 0, sizeof(*best_clock));
898         best_error_ppm = 1000000;
899
900         /*
901          * Based on hardware doc, the n always set to 1, and m1 always
902          * set to 2.  If requires to support 200Mhz refclk, we need to
903          * revisit this because n may not 1 anymore.
904          */
905         clock.n = 1, clock.m1 = 2;
906         target *= 5;    /* fast clock */
907
908         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
909                 for (clock.p2 = limit->p2.p2_fast;
910                                 clock.p2 >= limit->p2.p2_slow;
911                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
912                         unsigned int error_ppm;
913
914                         clock.p = clock.p1 * clock.p2;
915
916                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
917                                         clock.n) << 22, refclk * clock.m1);
918
919                         if (m2 > INT_MAX/clock.m1)
920                                 continue;
921
922                         clock.m2 = m2;
923
924                         chv_calc_dpll_params(refclk, &clock);
925
926                         if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
927                                 continue;
928
929                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
930                                                 best_error_ppm, &error_ppm))
931                                 continue;
932
933                         *best_clock = clock;
934                         best_error_ppm = error_ppm;
935                         found = true;
936                 }
937         }
938
939         return found;
940 }
941
942 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
943                         struct dpll *best_clock)
944 {
945         int refclk = 100000;
946         const struct intel_limit *limit = &intel_limits_bxt;
947
948         return chv_find_best_dpll(limit, crtc_state,
949                                   target_clock, refclk, NULL, best_clock);
950 }
951
952 bool intel_crtc_active(struct intel_crtc *crtc)
953 {
954         /* Be paranoid as we can arrive here with only partial
955          * state retrieved from the hardware during setup.
956          *
957          * We can ditch the adjusted_mode.crtc_clock check as soon
958          * as Haswell has gained clock readout/fastboot support.
959          *
960          * We can ditch the crtc->primary->fb check as soon as we can
961          * properly reconstruct framebuffers.
962          *
963          * FIXME: The intel_crtc->active here should be switched to
964          * crtc->state->active once we have proper CRTC states wired up
965          * for atomic.
966          */
967         return crtc->active && crtc->base.primary->state->fb &&
968                 crtc->config->base.adjusted_mode.crtc_clock;
969 }
970
971 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
972                                              enum pipe pipe)
973 {
974         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
975
976         return crtc->config->cpu_transcoder;
977 }
978
979 static bool pipe_dsl_stopped(struct drm_i915_private *dev_priv, enum pipe pipe)
980 {
981         i915_reg_t reg = PIPEDSL(pipe);
982         u32 line1, line2;
983         u32 line_mask;
984
985         if (IS_GEN2(dev_priv))
986                 line_mask = DSL_LINEMASK_GEN2;
987         else
988                 line_mask = DSL_LINEMASK_GEN3;
989
990         line1 = I915_READ(reg) & line_mask;
991         msleep(5);
992         line2 = I915_READ(reg) & line_mask;
993
994         return line1 == line2;
995 }
996
997 /*
998  * intel_wait_for_pipe_off - wait for pipe to turn off
999  * @crtc: crtc whose pipe to wait for
1000  *
1001  * After disabling a pipe, we can't wait for vblank in the usual way,
1002  * spinning on the vblank interrupt status bit, since we won't actually
1003  * see an interrupt when the pipe is disabled.
1004  *
1005  * On Gen4 and above:
1006  *   wait for the pipe register state bit to turn off
1007  *
1008  * Otherwise:
1009  *   wait for the display line value to settle (it usually
1010  *   ends up stopping at the start of the next frame).
1011  *
1012  */
1013 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1014 {
1015         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1016         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1017         enum pipe pipe = crtc->pipe;
1018
1019         if (INTEL_GEN(dev_priv) >= 4) {
1020                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1021
1022                 /* Wait for the Pipe State to go off */
1023                 if (intel_wait_for_register(dev_priv,
1024                                             reg, I965_PIPECONF_ACTIVE, 0,
1025                                             100))
1026                         WARN(1, "pipe_off wait timed out\n");
1027         } else {
1028                 /* Wait for the display line to settle */
1029                 if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
1030                         WARN(1, "pipe_off wait timed out\n");
1031         }
1032 }
1033
1034 /* Only for pre-ILK configs */
1035 void assert_pll(struct drm_i915_private *dev_priv,
1036                 enum pipe pipe, bool state)
1037 {
1038         u32 val;
1039         bool cur_state;
1040
1041         val = I915_READ(DPLL(pipe));
1042         cur_state = !!(val & DPLL_VCO_ENABLE);
1043         I915_STATE_WARN(cur_state != state,
1044              "PLL state assertion failure (expected %s, current %s)\n",
1045                         onoff(state), onoff(cur_state));
1046 }
1047
1048 /* XXX: the dsi pll is shared between MIPI DSI ports */
1049 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1050 {
1051         u32 val;
1052         bool cur_state;
1053
1054         mutex_lock(&dev_priv->sb_lock);
1055         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1056         mutex_unlock(&dev_priv->sb_lock);
1057
1058         cur_state = val & DSI_PLL_VCO_EN;
1059         I915_STATE_WARN(cur_state != state,
1060              "DSI PLL state assertion failure (expected %s, current %s)\n",
1061                         onoff(state), onoff(cur_state));
1062 }
1063
1064 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1065                           enum pipe pipe, bool state)
1066 {
1067         bool cur_state;
1068         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1069                                                                       pipe);
1070
1071         if (HAS_DDI(dev_priv)) {
1072                 /* DDI does not have a specific FDI_TX register */
1073                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1074                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1075         } else {
1076                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1077                 cur_state = !!(val & FDI_TX_ENABLE);
1078         }
1079         I915_STATE_WARN(cur_state != state,
1080              "FDI TX state assertion failure (expected %s, current %s)\n",
1081                         onoff(state), onoff(cur_state));
1082 }
1083 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1084 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1085
1086 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1087                           enum pipe pipe, bool state)
1088 {
1089         u32 val;
1090         bool cur_state;
1091
1092         val = I915_READ(FDI_RX_CTL(pipe));
1093         cur_state = !!(val & FDI_RX_ENABLE);
1094         I915_STATE_WARN(cur_state != state,
1095              "FDI RX state assertion failure (expected %s, current %s)\n",
1096                         onoff(state), onoff(cur_state));
1097 }
1098 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1099 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1100
1101 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1102                                       enum pipe pipe)
1103 {
1104         u32 val;
1105
1106         /* ILK FDI PLL is always enabled */
1107         if (IS_GEN5(dev_priv))
1108                 return;
1109
1110         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1111         if (HAS_DDI(dev_priv))
1112                 return;
1113
1114         val = I915_READ(FDI_TX_CTL(pipe));
1115         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1116 }
1117
1118 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1119                        enum pipe pipe, bool state)
1120 {
1121         u32 val;
1122         bool cur_state;
1123
1124         val = I915_READ(FDI_RX_CTL(pipe));
1125         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1126         I915_STATE_WARN(cur_state != state,
1127              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1128                         onoff(state), onoff(cur_state));
1129 }
1130
1131 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1132 {
1133         i915_reg_t pp_reg;
1134         u32 val;
1135         enum pipe panel_pipe = PIPE_A;
1136         bool locked = true;
1137
1138         if (WARN_ON(HAS_DDI(dev_priv)))
1139                 return;
1140
1141         if (HAS_PCH_SPLIT(dev_priv)) {
1142                 u32 port_sel;
1143
1144                 pp_reg = PP_CONTROL(0);
1145                 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1146
1147                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1148                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1149                         panel_pipe = PIPE_B;
1150                 /* XXX: else fix for eDP */
1151         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1152                 /* presumably write lock depends on pipe, not port select */
1153                 pp_reg = PP_CONTROL(pipe);
1154                 panel_pipe = pipe;
1155         } else {
1156                 pp_reg = PP_CONTROL(0);
1157                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1158                         panel_pipe = PIPE_B;
1159         }
1160
1161         val = I915_READ(pp_reg);
1162         if (!(val & PANEL_POWER_ON) ||
1163             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1164                 locked = false;
1165
1166         I915_STATE_WARN(panel_pipe == pipe && locked,
1167              "panel assertion failure, pipe %c regs locked\n",
1168              pipe_name(pipe));
1169 }
1170
1171 static void assert_cursor(struct drm_i915_private *dev_priv,
1172                           enum pipe pipe, bool state)
1173 {
1174         bool cur_state;
1175
1176         if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
1177                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1178         else
1179                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1180
1181         I915_STATE_WARN(cur_state != state,
1182              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1183                         pipe_name(pipe), onoff(state), onoff(cur_state));
1184 }
1185 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1186 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1187
1188 void assert_pipe(struct drm_i915_private *dev_priv,
1189                  enum pipe pipe, bool state)
1190 {
1191         bool cur_state;
1192         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1193                                                                       pipe);
1194         enum intel_display_power_domain power_domain;
1195
1196         /* we keep both pipes enabled on 830 */
1197         if (IS_I830(dev_priv))
1198                 state = true;
1199
1200         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1201         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1202                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1203                 cur_state = !!(val & PIPECONF_ENABLE);
1204
1205                 intel_display_power_put(dev_priv, power_domain);
1206         } else {
1207                 cur_state = false;
1208         }
1209
1210         I915_STATE_WARN(cur_state != state,
1211              "pipe %c assertion failure (expected %s, current %s)\n",
1212                         pipe_name(pipe), onoff(state), onoff(cur_state));
1213 }
1214
1215 static void assert_plane(struct drm_i915_private *dev_priv,
1216                          enum plane plane, bool state)
1217 {
1218         u32 val;
1219         bool cur_state;
1220
1221         val = I915_READ(DSPCNTR(plane));
1222         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1223         I915_STATE_WARN(cur_state != state,
1224              "plane %c assertion failure (expected %s, current %s)\n",
1225                         plane_name(plane), onoff(state), onoff(cur_state));
1226 }
1227
1228 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1229 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1230
1231 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1232                                    enum pipe pipe)
1233 {
1234         int i;
1235
1236         /* Primary planes are fixed to pipes on gen4+ */
1237         if (INTEL_GEN(dev_priv) >= 4) {
1238                 u32 val = I915_READ(DSPCNTR(pipe));
1239                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1240                      "plane %c assertion failure, should be disabled but not\n",
1241                      plane_name(pipe));
1242                 return;
1243         }
1244
1245         /* Need to check both planes against the pipe */
1246         for_each_pipe(dev_priv, i) {
1247                 u32 val = I915_READ(DSPCNTR(i));
1248                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1249                         DISPPLANE_SEL_PIPE_SHIFT;
1250                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1251                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1252                      plane_name(i), pipe_name(pipe));
1253         }
1254 }
1255
1256 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1257                                     enum pipe pipe)
1258 {
1259         int sprite;
1260
1261         if (INTEL_GEN(dev_priv) >= 9) {
1262                 for_each_sprite(dev_priv, pipe, sprite) {
1263                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1264                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1265                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1266                              sprite, pipe_name(pipe));
1267                 }
1268         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1269                 for_each_sprite(dev_priv, pipe, sprite) {
1270                         u32 val = I915_READ(SPCNTR(pipe, PLANE_SPRITE0 + sprite));
1271                         I915_STATE_WARN(val & SP_ENABLE,
1272                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1273                              sprite_name(pipe, sprite), pipe_name(pipe));
1274                 }
1275         } else if (INTEL_GEN(dev_priv) >= 7) {
1276                 u32 val = I915_READ(SPRCTL(pipe));
1277                 I915_STATE_WARN(val & SPRITE_ENABLE,
1278                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1279                      plane_name(pipe), pipe_name(pipe));
1280         } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
1281                 u32 val = I915_READ(DVSCNTR(pipe));
1282                 I915_STATE_WARN(val & DVS_ENABLE,
1283                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1284                      plane_name(pipe), pipe_name(pipe));
1285         }
1286 }
1287
1288 static void assert_vblank_disabled(struct drm_crtc *crtc)
1289 {
1290         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1291                 drm_crtc_vblank_put(crtc);
1292 }
1293
1294 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1295                                     enum pipe pipe)
1296 {
1297         u32 val;
1298         bool enabled;
1299
1300         val = I915_READ(PCH_TRANSCONF(pipe));
1301         enabled = !!(val & TRANS_ENABLE);
1302         I915_STATE_WARN(enabled,
1303              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1304              pipe_name(pipe));
1305 }
1306
1307 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1308                             enum pipe pipe, u32 port_sel, u32 val)
1309 {
1310         if ((val & DP_PORT_EN) == 0)
1311                 return false;
1312
1313         if (HAS_PCH_CPT(dev_priv)) {
1314                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1315                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316                         return false;
1317         } else if (IS_CHERRYVIEW(dev_priv)) {
1318                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1319                         return false;
1320         } else {
1321                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1322                         return false;
1323         }
1324         return true;
1325 }
1326
1327 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1328                               enum pipe pipe, u32 val)
1329 {
1330         if ((val & SDVO_ENABLE) == 0)
1331                 return false;
1332
1333         if (HAS_PCH_CPT(dev_priv)) {
1334                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1335                         return false;
1336         } else if (IS_CHERRYVIEW(dev_priv)) {
1337                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1338                         return false;
1339         } else {
1340                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1341                         return false;
1342         }
1343         return true;
1344 }
1345
1346 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1347                               enum pipe pipe, u32 val)
1348 {
1349         if ((val & LVDS_PORT_EN) == 0)
1350                 return false;
1351
1352         if (HAS_PCH_CPT(dev_priv)) {
1353                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1354                         return false;
1355         } else {
1356                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1357                         return false;
1358         }
1359         return true;
1360 }
1361
1362 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1363                               enum pipe pipe, u32 val)
1364 {
1365         if ((val & ADPA_DAC_ENABLE) == 0)
1366                 return false;
1367         if (HAS_PCH_CPT(dev_priv)) {
1368                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1369                         return false;
1370         } else {
1371                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1372                         return false;
1373         }
1374         return true;
1375 }
1376
1377 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1378                                    enum pipe pipe, i915_reg_t reg,
1379                                    u32 port_sel)
1380 {
1381         u32 val = I915_READ(reg);
1382         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1383              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1384              i915_mmio_reg_offset(reg), pipe_name(pipe));
1385
1386         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1387              && (val & DP_PIPEB_SELECT),
1388              "IBX PCH dp port still using transcoder B\n");
1389 }
1390
1391 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1392                                      enum pipe pipe, i915_reg_t reg)
1393 {
1394         u32 val = I915_READ(reg);
1395         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1396              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1397              i915_mmio_reg_offset(reg), pipe_name(pipe));
1398
1399         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1400              && (val & SDVO_PIPE_B_SELECT),
1401              "IBX PCH hdmi port still using transcoder B\n");
1402 }
1403
1404 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1405                                       enum pipe pipe)
1406 {
1407         u32 val;
1408
1409         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1410         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1411         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1412
1413         val = I915_READ(PCH_ADPA);
1414         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1415              "PCH VGA enabled on transcoder %c, should be disabled\n",
1416              pipe_name(pipe));
1417
1418         val = I915_READ(PCH_LVDS);
1419         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1420              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1421              pipe_name(pipe));
1422
1423         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1424         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1425         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1426 }
1427
1428 static void _vlv_enable_pll(struct intel_crtc *crtc,
1429                             const struct intel_crtc_state *pipe_config)
1430 {
1431         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1432         enum pipe pipe = crtc->pipe;
1433
1434         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1435         POSTING_READ(DPLL(pipe));
1436         udelay(150);
1437
1438         if (intel_wait_for_register(dev_priv,
1439                                     DPLL(pipe),
1440                                     DPLL_LOCK_VLV,
1441                                     DPLL_LOCK_VLV,
1442                                     1))
1443                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1444 }
1445
1446 static void vlv_enable_pll(struct intel_crtc *crtc,
1447                            const struct intel_crtc_state *pipe_config)
1448 {
1449         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1450         enum pipe pipe = crtc->pipe;
1451
1452         assert_pipe_disabled(dev_priv, pipe);
1453
1454         /* PLL is protected by panel, make sure we can write it */
1455         assert_panel_unlocked(dev_priv, pipe);
1456
1457         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1458                 _vlv_enable_pll(crtc, pipe_config);
1459
1460         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1461         POSTING_READ(DPLL_MD(pipe));
1462 }
1463
1464
1465 static void _chv_enable_pll(struct intel_crtc *crtc,
1466                             const struct intel_crtc_state *pipe_config)
1467 {
1468         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1469         enum pipe pipe = crtc->pipe;
1470         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1471         u32 tmp;
1472
1473         mutex_lock(&dev_priv->sb_lock);
1474
1475         /* Enable back the 10bit clock to display controller */
1476         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1477         tmp |= DPIO_DCLKP_EN;
1478         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1479
1480         mutex_unlock(&dev_priv->sb_lock);
1481
1482         /*
1483          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1484          */
1485         udelay(1);
1486
1487         /* Enable PLL */
1488         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1489
1490         /* Check PLL is locked */
1491         if (intel_wait_for_register(dev_priv,
1492                                     DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1493                                     1))
1494                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1495 }
1496
1497 static void chv_enable_pll(struct intel_crtc *crtc,
1498                            const struct intel_crtc_state *pipe_config)
1499 {
1500         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1501         enum pipe pipe = crtc->pipe;
1502
1503         assert_pipe_disabled(dev_priv, pipe);
1504
1505         /* PLL is protected by panel, make sure we can write it */
1506         assert_panel_unlocked(dev_priv, pipe);
1507
1508         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1509                 _chv_enable_pll(crtc, pipe_config);
1510
1511         if (pipe != PIPE_A) {
1512                 /*
1513                  * WaPixelRepeatModeFixForC0:chv
1514                  *
1515                  * DPLLCMD is AWOL. Use chicken bits to propagate
1516                  * the value from DPLLBMD to either pipe B or C.
1517                  */
1518                 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1519                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1520                 I915_WRITE(CBR4_VLV, 0);
1521                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1522
1523                 /*
1524                  * DPLLB VGA mode also seems to cause problems.
1525                  * We should always have it disabled.
1526                  */
1527                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1528         } else {
1529                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1530                 POSTING_READ(DPLL_MD(pipe));
1531         }
1532 }
1533
1534 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1535 {
1536         struct intel_crtc *crtc;
1537         int count = 0;
1538
1539         for_each_intel_crtc(&dev_priv->drm, crtc) {
1540                 count += crtc->base.state->active &&
1541                         intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1542         }
1543
1544         return count;
1545 }
1546
1547 static void i9xx_enable_pll(struct intel_crtc *crtc)
1548 {
1549         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1550         i915_reg_t reg = DPLL(crtc->pipe);
1551         u32 dpll = crtc->config->dpll_hw_state.dpll;
1552         int i;
1553
1554         assert_pipe_disabled(dev_priv, crtc->pipe);
1555
1556         /* PLL is protected by panel, make sure we can write it */
1557         if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1558                 assert_panel_unlocked(dev_priv, crtc->pipe);
1559
1560         /* Enable DVO 2x clock on both PLLs if necessary */
1561         if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1562                 /*
1563                  * It appears to be important that we don't enable this
1564                  * for the current pipe before otherwise configuring the
1565                  * PLL. No idea how this should be handled if multiple
1566                  * DVO outputs are enabled simultaneosly.
1567                  */
1568                 dpll |= DPLL_DVO_2X_MODE;
1569                 I915_WRITE(DPLL(!crtc->pipe),
1570                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1571         }
1572
1573         /*
1574          * Apparently we need to have VGA mode enabled prior to changing
1575          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1576          * dividers, even though the register value does change.
1577          */
1578         I915_WRITE(reg, 0);
1579
1580         I915_WRITE(reg, dpll);
1581
1582         /* Wait for the clocks to stabilize. */
1583         POSTING_READ(reg);
1584         udelay(150);
1585
1586         if (INTEL_GEN(dev_priv) >= 4) {
1587                 I915_WRITE(DPLL_MD(crtc->pipe),
1588                            crtc->config->dpll_hw_state.dpll_md);
1589         } else {
1590                 /* The pixel multiplier can only be updated once the
1591                  * DPLL is enabled and the clocks are stable.
1592                  *
1593                  * So write it again.
1594                  */
1595                 I915_WRITE(reg, dpll);
1596         }
1597
1598         /* We do this three times for luck */
1599         for (i = 0; i < 3; i++) {
1600                 I915_WRITE(reg, dpll);
1601                 POSTING_READ(reg);
1602                 udelay(150); /* wait for warmup */
1603         }
1604 }
1605
1606 /**
1607  * i9xx_disable_pll - disable a PLL
1608  * @dev_priv: i915 private structure
1609  * @pipe: pipe PLL to disable
1610  *
1611  * Disable the PLL for @pipe, making sure the pipe is off first.
1612  *
1613  * Note!  This is for pre-ILK only.
1614  */
1615 static void i9xx_disable_pll(struct intel_crtc *crtc)
1616 {
1617         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1618         enum pipe pipe = crtc->pipe;
1619
1620         /* Disable DVO 2x clock on both PLLs if necessary */
1621         if (IS_I830(dev_priv) &&
1622             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1623             !intel_num_dvo_pipes(dev_priv)) {
1624                 I915_WRITE(DPLL(PIPE_B),
1625                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1626                 I915_WRITE(DPLL(PIPE_A),
1627                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1628         }
1629
1630         /* Don't disable pipe or pipe PLLs if needed */
1631         if (IS_I830(dev_priv))
1632                 return;
1633
1634         /* Make sure the pipe isn't still relying on us */
1635         assert_pipe_disabled(dev_priv, pipe);
1636
1637         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1638         POSTING_READ(DPLL(pipe));
1639 }
1640
1641 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1642 {
1643         u32 val;
1644
1645         /* Make sure the pipe isn't still relying on us */
1646         assert_pipe_disabled(dev_priv, pipe);
1647
1648         val = DPLL_INTEGRATED_REF_CLK_VLV |
1649                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1650         if (pipe != PIPE_A)
1651                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1652
1653         I915_WRITE(DPLL(pipe), val);
1654         POSTING_READ(DPLL(pipe));
1655 }
1656
1657 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1658 {
1659         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1660         u32 val;
1661
1662         /* Make sure the pipe isn't still relying on us */
1663         assert_pipe_disabled(dev_priv, pipe);
1664
1665         val = DPLL_SSC_REF_CLK_CHV |
1666                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1667         if (pipe != PIPE_A)
1668                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1669
1670         I915_WRITE(DPLL(pipe), val);
1671         POSTING_READ(DPLL(pipe));
1672
1673         mutex_lock(&dev_priv->sb_lock);
1674
1675         /* Disable 10bit clock to display controller */
1676         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1677         val &= ~DPIO_DCLKP_EN;
1678         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1679
1680         mutex_unlock(&dev_priv->sb_lock);
1681 }
1682
1683 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1684                          struct intel_digital_port *dport,
1685                          unsigned int expected_mask)
1686 {
1687         u32 port_mask;
1688         i915_reg_t dpll_reg;
1689
1690         switch (dport->port) {
1691         case PORT_B:
1692                 port_mask = DPLL_PORTB_READY_MASK;
1693                 dpll_reg = DPLL(0);
1694                 break;
1695         case PORT_C:
1696                 port_mask = DPLL_PORTC_READY_MASK;
1697                 dpll_reg = DPLL(0);
1698                 expected_mask <<= 4;
1699                 break;
1700         case PORT_D:
1701                 port_mask = DPLL_PORTD_READY_MASK;
1702                 dpll_reg = DPIO_PHY_STATUS;
1703                 break;
1704         default:
1705                 BUG();
1706         }
1707
1708         if (intel_wait_for_register(dev_priv,
1709                                     dpll_reg, port_mask, expected_mask,
1710                                     1000))
1711                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1712                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1713 }
1714
1715 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1716                                            enum pipe pipe)
1717 {
1718         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1719                                                                 pipe);
1720         i915_reg_t reg;
1721         uint32_t val, pipeconf_val;
1722
1723         /* Make sure PCH DPLL is enabled */
1724         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1725
1726         /* FDI must be feeding us bits for PCH ports */
1727         assert_fdi_tx_enabled(dev_priv, pipe);
1728         assert_fdi_rx_enabled(dev_priv, pipe);
1729
1730         if (HAS_PCH_CPT(dev_priv)) {
1731                 /* Workaround: Set the timing override bit before enabling the
1732                  * pch transcoder. */
1733                 reg = TRANS_CHICKEN2(pipe);
1734                 val = I915_READ(reg);
1735                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1736                 I915_WRITE(reg, val);
1737         }
1738
1739         reg = PCH_TRANSCONF(pipe);
1740         val = I915_READ(reg);
1741         pipeconf_val = I915_READ(PIPECONF(pipe));
1742
1743         if (HAS_PCH_IBX(dev_priv)) {
1744                 /*
1745                  * Make the BPC in transcoder be consistent with
1746                  * that in pipeconf reg. For HDMI we must use 8bpc
1747                  * here for both 8bpc and 12bpc.
1748                  */
1749                 val &= ~PIPECONF_BPC_MASK;
1750                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1751                         val |= PIPECONF_8BPC;
1752                 else
1753                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1754         }
1755
1756         val &= ~TRANS_INTERLACE_MASK;
1757         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1758                 if (HAS_PCH_IBX(dev_priv) &&
1759                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1760                         val |= TRANS_LEGACY_INTERLACED_ILK;
1761                 else
1762                         val |= TRANS_INTERLACED;
1763         else
1764                 val |= TRANS_PROGRESSIVE;
1765
1766         I915_WRITE(reg, val | TRANS_ENABLE);
1767         if (intel_wait_for_register(dev_priv,
1768                                     reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1769                                     100))
1770                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1771 }
1772
1773 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1774                                       enum transcoder cpu_transcoder)
1775 {
1776         u32 val, pipeconf_val;
1777
1778         /* FDI must be feeding us bits for PCH ports */
1779         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1780         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1781
1782         /* Workaround: set timing override bit. */
1783         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1784         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1785         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1786
1787         val = TRANS_ENABLE;
1788         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1789
1790         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1791             PIPECONF_INTERLACED_ILK)
1792                 val |= TRANS_INTERLACED;
1793         else
1794                 val |= TRANS_PROGRESSIVE;
1795
1796         I915_WRITE(LPT_TRANSCONF, val);
1797         if (intel_wait_for_register(dev_priv,
1798                                     LPT_TRANSCONF,
1799                                     TRANS_STATE_ENABLE,
1800                                     TRANS_STATE_ENABLE,
1801                                     100))
1802                 DRM_ERROR("Failed to enable PCH transcoder\n");
1803 }
1804
1805 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1806                                             enum pipe pipe)
1807 {
1808         i915_reg_t reg;
1809         uint32_t val;
1810
1811         /* FDI relies on the transcoder */
1812         assert_fdi_tx_disabled(dev_priv, pipe);
1813         assert_fdi_rx_disabled(dev_priv, pipe);
1814
1815         /* Ports must be off as well */
1816         assert_pch_ports_disabled(dev_priv, pipe);
1817
1818         reg = PCH_TRANSCONF(pipe);
1819         val = I915_READ(reg);
1820         val &= ~TRANS_ENABLE;
1821         I915_WRITE(reg, val);
1822         /* wait for PCH transcoder off, transcoder state */
1823         if (intel_wait_for_register(dev_priv,
1824                                     reg, TRANS_STATE_ENABLE, 0,
1825                                     50))
1826                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1827
1828         if (HAS_PCH_CPT(dev_priv)) {
1829                 /* Workaround: Clear the timing override chicken bit again. */
1830                 reg = TRANS_CHICKEN2(pipe);
1831                 val = I915_READ(reg);
1832                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1833                 I915_WRITE(reg, val);
1834         }
1835 }
1836
1837 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1838 {
1839         u32 val;
1840
1841         val = I915_READ(LPT_TRANSCONF);
1842         val &= ~TRANS_ENABLE;
1843         I915_WRITE(LPT_TRANSCONF, val);
1844         /* wait for PCH transcoder off, transcoder state */
1845         if (intel_wait_for_register(dev_priv,
1846                                     LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1847                                     50))
1848                 DRM_ERROR("Failed to disable PCH transcoder\n");
1849
1850         /* Workaround: clear timing override bit. */
1851         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1852         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1853         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1854 }
1855
1856 enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1857 {
1858         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1859
1860         WARN_ON(!crtc->config->has_pch_encoder);
1861
1862         if (HAS_PCH_LPT(dev_priv))
1863                 return TRANSCODER_A;
1864         else
1865                 return (enum transcoder) crtc->pipe;
1866 }
1867
1868 /**
1869  * intel_enable_pipe - enable a pipe, asserting requirements
1870  * @crtc: crtc responsible for the pipe
1871  *
1872  * Enable @crtc's pipe, making sure that various hardware specific requirements
1873  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1874  */
1875 static void intel_enable_pipe(struct intel_crtc *crtc)
1876 {
1877         struct drm_device *dev = crtc->base.dev;
1878         struct drm_i915_private *dev_priv = to_i915(dev);
1879         enum pipe pipe = crtc->pipe;
1880         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1881         i915_reg_t reg;
1882         u32 val;
1883
1884         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1885
1886         assert_planes_disabled(dev_priv, pipe);
1887         assert_cursor_disabled(dev_priv, pipe);
1888         assert_sprites_disabled(dev_priv, pipe);
1889
1890         /*
1891          * A pipe without a PLL won't actually be able to drive bits from
1892          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1893          * need the check.
1894          */
1895         if (HAS_GMCH_DISPLAY(dev_priv)) {
1896                 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1897                         assert_dsi_pll_enabled(dev_priv);
1898                 else
1899                         assert_pll_enabled(dev_priv, pipe);
1900         } else {
1901                 if (crtc->config->has_pch_encoder) {
1902                         /* if driving the PCH, we need FDI enabled */
1903                         assert_fdi_rx_pll_enabled(dev_priv,
1904                                                   (enum pipe) intel_crtc_pch_transcoder(crtc));
1905                         assert_fdi_tx_pll_enabled(dev_priv,
1906                                                   (enum pipe) cpu_transcoder);
1907                 }
1908                 /* FIXME: assert CPU port conditions for SNB+ */
1909         }
1910
1911         reg = PIPECONF(cpu_transcoder);
1912         val = I915_READ(reg);
1913         if (val & PIPECONF_ENABLE) {
1914                 /* we keep both pipes enabled on 830 */
1915                 WARN_ON(!IS_I830(dev_priv));
1916                 return;
1917         }
1918
1919         I915_WRITE(reg, val | PIPECONF_ENABLE);
1920         POSTING_READ(reg);
1921
1922         /*
1923          * Until the pipe starts DSL will read as 0, which would cause
1924          * an apparent vblank timestamp jump, which messes up also the
1925          * frame count when it's derived from the timestamps. So let's
1926          * wait for the pipe to start properly before we call
1927          * drm_crtc_vblank_on()
1928          */
1929         if (dev->max_vblank_count == 0 &&
1930             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1931                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1932 }
1933
1934 /**
1935  * intel_disable_pipe - disable a pipe, asserting requirements
1936  * @crtc: crtc whose pipes is to be disabled
1937  *
1938  * Disable the pipe of @crtc, making sure that various hardware
1939  * specific requirements are met, if applicable, e.g. plane
1940  * disabled, panel fitter off, etc.
1941  *
1942  * Will wait until the pipe has shut down before returning.
1943  */
1944 static void intel_disable_pipe(struct intel_crtc *crtc)
1945 {
1946         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1947         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1948         enum pipe pipe = crtc->pipe;
1949         i915_reg_t reg;
1950         u32 val;
1951
1952         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1953
1954         /*
1955          * Make sure planes won't keep trying to pump pixels to us,
1956          * or we might hang the display.
1957          */
1958         assert_planes_disabled(dev_priv, pipe);
1959         assert_cursor_disabled(dev_priv, pipe);
1960         assert_sprites_disabled(dev_priv, pipe);
1961
1962         reg = PIPECONF(cpu_transcoder);
1963         val = I915_READ(reg);
1964         if ((val & PIPECONF_ENABLE) == 0)
1965                 return;
1966
1967         /*
1968          * Double wide has implications for planes
1969          * so best keep it disabled when not needed.
1970          */
1971         if (crtc->config->double_wide)
1972                 val &= ~PIPECONF_DOUBLE_WIDE;
1973
1974         /* Don't disable pipe or pipe PLLs if needed */
1975         if (!IS_I830(dev_priv))
1976                 val &= ~PIPECONF_ENABLE;
1977
1978         I915_WRITE(reg, val);
1979         if ((val & PIPECONF_ENABLE) == 0)
1980                 intel_wait_for_pipe_off(crtc);
1981 }
1982
1983 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1984 {
1985         return IS_GEN2(dev_priv) ? 2048 : 4096;
1986 }
1987
1988 static unsigned int
1989 intel_tile_width_bytes(const struct drm_framebuffer *fb, int plane)
1990 {
1991         struct drm_i915_private *dev_priv = to_i915(fb->dev);
1992         unsigned int cpp = fb->format->cpp[plane];
1993
1994         switch (fb->modifier) {
1995         case DRM_FORMAT_MOD_LINEAR:
1996                 return cpp;
1997         case I915_FORMAT_MOD_X_TILED:
1998                 if (IS_GEN2(dev_priv))
1999                         return 128;
2000                 else
2001                         return 512;
2002         case I915_FORMAT_MOD_Y_TILED:
2003                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2004                         return 128;
2005                 else
2006                         return 512;
2007         case I915_FORMAT_MOD_Yf_TILED:
2008                 switch (cpp) {
2009                 case 1:
2010                         return 64;
2011                 case 2:
2012                 case 4:
2013                         return 128;
2014                 case 8:
2015                 case 16:
2016                         return 256;
2017                 default:
2018                         MISSING_CASE(cpp);
2019                         return cpp;
2020                 }
2021                 break;
2022         default:
2023                 MISSING_CASE(fb->modifier);
2024                 return cpp;
2025         }
2026 }
2027
2028 static unsigned int
2029 intel_tile_height(const struct drm_framebuffer *fb, int plane)
2030 {
2031         if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
2032                 return 1;
2033         else
2034                 return intel_tile_size(to_i915(fb->dev)) /
2035                         intel_tile_width_bytes(fb, plane);
2036 }
2037
2038 /* Return the tile dimensions in pixel units */
2039 static void intel_tile_dims(const struct drm_framebuffer *fb, int plane,
2040                             unsigned int *tile_width,
2041                             unsigned int *tile_height)
2042 {
2043         unsigned int tile_width_bytes = intel_tile_width_bytes(fb, plane);
2044         unsigned int cpp = fb->format->cpp[plane];
2045
2046         *tile_width = tile_width_bytes / cpp;
2047         *tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes;
2048 }
2049
2050 unsigned int
2051 intel_fb_align_height(const struct drm_framebuffer *fb,
2052                       int plane, unsigned int height)
2053 {
2054         unsigned int tile_height = intel_tile_height(fb, plane);
2055
2056         return ALIGN(height, tile_height);
2057 }
2058
2059 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2060 {
2061         unsigned int size = 0;
2062         int i;
2063
2064         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2065                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2066
2067         return size;
2068 }
2069
2070 static void
2071 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2072                         const struct drm_framebuffer *fb,
2073                         unsigned int rotation)
2074 {
2075         view->type = I915_GGTT_VIEW_NORMAL;
2076         if (drm_rotation_90_or_270(rotation)) {
2077                 view->type = I915_GGTT_VIEW_ROTATED;
2078                 view->rotated = to_intel_framebuffer(fb)->rot_info;
2079         }
2080 }
2081
2082 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2083 {
2084         if (IS_I830(dev_priv))
2085                 return 16 * 1024;
2086         else if (IS_I85X(dev_priv))
2087                 return 256;
2088         else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2089                 return 32;
2090         else
2091                 return 4 * 1024;
2092 }
2093
2094 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2095 {
2096         if (INTEL_INFO(dev_priv)->gen >= 9)
2097                 return 256 * 1024;
2098         else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2099                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2100                 return 128 * 1024;
2101         else if (INTEL_INFO(dev_priv)->gen >= 4)
2102                 return 4 * 1024;
2103         else
2104                 return 0;
2105 }
2106
2107 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2108                                          int plane)
2109 {
2110         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2111
2112         /* AUX_DIST needs only 4K alignment */
2113         if (fb->format->format == DRM_FORMAT_NV12 && plane == 1)
2114                 return 4096;
2115
2116         switch (fb->modifier) {
2117         case DRM_FORMAT_MOD_LINEAR:
2118                 return intel_linear_alignment(dev_priv);
2119         case I915_FORMAT_MOD_X_TILED:
2120                 if (INTEL_GEN(dev_priv) >= 9)
2121                         return 256 * 1024;
2122                 return 0;
2123         case I915_FORMAT_MOD_Y_TILED:
2124         case I915_FORMAT_MOD_Yf_TILED:
2125                 return 1 * 1024 * 1024;
2126         default:
2127                 MISSING_CASE(fb->modifier);
2128                 return 0;
2129         }
2130 }
2131
2132 struct i915_vma *
2133 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2134 {
2135         struct drm_device *dev = fb->dev;
2136         struct drm_i915_private *dev_priv = to_i915(dev);
2137         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2138         struct i915_ggtt_view view;
2139         struct i915_vma *vma;
2140         u32 alignment;
2141
2142         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2143
2144         alignment = intel_surf_alignment(fb, 0);
2145
2146         intel_fill_fb_ggtt_view(&view, fb, rotation);
2147
2148         /* Note that the w/a also requires 64 PTE of padding following the
2149          * bo. We currently fill all unused PTE with the shadow page and so
2150          * we should always have valid PTE following the scanout preventing
2151          * the VT-d warning.
2152          */
2153         if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2154                 alignment = 256 * 1024;
2155
2156         /*
2157          * Global gtt pte registers are special registers which actually forward
2158          * writes to a chunk of system memory. Which means that there is no risk
2159          * that the register values disappear as soon as we call
2160          * intel_runtime_pm_put(), so it is correct to wrap only the
2161          * pin/unpin/fence and not more.
2162          */
2163         intel_runtime_pm_get(dev_priv);
2164
2165         vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2166         if (IS_ERR(vma))
2167                 goto err;
2168
2169         if (i915_vma_is_map_and_fenceable(vma)) {
2170                 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2171                  * fence, whereas 965+ only requires a fence if using
2172                  * framebuffer compression.  For simplicity, we always, when
2173                  * possible, install a fence as the cost is not that onerous.
2174                  *
2175                  * If we fail to fence the tiled scanout, then either the
2176                  * modeset will reject the change (which is highly unlikely as
2177                  * the affected systems, all but one, do not have unmappable
2178                  * space) or we will not be able to enable full powersaving
2179                  * techniques (also likely not to apply due to various limits
2180                  * FBC and the like impose on the size of the buffer, which
2181                  * presumably we violated anyway with this unmappable buffer).
2182                  * Anyway, it is presumably better to stumble onwards with
2183                  * something and try to run the system in a "less than optimal"
2184                  * mode that matches the user configuration.
2185                  */
2186                 if (i915_vma_get_fence(vma) == 0)
2187                         i915_vma_pin_fence(vma);
2188         }
2189
2190         i915_vma_get(vma);
2191 err:
2192         intel_runtime_pm_put(dev_priv);
2193         return vma;
2194 }
2195
2196 void intel_unpin_fb_vma(struct i915_vma *vma)
2197 {
2198         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
2199
2200         i915_vma_unpin_fence(vma);
2201         i915_gem_object_unpin_from_display_plane(vma);
2202         i915_vma_put(vma);
2203 }
2204
2205 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2206                           unsigned int rotation)
2207 {
2208         if (drm_rotation_90_or_270(rotation))
2209                 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2210         else
2211                 return fb->pitches[plane];
2212 }
2213
2214 /*
2215  * Convert the x/y offsets into a linear offset.
2216  * Only valid with 0/180 degree rotation, which is fine since linear
2217  * offset is only used with linear buffers on pre-hsw and tiled buffers
2218  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2219  */
2220 u32 intel_fb_xy_to_linear(int x, int y,
2221                           const struct intel_plane_state *state,
2222                           int plane)
2223 {
2224         const struct drm_framebuffer *fb = state->base.fb;
2225         unsigned int cpp = fb->format->cpp[plane];
2226         unsigned int pitch = fb->pitches[plane];
2227
2228         return y * pitch + x * cpp;
2229 }
2230
2231 /*
2232  * Add the x/y offsets derived from fb->offsets[] to the user
2233  * specified plane src x/y offsets. The resulting x/y offsets
2234  * specify the start of scanout from the beginning of the gtt mapping.
2235  */
2236 void intel_add_fb_offsets(int *x, int *y,
2237                           const struct intel_plane_state *state,
2238                           int plane)
2239
2240 {
2241         const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2242         unsigned int rotation = state->base.rotation;
2243
2244         if (drm_rotation_90_or_270(rotation)) {
2245                 *x += intel_fb->rotated[plane].x;
2246                 *y += intel_fb->rotated[plane].y;
2247         } else {
2248                 *x += intel_fb->normal[plane].x;
2249                 *y += intel_fb->normal[plane].y;
2250         }
2251 }
2252
2253 /*
2254  * Input tile dimensions and pitch must already be
2255  * rotated to match x and y, and in pixel units.
2256  */
2257 static u32 _intel_adjust_tile_offset(int *x, int *y,
2258                                      unsigned int tile_width,
2259                                      unsigned int tile_height,
2260                                      unsigned int tile_size,
2261                                      unsigned int pitch_tiles,
2262                                      u32 old_offset,
2263                                      u32 new_offset)
2264 {
2265         unsigned int pitch_pixels = pitch_tiles * tile_width;
2266         unsigned int tiles;
2267
2268         WARN_ON(old_offset & (tile_size - 1));
2269         WARN_ON(new_offset & (tile_size - 1));
2270         WARN_ON(new_offset > old_offset);
2271
2272         tiles = (old_offset - new_offset) / tile_size;
2273
2274         *y += tiles / pitch_tiles * tile_height;
2275         *x += tiles % pitch_tiles * tile_width;
2276
2277         /* minimize x in case it got needlessly big */
2278         *y += *x / pitch_pixels * tile_height;
2279         *x %= pitch_pixels;
2280
2281         return new_offset;
2282 }
2283
2284 /*
2285  * Adjust the tile offset by moving the difference into
2286  * the x/y offsets.
2287  */
2288 static u32 intel_adjust_tile_offset(int *x, int *y,
2289                                     const struct intel_plane_state *state, int plane,
2290                                     u32 old_offset, u32 new_offset)
2291 {
2292         const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2293         const struct drm_framebuffer *fb = state->base.fb;
2294         unsigned int cpp = fb->format->cpp[plane];
2295         unsigned int rotation = state->base.rotation;
2296         unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2297
2298         WARN_ON(new_offset > old_offset);
2299
2300         if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2301                 unsigned int tile_size, tile_width, tile_height;
2302                 unsigned int pitch_tiles;
2303
2304                 tile_size = intel_tile_size(dev_priv);
2305                 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2306
2307                 if (drm_rotation_90_or_270(rotation)) {
2308                         pitch_tiles = pitch / tile_height;
2309                         swap(tile_width, tile_height);
2310                 } else {
2311                         pitch_tiles = pitch / (tile_width * cpp);
2312                 }
2313
2314                 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2315                                           tile_size, pitch_tiles,
2316                                           old_offset, new_offset);
2317         } else {
2318                 old_offset += *y * pitch + *x * cpp;
2319
2320                 *y = (old_offset - new_offset) / pitch;
2321                 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2322         }
2323
2324         return new_offset;
2325 }
2326
2327 /*
2328  * Computes the linear offset to the base tile and adjusts
2329  * x, y. bytes per pixel is assumed to be a power-of-two.
2330  *
2331  * In the 90/270 rotated case, x and y are assumed
2332  * to be already rotated to match the rotated GTT view, and
2333  * pitch is the tile_height aligned framebuffer height.
2334  *
2335  * This function is used when computing the derived information
2336  * under intel_framebuffer, so using any of that information
2337  * here is not allowed. Anything under drm_framebuffer can be
2338  * used. This is why the user has to pass in the pitch since it
2339  * is specified in the rotated orientation.
2340  */
2341 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2342                                       int *x, int *y,
2343                                       const struct drm_framebuffer *fb, int plane,
2344                                       unsigned int pitch,
2345                                       unsigned int rotation,
2346                                       u32 alignment)
2347 {
2348         uint64_t fb_modifier = fb->modifier;
2349         unsigned int cpp = fb->format->cpp[plane];
2350         u32 offset, offset_aligned;
2351
2352         if (alignment)
2353                 alignment--;
2354
2355         if (fb_modifier != DRM_FORMAT_MOD_LINEAR) {
2356                 unsigned int tile_size, tile_width, tile_height;
2357                 unsigned int tile_rows, tiles, pitch_tiles;
2358
2359                 tile_size = intel_tile_size(dev_priv);
2360                 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2361
2362                 if (drm_rotation_90_or_270(rotation)) {
2363                         pitch_tiles = pitch / tile_height;
2364                         swap(tile_width, tile_height);
2365                 } else {
2366                         pitch_tiles = pitch / (tile_width * cpp);
2367                 }
2368
2369                 tile_rows = *y / tile_height;
2370                 *y %= tile_height;
2371
2372                 tiles = *x / tile_width;
2373                 *x %= tile_width;
2374
2375                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2376                 offset_aligned = offset & ~alignment;
2377
2378                 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2379                                           tile_size, pitch_tiles,
2380                                           offset, offset_aligned);
2381         } else {
2382                 offset = *y * pitch + *x * cpp;
2383                 offset_aligned = offset & ~alignment;
2384
2385                 *y = (offset & alignment) / pitch;
2386                 *x = ((offset & alignment) - *y * pitch) / cpp;
2387         }
2388
2389         return offset_aligned;
2390 }
2391
2392 u32 intel_compute_tile_offset(int *x, int *y,
2393                               const struct intel_plane_state *state,
2394                               int plane)
2395 {
2396         struct intel_plane *intel_plane = to_intel_plane(state->base.plane);
2397         struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2398         const struct drm_framebuffer *fb = state->base.fb;
2399         unsigned int rotation = state->base.rotation;
2400         int pitch = intel_fb_pitch(fb, plane, rotation);
2401         u32 alignment;
2402
2403         if (intel_plane->id == PLANE_CURSOR)
2404                 alignment = intel_cursor_alignment(dev_priv);
2405         else
2406                 alignment = intel_surf_alignment(fb, plane);
2407
2408         return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2409                                           rotation, alignment);
2410 }
2411
2412 /* Convert the fb->offset[] linear offset into x/y offsets */
2413 static void intel_fb_offset_to_xy(int *x, int *y,
2414                                   const struct drm_framebuffer *fb, int plane)
2415 {
2416         unsigned int cpp = fb->format->cpp[plane];
2417         unsigned int pitch = fb->pitches[plane];
2418         u32 linear_offset = fb->offsets[plane];
2419
2420         *y = linear_offset / pitch;
2421         *x = linear_offset % pitch / cpp;
2422 }
2423
2424 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2425 {
2426         switch (fb_modifier) {
2427         case I915_FORMAT_MOD_X_TILED:
2428                 return I915_TILING_X;
2429         case I915_FORMAT_MOD_Y_TILED:
2430                 return I915_TILING_Y;
2431         default:
2432                 return I915_TILING_NONE;
2433         }
2434 }
2435
2436 static int
2437 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2438                    struct drm_framebuffer *fb)
2439 {
2440         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2441         struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2442         u32 gtt_offset_rotated = 0;
2443         unsigned int max_size = 0;
2444         int i, num_planes = fb->format->num_planes;
2445         unsigned int tile_size = intel_tile_size(dev_priv);
2446
2447         for (i = 0; i < num_planes; i++) {
2448                 unsigned int width, height;
2449                 unsigned int cpp, size;
2450                 u32 offset;
2451                 int x, y;
2452
2453                 cpp = fb->format->cpp[i];
2454                 width = drm_framebuffer_plane_width(fb->width, fb, i);
2455                 height = drm_framebuffer_plane_height(fb->height, fb, i);
2456
2457                 intel_fb_offset_to_xy(&x, &y, fb, i);
2458
2459                 /*
2460                  * The fence (if used) is aligned to the start of the object
2461                  * so having the framebuffer wrap around across the edge of the
2462                  * fenced region doesn't really work. We have no API to configure
2463                  * the fence start offset within the object (nor could we probably
2464                  * on gen2/3). So it's just easier if we just require that the
2465                  * fb layout agrees with the fence layout. We already check that the
2466                  * fb stride matches the fence stride elsewhere.
2467                  */
2468                 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2469                     (x + width) * cpp > fb->pitches[i]) {
2470                         DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2471                                       i, fb->offsets[i]);
2472                         return -EINVAL;
2473                 }
2474
2475                 /*
2476                  * First pixel of the framebuffer from
2477                  * the start of the normal gtt mapping.
2478                  */
2479                 intel_fb->normal[i].x = x;
2480                 intel_fb->normal[i].y = y;
2481
2482                 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2483                                                     fb, i, fb->pitches[i],
2484                                                     DRM_MODE_ROTATE_0, tile_size);
2485                 offset /= tile_size;
2486
2487                 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2488                         unsigned int tile_width, tile_height;
2489                         unsigned int pitch_tiles;
2490                         struct drm_rect r;
2491
2492                         intel_tile_dims(fb, i, &tile_width, &tile_height);
2493
2494                         rot_info->plane[i].offset = offset;
2495                         rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2496                         rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2497                         rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2498
2499                         intel_fb->rotated[i].pitch =
2500                                 rot_info->plane[i].height * tile_height;
2501
2502                         /* how many tiles does this plane need */
2503                         size = rot_info->plane[i].stride * rot_info->plane[i].height;
2504                         /*
2505                          * If the plane isn't horizontally tile aligned,
2506                          * we need one more tile.
2507                          */
2508                         if (x != 0)
2509                                 size++;
2510
2511                         /* rotate the x/y offsets to match the GTT view */
2512                         r.x1 = x;
2513                         r.y1 = y;
2514                         r.x2 = x + width;
2515                         r.y2 = y + height;
2516                         drm_rect_rotate(&r,
2517                                         rot_info->plane[i].width * tile_width,
2518                                         rot_info->plane[i].height * tile_height,
2519                                         DRM_MODE_ROTATE_270);
2520                         x = r.x1;
2521                         y = r.y1;
2522
2523                         /* rotate the tile dimensions to match the GTT view */
2524                         pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2525                         swap(tile_width, tile_height);
2526
2527                         /*
2528                          * We only keep the x/y offsets, so push all of the
2529                          * gtt offset into the x/y offsets.
2530                          */
2531                         _intel_adjust_tile_offset(&x, &y,
2532                                                   tile_width, tile_height,
2533                                                   tile_size, pitch_tiles,
2534                                                   gtt_offset_rotated * tile_size, 0);
2535
2536                         gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2537
2538                         /*
2539                          * First pixel of the framebuffer from
2540                          * the start of the rotated gtt mapping.
2541                          */
2542                         intel_fb->rotated[i].x = x;
2543                         intel_fb->rotated[i].y = y;
2544                 } else {
2545                         size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2546                                             x * cpp, tile_size);
2547                 }
2548
2549                 /* how many tiles in total needed in the bo */
2550                 max_size = max(max_size, offset + size);
2551         }
2552
2553         if (max_size * tile_size > intel_fb->obj->base.size) {
2554                 DRM_DEBUG_KMS("fb too big for bo (need %u bytes, have %zu bytes)\n",
2555                               max_size * tile_size, intel_fb->obj->base.size);
2556                 return -EINVAL;
2557         }
2558
2559         return 0;
2560 }
2561
2562 static int i9xx_format_to_fourcc(int format)
2563 {
2564         switch (format) {
2565         case DISPPLANE_8BPP:
2566                 return DRM_FORMAT_C8;
2567         case DISPPLANE_BGRX555:
2568                 return DRM_FORMAT_XRGB1555;
2569         case DISPPLANE_BGRX565:
2570                 return DRM_FORMAT_RGB565;
2571         default:
2572         case DISPPLANE_BGRX888:
2573                 return DRM_FORMAT_XRGB8888;
2574         case DISPPLANE_RGBX888:
2575                 return DRM_FORMAT_XBGR8888;
2576         case DISPPLANE_BGRX101010:
2577                 return DRM_FORMAT_XRGB2101010;
2578         case DISPPLANE_RGBX101010:
2579                 return DRM_FORMAT_XBGR2101010;
2580         }
2581 }
2582
2583 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2584 {
2585         switch (format) {
2586         case PLANE_CTL_FORMAT_RGB_565:
2587                 return DRM_FORMAT_RGB565;
2588         default:
2589         case PLANE_CTL_FORMAT_XRGB_8888:
2590                 if (rgb_order) {
2591                         if (alpha)
2592                                 return DRM_FORMAT_ABGR8888;
2593                         else
2594                                 return DRM_FORMAT_XBGR8888;
2595                 } else {
2596                         if (alpha)
2597                                 return DRM_FORMAT_ARGB8888;
2598                         else
2599                                 return DRM_FORMAT_XRGB8888;
2600                 }
2601         case PLANE_CTL_FORMAT_XRGB_2101010:
2602                 if (rgb_order)
2603                         return DRM_FORMAT_XBGR2101010;
2604                 else
2605                         return DRM_FORMAT_XRGB2101010;
2606         }
2607 }
2608
2609 static bool
2610 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2611                               struct intel_initial_plane_config *plane_config)
2612 {
2613         struct drm_device *dev = crtc->base.dev;
2614         struct drm_i915_private *dev_priv = to_i915(dev);
2615         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2616         struct drm_i915_gem_object *obj = NULL;
2617         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2618         struct drm_framebuffer *fb = &plane_config->fb->base;
2619         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2620         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2621                                     PAGE_SIZE);
2622
2623         size_aligned -= base_aligned;
2624
2625         if (plane_config->size == 0)
2626                 return false;
2627
2628         /* If the FB is too big, just don't use it since fbdev is not very
2629          * important and we should probably use that space with FBC or other
2630          * features. */
2631         if (size_aligned * 2 > ggtt->stolen_usable_size)
2632                 return false;
2633
2634         mutex_lock(&dev->struct_mutex);
2635         obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
2636                                                              base_aligned,
2637                                                              base_aligned,
2638                                                              size_aligned);
2639         mutex_unlock(&dev->struct_mutex);
2640         if (!obj)
2641                 return false;
2642
2643         if (plane_config->tiling == I915_TILING_X)
2644                 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2645
2646         mode_cmd.pixel_format = fb->format->format;
2647         mode_cmd.width = fb->width;
2648         mode_cmd.height = fb->height;
2649         mode_cmd.pitches[0] = fb->pitches[0];
2650         mode_cmd.modifier[0] = fb->modifier;
2651         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2652
2653         if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
2654                 DRM_DEBUG_KMS("intel fb init failed\n");
2655                 goto out_unref_obj;
2656         }
2657
2658
2659         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2660         return true;
2661
2662 out_unref_obj:
2663         i915_gem_object_put(obj);
2664         return false;
2665 }
2666
2667 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2668 static void
2669 update_state_fb(struct drm_plane *plane)
2670 {
2671         if (plane->fb == plane->state->fb)
2672                 return;
2673
2674         if (plane->state->fb)
2675                 drm_framebuffer_unreference(plane->state->fb);
2676         plane->state->fb = plane->fb;
2677         if (plane->state->fb)
2678                 drm_framebuffer_reference(plane->state->fb);
2679 }
2680
2681 static void
2682 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
2683                         struct intel_plane_state *plane_state,
2684                         bool visible)
2685 {
2686         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2687
2688         plane_state->base.visible = visible;
2689
2690         /* FIXME pre-g4x don't work like this */
2691         if (visible) {
2692                 crtc_state->base.plane_mask |= BIT(drm_plane_index(&plane->base));
2693                 crtc_state->active_planes |= BIT(plane->id);
2694         } else {
2695                 crtc_state->base.plane_mask &= ~BIT(drm_plane_index(&plane->base));
2696                 crtc_state->active_planes &= ~BIT(plane->id);
2697         }
2698
2699         DRM_DEBUG_KMS("%s active planes 0x%x\n",
2700                       crtc_state->base.crtc->name,
2701                       crtc_state->active_planes);
2702 }
2703
2704 static void
2705 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2706                              struct intel_initial_plane_config *plane_config)
2707 {
2708         struct drm_device *dev = intel_crtc->base.dev;
2709         struct drm_i915_private *dev_priv = to_i915(dev);
2710         struct drm_crtc *c;
2711         struct drm_i915_gem_object *obj;
2712         struct drm_plane *primary = intel_crtc->base.primary;
2713         struct drm_plane_state *plane_state = primary->state;
2714         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2715         struct intel_plane *intel_plane = to_intel_plane(primary);
2716         struct intel_plane_state *intel_state =
2717                 to_intel_plane_state(plane_state);
2718         struct drm_framebuffer *fb;
2719
2720         if (!plane_config->fb)
2721                 return;
2722
2723         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2724                 fb = &plane_config->fb->base;
2725                 goto valid_fb;
2726         }
2727
2728         kfree(plane_config->fb);
2729
2730         /*
2731          * Failed to alloc the obj, check to see if we should share
2732          * an fb with another CRTC instead
2733          */
2734         for_each_crtc(dev, c) {
2735                 struct intel_plane_state *state;
2736
2737                 if (c == &intel_crtc->base)
2738                         continue;
2739
2740                 if (!to_intel_crtc(c)->active)
2741                         continue;
2742
2743                 state = to_intel_plane_state(c->primary->state);
2744                 if (!state->vma)
2745                         continue;
2746
2747                 if (intel_plane_ggtt_offset(state) == plane_config->base) {
2748                         fb = c->primary->fb;
2749                         drm_framebuffer_reference(fb);
2750                         goto valid_fb;
2751                 }
2752         }
2753
2754         /*
2755          * We've failed to reconstruct the BIOS FB.  Current display state
2756          * indicates that the primary plane is visible, but has a NULL FB,
2757          * which will lead to problems later if we don't fix it up.  The
2758          * simplest solution is to just disable the primary plane now and
2759          * pretend the BIOS never had it enabled.
2760          */
2761         intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2762                                 to_intel_plane_state(plane_state),
2763                                 false);
2764         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2765         trace_intel_disable_plane(primary, intel_crtc);
2766         intel_plane->disable_plane(intel_plane, intel_crtc);
2767
2768         return;
2769
2770 valid_fb:
2771         mutex_lock(&dev->struct_mutex);
2772         intel_state->vma =
2773                 intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2774         mutex_unlock(&dev->struct_mutex);
2775         if (IS_ERR(intel_state->vma)) {
2776                 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2777                           intel_crtc->pipe, PTR_ERR(intel_state->vma));
2778
2779                 intel_state->vma = NULL;
2780                 drm_framebuffer_unreference(fb);
2781                 return;
2782         }
2783
2784         plane_state->src_x = 0;
2785         plane_state->src_y = 0;
2786         plane_state->src_w = fb->width << 16;
2787         plane_state->src_h = fb->height << 16;
2788
2789         plane_state->crtc_x = 0;
2790         plane_state->crtc_y = 0;
2791         plane_state->crtc_w = fb->width;
2792         plane_state->crtc_h = fb->height;
2793
2794         intel_state->base.src = drm_plane_state_src(plane_state);
2795         intel_state->base.dst = drm_plane_state_dest(plane_state);
2796
2797         obj = intel_fb_obj(fb);
2798         if (i915_gem_object_is_tiled(obj))
2799                 dev_priv->preserve_bios_swizzle = true;
2800
2801         drm_framebuffer_reference(fb);
2802         primary->fb = primary->state->fb = fb;
2803         primary->crtc = primary->state->crtc = &intel_crtc->base;
2804
2805         intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2806                                 to_intel_plane_state(plane_state),
2807                                 true);
2808
2809         atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2810                   &obj->frontbuffer_bits);
2811 }
2812
2813 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2814                                unsigned int rotation)
2815 {
2816         int cpp = fb->format->cpp[plane];
2817
2818         switch (fb->modifier) {
2819         case DRM_FORMAT_MOD_LINEAR:
2820         case I915_FORMAT_MOD_X_TILED:
2821                 switch (cpp) {
2822                 case 8:
2823                         return 4096;
2824                 case 4:
2825                 case 2:
2826                 case 1:
2827                         return 8192;
2828                 default:
2829                         MISSING_CASE(cpp);
2830                         break;
2831                 }
2832                 break;
2833         case I915_FORMAT_MOD_Y_TILED:
2834         case I915_FORMAT_MOD_Yf_TILED:
2835                 switch (cpp) {
2836                 case 8:
2837                         return 2048;
2838                 case 4:
2839                         return 4096;
2840                 case 2:
2841                 case 1:
2842                         return 8192;
2843                 default:
2844                         MISSING_CASE(cpp);
2845                         break;
2846                 }
2847                 break;
2848         default:
2849                 MISSING_CASE(fb->modifier);
2850         }
2851
2852         return 2048;
2853 }
2854
2855 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2856 {
2857         const struct drm_framebuffer *fb = plane_state->base.fb;
2858         unsigned int rotation = plane_state->base.rotation;
2859         int x = plane_state->base.src.x1 >> 16;
2860         int y = plane_state->base.src.y1 >> 16;
2861         int w = drm_rect_width(&plane_state->base.src) >> 16;
2862         int h = drm_rect_height(&plane_state->base.src) >> 16;
2863         int max_width = skl_max_plane_width(fb, 0, rotation);
2864         int max_height = 4096;
2865         u32 alignment, offset, aux_offset = plane_state->aux.offset;
2866
2867         if (w > max_width || h > max_height) {
2868                 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2869                               w, h, max_width, max_height);
2870                 return -EINVAL;
2871         }
2872
2873         intel_add_fb_offsets(&x, &y, plane_state, 0);
2874         offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2875         alignment = intel_surf_alignment(fb, 0);
2876
2877         /*
2878          * AUX surface offset is specified as the distance from the
2879          * main surface offset, and it must be non-negative. Make
2880          * sure that is what we will get.
2881          */
2882         if (offset > aux_offset)
2883                 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2884                                                   offset, aux_offset & ~(alignment - 1));
2885
2886         /*
2887          * When using an X-tiled surface, the plane blows up
2888          * if the x offset + width exceed the stride.
2889          *
2890          * TODO: linear and Y-tiled seem fine, Yf untested,
2891          */
2892         if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2893                 int cpp = fb->format->cpp[0];
2894
2895                 while ((x + w) * cpp > fb->pitches[0]) {
2896                         if (offset == 0) {
2897                                 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2898                                 return -EINVAL;
2899                         }
2900
2901                         offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2902                                                           offset, offset - alignment);
2903                 }
2904         }
2905
2906         plane_state->main.offset = offset;
2907         plane_state->main.x = x;
2908         plane_state->main.y = y;
2909
2910         return 0;
2911 }
2912
2913 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2914 {
2915         const struct drm_framebuffer *fb = plane_state->base.fb;
2916         unsigned int rotation = plane_state->base.rotation;
2917         int max_width = skl_max_plane_width(fb, 1, rotation);
2918         int max_height = 4096;
2919         int x = plane_state->base.src.x1 >> 17;
2920         int y = plane_state->base.src.y1 >> 17;
2921         int w = drm_rect_width(&plane_state->base.src) >> 17;
2922         int h = drm_rect_height(&plane_state->base.src) >> 17;
2923         u32 offset;
2924
2925         intel_add_fb_offsets(&x, &y, plane_state, 1);
2926         offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2927
2928         /* FIXME not quite sure how/if these apply to the chroma plane */
2929         if (w > max_width || h > max_height) {
2930                 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2931                               w, h, max_width, max_height);
2932                 return -EINVAL;
2933         }
2934
2935         plane_state->aux.offset = offset;
2936         plane_state->aux.x = x;
2937         plane_state->aux.y = y;
2938
2939         return 0;
2940 }
2941
2942 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2943 {
2944         const struct drm_framebuffer *fb = plane_state->base.fb;
2945         unsigned int rotation = plane_state->base.rotation;
2946         int ret;
2947
2948         if (!plane_state->base.visible)
2949                 return 0;
2950
2951         /* Rotate src coordinates to match rotated GTT view */
2952         if (drm_rotation_90_or_270(rotation))
2953                 drm_rect_rotate(&plane_state->base.src,
2954                                 fb->width << 16, fb->height << 16,
2955                                 DRM_MODE_ROTATE_270);
2956
2957         /*
2958          * Handle the AUX surface first since
2959          * the main surface setup depends on it.
2960          */
2961         if (fb->format->format == DRM_FORMAT_NV12) {
2962                 ret = skl_check_nv12_aux_surface(plane_state);
2963                 if (ret)
2964                         return ret;
2965         } else {
2966                 plane_state->aux.offset = ~0xfff;
2967                 plane_state->aux.x = 0;
2968                 plane_state->aux.y = 0;
2969         }
2970
2971         ret = skl_check_main_surface(plane_state);
2972         if (ret)
2973                 return ret;
2974
2975         return 0;
2976 }
2977
2978 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
2979                           const struct intel_plane_state *plane_state)
2980 {
2981         struct drm_i915_private *dev_priv =
2982                 to_i915(plane_state->base.plane->dev);
2983         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2984         const struct drm_framebuffer *fb = plane_state->base.fb;
2985         unsigned int rotation = plane_state->base.rotation;
2986         u32 dspcntr;
2987
2988         dspcntr = DISPLAY_PLANE_ENABLE | DISPPLANE_GAMMA_ENABLE;
2989
2990         if (IS_G4X(dev_priv) || IS_GEN5(dev_priv) ||
2991             IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
2992                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2993
2994         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2995                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2996
2997         if (INTEL_GEN(dev_priv) < 4)
2998                 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
2999
3000         switch (fb->format->format) {
3001         case DRM_FORMAT_C8:
3002                 dspcntr |= DISPPLANE_8BPP;
3003                 break;
3004         case DRM_FORMAT_XRGB1555:
3005                 dspcntr |= DISPPLANE_BGRX555;
3006                 break;
3007         case DRM_FORMAT_RGB565:
3008                 dspcntr |= DISPPLANE_BGRX565;
3009                 break;
3010         case DRM_FORMAT_XRGB8888:
3011                 dspcntr |= DISPPLANE_BGRX888;
3012                 break;
3013         case DRM_FORMAT_XBGR8888:
3014                 dspcntr |= DISPPLANE_RGBX888;
3015                 break;
3016         case DRM_FORMAT_XRGB2101010:
3017                 dspcntr |= DISPPLANE_BGRX101010;
3018                 break;
3019         case DRM_FORMAT_XBGR2101010:
3020                 dspcntr |= DISPPLANE_RGBX101010;
3021                 break;
3022         default:
3023                 MISSING_CASE(fb->format->format);
3024                 return 0;
3025         }
3026
3027         if (INTEL_GEN(dev_priv) >= 4 &&
3028             fb->modifier == I915_FORMAT_MOD_X_TILED)
3029                 dspcntr |= DISPPLANE_TILED;
3030
3031         if (rotation & DRM_MODE_ROTATE_180)
3032                 dspcntr |= DISPPLANE_ROTATE_180;
3033
3034         if (rotation & DRM_MODE_REFLECT_X)
3035                 dspcntr |= DISPPLANE_MIRROR;
3036
3037         return dspcntr;
3038 }
3039
3040 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
3041 {
3042         struct drm_i915_private *dev_priv =
3043                 to_i915(plane_state->base.plane->dev);
3044         int src_x = plane_state->base.src.x1 >> 16;
3045         int src_y = plane_state->base.src.y1 >> 16;
3046         u32 offset;
3047
3048         intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
3049
3050         if (INTEL_GEN(dev_priv) >= 4)
3051                 offset = intel_compute_tile_offset(&src_x, &src_y,
3052                                                    plane_state, 0);
3053         else
3054                 offset = 0;
3055
3056         /* HSW/BDW do this automagically in hardware */
3057         if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
3058                 unsigned int rotation = plane_state->base.rotation;
3059                 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3060                 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3061
3062                 if (rotation & DRM_MODE_ROTATE_180) {
3063                         src_x += src_w - 1;
3064                         src_y += src_h - 1;
3065                 } else if (rotation & DRM_MODE_REFLECT_X) {
3066                         src_x += src_w - 1;
3067                 }
3068         }
3069
3070         plane_state->main.offset = offset;
3071         plane_state->main.x = src_x;
3072         plane_state->main.y = src_y;
3073
3074         return 0;
3075 }
3076
3077 static void i9xx_update_primary_plane(struct intel_plane *primary,
3078                                       const struct intel_crtc_state *crtc_state,
3079                                       const struct intel_plane_state *plane_state)
3080 {
3081         struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3082         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3083         const struct drm_framebuffer *fb = plane_state->base.fb;
3084         enum plane plane = primary->plane;
3085         u32 linear_offset;
3086         u32 dspcntr = plane_state->ctl;
3087         i915_reg_t reg = DSPCNTR(plane);
3088         int x = plane_state->main.x;
3089         int y = plane_state->main.y;
3090         unsigned long irqflags;
3091
3092         linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3093
3094         if (INTEL_GEN(dev_priv) >= 4)
3095                 crtc->dspaddr_offset = plane_state->main.offset;
3096         else
3097                 crtc->dspaddr_offset = linear_offset;
3098
3099         crtc->adjusted_x = x;
3100         crtc->adjusted_y = y;
3101
3102         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3103
3104         if (INTEL_GEN(dev_priv) < 4) {
3105                 /* pipesrc and dspsize control the size that is scaled from,
3106                  * which should always be the user's requested size.
3107                  */
3108                 I915_WRITE_FW(DSPSIZE(plane),
3109                               ((crtc_state->pipe_src_h - 1) << 16) |
3110                               (crtc_state->pipe_src_w - 1));
3111                 I915_WRITE_FW(DSPPOS(plane), 0);
3112         } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3113                 I915_WRITE_FW(PRIMSIZE(plane),
3114                               ((crtc_state->pipe_src_h - 1) << 16) |
3115                               (crtc_state->pipe_src_w - 1));
3116                 I915_WRITE_FW(PRIMPOS(plane), 0);
3117                 I915_WRITE_FW(PRIMCNSTALPHA(plane), 0);
3118         }
3119
3120         I915_WRITE_FW(reg, dspcntr);
3121
3122         I915_WRITE_FW(DSPSTRIDE(plane), fb->pitches[0]);
3123         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3124                 I915_WRITE_FW(DSPSURF(plane),
3125                               intel_plane_ggtt_offset(plane_state) +
3126                               crtc->dspaddr_offset);
3127                 I915_WRITE_FW(DSPOFFSET(plane), (y << 16) | x);
3128         } else if (INTEL_GEN(dev_priv) >= 4) {
3129                 I915_WRITE_FW(DSPSURF(plane),
3130                               intel_plane_ggtt_offset(plane_state) +
3131                               crtc->dspaddr_offset);
3132                 I915_WRITE_FW(DSPTILEOFF(plane), (y << 16) | x);
3133                 I915_WRITE_FW(DSPLINOFF(plane), linear_offset);
3134         } else {
3135                 I915_WRITE_FW(DSPADDR(plane),
3136                               intel_plane_ggtt_offset(plane_state) +
3137                               crtc->dspaddr_offset);
3138         }
3139         POSTING_READ_FW(reg);
3140
3141         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3142 }
3143
3144 static void i9xx_disable_primary_plane(struct intel_plane *primary,
3145                                        struct intel_crtc *crtc)
3146 {
3147         struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3148         enum plane plane = primary->plane;
3149         unsigned long irqflags;
3150
3151         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3152
3153         I915_WRITE_FW(DSPCNTR(plane), 0);
3154         if (INTEL_INFO(dev_priv)->gen >= 4)
3155                 I915_WRITE_FW(DSPSURF(plane), 0);
3156         else
3157                 I915_WRITE_FW(DSPADDR(plane), 0);
3158         POSTING_READ_FW(DSPCNTR(plane));
3159
3160         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3161 }
3162
3163 static u32
3164 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int plane)
3165 {
3166         if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
3167                 return 64;
3168         else
3169                 return intel_tile_width_bytes(fb, plane);
3170 }
3171
3172 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3173 {
3174         struct drm_device *dev = intel_crtc->base.dev;
3175         struct drm_i915_private *dev_priv = to_i915(dev);
3176
3177         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3178         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3179         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3180 }
3181
3182 /*
3183  * This function detaches (aka. unbinds) unused scalers in hardware
3184  */
3185 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3186 {
3187         struct intel_crtc_scaler_state *scaler_state;
3188         int i;
3189
3190         scaler_state = &intel_crtc->config->scaler_state;
3191
3192         /* loop through and disable scalers that aren't in use */
3193         for (i = 0; i < intel_crtc->num_scalers; i++) {
3194                 if (!scaler_state->scalers[i].in_use)
3195                         skl_detach_scaler(intel_crtc, i);
3196         }
3197 }
3198
3199 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3200                      unsigned int rotation)
3201 {
3202         u32 stride;
3203
3204         if (plane >= fb->format->num_planes)
3205                 return 0;
3206
3207         stride = intel_fb_pitch(fb, plane, rotation);
3208
3209         /*
3210          * The stride is either expressed as a multiple of 64 bytes chunks for
3211          * linear buffers or in number of tiles for tiled buffers.
3212          */
3213         if (drm_rotation_90_or_270(rotation))
3214                 stride /= intel_tile_height(fb, plane);
3215         else
3216                 stride /= intel_fb_stride_alignment(fb, plane);
3217
3218         return stride;
3219 }
3220
3221 static u32 skl_plane_ctl_format(uint32_t pixel_format)
3222 {
3223         switch (pixel_format) {
3224         case DRM_FORMAT_C8:
3225                 return PLANE_CTL_FORMAT_INDEXED;
3226         case DRM_FORMAT_RGB565:
3227                 return PLANE_CTL_FORMAT_RGB_565;
3228         case DRM_FORMAT_XBGR8888:
3229                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3230         case DRM_FORMAT_XRGB8888:
3231                 return PLANE_CTL_FORMAT_XRGB_8888;
3232         /*
3233          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3234          * to be already pre-multiplied. We need to add a knob (or a different
3235          * DRM_FORMAT) for user-space to configure that.
3236          */
3237         case DRM_FORMAT_ABGR8888:
3238                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3239                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3240         case DRM_FORMAT_ARGB8888:
3241                 return PLANE_CTL_FORMAT_XRGB_8888 |
3242                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3243         case DRM_FORMAT_XRGB2101010:
3244                 return PLANE_CTL_FORMAT_XRGB_2101010;
3245         case DRM_FORMAT_XBGR2101010:
3246                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3247         case DRM_FORMAT_YUYV:
3248                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3249         case DRM_FORMAT_YVYU:
3250                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3251         case DRM_FORMAT_UYVY:
3252                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3253         case DRM_FORMAT_VYUY:
3254                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3255         default:
3256                 MISSING_CASE(pixel_format);
3257         }
3258
3259         return 0;
3260 }
3261
3262 static u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3263 {
3264         switch (fb_modifier) {
3265         case DRM_FORMAT_MOD_LINEAR:
3266                 break;
3267         case I915_FORMAT_MOD_X_TILED:
3268                 return PLANE_CTL_TILED_X;
3269         case I915_FORMAT_MOD_Y_TILED:
3270                 return PLANE_CTL_TILED_Y;
3271         case I915_FORMAT_MOD_Yf_TILED:
3272                 return PLANE_CTL_TILED_YF;
3273         default:
3274                 MISSING_CASE(fb_modifier);
3275         }
3276
3277         return 0;
3278 }
3279
3280 static u32 skl_plane_ctl_rotation(unsigned int rotation)
3281 {
3282         switch (rotation) {
3283         case DRM_MODE_ROTATE_0:
3284                 break;
3285         /*
3286          * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
3287          * while i915 HW rotation is clockwise, thats why this swapping.
3288          */
3289         case DRM_MODE_ROTATE_90:
3290                 return PLANE_CTL_ROTATE_270;
3291         case DRM_MODE_ROTATE_180:
3292                 return PLANE_CTL_ROTATE_180;
3293         case DRM_MODE_ROTATE_270:
3294                 return PLANE_CTL_ROTATE_90;
3295         default:
3296                 MISSING_CASE(rotation);
3297         }
3298
3299         return 0;
3300 }
3301
3302 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
3303                   const struct intel_plane_state *plane_state)
3304 {
3305         struct drm_i915_private *dev_priv =
3306                 to_i915(plane_state->base.plane->dev);
3307         const struct drm_framebuffer *fb = plane_state->base.fb;
3308         unsigned int rotation = plane_state->base.rotation;
3309         const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
3310         u32 plane_ctl;
3311
3312         plane_ctl = PLANE_CTL_ENABLE;
3313
3314         if (!IS_GEMINILAKE(dev_priv)) {
3315                 plane_ctl |=
3316                         PLANE_CTL_PIPE_GAMMA_ENABLE |
3317                         PLANE_CTL_PIPE_CSC_ENABLE |
3318                         PLANE_CTL_PLANE_GAMMA_DISABLE;
3319         }
3320
3321         plane_ctl |= skl_plane_ctl_format(fb->format->format);
3322         plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3323         plane_ctl |= skl_plane_ctl_rotation(rotation);
3324
3325         if (key->flags & I915_SET_COLORKEY_DESTINATION)
3326                 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
3327         else if (key->flags & I915_SET_COLORKEY_SOURCE)
3328                 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
3329
3330         return plane_ctl;
3331 }
3332
3333 static void skylake_update_primary_plane(struct intel_plane *plane,
3334                                          const struct intel_crtc_state *crtc_state,
3335                                          const struct intel_plane_state *plane_state)
3336 {
3337         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3338         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3339         const struct drm_framebuffer *fb = plane_state->base.fb;
3340         enum plane_id plane_id = plane->id;
3341         enum pipe pipe = plane->pipe;
3342         u32 plane_ctl = plane_state->ctl;
3343         unsigned int rotation = plane_state->base.rotation;
3344         u32 stride = skl_plane_stride(fb, 0, rotation);
3345         u32 surf_addr = plane_state->main.offset;
3346         int scaler_id = plane_state->scaler_id;
3347         int src_x = plane_state->main.x;
3348         int src_y = plane_state->main.y;
3349         int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3350         int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3351         int dst_x = plane_state->base.dst.x1;
3352         int dst_y = plane_state->base.dst.y1;
3353         int dst_w = drm_rect_width(&plane_state->base.dst);
3354         int dst_h = drm_rect_height(&plane_state->base.dst);
3355         unsigned long irqflags;
3356
3357         /* Sizes are 0 based */
3358         src_w--;
3359         src_h--;
3360         dst_w--;
3361         dst_h--;
3362
3363         crtc->dspaddr_offset = surf_addr;
3364
3365         crtc->adjusted_x = src_x;
3366         crtc->adjusted_y = src_y;
3367
3368         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3369
3370         if (IS_GEMINILAKE(dev_priv)) {
3371                 I915_WRITE_FW(PLANE_COLOR_CTL(pipe, plane_id),
3372                               PLANE_COLOR_PIPE_GAMMA_ENABLE |
3373                               PLANE_COLOR_PIPE_CSC_ENABLE |
3374                               PLANE_COLOR_PLANE_GAMMA_DISABLE);
3375         }
3376
3377         I915_WRITE_FW(PLANE_CTL(pipe, plane_id), plane_ctl);
3378         I915_WRITE_FW(PLANE_OFFSET(pipe, plane_id), (src_y << 16) | src_x);
3379         I915_WRITE_FW(PLANE_STRIDE(pipe, plane_id), stride);
3380         I915_WRITE_FW(PLANE_SIZE(pipe, plane_id), (src_h << 16) | src_w);
3381
3382         if (scaler_id >= 0) {
3383                 uint32_t ps_ctrl = 0;
3384
3385                 WARN_ON(!dst_w || !dst_h);
3386                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(plane_id) |
3387                         crtc_state->scaler_state.scalers[scaler_id].mode;
3388                 I915_WRITE_FW(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3389                 I915_WRITE_FW(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3390                 I915_WRITE_FW(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3391                 I915_WRITE_FW(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3392                 I915_WRITE_FW(PLANE_POS(pipe, plane_id), 0);
3393         } else {
3394                 I915_WRITE_FW(PLANE_POS(pipe, plane_id), (dst_y << 16) | dst_x);
3395         }
3396
3397         I915_WRITE_FW(PLANE_SURF(pipe, plane_id),
3398                       intel_plane_ggtt_offset(plane_state) + surf_addr);
3399
3400         POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3401
3402         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3403 }
3404
3405 static void skylake_disable_primary_plane(struct intel_plane *primary,
3406                                           struct intel_crtc *crtc)
3407 {
3408         struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3409         enum plane_id plane_id = primary->id;
3410         enum pipe pipe = primary->pipe;
3411         unsigned long irqflags;
3412
3413         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3414
3415         I915_WRITE_FW(PLANE_CTL(pipe, plane_id), 0);
3416         I915_WRITE_FW(PLANE_SURF(pipe, plane_id), 0);
3417         POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3418
3419         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3420 }
3421
3422 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3423 {
3424         struct intel_crtc *crtc;
3425
3426         for_each_intel_crtc(&dev_priv->drm, crtc)
3427                 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3428 }
3429
3430 static int
3431 __intel_display_resume(struct drm_device *dev,
3432                        struct drm_atomic_state *state,
3433                        struct drm_modeset_acquire_ctx *ctx)
3434 {
3435         struct drm_crtc_state *crtc_state;
3436         struct drm_crtc *crtc;
3437         int i, ret;
3438
3439         intel_modeset_setup_hw_state(dev, ctx);
3440         i915_redisable_vga(to_i915(dev));
3441
3442         if (!state)
3443                 return 0;
3444
3445         /*
3446          * We've duplicated the state, pointers to the old state are invalid.
3447          *
3448          * Don't attempt to use the old state until we commit the duplicated state.
3449          */
3450         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
3451                 /*
3452                  * Force recalculation even if we restore
3453                  * current state. With fast modeset this may not result
3454                  * in a modeset when the state is compatible.
3455                  */
3456                 crtc_state->mode_changed = true;
3457         }
3458
3459         /* ignore any reset values/BIOS leftovers in the WM registers */
3460         if (!HAS_GMCH_DISPLAY(to_i915(dev)))
3461                 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3462
3463         ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
3464
3465         WARN_ON(ret == -EDEADLK);
3466         return ret;
3467 }
3468
3469 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3470 {
3471         return intel_has_gpu_reset(dev_priv) &&
3472                 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3473 }
3474
3475 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3476 {
3477         struct drm_device *dev = &dev_priv->drm;
3478         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3479         struct drm_atomic_state *state;
3480         int ret;
3481
3482
3483         /* reset doesn't touch the display */
3484         if (!i915.force_reset_modeset_test &&
3485             !gpu_reset_clobbers_display(dev_priv))
3486                 return;
3487
3488         /* We have a modeset vs reset deadlock, defensively unbreak it.
3489          *
3490          * FIXME: We can do a _lot_ better, this is just a first iteration.
3491          */
3492         i915_gem_set_wedged(dev_priv);
3493         DRM_DEBUG_DRIVER("Wedging GPU to avoid deadlocks with pending modeset updates\n");
3494
3495         /*
3496          * Need mode_config.mutex so that we don't
3497          * trample ongoing ->detect() and whatnot.
3498          */
3499         mutex_lock(&dev->mode_config.mutex);
3500         drm_modeset_acquire_init(ctx, 0);
3501         while (1) {
3502                 ret = drm_modeset_lock_all_ctx(dev, ctx);
3503                 if (ret != -EDEADLK)
3504                         break;
3505
3506                 drm_modeset_backoff(ctx);
3507         }
3508         /*
3509          * Disabling the crtcs gracefully seems nicer. Also the
3510          * g33 docs say we should at least disable all the planes.
3511          */
3512         state = drm_atomic_helper_duplicate_state(dev, ctx);
3513         if (IS_ERR(state)) {
3514                 ret = PTR_ERR(state);
3515                 DRM_ERROR("Duplicating state failed with %i\n", ret);
3516                 return;
3517         }
3518
3519         ret = drm_atomic_helper_disable_all(dev, ctx);
3520         if (ret) {
3521                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3522                 drm_atomic_state_put(state);
3523                 return;
3524         }
3525
3526         dev_priv->modeset_restore_state = state;
3527         state->acquire_ctx = ctx;
3528 }
3529
3530 void intel_finish_reset(struct drm_i915_private *dev_priv)
3531 {
3532         struct drm_device *dev = &dev_priv->drm;
3533         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3534         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3535         int ret;
3536
3537         /* reset doesn't touch the display */
3538         if (!i915.force_reset_modeset_test &&
3539             !gpu_reset_clobbers_display(dev_priv))
3540                 return;
3541
3542         if (!state)
3543                 goto unlock;
3544
3545         /*
3546          * Flips in the rings will be nuked by the reset,
3547          * so complete all pending flips so that user space
3548          * will get its events and not get stuck.
3549          */
3550         intel_complete_page_flips(dev_priv);
3551
3552         dev_priv->modeset_restore_state = NULL;
3553
3554         /* reset doesn't touch the display */
3555         if (!gpu_reset_clobbers_display(dev_priv)) {
3556                 /* for testing only restore the display */
3557                 ret = __intel_display_resume(dev, state, ctx);
3558                         if (ret)
3559                                 DRM_ERROR("Restoring old state failed with %i\n", ret);
3560         } else {
3561                 /*
3562                  * The display has been reset as well,
3563                  * so need a full re-initialization.
3564                  */
3565                 intel_runtime_pm_disable_interrupts(dev_priv);
3566                 intel_runtime_pm_enable_interrupts(dev_priv);
3567
3568                 intel_pps_unlock_regs_wa(dev_priv);
3569                 intel_modeset_init_hw(dev);
3570
3571                 spin_lock_irq(&dev_priv->irq_lock);
3572                 if (dev_priv->display.hpd_irq_setup)
3573                         dev_priv->display.hpd_irq_setup(dev_priv);
3574                 spin_unlock_irq(&dev_priv->irq_lock);
3575
3576                 ret = __intel_display_resume(dev, state, ctx);
3577                 if (ret)
3578                         DRM_ERROR("Restoring old state failed with %i\n", ret);
3579
3580                 intel_hpd_init(dev_priv);
3581         }
3582
3583         drm_atomic_state_put(state);
3584 unlock:
3585         drm_modeset_drop_locks(ctx);
3586         drm_modeset_acquire_fini(ctx);
3587         mutex_unlock(&dev->mode_config.mutex);
3588 }
3589
3590 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3591 {
3592         struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3593
3594         if (i915_reset_backoff(error))
3595                 return true;
3596
3597         if (crtc->reset_count != i915_reset_count(error))
3598                 return true;
3599
3600         return false;
3601 }
3602
3603 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3604 {
3605         struct drm_device *dev = crtc->dev;
3606         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3607         bool pending;
3608
3609         if (abort_flip_on_reset(intel_crtc))
3610                 return false;
3611
3612         spin_lock_irq(&dev->event_lock);
3613         pending = to_intel_crtc(crtc)->flip_work != NULL;
3614         spin_unlock_irq(&dev->event_lock);
3615
3616         return pending;
3617 }
3618
3619 static void intel_update_pipe_config(struct intel_crtc *crtc,
3620                                      struct intel_crtc_state *old_crtc_state)
3621 {
3622         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3623         struct intel_crtc_state *pipe_config =
3624                 to_intel_crtc_state(crtc->base.state);
3625
3626         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3627         crtc->base.mode = crtc->base.state->mode;
3628
3629         /*
3630          * Update pipe size and adjust fitter if needed: the reason for this is
3631          * that in compute_mode_changes we check the native mode (not the pfit
3632          * mode) to see if we can flip rather than do a full mode set. In the
3633          * fastboot case, we'll flip, but if we don't update the pipesrc and
3634          * pfit state, we'll end up with a big fb scanned out into the wrong
3635          * sized surface.
3636          */
3637
3638         I915_WRITE(PIPESRC(crtc->pipe),
3639                    ((pipe_config->pipe_src_w - 1) << 16) |
3640                    (pipe_config->pipe_src_h - 1));
3641
3642         /* on skylake this is done by detaching scalers */
3643         if (INTEL_GEN(dev_priv) >= 9) {
3644                 skl_detach_scalers(crtc);
3645
3646                 if (pipe_config->pch_pfit.enabled)
3647                         skylake_pfit_enable(crtc);
3648         } else if (HAS_PCH_SPLIT(dev_priv)) {
3649                 if (pipe_config->pch_pfit.enabled)
3650                         ironlake_pfit_enable(crtc);
3651                 else if (old_crtc_state->pch_pfit.enabled)
3652                         ironlake_pfit_disable(crtc, true);
3653         }
3654 }
3655
3656 static void intel_fdi_normal_train(struct intel_crtc *crtc)
3657 {
3658         struct drm_device *dev = crtc->base.dev;
3659         struct drm_i915_private *dev_priv = to_i915(dev);
3660         int pipe = crtc->pipe;
3661         i915_reg_t reg;
3662         u32 temp;
3663
3664         /* enable normal train */
3665         reg = FDI_TX_CTL(pipe);
3666         temp = I915_READ(reg);
3667         if (IS_IVYBRIDGE(dev_priv)) {
3668                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3669                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3670         } else {
3671                 temp &= ~FDI_LINK_TRAIN_NONE;
3672                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3673         }
3674         I915_WRITE(reg, temp);
3675
3676         reg = FDI_RX_CTL(pipe);
3677         temp = I915_READ(reg);
3678         if (HAS_PCH_CPT(dev_priv)) {
3679                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3680                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3681         } else {
3682                 temp &= ~FDI_LINK_TRAIN_NONE;
3683                 temp |= FDI_LINK_TRAIN_NONE;
3684         }
3685         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3686
3687         /* wait one idle pattern time */
3688         POSTING_READ(reg);
3689         udelay(1000);
3690
3691         /* IVB wants error correction enabled */
3692         if (IS_IVYBRIDGE(dev_priv))
3693                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3694                            FDI_FE_ERRC_ENABLE);
3695 }
3696
3697 /* The FDI link training functions for ILK/Ibexpeak. */
3698 static void ironlake_fdi_link_train(struct intel_crtc *crtc,
3699                                     const struct intel_crtc_state *crtc_state)
3700 {
3701         struct drm_device *dev = crtc->base.dev;
3702         struct drm_i915_private *dev_priv = to_i915(dev);
3703         int pipe = crtc->pipe;
3704         i915_reg_t reg;
3705         u32 temp, tries;
3706
3707         /* FDI needs bits from pipe first */
3708         assert_pipe_enabled(dev_priv, pipe);
3709
3710         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3711            for train result */
3712         reg = FDI_RX_IMR(pipe);
3713         temp = I915_READ(reg);
3714         temp &= ~FDI_RX_SYMBOL_LOCK;
3715         temp &= ~FDI_RX_BIT_LOCK;
3716         I915_WRITE(reg, temp);
3717         I915_READ(reg);
3718         udelay(150);
3719
3720         /* enable CPU FDI TX and PCH FDI RX */
3721         reg = FDI_TX_CTL(pipe);
3722         temp = I915_READ(reg);
3723         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3724         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3725         temp &= ~FDI_LINK_TRAIN_NONE;
3726         temp |= FDI_LINK_TRAIN_PATTERN_1;
3727         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3728
3729         reg = FDI_RX_CTL(pipe);
3730         temp = I915_READ(reg);
3731         temp &= ~FDI_LINK_TRAIN_NONE;
3732         temp |= FDI_LINK_TRAIN_PATTERN_1;
3733         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3734
3735         POSTING_READ(reg);
3736         udelay(150);
3737
3738         /* Ironlake workaround, enable clock pointer after FDI enable*/
3739         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3740         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3741                    FDI_RX_PHASE_SYNC_POINTER_EN);
3742
3743         reg = FDI_RX_IIR(pipe);
3744         for (tries = 0; tries < 5; tries++) {
3745                 temp = I915_READ(reg);
3746                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3747
3748                 if ((temp & FDI_RX_BIT_LOCK)) {
3749                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3750                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3751                         break;
3752                 }
3753         }
3754         if (tries == 5)
3755                 DRM_ERROR("FDI train 1 fail!\n");
3756
3757         /* Train 2 */
3758         reg = FDI_TX_CTL(pipe);
3759         temp = I915_READ(reg);
3760         temp &= ~FDI_LINK_TRAIN_NONE;
3761         temp |= FDI_LINK_TRAIN_PATTERN_2;
3762         I915_WRITE(reg, temp);
3763
3764         reg = FDI_RX_CTL(pipe);
3765         temp = I915_READ(reg);
3766         temp &= ~FDI_LINK_TRAIN_NONE;
3767         temp |= FDI_LINK_TRAIN_PATTERN_2;
3768         I915_WRITE(reg, temp);
3769
3770         POSTING_READ(reg);
3771         udelay(150);
3772
3773         reg = FDI_RX_IIR(pipe);
3774         for (tries = 0; tries < 5; tries++) {
3775                 temp = I915_READ(reg);
3776                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3777
3778                 if (temp & FDI_RX_SYMBOL_LOCK) {
3779                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3780                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3781                         break;
3782                 }
3783         }
3784         if (tries == 5)
3785                 DRM_ERROR("FDI train 2 fail!\n");
3786
3787         DRM_DEBUG_KMS("FDI train done\n");
3788
3789 }
3790
3791 static const int snb_b_fdi_train_param[] = {
3792         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3793         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3794         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3795         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3796 };
3797
3798 /* The FDI link training functions for SNB/Cougarpoint. */
3799 static void gen6_fdi_link_train(struct intel_crtc *crtc,
3800                                 const struct intel_crtc_state *crtc_state)
3801 {
3802         struct drm_device *dev = crtc->base.dev;
3803         struct drm_i915_private *dev_priv = to_i915(dev);
3804         int pipe = crtc->pipe;
3805         i915_reg_t reg;
3806         u32 temp, i, retry;
3807
3808         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3809            for train result */
3810         reg = FDI_RX_IMR(pipe);
3811         temp = I915_READ(reg);
3812         temp &= ~FDI_RX_SYMBOL_LOCK;
3813         temp &= ~FDI_RX_BIT_LOCK;
3814         I915_WRITE(reg, temp);
3815
3816         POSTING_READ(reg);
3817         udelay(150);
3818
3819         /* enable CPU FDI TX and PCH FDI RX */
3820         reg = FDI_TX_CTL(pipe);
3821         temp = I915_READ(reg);
3822         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3823         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3824         temp &= ~FDI_LINK_TRAIN_NONE;
3825         temp |= FDI_LINK_TRAIN_PATTERN_1;
3826         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3827         /* SNB-B */
3828         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3829         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3830
3831         I915_WRITE(FDI_RX_MISC(pipe),
3832                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3833
3834         reg = FDI_RX_CTL(pipe);
3835         temp = I915_READ(reg);
3836         if (HAS_PCH_CPT(dev_priv)) {
3837                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3838                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3839         } else {
3840                 temp &= ~FDI_LINK_TRAIN_NONE;
3841                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3842         }
3843         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3844
3845         POSTING_READ(reg);
3846         udelay(150);
3847
3848         for (i = 0; i < 4; i++) {
3849                 reg = FDI_TX_CTL(pipe);
3850                 temp = I915_READ(reg);
3851                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3852                 temp |= snb_b_fdi_train_param[i];
3853                 I915_WRITE(reg, temp);
3854
3855                 POSTING_READ(reg);
3856                 udelay(500);
3857
3858                 for (retry = 0; retry < 5; retry++) {
3859                         reg = FDI_RX_IIR(pipe);
3860                         temp = I915_READ(reg);
3861                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3862                         if (temp & FDI_RX_BIT_LOCK) {
3863                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3864                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3865                                 break;
3866                         }
3867                         udelay(50);
3868                 }
3869                 if (retry < 5)
3870                         break;
3871         }
3872         if (i == 4)
3873                 DRM_ERROR("FDI train 1 fail!\n");
3874
3875         /* Train 2 */
3876         reg = FDI_TX_CTL(pipe);
3877         temp = I915_READ(reg);
3878         temp &= ~FDI_LINK_TRAIN_NONE;
3879         temp |= FDI_LINK_TRAIN_PATTERN_2;
3880         if (IS_GEN6(dev_priv)) {
3881                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3882                 /* SNB-B */
3883                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3884         }
3885         I915_WRITE(reg, temp);
3886
3887         reg = FDI_RX_CTL(pipe);
3888         temp = I915_READ(reg);
3889         if (HAS_PCH_CPT(dev_priv)) {
3890                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3891                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3892         } else {
3893                 temp &= ~FDI_LINK_TRAIN_NONE;
3894                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3895         }
3896         I915_WRITE(reg, temp);
3897
3898         POSTING_READ(reg);
3899         udelay(150);
3900
3901         for (i = 0; i < 4; i++) {
3902                 reg = FDI_TX_CTL(pipe);
3903                 temp = I915_READ(reg);
3904                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3905                 temp |= snb_b_fdi_train_param[i];
3906                 I915_WRITE(reg, temp);
3907
3908                 POSTING_READ(reg);
3909                 udelay(500);
3910
3911                 for (retry = 0; retry < 5; retry++) {
3912                         reg = FDI_RX_IIR(pipe);
3913                         temp = I915_READ(reg);
3914                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3915                         if (temp & FDI_RX_SYMBOL_LOCK) {
3916                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3917                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3918                                 break;
3919                         }
3920                         udelay(50);
3921                 }
3922                 if (retry < 5)
3923                         break;
3924         }
3925         if (i == 4)
3926                 DRM_ERROR("FDI train 2 fail!\n");
3927
3928         DRM_DEBUG_KMS("FDI train done.\n");
3929 }
3930
3931 /* Manual link training for Ivy Bridge A0 parts */
3932 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
3933                                       const struct intel_crtc_state *crtc_state)
3934 {
3935         struct drm_device *dev = crtc->base.dev;
3936         struct drm_i915_private *dev_priv = to_i915(dev);
3937         int pipe = crtc->pipe;
3938         i915_reg_t reg;
3939         u32 temp, i, j;
3940
3941         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3942            for train result */
3943         reg = FDI_RX_IMR(pipe);
3944         temp = I915_READ(reg);
3945         temp &= ~FDI_RX_SYMBOL_LOCK;
3946         temp &= ~FDI_RX_BIT_LOCK;
3947         I915_WRITE(reg, temp);
3948
3949         POSTING_READ(reg);
3950         udelay(150);
3951
3952         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3953                       I915_READ(FDI_RX_IIR(pipe)));
3954
3955         /* Try each vswing and preemphasis setting twice before moving on */
3956         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3957                 /* disable first in case we need to retry */
3958                 reg = FDI_TX_CTL(pipe);
3959                 temp = I915_READ(reg);
3960                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3961                 temp &= ~FDI_TX_ENABLE;
3962                 I915_WRITE(reg, temp);
3963
3964                 reg = FDI_RX_CTL(pipe);
3965                 temp = I915_READ(reg);
3966                 temp &= ~FDI_LINK_TRAIN_AUTO;
3967                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3968                 temp &= ~FDI_RX_ENABLE;
3969                 I915_WRITE(reg, temp);
3970
3971                 /* enable CPU FDI TX and PCH FDI RX */
3972                 reg = FDI_TX_CTL(pipe);
3973                 temp = I915_READ(reg);
3974                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3975                 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3976                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3977                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3978                 temp |= snb_b_fdi_train_param[j/2];
3979                 temp |= FDI_COMPOSITE_SYNC;
3980                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3981
3982                 I915_WRITE(FDI_RX_MISC(pipe),
3983                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3984
3985                 reg = FDI_RX_CTL(pipe);
3986                 temp = I915_READ(reg);
3987                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3988                 temp |= FDI_COMPOSITE_SYNC;
3989                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3990
3991                 POSTING_READ(reg);
3992                 udelay(1); /* should be 0.5us */
3993
3994                 for (i = 0; i < 4; i++) {
3995                         reg = FDI_RX_IIR(pipe);
3996                         temp = I915_READ(reg);
3997                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3998
3999                         if (temp & FDI_RX_BIT_LOCK ||
4000                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4001                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4002                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4003                                               i);
4004                                 break;
4005                         }
4006                         udelay(1); /* should be 0.5us */
4007                 }
4008                 if (i == 4) {
4009                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4010                         continue;
4011                 }
4012
4013                 /* Train 2 */
4014                 reg = FDI_TX_CTL(pipe);
4015                 temp = I915_READ(reg);
4016                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4017                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4018                 I915_WRITE(reg, temp);
4019
4020                 reg = FDI_RX_CTL(pipe);
4021                 temp = I915_READ(reg);
4022                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4023                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4024                 I915_WRITE(reg, temp);
4025
4026                 POSTING_READ(reg);
4027                 udelay(2); /* should be 1.5us */
4028
4029                 for (i = 0; i < 4; i++) {
4030                         reg = FDI_RX_IIR(pipe);
4031                         temp = I915_READ(reg);
4032                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4033
4034                         if (temp & FDI_RX_SYMBOL_LOCK ||
4035                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4036                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4037                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4038                                               i);
4039                                 goto train_done;
4040                         }
4041                         udelay(2); /* should be 1.5us */
4042                 }
4043                 if (i == 4)
4044                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4045         }
4046
4047 train_done:
4048         DRM_DEBUG_KMS("FDI train done.\n");
4049 }
4050
4051 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4052 {
4053         struct drm_device *dev = intel_crtc->base.dev;
4054         struct drm_i915_private *dev_priv = to_i915(dev);
4055         int pipe = intel_crtc->pipe;
4056         i915_reg_t reg;
4057         u32 temp;
4058
4059         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4060         reg = FDI_RX_CTL(pipe);
4061         temp = I915_READ(reg);
4062         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4063         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4064         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4065         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4066
4067         POSTING_READ(reg);
4068         udelay(200);
4069
4070         /* Switch from Rawclk to PCDclk */
4071         temp = I915_READ(reg);
4072         I915_WRITE(reg, temp | FDI_PCDCLK);
4073
4074         POSTING_READ(reg);
4075         udelay(200);
4076
4077         /* Enable CPU FDI TX PLL, always on for Ironlake */
4078         reg = FDI_TX_CTL(pipe);
4079         temp = I915_READ(reg);
4080         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4081                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4082
4083                 POSTING_READ(reg);
4084                 udelay(100);
4085         }
4086 }
4087
4088 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4089 {
4090         struct drm_device *dev = intel_crtc->base.dev;
4091         struct drm_i915_private *dev_priv = to_i915(dev);
4092         int pipe = intel_crtc->pipe;
4093         i915_reg_t reg;
4094         u32 temp;
4095
4096         /* Switch from PCDclk to Rawclk */
4097         reg = FDI_RX_CTL(pipe);
4098         temp = I915_READ(reg);
4099         I915_WRITE(reg, temp & ~FDI_PCDCLK);
4100
4101         /* Disable CPU FDI TX PLL */
4102         reg = FDI_TX_CTL(pipe);
4103         temp = I915_READ(reg);
4104         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4105
4106         POSTING_READ(reg);
4107         udelay(100);
4108
4109         reg = FDI_RX_CTL(pipe);
4110         temp = I915_READ(reg);
4111         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4112
4113         /* Wait for the clocks to turn off. */
4114         POSTING_READ(reg);
4115         udelay(100);
4116 }
4117
4118 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4119 {
4120         struct drm_device *dev = crtc->dev;
4121         struct drm_i915_private *dev_priv = to_i915(dev);
4122         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4123         int pipe = intel_crtc->pipe;
4124         i915_reg_t reg;
4125         u32 temp;
4126
4127         /* disable CPU FDI tx and PCH FDI rx */
4128         reg = FDI_TX_CTL(pipe);
4129         temp = I915_READ(reg);
4130         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4131         POSTING_READ(reg);
4132
4133         reg = FDI_RX_CTL(pipe);
4134         temp = I915_READ(reg);
4135         temp &= ~(0x7 << 16);
4136         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4137         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4138
4139         POSTING_READ(reg);
4140         udelay(100);
4141
4142         /* Ironlake workaround, disable clock pointer after downing FDI */
4143         if (HAS_PCH_IBX(dev_priv))
4144                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4145
4146         /* still set train pattern 1 */
4147         reg = FDI_TX_CTL(pipe);
4148         temp = I915_READ(reg);
4149         temp &= ~FDI_LINK_TRAIN_NONE;
4150         temp |= FDI_LINK_TRAIN_PATTERN_1;
4151         I915_WRITE(reg, temp);
4152
4153         reg = FDI_RX_CTL(pipe);
4154         temp = I915_READ(reg);
4155         if (HAS_PCH_CPT(dev_priv)) {
4156                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4157                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4158         } else {
4159                 temp &= ~FDI_LINK_TRAIN_NONE;
4160                 temp |= FDI_LINK_TRAIN_PATTERN_1;
4161         }
4162         /* BPC in FDI rx is consistent with that in PIPECONF */
4163         temp &= ~(0x07 << 16);
4164         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4165         I915_WRITE(reg, temp);
4166
4167         POSTING_READ(reg);
4168         udelay(100);
4169 }
4170
4171 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4172 {
4173         struct intel_crtc *crtc;
4174
4175         /* Note that we don't need to be called with mode_config.lock here
4176          * as our list of CRTC objects is static for the lifetime of the
4177          * device and so cannot disappear as we iterate. Similarly, we can
4178          * happily treat the predicates as racy, atomic checks as userspace
4179          * cannot claim and pin a new fb without at least acquring the
4180          * struct_mutex and so serialising with us.
4181          */
4182         for_each_intel_crtc(&dev_priv->drm, crtc) {
4183                 if (atomic_read(&crtc->unpin_work_count) == 0)
4184                         continue;
4185
4186                 if (crtc->flip_work)
4187                         intel_wait_for_vblank(dev_priv, crtc->pipe);
4188
4189                 return true;
4190         }
4191
4192         return false;
4193 }
4194
4195 static void page_flip_completed(struct intel_crtc *intel_crtc)
4196 {
4197         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4198         struct intel_flip_work *work = intel_crtc->flip_work;
4199
4200         intel_crtc->flip_work = NULL;
4201
4202         if (work->event)
4203                 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4204
4205         drm_crtc_vblank_put(&intel_crtc->base);
4206
4207         wake_up_all(&dev_priv->pending_flip_queue);
4208         trace_i915_flip_complete(intel_crtc->plane,
4209                                  work->pending_flip_obj);
4210
4211         queue_work(dev_priv->wq, &work->unpin_work);
4212 }
4213
4214 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4215 {
4216         struct drm_device *dev = crtc->dev;
4217         struct drm_i915_private *dev_priv = to_i915(dev);
4218         long ret;
4219
4220         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4221
4222         ret = wait_event_interruptible_timeout(
4223                                         dev_priv->pending_flip_queue,
4224                                         !intel_crtc_has_pending_flip(crtc),
4225                                         60*HZ);
4226
4227         if (ret < 0)
4228                 return ret;
4229
4230         if (ret == 0) {
4231                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4232                 struct intel_flip_work *work;
4233
4234                 spin_lock_irq(&dev->event_lock);
4235                 work = intel_crtc->flip_work;
4236                 if (work && !is_mmio_work(work)) {
4237                         WARN_ONCE(1, "Removing stuck page flip\n");
4238                         page_flip_completed(intel_crtc);
4239                 }
4240                 spin_unlock_irq(&dev->event_lock);
4241         }
4242
4243         return 0;
4244 }
4245
4246 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4247 {
4248         u32 temp;
4249
4250         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4251
4252         mutex_lock(&dev_priv->sb_lock);
4253
4254         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4255         temp |= SBI_SSCCTL_DISABLE;
4256         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4257
4258         mutex_unlock(&dev_priv->sb_lock);
4259 }
4260
4261 /* Program iCLKIP clock to the desired frequency */
4262 static void lpt_program_iclkip(struct intel_crtc *crtc)
4263 {
4264         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4265         int clock = crtc->config->base.adjusted_mode.crtc_clock;
4266         u32 divsel, phaseinc, auxdiv, phasedir = 0;
4267         u32 temp;
4268
4269         lpt_disable_iclkip(dev_priv);
4270
4271         /* The iCLK virtual clock root frequency is in MHz,
4272          * but the adjusted_mode->crtc_clock in in KHz. To get the
4273          * divisors, it is necessary to divide one by another, so we
4274          * convert the virtual clock precision to KHz here for higher
4275          * precision.
4276          */
4277         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4278                 u32 iclk_virtual_root_freq = 172800 * 1000;
4279                 u32 iclk_pi_range = 64;
4280                 u32 desired_divisor;
4281
4282                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4283                                                     clock << auxdiv);
4284                 divsel = (desired_divisor / iclk_pi_range) - 2;
4285                 phaseinc = desired_divisor % iclk_pi_range;
4286
4287                 /*
4288                  * Near 20MHz is a corner case which is
4289                  * out of range for the 7-bit divisor
4290                  */
4291                 if (divsel <= 0x7f)
4292                         break;
4293         }
4294
4295         /* This should not happen with any sane values */
4296         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4297                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4298         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4299                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4300
4301         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4302                         clock,
4303                         auxdiv,
4304                         divsel,
4305                         phasedir,
4306                         phaseinc);
4307
4308         mutex_lock(&dev_priv->sb_lock);
4309
4310         /* Program SSCDIVINTPHASE6 */
4311         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4312         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4313         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4314         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4315         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4316         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4317         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4318         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4319
4320         /* Program SSCAUXDIV */
4321         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4322         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4323         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4324         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4325
4326         /* Enable modulator and associated divider */
4327         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4328         temp &= ~SBI_SSCCTL_DISABLE;
4329         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4330
4331         mutex_unlock(&dev_priv->sb_lock);
4332
4333         /* Wait for initialization time */
4334         udelay(24);
4335
4336         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4337 }
4338
4339 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4340 {
4341         u32 divsel, phaseinc, auxdiv;
4342         u32 iclk_virtual_root_freq = 172800 * 1000;
4343         u32 iclk_pi_range = 64;
4344         u32 desired_divisor;
4345         u32 temp;
4346
4347         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4348                 return 0;
4349
4350         mutex_lock(&dev_priv->sb_lock);
4351
4352         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4353         if (temp & SBI_SSCCTL_DISABLE) {
4354                 mutex_unlock(&dev_priv->sb_lock);
4355                 return 0;
4356         }
4357
4358         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4359         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4360                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4361         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4362                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4363
4364         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4365         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4366                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4367
4368         mutex_unlock(&dev_priv->sb_lock);
4369
4370         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4371
4372         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4373                                  desired_divisor << auxdiv);
4374 }
4375
4376 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4377                                                 enum pipe pch_transcoder)
4378 {
4379         struct drm_device *dev = crtc->base.dev;
4380         struct drm_i915_private *dev_priv = to_i915(dev);
4381         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4382
4383         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4384                    I915_READ(HTOTAL(cpu_transcoder)));
4385         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4386                    I915_READ(HBLANK(cpu_transcoder)));
4387         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4388                    I915_READ(HSYNC(cpu_transcoder)));
4389
4390         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4391                    I915_READ(VTOTAL(cpu_transcoder)));
4392         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4393                    I915_READ(VBLANK(cpu_transcoder)));
4394         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4395                    I915_READ(VSYNC(cpu_transcoder)));
4396         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4397                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4398 }
4399
4400 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4401 {
4402         struct drm_i915_private *dev_priv = to_i915(dev);
4403         uint32_t temp;
4404
4405         temp = I915_READ(SOUTH_CHICKEN1);
4406         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4407                 return;
4408
4409         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4410         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4411
4412         temp &= ~FDI_BC_BIFURCATION_SELECT;
4413         if (enable)
4414                 temp |= FDI_BC_BIFURCATION_SELECT;
4415
4416         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4417         I915_WRITE(SOUTH_CHICKEN1, temp);
4418         POSTING_READ(SOUTH_CHICKEN1);
4419 }
4420
4421 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4422 {
4423         struct drm_device *dev = intel_crtc->base.dev;
4424
4425         switch (intel_crtc->pipe) {
4426         case PIPE_A:
4427                 break;
4428         case PIPE_B:
4429                 if (intel_crtc->config->fdi_lanes > 2)
4430                         cpt_set_fdi_bc_bifurcation(dev, false);
4431                 else
4432                         cpt_set_fdi_bc_bifurcation(dev, true);
4433
4434                 break;
4435         case PIPE_C:
4436                 cpt_set_fdi_bc_bifurcation(dev, true);
4437
4438                 break;
4439         default:
4440                 BUG();
4441         }
4442 }
4443
4444 /* Return which DP Port should be selected for Transcoder DP control */
4445 static enum port
4446 intel_trans_dp_port_sel(struct intel_crtc *crtc)
4447 {
4448         struct drm_device *dev = crtc->base.dev;
4449         struct intel_encoder *encoder;
4450
4451         for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
4452                 if (encoder->type == INTEL_OUTPUT_DP ||
4453                     encoder->type == INTEL_OUTPUT_EDP)
4454                         return enc_to_dig_port(&encoder->base)->port;
4455         }
4456
4457         return -1;
4458 }
4459
4460 /*
4461  * Enable PCH resources required for PCH ports:
4462  *   - PCH PLLs
4463  *   - FDI training & RX/TX
4464  *   - update transcoder timings
4465  *   - DP transcoding bits
4466  *   - transcoder
4467  */
4468 static void ironlake_pch_enable(const struct intel_crtc_state *crtc_state)
4469 {
4470         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4471         struct drm_device *dev = crtc->base.dev;
4472         struct drm_i915_private *dev_priv = to_i915(dev);
4473         int pipe = crtc->pipe;
4474         u32 temp;
4475
4476         assert_pch_transcoder_disabled(dev_priv, pipe);
4477
4478         if (IS_IVYBRIDGE(dev_priv))
4479                 ivybridge_update_fdi_bc_bifurcation(crtc);
4480
4481         /* Write the TU size bits before fdi link training, so that error
4482          * detection works. */
4483         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4484                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4485
4486         /* For PCH output, training FDI link */
4487         dev_priv->display.fdi_link_train(crtc, crtc_state);
4488
4489         /* We need to program the right clock selection before writing the pixel
4490          * mutliplier into the DPLL. */
4491         if (HAS_PCH_CPT(dev_priv)) {
4492                 u32 sel;
4493
4494                 temp = I915_READ(PCH_DPLL_SEL);
4495                 temp |= TRANS_DPLL_ENABLE(pipe);
4496                 sel = TRANS_DPLLB_SEL(pipe);
4497                 if (crtc_state->shared_dpll ==
4498                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4499                         temp |= sel;
4500                 else
4501                         temp &= ~sel;
4502                 I915_WRITE(PCH_DPLL_SEL, temp);
4503         }
4504
4505         /* XXX: pch pll's can be enabled any time before we enable the PCH
4506          * transcoder, and we actually should do this to not upset any PCH
4507          * transcoder that already use the clock when we share it.
4508          *
4509          * Note that enable_shared_dpll tries to do the right thing, but
4510          * get_shared_dpll unconditionally resets the pll - we need that to have
4511          * the right LVDS enable sequence. */
4512         intel_enable_shared_dpll(crtc);
4513
4514         /* set transcoder timing, panel must allow it */
4515         assert_panel_unlocked(dev_priv, pipe);
4516         ironlake_pch_transcoder_set_timings(crtc, pipe);
4517
4518         intel_fdi_normal_train(crtc);
4519
4520         /* For PCH DP, enable TRANS_DP_CTL */
4521         if (HAS_PCH_CPT(dev_priv) &&
4522             intel_crtc_has_dp_encoder(crtc_state)) {
4523                 const struct drm_display_mode *adjusted_mode =
4524                         &crtc_state->base.adjusted_mode;
4525                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4526                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4527                 temp = I915_READ(reg);
4528                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4529                           TRANS_DP_SYNC_MASK |
4530                           TRANS_DP_BPC_MASK);
4531                 temp |= TRANS_DP_OUTPUT_ENABLE;
4532                 temp |= bpc << 9; /* same format but at 11:9 */
4533
4534                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4535                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4536                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4537                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4538
4539                 switch (intel_trans_dp_port_sel(crtc)) {
4540                 case PORT_B:
4541                         temp |= TRANS_DP_PORT_SEL_B;
4542                         break;
4543                 case PORT_C:
4544                         temp |= TRANS_DP_PORT_SEL_C;
4545                         break;
4546                 case PORT_D:
4547                         temp |= TRANS_DP_PORT_SEL_D;
4548                         break;
4549                 default:
4550                         BUG();
4551                 }
4552
4553                 I915_WRITE(reg, temp);
4554         }
4555
4556         ironlake_enable_pch_transcoder(dev_priv, pipe);
4557 }
4558
4559 static void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
4560 {
4561         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4562         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4563         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
4564
4565         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4566
4567         lpt_program_iclkip(crtc);
4568
4569         /* Set transcoder timing. */
4570         ironlake_pch_transcoder_set_timings(crtc, PIPE_A);
4571
4572         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4573 }
4574
4575 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4576 {
4577         struct drm_i915_private *dev_priv = to_i915(dev);
4578         i915_reg_t dslreg = PIPEDSL(pipe);
4579         u32 temp;
4580
4581         temp = I915_READ(dslreg);
4582         udelay(500);
4583         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4584                 if (wait_for(I915_READ(dslreg) != temp, 5))
4585                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4586         }
4587 }
4588
4589 static int
4590 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4591                   unsigned int scaler_user, int *scaler_id,
4592                   int src_w, int src_h, int dst_w, int dst_h)
4593 {
4594         struct intel_crtc_scaler_state *scaler_state =
4595                 &crtc_state->scaler_state;
4596         struct intel_crtc *intel_crtc =
4597                 to_intel_crtc(crtc_state->base.crtc);
4598         int need_scaling;
4599
4600         /*
4601          * Src coordinates are already rotated by 270 degrees for
4602          * the 90/270 degree plane rotation cases (to match the
4603          * GTT mapping), hence no need to account for rotation here.
4604          */
4605         need_scaling = src_w != dst_w || src_h != dst_h;
4606
4607         /*
4608          * if plane is being disabled or scaler is no more required or force detach
4609          *  - free scaler binded to this plane/crtc
4610          *  - in order to do this, update crtc->scaler_usage
4611          *
4612          * Here scaler state in crtc_state is set free so that
4613          * scaler can be assigned to other user. Actual register
4614          * update to free the scaler is done in plane/panel-fit programming.
4615          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4616          */
4617         if (force_detach || !need_scaling) {
4618                 if (*scaler_id >= 0) {
4619                         scaler_state->scaler_users &= ~(1 << scaler_user);
4620                         scaler_state->scalers[*scaler_id].in_use = 0;
4621
4622                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4623                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4624                                 intel_crtc->pipe, scaler_user, *scaler_id,
4625                                 scaler_state->scaler_users);
4626                         *scaler_id = -1;
4627                 }
4628                 return 0;
4629         }
4630
4631         /* range checks */
4632         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4633                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4634
4635                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4636                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4637                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4638                         "size is out of scaler range\n",
4639                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4640                 return -EINVAL;
4641         }
4642
4643         /* mark this plane as a scaler user in crtc_state */
4644         scaler_state->scaler_users |= (1 << scaler_user);
4645         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4646                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4647                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4648                 scaler_state->scaler_users);
4649
4650         return 0;
4651 }
4652
4653 /**
4654  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4655  *
4656  * @state: crtc's scaler state
4657  *
4658  * Return
4659  *     0 - scaler_usage updated successfully
4660  *    error - requested scaling cannot be supported or other error condition
4661  */
4662 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4663 {
4664         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4665
4666         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4667                 &state->scaler_state.scaler_id,
4668                 state->pipe_src_w, state->pipe_src_h,
4669                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4670 }
4671
4672 /**
4673  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4674  *
4675  * @state: crtc's scaler state
4676  * @plane_state: atomic plane state to update
4677  *
4678  * Return
4679  *     0 - scaler_usage updated successfully
4680  *    error - requested scaling cannot be supported or other error condition
4681  */
4682 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4683                                    struct intel_plane_state *plane_state)
4684 {
4685
4686         struct intel_plane *intel_plane =
4687                 to_intel_plane(plane_state->base.plane);
4688         struct drm_framebuffer *fb = plane_state->base.fb;
4689         int ret;
4690
4691         bool force_detach = !fb || !plane_state->base.visible;
4692
4693         ret = skl_update_scaler(crtc_state, force_detach,
4694                                 drm_plane_index(&intel_plane->base),
4695                                 &plane_state->scaler_id,
4696                                 drm_rect_width(&plane_state->base.src) >> 16,
4697                                 drm_rect_height(&plane_state->base.src) >> 16,
4698                                 drm_rect_width(&plane_state->base.dst),
4699                                 drm_rect_height(&plane_state->base.dst));
4700
4701         if (ret || plane_state->scaler_id < 0)
4702                 return ret;
4703
4704         /* check colorkey */
4705         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4706                 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4707                               intel_plane->base.base.id,
4708                               intel_plane->base.name);
4709                 return -EINVAL;
4710         }
4711
4712         /* Check src format */
4713         switch (fb->format->format) {
4714         case DRM_FORMAT_RGB565:
4715         case DRM_FORMAT_XBGR8888:
4716         case DRM_FORMAT_XRGB8888:
4717         case DRM_FORMAT_ABGR8888:
4718         case DRM_FORMAT_ARGB8888:
4719         case DRM_FORMAT_XRGB2101010:
4720         case DRM_FORMAT_XBGR2101010:
4721         case DRM_FORMAT_YUYV:
4722         case DRM_FORMAT_YVYU:
4723         case DRM_FORMAT_UYVY:
4724         case DRM_FORMAT_VYUY:
4725                 break;
4726         default:
4727                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4728                               intel_plane->base.base.id, intel_plane->base.name,
4729                               fb->base.id, fb->format->format);
4730                 return -EINVAL;
4731         }
4732
4733         return 0;
4734 }
4735
4736 static void skylake_scaler_disable(struct intel_crtc *crtc)
4737 {
4738         int i;
4739
4740         for (i = 0; i < crtc->num_scalers; i++)
4741                 skl_detach_scaler(crtc, i);
4742 }
4743
4744 static void skylake_pfit_enable(struct intel_crtc *crtc)
4745 {
4746         struct drm_device *dev = crtc->base.dev;
4747         struct drm_i915_private *dev_priv = to_i915(dev);
4748         int pipe = crtc->pipe;
4749         struct intel_crtc_scaler_state *scaler_state =
4750                 &crtc->config->scaler_state;
4751
4752         if (crtc->config->pch_pfit.enabled) {
4753                 int id;
4754
4755                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0))
4756                         return;
4757
4758                 id = scaler_state->scaler_id;
4759                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4760                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4761                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4762                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4763         }
4764 }
4765
4766 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4767 {
4768         struct drm_device *dev = crtc->base.dev;
4769         struct drm_i915_private *dev_priv = to_i915(dev);
4770         int pipe = crtc->pipe;
4771
4772         if (crtc->config->pch_pfit.enabled) {
4773                 /* Force use of hard-coded filter coefficients
4774                  * as some pre-programmed values are broken,
4775                  * e.g. x201.
4776                  */
4777                 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4778                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4779                                                  PF_PIPE_SEL_IVB(pipe));
4780                 else
4781                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4782                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4783                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4784         }
4785 }
4786
4787 void hsw_enable_ips(struct intel_crtc *crtc)
4788 {
4789         struct drm_device *dev = crtc->base.dev;
4790         struct drm_i915_private *dev_priv = to_i915(dev);
4791
4792         if (!crtc->config->ips_enabled)
4793                 return;
4794
4795         /*
4796          * We can only enable IPS after we enable a plane and wait for a vblank
4797          * This function is called from post_plane_update, which is run after
4798          * a vblank wait.
4799          */
4800
4801         assert_plane_enabled(dev_priv, crtc->plane);
4802         if (IS_BROADWELL(dev_priv)) {
4803                 mutex_lock(&dev_priv->rps.hw_lock);
4804                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4805                 mutex_unlock(&dev_priv->rps.hw_lock);
4806                 /* Quoting Art Runyan: "its not safe to expect any particular
4807                  * value in IPS_CTL bit 31 after enabling IPS through the
4808                  * mailbox." Moreover, the mailbox may return a bogus state,
4809                  * so we need to just enable it and continue on.
4810                  */
4811         } else {
4812                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4813                 /* The bit only becomes 1 in the next vblank, so this wait here
4814                  * is essentially intel_wait_for_vblank. If we don't have this
4815                  * and don't wait for vblanks until the end of crtc_enable, then
4816                  * the HW state readout code will complain that the expected
4817                  * IPS_CTL value is not the one we read. */
4818                 if (intel_wait_for_register(dev_priv,
4819                                             IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4820                                             50))
4821                         DRM_ERROR("Timed out waiting for IPS enable\n");
4822         }
4823 }
4824
4825 void hsw_disable_ips(struct intel_crtc *crtc)
4826 {
4827         struct drm_device *dev = crtc->base.dev;
4828         struct drm_i915_private *dev_priv = to_i915(dev);
4829
4830         if (!crtc->config->ips_enabled)
4831                 return;
4832
4833         assert_plane_enabled(dev_priv, crtc->plane);
4834         if (IS_BROADWELL(dev_priv)) {
4835                 mutex_lock(&dev_priv->rps.hw_lock);
4836                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4837                 mutex_unlock(&dev_priv->rps.hw_lock);
4838                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4839                 if (intel_wait_for_register(dev_priv,
4840                                             IPS_CTL, IPS_ENABLE, 0,
4841                                             42))
4842                         DRM_ERROR("Timed out waiting for IPS disable\n");
4843         } else {
4844                 I915_WRITE(IPS_CTL, 0);
4845                 POSTING_READ(IPS_CTL);
4846         }
4847
4848         /* We need to wait for a vblank before we can disable the plane. */
4849         intel_wait_for_vblank(dev_priv, crtc->pipe);
4850 }
4851
4852 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4853 {
4854         if (intel_crtc->overlay) {
4855                 struct drm_device *dev = intel_crtc->base.dev;
4856
4857                 mutex_lock(&dev->struct_mutex);
4858                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4859                 mutex_unlock(&dev->struct_mutex);
4860         }
4861
4862         /* Let userspace switch the overlay on again. In most cases userspace
4863          * has to recompute where to put it anyway.
4864          */
4865 }
4866
4867 /**
4868  * intel_post_enable_primary - Perform operations after enabling primary plane
4869  * @crtc: the CRTC whose primary plane was just enabled
4870  *
4871  * Performs potentially sleeping operations that must be done after the primary
4872  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4873  * called due to an explicit primary plane update, or due to an implicit
4874  * re-enable that is caused when a sprite plane is updated to no longer
4875  * completely hide the primary plane.
4876  */
4877 static void
4878 intel_post_enable_primary(struct drm_crtc *crtc)
4879 {
4880         struct drm_device *dev = crtc->dev;
4881         struct drm_i915_private *dev_priv = to_i915(dev);
4882         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4883         int pipe = intel_crtc->pipe;
4884
4885         /*
4886          * FIXME IPS should be fine as long as one plane is
4887          * enabled, but in practice it seems to have problems
4888          * when going from primary only to sprite only and vice
4889          * versa.
4890          */
4891         hsw_enable_ips(intel_crtc);
4892
4893         /*
4894          * Gen2 reports pipe underruns whenever all planes are disabled.
4895          * So don't enable underrun reporting before at least some planes
4896          * are enabled.
4897          * FIXME: Need to fix the logic to work when we turn off all planes
4898          * but leave the pipe running.
4899          */
4900         if (IS_GEN2(dev_priv))
4901                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4902
4903         /* Underruns don't always raise interrupts, so check manually. */
4904         intel_check_cpu_fifo_underruns(dev_priv);
4905         intel_check_pch_fifo_underruns(dev_priv);
4906 }
4907
4908 /* FIXME move all this to pre_plane_update() with proper state tracking */
4909 static void
4910 intel_pre_disable_primary(struct drm_crtc *crtc)
4911 {
4912         struct drm_device *dev = crtc->dev;
4913         struct drm_i915_private *dev_priv = to_i915(dev);
4914         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4915         int pipe = intel_crtc->pipe;
4916
4917         /*
4918          * Gen2 reports pipe underruns whenever all planes are disabled.
4919          * So diasble underrun reporting before all the planes get disabled.
4920          * FIXME: Need to fix the logic to work when we turn off all planes
4921          * but leave the pipe running.
4922          */
4923         if (IS_GEN2(dev_priv))
4924                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4925
4926         /*
4927          * FIXME IPS should be fine as long as one plane is
4928          * enabled, but in practice it seems to have problems
4929          * when going from primary only to sprite only and vice
4930          * versa.
4931          */
4932         hsw_disable_ips(intel_crtc);
4933 }
4934
4935 /* FIXME get rid of this and use pre_plane_update */
4936 static void
4937 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4938 {
4939         struct drm_device *dev = crtc->dev;
4940         struct drm_i915_private *dev_priv = to_i915(dev);
4941         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4942         int pipe = intel_crtc->pipe;
4943
4944         intel_pre_disable_primary(crtc);
4945
4946         /*
4947          * Vblank time updates from the shadow to live plane control register
4948          * are blocked if the memory self-refresh mode is active at that
4949          * moment. So to make sure the plane gets truly disabled, disable
4950          * first the self-refresh mode. The self-refresh enable bit in turn
4951          * will be checked/applied by the HW only at the next frame start
4952          * event which is after the vblank start event, so we need to have a
4953          * wait-for-vblank between disabling the plane and the pipe.
4954          */
4955         if (HAS_GMCH_DISPLAY(dev_priv) &&
4956             intel_set_memory_cxsr(dev_priv, false))
4957                 intel_wait_for_vblank(dev_priv, pipe);
4958 }
4959
4960 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4961 {
4962         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4963         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4964         struct intel_crtc_state *pipe_config =
4965                 to_intel_crtc_state(crtc->base.state);
4966         struct drm_plane *primary = crtc->base.primary;
4967         struct drm_plane_state *old_pri_state =
4968                 drm_atomic_get_existing_plane_state(old_state, primary);
4969
4970         intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
4971
4972         if (pipe_config->update_wm_post && pipe_config->base.active)
4973                 intel_update_watermarks(crtc);
4974
4975         if (old_pri_state) {
4976                 struct intel_plane_state *primary_state =
4977                         to_intel_plane_state(primary->state);
4978                 struct intel_plane_state *old_primary_state =
4979                         to_intel_plane_state(old_pri_state);
4980
4981                 intel_fbc_post_update(crtc);
4982
4983                 if (primary_state->base.visible &&
4984                     (needs_modeset(&pipe_config->base) ||
4985                      !old_primary_state->base.visible))
4986                         intel_post_enable_primary(&crtc->base);
4987         }
4988 }
4989
4990 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state,
4991                                    struct intel_crtc_state *pipe_config)
4992 {
4993         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4994         struct drm_device *dev = crtc->base.dev;
4995         struct drm_i915_private *dev_priv = to_i915(dev);
4996         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4997         struct drm_plane *primary = crtc->base.primary;
4998         struct drm_plane_state *old_pri_state =
4999                 drm_atomic_get_existing_plane_state(old_state, primary);
5000         bool modeset = needs_modeset(&pipe_config->base);
5001         struct intel_atomic_state *old_intel_state =
5002                 to_intel_atomic_state(old_state);
5003
5004         if (old_pri_state) {
5005                 struct intel_plane_state *primary_state =
5006                         to_intel_plane_state(primary->state);
5007                 struct intel_plane_state *old_primary_state =
5008                         to_intel_plane_state(old_pri_state);
5009
5010                 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5011
5012                 if (old_primary_state->base.visible &&
5013                     (modeset || !primary_state->base.visible))
5014                         intel_pre_disable_primary(&crtc->base);
5015         }
5016
5017         /*
5018          * Vblank time updates from the shadow to live plane control register
5019          * are blocked if the memory self-refresh mode is active at that
5020          * moment. So to make sure the plane gets truly disabled, disable
5021          * first the self-refresh mode. The self-refresh enable bit in turn
5022          * will be checked/applied by the HW only at the next frame start
5023          * event which is after the vblank start event, so we need to have a
5024          * wait-for-vblank between disabling the plane and the pipe.
5025          */
5026         if (HAS_GMCH_DISPLAY(dev_priv) && old_crtc_state->base.active &&
5027             pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
5028                 intel_wait_for_vblank(dev_priv, crtc->pipe);
5029
5030         /*
5031          * IVB workaround: must disable low power watermarks for at least
5032          * one frame before enabling scaling.  LP watermarks can be re-enabled
5033          * when scaling is disabled.
5034          *
5035          * WaCxSRDisabledForSpriteScaling:ivb
5036          */
5037         if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev))
5038                 intel_wait_for_vblank(dev_priv, crtc->pipe);
5039
5040         /*
5041          * If we're doing a modeset, we're done.  No need to do any pre-vblank
5042          * watermark programming here.
5043          */
5044         if (needs_modeset(&pipe_config->base))
5045                 return;
5046
5047         /*
5048          * For platforms that support atomic watermarks, program the
5049          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
5050          * will be the intermediate values that are safe for both pre- and
5051          * post- vblank; when vblank happens, the 'active' values will be set
5052          * to the final 'target' values and we'll do this again to get the
5053          * optimal watermarks.  For gen9+ platforms, the values we program here
5054          * will be the final target values which will get automatically latched
5055          * at vblank time; no further programming will be necessary.
5056          *
5057          * If a platform hasn't been transitioned to atomic watermarks yet,
5058          * we'll continue to update watermarks the old way, if flags tell
5059          * us to.
5060          */
5061         if (dev_priv->display.initial_watermarks != NULL)
5062                 dev_priv->display.initial_watermarks(old_intel_state,
5063                                                      pipe_config);
5064         else if (pipe_config->update_wm_pre)
5065                 intel_update_watermarks(crtc);
5066 }
5067
5068 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5069 {
5070         struct drm_device *dev = crtc->dev;
5071         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5072         struct drm_plane *p;
5073         int pipe = intel_crtc->pipe;
5074
5075         intel_crtc_dpms_overlay_disable(intel_crtc);
5076
5077         drm_for_each_plane_mask(p, dev, plane_mask)
5078                 to_intel_plane(p)->disable_plane(to_intel_plane(p), intel_crtc);
5079
5080         /*
5081          * FIXME: Once we grow proper nuclear flip support out of this we need
5082          * to compute the mask of flip planes precisely. For the time being
5083          * consider this a flip to a NULL plane.
5084          */
5085         intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5086 }
5087
5088 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5089                                           struct intel_crtc_state *crtc_state,
5090                                           struct drm_atomic_state *old_state)
5091 {
5092         struct drm_connector_state *conn_state;
5093         struct drm_connector *conn;
5094         int i;
5095
5096         for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5097                 struct intel_encoder *encoder =
5098                         to_intel_encoder(conn_state->best_encoder);
5099
5100                 if (conn_state->crtc != crtc)
5101                         continue;
5102
5103                 if (encoder->pre_pll_enable)
5104                         encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5105         }
5106 }
5107
5108 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5109                                       struct intel_crtc_state *crtc_state,
5110                                       struct drm_atomic_state *old_state)
5111 {
5112         struct drm_connector_state *conn_state;
5113         struct drm_connector *conn;
5114         int i;
5115
5116         for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5117                 struct intel_encoder *encoder =
5118                         to_intel_encoder(conn_state->best_encoder);
5119
5120                 if (conn_state->crtc != crtc)
5121                         continue;
5122
5123                 if (encoder->pre_enable)
5124                         encoder->pre_enable(encoder, crtc_state, conn_state);
5125         }
5126 }
5127
5128 static void intel_encoders_enable(struct drm_crtc *crtc,
5129                                   struct intel_crtc_state *crtc_state,
5130                                   struct drm_atomic_state *old_state)
5131 {
5132         struct drm_connector_state *conn_state;
5133         struct drm_connector *conn;
5134         int i;
5135
5136         for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5137                 struct intel_encoder *encoder =
5138                         to_intel_encoder(conn_state->best_encoder);
5139
5140                 if (conn_state->crtc != crtc)
5141                         continue;
5142
5143                 encoder->enable(encoder, crtc_state, conn_state);
5144                 intel_opregion_notify_encoder(encoder, true);
5145         }
5146 }
5147
5148 static void intel_encoders_disable(struct drm_crtc *crtc,
5149                                    struct intel_crtc_state *old_crtc_state,
5150                                    struct drm_atomic_state *old_state)
5151 {
5152         struct drm_connector_state *old_conn_state;
5153         struct drm_connector *conn;
5154         int i;
5155
5156         for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5157                 struct intel_encoder *encoder =
5158                         to_intel_encoder(old_conn_state->best_encoder);
5159
5160                 if (old_conn_state->crtc != crtc)
5161                         continue;
5162
5163                 intel_opregion_notify_encoder(encoder, false);
5164                 encoder->disable(encoder, old_crtc_state, old_conn_state);
5165         }
5166 }
5167
5168 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5169                                         struct intel_crtc_state *old_crtc_state,
5170                                         struct drm_atomic_state *old_state)
5171 {
5172         struct drm_connector_state *old_conn_state;
5173         struct drm_connector *conn;
5174         int i;
5175
5176         for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5177                 struct intel_encoder *encoder =
5178                         to_intel_encoder(old_conn_state->best_encoder);
5179
5180                 if (old_conn_state->crtc != crtc)
5181                         continue;
5182
5183                 if (encoder->post_disable)
5184                         encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5185         }
5186 }
5187
5188 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5189                                             struct intel_crtc_state *old_crtc_state,
5190                                             struct drm_atomic_state *old_state)
5191 {
5192         struct drm_connector_state *old_conn_state;
5193         struct drm_connector *conn;
5194         int i;
5195
5196         for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5197                 struct intel_encoder *encoder =
5198                         to_intel_encoder(old_conn_state->best_encoder);
5199
5200                 if (old_conn_state->crtc != crtc)
5201                         continue;
5202
5203                 if (encoder->post_pll_disable)
5204                         encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5205         }
5206 }
5207
5208 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5209                                  struct drm_atomic_state *old_state)
5210 {
5211         struct drm_crtc *crtc = pipe_config->base.crtc;
5212         struct drm_device *dev = crtc->dev;
5213         struct drm_i915_private *dev_priv = to_i915(dev);
5214         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5215         int pipe = intel_crtc->pipe;
5216         struct intel_atomic_state *old_intel_state =
5217                 to_intel_atomic_state(old_state);
5218
5219         if (WARN_ON(intel_crtc->active))
5220                 return;
5221
5222         /*
5223          * Sometimes spurious CPU pipe underruns happen during FDI
5224          * training, at least with VGA+HDMI cloning. Suppress them.
5225          *
5226          * On ILK we get an occasional spurious CPU pipe underruns
5227          * between eDP port A enable and vdd enable. Also PCH port
5228          * enable seems to result in the occasional CPU pipe underrun.
5229          *
5230          * Spurious PCH underruns also occur during PCH enabling.
5231          */
5232         if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5233                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5234         if (intel_crtc->config->has_pch_encoder)
5235                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5236
5237         if (intel_crtc->config->has_pch_encoder)
5238                 intel_prepare_shared_dpll(intel_crtc);
5239
5240         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5241                 intel_dp_set_m_n(intel_crtc, M1_N1);
5242
5243         intel_set_pipe_timings(intel_crtc);
5244         intel_set_pipe_src_size(intel_crtc);
5245
5246         if (intel_crtc->config->has_pch_encoder) {
5247                 intel_cpu_transcoder_set_m_n(intel_crtc,
5248                                      &intel_crtc->config->fdi_m_n, NULL);
5249         }
5250
5251         ironlake_set_pipeconf(crtc);
5252
5253         intel_crtc->active = true;
5254
5255         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5256
5257         if (intel_crtc->config->has_pch_encoder) {
5258                 /* Note: FDI PLL enabling _must_ be done before we enable the
5259                  * cpu pipes, hence this is separate from all the other fdi/pch
5260                  * enabling. */
5261                 ironlake_fdi_pll_enable(intel_crtc);
5262         } else {
5263                 assert_fdi_tx_disabled(dev_priv, pipe);
5264                 assert_fdi_rx_disabled(dev_priv, pipe);
5265         }
5266
5267         ironlake_pfit_enable(intel_crtc);
5268
5269         /*
5270          * On ILK+ LUT must be loaded before the pipe is running but with
5271          * clocks enabled
5272          */
5273         intel_color_load_luts(&pipe_config->base);
5274
5275         if (dev_priv->display.initial_watermarks != NULL)
5276                 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5277         intel_enable_pipe(intel_crtc);
5278
5279         if (intel_crtc->config->has_pch_encoder)
5280                 ironlake_pch_enable(pipe_config);
5281
5282         assert_vblank_disabled(crtc);
5283         drm_crtc_vblank_on(crtc);
5284
5285         intel_encoders_enable(crtc, pipe_config, old_state);
5286
5287         if (HAS_PCH_CPT(dev_priv))
5288                 cpt_verify_modeset(dev, intel_crtc->pipe);
5289
5290         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5291         if (intel_crtc->config->has_pch_encoder)
5292                 intel_wait_for_vblank(dev_priv, pipe);
5293         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5294         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5295 }
5296
5297 /* IPS only exists on ULT machines and is tied to pipe A. */
5298 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5299 {
5300         return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5301 }
5302
5303 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5304                                 struct drm_atomic_state *old_state)
5305 {
5306         struct drm_crtc *crtc = pipe_config->base.crtc;
5307         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5308         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5309         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5310         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5311         struct intel_atomic_state *old_intel_state =
5312                 to_intel_atomic_state(old_state);
5313
5314         if (WARN_ON(intel_crtc->active))
5315                 return;
5316
5317         if (intel_crtc->config->has_pch_encoder)
5318                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5319                                                       false);
5320
5321         intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5322
5323         if (intel_crtc->config->shared_dpll)
5324                 intel_enable_shared_dpll(intel_crtc);
5325
5326         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5327                 intel_dp_set_m_n(intel_crtc, M1_N1);
5328
5329         if (!transcoder_is_dsi(cpu_transcoder))
5330                 intel_set_pipe_timings(intel_crtc);
5331
5332         intel_set_pipe_src_size(intel_crtc);
5333
5334         if (cpu_transcoder != TRANSCODER_EDP &&
5335             !transcoder_is_dsi(cpu_transcoder)) {
5336                 I915_WRITE(PIPE_MULT(cpu_transcoder),
5337                            intel_crtc->config->pixel_multiplier - 1);
5338         }
5339
5340         if (intel_crtc->config->has_pch_encoder) {
5341                 intel_cpu_transcoder_set_m_n(intel_crtc,
5342                                      &intel_crtc->config->fdi_m_n, NULL);
5343         }
5344
5345         if (!transcoder_is_dsi(cpu_transcoder))
5346                 haswell_set_pipeconf(crtc);
5347
5348         haswell_set_pipemisc(crtc);
5349
5350         intel_color_set_csc(&pipe_config->base);
5351
5352         intel_crtc->active = true;
5353
5354         if (intel_crtc->config->has_pch_encoder)
5355                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5356         else
5357                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5358
5359         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5360
5361         if (intel_crtc->config->has_pch_encoder)
5362                 dev_priv->display.fdi_link_train(intel_crtc, pipe_config);
5363
5364         if (!transcoder_is_dsi(cpu_transcoder))
5365                 intel_ddi_enable_pipe_clock(pipe_config);
5366
5367         if (INTEL_GEN(dev_priv) >= 9)
5368                 skylake_pfit_enable(intel_crtc);
5369         else
5370                 ironlake_pfit_enable(intel_crtc);
5371
5372         /*
5373          * On ILK+ LUT must be loaded before the pipe is running but with
5374          * clocks enabled
5375          */
5376         intel_color_load_luts(&pipe_config->base);
5377
5378         intel_ddi_set_pipe_settings(pipe_config);
5379         if (!transcoder_is_dsi(cpu_transcoder))
5380                 intel_ddi_enable_transcoder_func(pipe_config);
5381
5382         if (dev_priv->display.initial_watermarks != NULL)
5383                 dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
5384
5385         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5386         if (!transcoder_is_dsi(cpu_transcoder))
5387                 intel_enable_pipe(intel_crtc);
5388
5389         if (intel_crtc->config->has_pch_encoder)
5390                 lpt_pch_enable(pipe_config);
5391
5392         if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5393                 intel_ddi_set_vc_payload_alloc(pipe_config, true);
5394
5395         assert_vblank_disabled(crtc);
5396         drm_crtc_vblank_on(crtc);
5397
5398         intel_encoders_enable(crtc, pipe_config, old_state);
5399
5400         if (intel_crtc->config->has_pch_encoder) {
5401                 intel_wait_for_vblank(dev_priv, pipe);
5402                 intel_wait_for_vblank(dev_priv, pipe);
5403                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5404                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5405                                                       true);
5406         }
5407
5408         /* If we change the relative order between pipe/planes enabling, we need
5409          * to change the workaround. */
5410         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5411         if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5412                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5413                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5414         }
5415 }
5416
5417 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5418 {
5419         struct drm_device *dev = crtc->base.dev;
5420         struct drm_i915_private *dev_priv = to_i915(dev);
5421         int pipe = crtc->pipe;
5422
5423         /* To avoid upsetting the power well on haswell only disable the pfit if
5424          * it's in use. The hw state code will make sure we get this right. */
5425         if (force || crtc->config->pch_pfit.enabled) {
5426                 I915_WRITE(PF_CTL(pipe), 0);
5427                 I915_WRITE(PF_WIN_POS(pipe), 0);
5428                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5429         }
5430 }
5431
5432 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5433                                   struct drm_atomic_state *old_state)
5434 {
5435         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5436         struct drm_device *dev = crtc->dev;
5437         struct drm_i915_private *dev_priv = to_i915(dev);
5438         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5439         int pipe = intel_crtc->pipe;
5440
5441         /*
5442          * Sometimes spurious CPU pipe underruns happen when the
5443          * pipe is already disabled, but FDI RX/TX is still enabled.
5444          * Happens at least with VGA+HDMI cloning. Suppress them.
5445          */
5446         if (intel_crtc->config->has_pch_encoder) {
5447                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5448                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5449         }
5450
5451         intel_encoders_disable(crtc, old_crtc_state, old_state);
5452
5453         drm_crtc_vblank_off(crtc);
5454         assert_vblank_disabled(crtc);
5455
5456         intel_disable_pipe(intel_crtc);
5457
5458         ironlake_pfit_disable(intel_crtc, false);
5459
5460         if (intel_crtc->config->has_pch_encoder)
5461                 ironlake_fdi_disable(crtc);
5462
5463         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5464
5465         if (intel_crtc->config->has_pch_encoder) {
5466                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5467
5468                 if (HAS_PCH_CPT(dev_priv)) {
5469                         i915_reg_t reg;
5470                         u32 temp;
5471
5472                         /* disable TRANS_DP_CTL */
5473                         reg = TRANS_DP_CTL(pipe);
5474                         temp = I915_READ(reg);
5475                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5476                                   TRANS_DP_PORT_SEL_MASK);
5477                         temp |= TRANS_DP_PORT_SEL_NONE;
5478                         I915_WRITE(reg, temp);
5479
5480                         /* disable DPLL_SEL */
5481                         temp = I915_READ(PCH_DPLL_SEL);
5482                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5483                         I915_WRITE(PCH_DPLL_SEL, temp);
5484                 }
5485
5486                 ironlake_fdi_pll_disable(intel_crtc);
5487         }
5488
5489         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5490         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5491 }
5492
5493 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5494                                  struct drm_atomic_state *old_state)
5495 {
5496         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5497         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5498         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5499         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5500
5501         if (intel_crtc->config->has_pch_encoder)
5502                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5503                                                       false);
5504
5505         intel_encoders_disable(crtc, old_crtc_state, old_state);
5506
5507         drm_crtc_vblank_off(crtc);
5508         assert_vblank_disabled(crtc);
5509
5510         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5511         if (!transcoder_is_dsi(cpu_transcoder))
5512                 intel_disable_pipe(intel_crtc);
5513
5514         if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5515                 intel_ddi_set_vc_payload_alloc(intel_crtc->config, false);
5516
5517         if (!transcoder_is_dsi(cpu_transcoder))
5518                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5519
5520         if (INTEL_GEN(dev_priv) >= 9)
5521                 skylake_scaler_disable(intel_crtc);
5522         else
5523                 ironlake_pfit_disable(intel_crtc, false);
5524
5525         if (!transcoder_is_dsi(cpu_transcoder))
5526                 intel_ddi_disable_pipe_clock(intel_crtc->config);
5527
5528         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5529
5530         if (old_crtc_state->has_pch_encoder)
5531                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5532                                                       true);
5533 }
5534
5535 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5536 {
5537         struct drm_device *dev = crtc->base.dev;
5538         struct drm_i915_private *dev_priv = to_i915(dev);
5539         struct intel_crtc_state *pipe_config = crtc->config;
5540
5541         if (!pipe_config->gmch_pfit.control)
5542                 return;
5543
5544         /*
5545          * The panel fitter should only be adjusted whilst the pipe is disabled,
5546          * according to register description and PRM.
5547          */
5548         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5549         assert_pipe_disabled(dev_priv, crtc->pipe);
5550
5551         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5552         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5553
5554         /* Border color in case we don't scale up to the full screen. Black by
5555          * default, change to something else for debugging. */
5556         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5557 }
5558
5559 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
5560 {
5561         switch (port) {
5562         case PORT_A:
5563                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5564         case PORT_B:
5565                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5566         case PORT_C:
5567                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5568         case PORT_D:
5569                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5570         case PORT_E:
5571                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5572         default:
5573                 MISSING_CASE(port);
5574                 return POWER_DOMAIN_PORT_OTHER;
5575         }
5576 }
5577
5578 static u64 get_crtc_power_domains(struct drm_crtc *crtc,
5579                                   struct intel_crtc_state *crtc_state)
5580 {
5581         struct drm_device *dev = crtc->dev;
5582         struct drm_i915_private *dev_priv = to_i915(dev);
5583         struct drm_encoder *encoder;
5584         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5585         enum pipe pipe = intel_crtc->pipe;
5586         u64 mask;
5587         enum transcoder transcoder = crtc_state->cpu_transcoder;
5588
5589         if (!crtc_state->base.active)
5590                 return 0;
5591
5592         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5593         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5594         if (crtc_state->pch_pfit.enabled ||
5595             crtc_state->pch_pfit.force_thru)
5596                 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5597
5598         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5599                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5600
5601                 mask |= BIT_ULL(intel_encoder->power_domain);
5602         }
5603
5604         if (HAS_DDI(dev_priv) && crtc_state->has_audio)
5605                 mask |= BIT(POWER_DOMAIN_AUDIO);
5606
5607         if (crtc_state->shared_dpll)
5608                 mask |= BIT_ULL(POWER_DOMAIN_PLLS);
5609
5610         return mask;
5611 }
5612
5613 static u64
5614 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5615                                struct intel_crtc_state *crtc_state)
5616 {
5617         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5618         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5619         enum intel_display_power_domain domain;
5620         u64 domains, new_domains, old_domains;
5621
5622         old_domains = intel_crtc->enabled_power_domains;
5623         intel_crtc->enabled_power_domains = new_domains =
5624                 get_crtc_power_domains(crtc, crtc_state);
5625
5626         domains = new_domains & ~old_domains;
5627
5628         for_each_power_domain(domain, domains)
5629                 intel_display_power_get(dev_priv, domain);
5630
5631         return old_domains & ~new_domains;
5632 }
5633
5634 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5635                                       u64 domains)
5636 {
5637         enum intel_display_power_domain domain;
5638
5639         for_each_power_domain(domain, domains)
5640                 intel_display_power_put(dev_priv, domain);
5641 }
5642
5643 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
5644                                    struct drm_atomic_state *old_state)
5645 {
5646         struct intel_atomic_state *old_intel_state =
5647                 to_intel_atomic_state(old_state);
5648         struct drm_crtc *crtc = pipe_config->base.crtc;
5649         struct drm_device *dev = crtc->dev;
5650         struct drm_i915_private *dev_priv = to_i915(dev);
5651         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5652         int pipe = intel_crtc->pipe;
5653
5654         if (WARN_ON(intel_crtc->active))
5655                 return;
5656
5657         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5658                 intel_dp_set_m_n(intel_crtc, M1_N1);
5659
5660         intel_set_pipe_timings(intel_crtc);
5661         intel_set_pipe_src_size(intel_crtc);
5662
5663         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
5664                 struct drm_i915_private *dev_priv = to_i915(dev);
5665
5666                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5667                 I915_WRITE(CHV_CANVAS(pipe), 0);
5668         }
5669
5670         i9xx_set_pipeconf(intel_crtc);
5671
5672         intel_crtc->active = true;
5673
5674         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5675
5676         intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5677
5678         if (IS_CHERRYVIEW(dev_priv)) {
5679                 chv_prepare_pll(intel_crtc, intel_crtc->config);
5680                 chv_enable_pll(intel_crtc, intel_crtc->config);
5681         } else {
5682                 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5683                 vlv_enable_pll(intel_crtc, intel_crtc->config);
5684         }
5685
5686         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5687
5688         i9xx_pfit_enable(intel_crtc);
5689
5690         intel_color_load_luts(&pipe_config->base);
5691
5692         dev_priv->display.initial_watermarks(old_intel_state,
5693                                              pipe_config);
5694         intel_enable_pipe(intel_crtc);
5695
5696         assert_vblank_disabled(crtc);
5697         drm_crtc_vblank_on(crtc);
5698
5699         intel_encoders_enable(crtc, pipe_config, old_state);
5700 }
5701
5702 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5703 {
5704         struct drm_device *dev = crtc->base.dev;
5705         struct drm_i915_private *dev_priv = to_i915(dev);
5706
5707         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5708         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5709 }
5710
5711 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
5712                              struct drm_atomic_state *old_state)
5713 {
5714         struct intel_atomic_state *old_intel_state =
5715                 to_intel_atomic_state(old_state);
5716         struct drm_crtc *crtc = pipe_config->base.crtc;
5717         struct drm_device *dev = crtc->dev;
5718         struct drm_i915_private *dev_priv = to_i915(dev);
5719         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5720         enum pipe pipe = intel_crtc->pipe;
5721
5722         if (WARN_ON(intel_crtc->active))
5723                 return;
5724
5725         i9xx_set_pll_dividers(intel_crtc);
5726
5727         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5728                 intel_dp_set_m_n(intel_crtc, M1_N1);
5729
5730         intel_set_pipe_timings(intel_crtc);
5731         intel_set_pipe_src_size(intel_crtc);
5732
5733         i9xx_set_pipeconf(intel_crtc);
5734
5735         intel_crtc->active = true;
5736
5737         if (!IS_GEN2(dev_priv))
5738                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5739
5740         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5741
5742         i9xx_enable_pll(intel_crtc);
5743
5744         i9xx_pfit_enable(intel_crtc);
5745
5746         intel_color_load_luts(&pipe_config->base);
5747
5748         if (dev_priv->display.initial_watermarks != NULL)
5749                 dev_priv->display.initial_watermarks(old_intel_state,
5750                                                      intel_crtc->config);
5751         else
5752                 intel_update_watermarks(intel_crtc);
5753         intel_enable_pipe(intel_crtc);
5754
5755         assert_vblank_disabled(crtc);
5756         drm_crtc_vblank_on(crtc);
5757
5758         intel_encoders_enable(crtc, pipe_config, old_state);
5759 }
5760
5761 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5762 {
5763         struct drm_device *dev = crtc->base.dev;
5764         struct drm_i915_private *dev_priv = to_i915(dev);
5765
5766         if (!crtc->config->gmch_pfit.control)
5767                 return;
5768
5769         assert_pipe_disabled(dev_priv, crtc->pipe);
5770
5771         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5772                          I915_READ(PFIT_CONTROL));
5773         I915_WRITE(PFIT_CONTROL, 0);
5774 }
5775
5776 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
5777                               struct drm_atomic_state *old_state)
5778 {
5779         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5780         struct drm_device *dev = crtc->dev;
5781         struct drm_i915_private *dev_priv = to_i915(dev);
5782         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5783         int pipe = intel_crtc->pipe;
5784
5785         /*
5786          * On gen2 planes are double buffered but the pipe isn't, so we must
5787          * wait for planes to fully turn off before disabling the pipe.
5788          */
5789         if (IS_GEN2(dev_priv))
5790                 intel_wait_for_vblank(dev_priv, pipe);
5791
5792         intel_encoders_disable(crtc, old_crtc_state, old_state);
5793
5794         drm_crtc_vblank_off(crtc);
5795         assert_vblank_disabled(crtc);
5796
5797         intel_disable_pipe(intel_crtc);
5798
5799         i9xx_pfit_disable(intel_crtc);
5800
5801         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5802
5803         if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
5804                 if (IS_CHERRYVIEW(dev_priv))
5805                         chv_disable_pll(dev_priv, pipe);
5806                 else if (IS_VALLEYVIEW(dev_priv))
5807                         vlv_disable_pll(dev_priv, pipe);
5808                 else
5809                         i9xx_disable_pll(intel_crtc);
5810         }
5811
5812         intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
5813
5814         if (!IS_GEN2(dev_priv))
5815                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5816
5817         if (!dev_priv->display.initial_watermarks)
5818                 intel_update_watermarks(intel_crtc);
5819
5820         /* clock the pipe down to 640x480@60 to potentially save power */
5821         if (IS_I830(dev_priv))
5822                 i830_enable_pipe(dev_priv, pipe);
5823 }
5824
5825 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc,
5826                                         struct drm_modeset_acquire_ctx *ctx)
5827 {
5828         struct intel_encoder *encoder;
5829         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5830         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5831         enum intel_display_power_domain domain;
5832         u64 domains;
5833         struct drm_atomic_state *state;
5834         struct intel_crtc_state *crtc_state;
5835         int ret;
5836
5837         if (!intel_crtc->active)
5838                 return;
5839
5840         if (crtc->primary->state->visible) {
5841                 WARN_ON(intel_crtc->flip_work);
5842
5843                 intel_pre_disable_primary_noatomic(crtc);
5844
5845                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
5846                 crtc->primary->state->visible = false;
5847         }
5848
5849         state = drm_atomic_state_alloc(crtc->dev);
5850         if (!state) {
5851                 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
5852                               crtc->base.id, crtc->name);
5853                 return;
5854         }
5855
5856         state->acquire_ctx = ctx;
5857
5858         /* Everything's already locked, -EDEADLK can't happen. */
5859         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5860         ret = drm_atomic_add_affected_connectors(state, crtc);
5861
5862         WARN_ON(IS_ERR(crtc_state) || ret);
5863
5864         dev_priv->display.crtc_disable(crtc_state, state);
5865
5866         drm_atomic_state_put(state);
5867
5868         DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
5869                       crtc->base.id, crtc->name);
5870
5871         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
5872         crtc->state->active = false;
5873         intel_crtc->active = false;
5874         crtc->enabled = false;
5875         crtc->state->connector_mask = 0;
5876         crtc->state->encoder_mask = 0;
5877
5878         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
5879                 encoder->base.crtc = NULL;
5880
5881         intel_fbc_disable(intel_crtc);
5882         intel_update_watermarks(intel_crtc);
5883         intel_disable_shared_dpll(intel_crtc);
5884
5885         domains = intel_crtc->enabled_power_domains;
5886         for_each_power_domain(domain, domains)
5887                 intel_display_power_put(dev_priv, domain);
5888         intel_crtc->enabled_power_domains = 0;
5889
5890         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
5891         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
5892 }
5893
5894 /*
5895  * turn all crtc's off, but do not adjust state
5896  * This has to be paired with a call to intel_modeset_setup_hw_state.
5897  */
5898 int intel_display_suspend(struct drm_device *dev)
5899 {
5900         struct drm_i915_private *dev_priv = to_i915(dev);
5901         struct drm_atomic_state *state;
5902         int ret;
5903
5904         state = drm_atomic_helper_suspend(dev);
5905         ret = PTR_ERR_OR_ZERO(state);
5906         if (ret)
5907                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
5908         else
5909                 dev_priv->modeset_restore_state = state;
5910         return ret;
5911 }
5912
5913 void intel_encoder_destroy(struct drm_encoder *encoder)
5914 {
5915         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5916
5917         drm_encoder_cleanup(encoder);
5918         kfree(intel_encoder);
5919 }
5920
5921 /* Cross check the actual hw state with our own modeset state tracking (and it's
5922  * internal consistency). */
5923 static void intel_connector_verify_state(struct drm_crtc_state *crtc_state,
5924                                          struct drm_connector_state *conn_state)
5925 {
5926         struct intel_connector *connector = to_intel_connector(conn_state->connector);
5927
5928         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5929                       connector->base.base.id,
5930                       connector->base.name);
5931
5932         if (connector->get_hw_state(connector)) {
5933                 struct intel_encoder *encoder = connector->encoder;
5934
5935                 I915_STATE_WARN(!crtc_state,
5936                          "connector enabled without attached crtc\n");
5937
5938                 if (!crtc_state)
5939                         return;
5940
5941                 I915_STATE_WARN(!crtc_state->active,
5942                       "connector is active, but attached crtc isn't\n");
5943
5944                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
5945                         return;
5946
5947                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
5948                         "atomic encoder doesn't match attached encoder\n");
5949
5950                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
5951                         "attached encoder crtc differs from connector crtc\n");
5952         } else {
5953                 I915_STATE_WARN(crtc_state && crtc_state->active,
5954                         "attached crtc is active, but connector isn't\n");
5955                 I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
5956                         "best encoder set without crtc!\n");
5957         }
5958 }
5959
5960 int intel_connector_init(struct intel_connector *connector)
5961 {
5962         struct intel_digital_connector_state *conn_state;
5963
5964         /*
5965          * Allocate enough memory to hold intel_digital_connector_state,
5966          * This might be a few bytes too many, but for connectors that don't
5967          * need it we'll free the state and allocate a smaller one on the first
5968          * succesful commit anyway.
5969          */
5970         conn_state = kzalloc(sizeof(*conn_state), GFP_KERNEL);
5971         if (!conn_state)
5972                 return -ENOMEM;
5973
5974         __drm_atomic_helper_connector_reset(&connector->base,
5975                                             &conn_state->base);
5976
5977         return 0;
5978 }
5979
5980 struct intel_connector *intel_connector_alloc(void)
5981 {
5982         struct intel_connector *connector;
5983
5984         connector = kzalloc(sizeof *connector, GFP_KERNEL);
5985         if (!connector)
5986                 return NULL;
5987
5988         if (intel_connector_init(connector) < 0) {
5989                 kfree(connector);
5990                 return NULL;
5991         }
5992
5993         return connector;
5994 }
5995
5996 /* Simple connector->get_hw_state implementation for encoders that support only
5997  * one connector and no cloning and hence the encoder state determines the state
5998  * of the connector. */
5999 bool intel_connector_get_hw_state(struct intel_connector *connector)
6000 {
6001         enum pipe pipe = 0;
6002         struct intel_encoder *encoder = connector->encoder;
6003
6004         return encoder->get_hw_state(encoder, &pipe);
6005 }
6006
6007 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6008 {
6009         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6010                 return crtc_state->fdi_lanes;
6011
6012         return 0;
6013 }
6014
6015 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6016                                      struct intel_crtc_state *pipe_config)
6017 {
6018         struct drm_i915_private *dev_priv = to_i915(dev);
6019         struct drm_atomic_state *state = pipe_config->base.state;
6020         struct intel_crtc *other_crtc;
6021         struct intel_crtc_state *other_crtc_state;
6022
6023         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6024                       pipe_name(pipe), pipe_config->fdi_lanes);
6025         if (pipe_config->fdi_lanes > 4) {
6026                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6027                               pipe_name(pipe), pipe_config->fdi_lanes);
6028                 return -EINVAL;
6029         }
6030
6031         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
6032                 if (pipe_config->fdi_lanes > 2) {
6033                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6034                                       pipe_config->fdi_lanes);
6035                         return -EINVAL;
6036                 } else {
6037                         return 0;
6038                 }
6039         }
6040
6041         if (INTEL_INFO(dev_priv)->num_pipes == 2)
6042                 return 0;
6043
6044         /* Ivybridge 3 pipe is really complicated */
6045         switch (pipe) {
6046         case PIPE_A:
6047                 return 0;
6048         case PIPE_B:
6049                 if (pipe_config->fdi_lanes <= 2)
6050                         return 0;
6051
6052                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
6053                 other_crtc_state =
6054                         intel_atomic_get_crtc_state(state, other_crtc);
6055                 if (IS_ERR(other_crtc_state))
6056                         return PTR_ERR(other_crtc_state);
6057
6058                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6059                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6060                                       pipe_name(pipe), pipe_config->fdi_lanes);
6061                         return -EINVAL;
6062                 }
6063                 return 0;
6064         case PIPE_C:
6065                 if (pipe_config->fdi_lanes > 2) {
6066                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6067                                       pipe_name(pipe), pipe_config->fdi_lanes);
6068                         return -EINVAL;
6069                 }
6070
6071                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
6072                 other_crtc_state =
6073                         intel_atomic_get_crtc_state(state, other_crtc);
6074                 if (IS_ERR(other_crtc_state))
6075                         return PTR_ERR(other_crtc_state);
6076
6077                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6078                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6079                         return -EINVAL;
6080                 }
6081                 return 0;
6082         default:
6083                 BUG();
6084         }
6085 }
6086
6087 #define RETRY 1
6088 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6089                                        struct intel_crtc_state *pipe_config)
6090 {
6091         struct drm_device *dev = intel_crtc->base.dev;
6092         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6093         int lane, link_bw, fdi_dotclock, ret;
6094         bool needs_recompute = false;
6095
6096 retry:
6097         /* FDI is a binary signal running at ~2.7GHz, encoding
6098          * each output octet as 10 bits. The actual frequency
6099          * is stored as a divider into a 100MHz clock, and the
6100          * mode pixel clock is stored in units of 1KHz.
6101          * Hence the bw of each lane in terms of the mode signal
6102          * is:
6103          */
6104         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6105
6106         fdi_dotclock = adjusted_mode->crtc_clock;
6107
6108         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6109                                            pipe_config->pipe_bpp);
6110
6111         pipe_config->fdi_lanes = lane;
6112
6113         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6114                                link_bw, &pipe_config->fdi_m_n, false);
6115
6116         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6117         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6118                 pipe_config->pipe_bpp -= 2*3;
6119                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6120                               pipe_config->pipe_bpp);
6121                 needs_recompute = true;
6122                 pipe_config->bw_constrained = true;
6123
6124                 goto retry;
6125         }
6126
6127         if (needs_recompute)
6128                 return RETRY;
6129
6130         return ret;
6131 }
6132
6133 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6134                                      struct intel_crtc_state *pipe_config)
6135 {
6136         if (pipe_config->pipe_bpp > 24)
6137                 return false;
6138
6139         /* HSW can handle pixel rate up to cdclk? */
6140         if (IS_HASWELL(dev_priv))
6141                 return true;
6142
6143         /*
6144          * We compare against max which means we must take
6145          * the increased cdclk requirement into account when
6146          * calculating the new cdclk.
6147          *
6148          * Should measure whether using a lower cdclk w/o IPS
6149          */
6150         return pipe_config->pixel_rate <=
6151                 dev_priv->max_cdclk_freq * 95 / 100;
6152 }
6153
6154 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6155                                    struct intel_crtc_state *pipe_config)
6156 {
6157         struct drm_device *dev = crtc->base.dev;
6158         struct drm_i915_private *dev_priv = to_i915(dev);
6159
6160         pipe_config->ips_enabled = i915.enable_ips &&
6161                 hsw_crtc_supports_ips(crtc) &&
6162                 pipe_config_supports_ips(dev_priv, pipe_config);
6163 }
6164
6165 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6166 {
6167         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6168
6169         /* GDG double wide on either pipe, otherwise pipe A only */
6170         return INTEL_INFO(dev_priv)->gen < 4 &&
6171                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6172 }
6173
6174 static uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
6175 {
6176         uint32_t pixel_rate;
6177
6178         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
6179
6180         /*
6181          * We only use IF-ID interlacing. If we ever use
6182          * PF-ID we'll need to adjust the pixel_rate here.
6183          */
6184
6185         if (pipe_config->pch_pfit.enabled) {
6186                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
6187                 uint32_t pfit_size = pipe_config->pch_pfit.size;
6188
6189                 pipe_w = pipe_config->pipe_src_w;
6190                 pipe_h = pipe_config->pipe_src_h;
6191
6192                 pfit_w = (pfit_size >> 16) & 0xFFFF;
6193                 pfit_h = pfit_size & 0xFFFF;
6194                 if (pipe_w < pfit_w)
6195                         pipe_w = pfit_w;
6196                 if (pipe_h < pfit_h)
6197                         pipe_h = pfit_h;
6198
6199                 if (WARN_ON(!pfit_w || !pfit_h))
6200                         return pixel_rate;
6201
6202                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
6203                                      pfit_w * pfit_h);
6204         }
6205
6206         return pixel_rate;
6207 }
6208
6209 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
6210 {
6211         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
6212
6213         if (HAS_GMCH_DISPLAY(dev_priv))
6214                 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
6215                 crtc_state->pixel_rate =
6216                         crtc_state->base.adjusted_mode.crtc_clock;
6217         else
6218                 crtc_state->pixel_rate =
6219                         ilk_pipe_pixel_rate(crtc_state);
6220 }
6221
6222 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6223                                      struct intel_crtc_state *pipe_config)
6224 {
6225         struct drm_device *dev = crtc->base.dev;
6226         struct drm_i915_private *dev_priv = to_i915(dev);
6227         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6228         int clock_limit = dev_priv->max_dotclk_freq;
6229
6230         if (INTEL_GEN(dev_priv) < 4) {
6231                 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6232
6233                 /*
6234                  * Enable double wide mode when the dot clock
6235                  * is > 90% of the (display) core speed.
6236                  */
6237                 if (intel_crtc_supports_double_wide(crtc) &&
6238                     adjusted_mode->crtc_clock > clock_limit) {
6239                         clock_limit = dev_priv->max_dotclk_freq;
6240                         pipe_config->double_wide = true;
6241                 }
6242         }
6243
6244         if (adjusted_mode->crtc_clock > clock_limit) {
6245                 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6246                               adjusted_mode->crtc_clock, clock_limit,
6247                               yesno(pipe_config->double_wide));
6248                 return -EINVAL;
6249         }
6250
6251         /*
6252          * Pipe horizontal size must be even in:
6253          * - DVO ganged mode
6254          * - LVDS dual channel mode
6255          * - Double wide pipe
6256          */
6257         if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6258              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6259                 pipe_config->pipe_src_w &= ~1;
6260
6261         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6262          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6263          */
6264         if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
6265                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6266                 return -EINVAL;
6267
6268         intel_crtc_compute_pixel_rate(pipe_config);
6269
6270         if (HAS_IPS(dev_priv))
6271                 hsw_compute_ips_config(crtc, pipe_config);
6272
6273         if (pipe_config->has_pch_encoder)
6274                 return ironlake_fdi_compute_config(crtc, pipe_config);
6275
6276         return 0;
6277 }
6278
6279 static void
6280 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6281 {
6282         while (*num > DATA_LINK_M_N_MASK ||
6283                *den > DATA_LINK_M_N_MASK) {
6284                 *num >>= 1;
6285                 *den >>= 1;
6286         }
6287 }
6288
6289 static void compute_m_n(unsigned int m, unsigned int n,
6290                         uint32_t *ret_m, uint32_t *ret_n,
6291                         bool reduce_m_n)
6292 {
6293         /*
6294          * Reduce M/N as much as possible without loss in precision. Several DP
6295          * dongles in particular seem to be fussy about too large *link* M/N
6296          * values. The passed in values are more likely to have the least
6297          * significant bits zero than M after rounding below, so do this first.
6298          */
6299         if (reduce_m_n) {
6300                 while ((m & 1) == 0 && (n & 1) == 0) {
6301                         m >>= 1;
6302                         n >>= 1;
6303                 }
6304         }
6305
6306         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6307         *ret_m = div_u64((uint64_t) m * *ret_n, n);
6308         intel_reduce_m_n_ratio(ret_m, ret_n);
6309 }
6310
6311 void
6312 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6313                        int pixel_clock, int link_clock,
6314                        struct intel_link_m_n *m_n,
6315                        bool reduce_m_n)
6316 {
6317         m_n->tu = 64;
6318
6319         compute_m_n(bits_per_pixel * pixel_clock,
6320                     link_clock * nlanes * 8,
6321                     &m_n->gmch_m, &m_n->gmch_n,
6322                     reduce_m_n);
6323
6324         compute_m_n(pixel_clock, link_clock,
6325                     &m_n->link_m, &m_n->link_n,
6326                     reduce_m_n);
6327 }
6328
6329 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6330 {
6331         if (i915.panel_use_ssc >= 0)
6332                 return i915.panel_use_ssc != 0;
6333         return dev_priv->vbt.lvds_use_ssc
6334                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6335 }
6336
6337 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6338 {
6339         return (1 << dpll->n) << 16 | dpll->m2;
6340 }
6341
6342 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6343 {
6344         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6345 }
6346
6347 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6348                                      struct intel_crtc_state *crtc_state,
6349                                      struct dpll *reduced_clock)
6350 {
6351         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6352         u32 fp, fp2 = 0;
6353
6354         if (IS_PINEVIEW(dev_priv)) {
6355                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6356                 if (reduced_clock)
6357                         fp2 = pnv_dpll_compute_fp(reduced_clock);
6358         } else {
6359                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6360                 if (reduced_clock)
6361                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
6362         }
6363
6364         crtc_state->dpll_hw_state.fp0 = fp;
6365
6366         crtc->lowfreq_avail = false;
6367         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6368             reduced_clock) {
6369                 crtc_state->dpll_hw_state.fp1 = fp2;
6370                 crtc->lowfreq_avail = true;
6371         } else {
6372                 crtc_state->dpll_hw_state.fp1 = fp;
6373         }
6374 }
6375
6376 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6377                 pipe)
6378 {
6379         u32 reg_val;
6380
6381         /*
6382          * PLLB opamp always calibrates to max value of 0x3f, force enable it
6383          * and set it to a reasonable value instead.
6384          */
6385         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6386         reg_val &= 0xffffff00;
6387         reg_val |= 0x00000030;
6388         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6389
6390         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6391         reg_val &= 0x00ffffff;
6392         reg_val |= 0x8c000000;
6393         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6394
6395         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6396         reg_val &= 0xffffff00;
6397         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6398
6399         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6400         reg_val &= 0x00ffffff;
6401         reg_val |= 0xb0000000;
6402         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6403 }
6404
6405 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6406                                          struct intel_link_m_n *m_n)
6407 {
6408         struct drm_device *dev = crtc->base.dev;
6409         struct drm_i915_private *dev_priv = to_i915(dev);
6410         int pipe = crtc->pipe;
6411
6412         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6413         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6414         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6415         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6416 }
6417
6418 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6419                                          struct intel_link_m_n *m_n,
6420                                          struct intel_link_m_n *m2_n2)
6421 {
6422         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6423         int pipe = crtc->pipe;
6424         enum transcoder transcoder = crtc->config->cpu_transcoder;
6425
6426         if (INTEL_GEN(dev_priv) >= 5) {
6427                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6428                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6429                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6430                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6431                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6432                  * for gen < 8) and if DRRS is supported (to make sure the
6433                  * registers are not unnecessarily accessed).
6434                  */
6435                 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
6436                     INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
6437                         I915_WRITE(PIPE_DATA_M2(transcoder),
6438                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6439                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6440                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6441                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6442                 }
6443         } else {
6444                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6445                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6446                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6447                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6448         }
6449 }
6450
6451 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6452 {
6453         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6454
6455         if (m_n == M1_N1) {
6456                 dp_m_n = &crtc->config->dp_m_n;
6457                 dp_m2_n2 = &crtc->config->dp_m2_n2;
6458         } else if (m_n == M2_N2) {
6459
6460                 /*
6461                  * M2_N2 registers are not supported. Hence m2_n2 divider value
6462                  * needs to be programmed into M1_N1.
6463                  */
6464                 dp_m_n = &crtc->config->dp_m2_n2;
6465         } else {
6466                 DRM_ERROR("Unsupported divider value\n");
6467                 return;
6468         }
6469
6470         if (crtc->config->has_pch_encoder)
6471                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6472         else
6473                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6474 }
6475
6476 static void vlv_compute_dpll(struct intel_crtc *crtc,
6477                              struct intel_crtc_state *pipe_config)
6478 {
6479         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
6480                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6481         if (crtc->pipe != PIPE_A)
6482                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6483
6484         /* DPLL not used with DSI, but still need the rest set up */
6485         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6486                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
6487                         DPLL_EXT_BUFFER_ENABLE_VLV;
6488
6489         pipe_config->dpll_hw_state.dpll_md =
6490                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6491 }
6492
6493 static void chv_compute_dpll(struct intel_crtc *crtc,
6494                              struct intel_crtc_state *pipe_config)
6495 {
6496         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
6497                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6498         if (crtc->pipe != PIPE_A)
6499                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6500
6501         /* DPLL not used with DSI, but still need the rest set up */
6502         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6503                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
6504
6505         pipe_config->dpll_hw_state.dpll_md =
6506                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6507 }
6508
6509 static void vlv_prepare_pll(struct intel_crtc *crtc,
6510                             const struct intel_crtc_state *pipe_config)
6511 {
6512         struct drm_device *dev = crtc->base.dev;
6513         struct drm_i915_private *dev_priv = to_i915(dev);
6514         enum pipe pipe = crtc->pipe;
6515         u32 mdiv;
6516         u32 bestn, bestm1, bestm2, bestp1, bestp2;
6517         u32 coreclk, reg_val;
6518
6519         /* Enable Refclk */
6520         I915_WRITE(DPLL(pipe),
6521                    pipe_config->dpll_hw_state.dpll &
6522                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
6523
6524         /* No need to actually set up the DPLL with DSI */
6525         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6526                 return;
6527
6528         mutex_lock(&dev_priv->sb_lock);
6529
6530         bestn = pipe_config->dpll.n;
6531         bestm1 = pipe_config->dpll.m1;
6532         bestm2 = pipe_config->dpll.m2;
6533         bestp1 = pipe_config->dpll.p1;
6534         bestp2 = pipe_config->dpll.p2;
6535
6536         /* See eDP HDMI DPIO driver vbios notes doc */
6537
6538         /* PLL B needs special handling */
6539         if (pipe == PIPE_B)
6540                 vlv_pllb_recal_opamp(dev_priv, pipe);
6541
6542         /* Set up Tx target for periodic Rcomp update */
6543         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6544
6545         /* Disable target IRef on PLL */
6546         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6547         reg_val &= 0x00ffffff;
6548         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6549
6550         /* Disable fast lock */
6551         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6552
6553         /* Set idtafcrecal before PLL is enabled */
6554         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6555         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6556         mdiv |= ((bestn << DPIO_N_SHIFT));
6557         mdiv |= (1 << DPIO_K_SHIFT);
6558
6559         /*
6560          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6561          * but we don't support that).
6562          * Note: don't use the DAC post divider as it seems unstable.
6563          */
6564         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6565         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6566
6567         mdiv |= DPIO_ENABLE_CALIBRATION;
6568         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6569
6570         /* Set HBR and RBR LPF coefficients */
6571         if (pipe_config->port_clock == 162000 ||
6572             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
6573             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
6574                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6575                                  0x009f0003);
6576         else
6577                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6578                                  0x00d0000f);
6579
6580         if (intel_crtc_has_dp_encoder(pipe_config)) {
6581                 /* Use SSC source */
6582                 if (pipe == PIPE_A)
6583                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6584                                          0x0df40000);
6585                 else
6586                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6587                                          0x0df70000);
6588         } else { /* HDMI or VGA */
6589                 /* Use bend source */
6590                 if (pipe == PIPE_A)
6591                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6592                                          0x0df70000);
6593                 else
6594                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6595                                          0x0df40000);
6596         }
6597
6598         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6599         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6600         if (intel_crtc_has_dp_encoder(crtc->config))
6601                 coreclk |= 0x01000000;
6602         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6603
6604         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6605         mutex_unlock(&dev_priv->sb_lock);
6606 }
6607
6608 static void chv_prepare_pll(struct intel_crtc *crtc,
6609                             const struct intel_crtc_state *pipe_config)
6610 {
6611         struct drm_device *dev = crtc->base.dev;
6612         struct drm_i915_private *dev_priv = to_i915(dev);
6613         enum pipe pipe = crtc->pipe;
6614         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6615         u32 loopfilter, tribuf_calcntr;
6616         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6617         u32 dpio_val;
6618         int vco;
6619
6620         /* Enable Refclk and SSC */
6621         I915_WRITE(DPLL(pipe),
6622                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6623
6624         /* No need to actually set up the DPLL with DSI */
6625         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6626                 return;
6627
6628         bestn = pipe_config->dpll.n;
6629         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6630         bestm1 = pipe_config->dpll.m1;
6631         bestm2 = pipe_config->dpll.m2 >> 22;
6632         bestp1 = pipe_config->dpll.p1;
6633         bestp2 = pipe_config->dpll.p2;
6634         vco = pipe_config->dpll.vco;
6635         dpio_val = 0;
6636         loopfilter = 0;
6637
6638         mutex_lock(&dev_priv->sb_lock);
6639
6640         /* p1 and p2 divider */
6641         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6642                         5 << DPIO_CHV_S1_DIV_SHIFT |
6643                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6644                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6645                         1 << DPIO_CHV_K_DIV_SHIFT);
6646
6647         /* Feedback post-divider - m2 */
6648         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6649
6650         /* Feedback refclk divider - n and m1 */
6651         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6652                         DPIO_CHV_M1_DIV_BY_2 |
6653                         1 << DPIO_CHV_N_DIV_SHIFT);
6654
6655         /* M2 fraction division */
6656         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6657
6658         /* M2 fraction division enable */
6659         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6660         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6661         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6662         if (bestm2_frac)
6663                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6664         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6665
6666         /* Program digital lock detect threshold */
6667         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6668         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6669                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6670         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6671         if (!bestm2_frac)
6672                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6673         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6674
6675         /* Loop filter */
6676         if (vco == 5400000) {
6677                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6678                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6679                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6680                 tribuf_calcntr = 0x9;
6681         } else if (vco <= 6200000) {
6682                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6683                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6684                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6685                 tribuf_calcntr = 0x9;
6686         } else if (vco <= 6480000) {
6687                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6688                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6689                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6690                 tribuf_calcntr = 0x8;
6691         } else {
6692                 /* Not supported. Apply the same limits as in the max case */
6693                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6694                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6695                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6696                 tribuf_calcntr = 0;
6697         }
6698         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6699
6700         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6701         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6702         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6703         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6704
6705         /* AFC Recal */
6706         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6707                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6708                         DPIO_AFC_RECAL);
6709
6710         mutex_unlock(&dev_priv->sb_lock);
6711 }
6712
6713 /**
6714  * vlv_force_pll_on - forcibly enable just the PLL
6715  * @dev_priv: i915 private structure
6716  * @pipe: pipe PLL to enable
6717  * @dpll: PLL configuration
6718  *
6719  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6720  * in cases where we need the PLL enabled even when @pipe is not going to
6721  * be enabled.
6722  */
6723 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
6724                      const struct dpll *dpll)
6725 {
6726         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
6727         struct intel_crtc_state *pipe_config;
6728
6729         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
6730         if (!pipe_config)
6731                 return -ENOMEM;
6732
6733         pipe_config->base.crtc = &crtc->base;
6734         pipe_config->pixel_multiplier = 1;
6735         pipe_config->dpll = *dpll;
6736
6737         if (IS_CHERRYVIEW(dev_priv)) {
6738                 chv_compute_dpll(crtc, pipe_config);
6739                 chv_prepare_pll(crtc, pipe_config);
6740                 chv_enable_pll(crtc, pipe_config);
6741         } else {
6742                 vlv_compute_dpll(crtc, pipe_config);
6743                 vlv_prepare_pll(crtc, pipe_config);
6744                 vlv_enable_pll(crtc, pipe_config);
6745         }
6746
6747         kfree(pipe_config);
6748
6749         return 0;
6750 }
6751
6752 /**
6753  * vlv_force_pll_off - forcibly disable just the PLL
6754  * @dev_priv: i915 private structure
6755  * @pipe: pipe PLL to disable
6756  *
6757  * Disable the PLL for @pipe. To be used in cases where we need
6758  * the PLL enabled even when @pipe is not going to be enabled.
6759  */
6760 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
6761 {
6762         if (IS_CHERRYVIEW(dev_priv))
6763                 chv_disable_pll(dev_priv, pipe);
6764         else
6765                 vlv_disable_pll(dev_priv, pipe);
6766 }
6767
6768 static void i9xx_compute_dpll(struct intel_crtc *crtc,
6769                               struct intel_crtc_state *crtc_state,
6770                               struct dpll *reduced_clock)
6771 {
6772         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6773         u32 dpll;
6774         struct dpll *clock = &crtc_state->dpll;
6775
6776         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6777
6778         dpll = DPLL_VGA_MODE_DIS;
6779
6780         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
6781                 dpll |= DPLLB_MODE_LVDS;
6782         else
6783                 dpll |= DPLLB_MODE_DAC_SERIAL;
6784
6785         if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
6786             IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
6787                 dpll |= (crtc_state->pixel_multiplier - 1)
6788                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6789         }
6790
6791         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
6792             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
6793                 dpll |= DPLL_SDVO_HIGH_SPEED;
6794
6795         if (intel_crtc_has_dp_encoder(crtc_state))
6796                 dpll |= DPLL_SDVO_HIGH_SPEED;
6797
6798         /* compute bitmask from p1 value */
6799         if (IS_PINEVIEW(dev_priv))
6800                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6801         else {
6802                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6803                 if (IS_G4X(dev_priv) && reduced_clock)
6804                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6805         }
6806         switch (clock->p2) {
6807         case 5:
6808                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6809                 break;
6810         case 7:
6811                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6812                 break;
6813         case 10:
6814                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6815                 break;
6816         case 14:
6817                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6818                 break;
6819         }
6820         if (INTEL_GEN(dev_priv) >= 4)
6821                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6822
6823         if (crtc_state->sdvo_tv_clock)
6824                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6825         else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6826                  intel_panel_use_ssc(dev_priv))
6827                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6828         else
6829                 dpll |= PLL_REF_INPUT_DREFCLK;
6830
6831         dpll |= DPLL_VCO_ENABLE;
6832         crtc_state->dpll_hw_state.dpll = dpll;
6833
6834         if (INTEL_GEN(dev_priv) >= 4) {
6835                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6836                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6837                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6838         }
6839 }
6840
6841 static void i8xx_compute_dpll(struct intel_crtc *crtc,
6842                               struct intel_crtc_state *crtc_state,
6843                               struct dpll *reduced_clock)
6844 {
6845         struct drm_device *dev = crtc->base.dev;
6846         struct drm_i915_private *dev_priv = to_i915(dev);
6847         u32 dpll;
6848         struct dpll *clock = &crtc_state->dpll;
6849
6850         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6851
6852         dpll = DPLL_VGA_MODE_DIS;
6853
6854         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
6855                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6856         } else {
6857                 if (clock->p1 == 2)
6858                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6859                 else
6860                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6861                 if (clock->p2 == 4)
6862                         dpll |= PLL_P2_DIVIDE_BY_4;
6863         }
6864
6865         if (!IS_I830(dev_priv) &&
6866             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
6867                 dpll |= DPLL_DVO_2X_MODE;
6868
6869         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6870             intel_panel_use_ssc(dev_priv))
6871                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6872         else
6873                 dpll |= PLL_REF_INPUT_DREFCLK;
6874
6875         dpll |= DPLL_VCO_ENABLE;
6876         crtc_state->dpll_hw_state.dpll = dpll;
6877 }
6878
6879 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6880 {
6881         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
6882         enum pipe pipe = intel_crtc->pipe;
6883         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6884         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
6885         uint32_t crtc_vtotal, crtc_vblank_end;
6886         int vsyncshift = 0;
6887
6888         /* We need to be careful not to changed the adjusted mode, for otherwise
6889          * the hw state checker will get angry at the mismatch. */
6890         crtc_vtotal = adjusted_mode->crtc_vtotal;
6891         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6892
6893         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6894                 /* the chip adds 2 halflines automatically */
6895                 crtc_vtotal -= 1;
6896                 crtc_vblank_end -= 1;
6897
6898                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
6899                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6900                 else
6901                         vsyncshift = adjusted_mode->crtc_hsync_start -
6902                                 adjusted_mode->crtc_htotal / 2;
6903                 if (vsyncshift < 0)
6904                         vsyncshift += adjusted_mode->crtc_htotal;
6905         }
6906
6907         if (INTEL_GEN(dev_priv) > 3)
6908                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6909
6910         I915_WRITE(HTOTAL(cpu_transcoder),
6911                    (adjusted_mode->crtc_hdisplay - 1) |
6912                    ((adjusted_mode->crtc_htotal - 1) << 16));
6913         I915_WRITE(HBLANK(cpu_transcoder),
6914                    (adjusted_mode->crtc_hblank_start - 1) |
6915                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6916         I915_WRITE(HSYNC(cpu_transcoder),
6917                    (adjusted_mode->crtc_hsync_start - 1) |
6918                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6919
6920         I915_WRITE(VTOTAL(cpu_transcoder),
6921                    (adjusted_mode->crtc_vdisplay - 1) |
6922                    ((crtc_vtotal - 1) << 16));
6923         I915_WRITE(VBLANK(cpu_transcoder),
6924                    (adjusted_mode->crtc_vblank_start - 1) |
6925                    ((crtc_vblank_end - 1) << 16));
6926         I915_WRITE(VSYNC(cpu_transcoder),
6927                    (adjusted_mode->crtc_vsync_start - 1) |
6928                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6929
6930         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6931          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6932          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6933          * bits. */
6934         if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
6935             (pipe == PIPE_B || pipe == PIPE_C))
6936                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6937
6938 }
6939
6940 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
6941 {
6942         struct drm_device *dev = intel_crtc->base.dev;
6943         struct drm_i915_private *dev_priv = to_i915(dev);
6944         enum pipe pipe = intel_crtc->pipe;
6945
6946         /* pipesrc controls the size that is scaled from, which should
6947          * always be the user's requested size.
6948          */
6949         I915_WRITE(PIPESRC(pipe),
6950                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
6951                    (intel_crtc->config->pipe_src_h - 1));
6952 }
6953
6954 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6955                                    struct intel_crtc_state *pipe_config)
6956 {
6957         struct drm_device *dev = crtc->base.dev;
6958         struct drm_i915_private *dev_priv = to_i915(dev);
6959         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6960         uint32_t tmp;
6961
6962         tmp = I915_READ(HTOTAL(cpu_transcoder));
6963         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6964         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6965         tmp = I915_READ(HBLANK(cpu_transcoder));
6966         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6967         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6968         tmp = I915_READ(HSYNC(cpu_transcoder));
6969         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6970         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6971
6972         tmp = I915_READ(VTOTAL(cpu_transcoder));
6973         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6974         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6975         tmp = I915_READ(VBLANK(cpu_transcoder));
6976         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6977         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6978         tmp = I915_READ(VSYNC(cpu_transcoder));
6979         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6980         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6981
6982         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6983                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6984                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6985                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6986         }
6987 }
6988
6989 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
6990                                     struct intel_crtc_state *pipe_config)
6991 {
6992         struct drm_device *dev = crtc->base.dev;
6993         struct drm_i915_private *dev_priv = to_i915(dev);
6994         u32 tmp;
6995
6996         tmp = I915_READ(PIPESRC(crtc->pipe));
6997         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6998         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6999
7000         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7001         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7002 }
7003
7004 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7005                                  struct intel_crtc_state *pipe_config)
7006 {
7007         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7008         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7009         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7010         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7011
7012         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7013         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7014         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7015         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7016
7017         mode->flags = pipe_config->base.adjusted_mode.flags;
7018         mode->type = DRM_MODE_TYPE_DRIVER;
7019
7020         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7021
7022         mode->hsync = drm_mode_hsync(mode);
7023         mode->vrefresh = drm_mode_vrefresh(mode);
7024         drm_mode_set_name(mode);
7025 }
7026
7027 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7028 {
7029         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
7030         uint32_t pipeconf;
7031
7032         pipeconf = 0;
7033
7034         /* we keep both pipes enabled on 830 */
7035         if (IS_I830(dev_priv))
7036                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7037
7038         if (intel_crtc->config->double_wide)
7039                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7040
7041         /* only g4x and later have fancy bpc/dither controls */
7042         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7043             IS_CHERRYVIEW(dev_priv)) {
7044                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7045                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7046                         pipeconf |= PIPECONF_DITHER_EN |
7047                                     PIPECONF_DITHER_TYPE_SP;
7048
7049                 switch (intel_crtc->config->pipe_bpp) {
7050                 case 18:
7051                         pipeconf |= PIPECONF_6BPC;
7052                         break;
7053                 case 24:
7054                         pipeconf |= PIPECONF_8BPC;
7055                         break;
7056                 case 30:
7057                         pipeconf |= PIPECONF_10BPC;
7058                         break;
7059                 default:
7060                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7061                         BUG();
7062                 }
7063         }
7064
7065         if (HAS_PIPE_CXSR(dev_priv)) {
7066                 if (intel_crtc->lowfreq_avail) {
7067                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7068                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7069                 } else {
7070                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7071                 }
7072         }
7073
7074         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7075                 if (INTEL_GEN(dev_priv) < 4 ||
7076                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7077                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7078                 else
7079                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7080         } else
7081                 pipeconf |= PIPECONF_PROGRESSIVE;
7082
7083         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7084              intel_crtc->config->limited_color_range)
7085                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7086
7087         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7088         POSTING_READ(PIPECONF(intel_crtc->pipe));
7089 }
7090
7091 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7092                                    struct intel_crtc_state *crtc_state)
7093 {
7094         struct drm_device *dev = crtc->base.dev;
7095         struct drm_i915_private *dev_priv = to_i915(dev);
7096         const struct intel_limit *limit;
7097         int refclk = 48000;
7098
7099         memset(&crtc_state->dpll_hw_state, 0,
7100                sizeof(crtc_state->dpll_hw_state));
7101
7102         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7103                 if (intel_panel_use_ssc(dev_priv)) {
7104                         refclk = dev_priv->vbt.lvds_ssc_freq;
7105                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7106                 }
7107
7108                 limit = &intel_limits_i8xx_lvds;
7109         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7110                 limit = &intel_limits_i8xx_dvo;
7111         } else {
7112                 limit = &intel_limits_i8xx_dac;
7113         }
7114
7115         if (!crtc_state->clock_set &&
7116             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7117                                  refclk, NULL, &crtc_state->dpll)) {
7118                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7119                 return -EINVAL;
7120         }
7121
7122         i8xx_compute_dpll(crtc, crtc_state, NULL);
7123
7124         return 0;
7125 }
7126
7127 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7128                                   struct intel_crtc_state *crtc_state)
7129 {
7130         struct drm_device *dev = crtc->base.dev;
7131         struct drm_i915_private *dev_priv = to_i915(dev);
7132         const struct intel_limit *limit;
7133         int refclk = 96000;
7134
7135         memset(&crtc_state->dpll_hw_state, 0,
7136                sizeof(crtc_state->dpll_hw_state));
7137
7138         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7139                 if (intel_panel_use_ssc(dev_priv)) {
7140                         refclk = dev_priv->vbt.lvds_ssc_freq;
7141                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7142                 }
7143
7144                 if (intel_is_dual_link_lvds(dev))
7145                         limit = &intel_limits_g4x_dual_channel_lvds;
7146                 else
7147                         limit = &intel_limits_g4x_single_channel_lvds;
7148         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7149                    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7150                 limit = &intel_limits_g4x_hdmi;
7151         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7152                 limit = &intel_limits_g4x_sdvo;
7153         } else {
7154                 /* The option is for other outputs */
7155                 limit = &intel_limits_i9xx_sdvo;
7156         }
7157
7158         if (!crtc_state->clock_set &&
7159             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7160                                 refclk, NULL, &crtc_state->dpll)) {
7161                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7162                 return -EINVAL;
7163         }
7164
7165         i9xx_compute_dpll(crtc, crtc_state, NULL);
7166
7167         return 0;
7168 }
7169
7170 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7171                                   struct intel_crtc_state *crtc_state)
7172 {
7173         struct drm_device *dev = crtc->base.dev;
7174         struct drm_i915_private *dev_priv = to_i915(dev);
7175         const struct intel_limit *limit;
7176         int refclk = 96000;
7177
7178         memset(&crtc_state->dpll_hw_state, 0,
7179                sizeof(crtc_state->dpll_hw_state));
7180
7181         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7182                 if (intel_panel_use_ssc(dev_priv)) {
7183                         refclk = dev_priv->vbt.lvds_ssc_freq;
7184                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7185                 }
7186
7187                 limit = &intel_limits_pineview_lvds;
7188         } else {
7189                 limit = &intel_limits_pineview_sdvo;
7190         }
7191
7192         if (!crtc_state->clock_set &&
7193             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7194                                 refclk, NULL, &crtc_state->dpll)) {
7195                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7196                 return -EINVAL;
7197         }
7198
7199         i9xx_compute_dpll(crtc, crtc_state, NULL);
7200
7201         return 0;
7202 }
7203
7204 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7205                                    struct intel_crtc_state *crtc_state)
7206 {
7207         struct drm_device *dev = crtc->base.dev;
7208         struct drm_i915_private *dev_priv = to_i915(dev);
7209         const struct intel_limit *limit;
7210         int refclk = 96000;
7211
7212         memset(&crtc_state->dpll_hw_state, 0,
7213                sizeof(crtc_state->dpll_hw_state));
7214
7215         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7216                 if (intel_panel_use_ssc(dev_priv)) {
7217                         refclk = dev_priv->vbt.lvds_ssc_freq;
7218                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7219                 }
7220
7221                 limit = &intel_limits_i9xx_lvds;
7222         } else {
7223                 limit = &intel_limits_i9xx_sdvo;
7224         }
7225
7226         if (!crtc_state->clock_set &&
7227             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7228                                  refclk, NULL, &crtc_state->dpll)) {
7229                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7230                 return -EINVAL;
7231         }
7232
7233         i9xx_compute_dpll(crtc, crtc_state, NULL);
7234
7235         return 0;
7236 }
7237
7238 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7239                                   struct intel_crtc_state *crtc_state)
7240 {
7241         int refclk = 100000;
7242         const struct intel_limit *limit = &intel_limits_chv;
7243
7244         memset(&crtc_state->dpll_hw_state, 0,
7245                sizeof(crtc_state->dpll_hw_state));
7246
7247         if (!crtc_state->clock_set &&
7248             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7249                                 refclk, NULL, &crtc_state->dpll)) {
7250                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7251                 return -EINVAL;
7252         }
7253
7254         chv_compute_dpll(crtc, crtc_state);
7255
7256         return 0;
7257 }
7258
7259 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7260                                   struct intel_crtc_state *crtc_state)
7261 {
7262         int refclk = 100000;
7263         const struct intel_limit *limit = &intel_limits_vlv;
7264
7265         memset(&crtc_state->dpll_hw_state, 0,
7266                sizeof(crtc_state->dpll_hw_state));
7267
7268         if (!crtc_state->clock_set &&
7269             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7270                                 refclk, NULL, &crtc_state->dpll)) {
7271                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7272                 return -EINVAL;
7273         }
7274
7275         vlv_compute_dpll(crtc, crtc_state);
7276
7277         return 0;
7278 }
7279
7280 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7281                                  struct intel_crtc_state *pipe_config)
7282 {
7283         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7284         uint32_t tmp;
7285
7286         if (INTEL_GEN(dev_priv) <= 3 &&
7287             (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
7288                 return;
7289
7290         tmp = I915_READ(PFIT_CONTROL);
7291         if (!(tmp & PFIT_ENABLE))
7292                 return;
7293
7294         /* Check whether the pfit is attached to our pipe. */
7295         if (INTEL_GEN(dev_priv) < 4) {
7296                 if (crtc->pipe != PIPE_B)
7297                         return;
7298         } else {
7299                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7300                         return;
7301         }
7302
7303         pipe_config->gmch_pfit.control = tmp;
7304         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7305 }
7306
7307 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7308                                struct intel_crtc_state *pipe_config)
7309 {
7310         struct drm_device *dev = crtc->base.dev;
7311         struct drm_i915_private *dev_priv = to_i915(dev);
7312         int pipe = pipe_config->cpu_transcoder;
7313         struct dpll clock;
7314         u32 mdiv;
7315         int refclk = 100000;
7316
7317         /* In case of DSI, DPLL will not be used */
7318         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7319                 return;
7320
7321         mutex_lock(&dev_priv->sb_lock);
7322         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7323         mutex_unlock(&dev_priv->sb_lock);
7324
7325         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7326         clock.m2 = mdiv & DPIO_M2DIV_MASK;
7327         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7328         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7329         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7330
7331         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7332 }
7333
7334 static void
7335 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7336                               struct intel_initial_plane_config *plane_config)
7337 {
7338         struct drm_device *dev = crtc->base.dev;
7339         struct drm_i915_private *dev_priv = to_i915(dev);
7340         u32 val, base, offset;
7341         int pipe = crtc->pipe, plane = crtc->plane;
7342         int fourcc, pixel_format;
7343         unsigned int aligned_height;
7344         struct drm_framebuffer *fb;
7345         struct intel_framebuffer *intel_fb;
7346
7347         val = I915_READ(DSPCNTR(plane));
7348         if (!(val & DISPLAY_PLANE_ENABLE))
7349                 return;
7350
7351         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7352         if (!intel_fb) {
7353                 DRM_DEBUG_KMS("failed to alloc fb\n");
7354                 return;
7355         }
7356
7357         fb = &intel_fb->base;
7358
7359         fb->dev = dev;
7360
7361         if (INTEL_GEN(dev_priv) >= 4) {
7362                 if (val & DISPPLANE_TILED) {
7363                         plane_config->tiling = I915_TILING_X;
7364                         fb->modifier = I915_FORMAT_MOD_X_TILED;
7365                 }
7366         }
7367
7368         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7369         fourcc = i9xx_format_to_fourcc(pixel_format);
7370         fb->format = drm_format_info(fourcc);
7371
7372         if (INTEL_GEN(dev_priv) >= 4) {
7373                 if (plane_config->tiling)
7374                         offset = I915_READ(DSPTILEOFF(plane));
7375                 else
7376                         offset = I915_READ(DSPLINOFF(plane));
7377                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7378         } else {
7379                 base = I915_READ(DSPADDR(plane));
7380         }
7381         plane_config->base = base;
7382
7383         val = I915_READ(PIPESRC(pipe));
7384         fb->width = ((val >> 16) & 0xfff) + 1;
7385         fb->height = ((val >> 0) & 0xfff) + 1;
7386
7387         val = I915_READ(DSPSTRIDE(pipe));
7388         fb->pitches[0] = val & 0xffffffc0;
7389
7390         aligned_height = intel_fb_align_height(fb, 0, fb->height);
7391
7392         plane_config->size = fb->pitches[0] * aligned_height;
7393
7394         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7395                       pipe_name(pipe), plane, fb->width, fb->height,
7396                       fb->format->cpp[0] * 8, base, fb->pitches[0],
7397                       plane_config->size);
7398
7399         plane_config->fb = intel_fb;
7400 }
7401
7402 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7403                                struct intel_crtc_state *pipe_config)
7404 {
7405         struct drm_device *dev = crtc->base.dev;
7406         struct drm_i915_private *dev_priv = to_i915(dev);
7407         int pipe = pipe_config->cpu_transcoder;
7408         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7409         struct dpll clock;
7410         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
7411         int refclk = 100000;
7412
7413         /* In case of DSI, DPLL will not be used */
7414         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7415                 return;
7416
7417         mutex_lock(&dev_priv->sb_lock);
7418         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7419         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7420         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7421         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7422         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7423         mutex_unlock(&dev_priv->sb_lock);
7424
7425         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7426         clock.m2 = (pll_dw0 & 0xff) << 22;
7427         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
7428                 clock.m2 |= pll_dw2 & 0x3fffff;
7429         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7430         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7431         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7432
7433         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
7434 }
7435
7436 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7437                                  struct intel_crtc_state *pipe_config)
7438 {
7439         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7440         enum intel_display_power_domain power_domain;
7441         uint32_t tmp;
7442         bool ret;
7443
7444         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
7445         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
7446                 return false;
7447
7448         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7449         pipe_config->shared_dpll = NULL;
7450
7451         ret = false;
7452
7453         tmp = I915_READ(PIPECONF(crtc->pipe));
7454         if (!(tmp & PIPECONF_ENABLE))
7455                 goto out;
7456
7457         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7458             IS_CHERRYVIEW(dev_priv)) {
7459                 switch (tmp & PIPECONF_BPC_MASK) {
7460                 case PIPECONF_6BPC:
7461                         pipe_config->pipe_bpp = 18;
7462                         break;
7463                 case PIPECONF_8BPC:
7464                         pipe_config->pipe_bpp = 24;
7465                         break;
7466                 case PIPECONF_10BPC:
7467                         pipe_config->pipe_bpp = 30;
7468                         break;
7469                 default:
7470                         break;
7471                 }
7472         }
7473
7474         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7475             (tmp & PIPECONF_COLOR_RANGE_SELECT))
7476                 pipe_config->limited_color_range = true;
7477
7478         if (INTEL_GEN(dev_priv) < 4)
7479                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7480
7481         intel_get_pipe_timings(crtc, pipe_config);
7482         intel_get_pipe_src_size(crtc, pipe_config);
7483
7484         i9xx_get_pfit_config(crtc, pipe_config);
7485
7486         if (INTEL_GEN(dev_priv) >= 4) {
7487                 /* No way to read it out on pipes B and C */
7488                 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
7489                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
7490                 else
7491                         tmp = I915_READ(DPLL_MD(crtc->pipe));
7492                 pipe_config->pixel_multiplier =
7493                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7494                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7495                 pipe_config->dpll_hw_state.dpll_md = tmp;
7496         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
7497                    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
7498                 tmp = I915_READ(DPLL(crtc->pipe));
7499                 pipe_config->pixel_multiplier =
7500                         ((tmp & SDVO_MULTIPLIER_MASK)
7501                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7502         } else {
7503                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7504                  * port and will be fixed up in the encoder->get_config
7505                  * function. */
7506                 pipe_config->pixel_multiplier = 1;
7507         }
7508         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7509         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
7510                 /*
7511                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7512                  * on 830. Filter it out here so that we don't
7513                  * report errors due to that.
7514                  */
7515                 if (IS_I830(dev_priv))
7516                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7517
7518                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7519                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7520         } else {
7521                 /* Mask out read-only status bits. */
7522                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7523                                                      DPLL_PORTC_READY_MASK |
7524                                                      DPLL_PORTB_READY_MASK);
7525         }
7526
7527         if (IS_CHERRYVIEW(dev_priv))
7528                 chv_crtc_clock_get(crtc, pipe_config);
7529         else if (IS_VALLEYVIEW(dev_priv))
7530                 vlv_crtc_clock_get(crtc, pipe_config);
7531         else
7532                 i9xx_crtc_clock_get(crtc, pipe_config);
7533
7534         /*
7535          * Normally the dotclock is filled in by the encoder .get_config()
7536          * but in case the pipe is enabled w/o any ports we need a sane
7537          * default.
7538          */
7539         pipe_config->base.adjusted_mode.crtc_clock =
7540                 pipe_config->port_clock / pipe_config->pixel_multiplier;
7541
7542         ret = true;
7543
7544 out:
7545         intel_display_power_put(dev_priv, power_domain);
7546
7547         return ret;
7548 }
7549
7550 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
7551 {
7552         struct intel_encoder *encoder;
7553         int i;
7554         u32 val, final;
7555         bool has_lvds = false;
7556         bool has_cpu_edp = false;
7557         bool has_panel = false;
7558         bool has_ck505 = false;
7559         bool can_ssc = false;
7560         bool using_ssc_source = false;
7561
7562         /* We need to take the global config into account */
7563         for_each_intel_encoder(&dev_priv->drm, encoder) {
7564                 switch (encoder->type) {
7565                 case INTEL_OUTPUT_LVDS:
7566                         has_panel = true;
7567                         has_lvds = true;
7568                         break;
7569                 case INTEL_OUTPUT_EDP:
7570                         has_panel = true;
7571                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7572                                 has_cpu_edp = true;
7573                         break;
7574                 default:
7575                         break;
7576                 }
7577         }
7578
7579         if (HAS_PCH_IBX(dev_priv)) {
7580                 has_ck505 = dev_priv->vbt.display_clock_mode;
7581                 can_ssc = has_ck505;
7582         } else {
7583                 has_ck505 = false;
7584                 can_ssc = true;
7585         }
7586
7587         /* Check if any DPLLs are using the SSC source */
7588         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
7589                 u32 temp = I915_READ(PCH_DPLL(i));
7590
7591                 if (!(temp & DPLL_VCO_ENABLE))
7592                         continue;
7593
7594                 if ((temp & PLL_REF_INPUT_MASK) ==
7595                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7596                         using_ssc_source = true;
7597                         break;
7598                 }
7599         }
7600
7601         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
7602                       has_panel, has_lvds, has_ck505, using_ssc_source);
7603
7604         /* Ironlake: try to setup display ref clock before DPLL
7605          * enabling. This is only under driver's control after
7606          * PCH B stepping, previous chipset stepping should be
7607          * ignoring this setting.
7608          */
7609         val = I915_READ(PCH_DREF_CONTROL);
7610
7611         /* As we must carefully and slowly disable/enable each source in turn,
7612          * compute the final state we want first and check if we need to
7613          * make any changes at all.
7614          */
7615         final = val;
7616         final &= ~DREF_NONSPREAD_SOURCE_MASK;
7617         if (has_ck505)
7618                 final |= DREF_NONSPREAD_CK505_ENABLE;
7619         else
7620                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7621
7622         final &= ~DREF_SSC_SOURCE_MASK;
7623         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7624         final &= ~DREF_SSC1_ENABLE;
7625
7626         if (has_panel) {
7627                 final |= DREF_SSC_SOURCE_ENABLE;
7628
7629                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7630                         final |= DREF_SSC1_ENABLE;
7631
7632                 if (has_cpu_edp) {
7633                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
7634                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7635                         else
7636                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7637                 } else
7638                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7639         } else if (using_ssc_source) {
7640                 final |= DREF_SSC_SOURCE_ENABLE;
7641                 final |= DREF_SSC1_ENABLE;
7642         }
7643
7644         if (final == val)
7645                 return;
7646
7647         /* Always enable nonspread source */
7648         val &= ~DREF_NONSPREAD_SOURCE_MASK;
7649
7650         if (has_ck505)
7651                 val |= DREF_NONSPREAD_CK505_ENABLE;
7652         else
7653                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7654
7655         if (has_panel) {
7656                 val &= ~DREF_SSC_SOURCE_MASK;
7657                 val |= DREF_SSC_SOURCE_ENABLE;
7658
7659                 /* SSC must be turned on before enabling the CPU output  */
7660                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7661                         DRM_DEBUG_KMS("Using SSC on panel\n");
7662                         val |= DREF_SSC1_ENABLE;
7663                 } else
7664                         val &= ~DREF_SSC1_ENABLE;
7665
7666                 /* Get SSC going before enabling the outputs */
7667                 I915_WRITE(PCH_DREF_CONTROL, val);
7668                 POSTING_READ(PCH_DREF_CONTROL);
7669                 udelay(200);
7670
7671                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7672
7673                 /* Enable CPU source on CPU attached eDP */
7674                 if (has_cpu_edp) {
7675                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7676                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
7677                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7678                         } else
7679                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7680                 } else
7681                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7682
7683                 I915_WRITE(PCH_DREF_CONTROL, val);
7684                 POSTING_READ(PCH_DREF_CONTROL);
7685                 udelay(200);
7686         } else {
7687                 DRM_DEBUG_KMS("Disabling CPU source output\n");
7688
7689                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7690
7691                 /* Turn off CPU output */
7692                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7693
7694                 I915_WRITE(PCH_DREF_CONTROL, val);
7695                 POSTING_READ(PCH_DREF_CONTROL);
7696                 udelay(200);
7697
7698                 if (!using_ssc_source) {
7699                         DRM_DEBUG_KMS("Disabling SSC source\n");
7700
7701                         /* Turn off the SSC source */
7702                         val &= ~DREF_SSC_SOURCE_MASK;
7703                         val |= DREF_SSC_SOURCE_DISABLE;
7704
7705                         /* Turn off SSC1 */
7706                         val &= ~DREF_SSC1_ENABLE;
7707
7708                         I915_WRITE(PCH_DREF_CONTROL, val);
7709                         POSTING_READ(PCH_DREF_CONTROL);
7710                         udelay(200);
7711                 }
7712         }
7713
7714         BUG_ON(val != final);
7715 }
7716
7717 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7718 {
7719         uint32_t tmp;
7720
7721         tmp = I915_READ(SOUTH_CHICKEN2);
7722         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7723         I915_WRITE(SOUTH_CHICKEN2, tmp);
7724
7725         if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
7726                         FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7727                 DRM_ERROR("FDI mPHY reset assert timeout\n");
7728
7729         tmp = I915_READ(SOUTH_CHICKEN2);
7730         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7731         I915_WRITE(SOUTH_CHICKEN2, tmp);
7732
7733         if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
7734                          FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7735                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7736 }
7737
7738 /* WaMPhyProgramming:hsw */
7739 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7740 {
7741         uint32_t tmp;
7742
7743         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7744         tmp &= ~(0xFF << 24);
7745         tmp |= (0x12 << 24);
7746         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7747
7748         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7749         tmp |= (1 << 11);
7750         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7751
7752         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7753         tmp |= (1 << 11);
7754         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7755
7756         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7757         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7758         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7759
7760         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7761         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7762         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7763
7764         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7765         tmp &= ~(7 << 13);
7766         tmp |= (5 << 13);
7767         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7768
7769         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7770         tmp &= ~(7 << 13);
7771         tmp |= (5 << 13);
7772         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7773
7774         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7775         tmp &= ~0xFF;
7776         tmp |= 0x1C;
7777         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7778
7779         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7780         tmp &= ~0xFF;
7781         tmp |= 0x1C;
7782         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7783
7784         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7785         tmp &= ~(0xFF << 16);
7786         tmp |= (0x1C << 16);
7787         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7788
7789         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7790         tmp &= ~(0xFF << 16);
7791         tmp |= (0x1C << 16);
7792         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7793
7794         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7795         tmp |= (1 << 27);
7796         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7797
7798         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7799         tmp |= (1 << 27);
7800         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7801
7802         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7803         tmp &= ~(0xF << 28);
7804         tmp |= (4 << 28);
7805         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7806
7807         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7808         tmp &= ~(0xF << 28);
7809         tmp |= (4 << 28);
7810         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7811 }
7812
7813 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7814  * Programming" based on the parameters passed:
7815  * - Sequence to enable CLKOUT_DP
7816  * - Sequence to enable CLKOUT_DP without spread
7817  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7818  */
7819 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
7820                                  bool with_spread, bool with_fdi)
7821 {
7822         uint32_t reg, tmp;
7823
7824         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7825                 with_spread = true;
7826         if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
7827             with_fdi, "LP PCH doesn't have FDI\n"))
7828                 with_fdi = false;
7829
7830         mutex_lock(&dev_priv->sb_lock);
7831
7832         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7833         tmp &= ~SBI_SSCCTL_DISABLE;
7834         tmp |= SBI_SSCCTL_PATHALT;
7835         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7836
7837         udelay(24);
7838
7839         if (with_spread) {
7840                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7841                 tmp &= ~SBI_SSCCTL_PATHALT;
7842                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7843
7844                 if (with_fdi) {
7845                         lpt_reset_fdi_mphy(dev_priv);
7846                         lpt_program_fdi_mphy(dev_priv);
7847                 }
7848         }
7849
7850         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7851         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7852         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7853         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7854
7855         mutex_unlock(&dev_priv->sb_lock);
7856 }
7857
7858 /* Sequence to disable CLKOUT_DP */
7859 static void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
7860 {
7861         uint32_t reg, tmp;
7862
7863         mutex_lock(&dev_priv->sb_lock);
7864
7865         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7866         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7867         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7868         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7869
7870         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7871         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7872                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7873                         tmp |= SBI_SSCCTL_PATHALT;
7874                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7875                         udelay(32);
7876                 }
7877                 tmp |= SBI_SSCCTL_DISABLE;
7878                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7879         }
7880
7881         mutex_unlock(&dev_priv->sb_lock);
7882 }
7883
7884 #define BEND_IDX(steps) ((50 + (steps)) / 5)
7885
7886 static const uint16_t sscdivintphase[] = {
7887         [BEND_IDX( 50)] = 0x3B23,
7888         [BEND_IDX( 45)] = 0x3B23,
7889         [BEND_IDX( 40)] = 0x3C23,
7890         [BEND_IDX( 35)] = 0x3C23,
7891         [BEND_IDX( 30)] = 0x3D23,
7892         [BEND_IDX( 25)] = 0x3D23,
7893         [BEND_IDX( 20)] = 0x3E23,
7894         [BEND_IDX( 15)] = 0x3E23,
7895         [BEND_IDX( 10)] = 0x3F23,
7896         [BEND_IDX(  5)] = 0x3F23,
7897         [BEND_IDX(  0)] = 0x0025,
7898         [BEND_IDX( -5)] = 0x0025,
7899         [BEND_IDX(-10)] = 0x0125,
7900         [BEND_IDX(-15)] = 0x0125,
7901         [BEND_IDX(-20)] = 0x0225,
7902         [BEND_IDX(-25)] = 0x0225,
7903         [BEND_IDX(-30)] = 0x0325,
7904         [BEND_IDX(-35)] = 0x0325,
7905         [BEND_IDX(-40)] = 0x0425,
7906         [BEND_IDX(-45)] = 0x0425,
7907         [BEND_IDX(-50)] = 0x0525,
7908 };
7909
7910 /*
7911  * Bend CLKOUT_DP
7912  * steps -50 to 50 inclusive, in steps of 5
7913  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
7914  * change in clock period = -(steps / 10) * 5.787 ps
7915  */
7916 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
7917 {
7918         uint32_t tmp;
7919         int idx = BEND_IDX(steps);
7920
7921         if (WARN_ON(steps % 5 != 0))
7922                 return;
7923
7924         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
7925                 return;
7926
7927         mutex_lock(&dev_priv->sb_lock);
7928
7929         if (steps % 10 != 0)
7930                 tmp = 0xAAAAAAAB;
7931         else
7932                 tmp = 0x00000000;
7933         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
7934
7935         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
7936         tmp &= 0xffff0000;
7937         tmp |= sscdivintphase[idx];
7938         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
7939
7940         mutex_unlock(&dev_priv->sb_lock);
7941 }
7942
7943 #undef BEND_IDX
7944
7945 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
7946 {
7947         struct intel_encoder *encoder;
7948         bool has_vga = false;
7949
7950         for_each_intel_encoder(&dev_priv->drm, encoder) {
7951                 switch (encoder->type) {
7952                 case INTEL_OUTPUT_ANALOG:
7953                         has_vga = true;
7954                         break;
7955                 default:
7956                         break;
7957                 }
7958         }
7959
7960         if (has_vga) {
7961                 lpt_bend_clkout_dp(dev_priv, 0);
7962                 lpt_enable_clkout_dp(dev_priv, true, true);
7963         } else {
7964                 lpt_disable_clkout_dp(dev_priv);
7965         }
7966 }
7967
7968 /*
7969  * Initialize reference clocks when the driver loads
7970  */
7971 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
7972 {
7973         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
7974                 ironlake_init_pch_refclk(dev_priv);
7975         else if (HAS_PCH_LPT(dev_priv))
7976                 lpt_init_pch_refclk(dev_priv);
7977 }
7978
7979 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7980 {
7981         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
7982         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7983         int pipe = intel_crtc->pipe;
7984         uint32_t val;
7985
7986         val = 0;
7987
7988         switch (intel_crtc->config->pipe_bpp) {
7989         case 18:
7990                 val |= PIPECONF_6BPC;
7991                 break;
7992         case 24:
7993                 val |= PIPECONF_8BPC;
7994                 break;
7995         case 30:
7996                 val |= PIPECONF_10BPC;
7997                 break;
7998         case 36:
7999                 val |= PIPECONF_12BPC;
8000                 break;
8001         default:
8002                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8003                 BUG();
8004         }
8005
8006         if (intel_crtc->config->dither)
8007                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8008
8009         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8010                 val |= PIPECONF_INTERLACED_ILK;
8011         else
8012                 val |= PIPECONF_PROGRESSIVE;
8013
8014         if (intel_crtc->config->limited_color_range)
8015                 val |= PIPECONF_COLOR_RANGE_SELECT;
8016
8017         I915_WRITE(PIPECONF(pipe), val);
8018         POSTING_READ(PIPECONF(pipe));
8019 }
8020
8021 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8022 {
8023         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8024         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8025         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8026         u32 val = 0;
8027
8028         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8029                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8030
8031         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8032                 val |= PIPECONF_INTERLACED_ILK;
8033         else
8034                 val |= PIPECONF_PROGRESSIVE;
8035
8036         I915_WRITE(PIPECONF(cpu_transcoder), val);
8037         POSTING_READ(PIPECONF(cpu_transcoder));
8038 }
8039
8040 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8041 {
8042         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8043         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8044
8045         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8046                 u32 val = 0;
8047
8048                 switch (intel_crtc->config->pipe_bpp) {
8049                 case 18:
8050                         val |= PIPEMISC_DITHER_6_BPC;
8051                         break;
8052                 case 24:
8053                         val |= PIPEMISC_DITHER_8_BPC;
8054                         break;
8055                 case 30:
8056                         val |= PIPEMISC_DITHER_10_BPC;
8057                         break;
8058                 case 36:
8059                         val |= PIPEMISC_DITHER_12_BPC;
8060                         break;
8061                 default:
8062                         /* Case prevented by pipe_config_set_bpp. */
8063                         BUG();
8064                 }
8065
8066                 if (intel_crtc->config->dither)
8067                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8068
8069                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8070         }
8071 }
8072
8073 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8074 {
8075         /*
8076          * Account for spread spectrum to avoid
8077          * oversubscribing the link. Max center spread
8078          * is 2.5%; use 5% for safety's sake.
8079          */
8080         u32 bps = target_clock * bpp * 21 / 20;
8081         return DIV_ROUND_UP(bps, link_bw * 8);
8082 }
8083
8084 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8085 {
8086         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8087 }
8088
8089 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8090                                   struct intel_crtc_state *crtc_state,
8091                                   struct dpll *reduced_clock)
8092 {
8093         struct drm_crtc *crtc = &intel_crtc->base;
8094         struct drm_device *dev = crtc->dev;
8095         struct drm_i915_private *dev_priv = to_i915(dev);
8096         u32 dpll, fp, fp2;
8097         int factor;
8098
8099         /* Enable autotuning of the PLL clock (if permissible) */
8100         factor = 21;
8101         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8102                 if ((intel_panel_use_ssc(dev_priv) &&
8103                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8104                     (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
8105                         factor = 25;
8106         } else if (crtc_state->sdvo_tv_clock)
8107                 factor = 20;
8108
8109         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8110
8111         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8112                 fp |= FP_CB_TUNE;
8113
8114         if (reduced_clock) {
8115                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8116
8117                 if (reduced_clock->m < factor * reduced_clock->n)
8118                         fp2 |= FP_CB_TUNE;
8119         } else {
8120                 fp2 = fp;
8121         }
8122
8123         dpll = 0;
8124
8125         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8126                 dpll |= DPLLB_MODE_LVDS;
8127         else
8128                 dpll |= DPLLB_MODE_DAC_SERIAL;
8129
8130         dpll |= (crtc_state->pixel_multiplier - 1)
8131                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8132
8133         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8134             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8135                 dpll |= DPLL_SDVO_HIGH_SPEED;
8136
8137         if (intel_crtc_has_dp_encoder(crtc_state))
8138                 dpll |= DPLL_SDVO_HIGH_SPEED;
8139
8140         /*
8141          * The high speed IO clock is only really required for
8142          * SDVO/HDMI/DP, but we also enable it for CRT to make it
8143          * possible to share the DPLL between CRT and HDMI. Enabling
8144          * the clock needlessly does no real harm, except use up a
8145          * bit of power potentially.
8146          *
8147          * We'll limit this to IVB with 3 pipes, since it has only two
8148          * DPLLs and so DPLL sharing is the only way to get three pipes
8149          * driving PCH ports at the same time. On SNB we could do this,
8150          * and potentially avoid enabling the second DPLL, but it's not
8151          * clear if it''s a win or loss power wise. No point in doing
8152          * this on ILK at all since it has a fixed DPLL<->pipe mapping.
8153          */
8154         if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
8155             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
8156                 dpll |= DPLL_SDVO_HIGH_SPEED;
8157
8158         /* compute bitmask from p1 value */
8159         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8160         /* also FPA1 */
8161         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8162
8163         switch (crtc_state->dpll.p2) {
8164         case 5:
8165                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8166                 break;
8167         case 7:
8168                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8169                 break;
8170         case 10:
8171                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8172                 break;
8173         case 14:
8174                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8175                 break;
8176         }
8177
8178         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8179             intel_panel_use_ssc(dev_priv))
8180                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8181         else
8182                 dpll |= PLL_REF_INPUT_DREFCLK;
8183
8184         dpll |= DPLL_VCO_ENABLE;
8185
8186         crtc_state->dpll_hw_state.dpll = dpll;
8187         crtc_state->dpll_hw_state.fp0 = fp;
8188         crtc_state->dpll_hw_state.fp1 = fp2;
8189 }
8190
8191 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8192                                        struct intel_crtc_state *crtc_state)
8193 {
8194         struct drm_device *dev = crtc->base.dev;
8195         struct drm_i915_private *dev_priv = to_i915(dev);
8196         const struct intel_limit *limit;
8197         int refclk = 120000;
8198
8199         memset(&crtc_state->dpll_hw_state, 0,
8200                sizeof(crtc_state->dpll_hw_state));
8201
8202         crtc->lowfreq_avail = false;
8203
8204         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8205         if (!crtc_state->has_pch_encoder)
8206                 return 0;
8207
8208         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8209                 if (intel_panel_use_ssc(dev_priv)) {
8210                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8211                                       dev_priv->vbt.lvds_ssc_freq);
8212                         refclk = dev_priv->vbt.lvds_ssc_freq;
8213                 }
8214
8215                 if (intel_is_dual_link_lvds(dev)) {
8216                         if (refclk == 100000)
8217                                 limit = &intel_limits_ironlake_dual_lvds_100m;
8218                         else
8219                                 limit = &intel_limits_ironlake_dual_lvds;
8220                 } else {
8221                         if (refclk == 100000)
8222                                 limit = &intel_limits_ironlake_single_lvds_100m;
8223                         else
8224                                 limit = &intel_limits_ironlake_single_lvds;
8225                 }
8226         } else {
8227                 limit = &intel_limits_ironlake_dac;
8228         }
8229
8230         if (!crtc_state->clock_set &&
8231             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8232                                 refclk, NULL, &crtc_state->dpll)) {
8233                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8234                 return -EINVAL;
8235         }
8236
8237         ironlake_compute_dpll(crtc, crtc_state, NULL);
8238
8239         if (!intel_get_shared_dpll(crtc, crtc_state, NULL)) {
8240                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8241                                  pipe_name(crtc->pipe));
8242                 return -EINVAL;
8243         }
8244
8245         return 0;
8246 }
8247
8248 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8249                                          struct intel_link_m_n *m_n)
8250 {
8251         struct drm_device *dev = crtc->base.dev;
8252         struct drm_i915_private *dev_priv = to_i915(dev);
8253         enum pipe pipe = crtc->pipe;
8254
8255         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8256         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8257         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8258                 & ~TU_SIZE_MASK;
8259         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8260         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8261                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8262 }
8263
8264 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8265                                          enum transcoder transcoder,
8266                                          struct intel_link_m_n *m_n,
8267                                          struct intel_link_m_n *m2_n2)
8268 {
8269         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8270         enum pipe pipe = crtc->pipe;
8271
8272         if (INTEL_GEN(dev_priv) >= 5) {
8273                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8274                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8275                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8276                         & ~TU_SIZE_MASK;
8277                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8278                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8279                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8280                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8281                  * gen < 8) and if DRRS is supported (to make sure the
8282                  * registers are not unnecessarily read).
8283                  */
8284                 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
8285                         crtc->config->has_drrs) {
8286                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8287                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8288                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8289                                         & ~TU_SIZE_MASK;
8290                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8291                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8292                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8293                 }
8294         } else {
8295                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8296                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8297                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8298                         & ~TU_SIZE_MASK;
8299                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8300                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8301                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8302         }
8303 }
8304
8305 void intel_dp_get_m_n(struct intel_crtc *crtc,
8306                       struct intel_crtc_state *pipe_config)
8307 {
8308         if (pipe_config->has_pch_encoder)
8309                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8310         else
8311                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8312                                              &pipe_config->dp_m_n,
8313                                              &pipe_config->dp_m2_n2);
8314 }
8315
8316 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8317                                         struct intel_crtc_state *pipe_config)
8318 {
8319         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8320                                      &pipe_config->fdi_m_n, NULL);
8321 }
8322
8323 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8324                                     struct intel_crtc_state *pipe_config)
8325 {
8326         struct drm_device *dev = crtc->base.dev;
8327         struct drm_i915_private *dev_priv = to_i915(dev);
8328         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8329         uint32_t ps_ctrl = 0;
8330         int id = -1;
8331         int i;
8332
8333         /* find scaler attached to this pipe */
8334         for (i = 0; i < crtc->num_scalers; i++) {
8335                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8336                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8337                         id = i;
8338                         pipe_config->pch_pfit.enabled = true;
8339                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8340                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8341                         break;
8342                 }
8343         }
8344
8345         scaler_state->scaler_id = id;
8346         if (id >= 0) {
8347                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8348         } else {
8349                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8350         }
8351 }
8352
8353 static void
8354 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8355                                  struct intel_initial_plane_config *plane_config)
8356 {
8357         struct drm_device *dev = crtc->base.dev;
8358         struct drm_i915_private *dev_priv = to_i915(dev);
8359         u32 val, base, offset, stride_mult, tiling;
8360         int pipe = crtc->pipe;
8361         int fourcc, pixel_format;
8362         unsigned int aligned_height;
8363         struct drm_framebuffer *fb;
8364         struct intel_framebuffer *intel_fb;
8365
8366         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8367         if (!intel_fb) {
8368                 DRM_DEBUG_KMS("failed to alloc fb\n");
8369                 return;
8370         }
8371
8372         fb = &intel_fb->base;
8373
8374         fb->dev = dev;
8375
8376         val = I915_READ(PLANE_CTL(pipe, 0));
8377         if (!(val & PLANE_CTL_ENABLE))
8378                 goto error;
8379
8380         pixel_format = val & PLANE_CTL_FORMAT_MASK;
8381         fourcc = skl_format_to_fourcc(pixel_format,
8382                                       val & PLANE_CTL_ORDER_RGBX,
8383                                       val & PLANE_CTL_ALPHA_MASK);
8384         fb->format = drm_format_info(fourcc);
8385
8386         tiling = val & PLANE_CTL_TILED_MASK;
8387         switch (tiling) {
8388         case PLANE_CTL_TILED_LINEAR:
8389                 fb->modifier = DRM_FORMAT_MOD_LINEAR;
8390                 break;
8391         case PLANE_CTL_TILED_X:
8392                 plane_config->tiling = I915_TILING_X;
8393                 fb->modifier = I915_FORMAT_MOD_X_TILED;
8394                 break;
8395         case PLANE_CTL_TILED_Y:
8396                 fb->modifier = I915_FORMAT_MOD_Y_TILED;
8397                 break;
8398         case PLANE_CTL_TILED_YF:
8399                 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
8400                 break;
8401         default:
8402                 MISSING_CASE(tiling);
8403                 goto error;
8404         }
8405
8406         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8407         plane_config->base = base;
8408
8409         offset = I915_READ(PLANE_OFFSET(pipe, 0));
8410
8411         val = I915_READ(PLANE_SIZE(pipe, 0));
8412         fb->height = ((val >> 16) & 0xfff) + 1;
8413         fb->width = ((val >> 0) & 0x1fff) + 1;
8414
8415         val = I915_READ(PLANE_STRIDE(pipe, 0));
8416         stride_mult = intel_fb_stride_alignment(fb, 0);
8417         fb->pitches[0] = (val & 0x3ff) * stride_mult;
8418
8419         aligned_height = intel_fb_align_height(fb, 0, fb->height);
8420
8421         plane_config->size = fb->pitches[0] * aligned_height;
8422
8423         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8424                       pipe_name(pipe), fb->width, fb->height,
8425                       fb->format->cpp[0] * 8, base, fb->pitches[0],
8426                       plane_config->size);
8427
8428         plane_config->fb = intel_fb;
8429         return;
8430
8431 error:
8432         kfree(intel_fb);
8433 }
8434
8435 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8436                                      struct intel_crtc_state *pipe_config)
8437 {
8438         struct drm_device *dev = crtc->base.dev;
8439         struct drm_i915_private *dev_priv = to_i915(dev);
8440         uint32_t tmp;
8441
8442         tmp = I915_READ(PF_CTL(crtc->pipe));
8443
8444         if (tmp & PF_ENABLE) {
8445                 pipe_config->pch_pfit.enabled = true;
8446                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8447                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8448
8449                 /* We currently do not free assignements of panel fitters on
8450                  * ivb/hsw (since we don't use the higher upscaling modes which
8451                  * differentiates them) so just WARN about this case for now. */
8452                 if (IS_GEN7(dev_priv)) {
8453                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8454                                 PF_PIPE_SEL_IVB(crtc->pipe));
8455                 }
8456         }
8457 }
8458
8459 static void
8460 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8461                                   struct intel_initial_plane_config *plane_config)
8462 {
8463         struct drm_device *dev = crtc->base.dev;
8464         struct drm_i915_private *dev_priv = to_i915(dev);
8465         u32 val, base, offset;
8466         int pipe = crtc->pipe;
8467         int fourcc, pixel_format;
8468         unsigned int aligned_height;
8469         struct drm_framebuffer *fb;
8470         struct intel_framebuffer *intel_fb;
8471
8472         val = I915_READ(DSPCNTR(pipe));
8473         if (!(val & DISPLAY_PLANE_ENABLE))
8474                 return;
8475
8476         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8477         if (!intel_fb) {
8478                 DRM_DEBUG_KMS("failed to alloc fb\n");
8479                 return;
8480         }
8481
8482         fb = &intel_fb->base;
8483
8484         fb->dev = dev;
8485
8486         if (INTEL_GEN(dev_priv) >= 4) {
8487                 if (val & DISPPLANE_TILED) {
8488                         plane_config->tiling = I915_TILING_X;
8489                         fb->modifier = I915_FORMAT_MOD_X_TILED;
8490                 }
8491         }
8492
8493         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8494         fourcc = i9xx_format_to_fourcc(pixel_format);
8495         fb->format = drm_format_info(fourcc);
8496
8497         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8498         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
8499                 offset = I915_READ(DSPOFFSET(pipe));
8500         } else {
8501                 if (plane_config->tiling)
8502                         offset = I915_READ(DSPTILEOFF(pipe));
8503                 else
8504                         offset = I915_READ(DSPLINOFF(pipe));
8505         }
8506         plane_config->base = base;
8507
8508         val = I915_READ(PIPESRC(pipe));
8509         fb->width = ((val >> 16) & 0xfff) + 1;
8510         fb->height = ((val >> 0) & 0xfff) + 1;
8511
8512         val = I915_READ(DSPSTRIDE(pipe));
8513         fb->pitches[0] = val & 0xffffffc0;
8514
8515         aligned_height = intel_fb_align_height(fb, 0, fb->height);
8516
8517         plane_config->size = fb->pitches[0] * aligned_height;
8518
8519         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8520                       pipe_name(pipe), fb->width, fb->height,
8521                       fb->format->cpp[0] * 8, base, fb->pitches[0],
8522                       plane_config->size);
8523
8524         plane_config->fb = intel_fb;
8525 }
8526
8527 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8528                                      struct intel_crtc_state *pipe_config)
8529 {
8530         struct drm_device *dev = crtc->base.dev;
8531         struct drm_i915_private *dev_priv = to_i915(dev);
8532         enum intel_display_power_domain power_domain;
8533         uint32_t tmp;
8534         bool ret;
8535
8536         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8537         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8538                 return false;
8539
8540         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8541         pipe_config->shared_dpll = NULL;
8542
8543         ret = false;
8544         tmp = I915_READ(PIPECONF(crtc->pipe));
8545         if (!(tmp & PIPECONF_ENABLE))
8546                 goto out;
8547
8548         switch (tmp & PIPECONF_BPC_MASK) {
8549         case PIPECONF_6BPC:
8550                 pipe_config->pipe_bpp = 18;
8551                 break;
8552         case PIPECONF_8BPC:
8553                 pipe_config->pipe_bpp = 24;
8554                 break;
8555         case PIPECONF_10BPC:
8556                 pipe_config->pipe_bpp = 30;
8557                 break;
8558         case PIPECONF_12BPC:
8559                 pipe_config->pipe_bpp = 36;
8560                 break;
8561         default:
8562                 break;
8563         }
8564
8565         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8566                 pipe_config->limited_color_range = true;
8567
8568         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8569                 struct intel_shared_dpll *pll;
8570                 enum intel_dpll_id pll_id;
8571
8572                 pipe_config->has_pch_encoder = true;
8573
8574                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8575                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8576                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8577
8578                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8579
8580                 if (HAS_PCH_IBX(dev_priv)) {
8581                         /*
8582                          * The pipe->pch transcoder and pch transcoder->pll
8583                          * mapping is fixed.
8584                          */
8585                         pll_id = (enum intel_dpll_id) crtc->pipe;
8586                 } else {
8587                         tmp = I915_READ(PCH_DPLL_SEL);
8588                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8589                                 pll_id = DPLL_ID_PCH_PLL_B;
8590                         else
8591                                 pll_id= DPLL_ID_PCH_PLL_A;
8592                 }
8593
8594                 pipe_config->shared_dpll =
8595                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
8596                 pll = pipe_config->shared_dpll;
8597
8598                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
8599                                                  &pipe_config->dpll_hw_state));
8600
8601                 tmp = pipe_config->dpll_hw_state.dpll;
8602                 pipe_config->pixel_multiplier =
8603                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8604                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8605
8606                 ironlake_pch_clock_get(crtc, pipe_config);
8607         } else {
8608                 pipe_config->pixel_multiplier = 1;
8609         }
8610
8611         intel_get_pipe_timings(crtc, pipe_config);
8612         intel_get_pipe_src_size(crtc, pipe_config);
8613
8614         ironlake_get_pfit_config(crtc, pipe_config);
8615
8616         ret = true;
8617
8618 out:
8619         intel_display_power_put(dev_priv, power_domain);
8620
8621         return ret;
8622 }
8623
8624 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8625 {
8626         struct drm_device *dev = &dev_priv->drm;
8627         struct intel_crtc *crtc;
8628
8629         for_each_intel_crtc(dev, crtc)
8630                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8631                      pipe_name(crtc->pipe));
8632
8633         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8634         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8635         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8636         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8637         I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
8638         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8639              "CPU PWM1 enabled\n");
8640         if (IS_HASWELL(dev_priv))
8641                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8642                      "CPU PWM2 enabled\n");
8643         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8644              "PCH PWM1 enabled\n");
8645         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8646              "Utility pin enabled\n");
8647         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8648
8649         /*
8650          * In theory we can still leave IRQs enabled, as long as only the HPD
8651          * interrupts remain enabled. We used to check for that, but since it's
8652          * gen-specific and since we only disable LCPLL after we fully disable
8653          * the interrupts, the check below should be enough.
8654          */
8655         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8656 }
8657
8658 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8659 {
8660         if (IS_HASWELL(dev_priv))
8661                 return I915_READ(D_COMP_HSW);
8662         else
8663                 return I915_READ(D_COMP_BDW);
8664 }
8665
8666 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8667 {
8668         if (IS_HASWELL(dev_priv)) {
8669                 mutex_lock(&dev_priv->rps.hw_lock);
8670                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8671                                             val))
8672                         DRM_DEBUG_KMS("Failed to write to D_COMP\n");
8673                 mutex_unlock(&dev_priv->rps.hw_lock);
8674         } else {
8675                 I915_WRITE(D_COMP_BDW, val);
8676                 POSTING_READ(D_COMP_BDW);
8677         }
8678 }
8679
8680 /*
8681  * This function implements pieces of two sequences from BSpec:
8682  * - Sequence for display software to disable LCPLL
8683  * - Sequence for display software to allow package C8+
8684  * The steps implemented here are just the steps that actually touch the LCPLL
8685  * register. Callers should take care of disabling all the display engine
8686  * functions, doing the mode unset, fixing interrupts, etc.
8687  */
8688 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8689                               bool switch_to_fclk, bool allow_power_down)
8690 {
8691         uint32_t val;
8692
8693         assert_can_disable_lcpll(dev_priv);
8694
8695         val = I915_READ(LCPLL_CTL);
8696
8697         if (switch_to_fclk) {
8698                 val |= LCPLL_CD_SOURCE_FCLK;
8699                 I915_WRITE(LCPLL_CTL, val);
8700
8701                 if (wait_for_us(I915_READ(LCPLL_CTL) &
8702                                 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8703                         DRM_ERROR("Switching to FCLK failed\n");
8704
8705                 val = I915_READ(LCPLL_CTL);
8706         }
8707
8708         val |= LCPLL_PLL_DISABLE;
8709         I915_WRITE(LCPLL_CTL, val);
8710         POSTING_READ(LCPLL_CTL);
8711
8712         if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
8713                 DRM_ERROR("LCPLL still locked\n");
8714
8715         val = hsw_read_dcomp(dev_priv);
8716         val |= D_COMP_COMP_DISABLE;
8717         hsw_write_dcomp(dev_priv, val);
8718         ndelay(100);
8719
8720         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8721                      1))
8722                 DRM_ERROR("D_COMP RCOMP still in progress\n");
8723
8724         if (allow_power_down) {
8725                 val = I915_READ(LCPLL_CTL);
8726                 val |= LCPLL_POWER_DOWN_ALLOW;
8727                 I915_WRITE(LCPLL_CTL, val);
8728                 POSTING_READ(LCPLL_CTL);
8729         }
8730 }
8731
8732 /*
8733  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8734  * source.
8735  */
8736 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8737 {
8738         uint32_t val;
8739
8740         val = I915_READ(LCPLL_CTL);
8741
8742         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8743                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8744                 return;
8745
8746         /*
8747          * Make sure we're not on PC8 state before disabling PC8, otherwise
8748          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8749          */
8750         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8751
8752         if (val & LCPLL_POWER_DOWN_ALLOW) {
8753                 val &= ~LCPLL_POWER_DOWN_ALLOW;
8754                 I915_WRITE(LCPLL_CTL, val);
8755                 POSTING_READ(LCPLL_CTL);
8756         }
8757
8758         val = hsw_read_dcomp(dev_priv);
8759         val |= D_COMP_COMP_FORCE;
8760         val &= ~D_COMP_COMP_DISABLE;
8761         hsw_write_dcomp(dev_priv, val);
8762
8763         val = I915_READ(LCPLL_CTL);
8764         val &= ~LCPLL_PLL_DISABLE;
8765         I915_WRITE(LCPLL_CTL, val);
8766
8767         if (intel_wait_for_register(dev_priv,
8768                                     LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
8769                                     5))
8770                 DRM_ERROR("LCPLL not locked yet\n");
8771
8772         if (val & LCPLL_CD_SOURCE_FCLK) {
8773                 val = I915_READ(LCPLL_CTL);
8774                 val &= ~LCPLL_CD_SOURCE_FCLK;
8775                 I915_WRITE(LCPLL_CTL, val);
8776
8777                 if (wait_for_us((I915_READ(LCPLL_CTL) &
8778                                  LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8779                         DRM_ERROR("Switching back to LCPLL failed\n");
8780         }
8781
8782         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8783         intel_update_cdclk(dev_priv);
8784 }
8785
8786 /*
8787  * Package states C8 and deeper are really deep PC states that can only be
8788  * reached when all the devices on the system allow it, so even if the graphics
8789  * device allows PC8+, it doesn't mean the system will actually get to these
8790  * states. Our driver only allows PC8+ when going into runtime PM.
8791  *
8792  * The requirements for PC8+ are that all the outputs are disabled, the power
8793  * well is disabled and most interrupts are disabled, and these are also
8794  * requirements for runtime PM. When these conditions are met, we manually do
8795  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8796  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8797  * hang the machine.
8798  *
8799  * When we really reach PC8 or deeper states (not just when we allow it) we lose
8800  * the state of some registers, so when we come back from PC8+ we need to
8801  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8802  * need to take care of the registers kept by RC6. Notice that this happens even
8803  * if we don't put the device in PCI D3 state (which is what currently happens
8804  * because of the runtime PM support).
8805  *
8806  * For more, read "Display Sequences for Package C8" on the hardware
8807  * documentation.
8808  */
8809 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8810 {
8811         uint32_t val;
8812
8813         DRM_DEBUG_KMS("Enabling package C8+\n");
8814
8815         if (HAS_PCH_LPT_LP(dev_priv)) {
8816                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8817                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8818                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8819         }
8820
8821         lpt_disable_clkout_dp(dev_priv);
8822         hsw_disable_lcpll(dev_priv, true, true);
8823 }
8824
8825 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8826 {
8827         uint32_t val;
8828
8829         DRM_DEBUG_KMS("Disabling package C8+\n");
8830
8831         hsw_restore_lcpll(dev_priv);
8832         lpt_init_pch_refclk(dev_priv);
8833
8834         if (HAS_PCH_LPT_LP(dev_priv)) {
8835                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8836                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8837                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8838         }
8839 }
8840
8841 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8842                                       struct intel_crtc_state *crtc_state)
8843 {
8844         if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
8845                 struct intel_encoder *encoder =
8846                         intel_ddi_get_crtc_new_encoder(crtc_state);
8847
8848                 if (!intel_get_shared_dpll(crtc, crtc_state, encoder)) {
8849                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8850                                          pipe_name(crtc->pipe));
8851                         return -EINVAL;
8852                 }
8853         }
8854
8855         crtc->lowfreq_avail = false;
8856
8857         return 0;
8858 }
8859
8860 static void cannonlake_get_ddi_pll(struct drm_i915_private *dev_priv,
8861                                    enum port port,
8862                                    struct intel_crtc_state *pipe_config)
8863 {
8864         enum intel_dpll_id id;
8865         u32 temp;
8866
8867         temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
8868         id = temp >> (port * 2);
8869
8870         if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2))
8871                 return;
8872
8873         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8874 }
8875
8876 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
8877                                 enum port port,
8878                                 struct intel_crtc_state *pipe_config)
8879 {
8880         enum intel_dpll_id id;
8881
8882         switch (port) {
8883         case PORT_A:
8884                 id = DPLL_ID_SKL_DPLL0;
8885                 break;
8886         case PORT_B:
8887                 id = DPLL_ID_SKL_DPLL1;
8888                 break;
8889         case PORT_C:
8890                 id = DPLL_ID_SKL_DPLL2;
8891                 break;
8892         default:
8893                 DRM_ERROR("Incorrect port type\n");
8894                 return;
8895         }
8896
8897         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8898 }
8899
8900 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8901                                 enum port port,
8902                                 struct intel_crtc_state *pipe_config)
8903 {
8904         enum intel_dpll_id id;
8905         u32 temp;
8906
8907         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8908         id = temp >> (port * 3 + 1);
8909
8910         if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
8911                 return;
8912
8913         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8914 }
8915
8916 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8917                                 enum port port,
8918                                 struct intel_crtc_state *pipe_config)
8919 {
8920         enum intel_dpll_id id;
8921         uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8922
8923         switch (ddi_pll_sel) {
8924         case PORT_CLK_SEL_WRPLL1:
8925                 id = DPLL_ID_WRPLL1;
8926                 break;
8927         case PORT_CLK_SEL_WRPLL2:
8928                 id = DPLL_ID_WRPLL2;
8929                 break;
8930         case PORT_CLK_SEL_SPLL:
8931                 id = DPLL_ID_SPLL;
8932                 break;
8933         case PORT_CLK_SEL_LCPLL_810:
8934                 id = DPLL_ID_LCPLL_810;
8935                 break;
8936         case PORT_CLK_SEL_LCPLL_1350:
8937                 id = DPLL_ID_LCPLL_1350;
8938                 break;
8939         case PORT_CLK_SEL_LCPLL_2700:
8940                 id = DPLL_ID_LCPLL_2700;
8941                 break;
8942         default:
8943                 MISSING_CASE(ddi_pll_sel);
8944                 /* fall through */
8945         case PORT_CLK_SEL_NONE:
8946                 return;
8947         }
8948
8949         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8950 }
8951
8952 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
8953                                      struct intel_crtc_state *pipe_config,
8954                                      u64 *power_domain_mask)
8955 {
8956         struct drm_device *dev = crtc->base.dev;
8957         struct drm_i915_private *dev_priv = to_i915(dev);
8958         enum intel_display_power_domain power_domain;
8959         u32 tmp;
8960
8961         /*
8962          * The pipe->transcoder mapping is fixed with the exception of the eDP
8963          * transcoder handled below.
8964          */
8965         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8966
8967         /*
8968          * XXX: Do intel_display_power_get_if_enabled before reading this (for
8969          * consistency and less surprising code; it's in always on power).
8970          */
8971         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8972         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8973                 enum pipe trans_edp_pipe;
8974                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8975                 default:
8976                         WARN(1, "unknown pipe linked to edp transcoder\n");
8977                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8978                 case TRANS_DDI_EDP_INPUT_A_ON:
8979                         trans_edp_pipe = PIPE_A;
8980                         break;
8981                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8982                         trans_edp_pipe = PIPE_B;
8983                         break;
8984                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8985                         trans_edp_pipe = PIPE_C;
8986                         break;
8987                 }
8988
8989                 if (trans_edp_pipe == crtc->pipe)
8990                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
8991         }
8992
8993         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
8994         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8995                 return false;
8996         *power_domain_mask |= BIT_ULL(power_domain);
8997
8998         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8999
9000         return tmp & PIPECONF_ENABLE;
9001 }
9002
9003 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9004                                          struct intel_crtc_state *pipe_config,
9005                                          u64 *power_domain_mask)
9006 {
9007         struct drm_device *dev = crtc->base.dev;
9008         struct drm_i915_private *dev_priv = to_i915(dev);
9009         enum intel_display_power_domain power_domain;
9010         enum port port;
9011         enum transcoder cpu_transcoder;
9012         u32 tmp;
9013
9014         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9015                 if (port == PORT_A)
9016                         cpu_transcoder = TRANSCODER_DSI_A;
9017                 else
9018                         cpu_transcoder = TRANSCODER_DSI_C;
9019
9020                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9021                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9022                         continue;
9023                 *power_domain_mask |= BIT_ULL(power_domain);
9024
9025                 /*
9026                  * The PLL needs to be enabled with a valid divider
9027                  * configuration, otherwise accessing DSI registers will hang
9028                  * the machine. See BSpec North Display Engine
9029                  * registers/MIPI[BXT]. We can break out here early, since we
9030                  * need the same DSI PLL to be enabled for both DSI ports.
9031                  */
9032                 if (!intel_dsi_pll_is_enabled(dev_priv))
9033                         break;
9034
9035                 /* XXX: this works for video mode only */
9036                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9037                 if (!(tmp & DPI_ENABLE))
9038                         continue;
9039
9040                 tmp = I915_READ(MIPI_CTRL(port));
9041                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9042                         continue;
9043
9044                 pipe_config->cpu_transcoder = cpu_transcoder;
9045                 break;
9046         }
9047
9048         return transcoder_is_dsi(pipe_config->cpu_transcoder);
9049 }
9050
9051 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9052                                        struct intel_crtc_state *pipe_config)
9053 {
9054         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9055         struct intel_shared_dpll *pll;
9056         enum port port;
9057         uint32_t tmp;
9058
9059         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9060
9061         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9062
9063         if (IS_CANNONLAKE(dev_priv))
9064                 cannonlake_get_ddi_pll(dev_priv, port, pipe_config);
9065         else if (IS_GEN9_BC(dev_priv))
9066                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9067         else if (IS_GEN9_LP(dev_priv))
9068                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9069         else
9070                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9071
9072         pll = pipe_config->shared_dpll;
9073         if (pll) {
9074                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9075                                                  &pipe_config->dpll_hw_state));
9076         }
9077
9078         /*
9079          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9080          * DDI E. So just check whether this pipe is wired to DDI E and whether
9081          * the PCH transcoder is on.
9082          */
9083         if (INTEL_GEN(dev_priv) < 9 &&
9084             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9085                 pipe_config->has_pch_encoder = true;
9086
9087                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9088                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9089                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9090
9091                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9092         }
9093 }
9094
9095 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9096                                     struct intel_crtc_state *pipe_config)
9097 {
9098         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9099         enum intel_display_power_domain power_domain;
9100         u64 power_domain_mask;
9101         bool active;
9102
9103         if (INTEL_GEN(dev_priv) >= 9) {
9104                 intel_crtc_init_scalers(crtc, pipe_config);
9105
9106                 pipe_config->scaler_state.scaler_id = -1;
9107                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9108         }
9109
9110         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9111         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9112                 return false;
9113         power_domain_mask = BIT_ULL(power_domain);
9114
9115         pipe_config->shared_dpll = NULL;
9116
9117         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9118
9119         if (IS_GEN9_LP(dev_priv) &&
9120             bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
9121                 WARN_ON(active);
9122                 active = true;
9123         }
9124
9125         if (!active)
9126                 goto out;
9127
9128         if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9129                 haswell_get_ddi_port_state(crtc, pipe_config);
9130                 intel_get_pipe_timings(crtc, pipe_config);
9131         }
9132
9133         intel_get_pipe_src_size(crtc, pipe_config);
9134
9135         pipe_config->gamma_mode =
9136                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
9137
9138         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9139         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9140                 power_domain_mask |= BIT_ULL(power_domain);
9141                 if (INTEL_GEN(dev_priv) >= 9)
9142                         skylake_get_pfit_config(crtc, pipe_config);
9143                 else
9144                         ironlake_get_pfit_config(crtc, pipe_config);
9145         }
9146
9147         if (IS_HASWELL(dev_priv))
9148                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9149                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9150
9151         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
9152             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9153                 pipe_config->pixel_multiplier =
9154                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9155         } else {
9156                 pipe_config->pixel_multiplier = 1;
9157         }
9158
9159 out:
9160         for_each_power_domain(power_domain, power_domain_mask)
9161                 intel_display_power_put(dev_priv, power_domain);
9162
9163         return active;
9164 }
9165
9166 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
9167 {
9168         struct drm_i915_private *dev_priv =
9169                 to_i915(plane_state->base.plane->dev);
9170         const struct drm_framebuffer *fb = plane_state->base.fb;
9171         const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9172         u32 base;
9173
9174         if (INTEL_INFO(dev_priv)->cursor_needs_physical)
9175                 base = obj->phys_handle->busaddr;
9176         else
9177                 base = intel_plane_ggtt_offset(plane_state);
9178
9179         base += plane_state->main.offset;
9180
9181         /* ILK+ do this automagically */
9182         if (HAS_GMCH_DISPLAY(dev_priv) &&
9183             plane_state->base.rotation & DRM_MODE_ROTATE_180)
9184                 base += (plane_state->base.crtc_h *
9185                          plane_state->base.crtc_w - 1) * fb->format->cpp[0];
9186
9187         return base;
9188 }
9189
9190 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
9191 {
9192         int x = plane_state->base.crtc_x;
9193         int y = plane_state->base.crtc_y;
9194         u32 pos = 0;
9195
9196         if (x < 0) {
9197                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9198                 x = -x;
9199         }
9200         pos |= x << CURSOR_X_SHIFT;
9201
9202         if (y < 0) {
9203                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9204                 y = -y;
9205         }
9206         pos |= y << CURSOR_Y_SHIFT;
9207
9208         return pos;
9209 }
9210
9211 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
9212 {
9213         const struct drm_mode_config *config =
9214                 &plane_state->base.plane->dev->mode_config;
9215         int width = plane_state->base.crtc_w;
9216         int height = plane_state->base.crtc_h;
9217
9218         return width > 0 && width <= config->cursor_width &&
9219                 height > 0 && height <= config->cursor_height;
9220 }
9221
9222 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
9223                               struct intel_plane_state *plane_state)
9224 {
9225         const struct drm_framebuffer *fb = plane_state->base.fb;
9226         int src_x, src_y;
9227         u32 offset;
9228         int ret;
9229
9230         ret = drm_plane_helper_check_state(&plane_state->base,
9231                                            &plane_state->clip,
9232                                            DRM_PLANE_HELPER_NO_SCALING,
9233                                            DRM_PLANE_HELPER_NO_SCALING,
9234                                            true, true);
9235         if (ret)
9236                 return ret;
9237
9238         if (!fb)
9239                 return 0;
9240
9241         if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
9242                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
9243                 return -EINVAL;
9244         }
9245
9246         src_x = plane_state->base.src_x >> 16;
9247         src_y = plane_state->base.src_y >> 16;
9248
9249         intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
9250         offset = intel_compute_tile_offset(&src_x, &src_y, plane_state, 0);
9251
9252         if (src_x != 0 || src_y != 0) {
9253                 DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n");
9254                 return -EINVAL;
9255         }
9256
9257         plane_state->main.offset = offset;
9258
9259         return 0;
9260 }
9261
9262 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
9263                            const struct intel_plane_state *plane_state)
9264 {
9265         const struct drm_framebuffer *fb = plane_state->base.fb;
9266
9267         return CURSOR_ENABLE |
9268                 CURSOR_GAMMA_ENABLE |
9269                 CURSOR_FORMAT_ARGB |
9270                 CURSOR_STRIDE(fb->pitches[0]);
9271 }
9272
9273 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
9274 {
9275         int width = plane_state->base.crtc_w;
9276
9277         /*
9278          * 845g/865g are only limited by the width of their cursors,
9279          * the height is arbitrary up to the precision of the register.
9280          */
9281         return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
9282 }
9283
9284 static int i845_check_cursor(struct intel_plane *plane,
9285                              struct intel_crtc_state *crtc_state,
9286                              struct intel_plane_state *plane_state)
9287 {
9288         const struct drm_framebuffer *fb = plane_state->base.fb;
9289         int ret;
9290
9291         ret = intel_check_cursor(crtc_state, plane_state);
9292         if (ret)
9293                 return ret;
9294
9295         /* if we want to turn off the cursor ignore width and height */
9296         if (!fb)
9297                 return 0;
9298
9299         /* Check for which cursor types we support */
9300         if (!i845_cursor_size_ok(plane_state)) {
9301                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9302                           plane_state->base.crtc_w,
9303                           plane_state->base.crtc_h);
9304                 return -EINVAL;
9305         }
9306
9307         switch (fb->pitches[0]) {
9308         case 256:
9309         case 512:
9310         case 1024:
9311         case 2048:
9312                 break;
9313         default:
9314                 DRM_DEBUG_KMS("Invalid cursor stride (%u)\n",
9315                               fb->pitches[0]);
9316                 return -EINVAL;
9317         }
9318
9319         plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
9320
9321         return 0;
9322 }
9323
9324 static void i845_update_cursor(struct intel_plane *plane,
9325                                const struct intel_crtc_state *crtc_state,
9326                                const struct intel_plane_state *plane_state)
9327 {
9328         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9329         u32 cntl = 0, base = 0, pos = 0, size = 0;
9330         unsigned long irqflags;
9331
9332         if (plane_state && plane_state->base.visible) {
9333                 unsigned int width = plane_state->base.crtc_w;
9334                 unsigned int height = plane_state->base.crtc_h;
9335
9336                 cntl = plane_state->ctl;
9337                 size = (height << 12) | width;
9338
9339                 base = intel_cursor_base(plane_state);
9340                 pos = intel_cursor_position(plane_state);
9341         }
9342
9343         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9344
9345         /* On these chipsets we can only modify the base/size/stride
9346          * whilst the cursor is disabled.
9347          */
9348         if (plane->cursor.base != base ||
9349             plane->cursor.size != size ||
9350             plane->cursor.cntl != cntl) {
9351                 I915_WRITE_FW(CURCNTR(PIPE_A), 0);
9352                 I915_WRITE_FW(CURBASE(PIPE_A), base);
9353                 I915_WRITE_FW(CURSIZE, size);
9354                 I915_WRITE_FW(CURPOS(PIPE_A), pos);
9355                 I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
9356
9357                 plane->cursor.base = base;
9358                 plane->cursor.size = size;
9359                 plane->cursor.cntl = cntl;
9360         } else {
9361                 I915_WRITE_FW(CURPOS(PIPE_A), pos);
9362         }
9363
9364         POSTING_READ_FW(CURCNTR(PIPE_A));
9365
9366         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9367 }
9368
9369 static void i845_disable_cursor(struct intel_plane *plane,
9370                                 struct intel_crtc *crtc)
9371 {
9372         i845_update_cursor(plane, NULL, NULL);
9373 }
9374
9375 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
9376                            const struct intel_plane_state *plane_state)
9377 {
9378         struct drm_i915_private *dev_priv =
9379                 to_i915(plane_state->base.plane->dev);
9380         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9381         u32 cntl;
9382
9383         cntl = MCURSOR_GAMMA_ENABLE;
9384
9385         if (HAS_DDI(dev_priv))
9386                 cntl |= CURSOR_PIPE_CSC_ENABLE;
9387
9388         cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
9389
9390         switch (plane_state->base.crtc_w) {
9391         case 64:
9392                 cntl |= CURSOR_MODE_64_ARGB_AX;
9393                 break;
9394         case 128:
9395                 cntl |= CURSOR_MODE_128_ARGB_AX;
9396                 break;
9397         case 256:
9398                 cntl |= CURSOR_MODE_256_ARGB_AX;
9399                 break;
9400         default:
9401                 MISSING_CASE(plane_state->base.crtc_w);
9402                 return 0;
9403         }
9404
9405         if (plane_state->base.rotation & DRM_MODE_ROTATE_180)
9406                 cntl |= CURSOR_ROTATE_180;
9407
9408         return cntl;
9409 }
9410
9411 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
9412 {
9413         struct drm_i915_private *dev_priv =
9414                 to_i915(plane_state->base.plane->dev);
9415         int width = plane_state->base.crtc_w;
9416         int height = plane_state->base.crtc_h;
9417
9418         if (!intel_cursor_size_ok(plane_state))
9419                 return false;
9420
9421         /* Cursor width is limited to a few power-of-two sizes */
9422         switch (width) {
9423         case 256:
9424         case 128:
9425         case 64:
9426                 break;
9427         default:
9428                 return false;
9429         }
9430
9431         /*
9432          * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
9433          * height from 8 lines up to the cursor width, when the
9434          * cursor is not rotated. Everything else requires square
9435          * cursors.
9436          */
9437         if (HAS_CUR_FBC(dev_priv) &&
9438             plane_state->base.rotation & DRM_MODE_ROTATE_0) {
9439                 if (height < 8 || height > width)
9440                         return false;
9441         } else {
9442                 if (height != width)
9443                         return false;
9444         }
9445
9446         return true;
9447 }
9448
9449 static int i9xx_check_cursor(struct intel_plane *plane,
9450                              struct intel_crtc_state *crtc_state,
9451                              struct intel_plane_state *plane_state)
9452 {
9453         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9454         const struct drm_framebuffer *fb = plane_state->base.fb;
9455         enum pipe pipe = plane->pipe;
9456         int ret;
9457
9458         ret = intel_check_cursor(crtc_state, plane_state);
9459         if (ret)
9460                 return ret;
9461
9462         /* if we want to turn off the cursor ignore width and height */
9463         if (!fb)
9464                 return 0;
9465
9466         /* Check for which cursor types we support */
9467         if (!i9xx_cursor_size_ok(plane_state)) {
9468                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9469                           plane_state->base.crtc_w,
9470                           plane_state->base.crtc_h);
9471                 return -EINVAL;
9472         }
9473
9474         if (fb->pitches[0] != plane_state->base.crtc_w * fb->format->cpp[0]) {
9475                 DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n",
9476                               fb->pitches[0], plane_state->base.crtc_w);
9477                 return -EINVAL;
9478         }
9479
9480         /*
9481          * There's something wrong with the cursor on CHV pipe C.
9482          * If it straddles the left edge of the screen then
9483          * moving it away from the edge or disabling it often
9484          * results in a pipe underrun, and often that can lead to
9485          * dead pipe (constant underrun reported, and it scans
9486          * out just a solid color). To recover from that, the
9487          * display power well must be turned off and on again.
9488          * Refuse the put the cursor into that compromised position.
9489          */
9490         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
9491             plane_state->base.visible && plane_state->base.crtc_x < 0) {
9492                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
9493                 return -EINVAL;
9494         }
9495
9496         plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
9497
9498         return 0;
9499 }
9500
9501 static void i9xx_update_cursor(struct intel_plane *plane,
9502                                const struct intel_crtc_state *crtc_state,
9503                                const struct intel_plane_state *plane_state)
9504 {
9505         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9506         enum pipe pipe = plane->pipe;
9507         u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
9508         unsigned long irqflags;
9509
9510         if (plane_state && plane_state->base.visible) {
9511                 cntl = plane_state->ctl;
9512
9513                 if (plane_state->base.crtc_h != plane_state->base.crtc_w)
9514                         fbc_ctl = CUR_FBC_CTL_EN | (plane_state->base.crtc_h - 1);
9515
9516                 base = intel_cursor_base(plane_state);
9517                 pos = intel_cursor_position(plane_state);
9518         }
9519
9520         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9521
9522         /*
9523          * On some platforms writing CURCNTR first will also
9524          * cause CURPOS to be armed by the CURBASE write.
9525          * Without the CURCNTR write the CURPOS write would
9526          * arm itself. Thus we always start the full update
9527          * with a CURCNTR write.
9528          *
9529          * On other platforms CURPOS always requires the
9530          * CURBASE write to arm the update. Additonally
9531          * a write to any of the cursor register will cancel
9532          * an already armed cursor update. Thus leaving out
9533          * the CURBASE write after CURPOS could lead to a
9534          * cursor that doesn't appear to move, or even change
9535          * shape. Thus we always write CURBASE.
9536          *
9537          * CURCNTR and CUR_FBC_CTL are always
9538          * armed by the CURBASE write only.
9539          */
9540         if (plane->cursor.base != base ||
9541             plane->cursor.size != fbc_ctl ||
9542             plane->cursor.cntl != cntl) {
9543                 I915_WRITE_FW(CURCNTR(pipe), cntl);
9544                 if (HAS_CUR_FBC(dev_priv))
9545                         I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl);
9546                 I915_WRITE_FW(CURPOS(pipe), pos);
9547                 I915_WRITE_FW(CURBASE(pipe), base);
9548
9549                 plane->cursor.base = base;
9550                 plane->cursor.size = fbc_ctl;
9551                 plane->cursor.cntl = cntl;
9552         } else {
9553                 I915_WRITE_FW(CURPOS(pipe), pos);
9554                 I915_WRITE_FW(CURBASE(pipe), base);
9555         }
9556
9557         POSTING_READ_FW(CURBASE(pipe));
9558
9559         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9560 }
9561
9562 static void i9xx_disable_cursor(struct intel_plane *plane,
9563                                 struct intel_crtc *crtc)
9564 {
9565         i9xx_update_cursor(plane, NULL, NULL);
9566 }
9567
9568
9569 /* VESA 640x480x72Hz mode to set on the pipe */
9570 static struct drm_display_mode load_detect_mode = {
9571         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9572                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9573 };
9574
9575 struct drm_framebuffer *
9576 intel_framebuffer_create(struct drm_i915_gem_object *obj,
9577                          struct drm_mode_fb_cmd2 *mode_cmd)
9578 {
9579         struct intel_framebuffer *intel_fb;
9580         int ret;
9581
9582         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9583         if (!intel_fb)
9584                 return ERR_PTR(-ENOMEM);
9585
9586         ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
9587         if (ret)
9588                 goto err;
9589
9590         return &intel_fb->base;
9591
9592 err:
9593         kfree(intel_fb);
9594         return ERR_PTR(ret);
9595 }
9596
9597 static u32
9598 intel_framebuffer_pitch_for_width(int width, int bpp)
9599 {
9600         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9601         return ALIGN(pitch, 64);
9602 }
9603
9604 static u32
9605 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9606 {
9607         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9608         return PAGE_ALIGN(pitch * mode->vdisplay);
9609 }
9610
9611 static struct drm_framebuffer *
9612 intel_framebuffer_create_for_mode(struct drm_device *dev,
9613                                   struct drm_display_mode *mode,
9614                                   int depth, int bpp)
9615 {
9616         struct drm_framebuffer *fb;
9617         struct drm_i915_gem_object *obj;
9618         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9619
9620         obj = i915_gem_object_create(to_i915(dev),
9621                                     intel_framebuffer_size_for_mode(mode, bpp));
9622         if (IS_ERR(obj))
9623                 return ERR_CAST(obj);
9624
9625         mode_cmd.width = mode->hdisplay;
9626         mode_cmd.height = mode->vdisplay;
9627         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9628                                                                 bpp);
9629         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9630
9631         fb = intel_framebuffer_create(obj, &mode_cmd);
9632         if (IS_ERR(fb))
9633                 i915_gem_object_put(obj);
9634
9635         return fb;
9636 }
9637
9638 static struct drm_framebuffer *
9639 mode_fits_in_fbdev(struct drm_device *dev,
9640                    struct drm_display_mode *mode)
9641 {
9642 #ifdef CONFIG_DRM_FBDEV_EMULATION
9643         struct drm_i915_private *dev_priv = to_i915(dev);
9644         struct drm_i915_gem_object *obj;
9645         struct drm_framebuffer *fb;
9646
9647         if (!dev_priv->fbdev)
9648                 return NULL;
9649
9650         if (!dev_priv->fbdev->fb)
9651                 return NULL;
9652
9653         obj = dev_priv->fbdev->fb->obj;
9654         BUG_ON(!obj);
9655
9656         fb = &dev_priv->fbdev->fb->base;
9657         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9658                                                                fb->format->cpp[0] * 8))
9659                 return NULL;
9660
9661         if (obj->base.size < mode->vdisplay * fb->pitches[0])
9662                 return NULL;
9663
9664         drm_framebuffer_reference(fb);
9665         return fb;
9666 #else
9667         return NULL;
9668 #endif
9669 }
9670
9671 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9672                                            struct drm_crtc *crtc,
9673                                            struct drm_display_mode *mode,
9674                                            struct drm_framebuffer *fb,
9675                                            int x, int y)
9676 {
9677         struct drm_plane_state *plane_state;
9678         int hdisplay, vdisplay;
9679         int ret;
9680
9681         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9682         if (IS_ERR(plane_state))
9683                 return PTR_ERR(plane_state);
9684
9685         if (mode)
9686                 drm_mode_get_hv_timing(mode, &hdisplay, &vdisplay);
9687         else
9688                 hdisplay = vdisplay = 0;
9689
9690         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9691         if (ret)
9692                 return ret;
9693         drm_atomic_set_fb_for_plane(plane_state, fb);
9694         plane_state->crtc_x = 0;
9695         plane_state->crtc_y = 0;
9696         plane_state->crtc_w = hdisplay;
9697         plane_state->crtc_h = vdisplay;
9698         plane_state->src_x = x << 16;
9699         plane_state->src_y = y << 16;
9700         plane_state->src_w = hdisplay << 16;
9701         plane_state->src_h = vdisplay << 16;
9702
9703         return 0;
9704 }
9705
9706 int intel_get_load_detect_pipe(struct drm_connector *connector,
9707                                struct drm_display_mode *mode,
9708                                struct intel_load_detect_pipe *old,
9709                                struct drm_modeset_acquire_ctx *ctx)
9710 {
9711         struct intel_crtc *intel_crtc;
9712         struct intel_encoder *intel_encoder =
9713                 intel_attached_encoder(connector);
9714         struct drm_crtc *possible_crtc;
9715         struct drm_encoder *encoder = &intel_encoder->base;
9716         struct drm_crtc *crtc = NULL;
9717         struct drm_device *dev = encoder->dev;
9718         struct drm_i915_private *dev_priv = to_i915(dev);
9719         struct drm_framebuffer *fb;
9720         struct drm_mode_config *config = &dev->mode_config;
9721         struct drm_atomic_state *state = NULL, *restore_state = NULL;
9722         struct drm_connector_state *connector_state;
9723         struct intel_crtc_state *crtc_state;
9724         int ret, i = -1;
9725
9726         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9727                       connector->base.id, connector->name,
9728                       encoder->base.id, encoder->name);
9729
9730         old->restore_state = NULL;
9731
9732         WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
9733
9734         /*
9735          * Algorithm gets a little messy:
9736          *
9737          *   - if the connector already has an assigned crtc, use it (but make
9738          *     sure it's on first)
9739          *
9740          *   - try to find the first unused crtc that can drive this connector,
9741          *     and use that if we find one
9742          */
9743
9744         /* See if we already have a CRTC for this connector */
9745         if (connector->state->crtc) {
9746                 crtc = connector->state->crtc;
9747
9748                 ret = drm_modeset_lock(&crtc->mutex, ctx);
9749                 if (ret)
9750                         goto fail;
9751
9752                 /* Make sure the crtc and connector are running */
9753                 goto found;
9754         }
9755
9756         /* Find an unused one (if possible) */
9757         for_each_crtc(dev, possible_crtc) {
9758                 i++;
9759                 if (!(encoder->possible_crtcs & (1 << i)))
9760                         continue;
9761
9762                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
9763                 if (ret)
9764                         goto fail;
9765
9766                 if (possible_crtc->state->enable) {
9767                         drm_modeset_unlock(&possible_crtc->mutex);
9768                         continue;
9769                 }
9770
9771                 crtc = possible_crtc;
9772                 break;
9773         }
9774
9775         /*
9776          * If we didn't find an unused CRTC, don't use any.
9777          */
9778         if (!crtc) {
9779                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9780                 ret = -ENODEV;
9781                 goto fail;
9782         }
9783
9784 found:
9785         intel_crtc = to_intel_crtc(crtc);
9786
9787         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9788         if (ret)
9789                 goto fail;
9790
9791         state = drm_atomic_state_alloc(dev);
9792         restore_state = drm_atomic_state_alloc(dev);
9793         if (!state || !restore_state) {
9794                 ret = -ENOMEM;
9795                 goto fail;
9796         }
9797
9798         state->acquire_ctx = ctx;
9799         restore_state->acquire_ctx = ctx;
9800
9801         connector_state = drm_atomic_get_connector_state(state, connector);
9802         if (IS_ERR(connector_state)) {
9803                 ret = PTR_ERR(connector_state);
9804                 goto fail;
9805         }
9806
9807         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
9808         if (ret)
9809                 goto fail;
9810
9811         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9812         if (IS_ERR(crtc_state)) {
9813                 ret = PTR_ERR(crtc_state);
9814                 goto fail;
9815         }
9816
9817         crtc_state->base.active = crtc_state->base.enable = true;
9818
9819         if (!mode)
9820                 mode = &load_detect_mode;
9821
9822         /* We need a framebuffer large enough to accommodate all accesses
9823          * that the plane may generate whilst we perform load detection.
9824          * We can not rely on the fbcon either being present (we get called
9825          * during its initialisation to detect all boot displays, or it may
9826          * not even exist) or that it is large enough to satisfy the
9827          * requested mode.
9828          */
9829         fb = mode_fits_in_fbdev(dev, mode);
9830         if (fb == NULL) {
9831                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9832                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9833         } else
9834                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9835         if (IS_ERR(fb)) {
9836                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9837                 ret = PTR_ERR(fb);
9838                 goto fail;
9839         }
9840
9841         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
9842         if (ret)
9843                 goto fail;
9844
9845         drm_framebuffer_unreference(fb);
9846
9847         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
9848         if (ret)
9849                 goto fail;
9850
9851         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
9852         if (!ret)
9853                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
9854         if (!ret)
9855                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
9856         if (ret) {
9857                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
9858                 goto fail;
9859         }
9860
9861         ret = drm_atomic_commit(state);
9862         if (ret) {
9863                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9864                 goto fail;
9865         }
9866
9867         old->restore_state = restore_state;
9868         drm_atomic_state_put(state);
9869
9870         /* let the connector get through one full cycle before testing */
9871         intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
9872         return true;
9873
9874 fail:
9875         if (state) {
9876                 drm_atomic_state_put(state);
9877                 state = NULL;
9878         }
9879         if (restore_state) {
9880                 drm_atomic_state_put(restore_state);
9881                 restore_state = NULL;
9882         }
9883
9884         if (ret == -EDEADLK)
9885                 return ret;
9886
9887         return false;
9888 }
9889
9890 void intel_release_load_detect_pipe(struct drm_connector *connector,
9891                                     struct intel_load_detect_pipe *old,
9892                                     struct drm_modeset_acquire_ctx *ctx)
9893 {
9894         struct intel_encoder *intel_encoder =
9895                 intel_attached_encoder(connector);
9896         struct drm_encoder *encoder = &intel_encoder->base;
9897         struct drm_atomic_state *state = old->restore_state;
9898         int ret;
9899
9900         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9901                       connector->base.id, connector->name,
9902                       encoder->base.id, encoder->name);
9903
9904         if (!state)
9905                 return;
9906
9907         ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
9908         if (ret)
9909                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
9910         drm_atomic_state_put(state);
9911 }
9912
9913 static int i9xx_pll_refclk(struct drm_device *dev,
9914                            const struct intel_crtc_state *pipe_config)
9915 {
9916         struct drm_i915_private *dev_priv = to_i915(dev);
9917         u32 dpll = pipe_config->dpll_hw_state.dpll;
9918
9919         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9920                 return dev_priv->vbt.lvds_ssc_freq;
9921         else if (HAS_PCH_SPLIT(dev_priv))
9922                 return 120000;
9923         else if (!IS_GEN2(dev_priv))
9924                 return 96000;
9925         else
9926                 return 48000;
9927 }
9928
9929 /* Returns the clock of the currently programmed mode of the given pipe. */
9930 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9931                                 struct intel_crtc_state *pipe_config)
9932 {
9933         struct drm_device *dev = crtc->base.dev;
9934         struct drm_i915_private *dev_priv = to_i915(dev);
9935         int pipe = pipe_config->cpu_transcoder;
9936         u32 dpll = pipe_config->dpll_hw_state.dpll;
9937         u32 fp;
9938         struct dpll clock;
9939         int port_clock;
9940         int refclk = i9xx_pll_refclk(dev, pipe_config);
9941
9942         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9943                 fp = pipe_config->dpll_hw_state.fp0;
9944         else
9945                 fp = pipe_config->dpll_hw_state.fp1;
9946
9947         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9948         if (IS_PINEVIEW(dev_priv)) {
9949                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9950                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9951         } else {
9952                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9953                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9954         }
9955
9956         if (!IS_GEN2(dev_priv)) {
9957                 if (IS_PINEVIEW(dev_priv))
9958                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9959                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9960                 else
9961                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9962                                DPLL_FPA01_P1_POST_DIV_SHIFT);
9963
9964                 switch (dpll & DPLL_MODE_MASK) {
9965                 case DPLLB_MODE_DAC_SERIAL:
9966                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9967                                 5 : 10;
9968                         break;
9969                 case DPLLB_MODE_LVDS:
9970                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9971                                 7 : 14;
9972                         break;
9973                 default:
9974                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9975                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
9976                         return;
9977                 }
9978
9979                 if (IS_PINEVIEW(dev_priv))
9980                         port_clock = pnv_calc_dpll_params(refclk, &clock);
9981                 else
9982                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
9983         } else {
9984                 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
9985                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9986
9987                 if (is_lvds) {
9988                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9989                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
9990
9991                         if (lvds & LVDS_CLKB_POWER_UP)
9992                                 clock.p2 = 7;
9993                         else
9994                                 clock.p2 = 14;
9995                 } else {
9996                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
9997                                 clock.p1 = 2;
9998                         else {
9999                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10000                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10001                         }
10002                         if (dpll & PLL_P2_DIVIDE_BY_4)
10003                                 clock.p2 = 4;
10004                         else
10005                                 clock.p2 = 2;
10006                 }
10007
10008                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10009         }
10010
10011         /*
10012          * This value includes pixel_multiplier. We will use
10013          * port_clock to compute adjusted_mode.crtc_clock in the
10014          * encoder's get_config() function.
10015          */
10016         pipe_config->port_clock = port_clock;
10017 }
10018
10019 int intel_dotclock_calculate(int link_freq,
10020                              const struct intel_link_m_n *m_n)
10021 {
10022         /*
10023          * The calculation for the data clock is:
10024          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10025          * But we want to avoid losing precison if possible, so:
10026          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10027          *
10028          * and the link clock is simpler:
10029          * link_clock = (m * link_clock) / n
10030          */
10031
10032         if (!m_n->link_n)
10033                 return 0;
10034
10035         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10036 }
10037
10038 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10039                                    struct intel_crtc_state *pipe_config)
10040 {
10041         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10042
10043         /* read out port_clock from the DPLL */
10044         i9xx_crtc_clock_get(crtc, pipe_config);
10045
10046         /*
10047          * In case there is an active pipe without active ports,
10048          * we may need some idea for the dotclock anyway.
10049          * Calculate one based on the FDI configuration.
10050          */
10051         pipe_config->base.adjusted_mode.crtc_clock =
10052                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10053                                          &pipe_config->fdi_m_n);
10054 }
10055
10056 /** Returns the currently programmed mode of the given pipe. */
10057 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10058                                              struct drm_crtc *crtc)
10059 {
10060         struct drm_i915_private *dev_priv = to_i915(dev);
10061         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10062         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10063         struct drm_display_mode *mode;
10064         struct intel_crtc_state *pipe_config;
10065         int htot = I915_READ(HTOTAL(cpu_transcoder));
10066         int hsync = I915_READ(HSYNC(cpu_transcoder));
10067         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10068         int vsync = I915_READ(VSYNC(cpu_transcoder));
10069         enum pipe pipe = intel_crtc->pipe;
10070
10071         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10072         if (!mode)
10073                 return NULL;
10074
10075         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10076         if (!pipe_config) {
10077                 kfree(mode);
10078                 return NULL;
10079         }
10080
10081         /*
10082          * Construct a pipe_config sufficient for getting the clock info
10083          * back out of crtc_clock_get.
10084          *
10085          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10086          * to use a real value here instead.
10087          */
10088         pipe_config->cpu_transcoder = (enum transcoder) pipe;
10089         pipe_config->pixel_multiplier = 1;
10090         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10091         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10092         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10093         i9xx_crtc_clock_get(intel_crtc, pipe_config);
10094
10095         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10096         mode->hdisplay = (htot & 0xffff) + 1;
10097         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10098         mode->hsync_start = (hsync & 0xffff) + 1;
10099         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10100         mode->vdisplay = (vtot & 0xffff) + 1;
10101         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10102         mode->vsync_start = (vsync & 0xffff) + 1;
10103         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10104
10105         drm_mode_set_name(mode);
10106
10107         kfree(pipe_config);
10108
10109         return mode;
10110 }
10111
10112 static void intel_crtc_destroy(struct drm_crtc *crtc)
10113 {
10114         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10115         struct drm_device *dev = crtc->dev;
10116         struct intel_flip_work *work;
10117
10118         spin_lock_irq(&dev->event_lock);
10119         work = intel_crtc->flip_work;
10120         intel_crtc->flip_work = NULL;
10121         spin_unlock_irq(&dev->event_lock);
10122
10123         if (work) {
10124                 cancel_work_sync(&work->mmio_work);
10125                 cancel_work_sync(&work->unpin_work);
10126                 kfree(work);
10127         }
10128
10129         drm_crtc_cleanup(crtc);
10130
10131         kfree(intel_crtc);
10132 }
10133
10134 static void intel_unpin_work_fn(struct work_struct *__work)
10135 {
10136         struct intel_flip_work *work =
10137                 container_of(__work, struct intel_flip_work, unpin_work);
10138         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10139         struct drm_device *dev = crtc->base.dev;
10140         struct drm_plane *primary = crtc->base.primary;
10141
10142         if (is_mmio_work(work))
10143                 flush_work(&work->mmio_work);
10144
10145         mutex_lock(&dev->struct_mutex);
10146         intel_unpin_fb_vma(work->old_vma);
10147         i915_gem_object_put(work->pending_flip_obj);
10148         mutex_unlock(&dev->struct_mutex);
10149
10150         i915_gem_request_put(work->flip_queued_req);
10151
10152         intel_frontbuffer_flip_complete(to_i915(dev),
10153                                         to_intel_plane(primary)->frontbuffer_bit);
10154         intel_fbc_post_update(crtc);
10155         drm_framebuffer_unreference(work->old_fb);
10156
10157         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10158         atomic_dec(&crtc->unpin_work_count);
10159
10160         kfree(work);
10161 }
10162
10163 /* Is 'a' after or equal to 'b'? */
10164 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10165 {
10166         return !((a - b) & 0x80000000);
10167 }
10168
10169 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
10170                                    struct intel_flip_work *work)
10171 {
10172         struct drm_device *dev = crtc->base.dev;
10173         struct drm_i915_private *dev_priv = to_i915(dev);
10174
10175         if (abort_flip_on_reset(crtc))
10176                 return true;
10177
10178         /*
10179          * The relevant registers doen't exist on pre-ctg.
10180          * As the flip done interrupt doesn't trigger for mmio
10181          * flips on gmch platforms, a flip count check isn't
10182          * really needed there. But since ctg has the registers,
10183          * include it in the check anyway.
10184          */
10185         if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
10186                 return true;
10187
10188         /*
10189          * BDW signals flip done immediately if the plane
10190          * is disabled, even if the plane enable is already
10191          * armed to occur at the next vblank :(
10192          */
10193
10194         /*
10195          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10196          * used the same base address. In that case the mmio flip might
10197          * have completed, but the CS hasn't even executed the flip yet.
10198          *
10199          * A flip count check isn't enough as the CS might have updated
10200          * the base address just after start of vblank, but before we
10201          * managed to process the interrupt. This means we'd complete the
10202          * CS flip too soon.
10203          *
10204          * Combining both checks should get us a good enough result. It may
10205          * still happen that the CS flip has been executed, but has not
10206          * yet actually completed. But in case the base address is the same
10207          * anyway, we don't really care.
10208          */
10209         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10210                 crtc->flip_work->gtt_offset &&
10211                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10212                                     crtc->flip_work->flip_count);
10213 }
10214
10215 static bool
10216 __pageflip_finished_mmio(struct intel_crtc *crtc,
10217                                struct intel_flip_work *work)
10218 {
10219         /*
10220          * MMIO work completes when vblank is different from
10221          * flip_queued_vblank.
10222          *
10223          * Reset counter value doesn't matter, this is handled by
10224          * i915_wait_request finishing early, so no need to handle
10225          * reset here.
10226          */
10227         return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
10228 }
10229
10230
10231 static bool pageflip_finished(struct intel_crtc *crtc,
10232                               struct intel_flip_work *work)
10233 {
10234         if (!atomic_read(&work->pending))
10235                 return false;
10236
10237         smp_rmb();
10238
10239         if (is_mmio_work(work))
10240                 return __pageflip_finished_mmio(crtc, work);
10241         else
10242                 return __pageflip_finished_cs(crtc, work);
10243 }
10244
10245 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
10246 {
10247         struct drm_device *dev = &dev_priv->drm;
10248         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10249         struct intel_flip_work *work;
10250         unsigned long flags;
10251
10252         /* Ignore early vblank irqs */
10253         if (!crtc)
10254                 return;
10255
10256         /*
10257          * This is called both by irq handlers and the reset code (to complete
10258          * lost pageflips) so needs the full irqsave spinlocks.
10259          */
10260         spin_lock_irqsave(&dev->event_lock, flags);
10261         work = crtc->flip_work;
10262
10263         if (work != NULL &&
10264             !is_mmio_work(work) &&
10265             pageflip_finished(crtc, work))
10266                 page_flip_completed(crtc);
10267
10268         spin_unlock_irqrestore(&dev->event_lock, flags);
10269 }
10270
10271 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
10272 {
10273         struct drm_device *dev = &dev_priv->drm;
10274         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10275         struct intel_flip_work *work;
10276         unsigned long flags;
10277
10278         /* Ignore early vblank irqs */
10279         if (!crtc)
10280                 return;
10281
10282         /*
10283          * This is called both by irq handlers and the reset code (to complete
10284          * lost pageflips) so needs the full irqsave spinlocks.
10285          */
10286         spin_lock_irqsave(&dev->event_lock, flags);
10287         work = crtc->flip_work;
10288
10289         if (work != NULL &&
10290             is_mmio_work(work) &&
10291             pageflip_finished(crtc, work))
10292                 page_flip_completed(crtc);
10293
10294         spin_unlock_irqrestore(&dev->event_lock, flags);
10295 }
10296
10297 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
10298                                                struct intel_flip_work *work)
10299 {
10300         work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
10301
10302         /* Ensure that the work item is consistent when activating it ... */
10303         smp_mb__before_atomic();
10304         atomic_set(&work->pending, 1);
10305 }
10306
10307 static int intel_gen2_queue_flip(struct drm_device *dev,
10308                                  struct drm_crtc *crtc,
10309                                  struct drm_framebuffer *fb,
10310                                  struct drm_i915_gem_object *obj,
10311                                  struct drm_i915_gem_request *req,
10312                                  uint32_t flags)
10313 {
10314         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10315         u32 flip_mask, *cs;
10316
10317         cs = intel_ring_begin(req, 6);
10318         if (IS_ERR(cs))
10319                 return PTR_ERR(cs);
10320
10321         /* Can't queue multiple flips, so wait for the previous
10322          * one to finish before executing the next.
10323          */
10324         if (intel_crtc->plane)
10325                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10326         else
10327                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10328         *cs++ = MI_WAIT_FOR_EVENT | flip_mask;
10329         *cs++ = MI_NOOP;
10330         *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10331         *cs++ = fb->pitches[0];
10332         *cs++ = intel_crtc->flip_work->gtt_offset;
10333         *cs++ = 0; /* aux display base address, unused */
10334
10335         return 0;
10336 }
10337
10338 static int intel_gen3_queue_flip(struct drm_device *dev,
10339                                  struct drm_crtc *crtc,
10340                                  struct drm_framebuffer *fb,
10341                                  struct drm_i915_gem_object *obj,
10342                                  struct drm_i915_gem_request *req,
10343                                  uint32_t flags)
10344 {
10345         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10346         u32 flip_mask, *cs;
10347
10348         cs = intel_ring_begin(req, 6);
10349         if (IS_ERR(cs))
10350                 return PTR_ERR(cs);
10351
10352         if (intel_crtc->plane)
10353                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10354         else
10355                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10356         *cs++ = MI_WAIT_FOR_EVENT | flip_mask;
10357         *cs++ = MI_NOOP;
10358         *cs++ = MI_DISPLAY_FLIP_I915 | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10359         *cs++ = fb->pitches[0];
10360         *cs++ = intel_crtc->flip_work->gtt_offset;
10361         *cs++ = MI_NOOP;
10362
10363         return 0;
10364 }
10365
10366 static int intel_gen4_queue_flip(struct drm_device *dev,
10367                                  struct drm_crtc *crtc,
10368                                  struct drm_framebuffer *fb,
10369                                  struct drm_i915_gem_object *obj,
10370                                  struct drm_i915_gem_request *req,
10371                                  uint32_t flags)
10372 {
10373         struct drm_i915_private *dev_priv = to_i915(dev);
10374         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10375         u32 pf, pipesrc, *cs;
10376
10377         cs = intel_ring_begin(req, 4);
10378         if (IS_ERR(cs))
10379                 return PTR_ERR(cs);
10380
10381         /* i965+ uses the linear or tiled offsets from the
10382          * Display Registers (which do not change across a page-flip)
10383          * so we need only reprogram the base address.
10384          */
10385         *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10386         *cs++ = fb->pitches[0];
10387         *cs++ = intel_crtc->flip_work->gtt_offset |
10388                 intel_fb_modifier_to_tiling(fb->modifier);
10389
10390         /* XXX Enabling the panel-fitter across page-flip is so far
10391          * untested on non-native modes, so ignore it for now.
10392          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10393          */
10394         pf = 0;
10395         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10396         *cs++ = pf | pipesrc;
10397
10398         return 0;
10399 }
10400
10401 static int intel_gen6_queue_flip(struct drm_device *dev,
10402                                  struct drm_crtc *crtc,
10403                                  struct drm_framebuffer *fb,
10404                                  struct drm_i915_gem_object *obj,
10405                                  struct drm_i915_gem_request *req,
10406                                  uint32_t flags)
10407 {
10408         struct drm_i915_private *dev_priv = to_i915(dev);
10409         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10410         u32 pf, pipesrc, *cs;
10411
10412         cs = intel_ring_begin(req, 4);
10413         if (IS_ERR(cs))
10414                 return PTR_ERR(cs);
10415
10416         *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10417         *cs++ = fb->pitches[0] | intel_fb_modifier_to_tiling(fb->modifier);
10418         *cs++ = intel_crtc->flip_work->gtt_offset;
10419
10420         /* Contrary to the suggestions in the documentation,
10421          * "Enable Panel Fitter" does not seem to be required when page
10422          * flipping with a non-native mode, and worse causes a normal
10423          * modeset to fail.
10424          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10425          */
10426         pf = 0;
10427         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10428         *cs++ = pf | pipesrc;
10429
10430         return 0;
10431 }
10432
10433 static int intel_gen7_queue_flip(struct drm_device *dev,
10434                                  struct drm_crtc *crtc,
10435                                  struct drm_framebuffer *fb,
10436                                  struct drm_i915_gem_object *obj,
10437                                  struct drm_i915_gem_request *req,
10438                                  uint32_t flags)
10439 {
10440         struct drm_i915_private *dev_priv = to_i915(dev);
10441         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10442         u32 *cs, plane_bit = 0;
10443         int len, ret;
10444
10445         switch (intel_crtc->plane) {
10446         case PLANE_A:
10447                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10448                 break;
10449         case PLANE_B:
10450                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10451                 break;
10452         case PLANE_C:
10453                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10454                 break;
10455         default:
10456                 WARN_ONCE(1, "unknown plane in flip command\n");
10457                 return -ENODEV;
10458         }
10459
10460         len = 4;
10461         if (req->engine->id == RCS) {
10462                 len += 6;
10463                 /*
10464                  * On Gen 8, SRM is now taking an extra dword to accommodate
10465                  * 48bits addresses, and we need a NOOP for the batch size to
10466                  * stay even.
10467                  */
10468                 if (IS_GEN8(dev_priv))
10469                         len += 2;
10470         }
10471
10472         /*
10473          * BSpec MI_DISPLAY_FLIP for IVB:
10474          * "The full packet must be contained within the same cache line."
10475          *
10476          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10477          * cacheline, if we ever start emitting more commands before
10478          * the MI_DISPLAY_FLIP we may need to first emit everything else,
10479          * then do the cacheline alignment, and finally emit the
10480          * MI_DISPLAY_FLIP.
10481          */
10482         ret = intel_ring_cacheline_align(req);
10483         if (ret)
10484                 return ret;
10485
10486         cs = intel_ring_begin(req, len);
10487         if (IS_ERR(cs))
10488                 return PTR_ERR(cs);
10489
10490         /* Unmask the flip-done completion message. Note that the bspec says that
10491          * we should do this for both the BCS and RCS, and that we must not unmask
10492          * more than one flip event at any time (or ensure that one flip message
10493          * can be sent by waiting for flip-done prior to queueing new flips).
10494          * Experimentation says that BCS works despite DERRMR masking all
10495          * flip-done completion events and that unmasking all planes at once
10496          * for the RCS also doesn't appear to drop events. Setting the DERRMR
10497          * to zero does lead to lockups within MI_DISPLAY_FLIP.
10498          */
10499         if (req->engine->id == RCS) {
10500                 *cs++ = MI_LOAD_REGISTER_IMM(1);
10501                 *cs++ = i915_mmio_reg_offset(DERRMR);
10502                 *cs++ = ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10503                           DERRMR_PIPEB_PRI_FLIP_DONE |
10504                           DERRMR_PIPEC_PRI_FLIP_DONE);
10505                 if (IS_GEN8(dev_priv))
10506                         *cs++ = MI_STORE_REGISTER_MEM_GEN8 |
10507                                 MI_SRM_LRM_GLOBAL_GTT;
10508                 else
10509                         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
10510                 *cs++ = i915_mmio_reg_offset(DERRMR);
10511                 *cs++ = i915_ggtt_offset(req->engine->scratch) + 256;
10512                 if (IS_GEN8(dev_priv)) {
10513                         *cs++ = 0;
10514                         *cs++ = MI_NOOP;
10515                 }
10516         }
10517
10518         *cs++ = MI_DISPLAY_FLIP_I915 | plane_bit;
10519         *cs++ = fb->pitches[0] | intel_fb_modifier_to_tiling(fb->modifier);
10520         *cs++ = intel_crtc->flip_work->gtt_offset;
10521         *cs++ = MI_NOOP;
10522
10523         return 0;
10524 }
10525
10526 static bool use_mmio_flip(struct intel_engine_cs *engine,
10527                           struct drm_i915_gem_object *obj)
10528 {
10529         /*
10530          * This is not being used for older platforms, because
10531          * non-availability of flip done interrupt forces us to use
10532          * CS flips. Older platforms derive flip done using some clever
10533          * tricks involving the flip_pending status bits and vblank irqs.
10534          * So using MMIO flips there would disrupt this mechanism.
10535          */
10536
10537         if (engine == NULL)
10538                 return true;
10539
10540         if (INTEL_GEN(engine->i915) < 5)
10541                 return false;
10542
10543         if (i915.use_mmio_flip < 0)
10544                 return false;
10545         else if (i915.use_mmio_flip > 0)
10546                 return true;
10547         else if (i915.enable_execlists)
10548                 return true;
10549
10550         return engine != i915_gem_object_last_write_engine(obj);
10551 }
10552
10553 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
10554                              unsigned int rotation,
10555                              struct intel_flip_work *work)
10556 {
10557         struct drm_device *dev = intel_crtc->base.dev;
10558         struct drm_i915_private *dev_priv = to_i915(dev);
10559         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10560         const enum pipe pipe = intel_crtc->pipe;
10561         u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
10562
10563         ctl = I915_READ(PLANE_CTL(pipe, 0));
10564         ctl &= ~PLANE_CTL_TILED_MASK;
10565         switch (fb->modifier) {
10566         case DRM_FORMAT_MOD_LINEAR:
10567                 break;
10568         case I915_FORMAT_MOD_X_TILED:
10569                 ctl |= PLANE_CTL_TILED_X;
10570                 break;
10571         case I915_FORMAT_MOD_Y_TILED:
10572                 ctl |= PLANE_CTL_TILED_Y;
10573                 break;
10574         case I915_FORMAT_MOD_Yf_TILED:
10575                 ctl |= PLANE_CTL_TILED_YF;
10576                 break;
10577         default:
10578                 MISSING_CASE(fb->modifier);
10579         }
10580
10581         /*
10582          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10583          * PLANE_SURF updates, the update is then guaranteed to be atomic.
10584          */
10585         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10586         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10587
10588         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
10589         POSTING_READ(PLANE_SURF(pipe, 0));
10590 }
10591
10592 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
10593                              struct intel_flip_work *work)
10594 {
10595         struct drm_device *dev = intel_crtc->base.dev;
10596         struct drm_i915_private *dev_priv = to_i915(dev);
10597         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10598         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
10599         u32 dspcntr;
10600
10601         dspcntr = I915_READ(reg);
10602
10603         if (fb->modifier == I915_FORMAT_MOD_X_TILED)
10604                 dspcntr |= DISPPLANE_TILED;
10605         else
10606                 dspcntr &= ~DISPPLANE_TILED;
10607
10608         I915_WRITE(reg, dspcntr);
10609
10610         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
10611         POSTING_READ(DSPSURF(intel_crtc->plane));
10612 }
10613
10614 static void intel_mmio_flip_work_func(struct work_struct *w)
10615 {
10616         struct intel_flip_work *work =
10617                 container_of(w, struct intel_flip_work, mmio_work);
10618         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10619         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10620         struct intel_framebuffer *intel_fb =
10621                 to_intel_framebuffer(crtc->base.primary->fb);
10622         struct drm_i915_gem_object *obj = intel_fb->obj;
10623
10624         WARN_ON(i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT, NULL) < 0);
10625
10626         intel_pipe_update_start(crtc);
10627
10628         if (INTEL_GEN(dev_priv) >= 9)
10629                 skl_do_mmio_flip(crtc, work->rotation, work);
10630         else
10631                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10632                 ilk_do_mmio_flip(crtc, work);
10633
10634         intel_pipe_update_end(crtc, work);
10635 }
10636
10637 static int intel_default_queue_flip(struct drm_device *dev,
10638                                     struct drm_crtc *crtc,
10639                                     struct drm_framebuffer *fb,
10640                                     struct drm_i915_gem_object *obj,
10641                                     struct drm_i915_gem_request *req,
10642                                     uint32_t flags)
10643 {
10644         return -ENODEV;
10645 }
10646
10647 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
10648                                       struct intel_crtc *intel_crtc,
10649                                       struct intel_flip_work *work)
10650 {
10651         u32 addr, vblank;
10652
10653         if (!atomic_read(&work->pending))
10654                 return false;
10655
10656         smp_rmb();
10657
10658         vblank = intel_crtc_get_vblank_counter(intel_crtc);
10659         if (work->flip_ready_vblank == 0) {
10660                 if (work->flip_queued_req &&
10661                     !i915_gem_request_completed(work->flip_queued_req))
10662                         return false;
10663
10664                 work->flip_ready_vblank = vblank;
10665         }
10666
10667         if (vblank - work->flip_ready_vblank < 3)
10668                 return false;
10669
10670         /* Potential stall - if we see that the flip has happened,
10671          * assume a missed interrupt. */
10672         if (INTEL_GEN(dev_priv) >= 4)
10673                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10674         else
10675                 addr = I915_READ(DSPADDR(intel_crtc->plane));
10676
10677         /* There is a potential issue here with a false positive after a flip
10678          * to the same address. We could address this by checking for a
10679          * non-incrementing frame counter.
10680          */
10681         return addr == work->gtt_offset;
10682 }
10683
10684 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
10685 {
10686         struct drm_device *dev = &dev_priv->drm;
10687         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10688         struct intel_flip_work *work;
10689
10690         WARN_ON(!in_interrupt());
10691
10692         if (crtc == NULL)
10693                 return;
10694
10695         spin_lock(&dev->event_lock);
10696         work = crtc->flip_work;
10697
10698         if (work != NULL && !is_mmio_work(work) &&
10699             __pageflip_stall_check_cs(dev_priv, crtc, work)) {
10700                 WARN_ONCE(1,
10701                           "Kicking stuck page flip: queued at %d, now %d\n",
10702                         work->flip_queued_vblank, intel_crtc_get_vblank_counter(crtc));
10703                 page_flip_completed(crtc);
10704                 work = NULL;
10705         }
10706
10707         if (work != NULL && !is_mmio_work(work) &&
10708             intel_crtc_get_vblank_counter(crtc) - work->flip_queued_vblank > 1)
10709                 intel_queue_rps_boost_for_request(work->flip_queued_req);
10710         spin_unlock(&dev->event_lock);
10711 }
10712
10713 __maybe_unused
10714 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10715                                 struct drm_framebuffer *fb,
10716                                 struct drm_pending_vblank_event *event,
10717                                 uint32_t page_flip_flags)
10718 {
10719         struct drm_device *dev = crtc->dev;
10720         struct drm_i915_private *dev_priv = to_i915(dev);
10721         struct drm_framebuffer *old_fb = crtc->primary->fb;
10722         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10723         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10724         struct drm_plane *primary = crtc->primary;
10725         enum pipe pipe = intel_crtc->pipe;
10726         struct intel_flip_work *work;
10727         struct intel_engine_cs *engine;
10728         bool mmio_flip;
10729         struct drm_i915_gem_request *request;
10730         struct i915_vma *vma;
10731         int ret;
10732
10733         /*
10734          * drm_mode_page_flip_ioctl() should already catch this, but double
10735          * check to be safe.  In the future we may enable pageflipping from
10736          * a disabled primary plane.
10737          */
10738         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10739                 return -EBUSY;
10740
10741         /* Can't change pixel format via MI display flips. */
10742         if (fb->format != crtc->primary->fb->format)
10743                 return -EINVAL;
10744
10745         /*
10746          * TILEOFF/LINOFF registers can't be changed via MI display flips.
10747          * Note that pitch changes could also affect these register.
10748          */
10749         if (INTEL_GEN(dev_priv) > 3 &&
10750             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10751              fb->pitches[0] != crtc->primary->fb->pitches[0]))
10752                 return -EINVAL;
10753
10754         if (i915_terminally_wedged(&dev_priv->gpu_error))
10755                 goto out_hang;
10756
10757         work = kzalloc(sizeof(*work), GFP_KERNEL);
10758         if (work == NULL)
10759                 return -ENOMEM;
10760
10761         work->event = event;
10762         work->crtc = crtc;
10763         work->old_fb = old_fb;
10764         INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
10765
10766         ret = drm_crtc_vblank_get(crtc);
10767         if (ret)
10768                 goto free_work;
10769
10770         /* We borrow the event spin lock for protecting flip_work */
10771         spin_lock_irq(&dev->event_lock);
10772         if (intel_crtc->flip_work) {
10773                 /* Before declaring the flip queue wedged, check if
10774                  * the hardware completed the operation behind our backs.
10775                  */
10776                 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
10777                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10778                         page_flip_completed(intel_crtc);
10779                 } else {
10780                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10781                         spin_unlock_irq(&dev->event_lock);
10782
10783                         drm_crtc_vblank_put(crtc);
10784                         kfree(work);
10785                         return -EBUSY;
10786                 }
10787         }
10788         intel_crtc->flip_work = work;
10789         spin_unlock_irq(&dev->event_lock);
10790
10791         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10792                 flush_workqueue(dev_priv->wq);
10793
10794         /* Reference the objects for the scheduled work. */
10795         drm_framebuffer_reference(work->old_fb);
10796
10797         crtc->primary->fb = fb;
10798         update_state_fb(crtc->primary);
10799
10800         work->pending_flip_obj = i915_gem_object_get(obj);
10801
10802         ret = i915_mutex_lock_interruptible(dev);
10803         if (ret)
10804                 goto cleanup;
10805
10806         intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
10807         if (i915_reset_backoff_or_wedged(&dev_priv->gpu_error)) {
10808                 ret = -EIO;
10809                 goto unlock;
10810         }
10811
10812         atomic_inc(&intel_crtc->unpin_work_count);
10813
10814         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
10815                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
10816
10817         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
10818                 engine = dev_priv->engine[BCS];
10819                 if (fb->modifier != old_fb->modifier)
10820                         /* vlv: DISPLAY_FLIP fails to change tiling */
10821                         engine = NULL;
10822         } else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
10823                 engine = dev_priv->engine[BCS];
10824         } else if (INTEL_GEN(dev_priv) >= 7) {
10825                 engine = i915_gem_object_last_write_engine(obj);
10826                 if (engine == NULL || engine->id != RCS)
10827                         engine = dev_priv->engine[BCS];
10828         } else {
10829                 engine = dev_priv->engine[RCS];
10830         }
10831
10832         mmio_flip = use_mmio_flip(engine, obj);
10833
10834         vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
10835         if (IS_ERR(vma)) {
10836                 ret = PTR_ERR(vma);
10837                 goto cleanup_pending;
10838         }
10839
10840         work->old_vma = to_intel_plane_state(primary->state)->vma;
10841         to_intel_plane_state(primary->state)->vma = vma;
10842
10843         work->gtt_offset = i915_ggtt_offset(vma) + intel_crtc->dspaddr_offset;
10844         work->rotation = crtc->primary->state->rotation;
10845
10846         /*
10847          * There's the potential that the next frame will not be compatible with
10848          * FBC, so we want to call pre_update() before the actual page flip.
10849          * The problem is that pre_update() caches some information about the fb
10850          * object, so we want to do this only after the object is pinned. Let's
10851          * be on the safe side and do this immediately before scheduling the
10852          * flip.
10853          */
10854         intel_fbc_pre_update(intel_crtc, intel_crtc->config,
10855                              to_intel_plane_state(primary->state));
10856
10857         if (mmio_flip) {
10858                 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
10859                 queue_work(system_unbound_wq, &work->mmio_work);
10860         } else {
10861                 request = i915_gem_request_alloc(engine,
10862                                                  dev_priv->kernel_context);
10863                 if (IS_ERR(request)) {
10864                         ret = PTR_ERR(request);
10865                         goto cleanup_unpin;
10866                 }
10867
10868                 ret = i915_gem_request_await_object(request, obj, false);
10869                 if (ret)
10870                         goto cleanup_request;
10871
10872                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
10873                                                    page_flip_flags);
10874                 if (ret)
10875                         goto cleanup_request;
10876
10877                 intel_mark_page_flip_active(intel_crtc, work);
10878
10879                 work->flip_queued_req = i915_gem_request_get(request);
10880                 i915_add_request(request);
10881         }
10882
10883         i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
10884         i915_gem_track_fb(intel_fb_obj(old_fb), obj,
10885                           to_intel_plane(primary)->frontbuffer_bit);
10886         mutex_unlock(&dev->struct_mutex);
10887
10888         intel_frontbuffer_flip_prepare(to_i915(dev),
10889                                        to_intel_plane(primary)->frontbuffer_bit);
10890
10891         trace_i915_flip_request(intel_crtc->plane, obj);
10892
10893         return 0;
10894
10895 cleanup_request:
10896         i915_add_request(request);
10897 cleanup_unpin:
10898         to_intel_plane_state(primary->state)->vma = work->old_vma;
10899         intel_unpin_fb_vma(vma);
10900 cleanup_pending:
10901         atomic_dec(&intel_crtc->unpin_work_count);
10902 unlock:
10903         mutex_unlock(&dev->struct_mutex);
10904 cleanup:
10905         crtc->primary->fb = old_fb;
10906         update_state_fb(crtc->primary);
10907
10908         i915_gem_object_put(obj);
10909         drm_framebuffer_unreference(work->old_fb);
10910
10911         spin_lock_irq(&dev->event_lock);
10912         intel_crtc->flip_work = NULL;
10913         spin_unlock_irq(&dev->event_lock);
10914
10915         drm_crtc_vblank_put(crtc);
10916 free_work:
10917         kfree(work);
10918
10919         if (ret == -EIO) {
10920                 struct drm_atomic_state *state;
10921                 struct drm_plane_state *plane_state;
10922
10923 out_hang:
10924                 state = drm_atomic_state_alloc(dev);
10925                 if (!state)
10926                         return -ENOMEM;
10927                 state->acquire_ctx = dev->mode_config.acquire_ctx;
10928
10929 retry:
10930                 plane_state = drm_atomic_get_plane_state(state, primary);
10931                 ret = PTR_ERR_OR_ZERO(plane_state);
10932                 if (!ret) {
10933                         drm_atomic_set_fb_for_plane(plane_state, fb);
10934
10935                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
10936                         if (!ret)
10937                                 ret = drm_atomic_commit(state);
10938                 }
10939
10940                 if (ret == -EDEADLK) {
10941                         drm_modeset_backoff(state->acquire_ctx);
10942                         drm_atomic_state_clear(state);
10943                         goto retry;
10944                 }
10945
10946                 drm_atomic_state_put(state);
10947
10948                 if (ret == 0 && event) {
10949                         spin_lock_irq(&dev->event_lock);
10950                         drm_crtc_send_vblank_event(crtc, event);
10951                         spin_unlock_irq(&dev->event_lock);
10952                 }
10953         }
10954         return ret;
10955 }
10956
10957
10958 /**
10959  * intel_wm_need_update - Check whether watermarks need updating
10960  * @plane: drm plane
10961  * @state: new plane state
10962  *
10963  * Check current plane state versus the new one to determine whether
10964  * watermarks need to be recalculated.
10965  *
10966  * Returns true or false.
10967  */
10968 static bool intel_wm_need_update(struct drm_plane *plane,
10969                                  struct drm_plane_state *state)
10970 {
10971         struct intel_plane_state *new = to_intel_plane_state(state);
10972         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
10973
10974         /* Update watermarks on tiling or size changes. */
10975         if (new->base.visible != cur->base.visible)
10976                 return true;
10977
10978         if (!cur->base.fb || !new->base.fb)
10979                 return false;
10980
10981         if (cur->base.fb->modifier != new->base.fb->modifier ||
10982             cur->base.rotation != new->base.rotation ||
10983             drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
10984             drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
10985             drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
10986             drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
10987                 return true;
10988
10989         return false;
10990 }
10991
10992 static bool needs_scaling(struct intel_plane_state *state)
10993 {
10994         int src_w = drm_rect_width(&state->base.src) >> 16;
10995         int src_h = drm_rect_height(&state->base.src) >> 16;
10996         int dst_w = drm_rect_width(&state->base.dst);
10997         int dst_h = drm_rect_height(&state->base.dst);
10998
10999         return (src_w != dst_w || src_h != dst_h);
11000 }
11001
11002 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11003                                     struct drm_plane_state *plane_state)
11004 {
11005         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11006         struct drm_crtc *crtc = crtc_state->crtc;
11007         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11008         struct intel_plane *plane = to_intel_plane(plane_state->plane);
11009         struct drm_device *dev = crtc->dev;
11010         struct drm_i915_private *dev_priv = to_i915(dev);
11011         struct intel_plane_state *old_plane_state =
11012                 to_intel_plane_state(plane->base.state);
11013         bool mode_changed = needs_modeset(crtc_state);
11014         bool was_crtc_enabled = crtc->state->active;
11015         bool is_crtc_enabled = crtc_state->active;
11016         bool turn_off, turn_on, visible, was_visible;
11017         struct drm_framebuffer *fb = plane_state->fb;
11018         int ret;
11019
11020         if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
11021                 ret = skl_update_scaler_plane(
11022                         to_intel_crtc_state(crtc_state),
11023                         to_intel_plane_state(plane_state));
11024                 if (ret)
11025                         return ret;
11026         }
11027
11028         was_visible = old_plane_state->base.visible;
11029         visible = plane_state->visible;
11030
11031         if (!was_crtc_enabled && WARN_ON(was_visible))
11032                 was_visible = false;
11033
11034         /*
11035          * Visibility is calculated as if the crtc was on, but
11036          * after scaler setup everything depends on it being off
11037          * when the crtc isn't active.
11038          *
11039          * FIXME this is wrong for watermarks. Watermarks should also
11040          * be computed as if the pipe would be active. Perhaps move
11041          * per-plane wm computation to the .check_plane() hook, and
11042          * only combine the results from all planes in the current place?
11043          */
11044         if (!is_crtc_enabled) {
11045                 plane_state->visible = visible = false;
11046                 to_intel_crtc_state(crtc_state)->active_planes &= ~BIT(plane->id);
11047         }
11048
11049         if (!was_visible && !visible)
11050                 return 0;
11051
11052         if (fb != old_plane_state->base.fb)
11053                 pipe_config->fb_changed = true;
11054
11055         turn_off = was_visible && (!visible || mode_changed);
11056         turn_on = visible && (!was_visible || mode_changed);
11057
11058         DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
11059                          intel_crtc->base.base.id, intel_crtc->base.name,
11060                          plane->base.base.id, plane->base.name,
11061                          fb ? fb->base.id : -1);
11062
11063         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
11064                          plane->base.base.id, plane->base.name,
11065                          was_visible, visible,
11066                          turn_off, turn_on, mode_changed);
11067
11068         if (turn_on) {
11069                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11070                         pipe_config->update_wm_pre = true;
11071
11072                 /* must disable cxsr around plane enable/disable */
11073                 if (plane->id != PLANE_CURSOR)
11074                         pipe_config->disable_cxsr = true;
11075         } else if (turn_off) {
11076                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11077                         pipe_config->update_wm_post = true;
11078
11079                 /* must disable cxsr around plane enable/disable */
11080                 if (plane->id != PLANE_CURSOR)
11081                         pipe_config->disable_cxsr = true;
11082         } else if (intel_wm_need_update(&plane->base, plane_state)) {
11083                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
11084                         /* FIXME bollocks */
11085                         pipe_config->update_wm_pre = true;
11086                         pipe_config->update_wm_post = true;
11087                 }
11088         }
11089
11090         if (visible || was_visible)
11091                 pipe_config->fb_bits |= plane->frontbuffer_bit;
11092
11093         /*
11094          * WaCxSRDisabledForSpriteScaling:ivb
11095          *
11096          * cstate->update_wm was already set above, so this flag will
11097          * take effect when we commit and program watermarks.
11098          */
11099         if (plane->id == PLANE_SPRITE0 && IS_IVYBRIDGE(dev_priv) &&
11100             needs_scaling(to_intel_plane_state(plane_state)) &&
11101             !needs_scaling(old_plane_state))
11102                 pipe_config->disable_lp_wm = true;
11103
11104         return 0;
11105 }
11106
11107 static bool encoders_cloneable(const struct intel_encoder *a,
11108                                const struct intel_encoder *b)
11109 {
11110         /* masks could be asymmetric, so check both ways */
11111         return a == b || (a->cloneable & (1 << b->type) &&
11112                           b->cloneable & (1 << a->type));
11113 }
11114
11115 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11116                                          struct intel_crtc *crtc,
11117                                          struct intel_encoder *encoder)
11118 {
11119         struct intel_encoder *source_encoder;
11120         struct drm_connector *connector;
11121         struct drm_connector_state *connector_state;
11122         int i;
11123
11124         for_each_new_connector_in_state(state, connector, connector_state, i) {
11125                 if (connector_state->crtc != &crtc->base)
11126                         continue;
11127
11128                 source_encoder =
11129                         to_intel_encoder(connector_state->best_encoder);
11130                 if (!encoders_cloneable(encoder, source_encoder))
11131                         return false;
11132         }
11133
11134         return true;
11135 }
11136
11137 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11138                                    struct drm_crtc_state *crtc_state)
11139 {
11140         struct drm_device *dev = crtc->dev;
11141         struct drm_i915_private *dev_priv = to_i915(dev);
11142         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11143         struct intel_crtc_state *pipe_config =
11144                 to_intel_crtc_state(crtc_state);
11145         struct drm_atomic_state *state = crtc_state->state;
11146         int ret;
11147         bool mode_changed = needs_modeset(crtc_state);
11148
11149         if (mode_changed && !crtc_state->active)
11150                 pipe_config->update_wm_post = true;
11151
11152         if (mode_changed && crtc_state->enable &&
11153             dev_priv->display.crtc_compute_clock &&
11154             !WARN_ON(pipe_config->shared_dpll)) {
11155                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11156                                                            pipe_config);
11157                 if (ret)
11158                         return ret;
11159         }
11160
11161         if (crtc_state->color_mgmt_changed) {
11162                 ret = intel_color_check(crtc, crtc_state);
11163                 if (ret)
11164                         return ret;
11165
11166                 /*
11167                  * Changing color management on Intel hardware is
11168                  * handled as part of planes update.
11169                  */
11170                 crtc_state->planes_changed = true;
11171         }
11172
11173         ret = 0;
11174         if (dev_priv->display.compute_pipe_wm) {
11175                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
11176                 if (ret) {
11177                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11178                         return ret;
11179                 }
11180         }
11181
11182         if (dev_priv->display.compute_intermediate_wm &&
11183             !to_intel_atomic_state(state)->skip_intermediate_wm) {
11184                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11185                         return 0;
11186
11187                 /*
11188                  * Calculate 'intermediate' watermarks that satisfy both the
11189                  * old state and the new state.  We can program these
11190                  * immediately.
11191                  */
11192                 ret = dev_priv->display.compute_intermediate_wm(dev,
11193                                                                 intel_crtc,
11194                                                                 pipe_config);
11195                 if (ret) {
11196                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
11197                         return ret;
11198                 }
11199         } else if (dev_priv->display.compute_intermediate_wm) {
11200                 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
11201                         pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
11202         }
11203
11204         if (INTEL_GEN(dev_priv) >= 9) {
11205                 if (mode_changed)
11206                         ret = skl_update_scaler_crtc(pipe_config);
11207
11208                 if (!ret)
11209                         ret = skl_check_pipe_max_pixel_rate(intel_crtc,
11210                                                             pipe_config);
11211                 if (!ret)
11212                         ret = intel_atomic_setup_scalers(dev_priv, intel_crtc,
11213                                                          pipe_config);
11214         }
11215
11216         return ret;
11217 }
11218
11219 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11220         .atomic_begin = intel_begin_crtc_commit,
11221         .atomic_flush = intel_finish_crtc_commit,
11222         .atomic_check = intel_crtc_atomic_check,
11223 };
11224
11225 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11226 {
11227         struct intel_connector *connector;
11228         struct drm_connector_list_iter conn_iter;
11229
11230         drm_connector_list_iter_begin(dev, &conn_iter);
11231         for_each_intel_connector_iter(connector, &conn_iter) {
11232                 if (connector->base.state->crtc)
11233                         drm_connector_unreference(&connector->base);
11234
11235                 if (connector->base.encoder) {
11236                         connector->base.state->best_encoder =
11237                                 connector->base.encoder;
11238                         connector->base.state->crtc =
11239                                 connector->base.encoder->crtc;
11240
11241                         drm_connector_reference(&connector->base);
11242                 } else {
11243                         connector->base.state->best_encoder = NULL;
11244                         connector->base.state->crtc = NULL;
11245                 }
11246         }
11247         drm_connector_list_iter_end(&conn_iter);
11248 }
11249
11250 static void
11251 connected_sink_compute_bpp(struct intel_connector *connector,
11252                            struct intel_crtc_state *pipe_config)
11253 {
11254         const struct drm_display_info *info = &connector->base.display_info;
11255         int bpp = pipe_config->pipe_bpp;
11256
11257         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11258                       connector->base.base.id,
11259                       connector->base.name);
11260
11261         /* Don't use an invalid EDID bpc value */
11262         if (info->bpc != 0 && info->bpc * 3 < bpp) {
11263                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11264                               bpp, info->bpc * 3);
11265                 pipe_config->pipe_bpp = info->bpc * 3;
11266         }
11267
11268         /* Clamp bpp to 8 on screens without EDID 1.4 */
11269         if (info->bpc == 0 && bpp > 24) {
11270                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11271                               bpp);
11272                 pipe_config->pipe_bpp = 24;
11273         }
11274 }
11275
11276 static int
11277 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11278                           struct intel_crtc_state *pipe_config)
11279 {
11280         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11281         struct drm_atomic_state *state;
11282         struct drm_connector *connector;
11283         struct drm_connector_state *connector_state;
11284         int bpp, i;
11285
11286         if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
11287             IS_CHERRYVIEW(dev_priv)))
11288                 bpp = 10*3;
11289         else if (INTEL_GEN(dev_priv) >= 5)
11290                 bpp = 12*3;
11291         else
11292                 bpp = 8*3;
11293
11294
11295         pipe_config->pipe_bpp = bpp;
11296
11297         state = pipe_config->base.state;
11298
11299         /* Clamp display bpp to EDID value */
11300         for_each_new_connector_in_state(state, connector, connector_state, i) {
11301                 if (connector_state->crtc != &crtc->base)
11302                         continue;
11303
11304                 connected_sink_compute_bpp(to_intel_connector(connector),
11305                                            pipe_config);
11306         }
11307
11308         return bpp;
11309 }
11310
11311 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11312 {
11313         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11314                         "type: 0x%x flags: 0x%x\n",
11315                 mode->crtc_clock,
11316                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11317                 mode->crtc_hsync_end, mode->crtc_htotal,
11318                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11319                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11320 }
11321
11322 static inline void
11323 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
11324                       unsigned int lane_count, struct intel_link_m_n *m_n)
11325 {
11326         DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11327                       id, lane_count,
11328                       m_n->gmch_m, m_n->gmch_n,
11329                       m_n->link_m, m_n->link_n, m_n->tu);
11330 }
11331
11332 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11333                                    struct intel_crtc_state *pipe_config,
11334                                    const char *context)
11335 {
11336         struct drm_device *dev = crtc->base.dev;
11337         struct drm_i915_private *dev_priv = to_i915(dev);
11338         struct drm_plane *plane;
11339         struct intel_plane *intel_plane;
11340         struct intel_plane_state *state;
11341         struct drm_framebuffer *fb;
11342
11343         DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
11344                       crtc->base.base.id, crtc->base.name, context);
11345
11346         DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
11347                       transcoder_name(pipe_config->cpu_transcoder),
11348                       pipe_config->pipe_bpp, pipe_config->dither);
11349
11350         if (pipe_config->has_pch_encoder)
11351                 intel_dump_m_n_config(pipe_config, "fdi",
11352                                       pipe_config->fdi_lanes,
11353                                       &pipe_config->fdi_m_n);
11354
11355         if (intel_crtc_has_dp_encoder(pipe_config)) {
11356                 intel_dump_m_n_config(pipe_config, "dp m_n",
11357                                 pipe_config->lane_count, &pipe_config->dp_m_n);
11358                 if (pipe_config->has_drrs)
11359                         intel_dump_m_n_config(pipe_config, "dp m2_n2",
11360                                               pipe_config->lane_count,
11361                                               &pipe_config->dp_m2_n2);
11362         }
11363
11364         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11365                       pipe_config->has_audio, pipe_config->has_infoframe);
11366
11367         DRM_DEBUG_KMS("requested mode:\n");
11368         drm_mode_debug_printmodeline(&pipe_config->base.mode);
11369         DRM_DEBUG_KMS("adjusted mode:\n");
11370         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11371         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11372         DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
11373                       pipe_config->port_clock,
11374                       pipe_config->pipe_src_w, pipe_config->pipe_src_h,
11375                       pipe_config->pixel_rate);
11376
11377         if (INTEL_GEN(dev_priv) >= 9)
11378                 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11379                               crtc->num_scalers,
11380                               pipe_config->scaler_state.scaler_users,
11381                               pipe_config->scaler_state.scaler_id);
11382
11383         if (HAS_GMCH_DISPLAY(dev_priv))
11384                 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11385                               pipe_config->gmch_pfit.control,
11386                               pipe_config->gmch_pfit.pgm_ratios,
11387                               pipe_config->gmch_pfit.lvds_border_bits);
11388         else
11389                 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11390                               pipe_config->pch_pfit.pos,
11391                               pipe_config->pch_pfit.size,
11392                               enableddisabled(pipe_config->pch_pfit.enabled));
11393
11394         DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
11395                       pipe_config->ips_enabled, pipe_config->double_wide);
11396
11397         intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
11398
11399         DRM_DEBUG_KMS("planes on this crtc\n");
11400         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11401                 struct drm_format_name_buf format_name;
11402                 intel_plane = to_intel_plane(plane);
11403                 if (intel_plane->pipe != crtc->pipe)
11404                         continue;
11405
11406                 state = to_intel_plane_state(plane->state);
11407                 fb = state->base.fb;
11408                 if (!fb) {
11409                         DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
11410                                       plane->base.id, plane->name, state->scaler_id);
11411                         continue;
11412                 }
11413
11414                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
11415                               plane->base.id, plane->name,
11416                               fb->base.id, fb->width, fb->height,
11417                               drm_get_format_name(fb->format->format, &format_name));
11418                 if (INTEL_GEN(dev_priv) >= 9)
11419                         DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
11420                                       state->scaler_id,
11421                                       state->base.src.x1 >> 16,
11422                                       state->base.src.y1 >> 16,
11423                                       drm_rect_width(&state->base.src) >> 16,
11424                                       drm_rect_height(&state->base.src) >> 16,
11425                                       state->base.dst.x1, state->base.dst.y1,
11426                                       drm_rect_width(&state->base.dst),
11427                                       drm_rect_height(&state->base.dst));
11428         }
11429 }
11430
11431 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11432 {
11433         struct drm_device *dev = state->dev;
11434         struct drm_connector *connector;
11435         struct drm_connector_list_iter conn_iter;
11436         unsigned int used_ports = 0;
11437         unsigned int used_mst_ports = 0;
11438
11439         /*
11440          * Walk the connector list instead of the encoder
11441          * list to detect the problem on ddi platforms
11442          * where there's just one encoder per digital port.
11443          */
11444         drm_connector_list_iter_begin(dev, &conn_iter);
11445         drm_for_each_connector_iter(connector, &conn_iter) {
11446                 struct drm_connector_state *connector_state;
11447                 struct intel_encoder *encoder;
11448
11449                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
11450                 if (!connector_state)
11451                         connector_state = connector->state;
11452
11453                 if (!connector_state->best_encoder)
11454                         continue;
11455
11456                 encoder = to_intel_encoder(connector_state->best_encoder);
11457
11458                 WARN_ON(!connector_state->crtc);
11459
11460                 switch (encoder->type) {
11461                         unsigned int port_mask;
11462                 case INTEL_OUTPUT_UNKNOWN:
11463                         if (WARN_ON(!HAS_DDI(to_i915(dev))))
11464                                 break;
11465                 case INTEL_OUTPUT_DP:
11466                 case INTEL_OUTPUT_HDMI:
11467                 case INTEL_OUTPUT_EDP:
11468                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11469
11470                         /* the same port mustn't appear more than once */
11471                         if (used_ports & port_mask)
11472                                 return false;
11473
11474                         used_ports |= port_mask;
11475                         break;
11476                 case INTEL_OUTPUT_DP_MST:
11477                         used_mst_ports |=
11478                                 1 << enc_to_mst(&encoder->base)->primary->port;
11479                         break;
11480                 default:
11481                         break;
11482                 }
11483         }
11484         drm_connector_list_iter_end(&conn_iter);
11485
11486         /* can't mix MST and SST/HDMI on the same port */
11487         if (used_ports & used_mst_ports)
11488                 return false;
11489
11490         return true;
11491 }
11492
11493 static void
11494 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11495 {
11496         struct drm_i915_private *dev_priv =
11497                 to_i915(crtc_state->base.crtc->dev);
11498         struct intel_crtc_scaler_state scaler_state;
11499         struct intel_dpll_hw_state dpll_hw_state;
11500         struct intel_shared_dpll *shared_dpll;
11501         struct intel_crtc_wm_state wm_state;
11502         bool force_thru;
11503
11504         /* FIXME: before the switch to atomic started, a new pipe_config was
11505          * kzalloc'd. Code that depends on any field being zero should be
11506          * fixed, so that the crtc_state can be safely duplicated. For now,
11507          * only fields that are know to not cause problems are preserved. */
11508
11509         scaler_state = crtc_state->scaler_state;
11510         shared_dpll = crtc_state->shared_dpll;
11511         dpll_hw_state = crtc_state->dpll_hw_state;
11512         force_thru = crtc_state->pch_pfit.force_thru;
11513         if (IS_G4X(dev_priv) ||
11514             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11515                 wm_state = crtc_state->wm;
11516
11517         /* Keep base drm_crtc_state intact, only clear our extended struct */
11518         BUILD_BUG_ON(offsetof(struct intel_crtc_state, base));
11519         memset(&crtc_state->base + 1, 0,
11520                sizeof(*crtc_state) - sizeof(crtc_state->base));
11521
11522         crtc_state->scaler_state = scaler_state;
11523         crtc_state->shared_dpll = shared_dpll;
11524         crtc_state->dpll_hw_state = dpll_hw_state;
11525         crtc_state->pch_pfit.force_thru = force_thru;
11526         if (IS_G4X(dev_priv) ||
11527             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11528                 crtc_state->wm = wm_state;
11529 }
11530
11531 static int
11532 intel_modeset_pipe_config(struct drm_crtc *crtc,
11533                           struct intel_crtc_state *pipe_config)
11534 {
11535         struct drm_atomic_state *state = pipe_config->base.state;
11536         struct intel_encoder *encoder;
11537         struct drm_connector *connector;
11538         struct drm_connector_state *connector_state;
11539         int base_bpp, ret = -EINVAL;
11540         int i;
11541         bool retry = true;
11542
11543         clear_intel_crtc_state(pipe_config);
11544
11545         pipe_config->cpu_transcoder =
11546                 (enum transcoder) to_intel_crtc(crtc)->pipe;
11547
11548         /*
11549          * Sanitize sync polarity flags based on requested ones. If neither
11550          * positive or negative polarity is requested, treat this as meaning
11551          * negative polarity.
11552          */
11553         if (!(pipe_config->base.adjusted_mode.flags &
11554               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
11555                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
11556
11557         if (!(pipe_config->base.adjusted_mode.flags &
11558               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
11559                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
11560
11561         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11562                                              pipe_config);
11563         if (base_bpp < 0)
11564                 goto fail;
11565
11566         /*
11567          * Determine the real pipe dimensions. Note that stereo modes can
11568          * increase the actual pipe size due to the frame doubling and
11569          * insertion of additional space for blanks between the frame. This
11570          * is stored in the crtc timings. We use the requested mode to do this
11571          * computation to clearly distinguish it from the adjusted mode, which
11572          * can be changed by the connectors in the below retry loop.
11573          */
11574         drm_mode_get_hv_timing(&pipe_config->base.mode,
11575                                &pipe_config->pipe_src_w,
11576                                &pipe_config->pipe_src_h);
11577
11578         for_each_new_connector_in_state(state, connector, connector_state, i) {
11579                 if (connector_state->crtc != crtc)
11580                         continue;
11581
11582                 encoder = to_intel_encoder(connector_state->best_encoder);
11583
11584                 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
11585                         DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11586                         goto fail;
11587                 }
11588
11589                 /*
11590                  * Determine output_types before calling the .compute_config()
11591                  * hooks so that the hooks can use this information safely.
11592                  */
11593                 pipe_config->output_types |= 1 << encoder->type;
11594         }
11595
11596 encoder_retry:
11597         /* Ensure the port clock defaults are reset when retrying. */
11598         pipe_config->port_clock = 0;
11599         pipe_config->pixel_multiplier = 1;
11600
11601         /* Fill in default crtc timings, allow encoders to overwrite them. */
11602         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11603                               CRTC_STEREO_DOUBLE);
11604
11605         /* Pass our mode to the connectors and the CRTC to give them a chance to
11606          * adjust it according to limitations or connector properties, and also
11607          * a chance to reject the mode entirely.
11608          */
11609         for_each_new_connector_in_state(state, connector, connector_state, i) {
11610                 if (connector_state->crtc != crtc)
11611                         continue;
11612
11613                 encoder = to_intel_encoder(connector_state->best_encoder);
11614
11615                 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
11616                         DRM_DEBUG_KMS("Encoder config failure\n");
11617                         goto fail;
11618                 }
11619         }
11620
11621         /* Set default port clock if not overwritten by the encoder. Needs to be
11622          * done afterwards in case the encoder adjusts the mode. */
11623         if (!pipe_config->port_clock)
11624                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11625                         * pipe_config->pixel_multiplier;
11626
11627         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11628         if (ret < 0) {
11629                 DRM_DEBUG_KMS("CRTC fixup failed\n");
11630                 goto fail;
11631         }
11632
11633         if (ret == RETRY) {
11634                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11635                         ret = -EINVAL;
11636                         goto fail;
11637                 }
11638
11639                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11640                 retry = false;
11641                 goto encoder_retry;
11642         }
11643
11644         /* Dithering seems to not pass-through bits correctly when it should, so
11645          * only enable it on 6bpc panels and when its not a compliance
11646          * test requesting 6bpc video pattern.
11647          */
11648         pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
11649                 !pipe_config->dither_force_disable;
11650         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
11651                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11652
11653 fail:
11654         return ret;
11655 }
11656
11657 static void
11658 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
11659 {
11660         struct drm_crtc *crtc;
11661         struct drm_crtc_state *new_crtc_state;
11662         int i;
11663
11664         /* Double check state. */
11665         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
11666                 to_intel_crtc(crtc)->config = to_intel_crtc_state(new_crtc_state);
11667
11668                 /*
11669                  * Update legacy state to satisfy fbc code. This can
11670                  * be removed when fbc uses the atomic state.
11671                  */
11672                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
11673                         struct drm_plane_state *plane_state = crtc->primary->state;
11674
11675                         crtc->primary->fb = plane_state->fb;
11676                         crtc->x = plane_state->src_x >> 16;
11677                         crtc->y = plane_state->src_y >> 16;
11678                 }
11679         }
11680 }
11681
11682 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11683 {
11684         int diff;
11685
11686         if (clock1 == clock2)
11687                 return true;
11688
11689         if (!clock1 || !clock2)
11690                 return false;
11691
11692         diff = abs(clock1 - clock2);
11693
11694         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11695                 return true;
11696
11697         return false;
11698 }
11699
11700 static bool
11701 intel_compare_m_n(unsigned int m, unsigned int n,
11702                   unsigned int m2, unsigned int n2,
11703                   bool exact)
11704 {
11705         if (m == m2 && n == n2)
11706                 return true;
11707
11708         if (exact || !m || !n || !m2 || !n2)
11709                 return false;
11710
11711         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
11712
11713         if (n > n2) {
11714                 while (n > n2) {
11715                         m2 <<= 1;
11716                         n2 <<= 1;
11717                 }
11718         } else if (n < n2) {
11719                 while (n < n2) {
11720                         m <<= 1;
11721                         n <<= 1;
11722                 }
11723         }
11724
11725         if (n != n2)
11726                 return false;
11727
11728         return intel_fuzzy_clock_check(m, m2);
11729 }
11730
11731 static bool
11732 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
11733                        struct intel_link_m_n *m2_n2,
11734                        bool adjust)
11735 {
11736         if (m_n->tu == m2_n2->tu &&
11737             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
11738                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
11739             intel_compare_m_n(m_n->link_m, m_n->link_n,
11740                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
11741                 if (adjust)
11742                         *m2_n2 = *m_n;
11743
11744                 return true;
11745         }
11746
11747         return false;
11748 }
11749
11750 static void __printf(3, 4)
11751 pipe_config_err(bool adjust, const char *name, const char *format, ...)
11752 {
11753         char *level;
11754         unsigned int category;
11755         struct va_format vaf;
11756         va_list args;
11757
11758         if (adjust) {
11759                 level = KERN_DEBUG;
11760                 category = DRM_UT_KMS;
11761         } else {
11762                 level = KERN_ERR;
11763                 category = DRM_UT_NONE;
11764         }
11765
11766         va_start(args, format);
11767         vaf.fmt = format;
11768         vaf.va = &args;
11769
11770         drm_printk(level, category, "mismatch in %s %pV", name, &vaf);
11771
11772         va_end(args);
11773 }
11774
11775 static bool
11776 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
11777                           struct intel_crtc_state *current_config,
11778                           struct intel_crtc_state *pipe_config,
11779                           bool adjust)
11780 {
11781         bool ret = true;
11782
11783 #define PIPE_CONF_CHECK_X(name) \
11784         if (current_config->name != pipe_config->name) { \
11785                 pipe_config_err(adjust, __stringify(name), \
11786                           "(expected 0x%08x, found 0x%08x)\n", \
11787                           current_config->name, \
11788                           pipe_config->name); \
11789                 ret = false; \
11790         }
11791
11792 #define PIPE_CONF_CHECK_I(name) \
11793         if (current_config->name != pipe_config->name) { \
11794                 pipe_config_err(adjust, __stringify(name), \
11795                           "(expected %i, found %i)\n", \
11796                           current_config->name, \
11797                           pipe_config->name); \
11798                 ret = false; \
11799         }
11800
11801 #define PIPE_CONF_CHECK_P(name) \
11802         if (current_config->name != pipe_config->name) { \
11803                 pipe_config_err(adjust, __stringify(name), \
11804                           "(expected %p, found %p)\n", \
11805                           current_config->name, \
11806                           pipe_config->name); \
11807                 ret = false; \
11808         }
11809
11810 #define PIPE_CONF_CHECK_M_N(name) \
11811         if (!intel_compare_link_m_n(&current_config->name, \
11812                                     &pipe_config->name,\
11813                                     adjust)) { \
11814                 pipe_config_err(adjust, __stringify(name), \
11815                           "(expected tu %i gmch %i/%i link %i/%i, " \
11816                           "found tu %i, gmch %i/%i link %i/%i)\n", \
11817                           current_config->name.tu, \
11818                           current_config->name.gmch_m, \
11819                           current_config->name.gmch_n, \
11820                           current_config->name.link_m, \
11821                           current_config->name.link_n, \
11822                           pipe_config->name.tu, \
11823                           pipe_config->name.gmch_m, \
11824                           pipe_config->name.gmch_n, \
11825                           pipe_config->name.link_m, \
11826                           pipe_config->name.link_n); \
11827                 ret = false; \
11828         }
11829
11830 /* This is required for BDW+ where there is only one set of registers for
11831  * switching between high and low RR.
11832  * This macro can be used whenever a comparison has to be made between one
11833  * hw state and multiple sw state variables.
11834  */
11835 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
11836         if (!intel_compare_link_m_n(&current_config->name, \
11837                                     &pipe_config->name, adjust) && \
11838             !intel_compare_link_m_n(&current_config->alt_name, \
11839                                     &pipe_config->name, adjust)) { \
11840                 pipe_config_err(adjust, __stringify(name), \
11841                           "(expected tu %i gmch %i/%i link %i/%i, " \
11842                           "or tu %i gmch %i/%i link %i/%i, " \
11843                           "found tu %i, gmch %i/%i link %i/%i)\n", \
11844                           current_config->name.tu, \
11845                           current_config->name.gmch_m, \
11846                           current_config->name.gmch_n, \
11847                           current_config->name.link_m, \
11848                           current_config->name.link_n, \
11849                           current_config->alt_name.tu, \
11850                           current_config->alt_name.gmch_m, \
11851                           current_config->alt_name.gmch_n, \
11852                           current_config->alt_name.link_m, \
11853                           current_config->alt_name.link_n, \
11854                           pipe_config->name.tu, \
11855                           pipe_config->name.gmch_m, \
11856                           pipe_config->name.gmch_n, \
11857                           pipe_config->name.link_m, \
11858                           pipe_config->name.link_n); \
11859                 ret = false; \
11860         }
11861
11862 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
11863         if ((current_config->name ^ pipe_config->name) & (mask)) { \
11864                 pipe_config_err(adjust, __stringify(name), \
11865                           "(%x) (expected %i, found %i)\n", \
11866                           (mask), \
11867                           current_config->name & (mask), \
11868                           pipe_config->name & (mask)); \
11869                 ret = false; \
11870         }
11871
11872 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11873         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11874                 pipe_config_err(adjust, __stringify(name), \
11875                           "(expected %i, found %i)\n", \
11876                           current_config->name, \
11877                           pipe_config->name); \
11878                 ret = false; \
11879         }
11880
11881 #define PIPE_CONF_QUIRK(quirk)  \
11882         ((current_config->quirks | pipe_config->quirks) & (quirk))
11883
11884         PIPE_CONF_CHECK_I(cpu_transcoder);
11885
11886         PIPE_CONF_CHECK_I(has_pch_encoder);
11887         PIPE_CONF_CHECK_I(fdi_lanes);
11888         PIPE_CONF_CHECK_M_N(fdi_m_n);
11889
11890         PIPE_CONF_CHECK_I(lane_count);
11891         PIPE_CONF_CHECK_X(lane_lat_optim_mask);
11892
11893         if (INTEL_GEN(dev_priv) < 8) {
11894                 PIPE_CONF_CHECK_M_N(dp_m_n);
11895
11896                 if (current_config->has_drrs)
11897                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
11898         } else
11899                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
11900
11901         PIPE_CONF_CHECK_X(output_types);
11902
11903         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11904         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11905         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11906         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11907         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11908         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11909
11910         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11911         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11912         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11913         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11914         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11915         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11916
11917         PIPE_CONF_CHECK_I(pixel_multiplier);
11918         PIPE_CONF_CHECK_I(has_hdmi_sink);
11919         if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
11920             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11921                 PIPE_CONF_CHECK_I(limited_color_range);
11922
11923         PIPE_CONF_CHECK_I(hdmi_scrambling);
11924         PIPE_CONF_CHECK_I(hdmi_high_tmds_clock_ratio);
11925         PIPE_CONF_CHECK_I(has_infoframe);
11926
11927         PIPE_CONF_CHECK_I(has_audio);
11928
11929         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11930                               DRM_MODE_FLAG_INTERLACE);
11931
11932         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11933                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11934                                       DRM_MODE_FLAG_PHSYNC);
11935                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11936                                       DRM_MODE_FLAG_NHSYNC);
11937                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11938                                       DRM_MODE_FLAG_PVSYNC);
11939                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11940                                       DRM_MODE_FLAG_NVSYNC);
11941         }
11942
11943         PIPE_CONF_CHECK_X(gmch_pfit.control);
11944         /* pfit ratios are autocomputed by the hw on gen4+ */
11945         if (INTEL_GEN(dev_priv) < 4)
11946                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
11947         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
11948
11949         if (!adjust) {
11950                 PIPE_CONF_CHECK_I(pipe_src_w);
11951                 PIPE_CONF_CHECK_I(pipe_src_h);
11952
11953                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11954                 if (current_config->pch_pfit.enabled) {
11955                         PIPE_CONF_CHECK_X(pch_pfit.pos);
11956                         PIPE_CONF_CHECK_X(pch_pfit.size);
11957                 }
11958
11959                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11960                 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
11961         }
11962
11963         /* BDW+ don't expose a synchronous way to read the state */
11964         if (IS_HASWELL(dev_priv))
11965                 PIPE_CONF_CHECK_I(ips_enabled);
11966
11967         PIPE_CONF_CHECK_I(double_wide);
11968
11969         PIPE_CONF_CHECK_P(shared_dpll);
11970         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11971         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11972         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11973         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11974         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11975         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
11976         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11977         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11978         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11979
11980         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
11981         PIPE_CONF_CHECK_X(dsi_pll.div);
11982
11983         if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
11984                 PIPE_CONF_CHECK_I(pipe_bpp);
11985
11986         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11987         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11988
11989 #undef PIPE_CONF_CHECK_X
11990 #undef PIPE_CONF_CHECK_I
11991 #undef PIPE_CONF_CHECK_P
11992 #undef PIPE_CONF_CHECK_FLAGS
11993 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11994 #undef PIPE_CONF_QUIRK
11995
11996         return ret;
11997 }
11998
11999 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12000                                            const struct intel_crtc_state *pipe_config)
12001 {
12002         if (pipe_config->has_pch_encoder) {
12003                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12004                                                             &pipe_config->fdi_m_n);
12005                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12006
12007                 /*
12008                  * FDI already provided one idea for the dotclock.
12009                  * Yell if the encoder disagrees.
12010                  */
12011                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12012                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12013                      fdi_dotclock, dotclock);
12014         }
12015 }
12016
12017 static void verify_wm_state(struct drm_crtc *crtc,
12018                             struct drm_crtc_state *new_state)
12019 {
12020         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
12021         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12022         struct skl_pipe_wm hw_wm, *sw_wm;
12023         struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
12024         struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
12025         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12026         const enum pipe pipe = intel_crtc->pipe;
12027         int plane, level, max_level = ilk_wm_max_level(dev_priv);
12028
12029         if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
12030                 return;
12031
12032         skl_pipe_wm_get_hw_state(crtc, &hw_wm);
12033         sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
12034
12035         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12036         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12037
12038         /* planes */
12039         for_each_universal_plane(dev_priv, pipe, plane) {
12040                 hw_plane_wm = &hw_wm.planes[plane];
12041                 sw_plane_wm = &sw_wm->planes[plane];
12042
12043                 /* Watermarks */
12044                 for (level = 0; level <= max_level; level++) {
12045                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
12046                                                 &sw_plane_wm->wm[level]))
12047                                 continue;
12048
12049                         DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12050                                   pipe_name(pipe), plane + 1, level,
12051                                   sw_plane_wm->wm[level].plane_en,
12052                                   sw_plane_wm->wm[level].plane_res_b,
12053                                   sw_plane_wm->wm[level].plane_res_l,
12054                                   hw_plane_wm->wm[level].plane_en,
12055                                   hw_plane_wm->wm[level].plane_res_b,
12056                                   hw_plane_wm->wm[level].plane_res_l);
12057                 }
12058
12059                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
12060                                          &sw_plane_wm->trans_wm)) {
12061                         DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12062                                   pipe_name(pipe), plane + 1,
12063                                   sw_plane_wm->trans_wm.plane_en,
12064                                   sw_plane_wm->trans_wm.plane_res_b,
12065                                   sw_plane_wm->trans_wm.plane_res_l,
12066                                   hw_plane_wm->trans_wm.plane_en,
12067                                   hw_plane_wm->trans_wm.plane_res_b,
12068                                   hw_plane_wm->trans_wm.plane_res_l);
12069                 }
12070
12071                 /* DDB */
12072                 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
12073                 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
12074
12075                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
12076                         DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
12077                                   pipe_name(pipe), plane + 1,
12078                                   sw_ddb_entry->start, sw_ddb_entry->end,
12079                                   hw_ddb_entry->start, hw_ddb_entry->end);
12080                 }
12081         }
12082
12083         /*
12084          * cursor
12085          * If the cursor plane isn't active, we may not have updated it's ddb
12086          * allocation. In that case since the ddb allocation will be updated
12087          * once the plane becomes visible, we can skip this check
12088          */
12089         if (1) {
12090                 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
12091                 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
12092
12093                 /* Watermarks */
12094                 for (level = 0; level <= max_level; level++) {
12095                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
12096                                                 &sw_plane_wm->wm[level]))
12097                                 continue;
12098
12099                         DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12100                                   pipe_name(pipe), level,
12101                                   sw_plane_wm->wm[level].plane_en,
12102                                   sw_plane_wm->wm[level].plane_res_b,
12103                                   sw_plane_wm->wm[level].plane_res_l,
12104                                   hw_plane_wm->wm[level].plane_en,
12105                                   hw_plane_wm->wm[level].plane_res_b,
12106                                   hw_plane_wm->wm[level].plane_res_l);
12107                 }
12108
12109                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
12110                                          &sw_plane_wm->trans_wm)) {
12111                         DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12112                                   pipe_name(pipe),
12113                                   sw_plane_wm->trans_wm.plane_en,
12114                                   sw_plane_wm->trans_wm.plane_res_b,
12115                                   sw_plane_wm->trans_wm.plane_res_l,
12116                                   hw_plane_wm->trans_wm.plane_en,
12117                                   hw_plane_wm->trans_wm.plane_res_b,
12118                                   hw_plane_wm->trans_wm.plane_res_l);
12119                 }
12120
12121                 /* DDB */
12122                 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12123                 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12124
12125                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
12126                         DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
12127                                   pipe_name(pipe),
12128                                   sw_ddb_entry->start, sw_ddb_entry->end,
12129                                   hw_ddb_entry->start, hw_ddb_entry->end);
12130                 }
12131         }
12132 }
12133
12134 static void
12135 verify_connector_state(struct drm_device *dev,
12136                        struct drm_atomic_state *state,
12137                        struct drm_crtc *crtc)
12138 {
12139         struct drm_connector *connector;
12140         struct drm_connector_state *new_conn_state;
12141         int i;
12142
12143         for_each_new_connector_in_state(state, connector, new_conn_state, i) {
12144                 struct drm_encoder *encoder = connector->encoder;
12145                 struct drm_crtc_state *crtc_state = NULL;
12146
12147                 if (new_conn_state->crtc != crtc)
12148                         continue;
12149
12150                 if (crtc)
12151                         crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc);
12152
12153                 intel_connector_verify_state(crtc_state, new_conn_state);
12154
12155                 I915_STATE_WARN(new_conn_state->best_encoder != encoder,
12156                      "connector's atomic encoder doesn't match legacy encoder\n");
12157         }
12158 }
12159
12160 static void
12161 verify_encoder_state(struct drm_device *dev, struct drm_atomic_state *state)
12162 {
12163         struct intel_encoder *encoder;
12164         struct drm_connector *connector;
12165         struct drm_connector_state *old_conn_state, *new_conn_state;
12166         int i;
12167
12168         for_each_intel_encoder(dev, encoder) {
12169                 bool enabled = false, found = false;
12170                 enum pipe pipe;
12171
12172                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12173                               encoder->base.base.id,
12174                               encoder->base.name);
12175
12176                 for_each_oldnew_connector_in_state(state, connector, old_conn_state,
12177                                                    new_conn_state, i) {
12178                         if (old_conn_state->best_encoder == &encoder->base)
12179                                 found = true;
12180
12181                         if (new_conn_state->best_encoder != &encoder->base)
12182                                 continue;
12183                         found = enabled = true;
12184
12185                         I915_STATE_WARN(new_conn_state->crtc !=
12186                                         encoder->base.crtc,
12187                              "connector's crtc doesn't match encoder crtc\n");
12188                 }
12189
12190                 if (!found)
12191                         continue;
12192
12193                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12194                      "encoder's enabled state mismatch "
12195                      "(expected %i, found %i)\n",
12196                      !!encoder->base.crtc, enabled);
12197
12198                 if (!encoder->base.crtc) {
12199                         bool active;
12200
12201                         active = encoder->get_hw_state(encoder, &pipe);
12202                         I915_STATE_WARN(active,
12203                              "encoder detached but still enabled on pipe %c.\n",
12204                              pipe_name(pipe));
12205                 }
12206         }
12207 }
12208
12209 static void
12210 verify_crtc_state(struct drm_crtc *crtc,
12211                   struct drm_crtc_state *old_crtc_state,
12212                   struct drm_crtc_state *new_crtc_state)
12213 {
12214         struct drm_device *dev = crtc->dev;
12215         struct drm_i915_private *dev_priv = to_i915(dev);
12216         struct intel_encoder *encoder;
12217         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12218         struct intel_crtc_state *pipe_config, *sw_config;
12219         struct drm_atomic_state *old_state;
12220         bool active;
12221
12222         old_state = old_crtc_state->state;
12223         __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
12224         pipe_config = to_intel_crtc_state(old_crtc_state);
12225         memset(pipe_config, 0, sizeof(*pipe_config));
12226         pipe_config->base.crtc = crtc;
12227         pipe_config->base.state = old_state;
12228
12229         DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
12230
12231         active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12232
12233         /* we keep both pipes enabled on 830 */
12234         if (IS_I830(dev_priv))
12235                 active = new_crtc_state->active;
12236
12237         I915_STATE_WARN(new_crtc_state->active != active,
12238              "crtc active state doesn't match with hw state "
12239              "(expected %i, found %i)\n", new_crtc_state->active, active);
12240
12241         I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12242              "transitional active state does not match atomic hw state "
12243              "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12244
12245         for_each_encoder_on_crtc(dev, crtc, encoder) {
12246                 enum pipe pipe;
12247
12248                 active = encoder->get_hw_state(encoder, &pipe);
12249                 I915_STATE_WARN(active != new_crtc_state->active,
12250                         "[ENCODER:%i] active %i with crtc active %i\n",
12251                         encoder->base.base.id, active, new_crtc_state->active);
12252
12253                 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12254                                 "Encoder connected to wrong pipe %c\n",
12255                                 pipe_name(pipe));
12256
12257                 if (active) {
12258                         pipe_config->output_types |= 1 << encoder->type;
12259                         encoder->get_config(encoder, pipe_config);
12260                 }
12261         }
12262
12263         intel_crtc_compute_pixel_rate(pipe_config);
12264
12265         if (!new_crtc_state->active)
12266                 return;
12267
12268         intel_pipe_config_sanity_check(dev_priv, pipe_config);
12269
12270         sw_config = to_intel_crtc_state(new_crtc_state);
12271         if (!intel_pipe_config_compare(dev_priv, sw_config,
12272                                        pipe_config, false)) {
12273                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12274                 intel_dump_pipe_config(intel_crtc, pipe_config,
12275                                        "[hw state]");
12276                 intel_dump_pipe_config(intel_crtc, sw_config,
12277                                        "[sw state]");
12278         }
12279 }
12280
12281 static void
12282 verify_single_dpll_state(struct drm_i915_private *dev_priv,
12283                          struct intel_shared_dpll *pll,
12284                          struct drm_crtc *crtc,
12285                          struct drm_crtc_state *new_state)
12286 {
12287         struct intel_dpll_hw_state dpll_hw_state;
12288         unsigned crtc_mask;
12289         bool active;
12290
12291         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12292
12293         DRM_DEBUG_KMS("%s\n", pll->name);
12294
12295         active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
12296
12297         if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12298                 I915_STATE_WARN(!pll->on && pll->active_mask,
12299                      "pll in active use but not on in sw tracking\n");
12300                 I915_STATE_WARN(pll->on && !pll->active_mask,
12301                      "pll is on but not used by any active crtc\n");
12302                 I915_STATE_WARN(pll->on != active,
12303                      "pll on state mismatch (expected %i, found %i)\n",
12304                      pll->on, active);
12305         }
12306
12307         if (!crtc) {
12308                 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
12309                                 "more active pll users than references: %x vs %x\n",
12310                                 pll->active_mask, pll->state.crtc_mask);
12311
12312                 return;
12313         }
12314
12315         crtc_mask = 1 << drm_crtc_index(crtc);
12316
12317         if (new_state->active)
12318                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
12319                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
12320                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12321         else
12322                 I915_STATE_WARN(pll->active_mask & crtc_mask,
12323                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
12324                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12325
12326         I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
12327                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
12328                         crtc_mask, pll->state.crtc_mask);
12329
12330         I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
12331                                           &dpll_hw_state,
12332                                           sizeof(dpll_hw_state)),
12333                         "pll hw state mismatch\n");
12334 }
12335
12336 static void
12337 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
12338                          struct drm_crtc_state *old_crtc_state,
12339                          struct drm_crtc_state *new_crtc_state)
12340 {
12341         struct drm_i915_private *dev_priv = to_i915(dev);
12342         struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
12343         struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
12344
12345         if (new_state->shared_dpll)
12346                 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
12347
12348         if (old_state->shared_dpll &&
12349             old_state->shared_dpll != new_state->shared_dpll) {
12350                 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
12351                 struct intel_shared_dpll *pll = old_state->shared_dpll;
12352
12353                 I915_STATE_WARN(pll->active_mask & crtc_mask,
12354                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
12355                                 pipe_name(drm_crtc_index(crtc)));
12356                 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
12357                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
12358                                 pipe_name(drm_crtc_index(crtc)));
12359         }
12360 }
12361
12362 static void
12363 intel_modeset_verify_crtc(struct drm_crtc *crtc,
12364                           struct drm_atomic_state *state,
12365                           struct drm_crtc_state *old_state,
12366                           struct drm_crtc_state *new_state)
12367 {
12368         if (!needs_modeset(new_state) &&
12369             !to_intel_crtc_state(new_state)->update_pipe)
12370                 return;
12371
12372         verify_wm_state(crtc, new_state);
12373         verify_connector_state(crtc->dev, state, crtc);
12374         verify_crtc_state(crtc, old_state, new_state);
12375         verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
12376 }
12377
12378 static void
12379 verify_disabled_dpll_state(struct drm_device *dev)
12380 {
12381         struct drm_i915_private *dev_priv = to_i915(dev);
12382         int i;
12383
12384         for (i = 0; i < dev_priv->num_shared_dpll; i++)
12385                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
12386 }
12387
12388 static void
12389 intel_modeset_verify_disabled(struct drm_device *dev,
12390                               struct drm_atomic_state *state)
12391 {
12392         verify_encoder_state(dev, state);
12393         verify_connector_state(dev, state, NULL);
12394         verify_disabled_dpll_state(dev);
12395 }
12396
12397 static void update_scanline_offset(struct intel_crtc *crtc)
12398 {
12399         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12400
12401         /*
12402          * The scanline counter increments at the leading edge of hsync.
12403          *
12404          * On most platforms it starts counting from vtotal-1 on the
12405          * first active line. That means the scanline counter value is
12406          * always one less than what we would expect. Ie. just after
12407          * start of vblank, which also occurs at start of hsync (on the
12408          * last active line), the scanline counter will read vblank_start-1.
12409          *
12410          * On gen2 the scanline counter starts counting from 1 instead
12411          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12412          * to keep the value positive), instead of adding one.
12413          *
12414          * On HSW+ the behaviour of the scanline counter depends on the output
12415          * type. For DP ports it behaves like most other platforms, but on HDMI
12416          * there's an extra 1 line difference. So we need to add two instead of
12417          * one to the value.
12418          *
12419          * On VLV/CHV DSI the scanline counter would appear to increment
12420          * approx. 1/3 of a scanline before start of vblank. Unfortunately
12421          * that means we can't tell whether we're in vblank or not while
12422          * we're on that particular line. We must still set scanline_offset
12423          * to 1 so that the vblank timestamps come out correct when we query
12424          * the scanline counter from within the vblank interrupt handler.
12425          * However if queried just before the start of vblank we'll get an
12426          * answer that's slightly in the future.
12427          */
12428         if (IS_GEN2(dev_priv)) {
12429                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12430                 int vtotal;
12431
12432                 vtotal = adjusted_mode->crtc_vtotal;
12433                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12434                         vtotal /= 2;
12435
12436                 crtc->scanline_offset = vtotal - 1;
12437         } else if (HAS_DDI(dev_priv) &&
12438                    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
12439                 crtc->scanline_offset = 2;
12440         } else
12441                 crtc->scanline_offset = 1;
12442 }
12443
12444 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12445 {
12446         struct drm_device *dev = state->dev;
12447         struct drm_i915_private *dev_priv = to_i915(dev);
12448         struct drm_crtc *crtc;
12449         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12450         int i;
12451
12452         if (!dev_priv->display.crtc_compute_clock)
12453                 return;
12454
12455         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12456                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12457                 struct intel_shared_dpll *old_dpll =
12458                         to_intel_crtc_state(old_crtc_state)->shared_dpll;
12459
12460                 if (!needs_modeset(new_crtc_state))
12461                         continue;
12462
12463                 to_intel_crtc_state(new_crtc_state)->shared_dpll = NULL;
12464
12465                 if (!old_dpll)
12466                         continue;
12467
12468                 intel_release_shared_dpll(old_dpll, intel_crtc, state);
12469         }
12470 }
12471
12472 /*
12473  * This implements the workaround described in the "notes" section of the mode
12474  * set sequence documentation. When going from no pipes or single pipe to
12475  * multiple pipes, and planes are enabled after the pipe, we need to wait at
12476  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12477  */
12478 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12479 {
12480         struct drm_crtc_state *crtc_state;
12481         struct intel_crtc *intel_crtc;
12482         struct drm_crtc *crtc;
12483         struct intel_crtc_state *first_crtc_state = NULL;
12484         struct intel_crtc_state *other_crtc_state = NULL;
12485         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12486         int i;
12487
12488         /* look at all crtc's that are going to be enabled in during modeset */
12489         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
12490                 intel_crtc = to_intel_crtc(crtc);
12491
12492                 if (!crtc_state->active || !needs_modeset(crtc_state))
12493                         continue;
12494
12495                 if (first_crtc_state) {
12496                         other_crtc_state = to_intel_crtc_state(crtc_state);
12497                         break;
12498                 } else {
12499                         first_crtc_state = to_intel_crtc_state(crtc_state);
12500                         first_pipe = intel_crtc->pipe;
12501                 }
12502         }
12503
12504         /* No workaround needed? */
12505         if (!first_crtc_state)
12506                 return 0;
12507
12508         /* w/a possibly needed, check how many crtc's are already enabled. */
12509         for_each_intel_crtc(state->dev, intel_crtc) {
12510                 struct intel_crtc_state *pipe_config;
12511
12512                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12513                 if (IS_ERR(pipe_config))
12514                         return PTR_ERR(pipe_config);
12515
12516                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12517
12518                 if (!pipe_config->base.active ||
12519                     needs_modeset(&pipe_config->base))
12520                         continue;
12521
12522                 /* 2 or more enabled crtcs means no need for w/a */
12523                 if (enabled_pipe != INVALID_PIPE)
12524                         return 0;
12525
12526                 enabled_pipe = intel_crtc->pipe;
12527         }
12528
12529         if (enabled_pipe != INVALID_PIPE)
12530                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12531         else if (other_crtc_state)
12532                 other_crtc_state->hsw_workaround_pipe = first_pipe;
12533
12534         return 0;
12535 }
12536
12537 static int intel_lock_all_pipes(struct drm_atomic_state *state)
12538 {
12539         struct drm_crtc *crtc;
12540
12541         /* Add all pipes to the state */
12542         for_each_crtc(state->dev, crtc) {
12543                 struct drm_crtc_state *crtc_state;
12544
12545                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12546                 if (IS_ERR(crtc_state))
12547                         return PTR_ERR(crtc_state);
12548         }
12549
12550         return 0;
12551 }
12552
12553 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12554 {
12555         struct drm_crtc *crtc;
12556
12557         /*
12558          * Add all pipes to the state, and force
12559          * a modeset on all the active ones.
12560          */
12561         for_each_crtc(state->dev, crtc) {
12562                 struct drm_crtc_state *crtc_state;
12563                 int ret;
12564
12565                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12566                 if (IS_ERR(crtc_state))
12567                         return PTR_ERR(crtc_state);
12568
12569                 if (!crtc_state->active || needs_modeset(crtc_state))
12570                         continue;
12571
12572                 crtc_state->mode_changed = true;
12573
12574                 ret = drm_atomic_add_affected_connectors(state, crtc);
12575                 if (ret)
12576                         return ret;
12577
12578                 ret = drm_atomic_add_affected_planes(state, crtc);
12579                 if (ret)
12580                         return ret;
12581         }
12582
12583         return 0;
12584 }
12585
12586 static int intel_modeset_checks(struct drm_atomic_state *state)
12587 {
12588         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12589         struct drm_i915_private *dev_priv = to_i915(state->dev);
12590         struct drm_crtc *crtc;
12591         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12592         int ret = 0, i;
12593
12594         if (!check_digital_port_conflicts(state)) {
12595                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12596                 return -EINVAL;
12597         }
12598
12599         intel_state->modeset = true;
12600         intel_state->active_crtcs = dev_priv->active_crtcs;
12601         intel_state->cdclk.logical = dev_priv->cdclk.logical;
12602         intel_state->cdclk.actual = dev_priv->cdclk.actual;
12603
12604         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12605                 if (new_crtc_state->active)
12606                         intel_state->active_crtcs |= 1 << i;
12607                 else
12608                         intel_state->active_crtcs &= ~(1 << i);
12609
12610                 if (old_crtc_state->active != new_crtc_state->active)
12611                         intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
12612         }
12613
12614         /*
12615          * See if the config requires any additional preparation, e.g.
12616          * to adjust global state with pipes off.  We need to do this
12617          * here so we can get the modeset_pipe updated config for the new
12618          * mode set on this crtc.  For other crtcs we need to use the
12619          * adjusted_mode bits in the crtc directly.
12620          */
12621         if (dev_priv->display.modeset_calc_cdclk) {
12622                 ret = dev_priv->display.modeset_calc_cdclk(state);
12623                 if (ret < 0)
12624                         return ret;
12625
12626                 /*
12627                  * Writes to dev_priv->cdclk.logical must protected by
12628                  * holding all the crtc locks, even if we don't end up
12629                  * touching the hardware
12630                  */
12631                 if (!intel_cdclk_state_compare(&dev_priv->cdclk.logical,
12632                                                &intel_state->cdclk.logical)) {
12633                         ret = intel_lock_all_pipes(state);
12634                         if (ret < 0)
12635                                 return ret;
12636                 }
12637
12638                 /* All pipes must be switched off while we change the cdclk. */
12639                 if (!intel_cdclk_state_compare(&dev_priv->cdclk.actual,
12640                                                &intel_state->cdclk.actual)) {
12641                         ret = intel_modeset_all_pipes(state);
12642                         if (ret < 0)
12643                                 return ret;
12644                 }
12645
12646                 DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n",
12647                               intel_state->cdclk.logical.cdclk,
12648                               intel_state->cdclk.actual.cdclk);
12649         } else {
12650                 to_intel_atomic_state(state)->cdclk.logical = dev_priv->cdclk.logical;
12651         }
12652
12653         intel_modeset_clear_plls(state);
12654
12655         if (IS_HASWELL(dev_priv))
12656                 return haswell_mode_set_planes_workaround(state);
12657
12658         return 0;
12659 }
12660
12661 /*
12662  * Handle calculation of various watermark data at the end of the atomic check
12663  * phase.  The code here should be run after the per-crtc and per-plane 'check'
12664  * handlers to ensure that all derived state has been updated.
12665  */
12666 static int calc_watermark_data(struct drm_atomic_state *state)
12667 {
12668         struct drm_device *dev = state->dev;
12669         struct drm_i915_private *dev_priv = to_i915(dev);
12670
12671         /* Is there platform-specific watermark information to calculate? */
12672         if (dev_priv->display.compute_global_watermarks)
12673                 return dev_priv->display.compute_global_watermarks(state);
12674
12675         return 0;
12676 }
12677
12678 /**
12679  * intel_atomic_check - validate state object
12680  * @dev: drm device
12681  * @state: state to validate
12682  */
12683 static int intel_atomic_check(struct drm_device *dev,
12684                               struct drm_atomic_state *state)
12685 {
12686         struct drm_i915_private *dev_priv = to_i915(dev);
12687         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12688         struct drm_crtc *crtc;
12689         struct drm_crtc_state *old_crtc_state, *crtc_state;
12690         int ret, i;
12691         bool any_ms = false;
12692
12693         ret = drm_atomic_helper_check_modeset(dev, state);
12694         if (ret)
12695                 return ret;
12696
12697         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, crtc_state, i) {
12698                 struct intel_crtc_state *pipe_config =
12699                         to_intel_crtc_state(crtc_state);
12700
12701                 /* Catch I915_MODE_FLAG_INHERITED */
12702                 if (crtc_state->mode.private_flags != old_crtc_state->mode.private_flags)
12703                         crtc_state->mode_changed = true;
12704
12705                 if (!needs_modeset(crtc_state))
12706                         continue;
12707
12708                 if (!crtc_state->enable) {
12709                         any_ms = true;
12710                         continue;
12711                 }
12712
12713                 /* FIXME: For only active_changed we shouldn't need to do any
12714                  * state recomputation at all. */
12715
12716                 ret = drm_atomic_add_affected_connectors(state, crtc);
12717                 if (ret)
12718                         return ret;
12719
12720                 ret = intel_modeset_pipe_config(crtc, pipe_config);
12721                 if (ret) {
12722                         intel_dump_pipe_config(to_intel_crtc(crtc),
12723                                                pipe_config, "[failed]");
12724                         return ret;
12725                 }
12726
12727                 if (i915.fastboot &&
12728                     intel_pipe_config_compare(dev_priv,
12729                                         to_intel_crtc_state(old_crtc_state),
12730                                         pipe_config, true)) {
12731                         crtc_state->mode_changed = false;
12732                         pipe_config->update_pipe = true;
12733                 }
12734
12735                 if (needs_modeset(crtc_state))
12736                         any_ms = true;
12737
12738                 ret = drm_atomic_add_affected_planes(state, crtc);
12739                 if (ret)
12740                         return ret;
12741
12742                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
12743                                        needs_modeset(crtc_state) ?
12744                                        "[modeset]" : "[fastset]");
12745         }
12746
12747         if (any_ms) {
12748                 ret = intel_modeset_checks(state);
12749
12750                 if (ret)
12751                         return ret;
12752         } else {
12753                 intel_state->cdclk.logical = dev_priv->cdclk.logical;
12754         }
12755
12756         ret = drm_atomic_helper_check_planes(dev, state);
12757         if (ret)
12758                 return ret;
12759
12760         intel_fbc_choose_crtc(dev_priv, state);
12761         return calc_watermark_data(state);
12762 }
12763
12764 static int intel_atomic_prepare_commit(struct drm_device *dev,
12765                                        struct drm_atomic_state *state)
12766 {
12767         struct drm_i915_private *dev_priv = to_i915(dev);
12768         struct drm_crtc_state *crtc_state;
12769         struct drm_crtc *crtc;
12770         int i, ret;
12771
12772         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
12773                 if (state->legacy_cursor_update)
12774                         continue;
12775
12776                 ret = intel_crtc_wait_for_pending_flips(crtc);
12777                 if (ret)
12778                         return ret;
12779
12780                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
12781                         flush_workqueue(dev_priv->wq);
12782         }
12783
12784         ret = mutex_lock_interruptible(&dev->struct_mutex);
12785         if (ret)
12786                 return ret;
12787
12788         ret = drm_atomic_helper_prepare_planes(dev, state);
12789         mutex_unlock(&dev->struct_mutex);
12790
12791         return ret;
12792 }
12793
12794 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
12795 {
12796         struct drm_device *dev = crtc->base.dev;
12797
12798         if (!dev->max_vblank_count)
12799                 return drm_accurate_vblank_count(&crtc->base);
12800
12801         return dev->driver->get_vblank_counter(dev, crtc->pipe);
12802 }
12803
12804 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
12805                                           struct drm_i915_private *dev_priv,
12806                                           unsigned crtc_mask)
12807 {
12808         unsigned last_vblank_count[I915_MAX_PIPES];
12809         enum pipe pipe;
12810         int ret;
12811
12812         if (!crtc_mask)
12813                 return;
12814
12815         for_each_pipe(dev_priv, pipe) {
12816                 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12817                                                                   pipe);
12818
12819                 if (!((1 << pipe) & crtc_mask))
12820                         continue;
12821
12822                 ret = drm_crtc_vblank_get(&crtc->base);
12823                 if (WARN_ON(ret != 0)) {
12824                         crtc_mask &= ~(1 << pipe);
12825                         continue;
12826                 }
12827
12828                 last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
12829         }
12830
12831         for_each_pipe(dev_priv, pipe) {
12832                 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12833                                                                   pipe);
12834                 long lret;
12835
12836                 if (!((1 << pipe) & crtc_mask))
12837                         continue;
12838
12839                 lret = wait_event_timeout(dev->vblank[pipe].queue,
12840                                 last_vblank_count[pipe] !=
12841                                         drm_crtc_vblank_count(&crtc->base),
12842                                 msecs_to_jiffies(50));
12843
12844                 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
12845
12846                 drm_crtc_vblank_put(&crtc->base);
12847         }
12848 }
12849
12850 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
12851 {
12852         /* fb updated, need to unpin old fb */
12853         if (crtc_state->fb_changed)
12854                 return true;
12855
12856         /* wm changes, need vblank before final wm's */
12857         if (crtc_state->update_wm_post)
12858                 return true;
12859
12860         if (crtc_state->wm.need_postvbl_update)
12861                 return true;
12862
12863         return false;
12864 }
12865
12866 static void intel_update_crtc(struct drm_crtc *crtc,
12867                               struct drm_atomic_state *state,
12868                               struct drm_crtc_state *old_crtc_state,
12869                               struct drm_crtc_state *new_crtc_state,
12870                               unsigned int *crtc_vblank_mask)
12871 {
12872         struct drm_device *dev = crtc->dev;
12873         struct drm_i915_private *dev_priv = to_i915(dev);
12874         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12875         struct intel_crtc_state *pipe_config = to_intel_crtc_state(new_crtc_state);
12876         bool modeset = needs_modeset(new_crtc_state);
12877
12878         if (modeset) {
12879                 update_scanline_offset(intel_crtc);
12880                 dev_priv->display.crtc_enable(pipe_config, state);
12881         } else {
12882                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12883                                        pipe_config);
12884         }
12885
12886         if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12887                 intel_fbc_enable(
12888                     intel_crtc, pipe_config,
12889                     to_intel_plane_state(crtc->primary->state));
12890         }
12891
12892         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
12893
12894         if (needs_vblank_wait(pipe_config))
12895                 *crtc_vblank_mask |= drm_crtc_mask(crtc);
12896 }
12897
12898 static void intel_update_crtcs(struct drm_atomic_state *state,
12899                                unsigned int *crtc_vblank_mask)
12900 {
12901         struct drm_crtc *crtc;
12902         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12903         int i;
12904
12905         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12906                 if (!new_crtc_state->active)
12907                         continue;
12908
12909                 intel_update_crtc(crtc, state, old_crtc_state,
12910                                   new_crtc_state, crtc_vblank_mask);
12911         }
12912 }
12913
12914 static void skl_update_crtcs(struct drm_atomic_state *state,
12915                              unsigned int *crtc_vblank_mask)
12916 {
12917         struct drm_i915_private *dev_priv = to_i915(state->dev);
12918         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12919         struct drm_crtc *crtc;
12920         struct intel_crtc *intel_crtc;
12921         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12922         struct intel_crtc_state *cstate;
12923         unsigned int updated = 0;
12924         bool progress;
12925         enum pipe pipe;
12926         int i;
12927
12928         const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
12929
12930         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i)
12931                 /* ignore allocations for crtc's that have been turned off. */
12932                 if (new_crtc_state->active)
12933                         entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
12934
12935         /*
12936          * Whenever the number of active pipes changes, we need to make sure we
12937          * update the pipes in the right order so that their ddb allocations
12938          * never overlap with eachother inbetween CRTC updates. Otherwise we'll
12939          * cause pipe underruns and other bad stuff.
12940          */
12941         do {
12942                 progress = false;
12943
12944                 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12945                         bool vbl_wait = false;
12946                         unsigned int cmask = drm_crtc_mask(crtc);
12947
12948                         intel_crtc = to_intel_crtc(crtc);
12949                         cstate = to_intel_crtc_state(crtc->state);
12950                         pipe = intel_crtc->pipe;
12951
12952                         if (updated & cmask || !cstate->base.active)
12953                                 continue;
12954
12955                         if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
12956                                 continue;
12957
12958                         updated |= cmask;
12959                         entries[i] = &cstate->wm.skl.ddb;
12960
12961                         /*
12962                          * If this is an already active pipe, it's DDB changed,
12963                          * and this isn't the last pipe that needs updating
12964                          * then we need to wait for a vblank to pass for the
12965                          * new ddb allocation to take effect.
12966                          */
12967                         if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
12968                                                  &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
12969                             !new_crtc_state->active_changed &&
12970                             intel_state->wm_results.dirty_pipes != updated)
12971                                 vbl_wait = true;
12972
12973                         intel_update_crtc(crtc, state, old_crtc_state,
12974                                           new_crtc_state, crtc_vblank_mask);
12975
12976                         if (vbl_wait)
12977                                 intel_wait_for_vblank(dev_priv, pipe);
12978
12979                         progress = true;
12980                 }
12981         } while (progress);
12982 }
12983
12984 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
12985 {
12986         struct intel_atomic_state *state, *next;
12987         struct llist_node *freed;
12988
12989         freed = llist_del_all(&dev_priv->atomic_helper.free_list);
12990         llist_for_each_entry_safe(state, next, freed, freed)
12991                 drm_atomic_state_put(&state->base);
12992 }
12993
12994 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
12995 {
12996         struct drm_i915_private *dev_priv =
12997                 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
12998
12999         intel_atomic_helper_free_state(dev_priv);
13000 }
13001
13002 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
13003 {
13004         struct drm_device *dev = state->dev;
13005         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13006         struct drm_i915_private *dev_priv = to_i915(dev);
13007         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
13008         struct drm_crtc *crtc;
13009         struct intel_crtc_state *intel_cstate;
13010         bool hw_check = intel_state->modeset;
13011         u64 put_domains[I915_MAX_PIPES] = {};
13012         unsigned crtc_vblank_mask = 0;
13013         int i;
13014
13015         drm_atomic_helper_wait_for_dependencies(state);
13016
13017         if (intel_state->modeset)
13018                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13019
13020         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
13021                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13022
13023                 if (needs_modeset(new_crtc_state) ||
13024                     to_intel_crtc_state(new_crtc_state)->update_pipe) {
13025                         hw_check = true;
13026
13027                         put_domains[to_intel_crtc(crtc)->pipe] =
13028                                 modeset_get_crtc_power_domains(crtc,
13029                                         to_intel_crtc_state(new_crtc_state));
13030                 }
13031
13032                 if (!needs_modeset(new_crtc_state))
13033                         continue;
13034
13035                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
13036                                        to_intel_crtc_state(new_crtc_state));
13037
13038                 if (old_crtc_state->active) {
13039                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13040                         dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
13041                         intel_crtc->active = false;
13042                         intel_fbc_disable(intel_crtc);
13043                         intel_disable_shared_dpll(intel_crtc);
13044
13045                         /*
13046                          * Underruns don't always raise
13047                          * interrupts, so check manually.
13048                          */
13049                         intel_check_cpu_fifo_underruns(dev_priv);
13050                         intel_check_pch_fifo_underruns(dev_priv);
13051
13052                         if (!crtc->state->active) {
13053                                 /*
13054                                  * Make sure we don't call initial_watermarks
13055                                  * for ILK-style watermark updates.
13056                                  *
13057                                  * No clue what this is supposed to achieve.
13058                                  */
13059                                 if (INTEL_GEN(dev_priv) >= 9)
13060                                         dev_priv->display.initial_watermarks(intel_state,
13061                                                                              to_intel_crtc_state(crtc->state));
13062                         }
13063                 }
13064         }
13065
13066         /* Only after disabling all output pipelines that will be changed can we
13067          * update the the output configuration. */
13068         intel_modeset_update_crtc_state(state);
13069
13070         if (intel_state->modeset) {
13071                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13072
13073                 intel_set_cdclk(dev_priv, &dev_priv->cdclk.actual);
13074
13075                 /*
13076                  * SKL workaround: bspec recommends we disable the SAGV when we
13077                  * have more then one pipe enabled
13078                  */
13079                 if (!intel_can_enable_sagv(state))
13080                         intel_disable_sagv(dev_priv);
13081
13082                 intel_modeset_verify_disabled(dev, state);
13083         }
13084
13085         /* Complete the events for pipes that have now been disabled */
13086         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
13087                 bool modeset = needs_modeset(new_crtc_state);
13088
13089                 /* Complete events for now disable pipes here. */
13090                 if (modeset && !new_crtc_state->active && new_crtc_state->event) {
13091                         spin_lock_irq(&dev->event_lock);
13092                         drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
13093                         spin_unlock_irq(&dev->event_lock);
13094
13095                         new_crtc_state->event = NULL;
13096                 }
13097         }
13098
13099         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13100         dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
13101
13102         /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
13103          * already, but still need the state for the delayed optimization. To
13104          * fix this:
13105          * - wrap the optimization/post_plane_update stuff into a per-crtc work.
13106          * - schedule that vblank worker _before_ calling hw_done
13107          * - at the start of commit_tail, cancel it _synchrously
13108          * - switch over to the vblank wait helper in the core after that since
13109          *   we don't need out special handling any more.
13110          */
13111         if (!state->legacy_cursor_update)
13112                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13113
13114         /*
13115          * Now that the vblank has passed, we can go ahead and program the
13116          * optimal watermarks on platforms that need two-step watermark
13117          * programming.
13118          *
13119          * TODO: Move this (and other cleanup) to an async worker eventually.
13120          */
13121         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
13122                 intel_cstate = to_intel_crtc_state(new_crtc_state);
13123
13124                 if (dev_priv->display.optimize_watermarks)
13125                         dev_priv->display.optimize_watermarks(intel_state,
13126                                                               intel_cstate);
13127         }
13128
13129         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
13130                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13131
13132                 if (put_domains[i])
13133                         modeset_put_power_domains(dev_priv, put_domains[i]);
13134
13135                 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
13136         }
13137
13138         if (intel_state->modeset && intel_can_enable_sagv(state))
13139                 intel_enable_sagv(dev_priv);
13140
13141         drm_atomic_helper_commit_hw_done(state);
13142
13143         if (intel_state->modeset) {
13144                 /* As one of the primary mmio accessors, KMS has a high
13145                  * likelihood of triggering bugs in unclaimed access. After we
13146                  * finish modesetting, see if an error has been flagged, and if
13147                  * so enable debugging for the next modeset - and hope we catch
13148                  * the culprit.
13149                  */
13150                 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13151                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13152         }
13153
13154         mutex_lock(&dev->struct_mutex);
13155         drm_atomic_helper_cleanup_planes(dev, state);
13156         mutex_unlock(&dev->struct_mutex);
13157
13158         drm_atomic_helper_commit_cleanup_done(state);
13159
13160         drm_atomic_state_put(state);
13161
13162         intel_atomic_helper_free_state(dev_priv);
13163 }
13164
13165 static void intel_atomic_commit_work(struct work_struct *work)
13166 {
13167         struct drm_atomic_state *state =
13168                 container_of(work, struct drm_atomic_state, commit_work);
13169
13170         intel_atomic_commit_tail(state);
13171 }
13172
13173 static int __i915_sw_fence_call
13174 intel_atomic_commit_ready(struct i915_sw_fence *fence,
13175                           enum i915_sw_fence_notify notify)
13176 {
13177         struct intel_atomic_state *state =
13178                 container_of(fence, struct intel_atomic_state, commit_ready);
13179
13180         switch (notify) {
13181         case FENCE_COMPLETE:
13182                 if (state->base.commit_work.func)
13183                         queue_work(system_unbound_wq, &state->base.commit_work);
13184                 break;
13185
13186         case FENCE_FREE:
13187                 {
13188                         struct intel_atomic_helper *helper =
13189                                 &to_i915(state->base.dev)->atomic_helper;
13190
13191                         if (llist_add(&state->freed, &helper->free_list))
13192                                 schedule_work(&helper->free_work);
13193                         break;
13194                 }
13195         }
13196
13197         return NOTIFY_DONE;
13198 }
13199
13200 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
13201 {
13202         struct drm_plane_state *old_plane_state, *new_plane_state;
13203         struct drm_plane *plane;
13204         int i;
13205
13206         for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i)
13207                 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
13208                                   intel_fb_obj(new_plane_state->fb),
13209                                   to_intel_plane(plane)->frontbuffer_bit);
13210 }
13211
13212 /**
13213  * intel_atomic_commit - commit validated state object
13214  * @dev: DRM device
13215  * @state: the top-level driver state object
13216  * @nonblock: nonblocking commit
13217  *
13218  * This function commits a top-level state object that has been validated
13219  * with drm_atomic_helper_check().
13220  *
13221  * RETURNS
13222  * Zero for success or -errno.
13223  */
13224 static int intel_atomic_commit(struct drm_device *dev,
13225                                struct drm_atomic_state *state,
13226                                bool nonblock)
13227 {
13228         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13229         struct drm_i915_private *dev_priv = to_i915(dev);
13230         int ret = 0;
13231
13232         ret = drm_atomic_helper_setup_commit(state, nonblock);
13233         if (ret)
13234                 return ret;
13235
13236         drm_atomic_state_get(state);
13237         i915_sw_fence_init(&intel_state->commit_ready,
13238                            intel_atomic_commit_ready);
13239
13240         ret = intel_atomic_prepare_commit(dev, state);
13241         if (ret) {
13242                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13243                 i915_sw_fence_commit(&intel_state->commit_ready);
13244                 return ret;
13245         }
13246
13247         /*
13248          * The intel_legacy_cursor_update() fast path takes care
13249          * of avoiding the vblank waits for simple cursor
13250          * movement and flips. For cursor on/off and size changes,
13251          * we want to perform the vblank waits so that watermark
13252          * updates happen during the correct frames. Gen9+ have
13253          * double buffered watermarks and so shouldn't need this.
13254          *
13255          * Do this after drm_atomic_helper_setup_commit() and
13256          * intel_atomic_prepare_commit() because we still want
13257          * to skip the flip and fb cleanup waits. Although that
13258          * does risk yanking the mapping from under the display
13259          * engine.
13260          *
13261          * FIXME doing watermarks and fb cleanup from a vblank worker
13262          * (assuming we had any) would solve these problems.
13263          */
13264         if (INTEL_GEN(dev_priv) < 9)
13265                 state->legacy_cursor_update = false;
13266
13267         drm_atomic_helper_swap_state(state, true);
13268         dev_priv->wm.distrust_bios_wm = false;
13269         intel_shared_dpll_swap_state(state);
13270         intel_atomic_track_fbs(state);
13271
13272         if (intel_state->modeset) {
13273                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13274                        sizeof(intel_state->min_pixclk));
13275                 dev_priv->active_crtcs = intel_state->active_crtcs;
13276                 dev_priv->cdclk.logical = intel_state->cdclk.logical;
13277                 dev_priv->cdclk.actual = intel_state->cdclk.actual;
13278         }
13279
13280         drm_atomic_state_get(state);
13281         INIT_WORK(&state->commit_work,
13282                   nonblock ? intel_atomic_commit_work : NULL);
13283
13284         i915_sw_fence_commit(&intel_state->commit_ready);
13285         if (!nonblock) {
13286                 i915_sw_fence_wait(&intel_state->commit_ready);
13287                 intel_atomic_commit_tail(state);
13288         }
13289
13290         return 0;
13291 }
13292
13293 static const struct drm_crtc_funcs intel_crtc_funcs = {
13294         .gamma_set = drm_atomic_helper_legacy_gamma_set,
13295         .set_config = drm_atomic_helper_set_config,
13296         .set_property = drm_atomic_helper_crtc_set_property,
13297         .destroy = intel_crtc_destroy,
13298         .page_flip = drm_atomic_helper_page_flip,
13299         .atomic_duplicate_state = intel_crtc_duplicate_state,
13300         .atomic_destroy_state = intel_crtc_destroy_state,
13301         .set_crc_source = intel_crtc_set_crc_source,
13302 };
13303
13304 /**
13305  * intel_prepare_plane_fb - Prepare fb for usage on plane
13306  * @plane: drm plane to prepare for
13307  * @fb: framebuffer to prepare for presentation
13308  *
13309  * Prepares a framebuffer for usage on a display plane.  Generally this
13310  * involves pinning the underlying object and updating the frontbuffer tracking
13311  * bits.  Some older platforms need special physical address handling for
13312  * cursor planes.
13313  *
13314  * Must be called with struct_mutex held.
13315  *
13316  * Returns 0 on success, negative error code on failure.
13317  */
13318 int
13319 intel_prepare_plane_fb(struct drm_plane *plane,
13320                        struct drm_plane_state *new_state)
13321 {
13322         struct intel_atomic_state *intel_state =
13323                 to_intel_atomic_state(new_state->state);
13324         struct drm_i915_private *dev_priv = to_i915(plane->dev);
13325         struct drm_framebuffer *fb = new_state->fb;
13326         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13327         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13328         int ret;
13329
13330         if (obj) {
13331                 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13332                     INTEL_INFO(dev_priv)->cursor_needs_physical) {
13333                         const int align = intel_cursor_alignment(dev_priv);
13334
13335                         ret = i915_gem_object_attach_phys(obj, align);
13336                         if (ret) {
13337                                 DRM_DEBUG_KMS("failed to attach phys object\n");
13338                                 return ret;
13339                         }
13340                 } else {
13341                         struct i915_vma *vma;
13342
13343                         vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13344                         if (IS_ERR(vma)) {
13345                                 DRM_DEBUG_KMS("failed to pin object\n");
13346                                 return PTR_ERR(vma);
13347                         }
13348
13349                         to_intel_plane_state(new_state)->vma = vma;
13350                 }
13351         }
13352
13353         if (!obj && !old_obj)
13354                 return 0;
13355
13356         if (old_obj) {
13357                 struct drm_crtc_state *crtc_state =
13358                         drm_atomic_get_existing_crtc_state(new_state->state,
13359                                                            plane->state->crtc);
13360
13361                 /* Big Hammer, we also need to ensure that any pending
13362                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13363                  * current scanout is retired before unpinning the old
13364                  * framebuffer. Note that we rely on userspace rendering
13365                  * into the buffer attached to the pipe they are waiting
13366                  * on. If not, userspace generates a GPU hang with IPEHR
13367                  * point to the MI_WAIT_FOR_EVENT.
13368                  *
13369                  * This should only fail upon a hung GPU, in which case we
13370                  * can safely continue.
13371                  */
13372                 if (needs_modeset(crtc_state)) {
13373                         ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
13374                                                               old_obj->resv, NULL,
13375                                                               false, 0,
13376                                                               GFP_KERNEL);
13377                         if (ret < 0)
13378                                 return ret;
13379                 }
13380         }
13381
13382         if (new_state->fence) { /* explicit fencing */
13383                 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
13384                                                     new_state->fence,
13385                                                     I915_FENCE_TIMEOUT,
13386                                                     GFP_KERNEL);
13387                 if (ret < 0)
13388                         return ret;
13389         }
13390
13391         if (!obj)
13392                 return 0;
13393
13394         if (!new_state->fence) { /* implicit fencing */
13395                 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
13396                                                       obj->resv, NULL,
13397                                                       false, I915_FENCE_TIMEOUT,
13398                                                       GFP_KERNEL);
13399                 if (ret < 0)
13400                         return ret;
13401
13402                 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
13403         }
13404
13405         return 0;
13406 }
13407
13408 /**
13409  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13410  * @plane: drm plane to clean up for
13411  * @fb: old framebuffer that was on plane
13412  *
13413  * Cleans up a framebuffer that has just been removed from a plane.
13414  *
13415  * Must be called with struct_mutex held.
13416  */
13417 void
13418 intel_cleanup_plane_fb(struct drm_plane *plane,
13419                        struct drm_plane_state *old_state)
13420 {
13421         struct i915_vma *vma;
13422
13423         /* Should only be called after a successful intel_prepare_plane_fb()! */
13424         vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
13425         if (vma)
13426                 intel_unpin_fb_vma(vma);
13427 }
13428
13429 int
13430 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13431 {
13432         struct drm_i915_private *dev_priv;
13433         int max_scale;
13434         int crtc_clock, max_dotclk;
13435
13436         if (!intel_crtc || !crtc_state->base.enable)
13437                 return DRM_PLANE_HELPER_NO_SCALING;
13438
13439         dev_priv = to_i915(intel_crtc->base.dev);
13440
13441         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13442         max_dotclk = to_intel_atomic_state(crtc_state->base.state)->cdclk.logical.cdclk;
13443
13444         if (IS_GEMINILAKE(dev_priv))
13445                 max_dotclk *= 2;
13446
13447         if (WARN_ON_ONCE(!crtc_clock || max_dotclk < crtc_clock))
13448                 return DRM_PLANE_HELPER_NO_SCALING;
13449
13450         /*
13451          * skl max scale is lower of:
13452          *    close to 3 but not 3, -1 is for that purpose
13453          *            or
13454          *    cdclk/crtc_clock
13455          */
13456         max_scale = min((1 << 16) * 3 - 1,
13457                         (1 << 8) * ((max_dotclk << 8) / crtc_clock));
13458
13459         return max_scale;
13460 }
13461
13462 static int
13463 intel_check_primary_plane(struct intel_plane *plane,
13464                           struct intel_crtc_state *crtc_state,
13465                           struct intel_plane_state *state)
13466 {
13467         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
13468         struct drm_crtc *crtc = state->base.crtc;
13469         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13470         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13471         bool can_position = false;
13472         int ret;
13473
13474         if (INTEL_GEN(dev_priv) >= 9) {
13475                 /* use scaler when colorkey is not required */
13476                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13477                         min_scale = 1;
13478                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13479                 }
13480                 can_position = true;
13481         }
13482
13483         ret = drm_plane_helper_check_state(&state->base,
13484                                            &state->clip,
13485                                            min_scale, max_scale,
13486                                            can_position, true);
13487         if (ret)
13488                 return ret;
13489
13490         if (!state->base.fb)
13491                 return 0;
13492
13493         if (INTEL_GEN(dev_priv) >= 9) {
13494                 ret = skl_check_plane_surface(state);
13495                 if (ret)
13496                         return ret;
13497
13498                 state->ctl = skl_plane_ctl(crtc_state, state);
13499         } else {
13500                 ret = i9xx_check_plane_surface(state);
13501                 if (ret)
13502                         return ret;
13503
13504                 state->ctl = i9xx_plane_ctl(crtc_state, state);
13505         }
13506
13507         return 0;
13508 }
13509
13510 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13511                                     struct drm_crtc_state *old_crtc_state)
13512 {
13513         struct drm_device *dev = crtc->dev;
13514         struct drm_i915_private *dev_priv = to_i915(dev);
13515         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13516         struct intel_crtc_state *intel_cstate =
13517                 to_intel_crtc_state(crtc->state);
13518         struct intel_crtc_state *old_intel_cstate =
13519                 to_intel_crtc_state(old_crtc_state);
13520         struct intel_atomic_state *old_intel_state =
13521                 to_intel_atomic_state(old_crtc_state->state);
13522         bool modeset = needs_modeset(crtc->state);
13523
13524         if (!modeset &&
13525             (intel_cstate->base.color_mgmt_changed ||
13526              intel_cstate->update_pipe)) {
13527                 intel_color_set_csc(crtc->state);
13528                 intel_color_load_luts(crtc->state);
13529         }
13530
13531         /* Perform vblank evasion around commit operation */
13532         intel_pipe_update_start(intel_crtc);
13533
13534         if (modeset)
13535                 goto out;
13536
13537         if (intel_cstate->update_pipe)
13538                 intel_update_pipe_config(intel_crtc, old_intel_cstate);
13539         else if (INTEL_GEN(dev_priv) >= 9)
13540                 skl_detach_scalers(intel_crtc);
13541
13542 out:
13543         if (dev_priv->display.atomic_update_watermarks)
13544                 dev_priv->display.atomic_update_watermarks(old_intel_state,
13545                                                            intel_cstate);
13546 }
13547
13548 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13549                                      struct drm_crtc_state *old_crtc_state)
13550 {
13551         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13552
13553         intel_pipe_update_end(intel_crtc, NULL);
13554 }
13555
13556 /**
13557  * intel_plane_destroy - destroy a plane
13558  * @plane: plane to destroy
13559  *
13560  * Common destruction function for all types of planes (primary, cursor,
13561  * sprite).
13562  */
13563 void intel_plane_destroy(struct drm_plane *plane)
13564 {
13565         drm_plane_cleanup(plane);
13566         kfree(to_intel_plane(plane));
13567 }
13568
13569 const struct drm_plane_funcs intel_plane_funcs = {
13570         .update_plane = drm_atomic_helper_update_plane,
13571         .disable_plane = drm_atomic_helper_disable_plane,
13572         .destroy = intel_plane_destroy,
13573         .set_property = drm_atomic_helper_plane_set_property,
13574         .atomic_get_property = intel_plane_atomic_get_property,
13575         .atomic_set_property = intel_plane_atomic_set_property,
13576         .atomic_duplicate_state = intel_plane_duplicate_state,
13577         .atomic_destroy_state = intel_plane_destroy_state,
13578 };
13579
13580 static int
13581 intel_legacy_cursor_update(struct drm_plane *plane,
13582                            struct drm_crtc *crtc,
13583                            struct drm_framebuffer *fb,
13584                            int crtc_x, int crtc_y,
13585                            unsigned int crtc_w, unsigned int crtc_h,
13586                            uint32_t src_x, uint32_t src_y,
13587                            uint32_t src_w, uint32_t src_h,
13588                            struct drm_modeset_acquire_ctx *ctx)
13589 {
13590         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13591         int ret;
13592         struct drm_plane_state *old_plane_state, *new_plane_state;
13593         struct intel_plane *intel_plane = to_intel_plane(plane);
13594         struct drm_framebuffer *old_fb;
13595         struct drm_crtc_state *crtc_state = crtc->state;
13596         struct i915_vma *old_vma;
13597
13598         /*
13599          * When crtc is inactive or there is a modeset pending,
13600          * wait for it to complete in the slowpath
13601          */
13602         if (!crtc_state->active || needs_modeset(crtc_state) ||
13603             to_intel_crtc_state(crtc_state)->update_pipe)
13604                 goto slow;
13605
13606         old_plane_state = plane->state;
13607
13608         /*
13609          * If any parameters change that may affect watermarks,
13610          * take the slowpath. Only changing fb or position should be
13611          * in the fastpath.
13612          */
13613         if (old_plane_state->crtc != crtc ||
13614             old_plane_state->src_w != src_w ||
13615             old_plane_state->src_h != src_h ||
13616             old_plane_state->crtc_w != crtc_w ||
13617             old_plane_state->crtc_h != crtc_h ||
13618             !old_plane_state->fb != !fb)
13619                 goto slow;
13620
13621         new_plane_state = intel_plane_duplicate_state(plane);
13622         if (!new_plane_state)
13623                 return -ENOMEM;
13624
13625         drm_atomic_set_fb_for_plane(new_plane_state, fb);
13626
13627         new_plane_state->src_x = src_x;
13628         new_plane_state->src_y = src_y;
13629         new_plane_state->src_w = src_w;
13630         new_plane_state->src_h = src_h;
13631         new_plane_state->crtc_x = crtc_x;
13632         new_plane_state->crtc_y = crtc_y;
13633         new_plane_state->crtc_w = crtc_w;
13634         new_plane_state->crtc_h = crtc_h;
13635
13636         ret = intel_plane_atomic_check_with_state(to_intel_crtc_state(crtc->state),
13637                                                   to_intel_plane_state(new_plane_state));
13638         if (ret)
13639                 goto out_free;
13640
13641         ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
13642         if (ret)
13643                 goto out_free;
13644
13645         if (INTEL_INFO(dev_priv)->cursor_needs_physical) {
13646                 int align = intel_cursor_alignment(dev_priv);
13647
13648                 ret = i915_gem_object_attach_phys(intel_fb_obj(fb), align);
13649                 if (ret) {
13650                         DRM_DEBUG_KMS("failed to attach phys object\n");
13651                         goto out_unlock;
13652                 }
13653         } else {
13654                 struct i915_vma *vma;
13655
13656                 vma = intel_pin_and_fence_fb_obj(fb, new_plane_state->rotation);
13657                 if (IS_ERR(vma)) {
13658                         DRM_DEBUG_KMS("failed to pin object\n");
13659
13660                         ret = PTR_ERR(vma);
13661                         goto out_unlock;
13662                 }
13663
13664                 to_intel_plane_state(new_plane_state)->vma = vma;
13665         }
13666
13667         old_fb = old_plane_state->fb;
13668         old_vma = to_intel_plane_state(old_plane_state)->vma;
13669
13670         i915_gem_track_fb(intel_fb_obj(old_fb), intel_fb_obj(fb),
13671                           intel_plane->frontbuffer_bit);
13672
13673         /* Swap plane state */
13674         new_plane_state->fence = old_plane_state->fence;
13675         *to_intel_plane_state(old_plane_state) = *to_intel_plane_state(new_plane_state);
13676         new_plane_state->fence = NULL;
13677         new_plane_state->fb = old_fb;
13678         to_intel_plane_state(new_plane_state)->vma = old_vma;
13679
13680         if (plane->state->visible) {
13681                 trace_intel_update_plane(plane, to_intel_crtc(crtc));
13682                 intel_plane->update_plane(intel_plane,
13683                                           to_intel_crtc_state(crtc->state),
13684                                           to_intel_plane_state(plane->state));
13685         } else {
13686                 trace_intel_disable_plane(plane, to_intel_crtc(crtc));
13687                 intel_plane->disable_plane(intel_plane, to_intel_crtc(crtc));
13688         }
13689
13690         intel_cleanup_plane_fb(plane, new_plane_state);
13691
13692 out_unlock:
13693         mutex_unlock(&dev_priv->drm.struct_mutex);
13694 out_free:
13695         intel_plane_destroy_state(plane, new_plane_state);
13696         return ret;
13697
13698 slow:
13699         return drm_atomic_helper_update_plane(plane, crtc, fb,
13700                                               crtc_x, crtc_y, crtc_w, crtc_h,
13701                                               src_x, src_y, src_w, src_h, ctx);
13702 }
13703
13704 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
13705         .update_plane = intel_legacy_cursor_update,
13706         .disable_plane = drm_atomic_helper_disable_plane,
13707         .destroy = intel_plane_destroy,
13708         .set_property = drm_atomic_helper_plane_set_property,
13709         .atomic_get_property = intel_plane_atomic_get_property,
13710         .atomic_set_property = intel_plane_atomic_set_property,
13711         .atomic_duplicate_state = intel_plane_duplicate_state,
13712         .atomic_destroy_state = intel_plane_destroy_state,
13713 };
13714
13715 static struct intel_plane *
13716 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
13717 {
13718         struct intel_plane *primary = NULL;
13719         struct intel_plane_state *state = NULL;
13720         const uint32_t *intel_primary_formats;
13721         unsigned int supported_rotations;
13722         unsigned int num_formats;
13723         int ret;
13724
13725         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13726         if (!primary) {
13727                 ret = -ENOMEM;
13728                 goto fail;
13729         }
13730
13731         state = intel_create_plane_state(&primary->base);
13732         if (!state) {
13733                 ret = -ENOMEM;
13734                 goto fail;
13735         }
13736
13737         primary->base.state = &state->base;
13738
13739         primary->can_scale = false;
13740         primary->max_downscale = 1;
13741         if (INTEL_GEN(dev_priv) >= 9) {
13742                 primary->can_scale = true;
13743                 state->scaler_id = -1;
13744         }
13745         primary->pipe = pipe;
13746         /*
13747          * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
13748          * port is hooked to pipe B. Hence we want plane A feeding pipe B.
13749          */
13750         if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
13751                 primary->plane = (enum plane) !pipe;
13752         else
13753                 primary->plane = (enum plane) pipe;
13754         primary->id = PLANE_PRIMARY;
13755         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13756         primary->check_plane = intel_check_primary_plane;
13757
13758         if (INTEL_GEN(dev_priv) >= 9) {
13759                 intel_primary_formats = skl_primary_formats;
13760                 num_formats = ARRAY_SIZE(skl_primary_formats);
13761
13762                 primary->update_plane = skylake_update_primary_plane;
13763                 primary->disable_plane = skylake_disable_primary_plane;
13764         } else if (INTEL_GEN(dev_priv) >= 4) {
13765                 intel_primary_formats = i965_primary_formats;
13766                 num_formats = ARRAY_SIZE(i965_primary_formats);
13767
13768                 primary->update_plane = i9xx_update_primary_plane;
13769                 primary->disable_plane = i9xx_disable_primary_plane;
13770         } else {
13771                 intel_primary_formats = i8xx_primary_formats;
13772                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13773
13774                 primary->update_plane = i9xx_update_primary_plane;
13775                 primary->disable_plane = i9xx_disable_primary_plane;
13776         }
13777
13778         if (INTEL_GEN(dev_priv) >= 9)
13779                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13780                                                0, &intel_plane_funcs,
13781                                                intel_primary_formats, num_formats,
13782                                                DRM_PLANE_TYPE_PRIMARY,
13783                                                "plane 1%c", pipe_name(pipe));
13784         else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
13785                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13786                                                0, &intel_plane_funcs,
13787                                                intel_primary_formats, num_formats,
13788                                                DRM_PLANE_TYPE_PRIMARY,
13789                                                "primary %c", pipe_name(pipe));
13790         else
13791                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13792                                                0, &intel_plane_funcs,
13793                                                intel_primary_formats, num_formats,
13794                                                DRM_PLANE_TYPE_PRIMARY,
13795                                                "plane %c", plane_name(primary->plane));
13796         if (ret)
13797                 goto fail;
13798
13799         if (INTEL_GEN(dev_priv) >= 9) {
13800                 supported_rotations =
13801                         DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_90 |
13802                         DRM_MODE_ROTATE_180 | DRM_MODE_ROTATE_270;
13803         } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
13804                 supported_rotations =
13805                         DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
13806                         DRM_MODE_REFLECT_X;
13807         } else if (INTEL_GEN(dev_priv) >= 4) {
13808                 supported_rotations =
13809                         DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
13810         } else {
13811                 supported_rotations = DRM_MODE_ROTATE_0;
13812         }
13813
13814         if (INTEL_GEN(dev_priv) >= 4)
13815                 drm_plane_create_rotation_property(&primary->base,
13816                                                    DRM_MODE_ROTATE_0,
13817                                                    supported_rotations);
13818
13819         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13820
13821         return primary;
13822
13823 fail:
13824         kfree(state);
13825         kfree(primary);
13826
13827         return ERR_PTR(ret);
13828 }
13829
13830 static struct intel_plane *
13831 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
13832                           enum pipe pipe)
13833 {
13834         struct intel_plane *cursor = NULL;
13835         struct intel_plane_state *state = NULL;
13836         int ret;
13837
13838         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13839         if (!cursor) {
13840                 ret = -ENOMEM;
13841                 goto fail;
13842         }
13843
13844         state = intel_create_plane_state(&cursor->base);
13845         if (!state) {
13846                 ret = -ENOMEM;
13847                 goto fail;
13848         }
13849
13850         cursor->base.state = &state->base;
13851
13852         cursor->can_scale = false;
13853         cursor->max_downscale = 1;
13854         cursor->pipe = pipe;
13855         cursor->plane = pipe;
13856         cursor->id = PLANE_CURSOR;
13857         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13858
13859         if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
13860                 cursor->update_plane = i845_update_cursor;
13861                 cursor->disable_plane = i845_disable_cursor;
13862                 cursor->check_plane = i845_check_cursor;
13863         } else {
13864                 cursor->update_plane = i9xx_update_cursor;
13865                 cursor->disable_plane = i9xx_disable_cursor;
13866                 cursor->check_plane = i9xx_check_cursor;
13867         }
13868
13869         cursor->cursor.base = ~0;
13870         cursor->cursor.cntl = ~0;
13871
13872         if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
13873                 cursor->cursor.size = ~0;
13874
13875         ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
13876                                        0, &intel_cursor_plane_funcs,
13877                                        intel_cursor_formats,
13878                                        ARRAY_SIZE(intel_cursor_formats),
13879                                        DRM_PLANE_TYPE_CURSOR,
13880                                        "cursor %c", pipe_name(pipe));
13881         if (ret)
13882                 goto fail;
13883
13884         if (INTEL_GEN(dev_priv) >= 4)
13885                 drm_plane_create_rotation_property(&cursor->base,
13886                                                    DRM_MODE_ROTATE_0,
13887                                                    DRM_MODE_ROTATE_0 |
13888                                                    DRM_MODE_ROTATE_180);
13889
13890         if (INTEL_GEN(dev_priv) >= 9)
13891                 state->scaler_id = -1;
13892
13893         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13894
13895         return cursor;
13896
13897 fail:
13898         kfree(state);
13899         kfree(cursor);
13900
13901         return ERR_PTR(ret);
13902 }
13903
13904 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
13905                                     struct intel_crtc_state *crtc_state)
13906 {
13907         struct intel_crtc_scaler_state *scaler_state =
13908                 &crtc_state->scaler_state;
13909         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13910         int i;
13911
13912         crtc->num_scalers = dev_priv->info.num_scalers[crtc->pipe];
13913         if (!crtc->num_scalers)
13914                 return;
13915
13916         for (i = 0; i < crtc->num_scalers; i++) {
13917                 struct intel_scaler *scaler = &scaler_state->scalers[i];
13918
13919                 scaler->in_use = 0;
13920                 scaler->mode = PS_SCALER_MODE_DYN;
13921         }
13922
13923         scaler_state->scaler_id = -1;
13924 }
13925
13926 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
13927 {
13928         struct intel_crtc *intel_crtc;
13929         struct intel_crtc_state *crtc_state = NULL;
13930         struct intel_plane *primary = NULL;
13931         struct intel_plane *cursor = NULL;
13932         int sprite, ret;
13933
13934         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13935         if (!intel_crtc)
13936                 return -ENOMEM;
13937
13938         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13939         if (!crtc_state) {
13940                 ret = -ENOMEM;
13941                 goto fail;
13942         }
13943         intel_crtc->config = crtc_state;
13944         intel_crtc->base.state = &crtc_state->base;
13945         crtc_state->base.crtc = &intel_crtc->base;
13946
13947         primary = intel_primary_plane_create(dev_priv, pipe);
13948         if (IS_ERR(primary)) {
13949                 ret = PTR_ERR(primary);
13950                 goto fail;
13951         }
13952         intel_crtc->plane_ids_mask |= BIT(primary->id);
13953
13954         for_each_sprite(dev_priv, pipe, sprite) {
13955                 struct intel_plane *plane;
13956
13957                 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
13958                 if (IS_ERR(plane)) {
13959                         ret = PTR_ERR(plane);
13960                         goto fail;
13961                 }
13962                 intel_crtc->plane_ids_mask |= BIT(plane->id);
13963         }
13964
13965         cursor = intel_cursor_plane_create(dev_priv, pipe);
13966         if (IS_ERR(cursor)) {
13967                 ret = PTR_ERR(cursor);
13968                 goto fail;
13969         }
13970         intel_crtc->plane_ids_mask |= BIT(cursor->id);
13971
13972         ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
13973                                         &primary->base, &cursor->base,
13974                                         &intel_crtc_funcs,
13975                                         "pipe %c", pipe_name(pipe));
13976         if (ret)
13977                 goto fail;
13978
13979         intel_crtc->pipe = pipe;
13980         intel_crtc->plane = primary->plane;
13981
13982         /* initialize shared scalers */
13983         intel_crtc_init_scalers(intel_crtc, crtc_state);
13984
13985         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13986                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13987         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
13988         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
13989
13990         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13991
13992         intel_color_init(&intel_crtc->base);
13993
13994         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13995
13996         return 0;
13997
13998 fail:
13999         /*
14000          * drm_mode_config_cleanup() will free up any
14001          * crtcs/planes already initialized.
14002          */
14003         kfree(crtc_state);
14004         kfree(intel_crtc);
14005
14006         return ret;
14007 }
14008
14009 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14010 {
14011         struct drm_device *dev = connector->base.dev;
14012
14013         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14014
14015         if (!connector->base.state->crtc)
14016                 return INVALID_PIPE;
14017
14018         return to_intel_crtc(connector->base.state->crtc)->pipe;
14019 }
14020
14021 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14022                                 struct drm_file *file)
14023 {
14024         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14025         struct drm_crtc *drmmode_crtc;
14026         struct intel_crtc *crtc;
14027
14028         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14029         if (!drmmode_crtc)
14030                 return -ENOENT;
14031
14032         crtc = to_intel_crtc(drmmode_crtc);
14033         pipe_from_crtc_id->pipe = crtc->pipe;
14034
14035         return 0;
14036 }
14037
14038 static int intel_encoder_clones(struct intel_encoder *encoder)
14039 {
14040         struct drm_device *dev = encoder->base.dev;
14041         struct intel_encoder *source_encoder;
14042         int index_mask = 0;
14043         int entry = 0;
14044
14045         for_each_intel_encoder(dev, source_encoder) {
14046                 if (encoders_cloneable(encoder, source_encoder))
14047                         index_mask |= (1 << entry);
14048
14049                 entry++;
14050         }
14051
14052         return index_mask;
14053 }
14054
14055 static bool has_edp_a(struct drm_i915_private *dev_priv)
14056 {
14057         if (!IS_MOBILE(dev_priv))
14058                 return false;
14059
14060         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14061                 return false;
14062
14063         if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14064                 return false;
14065
14066         return true;
14067 }
14068
14069 static bool intel_crt_present(struct drm_i915_private *dev_priv)
14070 {
14071         if (INTEL_GEN(dev_priv) >= 9)
14072                 return false;
14073
14074         if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
14075                 return false;
14076
14077         if (IS_CHERRYVIEW(dev_priv))
14078                 return false;
14079
14080         if (HAS_PCH_LPT_H(dev_priv) &&
14081             I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14082                 return false;
14083
14084         /* DDI E can't be used if DDI A requires 4 lanes */
14085         if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14086                 return false;
14087
14088         if (!dev_priv->vbt.int_crt_support)
14089                 return false;
14090
14091         return true;
14092 }
14093
14094 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
14095 {
14096         int pps_num;
14097         int pps_idx;
14098
14099         if (HAS_DDI(dev_priv))
14100                 return;
14101         /*
14102          * This w/a is needed at least on CPT/PPT, but to be sure apply it
14103          * everywhere where registers can be write protected.
14104          */
14105         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14106                 pps_num = 2;
14107         else
14108                 pps_num = 1;
14109
14110         for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
14111                 u32 val = I915_READ(PP_CONTROL(pps_idx));
14112
14113                 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
14114                 I915_WRITE(PP_CONTROL(pps_idx), val);
14115         }
14116 }
14117
14118 static void intel_pps_init(struct drm_i915_private *dev_priv)
14119 {
14120         if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
14121                 dev_priv->pps_mmio_base = PCH_PPS_BASE;
14122         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14123                 dev_priv->pps_mmio_base = VLV_PPS_BASE;
14124         else
14125                 dev_priv->pps_mmio_base = PPS_BASE;
14126
14127         intel_pps_unlock_regs_wa(dev_priv);
14128 }
14129
14130 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
14131 {
14132         struct intel_encoder *encoder;
14133         bool dpd_is_edp = false;
14134
14135         intel_pps_init(dev_priv);
14136
14137         /*
14138          * intel_edp_init_connector() depends on this completing first, to
14139          * prevent the registeration of both eDP and LVDS and the incorrect
14140          * sharing of the PPS.
14141          */
14142         intel_lvds_init(dev_priv);
14143
14144         if (intel_crt_present(dev_priv))
14145                 intel_crt_init(dev_priv);
14146
14147         if (IS_GEN9_LP(dev_priv)) {
14148                 /*
14149                  * FIXME: Broxton doesn't support port detection via the
14150                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14151                  * detect the ports.
14152                  */
14153                 intel_ddi_init(dev_priv, PORT_A);
14154                 intel_ddi_init(dev_priv, PORT_B);
14155                 intel_ddi_init(dev_priv, PORT_C);
14156
14157                 intel_dsi_init(dev_priv);
14158         } else if (HAS_DDI(dev_priv)) {
14159                 int found;
14160
14161                 /*
14162                  * Haswell uses DDI functions to detect digital outputs.
14163                  * On SKL pre-D0 the strap isn't connected, so we assume
14164                  * it's there.
14165                  */
14166                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14167                 /* WaIgnoreDDIAStrap: skl */
14168                 if (found || IS_GEN9_BC(dev_priv))
14169                         intel_ddi_init(dev_priv, PORT_A);
14170
14171                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14172                  * register */
14173                 found = I915_READ(SFUSE_STRAP);
14174
14175                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14176                         intel_ddi_init(dev_priv, PORT_B);
14177                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14178                         intel_ddi_init(dev_priv, PORT_C);
14179                 if (found & SFUSE_STRAP_DDID_DETECTED)
14180                         intel_ddi_init(dev_priv, PORT_D);
14181                 /*
14182                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14183                  */
14184                 if (IS_GEN9_BC(dev_priv) &&
14185                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14186                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14187                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14188                         intel_ddi_init(dev_priv, PORT_E);
14189
14190         } else if (HAS_PCH_SPLIT(dev_priv)) {
14191                 int found;
14192                 dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
14193
14194                 if (has_edp_a(dev_priv))
14195                         intel_dp_init(dev_priv, DP_A, PORT_A);
14196
14197                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14198                         /* PCH SDVOB multiplex with HDMIB */
14199                         found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
14200                         if (!found)
14201                                 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
14202                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14203                                 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
14204                 }
14205
14206                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14207                         intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
14208
14209                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14210                         intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
14211
14212                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14213                         intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
14214
14215                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14216                         intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
14217         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
14218                 bool has_edp, has_port;
14219
14220                 /*
14221                  * The DP_DETECTED bit is the latched state of the DDC
14222                  * SDA pin at boot. However since eDP doesn't require DDC
14223                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14224                  * eDP ports may have been muxed to an alternate function.
14225                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14226                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14227                  * detect eDP ports.
14228                  *
14229                  * Sadly the straps seem to be missing sometimes even for HDMI
14230                  * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14231                  * and VBT for the presence of the port. Additionally we can't
14232                  * trust the port type the VBT declares as we've seen at least
14233                  * HDMI ports that the VBT claim are DP or eDP.
14234                  */
14235                 has_edp = intel_dp_is_edp(dev_priv, PORT_B);
14236                 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14237                 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14238                         has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
14239                 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14240                         intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
14241
14242                 has_edp = intel_dp_is_edp(dev_priv, PORT_C);
14243                 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14244                 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14245                         has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
14246                 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14247                         intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
14248
14249                 if (IS_CHERRYVIEW(dev_priv)) {
14250                         /*
14251                          * eDP not supported on port D,
14252                          * so no need to worry about it
14253                          */
14254                         has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14255                         if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14256                                 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
14257                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14258                                 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
14259                 }
14260
14261                 intel_dsi_init(dev_priv);
14262         } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
14263                 bool found = false;
14264
14265                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14266                         DRM_DEBUG_KMS("probing SDVOB\n");
14267                         found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
14268                         if (!found && IS_G4X(dev_priv)) {
14269                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14270                                 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
14271                         }
14272
14273                         if (!found && IS_G4X(dev_priv))
14274                                 intel_dp_init(dev_priv, DP_B, PORT_B);
14275                 }
14276
14277                 /* Before G4X SDVOC doesn't have its own detect register */
14278
14279                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14280                         DRM_DEBUG_KMS("probing SDVOC\n");
14281                         found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
14282                 }
14283
14284                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14285
14286                         if (IS_G4X(dev_priv)) {
14287                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14288                                 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
14289                         }
14290                         if (IS_G4X(dev_priv))
14291                                 intel_dp_init(dev_priv, DP_C, PORT_C);
14292                 }
14293
14294                 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
14295                         intel_dp_init(dev_priv, DP_D, PORT_D);
14296         } else if (IS_GEN2(dev_priv))
14297                 intel_dvo_init(dev_priv);
14298
14299         if (SUPPORTS_TV(dev_priv))
14300                 intel_tv_init(dev_priv);
14301
14302         intel_psr_init(dev_priv);
14303
14304         for_each_intel_encoder(&dev_priv->drm, encoder) {
14305                 encoder->base.possible_crtcs = encoder->crtc_mask;
14306                 encoder->base.possible_clones =
14307                         intel_encoder_clones(encoder);
14308         }
14309
14310         intel_init_pch_refclk(dev_priv);
14311
14312         drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
14313 }
14314
14315 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14316 {
14317         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14318
14319         drm_framebuffer_cleanup(fb);
14320
14321         i915_gem_object_lock(intel_fb->obj);
14322         WARN_ON(!intel_fb->obj->framebuffer_references--);
14323         i915_gem_object_unlock(intel_fb->obj);
14324
14325         i915_gem_object_put(intel_fb->obj);
14326
14327         kfree(intel_fb);
14328 }
14329
14330 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14331                                                 struct drm_file *file,
14332                                                 unsigned int *handle)
14333 {
14334         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14335         struct drm_i915_gem_object *obj = intel_fb->obj;
14336
14337         if (obj->userptr.mm) {
14338                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14339                 return -EINVAL;
14340         }
14341
14342         return drm_gem_handle_create(file, &obj->base, handle);
14343 }
14344
14345 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14346                                         struct drm_file *file,
14347                                         unsigned flags, unsigned color,
14348                                         struct drm_clip_rect *clips,
14349                                         unsigned num_clips)
14350 {
14351         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14352
14353         i915_gem_object_flush_if_display(obj);
14354         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
14355
14356         return 0;
14357 }
14358
14359 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14360         .destroy = intel_user_framebuffer_destroy,
14361         .create_handle = intel_user_framebuffer_create_handle,
14362         .dirty = intel_user_framebuffer_dirty,
14363 };
14364
14365 static
14366 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
14367                          uint64_t fb_modifier, uint32_t pixel_format)
14368 {
14369         u32 gen = INTEL_GEN(dev_priv);
14370
14371         if (gen >= 9) {
14372                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14373
14374                 /* "The stride in bytes must not exceed the of the size of 8K
14375                  *  pixels and 32K bytes."
14376                  */
14377                 return min(8192 * cpp, 32768);
14378         } else if (gen >= 5 && !HAS_GMCH_DISPLAY(dev_priv)) {
14379                 return 32*1024;
14380         } else if (gen >= 4) {
14381                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14382                         return 16*1024;
14383                 else
14384                         return 32*1024;
14385         } else if (gen >= 3) {
14386                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14387                         return 8*1024;
14388                 else
14389                         return 16*1024;
14390         } else {
14391                 /* XXX DSPC is limited to 4k tiled */
14392                 return 8*1024;
14393         }
14394 }
14395
14396 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
14397                                   struct drm_i915_gem_object *obj,
14398                                   struct drm_mode_fb_cmd2 *mode_cmd)
14399 {
14400         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
14401         struct drm_format_name_buf format_name;
14402         u32 pitch_limit, stride_alignment;
14403         unsigned int tiling, stride;
14404         int ret = -EINVAL;
14405
14406         i915_gem_object_lock(obj);
14407         obj->framebuffer_references++;
14408         tiling = i915_gem_object_get_tiling(obj);
14409         stride = i915_gem_object_get_stride(obj);
14410         i915_gem_object_unlock(obj);
14411
14412         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14413                 /*
14414                  * If there's a fence, enforce that
14415                  * the fb modifier and tiling mode match.
14416                  */
14417                 if (tiling != I915_TILING_NONE &&
14418                     tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
14419                         DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
14420                         goto err;
14421                 }
14422         } else {
14423                 if (tiling == I915_TILING_X) {
14424                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14425                 } else if (tiling == I915_TILING_Y) {
14426                         DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
14427                         goto err;
14428                 }
14429         }
14430
14431         /* Passed in modifier sanity checking. */
14432         switch (mode_cmd->modifier[0]) {
14433         case I915_FORMAT_MOD_Y_TILED:
14434         case I915_FORMAT_MOD_Yf_TILED:
14435                 if (INTEL_GEN(dev_priv) < 9) {
14436                         DRM_DEBUG_KMS("Unsupported tiling 0x%llx!\n",
14437                                       mode_cmd->modifier[0]);
14438                         goto err;
14439                 }
14440         case DRM_FORMAT_MOD_LINEAR:
14441         case I915_FORMAT_MOD_X_TILED:
14442                 break;
14443         default:
14444                 DRM_DEBUG_KMS("Unsupported fb modifier 0x%llx!\n",
14445                               mode_cmd->modifier[0]);
14446                 goto err;
14447         }
14448
14449         /*
14450          * gen2/3 display engine uses the fence if present,
14451          * so the tiling mode must match the fb modifier exactly.
14452          */
14453         if (INTEL_INFO(dev_priv)->gen < 4 &&
14454             tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
14455                 DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
14456                 goto err;
14457         }
14458
14459         pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
14460                                            mode_cmd->pixel_format);
14461         if (mode_cmd->pitches[0] > pitch_limit) {
14462                 DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
14463                               mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
14464                               "tiled" : "linear",
14465                               mode_cmd->pitches[0], pitch_limit);
14466                 goto err;
14467         }
14468
14469         /*
14470          * If there's a fence, enforce that
14471          * the fb pitch and fence stride match.
14472          */
14473         if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
14474                 DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
14475                               mode_cmd->pitches[0], stride);
14476                 goto err;
14477         }
14478
14479         /* Reject formats not supported by any plane early. */
14480         switch (mode_cmd->pixel_format) {
14481         case DRM_FORMAT_C8:
14482         case DRM_FORMAT_RGB565:
14483         case DRM_FORMAT_XRGB8888:
14484         case DRM_FORMAT_ARGB8888:
14485                 break;
14486         case DRM_FORMAT_XRGB1555:
14487                 if (INTEL_GEN(dev_priv) > 3) {
14488                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14489                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14490                         goto err;
14491                 }
14492                 break;
14493         case DRM_FORMAT_ABGR8888:
14494                 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
14495                     INTEL_GEN(dev_priv) < 9) {
14496                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14497                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14498                         goto err;
14499                 }
14500                 break;
14501         case DRM_FORMAT_XBGR8888:
14502         case DRM_FORMAT_XRGB2101010:
14503         case DRM_FORMAT_XBGR2101010:
14504                 if (INTEL_GEN(dev_priv) < 4) {
14505                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14506                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14507                         goto err;
14508                 }
14509                 break;
14510         case DRM_FORMAT_ABGR2101010:
14511                 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
14512                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14513                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14514                         goto err;
14515                 }
14516                 break;
14517         case DRM_FORMAT_YUYV:
14518         case DRM_FORMAT_UYVY:
14519         case DRM_FORMAT_YVYU:
14520         case DRM_FORMAT_VYUY:
14521                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
14522                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14523                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14524                         goto err;
14525                 }
14526                 break;
14527         default:
14528                 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14529                               drm_get_format_name(mode_cmd->pixel_format, &format_name));
14530                 goto err;
14531         }
14532
14533         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14534         if (mode_cmd->offsets[0] != 0)
14535                 goto err;
14536
14537         drm_helper_mode_fill_fb_struct(&dev_priv->drm,
14538                                        &intel_fb->base, mode_cmd);
14539
14540         stride_alignment = intel_fb_stride_alignment(&intel_fb->base, 0);
14541         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14542                 DRM_DEBUG_KMS("pitch (%d) must be at least %u byte aligned\n",
14543                               mode_cmd->pitches[0], stride_alignment);
14544                 goto err;
14545         }
14546
14547         intel_fb->obj = obj;
14548
14549         ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
14550         if (ret)
14551                 goto err;
14552
14553         ret = drm_framebuffer_init(obj->base.dev,
14554                                    &intel_fb->base,
14555                                    &intel_fb_funcs);
14556         if (ret) {
14557                 DRM_ERROR("framebuffer init failed %d\n", ret);
14558                 goto err;
14559         }
14560
14561         return 0;
14562
14563 err:
14564         i915_gem_object_lock(obj);
14565         obj->framebuffer_references--;
14566         i915_gem_object_unlock(obj);
14567         return ret;
14568 }
14569
14570 static struct drm_framebuffer *
14571 intel_user_framebuffer_create(struct drm_device *dev,
14572                               struct drm_file *filp,
14573                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14574 {
14575         struct drm_framebuffer *fb;
14576         struct drm_i915_gem_object *obj;
14577         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14578
14579         obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
14580         if (!obj)
14581                 return ERR_PTR(-ENOENT);
14582
14583         fb = intel_framebuffer_create(obj, &mode_cmd);
14584         if (IS_ERR(fb))
14585                 i915_gem_object_put(obj);
14586
14587         return fb;
14588 }
14589
14590 static void intel_atomic_state_free(struct drm_atomic_state *state)
14591 {
14592         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14593
14594         drm_atomic_state_default_release(state);
14595
14596         i915_sw_fence_fini(&intel_state->commit_ready);
14597
14598         kfree(state);
14599 }
14600
14601 static const struct drm_mode_config_funcs intel_mode_funcs = {
14602         .fb_create = intel_user_framebuffer_create,
14603         .output_poll_changed = intel_fbdev_output_poll_changed,
14604         .atomic_check = intel_atomic_check,
14605         .atomic_commit = intel_atomic_commit,
14606         .atomic_state_alloc = intel_atomic_state_alloc,
14607         .atomic_state_clear = intel_atomic_state_clear,
14608         .atomic_state_free = intel_atomic_state_free,
14609 };
14610
14611 /**
14612  * intel_init_display_hooks - initialize the display modesetting hooks
14613  * @dev_priv: device private
14614  */
14615 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14616 {
14617         intel_init_cdclk_hooks(dev_priv);
14618
14619         if (INTEL_INFO(dev_priv)->gen >= 9) {
14620                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14621                 dev_priv->display.get_initial_plane_config =
14622                         skylake_get_initial_plane_config;
14623                 dev_priv->display.crtc_compute_clock =
14624                         haswell_crtc_compute_clock;
14625                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14626                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14627         } else if (HAS_DDI(dev_priv)) {
14628                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14629                 dev_priv->display.get_initial_plane_config =
14630                         ironlake_get_initial_plane_config;
14631                 dev_priv->display.crtc_compute_clock =
14632                         haswell_crtc_compute_clock;
14633                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14634                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14635         } else if (HAS_PCH_SPLIT(dev_priv)) {
14636                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14637                 dev_priv->display.get_initial_plane_config =
14638                         ironlake_get_initial_plane_config;
14639                 dev_priv->display.crtc_compute_clock =
14640                         ironlake_crtc_compute_clock;
14641                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14642                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14643         } else if (IS_CHERRYVIEW(dev_priv)) {
14644                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14645                 dev_priv->display.get_initial_plane_config =
14646                         i9xx_get_initial_plane_config;
14647                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14648                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14649                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14650         } else if (IS_VALLEYVIEW(dev_priv)) {
14651                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14652                 dev_priv->display.get_initial_plane_config =
14653                         i9xx_get_initial_plane_config;
14654                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14655                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14656                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14657         } else if (IS_G4X(dev_priv)) {
14658                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14659                 dev_priv->display.get_initial_plane_config =
14660                         i9xx_get_initial_plane_config;
14661                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14662                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14663                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14664         } else if (IS_PINEVIEW(dev_priv)) {
14665                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14666                 dev_priv->display.get_initial_plane_config =
14667                         i9xx_get_initial_plane_config;
14668                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14669                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14670                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14671         } else if (!IS_GEN2(dev_priv)) {
14672                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14673                 dev_priv->display.get_initial_plane_config =
14674                         i9xx_get_initial_plane_config;
14675                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14676                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14677                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14678         } else {
14679                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14680                 dev_priv->display.get_initial_plane_config =
14681                         i9xx_get_initial_plane_config;
14682                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14683                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14684                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14685         }
14686
14687         if (IS_GEN5(dev_priv)) {
14688                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14689         } else if (IS_GEN6(dev_priv)) {
14690                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14691         } else if (IS_IVYBRIDGE(dev_priv)) {
14692                 /* FIXME: detect B0+ stepping and use auto training */
14693                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14694         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
14695                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14696         }
14697
14698         if (dev_priv->info.gen >= 9)
14699                 dev_priv->display.update_crtcs = skl_update_crtcs;
14700         else
14701                 dev_priv->display.update_crtcs = intel_update_crtcs;
14702
14703         switch (INTEL_INFO(dev_priv)->gen) {
14704         case 2:
14705                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14706                 break;
14707
14708         case 3:
14709                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14710                 break;
14711
14712         case 4:
14713         case 5:
14714                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14715                 break;
14716
14717         case 6:
14718                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14719                 break;
14720         case 7:
14721         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14722                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14723                 break;
14724         case 9:
14725                 /* Drop through - unsupported since execlist only. */
14726         default:
14727                 /* Default just returns -ENODEV to indicate unsupported */
14728                 dev_priv->display.queue_flip = intel_default_queue_flip;
14729         }
14730 }
14731
14732 /*
14733  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14734  */
14735 static void quirk_ssc_force_disable(struct drm_device *dev)
14736 {
14737         struct drm_i915_private *dev_priv = to_i915(dev);
14738         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14739         DRM_INFO("applying lvds SSC disable quirk\n");
14740 }
14741
14742 /*
14743  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14744  * brightness value
14745  */
14746 static void quirk_invert_brightness(struct drm_device *dev)
14747 {
14748         struct drm_i915_private *dev_priv = to_i915(dev);
14749         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14750         DRM_INFO("applying inverted panel brightness quirk\n");
14751 }
14752
14753 /* Some VBT's incorrectly indicate no backlight is present */
14754 static void quirk_backlight_present(struct drm_device *dev)
14755 {
14756         struct drm_i915_private *dev_priv = to_i915(dev);
14757         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14758         DRM_INFO("applying backlight present quirk\n");
14759 }
14760
14761 struct intel_quirk {
14762         int device;
14763         int subsystem_vendor;
14764         int subsystem_device;
14765         void (*hook)(struct drm_device *dev);
14766 };
14767
14768 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14769 struct intel_dmi_quirk {
14770         void (*hook)(struct drm_device *dev);
14771         const struct dmi_system_id (*dmi_id_list)[];
14772 };
14773
14774 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14775 {
14776         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14777         return 1;
14778 }
14779
14780 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14781         {
14782                 .dmi_id_list = &(const struct dmi_system_id[]) {
14783                         {
14784                                 .callback = intel_dmi_reverse_brightness,
14785                                 .ident = "NCR Corporation",
14786                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14787                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14788                                 },
14789                         },
14790                         { }  /* terminating entry */
14791                 },
14792                 .hook = quirk_invert_brightness,
14793         },
14794 };
14795
14796 static struct intel_quirk intel_quirks[] = {
14797         /* Lenovo U160 cannot use SSC on LVDS */
14798         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14799
14800         /* Sony Vaio Y cannot use SSC on LVDS */
14801         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14802
14803         /* Acer Aspire 5734Z must invert backlight brightness */
14804         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14805
14806         /* Acer/eMachines G725 */
14807         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14808
14809         /* Acer/eMachines e725 */
14810         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14811
14812         /* Acer/Packard Bell NCL20 */
14813         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14814
14815         /* Acer Aspire 4736Z */
14816         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14817
14818         /* Acer Aspire 5336 */
14819         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14820
14821         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14822         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14823
14824         /* Acer C720 Chromebook (Core i3 4005U) */
14825         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14826
14827         /* Apple Macbook 2,1 (Core 2 T7400) */
14828         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14829
14830         /* Apple Macbook 4,1 */
14831         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14832
14833         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14834         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14835
14836         /* HP Chromebook 14 (Celeron 2955U) */
14837         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14838
14839         /* Dell Chromebook 11 */
14840         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14841
14842         /* Dell Chromebook 11 (2015 version) */
14843         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14844 };
14845
14846 static void intel_init_quirks(struct drm_device *dev)
14847 {
14848         struct pci_dev *d = dev->pdev;
14849         int i;
14850
14851         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14852                 struct intel_quirk *q = &intel_quirks[i];
14853
14854                 if (d->device == q->device &&
14855                     (d->subsystem_vendor == q->subsystem_vendor ||
14856                      q->subsystem_vendor == PCI_ANY_ID) &&
14857                     (d->subsystem_device == q->subsystem_device ||
14858                      q->subsystem_device == PCI_ANY_ID))
14859                         q->hook(dev);
14860         }
14861         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14862                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14863                         intel_dmi_quirks[i].hook(dev);
14864         }
14865 }
14866
14867 /* Disable the VGA plane that we never use */
14868 static void i915_disable_vga(struct drm_i915_private *dev_priv)
14869 {
14870         struct pci_dev *pdev = dev_priv->drm.pdev;
14871         u8 sr1;
14872         i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
14873
14874         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14875         vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
14876         outb(SR01, VGA_SR_INDEX);
14877         sr1 = inb(VGA_SR_DATA);
14878         outb(sr1 | 1<<5, VGA_SR_DATA);
14879         vga_put(pdev, VGA_RSRC_LEGACY_IO);
14880         udelay(300);
14881
14882         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14883         POSTING_READ(vga_reg);
14884 }
14885
14886 void intel_modeset_init_hw(struct drm_device *dev)
14887 {
14888         struct drm_i915_private *dev_priv = to_i915(dev);
14889
14890         intel_update_cdclk(dev_priv);
14891         dev_priv->cdclk.logical = dev_priv->cdclk.actual = dev_priv->cdclk.hw;
14892
14893         intel_init_clock_gating(dev_priv);
14894 }
14895
14896 /*
14897  * Calculate what we think the watermarks should be for the state we've read
14898  * out of the hardware and then immediately program those watermarks so that
14899  * we ensure the hardware settings match our internal state.
14900  *
14901  * We can calculate what we think WM's should be by creating a duplicate of the
14902  * current state (which was constructed during hardware readout) and running it
14903  * through the atomic check code to calculate new watermark values in the
14904  * state object.
14905  */
14906 static void sanitize_watermarks(struct drm_device *dev)
14907 {
14908         struct drm_i915_private *dev_priv = to_i915(dev);
14909         struct drm_atomic_state *state;
14910         struct intel_atomic_state *intel_state;
14911         struct drm_crtc *crtc;
14912         struct drm_crtc_state *cstate;
14913         struct drm_modeset_acquire_ctx ctx;
14914         int ret;
14915         int i;
14916
14917         /* Only supported on platforms that use atomic watermark design */
14918         if (!dev_priv->display.optimize_watermarks)
14919                 return;
14920
14921         /*
14922          * We need to hold connection_mutex before calling duplicate_state so
14923          * that the connector loop is protected.
14924          */
14925         drm_modeset_acquire_init(&ctx, 0);
14926 retry:
14927         ret = drm_modeset_lock_all_ctx(dev, &ctx);
14928         if (ret == -EDEADLK) {
14929                 drm_modeset_backoff(&ctx);
14930                 goto retry;
14931         } else if (WARN_ON(ret)) {
14932                 goto fail;
14933         }
14934
14935         state = drm_atomic_helper_duplicate_state(dev, &ctx);
14936         if (WARN_ON(IS_ERR(state)))
14937                 goto fail;
14938
14939         intel_state = to_intel_atomic_state(state);
14940
14941         /*
14942          * Hardware readout is the only time we don't want to calculate
14943          * intermediate watermarks (since we don't trust the current
14944          * watermarks).
14945          */
14946         if (!HAS_GMCH_DISPLAY(dev_priv))
14947                 intel_state->skip_intermediate_wm = true;
14948
14949         ret = intel_atomic_check(dev, state);
14950         if (ret) {
14951                 /*
14952                  * If we fail here, it means that the hardware appears to be
14953                  * programmed in a way that shouldn't be possible, given our
14954                  * understanding of watermark requirements.  This might mean a
14955                  * mistake in the hardware readout code or a mistake in the
14956                  * watermark calculations for a given platform.  Raise a WARN
14957                  * so that this is noticeable.
14958                  *
14959                  * If this actually happens, we'll have to just leave the
14960                  * BIOS-programmed watermarks untouched and hope for the best.
14961                  */
14962                 WARN(true, "Could not determine valid watermarks for inherited state\n");
14963                 goto put_state;
14964         }
14965
14966         /* Write calculated watermark values back */
14967         for_each_new_crtc_in_state(state, crtc, cstate, i) {
14968                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
14969
14970                 cs->wm.need_postvbl_update = true;
14971                 dev_priv->display.optimize_watermarks(intel_state, cs);
14972         }
14973
14974 put_state:
14975         drm_atomic_state_put(state);
14976 fail:
14977         drm_modeset_drop_locks(&ctx);
14978         drm_modeset_acquire_fini(&ctx);
14979 }
14980
14981 int intel_modeset_init(struct drm_device *dev)
14982 {
14983         struct drm_i915_private *dev_priv = to_i915(dev);
14984         struct i915_ggtt *ggtt = &dev_priv->ggtt;
14985         enum pipe pipe;
14986         struct intel_crtc *crtc;
14987
14988         drm_mode_config_init(dev);
14989
14990         dev->mode_config.min_width = 0;
14991         dev->mode_config.min_height = 0;
14992
14993         dev->mode_config.preferred_depth = 24;
14994         dev->mode_config.prefer_shadow = 1;
14995
14996         dev->mode_config.allow_fb_modifiers = true;
14997
14998         dev->mode_config.funcs = &intel_mode_funcs;
14999
15000         init_llist_head(&dev_priv->atomic_helper.free_list);
15001         INIT_WORK(&dev_priv->atomic_helper.free_work,
15002                   intel_atomic_helper_free_state_worker);
15003
15004         intel_init_quirks(dev);
15005
15006         intel_init_pm(dev_priv);
15007
15008         if (INTEL_INFO(dev_priv)->num_pipes == 0)
15009                 return 0;
15010
15011         /*
15012          * There may be no VBT; and if the BIOS enabled SSC we can
15013          * just keep using it to avoid unnecessary flicker.  Whereas if the
15014          * BIOS isn't using it, don't assume it will work even if the VBT
15015          * indicates as much.
15016          */
15017         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
15018                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15019                                             DREF_SSC1_ENABLE);
15020
15021                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15022                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15023                                      bios_lvds_use_ssc ? "en" : "dis",
15024                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15025                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15026                 }
15027         }
15028
15029         if (IS_GEN2(dev_priv)) {
15030                 dev->mode_config.max_width = 2048;
15031                 dev->mode_config.max_height = 2048;
15032         } else if (IS_GEN3(dev_priv)) {
15033                 dev->mode_config.max_width = 4096;
15034                 dev->mode_config.max_height = 4096;
15035         } else {
15036                 dev->mode_config.max_width = 8192;
15037                 dev->mode_config.max_height = 8192;
15038         }
15039
15040         if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
15041                 dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
15042                 dev->mode_config.cursor_height = 1023;
15043         } else if (IS_GEN2(dev_priv)) {
15044                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15045                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15046         } else {
15047                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15048                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15049         }
15050
15051         dev->mode_config.fb_base = ggtt->mappable_base;
15052
15053         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15054                       INTEL_INFO(dev_priv)->num_pipes,
15055                       INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
15056
15057         for_each_pipe(dev_priv, pipe) {
15058                 int ret;
15059
15060                 ret = intel_crtc_init(dev_priv, pipe);
15061                 if (ret) {
15062                         drm_mode_config_cleanup(dev);
15063                         return ret;
15064                 }
15065         }
15066
15067         intel_shared_dpll_init(dev);
15068
15069         intel_update_czclk(dev_priv);
15070         intel_modeset_init_hw(dev);
15071
15072         if (dev_priv->max_cdclk_freq == 0)
15073                 intel_update_max_cdclk(dev_priv);
15074
15075         /* Just disable it once at startup */
15076         i915_disable_vga(dev_priv);
15077         intel_setup_outputs(dev_priv);
15078
15079         drm_modeset_lock_all(dev);
15080         intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
15081         drm_modeset_unlock_all(dev);
15082
15083         for_each_intel_crtc(dev, crtc) {
15084                 struct intel_initial_plane_config plane_config = {};
15085
15086                 if (!crtc->active)
15087                         continue;
15088
15089                 /*
15090                  * Note that reserving the BIOS fb up front prevents us
15091                  * from stuffing other stolen allocations like the ring
15092                  * on top.  This prevents some ugliness at boot time, and
15093                  * can even allow for smooth boot transitions if the BIOS
15094                  * fb is large enough for the active pipe configuration.
15095                  */
15096                 dev_priv->display.get_initial_plane_config(crtc,
15097                                                            &plane_config);
15098
15099                 /*
15100                  * If the fb is shared between multiple heads, we'll
15101                  * just get the first one.
15102                  */
15103                 intel_find_initial_plane_obj(crtc, &plane_config);
15104         }
15105
15106         /*
15107          * Make sure hardware watermarks really match the state we read out.
15108          * Note that we need to do this after reconstructing the BIOS fb's
15109          * since the watermark calculation done here will use pstate->fb.
15110          */
15111         if (!HAS_GMCH_DISPLAY(dev_priv))
15112                 sanitize_watermarks(dev);
15113
15114         return 0;
15115 }
15116
15117 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
15118 {
15119         /* 640x480@60Hz, ~25175 kHz */
15120         struct dpll clock = {
15121                 .m1 = 18,
15122                 .m2 = 7,
15123                 .p1 = 13,
15124                 .p2 = 4,
15125                 .n = 2,
15126         };
15127         u32 dpll, fp;
15128         int i;
15129
15130         WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154);
15131
15132         DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
15133                       pipe_name(pipe), clock.vco, clock.dot);
15134
15135         fp = i9xx_dpll_compute_fp(&clock);
15136         dpll = (I915_READ(DPLL(pipe)) & DPLL_DVO_2X_MODE) |
15137                 DPLL_VGA_MODE_DIS |
15138                 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
15139                 PLL_P2_DIVIDE_BY_4 |
15140                 PLL_REF_INPUT_DREFCLK |
15141                 DPLL_VCO_ENABLE;
15142
15143         I915_WRITE(FP0(pipe), fp);
15144         I915_WRITE(FP1(pipe), fp);
15145
15146         I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
15147         I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
15148         I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
15149         I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
15150         I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
15151         I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
15152         I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
15153
15154         /*
15155          * Apparently we need to have VGA mode enabled prior to changing
15156          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
15157          * dividers, even though the register value does change.
15158          */
15159         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
15160         I915_WRITE(DPLL(pipe), dpll);
15161
15162         /* Wait for the clocks to stabilize. */
15163         POSTING_READ(DPLL(pipe));
15164         udelay(150);
15165
15166         /* The pixel multiplier can only be updated once the
15167          * DPLL is enabled and the clocks are stable.
15168          *
15169          * So write it again.
15170          */
15171         I915_WRITE(DPLL(pipe), dpll);
15172
15173         /* We do this three times for luck */
15174         for (i = 0; i < 3 ; i++) {
15175                 I915_WRITE(DPLL(pipe), dpll);
15176                 POSTING_READ(DPLL(pipe));
15177                 udelay(150); /* wait for warmup */
15178         }
15179
15180         I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
15181         POSTING_READ(PIPECONF(pipe));
15182 }
15183
15184 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
15185 {
15186         DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n",
15187                       pipe_name(pipe));
15188
15189         assert_plane_disabled(dev_priv, PLANE_A);
15190         assert_plane_disabled(dev_priv, PLANE_B);
15191
15192         I915_WRITE(PIPECONF(pipe), 0);
15193         POSTING_READ(PIPECONF(pipe));
15194
15195         if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
15196                 DRM_ERROR("pipe %c off wait timed out\n", pipe_name(pipe));
15197
15198         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
15199         POSTING_READ(DPLL(pipe));
15200 }
15201
15202 static bool
15203 intel_check_plane_mapping(struct intel_crtc *crtc)
15204 {
15205         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15206         u32 val;
15207
15208         if (INTEL_INFO(dev_priv)->num_pipes == 1)
15209                 return true;
15210
15211         val = I915_READ(DSPCNTR(!crtc->plane));
15212
15213         if ((val & DISPLAY_PLANE_ENABLE) &&
15214             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15215                 return false;
15216
15217         return true;
15218 }
15219
15220 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15221 {
15222         struct drm_device *dev = crtc->base.dev;
15223         struct intel_encoder *encoder;
15224
15225         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15226                 return true;
15227
15228         return false;
15229 }
15230
15231 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
15232 {
15233         struct drm_device *dev = encoder->base.dev;
15234         struct intel_connector *connector;
15235
15236         for_each_connector_on_encoder(dev, &encoder->base, connector)
15237                 return connector;
15238
15239         return NULL;
15240 }
15241
15242 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
15243                               enum transcoder pch_transcoder)
15244 {
15245         return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
15246                 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
15247 }
15248
15249 static void intel_sanitize_crtc(struct intel_crtc *crtc,
15250                                 struct drm_modeset_acquire_ctx *ctx)
15251 {
15252         struct drm_device *dev = crtc->base.dev;
15253         struct drm_i915_private *dev_priv = to_i915(dev);
15254         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15255
15256         /* Clear any frame start delays used for debugging left by the BIOS */
15257         if (!transcoder_is_dsi(cpu_transcoder)) {
15258                 i915_reg_t reg = PIPECONF(cpu_transcoder);
15259
15260                 I915_WRITE(reg,
15261                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15262         }
15263
15264         /* restore vblank interrupts to correct state */
15265         drm_crtc_vblank_reset(&crtc->base);
15266         if (crtc->active) {
15267                 struct intel_plane *plane;
15268
15269                 drm_crtc_vblank_on(&crtc->base);
15270
15271                 /* Disable everything but the primary plane */
15272                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15273                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15274                                 continue;
15275
15276                         trace_intel_disable_plane(&plane->base, crtc);
15277                         plane->disable_plane(plane, crtc);
15278                 }
15279         }
15280
15281         /* We need to sanitize the plane -> pipe mapping first because this will
15282          * disable the crtc (and hence change the state) if it is wrong. Note
15283          * that gen4+ has a fixed plane -> pipe mapping.  */
15284         if (INTEL_GEN(dev_priv) < 4 && !intel_check_plane_mapping(crtc)) {
15285                 bool plane;
15286
15287                 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
15288                               crtc->base.base.id, crtc->base.name);
15289
15290                 /* Pipe has the wrong plane attached and the plane is active.
15291                  * Temporarily change the plane mapping and disable everything
15292                  * ...  */
15293                 plane = crtc->plane;
15294                 crtc->base.primary->state->visible = true;
15295                 crtc->plane = !plane;
15296                 intel_crtc_disable_noatomic(&crtc->base, ctx);
15297                 crtc->plane = plane;
15298         }
15299
15300         /* Adjust the state of the output pipe according to whether we
15301          * have active connectors/encoders. */
15302         if (crtc->active && !intel_crtc_has_encoders(crtc))
15303                 intel_crtc_disable_noatomic(&crtc->base, ctx);
15304
15305         if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
15306                 /*
15307                  * We start out with underrun reporting disabled to avoid races.
15308                  * For correct bookkeeping mark this on active crtcs.
15309                  *
15310                  * Also on gmch platforms we dont have any hardware bits to
15311                  * disable the underrun reporting. Which means we need to start
15312                  * out with underrun reporting disabled also on inactive pipes,
15313                  * since otherwise we'll complain about the garbage we read when
15314                  * e.g. coming up after runtime pm.
15315                  *
15316                  * No protection against concurrent access is required - at
15317                  * worst a fifo underrun happens which also sets this to false.
15318                  */
15319                 crtc->cpu_fifo_underrun_disabled = true;
15320                 /*
15321                  * We track the PCH trancoder underrun reporting state
15322                  * within the crtc. With crtc for pipe A housing the underrun
15323                  * reporting state for PCH transcoder A, crtc for pipe B housing
15324                  * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
15325                  * and marking underrun reporting as disabled for the non-existing
15326                  * PCH transcoders B and C would prevent enabling the south
15327                  * error interrupt (see cpt_can_enable_serr_int()).
15328                  */
15329                 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
15330                         crtc->pch_fifo_underrun_disabled = true;
15331         }
15332 }
15333
15334 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15335 {
15336         struct intel_connector *connector;
15337
15338         /* We need to check both for a crtc link (meaning that the
15339          * encoder is active and trying to read from a pipe) and the
15340          * pipe itself being active. */
15341         bool has_active_crtc = encoder->base.crtc &&
15342                 to_intel_crtc(encoder->base.crtc)->active;
15343
15344         connector = intel_encoder_find_connector(encoder);
15345         if (connector && !has_active_crtc) {
15346                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15347                               encoder->base.base.id,
15348                               encoder->base.name);
15349
15350                 /* Connector is active, but has no active pipe. This is
15351                  * fallout from our resume register restoring. Disable
15352                  * the encoder manually again. */
15353                 if (encoder->base.crtc) {
15354                         struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
15355
15356                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15357                                       encoder->base.base.id,
15358                                       encoder->base.name);
15359                         encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
15360                         if (encoder->post_disable)
15361                                 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
15362                 }
15363                 encoder->base.crtc = NULL;
15364
15365                 /* Inconsistent output/port/pipe state happens presumably due to
15366                  * a bug in one of the get_hw_state functions. Or someplace else
15367                  * in our code, like the register restore mess on resume. Clamp
15368                  * things to off as a safer default. */
15369
15370                 connector->base.dpms = DRM_MODE_DPMS_OFF;
15371                 connector->base.encoder = NULL;
15372         }
15373         /* Enabled encoders without active connectors will be fixed in
15374          * the crtc fixup. */
15375 }
15376
15377 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
15378 {
15379         i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
15380
15381         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15382                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15383                 i915_disable_vga(dev_priv);
15384         }
15385 }
15386
15387 void i915_redisable_vga(struct drm_i915_private *dev_priv)
15388 {
15389         /* This function can be called both from intel_modeset_setup_hw_state or
15390          * at a very early point in our resume sequence, where the power well
15391          * structures are not yet restored. Since this function is at a very
15392          * paranoid "someone might have enabled VGA while we were not looking"
15393          * level, just check if the power well is enabled instead of trying to
15394          * follow the "don't touch the power well if we don't need it" policy
15395          * the rest of the driver uses. */
15396         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15397                 return;
15398
15399         i915_redisable_vga_power_on(dev_priv);
15400
15401         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15402 }
15403
15404 static bool primary_get_hw_state(struct intel_plane *plane)
15405 {
15406         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15407
15408         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15409 }
15410
15411 /* FIXME read out full plane state for all planes */
15412 static void readout_plane_state(struct intel_crtc *crtc)
15413 {
15414         struct intel_plane *primary = to_intel_plane(crtc->base.primary);
15415         bool visible;
15416
15417         visible = crtc->active && primary_get_hw_state(primary);
15418
15419         intel_set_plane_visible(to_intel_crtc_state(crtc->base.state),
15420                                 to_intel_plane_state(primary->base.state),
15421                                 visible);
15422 }
15423
15424 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15425 {
15426         struct drm_i915_private *dev_priv = to_i915(dev);
15427         enum pipe pipe;
15428         struct intel_crtc *crtc;
15429         struct intel_encoder *encoder;
15430         struct intel_connector *connector;
15431         struct drm_connector_list_iter conn_iter;
15432         int i;
15433
15434         dev_priv->active_crtcs = 0;
15435
15436         for_each_intel_crtc(dev, crtc) {
15437                 struct intel_crtc_state *crtc_state =
15438                         to_intel_crtc_state(crtc->base.state);
15439
15440                 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
15441                 memset(crtc_state, 0, sizeof(*crtc_state));
15442                 crtc_state->base.crtc = &crtc->base;
15443
15444                 crtc_state->base.active = crtc_state->base.enable =
15445                         dev_priv->display.get_pipe_config(crtc, crtc_state);
15446
15447                 crtc->base.enabled = crtc_state->base.enable;
15448                 crtc->active = crtc_state->base.active;
15449
15450                 if (crtc_state->base.active)
15451                         dev_priv->active_crtcs |= 1 << crtc->pipe;
15452
15453                 readout_plane_state(crtc);
15454
15455                 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
15456                               crtc->base.base.id, crtc->base.name,
15457                               enableddisabled(crtc_state->base.active));
15458         }
15459
15460         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15461                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15462
15463                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15464                                                   &pll->state.hw_state);
15465                 pll->state.crtc_mask = 0;
15466                 for_each_intel_crtc(dev, crtc) {
15467                         struct intel_crtc_state *crtc_state =
15468                                 to_intel_crtc_state(crtc->base.state);
15469
15470                         if (crtc_state->base.active &&
15471                             crtc_state->shared_dpll == pll)
15472                                 pll->state.crtc_mask |= 1 << crtc->pipe;
15473                 }
15474                 pll->active_mask = pll->state.crtc_mask;
15475
15476                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15477                               pll->name, pll->state.crtc_mask, pll->on);
15478         }
15479
15480         for_each_intel_encoder(dev, encoder) {
15481                 pipe = 0;
15482
15483                 if (encoder->get_hw_state(encoder, &pipe)) {
15484                         struct intel_crtc_state *crtc_state;
15485
15486                         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15487                         crtc_state = to_intel_crtc_state(crtc->base.state);
15488
15489                         encoder->base.crtc = &crtc->base;
15490                         crtc_state->output_types |= 1 << encoder->type;
15491                         encoder->get_config(encoder, crtc_state);
15492                 } else {
15493                         encoder->base.crtc = NULL;
15494                 }
15495
15496                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15497                               encoder->base.base.id, encoder->base.name,
15498                               enableddisabled(encoder->base.crtc),
15499                               pipe_name(pipe));
15500         }
15501
15502         drm_connector_list_iter_begin(dev, &conn_iter);
15503         for_each_intel_connector_iter(connector, &conn_iter) {
15504                 if (connector->get_hw_state(connector)) {
15505                         connector->base.dpms = DRM_MODE_DPMS_ON;
15506
15507                         encoder = connector->encoder;
15508                         connector->base.encoder = &encoder->base;
15509
15510                         if (encoder->base.crtc &&
15511                             encoder->base.crtc->state->active) {
15512                                 /*
15513                                  * This has to be done during hardware readout
15514                                  * because anything calling .crtc_disable may
15515                                  * rely on the connector_mask being accurate.
15516                                  */
15517                                 encoder->base.crtc->state->connector_mask |=
15518                                         1 << drm_connector_index(&connector->base);
15519                                 encoder->base.crtc->state->encoder_mask |=
15520                                         1 << drm_encoder_index(&encoder->base);
15521                         }
15522
15523                 } else {
15524                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15525                         connector->base.encoder = NULL;
15526                 }
15527                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15528                               connector->base.base.id, connector->base.name,
15529                               enableddisabled(connector->base.encoder));
15530         }
15531         drm_connector_list_iter_end(&conn_iter);
15532
15533         for_each_intel_crtc(dev, crtc) {
15534                 struct intel_crtc_state *crtc_state =
15535                         to_intel_crtc_state(crtc->base.state);
15536                 int pixclk = 0;
15537
15538                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15539                 if (crtc_state->base.active) {
15540                         intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
15541                         intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
15542                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15543
15544                         /*
15545                          * The initial mode needs to be set in order to keep
15546                          * the atomic core happy. It wants a valid mode if the
15547                          * crtc's enabled, so we do the above call.
15548                          *
15549                          * But we don't set all the derived state fully, hence
15550                          * set a flag to indicate that a full recalculation is
15551                          * needed on the next commit.
15552                          */
15553                         crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
15554
15555                         intel_crtc_compute_pixel_rate(crtc_state);
15556
15557                         if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv) ||
15558                             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15559                                 pixclk = crtc_state->pixel_rate;
15560                         else
15561                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15562
15563                         /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15564                         if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
15565                                 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15566
15567                         drm_calc_timestamping_constants(&crtc->base,
15568                                                         &crtc_state->base.adjusted_mode);
15569                         update_scanline_offset(crtc);
15570                 }
15571
15572                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15573
15574                 intel_pipe_config_sanity_check(dev_priv, crtc_state);
15575         }
15576 }
15577
15578 static void
15579 get_encoder_power_domains(struct drm_i915_private *dev_priv)
15580 {
15581         struct intel_encoder *encoder;
15582
15583         for_each_intel_encoder(&dev_priv->drm, encoder) {
15584                 u64 get_domains;
15585                 enum intel_display_power_domain domain;
15586
15587                 if (!encoder->get_power_domains)
15588                         continue;
15589
15590                 get_domains = encoder->get_power_domains(encoder);
15591                 for_each_power_domain(domain, get_domains)
15592                         intel_display_power_get(dev_priv, domain);
15593         }
15594 }
15595
15596 /* Scan out the current hw modeset state,
15597  * and sanitizes it to the current state
15598  */
15599 static void
15600 intel_modeset_setup_hw_state(struct drm_device *dev,
15601                              struct drm_modeset_acquire_ctx *ctx)
15602 {
15603         struct drm_i915_private *dev_priv = to_i915(dev);
15604         enum pipe pipe;
15605         struct intel_crtc *crtc;
15606         struct intel_encoder *encoder;
15607         int i;
15608
15609         intel_modeset_readout_hw_state(dev);
15610
15611         /* HW state is read out, now we need to sanitize this mess. */
15612         get_encoder_power_domains(dev_priv);
15613
15614         for_each_intel_encoder(dev, encoder) {
15615                 intel_sanitize_encoder(encoder);
15616         }
15617
15618         for_each_pipe(dev_priv, pipe) {
15619                 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15620
15621                 intel_sanitize_crtc(crtc, ctx);
15622                 intel_dump_pipe_config(crtc, crtc->config,
15623                                        "[setup_hw_state]");
15624         }
15625
15626         intel_modeset_update_connector_atomic_state(dev);
15627
15628         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15629                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15630
15631                 if (!pll->on || pll->active_mask)
15632                         continue;
15633
15634                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15635
15636                 pll->funcs.disable(dev_priv, pll);
15637                 pll->on = false;
15638         }
15639
15640         if (IS_G4X(dev_priv)) {
15641                 g4x_wm_get_hw_state(dev);
15642                 g4x_wm_sanitize(dev_priv);
15643         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15644                 vlv_wm_get_hw_state(dev);
15645                 vlv_wm_sanitize(dev_priv);
15646         } else if (IS_GEN9(dev_priv)) {
15647                 skl_wm_get_hw_state(dev);
15648         } else if (HAS_PCH_SPLIT(dev_priv)) {
15649                 ilk_wm_get_hw_state(dev);
15650         }
15651
15652         for_each_intel_crtc(dev, crtc) {
15653                 u64 put_domains;
15654
15655                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15656                 if (WARN_ON(put_domains))
15657                         modeset_put_power_domains(dev_priv, put_domains);
15658         }
15659         intel_display_set_init_power(dev_priv, false);
15660
15661         intel_power_domains_verify_state(dev_priv);
15662
15663         intel_fbc_init_pipe_state(dev_priv);
15664 }
15665
15666 void intel_display_resume(struct drm_device *dev)
15667 {
15668         struct drm_i915_private *dev_priv = to_i915(dev);
15669         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15670         struct drm_modeset_acquire_ctx ctx;
15671         int ret;
15672
15673         dev_priv->modeset_restore_state = NULL;
15674         if (state)
15675                 state->acquire_ctx = &ctx;
15676
15677         drm_modeset_acquire_init(&ctx, 0);
15678
15679         while (1) {
15680                 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15681                 if (ret != -EDEADLK)
15682                         break;
15683
15684                 drm_modeset_backoff(&ctx);
15685         }
15686
15687         if (!ret)
15688                 ret = __intel_display_resume(dev, state, &ctx);
15689
15690         drm_modeset_drop_locks(&ctx);
15691         drm_modeset_acquire_fini(&ctx);
15692
15693         if (ret)
15694                 DRM_ERROR("Restoring old state failed with %i\n", ret);
15695         if (state)
15696                 drm_atomic_state_put(state);
15697 }
15698
15699 void intel_modeset_gem_init(struct drm_device *dev)
15700 {
15701         struct drm_i915_private *dev_priv = to_i915(dev);
15702
15703         intel_init_gt_powersave(dev_priv);
15704
15705         intel_setup_overlay(dev_priv);
15706 }
15707
15708 int intel_connector_register(struct drm_connector *connector)
15709 {
15710         struct intel_connector *intel_connector = to_intel_connector(connector);
15711         int ret;
15712
15713         ret = intel_backlight_device_register(intel_connector);
15714         if (ret)
15715                 goto err;
15716
15717         return 0;
15718
15719 err:
15720         return ret;
15721 }
15722
15723 void intel_connector_unregister(struct drm_connector *connector)
15724 {
15725         struct intel_connector *intel_connector = to_intel_connector(connector);
15726
15727         intel_backlight_device_unregister(intel_connector);
15728         intel_panel_destroy_backlight(connector);
15729 }
15730
15731 void intel_modeset_cleanup(struct drm_device *dev)
15732 {
15733         struct drm_i915_private *dev_priv = to_i915(dev);
15734
15735         flush_work(&dev_priv->atomic_helper.free_work);
15736         WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
15737
15738         intel_disable_gt_powersave(dev_priv);
15739
15740         /*
15741          * Interrupts and polling as the first thing to avoid creating havoc.
15742          * Too much stuff here (turning of connectors, ...) would
15743          * experience fancy races otherwise.
15744          */
15745         intel_irq_uninstall(dev_priv);
15746
15747         /*
15748          * Due to the hpd irq storm handling the hotplug work can re-arm the
15749          * poll handlers. Hence disable polling after hpd handling is shut down.
15750          */
15751         drm_kms_helper_poll_fini(dev);
15752
15753         intel_unregister_dsm_handler();
15754
15755         intel_fbc_global_disable(dev_priv);
15756
15757         /* flush any delayed tasks or pending work */
15758         flush_scheduled_work();
15759
15760         drm_mode_config_cleanup(dev);
15761
15762         intel_cleanup_overlay(dev_priv);
15763
15764         intel_cleanup_gt_powersave(dev_priv);
15765
15766         intel_teardown_gmbus(dev_priv);
15767 }
15768
15769 void intel_connector_attach_encoder(struct intel_connector *connector,
15770                                     struct intel_encoder *encoder)
15771 {
15772         connector->encoder = encoder;
15773         drm_mode_connector_attach_encoder(&connector->base,
15774                                           &encoder->base);
15775 }
15776
15777 /*
15778  * set vga decode state - true == enable VGA decode
15779  */
15780 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
15781 {
15782         unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15783         u16 gmch_ctrl;
15784
15785         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15786                 DRM_ERROR("failed to read control word\n");
15787                 return -EIO;
15788         }
15789
15790         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15791                 return 0;
15792
15793         if (state)
15794                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15795         else
15796                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15797
15798         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15799                 DRM_ERROR("failed to write control word\n");
15800                 return -EIO;
15801         }
15802
15803         return 0;
15804 }
15805
15806 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
15807
15808 struct intel_display_error_state {
15809
15810         u32 power_well_driver;
15811
15812         int num_transcoders;
15813
15814         struct intel_cursor_error_state {
15815                 u32 control;
15816                 u32 position;
15817                 u32 base;
15818                 u32 size;
15819         } cursor[I915_MAX_PIPES];
15820
15821         struct intel_pipe_error_state {
15822                 bool power_domain_on;
15823                 u32 source;
15824                 u32 stat;
15825         } pipe[I915_MAX_PIPES];
15826
15827         struct intel_plane_error_state {
15828                 u32 control;
15829                 u32 stride;
15830                 u32 size;
15831                 u32 pos;
15832                 u32 addr;
15833                 u32 surface;
15834                 u32 tile_offset;
15835         } plane[I915_MAX_PIPES];
15836
15837         struct intel_transcoder_error_state {
15838                 bool power_domain_on;
15839                 enum transcoder cpu_transcoder;
15840
15841                 u32 conf;
15842
15843                 u32 htotal;
15844                 u32 hblank;
15845                 u32 hsync;
15846                 u32 vtotal;
15847                 u32 vblank;
15848                 u32 vsync;
15849         } transcoder[4];
15850 };
15851
15852 struct intel_display_error_state *
15853 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
15854 {
15855         struct intel_display_error_state *error;
15856         int transcoders[] = {
15857                 TRANSCODER_A,
15858                 TRANSCODER_B,
15859                 TRANSCODER_C,
15860                 TRANSCODER_EDP,
15861         };
15862         int i;
15863
15864         if (INTEL_INFO(dev_priv)->num_pipes == 0)
15865                 return NULL;
15866
15867         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15868         if (error == NULL)
15869                 return NULL;
15870
15871         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15872                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15873
15874         for_each_pipe(dev_priv, i) {
15875                 error->pipe[i].power_domain_on =
15876                         __intel_display_power_is_enabled(dev_priv,
15877                                                          POWER_DOMAIN_PIPE(i));
15878                 if (!error->pipe[i].power_domain_on)
15879                         continue;
15880
15881                 error->cursor[i].control = I915_READ(CURCNTR(i));
15882                 error->cursor[i].position = I915_READ(CURPOS(i));
15883                 error->cursor[i].base = I915_READ(CURBASE(i));
15884
15885                 error->plane[i].control = I915_READ(DSPCNTR(i));
15886                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15887                 if (INTEL_GEN(dev_priv) <= 3) {
15888                         error->plane[i].size = I915_READ(DSPSIZE(i));
15889                         error->plane[i].pos = I915_READ(DSPPOS(i));
15890                 }
15891                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15892                         error->plane[i].addr = I915_READ(DSPADDR(i));
15893                 if (INTEL_GEN(dev_priv) >= 4) {
15894                         error->plane[i].surface = I915_READ(DSPSURF(i));
15895                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15896                 }
15897
15898                 error->pipe[i].source = I915_READ(PIPESRC(i));
15899
15900                 if (HAS_GMCH_DISPLAY(dev_priv))
15901                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15902         }
15903
15904         /* Note: this does not include DSI transcoders. */
15905         error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
15906         if (HAS_DDI(dev_priv))
15907                 error->num_transcoders++; /* Account for eDP. */
15908
15909         for (i = 0; i < error->num_transcoders; i++) {
15910                 enum transcoder cpu_transcoder = transcoders[i];
15911
15912                 error->transcoder[i].power_domain_on =
15913                         __intel_display_power_is_enabled(dev_priv,
15914                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15915                 if (!error->transcoder[i].power_domain_on)
15916                         continue;
15917
15918                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15919
15920                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15921                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15922                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15923                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15924                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15925                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15926                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15927         }
15928
15929         return error;
15930 }
15931
15932 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15933
15934 void
15935 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15936                                 struct intel_display_error_state *error)
15937 {
15938         struct drm_i915_private *dev_priv = m->i915;
15939         int i;
15940
15941         if (!error)
15942                 return;
15943
15944         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
15945         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15946                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15947                            error->power_well_driver);
15948         for_each_pipe(dev_priv, i) {
15949                 err_printf(m, "Pipe [%d]:\n", i);
15950                 err_printf(m, "  Power: %s\n",
15951                            onoff(error->pipe[i].power_domain_on));
15952                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15953                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15954
15955                 err_printf(m, "Plane [%d]:\n", i);
15956                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15957                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15958                 if (INTEL_GEN(dev_priv) <= 3) {
15959                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15960                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15961                 }
15962                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15963                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15964                 if (INTEL_GEN(dev_priv) >= 4) {
15965                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15966                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15967                 }
15968
15969                 err_printf(m, "Cursor [%d]:\n", i);
15970                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15971                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15972                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15973         }
15974
15975         for (i = 0; i < error->num_transcoders; i++) {
15976                 err_printf(m, "CPU transcoder: %s\n",
15977                            transcoder_name(error->transcoder[i].cpu_transcoder));
15978                 err_printf(m, "  Power: %s\n",
15979                            onoff(error->transcoder[i].power_domain_on));
15980                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15981                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15982                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15983                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15984                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15985                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15986                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15987         }
15988 }
15989
15990 #endif