Merge branch 'drm-intel-next' of git://git.kernel.org/pub/scm/linux/kernel/git/anholt...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include "drmP.h"
32 #include "intel_drv.h"
33 #include "i915_drm.h"
34 #include "i915_drv.h"
35 #include "intel_dp.h"
36
37 #include "drm_crtc_helper.h"
38
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
40
41 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
42 static void intel_update_watermarks(struct drm_device *dev);
43 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
44
45 typedef struct {
46     /* given values */
47     int n;
48     int m1, m2;
49     int p1, p2;
50     /* derived values */
51     int dot;
52     int vco;
53     int m;
54     int p;
55 } intel_clock_t;
56
57 typedef struct {
58     int min, max;
59 } intel_range_t;
60
61 typedef struct {
62     int dot_limit;
63     int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 #define INTEL_P2_NUM                  2
67 typedef struct intel_limit intel_limit_t;
68 struct intel_limit {
69     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
70     intel_p2_t      p2;
71     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
72                       int, int, intel_clock_t *);
73     bool (* find_reduced_pll)(const intel_limit_t *, struct drm_crtc *,
74                               int, int, intel_clock_t *);
75 };
76
77 #define I8XX_DOT_MIN              25000
78 #define I8XX_DOT_MAX             350000
79 #define I8XX_VCO_MIN             930000
80 #define I8XX_VCO_MAX            1400000
81 #define I8XX_N_MIN                    3
82 #define I8XX_N_MAX                   16
83 #define I8XX_M_MIN                   96
84 #define I8XX_M_MAX                  140
85 #define I8XX_M1_MIN                  18
86 #define I8XX_M1_MAX                  26
87 #define I8XX_M2_MIN                   6
88 #define I8XX_M2_MAX                  16
89 #define I8XX_P_MIN                    4
90 #define I8XX_P_MAX                  128
91 #define I8XX_P1_MIN                   2
92 #define I8XX_P1_MAX                  33
93 #define I8XX_P1_LVDS_MIN              1
94 #define I8XX_P1_LVDS_MAX              6
95 #define I8XX_P2_SLOW                  4
96 #define I8XX_P2_FAST                  2
97 #define I8XX_P2_LVDS_SLOW             14
98 #define I8XX_P2_LVDS_FAST             7
99 #define I8XX_P2_SLOW_LIMIT       165000
100
101 #define I9XX_DOT_MIN              20000
102 #define I9XX_DOT_MAX             400000
103 #define I9XX_VCO_MIN            1400000
104 #define I9XX_VCO_MAX            2800000
105 #define IGD_VCO_MIN             1700000
106 #define IGD_VCO_MAX             3500000
107 #define I9XX_N_MIN                    1
108 #define I9XX_N_MAX                    6
109 /* IGD's Ncounter is a ring counter */
110 #define IGD_N_MIN                     3
111 #define IGD_N_MAX                     6
112 #define I9XX_M_MIN                   70
113 #define I9XX_M_MAX                  120
114 #define IGD_M_MIN                     2
115 #define IGD_M_MAX                   256
116 #define I9XX_M1_MIN                  10
117 #define I9XX_M1_MAX                  22
118 #define I9XX_M2_MIN                   5
119 #define I9XX_M2_MAX                   9
120 /* IGD M1 is reserved, and must be 0 */
121 #define IGD_M1_MIN                    0
122 #define IGD_M1_MAX                    0
123 #define IGD_M2_MIN                    0
124 #define IGD_M2_MAX                    254
125 #define I9XX_P_SDVO_DAC_MIN           5
126 #define I9XX_P_SDVO_DAC_MAX          80
127 #define I9XX_P_LVDS_MIN               7
128 #define I9XX_P_LVDS_MAX              98
129 #define IGD_P_LVDS_MIN                7
130 #define IGD_P_LVDS_MAX               112
131 #define I9XX_P1_MIN                   1
132 #define I9XX_P1_MAX                   8
133 #define I9XX_P2_SDVO_DAC_SLOW                10
134 #define I9XX_P2_SDVO_DAC_FAST                 5
135 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
136 #define I9XX_P2_LVDS_SLOW                    14
137 #define I9XX_P2_LVDS_FAST                     7
138 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
139
140 /*The parameter is for SDVO on G4x platform*/
141 #define G4X_DOT_SDVO_MIN           25000
142 #define G4X_DOT_SDVO_MAX           270000
143 #define G4X_VCO_MIN                1750000
144 #define G4X_VCO_MAX                3500000
145 #define G4X_N_SDVO_MIN             1
146 #define G4X_N_SDVO_MAX             4
147 #define G4X_M_SDVO_MIN             104
148 #define G4X_M_SDVO_MAX             138
149 #define G4X_M1_SDVO_MIN            17
150 #define G4X_M1_SDVO_MAX            23
151 #define G4X_M2_SDVO_MIN            5
152 #define G4X_M2_SDVO_MAX            11
153 #define G4X_P_SDVO_MIN             10
154 #define G4X_P_SDVO_MAX             30
155 #define G4X_P1_SDVO_MIN            1
156 #define G4X_P1_SDVO_MAX            3
157 #define G4X_P2_SDVO_SLOW           10
158 #define G4X_P2_SDVO_FAST           10
159 #define G4X_P2_SDVO_LIMIT          270000
160
161 /*The parameter is for HDMI_DAC on G4x platform*/
162 #define G4X_DOT_HDMI_DAC_MIN           22000
163 #define G4X_DOT_HDMI_DAC_MAX           400000
164 #define G4X_N_HDMI_DAC_MIN             1
165 #define G4X_N_HDMI_DAC_MAX             4
166 #define G4X_M_HDMI_DAC_MIN             104
167 #define G4X_M_HDMI_DAC_MAX             138
168 #define G4X_M1_HDMI_DAC_MIN            16
169 #define G4X_M1_HDMI_DAC_MAX            23
170 #define G4X_M2_HDMI_DAC_MIN            5
171 #define G4X_M2_HDMI_DAC_MAX            11
172 #define G4X_P_HDMI_DAC_MIN             5
173 #define G4X_P_HDMI_DAC_MAX             80
174 #define G4X_P1_HDMI_DAC_MIN            1
175 #define G4X_P1_HDMI_DAC_MAX            8
176 #define G4X_P2_HDMI_DAC_SLOW           10
177 #define G4X_P2_HDMI_DAC_FAST           5
178 #define G4X_P2_HDMI_DAC_LIMIT          165000
179
180 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
198
199 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
202 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
203 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
204 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
205 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
210 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
211 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
214 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
217
218 /*The parameter is for DISPLAY PORT on G4x platform*/
219 #define G4X_DOT_DISPLAY_PORT_MIN           161670
220 #define G4X_DOT_DISPLAY_PORT_MAX           227000
221 #define G4X_N_DISPLAY_PORT_MIN             1
222 #define G4X_N_DISPLAY_PORT_MAX             2
223 #define G4X_M_DISPLAY_PORT_MIN             97
224 #define G4X_M_DISPLAY_PORT_MAX             108
225 #define G4X_M1_DISPLAY_PORT_MIN            0x10
226 #define G4X_M1_DISPLAY_PORT_MAX            0x12
227 #define G4X_M2_DISPLAY_PORT_MIN            0x05
228 #define G4X_M2_DISPLAY_PORT_MAX            0x06
229 #define G4X_P_DISPLAY_PORT_MIN             10
230 #define G4X_P_DISPLAY_PORT_MAX             20
231 #define G4X_P1_DISPLAY_PORT_MIN            1
232 #define G4X_P1_DISPLAY_PORT_MAX            2
233 #define G4X_P2_DISPLAY_PORT_SLOW           10
234 #define G4X_P2_DISPLAY_PORT_FAST           10
235 #define G4X_P2_DISPLAY_PORT_LIMIT          0
236
237 /* IGDNG */
238 /* as we calculate clock using (register_value + 2) for
239    N/M1/M2, so here the range value for them is (actual_value-2).
240  */
241 #define IGDNG_DOT_MIN         25000
242 #define IGDNG_DOT_MAX         350000
243 #define IGDNG_VCO_MIN         1760000
244 #define IGDNG_VCO_MAX         3510000
245 #define IGDNG_N_MIN           1
246 #define IGDNG_N_MAX           5
247 #define IGDNG_M_MIN           79
248 #define IGDNG_M_MAX           118
249 #define IGDNG_M1_MIN          12
250 #define IGDNG_M1_MAX          23
251 #define IGDNG_M2_MIN          5
252 #define IGDNG_M2_MAX          9
253 #define IGDNG_P_SDVO_DAC_MIN  5
254 #define IGDNG_P_SDVO_DAC_MAX  80
255 #define IGDNG_P_LVDS_MIN      28
256 #define IGDNG_P_LVDS_MAX      112
257 #define IGDNG_P1_MIN          1
258 #define IGDNG_P1_MAX          8
259 #define IGDNG_P2_SDVO_DAC_SLOW 10
260 #define IGDNG_P2_SDVO_DAC_FAST 5
261 #define IGDNG_P2_LVDS_SLOW    14 /* single channel */
262 #define IGDNG_P2_LVDS_FAST    7  /* double channel */
263 #define IGDNG_P2_DOT_LIMIT    225000 /* 225Mhz */
264
265 static bool
266 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
267                     int target, int refclk, intel_clock_t *best_clock);
268 static bool
269 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
270                             int target, int refclk, intel_clock_t *best_clock);
271 static bool
272 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
273                         int target, int refclk, intel_clock_t *best_clock);
274 static bool
275 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
276                         int target, int refclk, intel_clock_t *best_clock);
277
278 static bool
279 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
280                       int target, int refclk, intel_clock_t *best_clock);
281 static bool
282 intel_find_pll_igdng_dp(const intel_limit_t *, struct drm_crtc *crtc,
283                       int target, int refclk, intel_clock_t *best_clock);
284
285 static const intel_limit_t intel_limits_i8xx_dvo = {
286         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
287         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
288         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
289         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
290         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
291         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
292         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
293         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
294         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
295                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
296         .find_pll = intel_find_best_PLL,
297         .find_reduced_pll = intel_find_best_reduced_PLL,
298 };
299
300 static const intel_limit_t intel_limits_i8xx_lvds = {
301         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
302         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
303         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
304         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
305         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
306         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
307         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
308         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
309         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
310                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
311         .find_pll = intel_find_best_PLL,
312         .find_reduced_pll = intel_find_best_reduced_PLL,
313 };
314         
315 static const intel_limit_t intel_limits_i9xx_sdvo = {
316         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
317         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
318         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
319         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
320         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
321         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
322         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
323         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
324         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
325                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
326         .find_pll = intel_find_best_PLL,
327         .find_reduced_pll = intel_find_best_reduced_PLL,
328 };
329
330 static const intel_limit_t intel_limits_i9xx_lvds = {
331         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
332         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
333         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
334         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
335         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
336         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
337         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
338         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
339         /* The single-channel range is 25-112Mhz, and dual-channel
340          * is 80-224Mhz.  Prefer single channel as much as possible.
341          */
342         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
343                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
344         .find_pll = intel_find_best_PLL,
345         .find_reduced_pll = intel_find_best_reduced_PLL,
346 };
347
348     /* below parameter and function is for G4X Chipset Family*/
349 static const intel_limit_t intel_limits_g4x_sdvo = {
350         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
351         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
352         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
353         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
354         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
355         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
356         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
357         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
358         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
359                  .p2_slow = G4X_P2_SDVO_SLOW,
360                  .p2_fast = G4X_P2_SDVO_FAST
361         },
362         .find_pll = intel_g4x_find_best_PLL,
363         .find_reduced_pll = intel_g4x_find_best_PLL,
364 };
365
366 static const intel_limit_t intel_limits_g4x_hdmi = {
367         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
368         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
369         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
370         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
371         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
372         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
373         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
374         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
375         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
376                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
377                  .p2_fast = G4X_P2_HDMI_DAC_FAST
378         },
379         .find_pll = intel_g4x_find_best_PLL,
380         .find_reduced_pll = intel_g4x_find_best_PLL,
381 };
382
383 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
384         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
385                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
386         .vco = { .min = G4X_VCO_MIN,
387                  .max = G4X_VCO_MAX },
388         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
389                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
390         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
391                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
392         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
393                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
394         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
395                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
396         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
397                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
398         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
399                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
400         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
401                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
402                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
403         },
404         .find_pll = intel_g4x_find_best_PLL,
405         .find_reduced_pll = intel_g4x_find_best_PLL,
406 };
407
408 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
409         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
410                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
411         .vco = { .min = G4X_VCO_MIN,
412                  .max = G4X_VCO_MAX },
413         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
414                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
415         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
416                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
417         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
418                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
419         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
420                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
421         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
422                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
423         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
424                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
425         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
426                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
427                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
428         },
429         .find_pll = intel_g4x_find_best_PLL,
430         .find_reduced_pll = intel_g4x_find_best_PLL,
431 };
432
433 static const intel_limit_t intel_limits_g4x_display_port = {
434         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
435                  .max = G4X_DOT_DISPLAY_PORT_MAX },
436         .vco = { .min = G4X_VCO_MIN,
437                  .max = G4X_VCO_MAX},
438         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
439                  .max = G4X_N_DISPLAY_PORT_MAX },
440         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
441                  .max = G4X_M_DISPLAY_PORT_MAX },
442         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
443                  .max = G4X_M1_DISPLAY_PORT_MAX },
444         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
445                  .max = G4X_M2_DISPLAY_PORT_MAX },
446         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
447                  .max = G4X_P_DISPLAY_PORT_MAX },
448         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
449                  .max = G4X_P1_DISPLAY_PORT_MAX},
450         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
451                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
452                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
453         .find_pll = intel_find_pll_g4x_dp,
454 };
455
456 static const intel_limit_t intel_limits_igd_sdvo = {
457         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
458         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
459         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
460         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
461         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
462         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
463         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
464         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
465         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
466                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
467         .find_pll = intel_find_best_PLL,
468         .find_reduced_pll = intel_find_best_reduced_PLL,
469 };
470
471 static const intel_limit_t intel_limits_igd_lvds = {
472         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
473         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
474         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
475         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
476         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
477         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
478         .p   = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
479         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
480         /* IGD only supports single-channel mode. */
481         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
482                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
483         .find_pll = intel_find_best_PLL,
484         .find_reduced_pll = intel_find_best_reduced_PLL,
485 };
486
487 static const intel_limit_t intel_limits_igdng_sdvo = {
488         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
489         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
490         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
491         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
492         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
493         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
494         .p   = { .min = IGDNG_P_SDVO_DAC_MIN,   .max = IGDNG_P_SDVO_DAC_MAX },
495         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
496         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
497                  .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
498                  .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
499         .find_pll = intel_igdng_find_best_PLL,
500 };
501
502 static const intel_limit_t intel_limits_igdng_lvds = {
503         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
504         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
505         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
506         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
507         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
508         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
509         .p   = { .min = IGDNG_P_LVDS_MIN,       .max = IGDNG_P_LVDS_MAX },
510         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
511         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
512                  .p2_slow = IGDNG_P2_LVDS_SLOW,
513                  .p2_fast = IGDNG_P2_LVDS_FAST },
514         .find_pll = intel_igdng_find_best_PLL,
515 };
516
517 static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
518 {
519         const intel_limit_t *limit;
520         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
521                 limit = &intel_limits_igdng_lvds;
522         else
523                 limit = &intel_limits_igdng_sdvo;
524
525         return limit;
526 }
527
528 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
529 {
530         struct drm_device *dev = crtc->dev;
531         struct drm_i915_private *dev_priv = dev->dev_private;
532         const intel_limit_t *limit;
533
534         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
535                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
536                     LVDS_CLKB_POWER_UP)
537                         /* LVDS with dual channel */
538                         limit = &intel_limits_g4x_dual_channel_lvds;
539                 else
540                         /* LVDS with dual channel */
541                         limit = &intel_limits_g4x_single_channel_lvds;
542         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
543                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
544                 limit = &intel_limits_g4x_hdmi;
545         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
546                 limit = &intel_limits_g4x_sdvo;
547         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
548                 limit = &intel_limits_g4x_display_port;
549         } else /* The option is for other outputs */
550                 limit = &intel_limits_i9xx_sdvo;
551
552         return limit;
553 }
554
555 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
556 {
557         struct drm_device *dev = crtc->dev;
558         const intel_limit_t *limit;
559
560         if (IS_IGDNG(dev))
561                 limit = intel_igdng_limit(crtc);
562         else if (IS_G4X(dev)) {
563                 limit = intel_g4x_limit(crtc);
564         } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
565                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
566                         limit = &intel_limits_i9xx_lvds;
567                 else
568                         limit = &intel_limits_i9xx_sdvo;
569         } else if (IS_IGD(dev)) {
570                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
571                         limit = &intel_limits_igd_lvds;
572                 else
573                         limit = &intel_limits_igd_sdvo;
574         } else {
575                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
576                         limit = &intel_limits_i8xx_lvds;
577                 else
578                         limit = &intel_limits_i8xx_dvo;
579         }
580         return limit;
581 }
582
583 /* m1 is reserved as 0 in IGD, n is a ring counter */
584 static void igd_clock(int refclk, intel_clock_t *clock)
585 {
586         clock->m = clock->m2 + 2;
587         clock->p = clock->p1 * clock->p2;
588         clock->vco = refclk * clock->m / clock->n;
589         clock->dot = clock->vco / clock->p;
590 }
591
592 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
593 {
594         if (IS_IGD(dev)) {
595                 igd_clock(refclk, clock);
596                 return;
597         }
598         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
599         clock->p = clock->p1 * clock->p2;
600         clock->vco = refclk * clock->m / (clock->n + 2);
601         clock->dot = clock->vco / clock->p;
602 }
603
604 /**
605  * Returns whether any output on the specified pipe is of the specified type
606  */
607 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
608 {
609     struct drm_device *dev = crtc->dev;
610     struct drm_mode_config *mode_config = &dev->mode_config;
611     struct drm_connector *l_entry;
612
613     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
614             if (l_entry->encoder &&
615                 l_entry->encoder->crtc == crtc) {
616                     struct intel_output *intel_output = to_intel_output(l_entry);
617                     if (intel_output->type == type)
618                             return true;
619             }
620     }
621     return false;
622 }
623
624 struct drm_connector *
625 intel_pipe_get_output (struct drm_crtc *crtc)
626 {
627     struct drm_device *dev = crtc->dev;
628     struct drm_mode_config *mode_config = &dev->mode_config;
629     struct drm_connector *l_entry, *ret = NULL;
630
631     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
632             if (l_entry->encoder &&
633                 l_entry->encoder->crtc == crtc) {
634                     ret = l_entry;
635                     break;
636             }
637     }
638     return ret;
639 }
640
641 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
642 /**
643  * Returns whether the given set of divisors are valid for a given refclk with
644  * the given connectors.
645  */
646
647 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
648 {
649         const intel_limit_t *limit = intel_limit (crtc);
650         struct drm_device *dev = crtc->dev;
651
652         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
653                 INTELPllInvalid ("p1 out of range\n");
654         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
655                 INTELPllInvalid ("p out of range\n");
656         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
657                 INTELPllInvalid ("m2 out of range\n");
658         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
659                 INTELPllInvalid ("m1 out of range\n");
660         if (clock->m1 <= clock->m2 && !IS_IGD(dev))
661                 INTELPllInvalid ("m1 <= m2\n");
662         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
663                 INTELPllInvalid ("m out of range\n");
664         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
665                 INTELPllInvalid ("n out of range\n");
666         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
667                 INTELPllInvalid ("vco out of range\n");
668         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
669          * connector, etc., rather than just a single range.
670          */
671         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
672                 INTELPllInvalid ("dot out of range\n");
673
674         return true;
675 }
676
677 static bool
678 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
679                     int target, int refclk, intel_clock_t *best_clock)
680
681 {
682         struct drm_device *dev = crtc->dev;
683         struct drm_i915_private *dev_priv = dev->dev_private;
684         intel_clock_t clock;
685         int err = target;
686
687         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
688             (I915_READ(LVDS)) != 0) {
689                 /*
690                  * For LVDS, if the panel is on, just rely on its current
691                  * settings for dual-channel.  We haven't figured out how to
692                  * reliably set up different single/dual channel state, if we
693                  * even can.
694                  */
695                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
696                     LVDS_CLKB_POWER_UP)
697                         clock.p2 = limit->p2.p2_fast;
698                 else
699                         clock.p2 = limit->p2.p2_slow;
700         } else {
701                 if (target < limit->p2.dot_limit)
702                         clock.p2 = limit->p2.p2_slow;
703                 else
704                         clock.p2 = limit->p2.p2_fast;
705         }
706
707         memset (best_clock, 0, sizeof (*best_clock));
708
709         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
710                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
711                      clock.m1++) {
712                         for (clock.m2 = limit->m2.min;
713                              clock.m2 <= limit->m2.max; clock.m2++) {
714                                 /* m1 is always 0 in IGD */
715                                 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
716                                         break;
717                                 for (clock.n = limit->n.min;
718                                      clock.n <= limit->n.max; clock.n++) {
719                                         int this_err;
720
721                                         intel_clock(dev, refclk, &clock);
722
723                                         if (!intel_PLL_is_valid(crtc, &clock))
724                                                 continue;
725
726                                         this_err = abs(clock.dot - target);
727                                         if (this_err < err) {
728                                                 *best_clock = clock;
729                                                 err = this_err;
730                                         }
731                                 }
732                         }
733                 }
734         }
735
736         return (err != target);
737 }
738
739
740 static bool
741 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742                             int target, int refclk, intel_clock_t *best_clock)
743
744 {
745         struct drm_device *dev = crtc->dev;
746         intel_clock_t clock;
747         int err = target;
748         bool found = false;
749
750         memcpy(&clock, best_clock, sizeof(intel_clock_t));
751
752         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
753                 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
754                         /* m1 is always 0 in IGD */
755                         if (clock.m2 >= clock.m1 && !IS_IGD(dev))
756                                 break;
757                         for (clock.n = limit->n.min; clock.n <= limit->n.max;
758                              clock.n++) {
759                                 int this_err;
760
761                                 intel_clock(dev, refclk, &clock);
762
763                                 if (!intel_PLL_is_valid(crtc, &clock))
764                                         continue;
765
766                                 this_err = abs(clock.dot - target);
767                                 if (this_err < err) {
768                                         *best_clock = clock;
769                                         err = this_err;
770                                         found = true;
771                                 }
772                         }
773                 }
774         }
775
776         return found;
777 }
778
779 static bool
780 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
781                         int target, int refclk, intel_clock_t *best_clock)
782 {
783         struct drm_device *dev = crtc->dev;
784         struct drm_i915_private *dev_priv = dev->dev_private;
785         intel_clock_t clock;
786         int max_n;
787         bool found;
788         /* approximately equals target * 0.00488 */
789         int err_most = (target >> 8) + (target >> 10);
790         found = false;
791
792         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
793                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
794                     LVDS_CLKB_POWER_UP)
795                         clock.p2 = limit->p2.p2_fast;
796                 else
797                         clock.p2 = limit->p2.p2_slow;
798         } else {
799                 if (target < limit->p2.dot_limit)
800                         clock.p2 = limit->p2.p2_slow;
801                 else
802                         clock.p2 = limit->p2.p2_fast;
803         }
804
805         memset(best_clock, 0, sizeof(*best_clock));
806         max_n = limit->n.max;
807         /* based on hardware requriment prefer smaller n to precision */
808         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809                 /* based on hardware requirment prefere larger m1,m2 */
810                 for (clock.m1 = limit->m1.max;
811                      clock.m1 >= limit->m1.min; clock.m1--) {
812                         for (clock.m2 = limit->m2.max;
813                              clock.m2 >= limit->m2.min; clock.m2--) {
814                                 for (clock.p1 = limit->p1.max;
815                                      clock.p1 >= limit->p1.min; clock.p1--) {
816                                         int this_err;
817
818                                         intel_clock(dev, refclk, &clock);
819                                         if (!intel_PLL_is_valid(crtc, &clock))
820                                                 continue;
821                                         this_err = abs(clock.dot - target) ;
822                                         if (this_err < err_most) {
823                                                 *best_clock = clock;
824                                                 err_most = this_err;
825                                                 max_n = clock.n;
826                                                 found = true;
827                                         }
828                                 }
829                         }
830                 }
831         }
832         return found;
833 }
834
835 static bool
836 intel_find_pll_igdng_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837                       int target, int refclk, intel_clock_t *best_clock)
838 {
839         struct drm_device *dev = crtc->dev;
840         intel_clock_t clock;
841         if (target < 200000) {
842                 clock.n = 1;
843                 clock.p1 = 2;
844                 clock.p2 = 10;
845                 clock.m1 = 12;
846                 clock.m2 = 9;
847         } else {
848                 clock.n = 2;
849                 clock.p1 = 1;
850                 clock.p2 = 10;
851                 clock.m1 = 14;
852                 clock.m2 = 8;
853         }
854         intel_clock(dev, refclk, &clock);
855         memcpy(best_clock, &clock, sizeof(intel_clock_t));
856         return true;
857 }
858
859 static bool
860 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
861                         int target, int refclk, intel_clock_t *best_clock)
862 {
863         struct drm_device *dev = crtc->dev;
864         struct drm_i915_private *dev_priv = dev->dev_private;
865         intel_clock_t clock;
866         int max_n;
867         bool found;
868         int err_most = 47;
869         found = false;
870
871         /* eDP has only 2 clock choice, no n/m/p setting */
872         if (HAS_eDP)
873                 return true;
874
875         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
876                 return intel_find_pll_igdng_dp(limit, crtc, target,
877                                                refclk, best_clock);
878
879         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
880                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
881                     LVDS_CLKB_POWER_UP)
882                         clock.p2 = limit->p2.p2_fast;
883                 else
884                         clock.p2 = limit->p2.p2_slow;
885         } else {
886                 if (target < limit->p2.dot_limit)
887                         clock.p2 = limit->p2.p2_slow;
888                 else
889                         clock.p2 = limit->p2.p2_fast;
890         }
891
892         memset(best_clock, 0, sizeof(*best_clock));
893         max_n = limit->n.max;
894         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
895                 /* based on hardware requriment prefer smaller n to precision */
896                 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
897                         /* based on hardware requirment prefere larger m1,m2 */
898                         for (clock.m1 = limit->m1.max;
899                              clock.m1 >= limit->m1.min; clock.m1--) {
900                                 for (clock.m2 = limit->m2.max;
901                                      clock.m2 >= limit->m2.min; clock.m2--) {
902                                         int this_err;
903
904                                         intel_clock(dev, refclk, &clock);
905                                         if (!intel_PLL_is_valid(crtc, &clock))
906                                                 continue;
907                                         this_err = abs((10000 - (target*10000/clock.dot)));
908                                         if (this_err < err_most) {
909                                                 *best_clock = clock;
910                                                 err_most = this_err;
911                                                 max_n = clock.n;
912                                                 found = true;
913                                                 /* found on first matching */
914                                                 goto out;
915                                         }
916                                 }
917                         }
918                 }
919         }
920 out:
921         return found;
922 }
923
924 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
925 static bool
926 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
927                       int target, int refclk, intel_clock_t *best_clock)
928 {
929     intel_clock_t clock;
930     if (target < 200000) {
931         clock.p1 = 2;
932         clock.p2 = 10;
933         clock.n = 2;
934         clock.m1 = 23;
935         clock.m2 = 8;
936     } else {
937         clock.p1 = 1;
938         clock.p2 = 10;
939         clock.n = 1;
940         clock.m1 = 14;
941         clock.m2 = 2;
942     }
943     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
944     clock.p = (clock.p1 * clock.p2);
945     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
946     memcpy(best_clock, &clock, sizeof(intel_clock_t));
947     return true;
948 }
949
950 void
951 intel_wait_for_vblank(struct drm_device *dev)
952 {
953         /* Wait for 20ms, i.e. one cycle at 50hz. */
954         mdelay(20);
955 }
956
957 /* Parameters have changed, update FBC info */
958 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
959 {
960         struct drm_device *dev = crtc->dev;
961         struct drm_i915_private *dev_priv = dev->dev_private;
962         struct drm_framebuffer *fb = crtc->fb;
963         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
964         struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
966         int plane, i;
967         u32 fbc_ctl, fbc_ctl2;
968
969         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
970
971         if (fb->pitch < dev_priv->cfb_pitch)
972                 dev_priv->cfb_pitch = fb->pitch;
973
974         /* FBC_CTL wants 64B units */
975         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
976         dev_priv->cfb_fence = obj_priv->fence_reg;
977         dev_priv->cfb_plane = intel_crtc->plane;
978         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
979
980         /* Clear old tags */
981         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
982                 I915_WRITE(FBC_TAG + (i * 4), 0);
983
984         /* Set it up... */
985         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
986         if (obj_priv->tiling_mode != I915_TILING_NONE)
987                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
988         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
989         I915_WRITE(FBC_FENCE_OFF, crtc->y);
990
991         /* enable it... */
992         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
993         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
994         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
995         if (obj_priv->tiling_mode != I915_TILING_NONE)
996                 fbc_ctl |= dev_priv->cfb_fence;
997         I915_WRITE(FBC_CONTROL, fbc_ctl);
998
999         DRM_DEBUG("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1000                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1001 }
1002
1003 void i8xx_disable_fbc(struct drm_device *dev)
1004 {
1005         struct drm_i915_private *dev_priv = dev->dev_private;
1006         u32 fbc_ctl;
1007
1008         if (!I915_HAS_FBC(dev))
1009                 return;
1010
1011         /* Disable compression */
1012         fbc_ctl = I915_READ(FBC_CONTROL);
1013         fbc_ctl &= ~FBC_CTL_EN;
1014         I915_WRITE(FBC_CONTROL, fbc_ctl);
1015
1016         /* Wait for compressing bit to clear */
1017         while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
1018                 ; /* nothing */
1019
1020         intel_wait_for_vblank(dev);
1021
1022         DRM_DEBUG("disabled FBC\n");
1023 }
1024
1025 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
1026 {
1027         struct drm_device *dev = crtc->dev;
1028         struct drm_i915_private *dev_priv = dev->dev_private;
1029
1030         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1031 }
1032
1033 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1034 {
1035         struct drm_device *dev = crtc->dev;
1036         struct drm_i915_private *dev_priv = dev->dev_private;
1037         struct drm_framebuffer *fb = crtc->fb;
1038         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1039         struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
1040         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1041         int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1042                      DPFC_CTL_PLANEB);
1043         unsigned long stall_watermark = 200;
1044         u32 dpfc_ctl;
1045
1046         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1047         dev_priv->cfb_fence = obj_priv->fence_reg;
1048         dev_priv->cfb_plane = intel_crtc->plane;
1049
1050         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1051         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1052                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1053                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1054         } else {
1055                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1056         }
1057
1058         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1059         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1060                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1061                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1062         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1063
1064         /* enable it... */
1065         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1066
1067         DRM_DEBUG("enabled fbc on plane %d\n", intel_crtc->plane);
1068 }
1069
1070 void g4x_disable_fbc(struct drm_device *dev)
1071 {
1072         struct drm_i915_private *dev_priv = dev->dev_private;
1073         u32 dpfc_ctl;
1074
1075         /* Disable compression */
1076         dpfc_ctl = I915_READ(DPFC_CONTROL);
1077         dpfc_ctl &= ~DPFC_CTL_EN;
1078         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1079         intel_wait_for_vblank(dev);
1080
1081         DRM_DEBUG("disabled FBC\n");
1082 }
1083
1084 static bool g4x_fbc_enabled(struct drm_crtc *crtc)
1085 {
1086         struct drm_device *dev = crtc->dev;
1087         struct drm_i915_private *dev_priv = dev->dev_private;
1088
1089         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1090 }
1091
1092 /**
1093  * intel_update_fbc - enable/disable FBC as needed
1094  * @crtc: CRTC to point the compressor at
1095  * @mode: mode in use
1096  *
1097  * Set up the framebuffer compression hardware at mode set time.  We
1098  * enable it if possible:
1099  *   - plane A only (on pre-965)
1100  *   - no pixel mulitply/line duplication
1101  *   - no alpha buffer discard
1102  *   - no dual wide
1103  *   - framebuffer <= 2048 in width, 1536 in height
1104  *
1105  * We can't assume that any compression will take place (worst case),
1106  * so the compressed buffer has to be the same size as the uncompressed
1107  * one.  It also must reside (along with the line length buffer) in
1108  * stolen memory.
1109  *
1110  * We need to enable/disable FBC on a global basis.
1111  */
1112 static void intel_update_fbc(struct drm_crtc *crtc,
1113                              struct drm_display_mode *mode)
1114 {
1115         struct drm_device *dev = crtc->dev;
1116         struct drm_i915_private *dev_priv = dev->dev_private;
1117         struct drm_framebuffer *fb = crtc->fb;
1118         struct intel_framebuffer *intel_fb;
1119         struct drm_i915_gem_object *obj_priv;
1120         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1121         int plane = intel_crtc->plane;
1122
1123         if (!i915_powersave)
1124                 return;
1125
1126         if (!dev_priv->display.fbc_enabled ||
1127             !dev_priv->display.enable_fbc ||
1128             !dev_priv->display.disable_fbc)
1129                 return;
1130
1131         if (!crtc->fb)
1132                 return;
1133
1134         intel_fb = to_intel_framebuffer(fb);
1135         obj_priv = intel_fb->obj->driver_private;
1136
1137         /*
1138          * If FBC is already on, we just have to verify that we can
1139          * keep it that way...
1140          * Need to disable if:
1141          *   - changing FBC params (stride, fence, mode)
1142          *   - new fb is too large to fit in compressed buffer
1143          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1144          */
1145         if (intel_fb->obj->size > dev_priv->cfb_size) {
1146                 DRM_DEBUG("framebuffer too large, disabling compression\n");
1147                 goto out_disable;
1148         }
1149         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1150             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1151                 DRM_DEBUG("mode incompatible with compression, disabling\n");
1152                 goto out_disable;
1153         }
1154         if ((mode->hdisplay > 2048) ||
1155             (mode->vdisplay > 1536)) {
1156                 DRM_DEBUG("mode too large for compression, disabling\n");
1157                 goto out_disable;
1158         }
1159         if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1160                 DRM_DEBUG("plane not 0, disabling compression\n");
1161                 goto out_disable;
1162         }
1163         if (obj_priv->tiling_mode != I915_TILING_X) {
1164                 DRM_DEBUG("framebuffer not tiled, disabling compression\n");
1165                 goto out_disable;
1166         }
1167
1168         if (dev_priv->display.fbc_enabled(crtc)) {
1169                 /* We can re-enable it in this case, but need to update pitch */
1170                 if (fb->pitch > dev_priv->cfb_pitch)
1171                         dev_priv->display.disable_fbc(dev);
1172                 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1173                         dev_priv->display.disable_fbc(dev);
1174                 if (plane != dev_priv->cfb_plane)
1175                         dev_priv->display.disable_fbc(dev);
1176         }
1177
1178         if (!dev_priv->display.fbc_enabled(crtc)) {
1179                 /* Now try to turn it back on if possible */
1180                 dev_priv->display.enable_fbc(crtc, 500);
1181         }
1182
1183         return;
1184
1185 out_disable:
1186         DRM_DEBUG("unsupported config, disabling FBC\n");
1187         /* Multiple disables should be harmless */
1188         if (dev_priv->display.fbc_enabled(crtc))
1189                 dev_priv->display.disable_fbc(dev);
1190 }
1191
1192 static int
1193 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1194                     struct drm_framebuffer *old_fb)
1195 {
1196         struct drm_device *dev = crtc->dev;
1197         struct drm_i915_private *dev_priv = dev->dev_private;
1198         struct drm_i915_master_private *master_priv;
1199         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1200         struct intel_framebuffer *intel_fb;
1201         struct drm_i915_gem_object *obj_priv;
1202         struct drm_gem_object *obj;
1203         int pipe = intel_crtc->pipe;
1204         int plane = intel_crtc->plane;
1205         unsigned long Start, Offset;
1206         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1207         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1208         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1209         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1210         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1211         u32 dspcntr, alignment;
1212         int ret;
1213
1214         /* no fb bound */
1215         if (!crtc->fb) {
1216                 DRM_DEBUG("No FB bound\n");
1217                 return 0;
1218         }
1219
1220         switch (plane) {
1221         case 0:
1222         case 1:
1223                 break;
1224         default:
1225                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1226                 return -EINVAL;
1227         }
1228
1229         intel_fb = to_intel_framebuffer(crtc->fb);
1230         obj = intel_fb->obj;
1231         obj_priv = obj->driver_private;
1232
1233         switch (obj_priv->tiling_mode) {
1234         case I915_TILING_NONE:
1235                 alignment = 64 * 1024;
1236                 break;
1237         case I915_TILING_X:
1238                 /* pin() will align the object as required by fence */
1239                 alignment = 0;
1240                 break;
1241         case I915_TILING_Y:
1242                 /* FIXME: Is this true? */
1243                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1244                 return -EINVAL;
1245         default:
1246                 BUG();
1247         }
1248
1249         mutex_lock(&dev->struct_mutex);
1250         ret = i915_gem_object_pin(obj, alignment);
1251         if (ret != 0) {
1252                 mutex_unlock(&dev->struct_mutex);
1253                 return ret;
1254         }
1255
1256         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1257         if (ret != 0) {
1258                 i915_gem_object_unpin(obj);
1259                 mutex_unlock(&dev->struct_mutex);
1260                 return ret;
1261         }
1262
1263         /* Pre-i965 needs to install a fence for tiled scan-out */
1264         if (!IS_I965G(dev) &&
1265             obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1266             obj_priv->tiling_mode != I915_TILING_NONE) {
1267                 ret = i915_gem_object_get_fence_reg(obj);
1268                 if (ret != 0) {
1269                         i915_gem_object_unpin(obj);
1270                         mutex_unlock(&dev->struct_mutex);
1271                         return ret;
1272                 }
1273         }
1274
1275         dspcntr = I915_READ(dspcntr_reg);
1276         /* Mask out pixel format bits in case we change it */
1277         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1278         switch (crtc->fb->bits_per_pixel) {
1279         case 8:
1280                 dspcntr |= DISPPLANE_8BPP;
1281                 break;
1282         case 16:
1283                 if (crtc->fb->depth == 15)
1284                         dspcntr |= DISPPLANE_15_16BPP;
1285                 else
1286                         dspcntr |= DISPPLANE_16BPP;
1287                 break;
1288         case 24:
1289         case 32:
1290                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1291                 break;
1292         default:
1293                 DRM_ERROR("Unknown color depth\n");
1294                 i915_gem_object_unpin(obj);
1295                 mutex_unlock(&dev->struct_mutex);
1296                 return -EINVAL;
1297         }
1298         if (IS_I965G(dev)) {
1299                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1300                         dspcntr |= DISPPLANE_TILED;
1301                 else
1302                         dspcntr &= ~DISPPLANE_TILED;
1303         }
1304
1305         if (IS_IGDNG(dev))
1306                 /* must disable */
1307                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1308
1309         I915_WRITE(dspcntr_reg, dspcntr);
1310
1311         Start = obj_priv->gtt_offset;
1312         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1313
1314         DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1315         I915_WRITE(dspstride, crtc->fb->pitch);
1316         if (IS_I965G(dev)) {
1317                 I915_WRITE(dspbase, Offset);
1318                 I915_READ(dspbase);
1319                 I915_WRITE(dspsurf, Start);
1320                 I915_READ(dspsurf);
1321                 I915_WRITE(dsptileoff, (y << 16) | x);
1322         } else {
1323                 I915_WRITE(dspbase, Start + Offset);
1324                 I915_READ(dspbase);
1325         }
1326
1327         if ((IS_I965G(dev) || plane == 0))
1328                 intel_update_fbc(crtc, &crtc->mode);
1329
1330         intel_wait_for_vblank(dev);
1331
1332         if (old_fb) {
1333                 intel_fb = to_intel_framebuffer(old_fb);
1334                 obj_priv = intel_fb->obj->driver_private;
1335                 i915_gem_object_unpin(intel_fb->obj);
1336         }
1337         intel_increase_pllclock(crtc, true);
1338
1339         mutex_unlock(&dev->struct_mutex);
1340
1341         if (!dev->primary->master)
1342                 return 0;
1343
1344         master_priv = dev->primary->master->driver_priv;
1345         if (!master_priv->sarea_priv)
1346                 return 0;
1347
1348         if (pipe) {
1349                 master_priv->sarea_priv->pipeB_x = x;
1350                 master_priv->sarea_priv->pipeB_y = y;
1351         } else {
1352                 master_priv->sarea_priv->pipeA_x = x;
1353                 master_priv->sarea_priv->pipeA_y = y;
1354         }
1355
1356         return 0;
1357 }
1358
1359 /* Disable the VGA plane that we never use */
1360 static void i915_disable_vga (struct drm_device *dev)
1361 {
1362         struct drm_i915_private *dev_priv = dev->dev_private;
1363         u8 sr1;
1364         u32 vga_reg;
1365
1366         if (IS_IGDNG(dev))
1367                 vga_reg = CPU_VGACNTRL;
1368         else
1369                 vga_reg = VGACNTRL;
1370
1371         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1372                 return;
1373
1374         I915_WRITE8(VGA_SR_INDEX, 1);
1375         sr1 = I915_READ8(VGA_SR_DATA);
1376         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1377         udelay(100);
1378
1379         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1380 }
1381
1382 static void igdng_disable_pll_edp (struct drm_crtc *crtc)
1383 {
1384         struct drm_device *dev = crtc->dev;
1385         struct drm_i915_private *dev_priv = dev->dev_private;
1386         u32 dpa_ctl;
1387
1388         DRM_DEBUG("\n");
1389         dpa_ctl = I915_READ(DP_A);
1390         dpa_ctl &= ~DP_PLL_ENABLE;
1391         I915_WRITE(DP_A, dpa_ctl);
1392 }
1393
1394 static void igdng_enable_pll_edp (struct drm_crtc *crtc)
1395 {
1396         struct drm_device *dev = crtc->dev;
1397         struct drm_i915_private *dev_priv = dev->dev_private;
1398         u32 dpa_ctl;
1399
1400         dpa_ctl = I915_READ(DP_A);
1401         dpa_ctl |= DP_PLL_ENABLE;
1402         I915_WRITE(DP_A, dpa_ctl);
1403         udelay(200);
1404 }
1405
1406
1407 static void igdng_set_pll_edp (struct drm_crtc *crtc, int clock)
1408 {
1409         struct drm_device *dev = crtc->dev;
1410         struct drm_i915_private *dev_priv = dev->dev_private;
1411         u32 dpa_ctl;
1412
1413         DRM_DEBUG("eDP PLL enable for clock %d\n", clock);
1414         dpa_ctl = I915_READ(DP_A);
1415         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1416
1417         if (clock < 200000) {
1418                 u32 temp;
1419                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1420                 /* workaround for 160Mhz:
1421                    1) program 0x4600c bits 15:0 = 0x8124
1422                    2) program 0x46010 bit 0 = 1
1423                    3) program 0x46034 bit 24 = 1
1424                    4) program 0x64000 bit 14 = 1
1425                    */
1426                 temp = I915_READ(0x4600c);
1427                 temp &= 0xffff0000;
1428                 I915_WRITE(0x4600c, temp | 0x8124);
1429
1430                 temp = I915_READ(0x46010);
1431                 I915_WRITE(0x46010, temp | 1);
1432
1433                 temp = I915_READ(0x46034);
1434                 I915_WRITE(0x46034, temp | (1 << 24));
1435         } else {
1436                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1437         }
1438         I915_WRITE(DP_A, dpa_ctl);
1439
1440         udelay(500);
1441 }
1442
1443 static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
1444 {
1445         struct drm_device *dev = crtc->dev;
1446         struct drm_i915_private *dev_priv = dev->dev_private;
1447         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1448         int pipe = intel_crtc->pipe;
1449         int plane = intel_crtc->plane;
1450         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1451         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1452         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1453         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1454         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1455         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1456         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1457         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1458         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1459         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1460         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1461         int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1462         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1463         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1464         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1465         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1466         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1467         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1468         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1469         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1470         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1471         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1472         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1473         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1474         u32 temp;
1475         int tries = 5, j, n;
1476
1477         /* XXX: When our outputs are all unaware of DPMS modes other than off
1478          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1479          */
1480         switch (mode) {
1481         case DRM_MODE_DPMS_ON:
1482         case DRM_MODE_DPMS_STANDBY:
1483         case DRM_MODE_DPMS_SUSPEND:
1484                 DRM_DEBUG("crtc %d dpms on\n", pipe);
1485                 if (HAS_eDP) {
1486                         /* enable eDP PLL */
1487                         igdng_enable_pll_edp(crtc);
1488                 } else {
1489                         /* enable PCH DPLL */
1490                         temp = I915_READ(pch_dpll_reg);
1491                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1492                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1493                                 I915_READ(pch_dpll_reg);
1494                         }
1495
1496                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1497                         temp = I915_READ(fdi_rx_reg);
1498                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1499                                         FDI_SEL_PCDCLK |
1500                                         FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1501                         I915_READ(fdi_rx_reg);
1502                         udelay(200);
1503
1504                         /* Enable CPU FDI TX PLL, always on for IGDNG */
1505                         temp = I915_READ(fdi_tx_reg);
1506                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1507                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1508                                 I915_READ(fdi_tx_reg);
1509                                 udelay(100);
1510                         }
1511                 }
1512
1513                 /* Enable panel fitting for LVDS */
1514                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1515                         temp = I915_READ(pf_ctl_reg);
1516                         I915_WRITE(pf_ctl_reg, temp | PF_ENABLE);
1517
1518                         /* currently full aspect */
1519                         I915_WRITE(pf_win_pos, 0);
1520
1521                         I915_WRITE(pf_win_size,
1522                                    (dev_priv->panel_fixed_mode->hdisplay << 16) |
1523                                    (dev_priv->panel_fixed_mode->vdisplay));
1524                 }
1525
1526                 /* Enable CPU pipe */
1527                 temp = I915_READ(pipeconf_reg);
1528                 if ((temp & PIPEACONF_ENABLE) == 0) {
1529                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1530                         I915_READ(pipeconf_reg);
1531                         udelay(100);
1532                 }
1533
1534                 /* configure and enable CPU plane */
1535                 temp = I915_READ(dspcntr_reg);
1536                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1537                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1538                         /* Flush the plane changes */
1539                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1540                 }
1541
1542                 if (!HAS_eDP) {
1543                         /* enable CPU FDI TX and PCH FDI RX */
1544                         temp = I915_READ(fdi_tx_reg);
1545                         temp |= FDI_TX_ENABLE;
1546                         temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1547                         temp &= ~FDI_LINK_TRAIN_NONE;
1548                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1549                         I915_WRITE(fdi_tx_reg, temp);
1550                         I915_READ(fdi_tx_reg);
1551
1552                         temp = I915_READ(fdi_rx_reg);
1553                         temp &= ~FDI_LINK_TRAIN_NONE;
1554                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1555                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1556                         I915_READ(fdi_rx_reg);
1557
1558                         udelay(150);
1559
1560                         /* Train FDI. */
1561                         /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1562                            for train result */
1563                         temp = I915_READ(fdi_rx_imr_reg);
1564                         temp &= ~FDI_RX_SYMBOL_LOCK;
1565                         temp &= ~FDI_RX_BIT_LOCK;
1566                         I915_WRITE(fdi_rx_imr_reg, temp);
1567                         I915_READ(fdi_rx_imr_reg);
1568                         udelay(150);
1569
1570                         temp = I915_READ(fdi_rx_iir_reg);
1571                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1572
1573                         if ((temp & FDI_RX_BIT_LOCK) == 0) {
1574                                 for (j = 0; j < tries; j++) {
1575                                         temp = I915_READ(fdi_rx_iir_reg);
1576                                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1577                                         if (temp & FDI_RX_BIT_LOCK)
1578                                                 break;
1579                                         udelay(200);
1580                                 }
1581                                 if (j != tries)
1582                                         I915_WRITE(fdi_rx_iir_reg,
1583                                                         temp | FDI_RX_BIT_LOCK);
1584                                 else
1585                                         DRM_DEBUG("train 1 fail\n");
1586                         } else {
1587                                 I915_WRITE(fdi_rx_iir_reg,
1588                                                 temp | FDI_RX_BIT_LOCK);
1589                                 DRM_DEBUG("train 1 ok 2!\n");
1590                         }
1591                         temp = I915_READ(fdi_tx_reg);
1592                         temp &= ~FDI_LINK_TRAIN_NONE;
1593                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1594                         I915_WRITE(fdi_tx_reg, temp);
1595
1596                         temp = I915_READ(fdi_rx_reg);
1597                         temp &= ~FDI_LINK_TRAIN_NONE;
1598                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1599                         I915_WRITE(fdi_rx_reg, temp);
1600
1601                         udelay(150);
1602
1603                         temp = I915_READ(fdi_rx_iir_reg);
1604                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1605
1606                         if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1607                                 for (j = 0; j < tries; j++) {
1608                                         temp = I915_READ(fdi_rx_iir_reg);
1609                                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1610                                         if (temp & FDI_RX_SYMBOL_LOCK)
1611                                                 break;
1612                                         udelay(200);
1613                                 }
1614                                 if (j != tries) {
1615                                         I915_WRITE(fdi_rx_iir_reg,
1616                                                         temp | FDI_RX_SYMBOL_LOCK);
1617                                         DRM_DEBUG("train 2 ok 1!\n");
1618                                 } else
1619                                         DRM_DEBUG("train 2 fail\n");
1620                         } else {
1621                                 I915_WRITE(fdi_rx_iir_reg,
1622                                                 temp | FDI_RX_SYMBOL_LOCK);
1623                                 DRM_DEBUG("train 2 ok 2!\n");
1624                         }
1625                         DRM_DEBUG("train done\n");
1626
1627                         /* set transcoder timing */
1628                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1629                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1630                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1631
1632                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1633                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1634                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1635
1636                         /* enable PCH transcoder */
1637                         temp = I915_READ(transconf_reg);
1638                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1639                         I915_READ(transconf_reg);
1640
1641                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1642                                 ;
1643
1644                         /* enable normal */
1645
1646                         temp = I915_READ(fdi_tx_reg);
1647                         temp &= ~FDI_LINK_TRAIN_NONE;
1648                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1649                                         FDI_TX_ENHANCE_FRAME_ENABLE);
1650                         I915_READ(fdi_tx_reg);
1651
1652                         temp = I915_READ(fdi_rx_reg);
1653                         temp &= ~FDI_LINK_TRAIN_NONE;
1654                         I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1655                                         FDI_RX_ENHANCE_FRAME_ENABLE);
1656                         I915_READ(fdi_rx_reg);
1657
1658                         /* wait one idle pattern time */
1659                         udelay(100);
1660
1661                 }
1662
1663                 intel_crtc_load_lut(crtc);
1664
1665         break;
1666         case DRM_MODE_DPMS_OFF:
1667                 DRM_DEBUG("crtc %d dpms off\n", pipe);
1668
1669                 i915_disable_vga(dev);
1670
1671                 /* Disable display plane */
1672                 temp = I915_READ(dspcntr_reg);
1673                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1674                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1675                         /* Flush the plane changes */
1676                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1677                         I915_READ(dspbase_reg);
1678                 }
1679
1680                 /* disable cpu pipe, disable after all planes disabled */
1681                 temp = I915_READ(pipeconf_reg);
1682                 if ((temp & PIPEACONF_ENABLE) != 0) {
1683                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1684                         I915_READ(pipeconf_reg);
1685                         n = 0;
1686                         /* wait for cpu pipe off, pipe state */
1687                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1688                                 n++;
1689                                 if (n < 60) {
1690                                         udelay(500);
1691                                         continue;
1692                                 } else {
1693                                         DRM_DEBUG("pipe %d off delay\n", pipe);
1694                                         break;
1695                                 }
1696                         }
1697                 } else
1698                         DRM_DEBUG("crtc %d is disabled\n", pipe);
1699
1700                 if (HAS_eDP) {
1701                         igdng_disable_pll_edp(crtc);
1702                 }
1703
1704                 /* disable CPU FDI tx and PCH FDI rx */
1705                 temp = I915_READ(fdi_tx_reg);
1706                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1707                 I915_READ(fdi_tx_reg);
1708
1709                 temp = I915_READ(fdi_rx_reg);
1710                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1711                 I915_READ(fdi_rx_reg);
1712
1713                 udelay(100);
1714
1715                 /* still set train pattern 1 */
1716                 temp = I915_READ(fdi_tx_reg);
1717                 temp &= ~FDI_LINK_TRAIN_NONE;
1718                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1719                 I915_WRITE(fdi_tx_reg, temp);
1720
1721                 temp = I915_READ(fdi_rx_reg);
1722                 temp &= ~FDI_LINK_TRAIN_NONE;
1723                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1724                 I915_WRITE(fdi_rx_reg, temp);
1725
1726                 udelay(100);
1727
1728                 /* disable PCH transcoder */
1729                 temp = I915_READ(transconf_reg);
1730                 if ((temp & TRANS_ENABLE) != 0) {
1731                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1732                         I915_READ(transconf_reg);
1733                         n = 0;
1734                         /* wait for PCH transcoder off, transcoder state */
1735                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1736                                 n++;
1737                                 if (n < 60) {
1738                                         udelay(500);
1739                                         continue;
1740                                 } else {
1741                                         DRM_DEBUG("transcoder %d off delay\n", pipe);
1742                                         break;
1743                                 }
1744                         }
1745                 }
1746
1747                 /* disable PCH DPLL */
1748                 temp = I915_READ(pch_dpll_reg);
1749                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1750                         I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1751                         I915_READ(pch_dpll_reg);
1752                 }
1753
1754                 temp = I915_READ(fdi_rx_reg);
1755                 if ((temp & FDI_RX_PLL_ENABLE) != 0) {
1756                         temp &= ~FDI_SEL_PCDCLK;
1757                         temp &= ~FDI_RX_PLL_ENABLE;
1758                         I915_WRITE(fdi_rx_reg, temp);
1759                         I915_READ(fdi_rx_reg);
1760                 }
1761
1762                 /* Disable CPU FDI TX PLL */
1763                 temp = I915_READ(fdi_tx_reg);
1764                 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1765                         I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1766                         I915_READ(fdi_tx_reg);
1767                         udelay(100);
1768                 }
1769
1770                 /* Disable PF */
1771                 temp = I915_READ(pf_ctl_reg);
1772                 if ((temp & PF_ENABLE) != 0) {
1773                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1774                         I915_READ(pf_ctl_reg);
1775                 }
1776                 I915_WRITE(pf_win_size, 0);
1777
1778                 /* Wait for the clocks to turn off. */
1779                 udelay(150);
1780                 break;
1781         }
1782 }
1783
1784 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1785 {
1786         struct drm_device *dev = crtc->dev;
1787         struct drm_i915_private *dev_priv = dev->dev_private;
1788         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1789         int pipe = intel_crtc->pipe;
1790         int plane = intel_crtc->plane;
1791         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1792         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1793         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1794         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1795         u32 temp;
1796
1797         /* XXX: When our outputs are all unaware of DPMS modes other than off
1798          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1799          */
1800         switch (mode) {
1801         case DRM_MODE_DPMS_ON:
1802         case DRM_MODE_DPMS_STANDBY:
1803         case DRM_MODE_DPMS_SUSPEND:
1804                 /* Enable the DPLL */
1805                 temp = I915_READ(dpll_reg);
1806                 if ((temp & DPLL_VCO_ENABLE) == 0) {
1807                         I915_WRITE(dpll_reg, temp);
1808                         I915_READ(dpll_reg);
1809                         /* Wait for the clocks to stabilize. */
1810                         udelay(150);
1811                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1812                         I915_READ(dpll_reg);
1813                         /* Wait for the clocks to stabilize. */
1814                         udelay(150);
1815                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1816                         I915_READ(dpll_reg);
1817                         /* Wait for the clocks to stabilize. */
1818                         udelay(150);
1819                 }
1820
1821                 /* Enable the pipe */
1822                 temp = I915_READ(pipeconf_reg);
1823                 if ((temp & PIPEACONF_ENABLE) == 0)
1824                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1825
1826                 /* Enable the plane */
1827                 temp = I915_READ(dspcntr_reg);
1828                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1829                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1830                         /* Flush the plane changes */
1831                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1832                 }
1833
1834                 intel_crtc_load_lut(crtc);
1835
1836                 if ((IS_I965G(dev) || plane == 0))
1837                         intel_update_fbc(crtc, &crtc->mode);
1838
1839                 /* Give the overlay scaler a chance to enable if it's on this pipe */
1840                 //intel_crtc_dpms_video(crtc, true); TODO
1841                 intel_update_watermarks(dev);
1842         break;
1843         case DRM_MODE_DPMS_OFF:
1844                 intel_update_watermarks(dev);
1845                 /* Give the overlay scaler a chance to disable if it's on this pipe */
1846                 //intel_crtc_dpms_video(crtc, FALSE); TODO
1847
1848                 if (dev_priv->cfb_plane == plane &&
1849                     dev_priv->display.disable_fbc)
1850                         dev_priv->display.disable_fbc(dev);
1851
1852                 /* Disable the VGA plane that we never use */
1853                 i915_disable_vga(dev);
1854
1855                 /* Disable display plane */
1856                 temp = I915_READ(dspcntr_reg);
1857                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1858                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1859                         /* Flush the plane changes */
1860                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1861                         I915_READ(dspbase_reg);
1862                 }
1863
1864                 if (!IS_I9XX(dev)) {
1865                         /* Wait for vblank for the disable to take effect */
1866                         intel_wait_for_vblank(dev);
1867                 }
1868
1869                 /* Next, disable display pipes */
1870                 temp = I915_READ(pipeconf_reg);
1871                 if ((temp & PIPEACONF_ENABLE) != 0) {
1872                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1873                         I915_READ(pipeconf_reg);
1874                 }
1875
1876                 /* Wait for vblank for the disable to take effect. */
1877                 intel_wait_for_vblank(dev);
1878
1879                 temp = I915_READ(dpll_reg);
1880                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1881                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1882                         I915_READ(dpll_reg);
1883                 }
1884
1885                 /* Wait for the clocks to turn off. */
1886                 udelay(150);
1887                 break;
1888         }
1889 }
1890
1891 /**
1892  * Sets the power management mode of the pipe and plane.
1893  *
1894  * This code should probably grow support for turning the cursor off and back
1895  * on appropriately at the same time as we're turning the pipe off/on.
1896  */
1897 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1898 {
1899         struct drm_device *dev = crtc->dev;
1900         struct drm_i915_private *dev_priv = dev->dev_private;
1901         struct drm_i915_master_private *master_priv;
1902         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1903         int pipe = intel_crtc->pipe;
1904         bool enabled;
1905
1906         dev_priv->display.dpms(crtc, mode);
1907
1908         intel_crtc->dpms_mode = mode;
1909
1910         if (!dev->primary->master)
1911                 return;
1912
1913         master_priv = dev->primary->master->driver_priv;
1914         if (!master_priv->sarea_priv)
1915                 return;
1916
1917         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1918
1919         switch (pipe) {
1920         case 0:
1921                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1922                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1923                 break;
1924         case 1:
1925                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1926                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1927                 break;
1928         default:
1929                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1930                 break;
1931         }
1932 }
1933
1934 static void intel_crtc_prepare (struct drm_crtc *crtc)
1935 {
1936         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1937         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1938 }
1939
1940 static void intel_crtc_commit (struct drm_crtc *crtc)
1941 {
1942         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1943         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1944 }
1945
1946 void intel_encoder_prepare (struct drm_encoder *encoder)
1947 {
1948         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1949         /* lvds has its own version of prepare see intel_lvds_prepare */
1950         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1951 }
1952
1953 void intel_encoder_commit (struct drm_encoder *encoder)
1954 {
1955         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1956         /* lvds has its own version of commit see intel_lvds_commit */
1957         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1958 }
1959
1960 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
1961                                   struct drm_display_mode *mode,
1962                                   struct drm_display_mode *adjusted_mode)
1963 {
1964         struct drm_device *dev = crtc->dev;
1965         if (IS_IGDNG(dev)) {
1966                 /* FDI link clock is fixed at 2.7G */
1967                 if (mode->clock * 3 > 27000 * 4)
1968                         return MODE_CLOCK_HIGH;
1969         }
1970         return true;
1971 }
1972
1973 static int i945_get_display_clock_speed(struct drm_device *dev)
1974 {
1975         return 400000;
1976 }
1977
1978 static int i915_get_display_clock_speed(struct drm_device *dev)
1979 {
1980         return 333000;
1981 }
1982
1983 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
1984 {
1985         return 200000;
1986 }
1987
1988 static int i915gm_get_display_clock_speed(struct drm_device *dev)
1989 {
1990         u16 gcfgc = 0;
1991
1992         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
1993
1994         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
1995                 return 133000;
1996         else {
1997                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
1998                 case GC_DISPLAY_CLOCK_333_MHZ:
1999                         return 333000;
2000                 default:
2001                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2002                         return 190000;
2003                 }
2004         }
2005 }
2006
2007 static int i865_get_display_clock_speed(struct drm_device *dev)
2008 {
2009         return 266000;
2010 }
2011
2012 static int i855_get_display_clock_speed(struct drm_device *dev)
2013 {
2014         u16 hpllcc = 0;
2015         /* Assume that the hardware is in the high speed state.  This
2016          * should be the default.
2017          */
2018         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2019         case GC_CLOCK_133_200:
2020         case GC_CLOCK_100_200:
2021                 return 200000;
2022         case GC_CLOCK_166_250:
2023                 return 250000;
2024         case GC_CLOCK_100_133:
2025                 return 133000;
2026         }
2027
2028         /* Shouldn't happen */
2029         return 0;
2030 }
2031
2032 static int i830_get_display_clock_speed(struct drm_device *dev)
2033 {
2034         return 133000;
2035 }
2036
2037 /**
2038  * Return the pipe currently connected to the panel fitter,
2039  * or -1 if the panel fitter is not present or not in use
2040  */
2041 static int intel_panel_fitter_pipe (struct drm_device *dev)
2042 {
2043         struct drm_i915_private *dev_priv = dev->dev_private;
2044         u32  pfit_control;
2045
2046         /* i830 doesn't have a panel fitter */
2047         if (IS_I830(dev))
2048                 return -1;
2049
2050         pfit_control = I915_READ(PFIT_CONTROL);
2051
2052         /* See if the panel fitter is in use */
2053         if ((pfit_control & PFIT_ENABLE) == 0)
2054                 return -1;
2055
2056         /* 965 can place panel fitter on either pipe */
2057         if (IS_I965G(dev))
2058                 return (pfit_control >> 29) & 0x3;
2059
2060         /* older chips can only use pipe 1 */
2061         return 1;
2062 }
2063
2064 struct fdi_m_n {
2065         u32        tu;
2066         u32        gmch_m;
2067         u32        gmch_n;
2068         u32        link_m;
2069         u32        link_n;
2070 };
2071
2072 static void
2073 fdi_reduce_ratio(u32 *num, u32 *den)
2074 {
2075         while (*num > 0xffffff || *den > 0xffffff) {
2076                 *num >>= 1;
2077                 *den >>= 1;
2078         }
2079 }
2080
2081 #define DATA_N 0x800000
2082 #define LINK_N 0x80000
2083
2084 static void
2085 igdng_compute_m_n(int bytes_per_pixel, int nlanes,
2086                 int pixel_clock, int link_clock,
2087                 struct fdi_m_n *m_n)
2088 {
2089         u64 temp;
2090
2091         m_n->tu = 64; /* default size */
2092
2093         temp = (u64) DATA_N * pixel_clock;
2094         temp = div_u64(temp, link_clock);
2095         m_n->gmch_m = div_u64(temp * bytes_per_pixel, nlanes);
2096         m_n->gmch_n = DATA_N;
2097         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2098
2099         temp = (u64) LINK_N * pixel_clock;
2100         m_n->link_m = div_u64(temp, link_clock);
2101         m_n->link_n = LINK_N;
2102         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2103 }
2104
2105
2106 struct intel_watermark_params {
2107         unsigned long fifo_size;
2108         unsigned long max_wm;
2109         unsigned long default_wm;
2110         unsigned long guard_size;
2111         unsigned long cacheline_size;
2112 };
2113
2114 /* IGD has different values for various configs */
2115 static struct intel_watermark_params igd_display_wm = {
2116         IGD_DISPLAY_FIFO,
2117         IGD_MAX_WM,
2118         IGD_DFT_WM,
2119         IGD_GUARD_WM,
2120         IGD_FIFO_LINE_SIZE
2121 };
2122 static struct intel_watermark_params igd_display_hplloff_wm = {
2123         IGD_DISPLAY_FIFO,
2124         IGD_MAX_WM,
2125         IGD_DFT_HPLLOFF_WM,
2126         IGD_GUARD_WM,
2127         IGD_FIFO_LINE_SIZE
2128 };
2129 static struct intel_watermark_params igd_cursor_wm = {
2130         IGD_CURSOR_FIFO,
2131         IGD_CURSOR_MAX_WM,
2132         IGD_CURSOR_DFT_WM,
2133         IGD_CURSOR_GUARD_WM,
2134         IGD_FIFO_LINE_SIZE,
2135 };
2136 static struct intel_watermark_params igd_cursor_hplloff_wm = {
2137         IGD_CURSOR_FIFO,
2138         IGD_CURSOR_MAX_WM,
2139         IGD_CURSOR_DFT_WM,
2140         IGD_CURSOR_GUARD_WM,
2141         IGD_FIFO_LINE_SIZE
2142 };
2143 static struct intel_watermark_params i945_wm_info = {
2144         I945_FIFO_SIZE,
2145         I915_MAX_WM,
2146         1,
2147         2,
2148         I915_FIFO_LINE_SIZE
2149 };
2150 static struct intel_watermark_params i915_wm_info = {
2151         I915_FIFO_SIZE,
2152         I915_MAX_WM,
2153         1,
2154         2,
2155         I915_FIFO_LINE_SIZE
2156 };
2157 static struct intel_watermark_params i855_wm_info = {
2158         I855GM_FIFO_SIZE,
2159         I915_MAX_WM,
2160         1,
2161         2,
2162         I830_FIFO_LINE_SIZE
2163 };
2164 static struct intel_watermark_params i830_wm_info = {
2165         I830_FIFO_SIZE,
2166         I915_MAX_WM,
2167         1,
2168         2,
2169         I830_FIFO_LINE_SIZE
2170 };
2171
2172 /**
2173  * intel_calculate_wm - calculate watermark level
2174  * @clock_in_khz: pixel clock
2175  * @wm: chip FIFO params
2176  * @pixel_size: display pixel size
2177  * @latency_ns: memory latency for the platform
2178  *
2179  * Calculate the watermark level (the level at which the display plane will
2180  * start fetching from memory again).  Each chip has a different display
2181  * FIFO size and allocation, so the caller needs to figure that out and pass
2182  * in the correct intel_watermark_params structure.
2183  *
2184  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2185  * on the pixel size.  When it reaches the watermark level, it'll start
2186  * fetching FIFO line sized based chunks from memory until the FIFO fills
2187  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2188  * will occur, and a display engine hang could result.
2189  */
2190 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2191                                         struct intel_watermark_params *wm,
2192                                         int pixel_size,
2193                                         unsigned long latency_ns)
2194 {
2195         long entries_required, wm_size;
2196
2197         /*
2198          * Note: we need to make sure we don't overflow for various clock &
2199          * latency values.
2200          * clocks go from a few thousand to several hundred thousand.
2201          * latency is usually a few thousand
2202          */
2203         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2204                 1000;
2205         entries_required /= wm->cacheline_size;
2206
2207         DRM_DEBUG("FIFO entries required for mode: %d\n", entries_required);
2208
2209         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2210
2211         DRM_DEBUG("FIFO watermark level: %d\n", wm_size);
2212
2213         /* Don't promote wm_size to unsigned... */
2214         if (wm_size > (long)wm->max_wm)
2215                 wm_size = wm->max_wm;
2216         if (wm_size <= 0)
2217                 wm_size = wm->default_wm;
2218         return wm_size;
2219 }
2220
2221 struct cxsr_latency {
2222         int is_desktop;
2223         unsigned long fsb_freq;
2224         unsigned long mem_freq;
2225         unsigned long display_sr;
2226         unsigned long display_hpll_disable;
2227         unsigned long cursor_sr;
2228         unsigned long cursor_hpll_disable;
2229 };
2230
2231 static struct cxsr_latency cxsr_latency_table[] = {
2232         {1, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2233         {1, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2234         {1, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2235
2236         {1, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2237         {1, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2238         {1, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2239
2240         {1, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2241         {1, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2242         {1, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2243
2244         {0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2245         {0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2246         {0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2247
2248         {0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2249         {0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2250         {0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2251
2252         {0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2253         {0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2254         {0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2255 };
2256
2257 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2258                                                    int mem)
2259 {
2260         int i;
2261         struct cxsr_latency *latency;
2262
2263         if (fsb == 0 || mem == 0)
2264                 return NULL;
2265
2266         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2267                 latency = &cxsr_latency_table[i];
2268                 if (is_desktop == latency->is_desktop &&
2269                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2270                         return latency;
2271         }
2272
2273         DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
2274
2275         return NULL;
2276 }
2277
2278 static void igd_disable_cxsr(struct drm_device *dev)
2279 {
2280         struct drm_i915_private *dev_priv = dev->dev_private;
2281         u32 reg;
2282
2283         /* deactivate cxsr */
2284         reg = I915_READ(DSPFW3);
2285         reg &= ~(IGD_SELF_REFRESH_EN);
2286         I915_WRITE(DSPFW3, reg);
2287         DRM_INFO("Big FIFO is disabled\n");
2288 }
2289
2290 static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
2291                             int pixel_size)
2292 {
2293         struct drm_i915_private *dev_priv = dev->dev_private;
2294         u32 reg;
2295         unsigned long wm;
2296         struct cxsr_latency *latency;
2297
2298         latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
2299                 dev_priv->mem_freq);
2300         if (!latency) {
2301                 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
2302                 igd_disable_cxsr(dev);
2303                 return;
2304         }
2305
2306         /* Display SR */
2307         wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
2308                                 latency->display_sr);
2309         reg = I915_READ(DSPFW1);
2310         reg &= 0x7fffff;
2311         reg |= wm << 23;
2312         I915_WRITE(DSPFW1, reg);
2313         DRM_DEBUG("DSPFW1 register is %x\n", reg);
2314
2315         /* cursor SR */
2316         wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
2317                                 latency->cursor_sr);
2318         reg = I915_READ(DSPFW3);
2319         reg &= ~(0x3f << 24);
2320         reg |= (wm & 0x3f) << 24;
2321         I915_WRITE(DSPFW3, reg);
2322
2323         /* Display HPLL off SR */
2324         wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
2325                 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
2326         reg = I915_READ(DSPFW3);
2327         reg &= 0xfffffe00;
2328         reg |= wm & 0x1ff;
2329         I915_WRITE(DSPFW3, reg);
2330
2331         /* cursor HPLL off SR */
2332         wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
2333                                 latency->cursor_hpll_disable);
2334         reg = I915_READ(DSPFW3);
2335         reg &= ~(0x3f << 16);
2336         reg |= (wm & 0x3f) << 16;
2337         I915_WRITE(DSPFW3, reg);
2338         DRM_DEBUG("DSPFW3 register is %x\n", reg);
2339
2340         /* activate cxsr */
2341         reg = I915_READ(DSPFW3);
2342         reg |= IGD_SELF_REFRESH_EN;
2343         I915_WRITE(DSPFW3, reg);
2344
2345         DRM_INFO("Big FIFO is enabled\n");
2346
2347         return;
2348 }
2349
2350 /*
2351  * Latency for FIFO fetches is dependent on several factors:
2352  *   - memory configuration (speed, channels)
2353  *   - chipset
2354  *   - current MCH state
2355  * It can be fairly high in some situations, so here we assume a fairly
2356  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2357  * set this value too high, the FIFO will fetch frequently to stay full)
2358  * and power consumption (set it too low to save power and we might see
2359  * FIFO underruns and display "flicker").
2360  *
2361  * A value of 5us seems to be a good balance; safe for very low end
2362  * platforms but not overly aggressive on lower latency configs.
2363  */
2364 const static int latency_ns = 5000;
2365
2366 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2367 {
2368         struct drm_i915_private *dev_priv = dev->dev_private;
2369         uint32_t dsparb = I915_READ(DSPARB);
2370         int size;
2371
2372         if (plane == 0)
2373                 size = dsparb & 0x7f;
2374         else
2375                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2376                         (dsparb & 0x7f);
2377
2378         DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2379                   size);
2380
2381         return size;
2382 }
2383
2384 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2385 {
2386         struct drm_i915_private *dev_priv = dev->dev_private;
2387         uint32_t dsparb = I915_READ(DSPARB);
2388         int size;
2389
2390         if (plane == 0)
2391                 size = dsparb & 0x1ff;
2392         else
2393                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2394                         (dsparb & 0x1ff);
2395         size >>= 1; /* Convert to cachelines */
2396
2397         DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2398                   size);
2399
2400         return size;
2401 }
2402
2403 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2404 {
2405         struct drm_i915_private *dev_priv = dev->dev_private;
2406         uint32_t dsparb = I915_READ(DSPARB);
2407         int size;
2408
2409         size = dsparb & 0x7f;
2410         size >>= 2; /* Convert to cachelines */
2411
2412         DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2413                   size);
2414
2415         return size;
2416 }
2417
2418 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2419 {
2420         struct drm_i915_private *dev_priv = dev->dev_private;
2421         uint32_t dsparb = I915_READ(DSPARB);
2422         int size;
2423
2424         size = dsparb & 0x7f;
2425         size >>= 1; /* Convert to cachelines */
2426
2427         DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2428                   size);
2429
2430         return size;
2431 }
2432
2433 static void g4x_update_wm(struct drm_device *dev, int unused, int unused2,
2434                           int unused3, int unused4)
2435 {
2436         struct drm_i915_private *dev_priv = dev->dev_private;
2437         u32 fw_blc_self = I915_READ(FW_BLC_SELF);
2438
2439         if (i915_powersave)
2440                 fw_blc_self |= FW_BLC_SELF_EN;
2441         else
2442                 fw_blc_self &= ~FW_BLC_SELF_EN;
2443         I915_WRITE(FW_BLC_SELF, fw_blc_self);
2444 }
2445
2446 static void i965_update_wm(struct drm_device *dev, int unused, int unused2,
2447                            int unused3, int unused4)
2448 {
2449         struct drm_i915_private *dev_priv = dev->dev_private;
2450
2451         DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
2452
2453         /* 965 has limitations... */
2454         I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
2455         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2456 }
2457
2458 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2459                            int planeb_clock, int sr_hdisplay, int pixel_size)
2460 {
2461         struct drm_i915_private *dev_priv = dev->dev_private;
2462         uint32_t fwater_lo;
2463         uint32_t fwater_hi;
2464         int total_size, cacheline_size, cwm, srwm = 1;
2465         int planea_wm, planeb_wm;
2466         struct intel_watermark_params planea_params, planeb_params;
2467         unsigned long line_time_us;
2468         int sr_clock, sr_entries = 0;
2469
2470         /* Create copies of the base settings for each pipe */
2471         if (IS_I965GM(dev) || IS_I945GM(dev))
2472                 planea_params = planeb_params = i945_wm_info;
2473         else if (IS_I9XX(dev))
2474                 planea_params = planeb_params = i915_wm_info;
2475         else
2476                 planea_params = planeb_params = i855_wm_info;
2477
2478         /* Grab a couple of global values before we overwrite them */
2479         total_size = planea_params.fifo_size;
2480         cacheline_size = planea_params.cacheline_size;
2481
2482         /* Update per-plane FIFO sizes */
2483         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2484         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
2485
2486         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2487                                        pixel_size, latency_ns);
2488         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2489                                        pixel_size, latency_ns);
2490         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2491
2492         /*
2493          * Overlay gets an aggressive default since video jitter is bad.
2494          */
2495         cwm = 2;
2496
2497         /* Calc sr entries for one plane configs */
2498         if (HAS_FW_BLC(dev) && sr_hdisplay &&
2499             (!planea_clock || !planeb_clock)) {
2500                 /* self-refresh has much higher latency */
2501                 const static int sr_latency_ns = 6000;
2502
2503                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2504                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2505
2506                 /* Use ns/us then divide to preserve precision */
2507                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2508                               pixel_size * sr_hdisplay) / 1000;
2509                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2510                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2511                 srwm = total_size - sr_entries;
2512                 if (srwm < 0)
2513                         srwm = 1;
2514                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN | (srwm & 0x3f));
2515         }
2516
2517         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2518                   planea_wm, planeb_wm, cwm, srwm);
2519
2520         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2521         fwater_hi = (cwm & 0x1f);
2522
2523         /* Set request length to 8 cachelines per fetch */
2524         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2525         fwater_hi = fwater_hi | (1 << 8);
2526
2527         I915_WRITE(FW_BLC, fwater_lo);
2528         I915_WRITE(FW_BLC2, fwater_hi);
2529 }
2530
2531 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
2532                            int unused2, int pixel_size)
2533 {
2534         struct drm_i915_private *dev_priv = dev->dev_private;
2535         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2536         int planea_wm;
2537
2538         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2539
2540         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2541                                        pixel_size, latency_ns);
2542         fwater_lo |= (3<<8) | planea_wm;
2543
2544         DRM_DEBUG("Setting FIFO watermarks - A: %d\n", planea_wm);
2545
2546         I915_WRITE(FW_BLC, fwater_lo);
2547 }
2548
2549 /**
2550  * intel_update_watermarks - update FIFO watermark values based on current modes
2551  *
2552  * Calculate watermark values for the various WM regs based on current mode
2553  * and plane configuration.
2554  *
2555  * There are several cases to deal with here:
2556  *   - normal (i.e. non-self-refresh)
2557  *   - self-refresh (SR) mode
2558  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2559  *   - lines are small relative to FIFO size (buffer can hold more than 2
2560  *     lines), so need to account for TLB latency
2561  *
2562  *   The normal calculation is:
2563  *     watermark = dotclock * bytes per pixel * latency
2564  *   where latency is platform & configuration dependent (we assume pessimal
2565  *   values here).
2566  *
2567  *   The SR calculation is:
2568  *     watermark = (trunc(latency/line time)+1) * surface width *
2569  *       bytes per pixel
2570  *   where
2571  *     line time = htotal / dotclock
2572  *   and latency is assumed to be high, as above.
2573  *
2574  * The final value programmed to the register should always be rounded up,
2575  * and include an extra 2 entries to account for clock crossings.
2576  *
2577  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2578  * to set the non-SR watermarks to 8.
2579   */
2580 static void intel_update_watermarks(struct drm_device *dev)
2581 {
2582         struct drm_i915_private *dev_priv = dev->dev_private;
2583         struct drm_crtc *crtc;
2584         struct intel_crtc *intel_crtc;
2585         int sr_hdisplay = 0;
2586         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2587         int enabled = 0, pixel_size = 0;
2588
2589         /* Get the clock config from both planes */
2590         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2591                 intel_crtc = to_intel_crtc(crtc);
2592                 if (crtc->enabled) {
2593                         enabled++;
2594                         if (intel_crtc->plane == 0) {
2595                                 DRM_DEBUG("plane A (pipe %d) clock: %d\n",
2596                                           intel_crtc->pipe, crtc->mode.clock);
2597                                 planea_clock = crtc->mode.clock;
2598                         } else {
2599                                 DRM_DEBUG("plane B (pipe %d) clock: %d\n",
2600                                           intel_crtc->pipe, crtc->mode.clock);
2601                                 planeb_clock = crtc->mode.clock;
2602                         }
2603                         sr_hdisplay = crtc->mode.hdisplay;
2604                         sr_clock = crtc->mode.clock;
2605                         if (crtc->fb)
2606                                 pixel_size = crtc->fb->bits_per_pixel / 8;
2607                         else
2608                                 pixel_size = 4; /* by default */
2609                 }
2610         }
2611
2612         if (enabled <= 0)
2613                 return;
2614
2615         /* Single plane configs can enable self refresh */
2616         if (enabled == 1 && IS_IGD(dev))
2617                 igd_enable_cxsr(dev, sr_clock, pixel_size);
2618         else if (IS_IGD(dev))
2619                 igd_disable_cxsr(dev);
2620
2621         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
2622                                     sr_hdisplay, pixel_size);
2623 }
2624
2625 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2626                                struct drm_display_mode *mode,
2627                                struct drm_display_mode *adjusted_mode,
2628                                int x, int y,
2629                                struct drm_framebuffer *old_fb)
2630 {
2631         struct drm_device *dev = crtc->dev;
2632         struct drm_i915_private *dev_priv = dev->dev_private;
2633         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2634         int pipe = intel_crtc->pipe;
2635         int plane = intel_crtc->plane;
2636         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2637         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2638         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2639         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2640         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2641         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2642         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2643         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2644         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2645         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2646         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2647         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
2648         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
2649         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2650         int refclk, num_outputs = 0;
2651         intel_clock_t clock, reduced_clock;
2652         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
2653         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
2654         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2655         bool is_edp = false;
2656         struct drm_mode_config *mode_config = &dev->mode_config;
2657         struct drm_connector *connector;
2658         const intel_limit_t *limit;
2659         int ret;
2660         struct fdi_m_n m_n = {0};
2661         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2662         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2663         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2664         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2665         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2666         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2667         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2668         int lvds_reg = LVDS;
2669         u32 temp;
2670         int sdvo_pixel_multiply;
2671         int target_clock;
2672
2673         drm_vblank_pre_modeset(dev, pipe);
2674
2675         list_for_each_entry(connector, &mode_config->connector_list, head) {
2676                 struct intel_output *intel_output = to_intel_output(connector);
2677
2678                 if (!connector->encoder || connector->encoder->crtc != crtc)
2679                         continue;
2680
2681                 switch (intel_output->type) {
2682                 case INTEL_OUTPUT_LVDS:
2683                         is_lvds = true;
2684                         break;
2685                 case INTEL_OUTPUT_SDVO:
2686                 case INTEL_OUTPUT_HDMI:
2687                         is_sdvo = true;
2688                         if (intel_output->needs_tv_clock)
2689                                 is_tv = true;
2690                         break;
2691                 case INTEL_OUTPUT_DVO:
2692                         is_dvo = true;
2693                         break;
2694                 case INTEL_OUTPUT_TVOUT:
2695                         is_tv = true;
2696                         break;
2697                 case INTEL_OUTPUT_ANALOG:
2698                         is_crt = true;
2699                         break;
2700                 case INTEL_OUTPUT_DISPLAYPORT:
2701                         is_dp = true;
2702                         break;
2703                 case INTEL_OUTPUT_EDP:
2704                         is_edp = true;
2705                         break;
2706                 }
2707
2708                 num_outputs++;
2709         }
2710
2711         if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2712                 refclk = dev_priv->lvds_ssc_freq * 1000;
2713                 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
2714         } else if (IS_I9XX(dev)) {
2715                 refclk = 96000;
2716                 if (IS_IGDNG(dev))
2717                         refclk = 120000; /* 120Mhz refclk */
2718         } else {
2719                 refclk = 48000;
2720         }
2721         
2722
2723         /*
2724          * Returns a set of divisors for the desired target clock with the given
2725          * refclk, or FALSE.  The returned values represent the clock equation:
2726          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2727          */
2728         limit = intel_limit(crtc);
2729         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
2730         if (!ok) {
2731                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2732                 drm_vblank_post_modeset(dev, pipe);
2733                 return -EINVAL;
2734         }
2735
2736         if (limit->find_reduced_pll && dev_priv->lvds_downclock_avail) {
2737                 memcpy(&reduced_clock, &clock, sizeof(intel_clock_t));
2738                 has_reduced_clock = limit->find_reduced_pll(limit, crtc,
2739                                                             (adjusted_mode->clock*3/4),
2740                                                             refclk,
2741                                                             &reduced_clock);
2742         }
2743
2744         /* SDVO TV has fixed PLL values depend on its clock range,
2745            this mirrors vbios setting. */
2746         if (is_sdvo && is_tv) {
2747                 if (adjusted_mode->clock >= 100000
2748                                 && adjusted_mode->clock < 140500) {
2749                         clock.p1 = 2;
2750                         clock.p2 = 10;
2751                         clock.n = 3;
2752                         clock.m1 = 16;
2753                         clock.m2 = 8;
2754                 } else if (adjusted_mode->clock >= 140500
2755                                 && adjusted_mode->clock <= 200000) {
2756                         clock.p1 = 1;
2757                         clock.p2 = 10;
2758                         clock.n = 6;
2759                         clock.m1 = 12;
2760                         clock.m2 = 8;
2761                 }
2762         }
2763
2764         /* FDI link */
2765         if (IS_IGDNG(dev)) {
2766                 int lane, link_bw;
2767                 /* eDP doesn't require FDI link, so just set DP M/N
2768                    according to current link config */
2769                 if (is_edp) {
2770                         struct drm_connector *edp;
2771                         target_clock = mode->clock;
2772                         edp = intel_pipe_get_output(crtc);
2773                         intel_edp_link_config(to_intel_output(edp),
2774                                         &lane, &link_bw);
2775                 } else {
2776                         /* DP over FDI requires target mode clock
2777                            instead of link clock */
2778                         if (is_dp)
2779                                 target_clock = mode->clock;
2780                         else
2781                                 target_clock = adjusted_mode->clock;
2782                         lane = 4;
2783                         link_bw = 270000;
2784                 }
2785                 igdng_compute_m_n(3, lane, target_clock,
2786                                   link_bw, &m_n);
2787         }
2788
2789         if (IS_IGD(dev)) {
2790                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
2791                 if (has_reduced_clock)
2792                         fp2 = (1 << reduced_clock.n) << 16 |
2793                                 reduced_clock.m1 << 8 | reduced_clock.m2;
2794         } else {
2795                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
2796                 if (has_reduced_clock)
2797                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
2798                                 reduced_clock.m2;
2799         }
2800
2801         if (!IS_IGDNG(dev))
2802                 dpll = DPLL_VGA_MODE_DIS;
2803
2804         if (IS_I9XX(dev)) {
2805                 if (is_lvds)
2806                         dpll |= DPLLB_MODE_LVDS;
2807                 else
2808                         dpll |= DPLLB_MODE_DAC_SERIAL;
2809                 if (is_sdvo) {
2810                         dpll |= DPLL_DVO_HIGH_SPEED;
2811                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2812                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2813                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
2814                         else if (IS_IGDNG(dev))
2815                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
2816                 }
2817                 if (is_dp)
2818                         dpll |= DPLL_DVO_HIGH_SPEED;
2819
2820                 /* compute bitmask from p1 value */
2821                 if (IS_IGD(dev))
2822                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
2823                 else {
2824                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2825                         /* also FPA1 */
2826                         if (IS_IGDNG(dev))
2827                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2828                         if (IS_G4X(dev) && has_reduced_clock)
2829                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2830                 }
2831                 switch (clock.p2) {
2832                 case 5:
2833                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
2834                         break;
2835                 case 7:
2836                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
2837                         break;
2838                 case 10:
2839                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
2840                         break;
2841                 case 14:
2842                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
2843                         break;
2844                 }
2845                 if (IS_I965G(dev) && !IS_IGDNG(dev))
2846                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2847         } else {
2848                 if (is_lvds) {
2849                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2850                 } else {
2851                         if (clock.p1 == 2)
2852                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
2853                         else
2854                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2855                         if (clock.p2 == 4)
2856                                 dpll |= PLL_P2_DIVIDE_BY_4;
2857                 }
2858         }
2859
2860         if (is_sdvo && is_tv)
2861                 dpll |= PLL_REF_INPUT_TVCLKINBC;
2862         else if (is_tv)
2863                 /* XXX: just matching BIOS for now */
2864                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
2865                 dpll |= 3;
2866         else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
2867                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
2868         else
2869                 dpll |= PLL_REF_INPUT_DREFCLK;
2870
2871         /* setup pipeconf */
2872         pipeconf = I915_READ(pipeconf_reg);
2873
2874         /* Set up the display plane register */
2875         dspcntr = DISPPLANE_GAMMA_ENABLE;
2876
2877         /* IGDNG's plane is forced to pipe, bit 24 is to
2878            enable color space conversion */
2879         if (!IS_IGDNG(dev)) {
2880                 if (pipe == 0)
2881                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
2882                 else
2883                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2884         }
2885
2886         if (pipe == 0 && !IS_I965G(dev)) {
2887                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
2888                  * core speed.
2889                  *
2890                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
2891                  * pipe == 0 check?
2892                  */
2893                 if (mode->clock >
2894                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
2895                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
2896                 else
2897                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
2898         }
2899
2900         dspcntr |= DISPLAY_PLANE_ENABLE;
2901         pipeconf |= PIPEACONF_ENABLE;
2902         dpll |= DPLL_VCO_ENABLE;
2903
2904
2905         /* Disable the panel fitter if it was on our pipe */
2906         if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
2907                 I915_WRITE(PFIT_CONTROL, 0);
2908
2909         DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
2910         drm_mode_debug_printmodeline(mode);
2911
2912         /* assign to IGDNG registers */
2913         if (IS_IGDNG(dev)) {
2914                 fp_reg = pch_fp_reg;
2915                 dpll_reg = pch_dpll_reg;
2916         }
2917
2918         if (is_edp) {
2919                 igdng_disable_pll_edp(crtc);
2920         } else if ((dpll & DPLL_VCO_ENABLE)) {
2921                 I915_WRITE(fp_reg, fp);
2922                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
2923                 I915_READ(dpll_reg);
2924                 udelay(150);
2925         }
2926
2927         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
2928          * This is an exception to the general rule that mode_set doesn't turn
2929          * things on.
2930          */
2931         if (is_lvds) {
2932                 u32 lvds;
2933
2934                 if (IS_IGDNG(dev))
2935                         lvds_reg = PCH_LVDS;
2936
2937                 lvds = I915_READ(lvds_reg);
2938                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
2939                 /* Set the B0-B3 data pairs corresponding to whether we're going to
2940                  * set the DPLLs for dual-channel mode or not.
2941                  */
2942                 if (clock.p2 == 7)
2943                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
2944                 else
2945                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
2946
2947                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
2948                  * appropriately here, but we need to look more thoroughly into how
2949                  * panels behave in the two modes.
2950                  */
2951
2952                 I915_WRITE(lvds_reg, lvds);
2953                 I915_READ(lvds_reg);
2954         }
2955         if (is_dp)
2956                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
2957
2958         if (!is_edp) {
2959                 I915_WRITE(fp_reg, fp);
2960                 I915_WRITE(dpll_reg, dpll);
2961                 I915_READ(dpll_reg);
2962                 /* Wait for the clocks to stabilize. */
2963                 udelay(150);
2964
2965                 if (IS_I965G(dev) && !IS_IGDNG(dev)) {
2966                         if (is_sdvo) {
2967                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2968                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
2969                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
2970                         } else
2971                                 I915_WRITE(dpll_md_reg, 0);
2972                 } else {
2973                         /* write it again -- the BIOS does, after all */
2974                         I915_WRITE(dpll_reg, dpll);
2975                 }
2976                 I915_READ(dpll_reg);
2977                 /* Wait for the clocks to stabilize. */
2978                 udelay(150);
2979         }
2980
2981         if (is_lvds && has_reduced_clock && i915_powersave) {
2982                 I915_WRITE(fp_reg + 4, fp2);
2983                 intel_crtc->lowfreq_avail = true;
2984                 if (HAS_PIPE_CXSR(dev)) {
2985                         DRM_DEBUG("enabling CxSR downclocking\n");
2986                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
2987                 }
2988         } else {
2989                 I915_WRITE(fp_reg + 4, fp);
2990                 intel_crtc->lowfreq_avail = false;
2991                 if (HAS_PIPE_CXSR(dev)) {
2992                         DRM_DEBUG("disabling CxSR downclocking\n");
2993                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
2994                 }
2995         }
2996
2997         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
2998                    ((adjusted_mode->crtc_htotal - 1) << 16));
2999         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3000                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
3001         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3002                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
3003         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3004                    ((adjusted_mode->crtc_vtotal - 1) << 16));
3005         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3006                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
3007         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3008                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
3009         /* pipesrc and dspsize control the size that is scaled from, which should
3010          * always be the user's requested size.
3011          */
3012         if (!IS_IGDNG(dev)) {
3013                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3014                                 (mode->hdisplay - 1));
3015                 I915_WRITE(dsppos_reg, 0);
3016         }
3017         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3018
3019         if (IS_IGDNG(dev)) {
3020                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3021                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3022                 I915_WRITE(link_m1_reg, m_n.link_m);
3023                 I915_WRITE(link_n1_reg, m_n.link_n);
3024
3025                 if (is_edp) {
3026                         igdng_set_pll_edp(crtc, adjusted_mode->clock);
3027                 } else {
3028                         /* enable FDI RX PLL too */
3029                         temp = I915_READ(fdi_rx_reg);
3030                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3031                         udelay(200);
3032                 }
3033         }
3034
3035         I915_WRITE(pipeconf_reg, pipeconf);
3036         I915_READ(pipeconf_reg);
3037
3038         intel_wait_for_vblank(dev);
3039
3040         if (IS_IGDNG(dev)) {
3041                 /* enable address swizzle for tiling buffer */
3042                 temp = I915_READ(DISP_ARB_CTL);
3043                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3044         }
3045
3046         I915_WRITE(dspcntr_reg, dspcntr);
3047
3048         /* Flush the plane changes */
3049         ret = intel_pipe_set_base(crtc, x, y, old_fb);
3050
3051         if ((IS_I965G(dev) || plane == 0))
3052                 intel_update_fbc(crtc, &crtc->mode);
3053
3054         intel_update_watermarks(dev);
3055
3056         drm_vblank_post_modeset(dev, pipe);
3057
3058         return ret;
3059 }
3060
3061 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3062 void intel_crtc_load_lut(struct drm_crtc *crtc)
3063 {
3064         struct drm_device *dev = crtc->dev;
3065         struct drm_i915_private *dev_priv = dev->dev_private;
3066         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3067         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3068         int i;
3069
3070         /* The clocks have to be on to load the palette. */
3071         if (!crtc->enabled)
3072                 return;
3073
3074         /* use legacy palette for IGDNG */
3075         if (IS_IGDNG(dev))
3076                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3077                                                    LGC_PALETTE_B;
3078
3079         for (i = 0; i < 256; i++) {
3080                 I915_WRITE(palreg + 4 * i,
3081                            (intel_crtc->lut_r[i] << 16) |
3082                            (intel_crtc->lut_g[i] << 8) |
3083                            intel_crtc->lut_b[i]);
3084         }
3085 }
3086
3087 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3088                                  struct drm_file *file_priv,
3089                                  uint32_t handle,
3090                                  uint32_t width, uint32_t height)
3091 {
3092         struct drm_device *dev = crtc->dev;
3093         struct drm_i915_private *dev_priv = dev->dev_private;
3094         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3095         struct drm_gem_object *bo;
3096         struct drm_i915_gem_object *obj_priv;
3097         int pipe = intel_crtc->pipe;
3098         int plane = intel_crtc->plane;
3099         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3100         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3101         uint32_t temp = I915_READ(control);
3102         size_t addr;
3103         int ret;
3104
3105         DRM_DEBUG("\n");
3106
3107         /* if we want to turn off the cursor ignore width and height */
3108         if (!handle) {
3109                 DRM_DEBUG("cursor off\n");
3110                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3111                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3112                         temp |= CURSOR_MODE_DISABLE;
3113                 } else {
3114                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3115                 }
3116                 addr = 0;
3117                 bo = NULL;
3118                 mutex_lock(&dev->struct_mutex);
3119                 goto finish;
3120         }
3121
3122         /* Currently we only support 64x64 cursors */
3123         if (width != 64 || height != 64) {
3124                 DRM_ERROR("we currently only support 64x64 cursors\n");
3125                 return -EINVAL;
3126         }
3127
3128         bo = drm_gem_object_lookup(dev, file_priv, handle);
3129         if (!bo)
3130                 return -ENOENT;
3131
3132         obj_priv = bo->driver_private;
3133
3134         if (bo->size < width * height * 4) {
3135                 DRM_ERROR("buffer is to small\n");
3136                 ret = -ENOMEM;
3137                 goto fail;
3138         }
3139
3140         /* we only need to pin inside GTT if cursor is non-phy */
3141         mutex_lock(&dev->struct_mutex);
3142         if (!dev_priv->cursor_needs_physical) {
3143                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3144                 if (ret) {
3145                         DRM_ERROR("failed to pin cursor bo\n");
3146                         goto fail_locked;
3147                 }
3148                 addr = obj_priv->gtt_offset;
3149         } else {
3150                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3151                 if (ret) {
3152                         DRM_ERROR("failed to attach phys object\n");
3153                         goto fail_locked;
3154                 }
3155                 addr = obj_priv->phys_obj->handle->busaddr;
3156         }
3157
3158         if (!IS_I9XX(dev))
3159                 I915_WRITE(CURSIZE, (height << 12) | width);
3160
3161         /* Hooray for CUR*CNTR differences */
3162         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3163                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3164                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3165                 temp |= (pipe << 28); /* Connect to correct pipe */
3166         } else {
3167                 temp &= ~(CURSOR_FORMAT_MASK);
3168                 temp |= CURSOR_ENABLE;
3169                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3170         }
3171
3172  finish:
3173         I915_WRITE(control, temp);
3174         I915_WRITE(base, addr);
3175
3176         if (intel_crtc->cursor_bo) {
3177                 if (dev_priv->cursor_needs_physical) {
3178                         if (intel_crtc->cursor_bo != bo)
3179                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3180                 } else
3181                         i915_gem_object_unpin(intel_crtc->cursor_bo);
3182                 drm_gem_object_unreference(intel_crtc->cursor_bo);
3183         }
3184
3185         if ((IS_I965G(dev) || plane == 0))
3186                 intel_update_fbc(crtc, &crtc->mode);
3187
3188         mutex_unlock(&dev->struct_mutex);
3189
3190         intel_crtc->cursor_addr = addr;
3191         intel_crtc->cursor_bo = bo;
3192
3193         return 0;
3194 fail:
3195         mutex_lock(&dev->struct_mutex);
3196 fail_locked:
3197         drm_gem_object_unreference(bo);
3198         mutex_unlock(&dev->struct_mutex);
3199         return ret;
3200 }
3201
3202 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3203 {
3204         struct drm_device *dev = crtc->dev;
3205         struct drm_i915_private *dev_priv = dev->dev_private;
3206         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3207         struct intel_framebuffer *intel_fb;
3208         int pipe = intel_crtc->pipe;
3209         uint32_t temp = 0;
3210         uint32_t adder;
3211
3212         if (crtc->fb) {
3213                 intel_fb = to_intel_framebuffer(crtc->fb);
3214                 intel_mark_busy(dev, intel_fb->obj);
3215         }
3216
3217         if (x < 0) {
3218                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3219                 x = -x;
3220         }
3221         if (y < 0) {
3222                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3223                 y = -y;
3224         }
3225
3226         temp |= x << CURSOR_X_SHIFT;
3227         temp |= y << CURSOR_Y_SHIFT;
3228
3229         adder = intel_crtc->cursor_addr;
3230         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3231         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3232
3233         return 0;
3234 }
3235
3236 /** Sets the color ramps on behalf of RandR */
3237 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3238                                  u16 blue, int regno)
3239 {
3240         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3241
3242         intel_crtc->lut_r[regno] = red >> 8;
3243         intel_crtc->lut_g[regno] = green >> 8;
3244         intel_crtc->lut_b[regno] = blue >> 8;
3245 }
3246
3247 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
3248                                  u16 *blue, uint32_t size)
3249 {
3250         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3251         int i;
3252
3253         if (size != 256)
3254                 return;
3255
3256         for (i = 0; i < 256; i++) {
3257                 intel_crtc->lut_r[i] = red[i] >> 8;
3258                 intel_crtc->lut_g[i] = green[i] >> 8;
3259                 intel_crtc->lut_b[i] = blue[i] >> 8;
3260         }
3261
3262         intel_crtc_load_lut(crtc);
3263 }
3264
3265 /**
3266  * Get a pipe with a simple mode set on it for doing load-based monitor
3267  * detection.
3268  *
3269  * It will be up to the load-detect code to adjust the pipe as appropriate for
3270  * its requirements.  The pipe will be connected to no other outputs.
3271  *
3272  * Currently this code will only succeed if there is a pipe with no outputs
3273  * configured for it.  In the future, it could choose to temporarily disable
3274  * some outputs to free up a pipe for its use.
3275  *
3276  * \return crtc, or NULL if no pipes are available.
3277  */
3278
3279 /* VESA 640x480x72Hz mode to set on the pipe */
3280 static struct drm_display_mode load_detect_mode = {
3281         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
3282                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
3283 };
3284
3285 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
3286                                             struct drm_display_mode *mode,
3287                                             int *dpms_mode)
3288 {
3289         struct intel_crtc *intel_crtc;
3290         struct drm_crtc *possible_crtc;
3291         struct drm_crtc *supported_crtc =NULL;
3292         struct drm_encoder *encoder = &intel_output->enc;
3293         struct drm_crtc *crtc = NULL;
3294         struct drm_device *dev = encoder->dev;
3295         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3296         struct drm_crtc_helper_funcs *crtc_funcs;
3297         int i = -1;
3298
3299         /*
3300          * Algorithm gets a little messy:
3301          *   - if the connector already has an assigned crtc, use it (but make
3302          *     sure it's on first)
3303          *   - try to find the first unused crtc that can drive this connector,
3304          *     and use that if we find one
3305          *   - if there are no unused crtcs available, try to use the first
3306          *     one we found that supports the connector
3307          */
3308
3309         /* See if we already have a CRTC for this connector */
3310         if (encoder->crtc) {
3311                 crtc = encoder->crtc;
3312                 /* Make sure the crtc and connector are running */
3313                 intel_crtc = to_intel_crtc(crtc);
3314                 *dpms_mode = intel_crtc->dpms_mode;
3315                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3316                         crtc_funcs = crtc->helper_private;
3317                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3318                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3319                 }
3320                 return crtc;
3321         }
3322
3323         /* Find an unused one (if possible) */
3324         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
3325                 i++;
3326                 if (!(encoder->possible_crtcs & (1 << i)))
3327                         continue;
3328                 if (!possible_crtc->enabled) {
3329                         crtc = possible_crtc;
3330                         break;
3331                 }
3332                 if (!supported_crtc)
3333                         supported_crtc = possible_crtc;
3334         }
3335
3336         /*
3337          * If we didn't find an unused CRTC, don't use any.
3338          */
3339         if (!crtc) {
3340                 return NULL;
3341         }
3342
3343         encoder->crtc = crtc;
3344         intel_output->base.encoder = encoder;
3345         intel_output->load_detect_temp = true;
3346
3347         intel_crtc = to_intel_crtc(crtc);
3348         *dpms_mode = intel_crtc->dpms_mode;
3349
3350         if (!crtc->enabled) {
3351                 if (!mode)
3352                         mode = &load_detect_mode;
3353                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
3354         } else {
3355                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3356                         crtc_funcs = crtc->helper_private;
3357                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3358                 }
3359
3360                 /* Add this connector to the crtc */
3361                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
3362                 encoder_funcs->commit(encoder);
3363         }
3364         /* let the connector get through one full cycle before testing */
3365         intel_wait_for_vblank(dev);
3366
3367         return crtc;
3368 }
3369
3370 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
3371 {
3372         struct drm_encoder *encoder = &intel_output->enc;
3373         struct drm_device *dev = encoder->dev;
3374         struct drm_crtc *crtc = encoder->crtc;
3375         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3376         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3377
3378         if (intel_output->load_detect_temp) {
3379                 encoder->crtc = NULL;
3380                 intel_output->base.encoder = NULL;
3381                 intel_output->load_detect_temp = false;
3382                 crtc->enabled = drm_helper_crtc_in_use(crtc);
3383                 drm_helper_disable_unused_functions(dev);
3384         }
3385
3386         /* Switch crtc and output back off if necessary */
3387         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
3388                 if (encoder->crtc == crtc)
3389                         encoder_funcs->dpms(encoder, dpms_mode);
3390                 crtc_funcs->dpms(crtc, dpms_mode);
3391         }
3392 }
3393
3394 /* Returns the clock of the currently programmed mode of the given pipe. */
3395 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
3396 {
3397         struct drm_i915_private *dev_priv = dev->dev_private;
3398         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3399         int pipe = intel_crtc->pipe;
3400         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
3401         u32 fp;
3402         intel_clock_t clock;
3403
3404         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3405                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
3406         else
3407                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
3408
3409         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
3410         if (IS_IGD(dev)) {
3411                 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
3412                 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
3413         } else {
3414                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
3415                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
3416         }
3417
3418         if (IS_I9XX(dev)) {
3419                 if (IS_IGD(dev))
3420                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
3421                                 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
3422                 else
3423                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
3424                                DPLL_FPA01_P1_POST_DIV_SHIFT);
3425
3426                 switch (dpll & DPLL_MODE_MASK) {
3427                 case DPLLB_MODE_DAC_SERIAL:
3428                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
3429                                 5 : 10;
3430                         break;
3431                 case DPLLB_MODE_LVDS:
3432                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
3433                                 7 : 14;
3434                         break;
3435                 default:
3436                         DRM_DEBUG("Unknown DPLL mode %08x in programmed "
3437                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
3438                         return 0;
3439                 }
3440
3441                 /* XXX: Handle the 100Mhz refclk */
3442                 intel_clock(dev, 96000, &clock);
3443         } else {
3444                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
3445
3446                 if (is_lvds) {
3447                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
3448                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
3449                         clock.p2 = 14;
3450
3451                         if ((dpll & PLL_REF_INPUT_MASK) ==
3452                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
3453                                 /* XXX: might not be 66MHz */
3454                                 intel_clock(dev, 66000, &clock);
3455                         } else
3456                                 intel_clock(dev, 48000, &clock);
3457                 } else {
3458                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
3459                                 clock.p1 = 2;
3460                         else {
3461                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3462                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3463                         }
3464                         if (dpll & PLL_P2_DIVIDE_BY_4)
3465                                 clock.p2 = 4;
3466                         else
3467                                 clock.p2 = 2;
3468
3469                         intel_clock(dev, 48000, &clock);
3470                 }
3471         }
3472
3473         /* XXX: It would be nice to validate the clocks, but we can't reuse
3474          * i830PllIsValid() because it relies on the xf86_config connector
3475          * configuration being accurate, which it isn't necessarily.
3476          */
3477
3478         return clock.dot;
3479 }
3480
3481 /** Returns the currently programmed mode of the given pipe. */
3482 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3483                                              struct drm_crtc *crtc)
3484 {
3485         struct drm_i915_private *dev_priv = dev->dev_private;
3486         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3487         int pipe = intel_crtc->pipe;
3488         struct drm_display_mode *mode;
3489         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3490         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3491         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3492         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3493
3494         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3495         if (!mode)
3496                 return NULL;
3497
3498         mode->clock = intel_crtc_clock_get(dev, crtc);
3499         mode->hdisplay = (htot & 0xffff) + 1;
3500         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3501         mode->hsync_start = (hsync & 0xffff) + 1;
3502         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3503         mode->vdisplay = (vtot & 0xffff) + 1;
3504         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3505         mode->vsync_start = (vsync & 0xffff) + 1;
3506         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3507
3508         drm_mode_set_name(mode);
3509         drm_mode_set_crtcinfo(mode, 0);
3510
3511         return mode;
3512 }
3513
3514 #define GPU_IDLE_TIMEOUT 500 /* ms */
3515
3516 /* When this timer fires, we've been idle for awhile */
3517 static void intel_gpu_idle_timer(unsigned long arg)
3518 {
3519         struct drm_device *dev = (struct drm_device *)arg;
3520         drm_i915_private_t *dev_priv = dev->dev_private;
3521
3522         DRM_DEBUG("idle timer fired, downclocking\n");
3523
3524         dev_priv->busy = false;
3525
3526         queue_work(dev_priv->wq, &dev_priv->idle_work);
3527 }
3528
3529 void intel_increase_renderclock(struct drm_device *dev, bool schedule)
3530 {
3531         drm_i915_private_t *dev_priv = dev->dev_private;
3532
3533         if (IS_IGDNG(dev))
3534                 return;
3535
3536         if (!dev_priv->render_reclock_avail) {
3537                 DRM_DEBUG("not reclocking render clock\n");
3538                 return;
3539         }
3540
3541         /* Restore render clock frequency to original value */
3542         if (IS_G4X(dev) || IS_I9XX(dev))
3543                 pci_write_config_word(dev->pdev, GCFGC, dev_priv->orig_clock);
3544         else if (IS_I85X(dev))
3545                 pci_write_config_word(dev->pdev, HPLLCC, dev_priv->orig_clock);
3546         DRM_DEBUG("increasing render clock frequency\n");
3547
3548         /* Schedule downclock */
3549         if (schedule)
3550                 mod_timer(&dev_priv->idle_timer, jiffies +
3551                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
3552 }
3553
3554 void intel_decrease_renderclock(struct drm_device *dev)
3555 {
3556         drm_i915_private_t *dev_priv = dev->dev_private;
3557
3558         if (IS_IGDNG(dev))
3559                 return;
3560
3561         if (!dev_priv->render_reclock_avail) {
3562                 DRM_DEBUG("not reclocking render clock\n");
3563                 return;
3564         }
3565
3566         if (IS_G4X(dev)) {
3567                 u16 gcfgc;
3568
3569                 /* Adjust render clock... */
3570                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3571
3572                 /* Down to minimum... */
3573                 gcfgc &= ~GM45_GC_RENDER_CLOCK_MASK;
3574                 gcfgc |= GM45_GC_RENDER_CLOCK_266_MHZ;
3575
3576                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3577         } else if (IS_I965G(dev)) {
3578                 u16 gcfgc;
3579
3580                 /* Adjust render clock... */
3581                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3582
3583                 /* Down to minimum... */
3584                 gcfgc &= ~I965_GC_RENDER_CLOCK_MASK;
3585                 gcfgc |= I965_GC_RENDER_CLOCK_267_MHZ;
3586
3587                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3588         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
3589                 u16 gcfgc;
3590
3591                 /* Adjust render clock... */
3592                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3593
3594                 /* Down to minimum... */
3595                 gcfgc &= ~I945_GC_RENDER_CLOCK_MASK;
3596                 gcfgc |= I945_GC_RENDER_CLOCK_166_MHZ;
3597
3598                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3599         } else if (IS_I915G(dev)) {
3600                 u16 gcfgc;
3601
3602                 /* Adjust render clock... */
3603                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3604
3605                 /* Down to minimum... */
3606                 gcfgc &= ~I915_GC_RENDER_CLOCK_MASK;
3607                 gcfgc |= I915_GC_RENDER_CLOCK_166_MHZ;
3608
3609                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3610         } else if (IS_I85X(dev)) {
3611                 u16 hpllcc;
3612
3613                 /* Adjust render clock... */
3614                 pci_read_config_word(dev->pdev, HPLLCC, &hpllcc);
3615
3616                 /* Up to maximum... */
3617                 hpllcc &= ~GC_CLOCK_CONTROL_MASK;
3618                 hpllcc |= GC_CLOCK_133_200;
3619
3620                 pci_write_config_word(dev->pdev, HPLLCC, hpllcc);
3621         }
3622         DRM_DEBUG("decreasing render clock frequency\n");
3623 }
3624
3625 /* Note that no increase function is needed for this - increase_renderclock()
3626  *  will also rewrite these bits
3627  */
3628 void intel_decrease_displayclock(struct drm_device *dev)
3629 {
3630         if (IS_IGDNG(dev))
3631                 return;
3632
3633         if (IS_I945G(dev) || IS_I945GM(dev) || IS_I915G(dev) ||
3634             IS_I915GM(dev)) {
3635                 u16 gcfgc;
3636
3637                 /* Adjust render clock... */
3638                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3639
3640                 /* Down to minimum... */
3641                 gcfgc &= ~0xf0;
3642                 gcfgc |= 0x80;
3643
3644                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3645         }
3646 }
3647
3648 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3649
3650 static void intel_crtc_idle_timer(unsigned long arg)
3651 {
3652         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
3653         struct drm_crtc *crtc = &intel_crtc->base;
3654         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
3655
3656         DRM_DEBUG("idle timer fired, downclocking\n");
3657
3658         intel_crtc->busy = false;
3659
3660         queue_work(dev_priv->wq, &dev_priv->idle_work);
3661 }
3662
3663 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
3664 {
3665         struct drm_device *dev = crtc->dev;
3666         drm_i915_private_t *dev_priv = dev->dev_private;
3667         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3668         int pipe = intel_crtc->pipe;
3669         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3670         int dpll = I915_READ(dpll_reg);
3671
3672         if (IS_IGDNG(dev))
3673                 return;
3674
3675         if (!dev_priv->lvds_downclock_avail)
3676                 return;
3677
3678         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
3679                 DRM_DEBUG("upclocking LVDS\n");
3680
3681                 /* Unlock panel regs */
3682                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3683
3684                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
3685                 I915_WRITE(dpll_reg, dpll);
3686                 dpll = I915_READ(dpll_reg);
3687                 intel_wait_for_vblank(dev);
3688                 dpll = I915_READ(dpll_reg);
3689                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
3690                         DRM_DEBUG("failed to upclock LVDS!\n");
3691
3692                 /* ...and lock them again */
3693                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3694         }
3695
3696         /* Schedule downclock */
3697         if (schedule)
3698                 mod_timer(&intel_crtc->idle_timer, jiffies +
3699                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3700 }
3701
3702 static void intel_decrease_pllclock(struct drm_crtc *crtc)
3703 {
3704         struct drm_device *dev = crtc->dev;
3705         drm_i915_private_t *dev_priv = dev->dev_private;
3706         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3707         int pipe = intel_crtc->pipe;
3708         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3709         int dpll = I915_READ(dpll_reg);
3710
3711         if (IS_IGDNG(dev))
3712                 return;
3713
3714         if (!dev_priv->lvds_downclock_avail)
3715                 return;
3716
3717         /*
3718          * Since this is called by a timer, we should never get here in
3719          * the manual case.
3720          */
3721         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
3722                 DRM_DEBUG("downclocking LVDS\n");
3723
3724                 /* Unlock panel regs */
3725                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3726
3727                 dpll |= DISPLAY_RATE_SELECT_FPA1;
3728                 I915_WRITE(dpll_reg, dpll);
3729                 dpll = I915_READ(dpll_reg);
3730                 intel_wait_for_vblank(dev);
3731                 dpll = I915_READ(dpll_reg);
3732                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
3733                         DRM_DEBUG("failed to downclock LVDS!\n");
3734
3735                 /* ...and lock them again */
3736                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3737         }
3738
3739 }
3740
3741 /**
3742  * intel_idle_update - adjust clocks for idleness
3743  * @work: work struct
3744  *
3745  * Either the GPU or display (or both) went idle.  Check the busy status
3746  * here and adjust the CRTC and GPU clocks as necessary.
3747  */
3748 static void intel_idle_update(struct work_struct *work)
3749 {
3750         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3751                                                     idle_work);
3752         struct drm_device *dev = dev_priv->dev;
3753         struct drm_crtc *crtc;
3754         struct intel_crtc *intel_crtc;
3755
3756         if (!i915_powersave)
3757                 return;
3758
3759         mutex_lock(&dev->struct_mutex);
3760
3761         /* GPU isn't processing, downclock it. */
3762         if (!dev_priv->busy) {
3763                 intel_decrease_renderclock(dev);
3764                 intel_decrease_displayclock(dev);
3765         }
3766
3767         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3768                 /* Skip inactive CRTCs */
3769                 if (!crtc->fb)
3770                         continue;
3771
3772                 intel_crtc = to_intel_crtc(crtc);
3773                 if (!intel_crtc->busy)
3774                         intel_decrease_pllclock(crtc);
3775         }
3776
3777         mutex_unlock(&dev->struct_mutex);
3778 }
3779
3780 /**
3781  * intel_mark_busy - mark the GPU and possibly the display busy
3782  * @dev: drm device
3783  * @obj: object we're operating on
3784  *
3785  * Callers can use this function to indicate that the GPU is busy processing
3786  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
3787  * buffer), we'll also mark the display as busy, so we know to increase its
3788  * clock frequency.
3789  */
3790 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
3791 {
3792         drm_i915_private_t *dev_priv = dev->dev_private;
3793         struct drm_crtc *crtc = NULL;
3794         struct intel_framebuffer *intel_fb;
3795         struct intel_crtc *intel_crtc;
3796
3797         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3798                 return;
3799
3800         dev_priv->busy = true;
3801         intel_increase_renderclock(dev, true);
3802
3803         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3804                 if (!crtc->fb)
3805                         continue;
3806
3807                 intel_crtc = to_intel_crtc(crtc);
3808                 intel_fb = to_intel_framebuffer(crtc->fb);
3809                 if (intel_fb->obj == obj) {
3810                         if (!intel_crtc->busy) {
3811                                 /* Non-busy -> busy, upclock */
3812                                 intel_increase_pllclock(crtc, true);
3813                                 intel_crtc->busy = true;
3814                         } else {
3815                                 /* Busy -> busy, put off timer */
3816                                 mod_timer(&intel_crtc->idle_timer, jiffies +
3817                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3818                         }
3819                 }
3820         }
3821 }
3822
3823 static void intel_crtc_destroy(struct drm_crtc *crtc)
3824 {
3825         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3826
3827         drm_crtc_cleanup(crtc);
3828         kfree(intel_crtc);
3829 }
3830
3831 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
3832         .dpms = intel_crtc_dpms,
3833         .mode_fixup = intel_crtc_mode_fixup,
3834         .mode_set = intel_crtc_mode_set,
3835         .mode_set_base = intel_pipe_set_base,
3836         .prepare = intel_crtc_prepare,
3837         .commit = intel_crtc_commit,
3838 };
3839
3840 static const struct drm_crtc_funcs intel_crtc_funcs = {
3841         .cursor_set = intel_crtc_cursor_set,
3842         .cursor_move = intel_crtc_cursor_move,
3843         .gamma_set = intel_crtc_gamma_set,
3844         .set_config = drm_crtc_helper_set_config,
3845         .destroy = intel_crtc_destroy,
3846 };
3847
3848
3849 static void intel_crtc_init(struct drm_device *dev, int pipe)
3850 {
3851         struct intel_crtc *intel_crtc;
3852         int i;
3853
3854         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
3855         if (intel_crtc == NULL)
3856                 return;
3857
3858         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
3859
3860         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
3861         intel_crtc->pipe = pipe;
3862         intel_crtc->plane = pipe;
3863         for (i = 0; i < 256; i++) {
3864                 intel_crtc->lut_r[i] = i;
3865                 intel_crtc->lut_g[i] = i;
3866                 intel_crtc->lut_b[i] = i;
3867         }
3868
3869         /* Swap pipes & planes for FBC on pre-965 */
3870         intel_crtc->pipe = pipe;
3871         intel_crtc->plane = pipe;
3872         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
3873                 DRM_DEBUG("swapping pipes & planes for FBC\n");
3874                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
3875         }
3876
3877         intel_crtc->cursor_addr = 0;
3878         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
3879         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
3880
3881         intel_crtc->busy = false;
3882
3883         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
3884                     (unsigned long)intel_crtc);
3885 }
3886
3887 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
3888                                 struct drm_file *file_priv)
3889 {
3890         drm_i915_private_t *dev_priv = dev->dev_private;
3891         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
3892         struct drm_mode_object *drmmode_obj;
3893         struct intel_crtc *crtc;
3894
3895         if (!dev_priv) {
3896                 DRM_ERROR("called with no initialization\n");
3897                 return -EINVAL;
3898         }
3899
3900         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
3901                         DRM_MODE_OBJECT_CRTC);
3902
3903         if (!drmmode_obj) {
3904                 DRM_ERROR("no such CRTC id\n");
3905                 return -EINVAL;
3906         }
3907
3908         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
3909         pipe_from_crtc_id->pipe = crtc->pipe;
3910
3911         return 0;
3912 }
3913
3914 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
3915 {
3916         struct drm_crtc *crtc = NULL;
3917
3918         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3919                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3920                 if (intel_crtc->pipe == pipe)
3921                         break;
3922         }
3923         return crtc;
3924 }
3925
3926 static int intel_connector_clones(struct drm_device *dev, int type_mask)
3927 {
3928         int index_mask = 0;
3929         struct drm_connector *connector;
3930         int entry = 0;
3931
3932         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3933                 struct intel_output *intel_output = to_intel_output(connector);
3934                 if (type_mask & intel_output->clone_mask)
3935                         index_mask |= (1 << entry);
3936                 entry++;
3937         }
3938         return index_mask;
3939 }
3940
3941
3942 static void intel_setup_outputs(struct drm_device *dev)
3943 {
3944         struct drm_i915_private *dev_priv = dev->dev_private;
3945         struct drm_connector *connector;
3946
3947         intel_crt_init(dev);
3948
3949         /* Set up integrated LVDS */
3950         if (IS_MOBILE(dev) && !IS_I830(dev))
3951                 intel_lvds_init(dev);
3952
3953         if (IS_IGDNG(dev)) {
3954                 int found;
3955
3956                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
3957                         intel_dp_init(dev, DP_A);
3958
3959                 if (I915_READ(HDMIB) & PORT_DETECTED) {
3960                         /* check SDVOB */
3961                         /* found = intel_sdvo_init(dev, HDMIB); */
3962                         found = 0;
3963                         if (!found)
3964                                 intel_hdmi_init(dev, HDMIB);
3965                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
3966                                 intel_dp_init(dev, PCH_DP_B);
3967                 }
3968
3969                 if (I915_READ(HDMIC) & PORT_DETECTED)
3970                         intel_hdmi_init(dev, HDMIC);
3971
3972                 if (I915_READ(HDMID) & PORT_DETECTED)
3973                         intel_hdmi_init(dev, HDMID);
3974
3975                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
3976                         intel_dp_init(dev, PCH_DP_C);
3977
3978                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
3979                         intel_dp_init(dev, PCH_DP_D);
3980
3981         } else if (IS_I9XX(dev)) {
3982                 bool found = false;
3983
3984                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
3985                         found = intel_sdvo_init(dev, SDVOB);
3986                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
3987                                 intel_hdmi_init(dev, SDVOB);
3988
3989                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
3990                                 intel_dp_init(dev, DP_B);
3991                 }
3992
3993                 /* Before G4X SDVOC doesn't have its own detect register */
3994
3995                 if (I915_READ(SDVOB) & SDVO_DETECTED)
3996                         found = intel_sdvo_init(dev, SDVOC);
3997
3998                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
3999
4000                         if (SUPPORTS_INTEGRATED_HDMI(dev))
4001                                 intel_hdmi_init(dev, SDVOC);
4002                         if (SUPPORTS_INTEGRATED_DP(dev))
4003                                 intel_dp_init(dev, DP_C);
4004                 }
4005
4006                 if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
4007                         intel_dp_init(dev, DP_D);
4008         } else
4009                 intel_dvo_init(dev);
4010
4011         if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
4012                 intel_tv_init(dev);
4013
4014         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4015                 struct intel_output *intel_output = to_intel_output(connector);
4016                 struct drm_encoder *encoder = &intel_output->enc;
4017
4018                 encoder->possible_crtcs = intel_output->crtc_mask;
4019                 encoder->possible_clones = intel_connector_clones(dev,
4020                                                 intel_output->clone_mask);
4021         }
4022 }
4023
4024 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4025 {
4026         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4027         struct drm_device *dev = fb->dev;
4028
4029         if (fb->fbdev)
4030                 intelfb_remove(dev, fb);
4031
4032         drm_framebuffer_cleanup(fb);
4033         mutex_lock(&dev->struct_mutex);
4034         drm_gem_object_unreference(intel_fb->obj);
4035         mutex_unlock(&dev->struct_mutex);
4036
4037         kfree(intel_fb);
4038 }
4039
4040 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4041                                                 struct drm_file *file_priv,
4042                                                 unsigned int *handle)
4043 {
4044         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4045         struct drm_gem_object *object = intel_fb->obj;
4046
4047         return drm_gem_handle_create(file_priv, object, handle);
4048 }
4049
4050 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4051         .destroy = intel_user_framebuffer_destroy,
4052         .create_handle = intel_user_framebuffer_create_handle,
4053 };
4054
4055 int intel_framebuffer_create(struct drm_device *dev,
4056                              struct drm_mode_fb_cmd *mode_cmd,
4057                              struct drm_framebuffer **fb,
4058                              struct drm_gem_object *obj)
4059 {
4060         struct intel_framebuffer *intel_fb;
4061         int ret;
4062
4063         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4064         if (!intel_fb)
4065                 return -ENOMEM;
4066
4067         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4068         if (ret) {
4069                 DRM_ERROR("framebuffer init failed %d\n", ret);
4070                 return ret;
4071         }
4072
4073         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4074
4075         intel_fb->obj = obj;
4076
4077         *fb = &intel_fb->base;
4078
4079         return 0;
4080 }
4081
4082
4083 static struct drm_framebuffer *
4084 intel_user_framebuffer_create(struct drm_device *dev,
4085                               struct drm_file *filp,
4086                               struct drm_mode_fb_cmd *mode_cmd)
4087 {
4088         struct drm_gem_object *obj;
4089         struct drm_framebuffer *fb;
4090         int ret;
4091
4092         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4093         if (!obj)
4094                 return NULL;
4095
4096         ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
4097         if (ret) {
4098                 mutex_lock(&dev->struct_mutex);
4099                 drm_gem_object_unreference(obj);
4100                 mutex_unlock(&dev->struct_mutex);
4101                 return NULL;
4102         }
4103
4104         return fb;
4105 }
4106
4107 static const struct drm_mode_config_funcs intel_mode_funcs = {
4108         .fb_create = intel_user_framebuffer_create,
4109         .fb_changed = intelfb_probe,
4110 };
4111
4112 void intel_init_clock_gating(struct drm_device *dev)
4113 {
4114         struct drm_i915_private *dev_priv = dev->dev_private;
4115
4116         /*
4117          * Disable clock gating reported to work incorrectly according to the
4118          * specs, but enable as much else as we can.
4119          */
4120         if (IS_G4X(dev)) {
4121                 uint32_t dspclk_gate;
4122                 I915_WRITE(RENCLK_GATE_D1, 0);
4123                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4124                        GS_UNIT_CLOCK_GATE_DISABLE |
4125                        CL_UNIT_CLOCK_GATE_DISABLE);
4126                 I915_WRITE(RAMCLK_GATE_D, 0);
4127                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4128                         OVRUNIT_CLOCK_GATE_DISABLE |
4129                         OVCUNIT_CLOCK_GATE_DISABLE;
4130                 if (IS_GM45(dev))
4131                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4132                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4133         } else if (IS_I965GM(dev)) {
4134                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4135                 I915_WRITE(RENCLK_GATE_D2, 0);
4136                 I915_WRITE(DSPCLK_GATE_D, 0);
4137                 I915_WRITE(RAMCLK_GATE_D, 0);
4138                 I915_WRITE16(DEUC, 0);
4139         } else if (IS_I965G(dev)) {
4140                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4141                        I965_RCC_CLOCK_GATE_DISABLE |
4142                        I965_RCPB_CLOCK_GATE_DISABLE |
4143                        I965_ISC_CLOCK_GATE_DISABLE |
4144                        I965_FBC_CLOCK_GATE_DISABLE);
4145                 I915_WRITE(RENCLK_GATE_D2, 0);
4146         } else if (IS_I9XX(dev)) {
4147                 u32 dstate = I915_READ(D_STATE);
4148
4149                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4150                         DSTATE_DOT_CLOCK_GATING;
4151                 I915_WRITE(D_STATE, dstate);
4152         } else if (IS_I855(dev) || IS_I865G(dev)) {
4153                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4154         } else if (IS_I830(dev)) {
4155                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4156         }
4157 }
4158
4159 /* Set up chip specific display functions */
4160 static void intel_init_display(struct drm_device *dev)
4161 {
4162         struct drm_i915_private *dev_priv = dev->dev_private;
4163
4164         /* We always want a DPMS function */
4165         if (IS_IGDNG(dev))
4166                 dev_priv->display.dpms = igdng_crtc_dpms;
4167         else
4168                 dev_priv->display.dpms = i9xx_crtc_dpms;
4169
4170         /* Only mobile has FBC, leave pointers NULL for other chips */
4171         if (IS_MOBILE(dev)) {
4172                 if (IS_GM45(dev)) {
4173                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4174                         dev_priv->display.enable_fbc = g4x_enable_fbc;
4175                         dev_priv->display.disable_fbc = g4x_disable_fbc;
4176                 } else if (IS_I965GM(dev) || IS_I945GM(dev) || IS_I915GM(dev)) {
4177                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4178                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
4179                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
4180                 }
4181                 /* 855GM needs testing */
4182         }
4183
4184         /* Returns the core display clock speed */
4185         if (IS_I945G(dev))
4186                 dev_priv->display.get_display_clock_speed =
4187                         i945_get_display_clock_speed;
4188         else if (IS_I915G(dev))
4189                 dev_priv->display.get_display_clock_speed =
4190                         i915_get_display_clock_speed;
4191         else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
4192                 dev_priv->display.get_display_clock_speed =
4193                         i9xx_misc_get_display_clock_speed;
4194         else if (IS_I915GM(dev))
4195                 dev_priv->display.get_display_clock_speed =
4196                         i915gm_get_display_clock_speed;
4197         else if (IS_I865G(dev))
4198                 dev_priv->display.get_display_clock_speed =
4199                         i865_get_display_clock_speed;
4200         else if (IS_I855(dev))
4201                 dev_priv->display.get_display_clock_speed =
4202                         i855_get_display_clock_speed;
4203         else /* 852, 830 */
4204                 dev_priv->display.get_display_clock_speed =
4205                         i830_get_display_clock_speed;
4206
4207         /* For FIFO watermark updates */
4208         if (IS_G4X(dev))
4209                 dev_priv->display.update_wm = g4x_update_wm;
4210         else if (IS_I965G(dev))
4211                 dev_priv->display.update_wm = i965_update_wm;
4212         else if (IS_I9XX(dev) || IS_MOBILE(dev)) {
4213                 dev_priv->display.update_wm = i9xx_update_wm;
4214                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4215         } else {
4216                 if (IS_I85X(dev))
4217                         dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4218                 else if (IS_845G(dev))
4219                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
4220                 else
4221                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
4222                 dev_priv->display.update_wm = i830_update_wm;
4223         }
4224 }
4225
4226 void intel_modeset_init(struct drm_device *dev)
4227 {
4228         struct drm_i915_private *dev_priv = dev->dev_private;
4229         int num_pipe;
4230         int i;
4231
4232         drm_mode_config_init(dev);
4233
4234         dev->mode_config.min_width = 0;
4235         dev->mode_config.min_height = 0;
4236
4237         dev->mode_config.funcs = (void *)&intel_mode_funcs;
4238
4239         intel_init_display(dev);
4240
4241         if (IS_I965G(dev)) {
4242                 dev->mode_config.max_width = 8192;
4243                 dev->mode_config.max_height = 8192;
4244         } else if (IS_I9XX(dev)) {
4245                 dev->mode_config.max_width = 4096;
4246                 dev->mode_config.max_height = 4096;
4247         } else {
4248                 dev->mode_config.max_width = 2048;
4249                 dev->mode_config.max_height = 2048;
4250         }
4251
4252         /* set memory base */
4253         if (IS_I9XX(dev))
4254                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
4255         else
4256                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
4257
4258         if (IS_MOBILE(dev) || IS_I9XX(dev))
4259                 num_pipe = 2;
4260         else
4261                 num_pipe = 1;
4262         DRM_DEBUG("%d display pipe%s available.\n",
4263                   num_pipe, num_pipe > 1 ? "s" : "");
4264
4265         if (IS_I85X(dev))
4266                 pci_read_config_word(dev->pdev, HPLLCC, &dev_priv->orig_clock);
4267         else if (IS_I9XX(dev) || IS_G4X(dev))
4268                 pci_read_config_word(dev->pdev, GCFGC, &dev_priv->orig_clock);
4269
4270         for (i = 0; i < num_pipe; i++) {
4271                 intel_crtc_init(dev, i);
4272         }
4273
4274         intel_setup_outputs(dev);
4275
4276         intel_init_clock_gating(dev);
4277
4278         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
4279         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
4280                     (unsigned long)dev);
4281 }
4282
4283 void intel_modeset_cleanup(struct drm_device *dev)
4284 {
4285         struct drm_i915_private *dev_priv = dev->dev_private;
4286         struct drm_crtc *crtc;
4287         struct intel_crtc *intel_crtc;
4288
4289         mutex_lock(&dev->struct_mutex);
4290
4291         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4292                 /* Skip inactive CRTCs */
4293                 if (!crtc->fb)
4294                         continue;
4295
4296                 intel_crtc = to_intel_crtc(crtc);
4297                 intel_increase_pllclock(crtc, false);
4298                 del_timer_sync(&intel_crtc->idle_timer);
4299         }
4300
4301         intel_increase_renderclock(dev, false);
4302         del_timer_sync(&dev_priv->idle_timer);
4303
4304         mutex_unlock(&dev->struct_mutex);
4305
4306         if (dev_priv->display.disable_fbc)
4307                 dev_priv->display.disable_fbc(dev);
4308
4309         drm_mode_config_cleanup(dev);
4310 }
4311
4312
4313 /* current intel driver doesn't take advantage of encoders
4314    always give back the encoder for the connector
4315 */
4316 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
4317 {
4318         struct intel_output *intel_output = to_intel_output(connector);
4319
4320         return &intel_output->enc;
4321 }
4322
4323 /*
4324  * set vga decode state - true == enable VGA decode
4325  */
4326 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
4327 {
4328         struct drm_i915_private *dev_priv = dev->dev_private;
4329         u16 gmch_ctrl;
4330
4331         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
4332         if (state)
4333                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
4334         else
4335                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
4336         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
4337         return 0;
4338 }