Merge remote-tracking branches 'asoc/topic/fsl', 'asoc/topic/hdmi', 'asoc/topic/hisi...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_clflush.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51
52 static bool is_mmio_work(struct intel_flip_work *work)
53 {
54         return work->mmio_work.func;
55 }
56
57 /* Primary plane formats for gen <= 3 */
58 static const uint32_t i8xx_primary_formats[] = {
59         DRM_FORMAT_C8,
60         DRM_FORMAT_RGB565,
61         DRM_FORMAT_XRGB1555,
62         DRM_FORMAT_XRGB8888,
63 };
64
65 /* Primary plane formats for gen >= 4 */
66 static const uint32_t i965_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_XRGB2101010,
72         DRM_FORMAT_XBGR2101010,
73 };
74
75 static const uint32_t skl_primary_formats[] = {
76         DRM_FORMAT_C8,
77         DRM_FORMAT_RGB565,
78         DRM_FORMAT_XRGB8888,
79         DRM_FORMAT_XBGR8888,
80         DRM_FORMAT_ARGB8888,
81         DRM_FORMAT_ABGR8888,
82         DRM_FORMAT_XRGB2101010,
83         DRM_FORMAT_XBGR2101010,
84         DRM_FORMAT_YUYV,
85         DRM_FORMAT_YVYU,
86         DRM_FORMAT_UYVY,
87         DRM_FORMAT_VYUY,
88 };
89
90 /* Cursor formats */
91 static const uint32_t intel_cursor_formats[] = {
92         DRM_FORMAT_ARGB8888,
93 };
94
95 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
96                                 struct intel_crtc_state *pipe_config);
97 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
98                                    struct intel_crtc_state *pipe_config);
99
100 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
101                                   struct drm_i915_gem_object *obj,
102                                   struct drm_mode_fb_cmd2 *mode_cmd);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107                                          struct intel_link_m_n *m_n,
108                                          struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113                             const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115                             const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
119                                     struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev,
124                                          struct drm_modeset_acquire_ctx *ctx);
125 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126
127 struct intel_limit {
128         struct {
129                 int min, max;
130         } dot, vco, n, m, m1, m2, p, p1;
131
132         struct {
133                 int dot_limit;
134                 int p2_slow, p2_fast;
135         } p2;
136 };
137
138 /* returns HPLL frequency in kHz */
139 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
140 {
141         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
142
143         /* Obtain SKU information */
144         mutex_lock(&dev_priv->sb_lock);
145         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
146                 CCK_FUSE_HPLL_FREQ_MASK;
147         mutex_unlock(&dev_priv->sb_lock);
148
149         return vco_freq[hpll_freq] * 1000;
150 }
151
152 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
153                       const char *name, u32 reg, int ref_freq)
154 {
155         u32 val;
156         int divider;
157
158         mutex_lock(&dev_priv->sb_lock);
159         val = vlv_cck_read(dev_priv, reg);
160         mutex_unlock(&dev_priv->sb_lock);
161
162         divider = val & CCK_FREQUENCY_VALUES;
163
164         WARN((val & CCK_FREQUENCY_STATUS) !=
165              (divider << CCK_FREQUENCY_STATUS_SHIFT),
166              "%s change in progress\n", name);
167
168         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
169 }
170
171 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
172                            const char *name, u32 reg)
173 {
174         if (dev_priv->hpll_freq == 0)
175                 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
176
177         return vlv_get_cck_clock(dev_priv, name, reg,
178                                  dev_priv->hpll_freq);
179 }
180
181 static void intel_update_czclk(struct drm_i915_private *dev_priv)
182 {
183         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
184                 return;
185
186         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
187                                                       CCK_CZ_CLOCK_CONTROL);
188
189         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
190 }
191
192 static inline u32 /* units of 100MHz */
193 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
194                     const struct intel_crtc_state *pipe_config)
195 {
196         if (HAS_DDI(dev_priv))
197                 return pipe_config->port_clock; /* SPLL */
198         else if (IS_GEN5(dev_priv))
199                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
200         else
201                 return 270000;
202 }
203
204 static const struct intel_limit intel_limits_i8xx_dac = {
205         .dot = { .min = 25000, .max = 350000 },
206         .vco = { .min = 908000, .max = 1512000 },
207         .n = { .min = 2, .max = 16 },
208         .m = { .min = 96, .max = 140 },
209         .m1 = { .min = 18, .max = 26 },
210         .m2 = { .min = 6, .max = 16 },
211         .p = { .min = 4, .max = 128 },
212         .p1 = { .min = 2, .max = 33 },
213         .p2 = { .dot_limit = 165000,
214                 .p2_slow = 4, .p2_fast = 2 },
215 };
216
217 static const struct intel_limit intel_limits_i8xx_dvo = {
218         .dot = { .min = 25000, .max = 350000 },
219         .vco = { .min = 908000, .max = 1512000 },
220         .n = { .min = 2, .max = 16 },
221         .m = { .min = 96, .max = 140 },
222         .m1 = { .min = 18, .max = 26 },
223         .m2 = { .min = 6, .max = 16 },
224         .p = { .min = 4, .max = 128 },
225         .p1 = { .min = 2, .max = 33 },
226         .p2 = { .dot_limit = 165000,
227                 .p2_slow = 4, .p2_fast = 4 },
228 };
229
230 static const struct intel_limit intel_limits_i8xx_lvds = {
231         .dot = { .min = 25000, .max = 350000 },
232         .vco = { .min = 908000, .max = 1512000 },
233         .n = { .min = 2, .max = 16 },
234         .m = { .min = 96, .max = 140 },
235         .m1 = { .min = 18, .max = 26 },
236         .m2 = { .min = 6, .max = 16 },
237         .p = { .min = 4, .max = 128 },
238         .p1 = { .min = 1, .max = 6 },
239         .p2 = { .dot_limit = 165000,
240                 .p2_slow = 14, .p2_fast = 7 },
241 };
242
243 static const struct intel_limit intel_limits_i9xx_sdvo = {
244         .dot = { .min = 20000, .max = 400000 },
245         .vco = { .min = 1400000, .max = 2800000 },
246         .n = { .min = 1, .max = 6 },
247         .m = { .min = 70, .max = 120 },
248         .m1 = { .min = 8, .max = 18 },
249         .m2 = { .min = 3, .max = 7 },
250         .p = { .min = 5, .max = 80 },
251         .p1 = { .min = 1, .max = 8 },
252         .p2 = { .dot_limit = 200000,
253                 .p2_slow = 10, .p2_fast = 5 },
254 };
255
256 static const struct intel_limit intel_limits_i9xx_lvds = {
257         .dot = { .min = 20000, .max = 400000 },
258         .vco = { .min = 1400000, .max = 2800000 },
259         .n = { .min = 1, .max = 6 },
260         .m = { .min = 70, .max = 120 },
261         .m1 = { .min = 8, .max = 18 },
262         .m2 = { .min = 3, .max = 7 },
263         .p = { .min = 7, .max = 98 },
264         .p1 = { .min = 1, .max = 8 },
265         .p2 = { .dot_limit = 112000,
266                 .p2_slow = 14, .p2_fast = 7 },
267 };
268
269
270 static const struct intel_limit intel_limits_g4x_sdvo = {
271         .dot = { .min = 25000, .max = 270000 },
272         .vco = { .min = 1750000, .max = 3500000},
273         .n = { .min = 1, .max = 4 },
274         .m = { .min = 104, .max = 138 },
275         .m1 = { .min = 17, .max = 23 },
276         .m2 = { .min = 5, .max = 11 },
277         .p = { .min = 10, .max = 30 },
278         .p1 = { .min = 1, .max = 3},
279         .p2 = { .dot_limit = 270000,
280                 .p2_slow = 10,
281                 .p2_fast = 10
282         },
283 };
284
285 static const struct intel_limit intel_limits_g4x_hdmi = {
286         .dot = { .min = 22000, .max = 400000 },
287         .vco = { .min = 1750000, .max = 3500000},
288         .n = { .min = 1, .max = 4 },
289         .m = { .min = 104, .max = 138 },
290         .m1 = { .min = 16, .max = 23 },
291         .m2 = { .min = 5, .max = 11 },
292         .p = { .min = 5, .max = 80 },
293         .p1 = { .min = 1, .max = 8},
294         .p2 = { .dot_limit = 165000,
295                 .p2_slow = 10, .p2_fast = 5 },
296 };
297
298 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
299         .dot = { .min = 20000, .max = 115000 },
300         .vco = { .min = 1750000, .max = 3500000 },
301         .n = { .min = 1, .max = 3 },
302         .m = { .min = 104, .max = 138 },
303         .m1 = { .min = 17, .max = 23 },
304         .m2 = { .min = 5, .max = 11 },
305         .p = { .min = 28, .max = 112 },
306         .p1 = { .min = 2, .max = 8 },
307         .p2 = { .dot_limit = 0,
308                 .p2_slow = 14, .p2_fast = 14
309         },
310 };
311
312 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
313         .dot = { .min = 80000, .max = 224000 },
314         .vco = { .min = 1750000, .max = 3500000 },
315         .n = { .min = 1, .max = 3 },
316         .m = { .min = 104, .max = 138 },
317         .m1 = { .min = 17, .max = 23 },
318         .m2 = { .min = 5, .max = 11 },
319         .p = { .min = 14, .max = 42 },
320         .p1 = { .min = 2, .max = 6 },
321         .p2 = { .dot_limit = 0,
322                 .p2_slow = 7, .p2_fast = 7
323         },
324 };
325
326 static const struct intel_limit intel_limits_pineview_sdvo = {
327         .dot = { .min = 20000, .max = 400000},
328         .vco = { .min = 1700000, .max = 3500000 },
329         /* Pineview's Ncounter is a ring counter */
330         .n = { .min = 3, .max = 6 },
331         .m = { .min = 2, .max = 256 },
332         /* Pineview only has one combined m divider, which we treat as m2. */
333         .m1 = { .min = 0, .max = 0 },
334         .m2 = { .min = 0, .max = 254 },
335         .p = { .min = 5, .max = 80 },
336         .p1 = { .min = 1, .max = 8 },
337         .p2 = { .dot_limit = 200000,
338                 .p2_slow = 10, .p2_fast = 5 },
339 };
340
341 static const struct intel_limit intel_limits_pineview_lvds = {
342         .dot = { .min = 20000, .max = 400000 },
343         .vco = { .min = 1700000, .max = 3500000 },
344         .n = { .min = 3, .max = 6 },
345         .m = { .min = 2, .max = 256 },
346         .m1 = { .min = 0, .max = 0 },
347         .m2 = { .min = 0, .max = 254 },
348         .p = { .min = 7, .max = 112 },
349         .p1 = { .min = 1, .max = 8 },
350         .p2 = { .dot_limit = 112000,
351                 .p2_slow = 14, .p2_fast = 14 },
352 };
353
354 /* Ironlake / Sandybridge
355  *
356  * We calculate clock using (register_value + 2) for N/M1/M2, so here
357  * the range value for them is (actual_value - 2).
358  */
359 static const struct intel_limit intel_limits_ironlake_dac = {
360         .dot = { .min = 25000, .max = 350000 },
361         .vco = { .min = 1760000, .max = 3510000 },
362         .n = { .min = 1, .max = 5 },
363         .m = { .min = 79, .max = 127 },
364         .m1 = { .min = 12, .max = 22 },
365         .m2 = { .min = 5, .max = 9 },
366         .p = { .min = 5, .max = 80 },
367         .p1 = { .min = 1, .max = 8 },
368         .p2 = { .dot_limit = 225000,
369                 .p2_slow = 10, .p2_fast = 5 },
370 };
371
372 static const struct intel_limit intel_limits_ironlake_single_lvds = {
373         .dot = { .min = 25000, .max = 350000 },
374         .vco = { .min = 1760000, .max = 3510000 },
375         .n = { .min = 1, .max = 3 },
376         .m = { .min = 79, .max = 118 },
377         .m1 = { .min = 12, .max = 22 },
378         .m2 = { .min = 5, .max = 9 },
379         .p = { .min = 28, .max = 112 },
380         .p1 = { .min = 2, .max = 8 },
381         .p2 = { .dot_limit = 225000,
382                 .p2_slow = 14, .p2_fast = 14 },
383 };
384
385 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
386         .dot = { .min = 25000, .max = 350000 },
387         .vco = { .min = 1760000, .max = 3510000 },
388         .n = { .min = 1, .max = 3 },
389         .m = { .min = 79, .max = 127 },
390         .m1 = { .min = 12, .max = 22 },
391         .m2 = { .min = 5, .max = 9 },
392         .p = { .min = 14, .max = 56 },
393         .p1 = { .min = 2, .max = 8 },
394         .p2 = { .dot_limit = 225000,
395                 .p2_slow = 7, .p2_fast = 7 },
396 };
397
398 /* LVDS 100mhz refclk limits. */
399 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
400         .dot = { .min = 25000, .max = 350000 },
401         .vco = { .min = 1760000, .max = 3510000 },
402         .n = { .min = 1, .max = 2 },
403         .m = { .min = 79, .max = 126 },
404         .m1 = { .min = 12, .max = 22 },
405         .m2 = { .min = 5, .max = 9 },
406         .p = { .min = 28, .max = 112 },
407         .p1 = { .min = 2, .max = 8 },
408         .p2 = { .dot_limit = 225000,
409                 .p2_slow = 14, .p2_fast = 14 },
410 };
411
412 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
413         .dot = { .min = 25000, .max = 350000 },
414         .vco = { .min = 1760000, .max = 3510000 },
415         .n = { .min = 1, .max = 3 },
416         .m = { .min = 79, .max = 126 },
417         .m1 = { .min = 12, .max = 22 },
418         .m2 = { .min = 5, .max = 9 },
419         .p = { .min = 14, .max = 42 },
420         .p1 = { .min = 2, .max = 6 },
421         .p2 = { .dot_limit = 225000,
422                 .p2_slow = 7, .p2_fast = 7 },
423 };
424
425 static const struct intel_limit intel_limits_vlv = {
426          /*
427           * These are the data rate limits (measured in fast clocks)
428           * since those are the strictest limits we have. The fast
429           * clock and actual rate limits are more relaxed, so checking
430           * them would make no difference.
431           */
432         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
433         .vco = { .min = 4000000, .max = 6000000 },
434         .n = { .min = 1, .max = 7 },
435         .m1 = { .min = 2, .max = 3 },
436         .m2 = { .min = 11, .max = 156 },
437         .p1 = { .min = 2, .max = 3 },
438         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
439 };
440
441 static const struct intel_limit intel_limits_chv = {
442         /*
443          * These are the data rate limits (measured in fast clocks)
444          * since those are the strictest limits we have.  The fast
445          * clock and actual rate limits are more relaxed, so checking
446          * them would make no difference.
447          */
448         .dot = { .min = 25000 * 5, .max = 540000 * 5},
449         .vco = { .min = 4800000, .max = 6480000 },
450         .n = { .min = 1, .max = 1 },
451         .m1 = { .min = 2, .max = 2 },
452         .m2 = { .min = 24 << 22, .max = 175 << 22 },
453         .p1 = { .min = 2, .max = 4 },
454         .p2 = { .p2_slow = 1, .p2_fast = 14 },
455 };
456
457 static const struct intel_limit intel_limits_bxt = {
458         /* FIXME: find real dot limits */
459         .dot = { .min = 0, .max = INT_MAX },
460         .vco = { .min = 4800000, .max = 6700000 },
461         .n = { .min = 1, .max = 1 },
462         .m1 = { .min = 2, .max = 2 },
463         /* FIXME: find real m2 limits */
464         .m2 = { .min = 2 << 22, .max = 255 << 22 },
465         .p1 = { .min = 2, .max = 4 },
466         .p2 = { .p2_slow = 1, .p2_fast = 20 },
467 };
468
469 static bool
470 needs_modeset(struct drm_crtc_state *state)
471 {
472         return drm_atomic_crtc_needs_modeset(state);
473 }
474
475 /*
476  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
477  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
478  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
479  * The helpers' return value is the rate of the clock that is fed to the
480  * display engine's pipe which can be the above fast dot clock rate or a
481  * divided-down version of it.
482  */
483 /* m1 is reserved as 0 in Pineview, n is a ring counter */
484 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
485 {
486         clock->m = clock->m2 + 2;
487         clock->p = clock->p1 * clock->p2;
488         if (WARN_ON(clock->n == 0 || clock->p == 0))
489                 return 0;
490         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
491         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
492
493         return clock->dot;
494 }
495
496 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
497 {
498         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
499 }
500
501 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
502 {
503         clock->m = i9xx_dpll_compute_m(clock);
504         clock->p = clock->p1 * clock->p2;
505         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
506                 return 0;
507         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
508         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
509
510         return clock->dot;
511 }
512
513 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
514 {
515         clock->m = clock->m1 * clock->m2;
516         clock->p = clock->p1 * clock->p2;
517         if (WARN_ON(clock->n == 0 || clock->p == 0))
518                 return 0;
519         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
520         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
521
522         return clock->dot / 5;
523 }
524
525 int chv_calc_dpll_params(int refclk, struct dpll *clock)
526 {
527         clock->m = clock->m1 * clock->m2;
528         clock->p = clock->p1 * clock->p2;
529         if (WARN_ON(clock->n == 0 || clock->p == 0))
530                 return 0;
531         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
532                         clock->n << 22);
533         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
534
535         return clock->dot / 5;
536 }
537
538 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
539 /**
540  * Returns whether the given set of divisors are valid for a given refclk with
541  * the given connectors.
542  */
543
544 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
545                                const struct intel_limit *limit,
546                                const struct dpll *clock)
547 {
548         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
549                 INTELPllInvalid("n out of range\n");
550         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
551                 INTELPllInvalid("p1 out of range\n");
552         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
553                 INTELPllInvalid("m2 out of range\n");
554         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
555                 INTELPllInvalid("m1 out of range\n");
556
557         if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
558             !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
559                 if (clock->m1 <= clock->m2)
560                         INTELPllInvalid("m1 <= m2\n");
561
562         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
563             !IS_GEN9_LP(dev_priv)) {
564                 if (clock->p < limit->p.min || limit->p.max < clock->p)
565                         INTELPllInvalid("p out of range\n");
566                 if (clock->m < limit->m.min || limit->m.max < clock->m)
567                         INTELPllInvalid("m out of range\n");
568         }
569
570         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
571                 INTELPllInvalid("vco out of range\n");
572         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
573          * connector, etc., rather than just a single range.
574          */
575         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
576                 INTELPllInvalid("dot out of range\n");
577
578         return true;
579 }
580
581 static int
582 i9xx_select_p2_div(const struct intel_limit *limit,
583                    const struct intel_crtc_state *crtc_state,
584                    int target)
585 {
586         struct drm_device *dev = crtc_state->base.crtc->dev;
587
588         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
589                 /*
590                  * For LVDS just rely on its current settings for dual-channel.
591                  * We haven't figured out how to reliably set up different
592                  * single/dual channel state, if we even can.
593                  */
594                 if (intel_is_dual_link_lvds(dev))
595                         return limit->p2.p2_fast;
596                 else
597                         return limit->p2.p2_slow;
598         } else {
599                 if (target < limit->p2.dot_limit)
600                         return limit->p2.p2_slow;
601                 else
602                         return limit->p2.p2_fast;
603         }
604 }
605
606 /*
607  * Returns a set of divisors for the desired target clock with the given
608  * refclk, or FALSE.  The returned values represent the clock equation:
609  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
610  *
611  * Target and reference clocks are specified in kHz.
612  *
613  * If match_clock is provided, then best_clock P divider must match the P
614  * divider from @match_clock used for LVDS downclocking.
615  */
616 static bool
617 i9xx_find_best_dpll(const struct intel_limit *limit,
618                     struct intel_crtc_state *crtc_state,
619                     int target, int refclk, struct dpll *match_clock,
620                     struct dpll *best_clock)
621 {
622         struct drm_device *dev = crtc_state->base.crtc->dev;
623         struct dpll clock;
624         int err = target;
625
626         memset(best_clock, 0, sizeof(*best_clock));
627
628         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
629
630         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
631              clock.m1++) {
632                 for (clock.m2 = limit->m2.min;
633                      clock.m2 <= limit->m2.max; clock.m2++) {
634                         if (clock.m2 >= clock.m1)
635                                 break;
636                         for (clock.n = limit->n.min;
637                              clock.n <= limit->n.max; clock.n++) {
638                                 for (clock.p1 = limit->p1.min;
639                                         clock.p1 <= limit->p1.max; clock.p1++) {
640                                         int this_err;
641
642                                         i9xx_calc_dpll_params(refclk, &clock);
643                                         if (!intel_PLL_is_valid(to_i915(dev),
644                                                                 limit,
645                                                                 &clock))
646                                                 continue;
647                                         if (match_clock &&
648                                             clock.p != match_clock->p)
649                                                 continue;
650
651                                         this_err = abs(clock.dot - target);
652                                         if (this_err < err) {
653                                                 *best_clock = clock;
654                                                 err = this_err;
655                                         }
656                                 }
657                         }
658                 }
659         }
660
661         return (err != target);
662 }
663
664 /*
665  * Returns a set of divisors for the desired target clock with the given
666  * refclk, or FALSE.  The returned values represent the clock equation:
667  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
668  *
669  * Target and reference clocks are specified in kHz.
670  *
671  * If match_clock is provided, then best_clock P divider must match the P
672  * divider from @match_clock used for LVDS downclocking.
673  */
674 static bool
675 pnv_find_best_dpll(const struct intel_limit *limit,
676                    struct intel_crtc_state *crtc_state,
677                    int target, int refclk, struct dpll *match_clock,
678                    struct dpll *best_clock)
679 {
680         struct drm_device *dev = crtc_state->base.crtc->dev;
681         struct dpll clock;
682         int err = target;
683
684         memset(best_clock, 0, sizeof(*best_clock));
685
686         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
687
688         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
689              clock.m1++) {
690                 for (clock.m2 = limit->m2.min;
691                      clock.m2 <= limit->m2.max; clock.m2++) {
692                         for (clock.n = limit->n.min;
693                              clock.n <= limit->n.max; clock.n++) {
694                                 for (clock.p1 = limit->p1.min;
695                                         clock.p1 <= limit->p1.max; clock.p1++) {
696                                         int this_err;
697
698                                         pnv_calc_dpll_params(refclk, &clock);
699                                         if (!intel_PLL_is_valid(to_i915(dev),
700                                                                 limit,
701                                                                 &clock))
702                                                 continue;
703                                         if (match_clock &&
704                                             clock.p != match_clock->p)
705                                                 continue;
706
707                                         this_err = abs(clock.dot - target);
708                                         if (this_err < err) {
709                                                 *best_clock = clock;
710                                                 err = this_err;
711                                         }
712                                 }
713                         }
714                 }
715         }
716
717         return (err != target);
718 }
719
720 /*
721  * Returns a set of divisors for the desired target clock with the given
722  * refclk, or FALSE.  The returned values represent the clock equation:
723  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
724  *
725  * Target and reference clocks are specified in kHz.
726  *
727  * If match_clock is provided, then best_clock P divider must match the P
728  * divider from @match_clock used for LVDS downclocking.
729  */
730 static bool
731 g4x_find_best_dpll(const struct intel_limit *limit,
732                    struct intel_crtc_state *crtc_state,
733                    int target, int refclk, struct dpll *match_clock,
734                    struct dpll *best_clock)
735 {
736         struct drm_device *dev = crtc_state->base.crtc->dev;
737         struct dpll clock;
738         int max_n;
739         bool found = false;
740         /* approximately equals target * 0.00585 */
741         int err_most = (target >> 8) + (target >> 9);
742
743         memset(best_clock, 0, sizeof(*best_clock));
744
745         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
746
747         max_n = limit->n.max;
748         /* based on hardware requirement, prefer smaller n to precision */
749         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
750                 /* based on hardware requirement, prefere larger m1,m2 */
751                 for (clock.m1 = limit->m1.max;
752                      clock.m1 >= limit->m1.min; clock.m1--) {
753                         for (clock.m2 = limit->m2.max;
754                              clock.m2 >= limit->m2.min; clock.m2--) {
755                                 for (clock.p1 = limit->p1.max;
756                                      clock.p1 >= limit->p1.min; clock.p1--) {
757                                         int this_err;
758
759                                         i9xx_calc_dpll_params(refclk, &clock);
760                                         if (!intel_PLL_is_valid(to_i915(dev),
761                                                                 limit,
762                                                                 &clock))
763                                                 continue;
764
765                                         this_err = abs(clock.dot - target);
766                                         if (this_err < err_most) {
767                                                 *best_clock = clock;
768                                                 err_most = this_err;
769                                                 max_n = clock.n;
770                                                 found = true;
771                                         }
772                                 }
773                         }
774                 }
775         }
776         return found;
777 }
778
779 /*
780  * Check if the calculated PLL configuration is more optimal compared to the
781  * best configuration and error found so far. Return the calculated error.
782  */
783 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
784                                const struct dpll *calculated_clock,
785                                const struct dpll *best_clock,
786                                unsigned int best_error_ppm,
787                                unsigned int *error_ppm)
788 {
789         /*
790          * For CHV ignore the error and consider only the P value.
791          * Prefer a bigger P value based on HW requirements.
792          */
793         if (IS_CHERRYVIEW(to_i915(dev))) {
794                 *error_ppm = 0;
795
796                 return calculated_clock->p > best_clock->p;
797         }
798
799         if (WARN_ON_ONCE(!target_freq))
800                 return false;
801
802         *error_ppm = div_u64(1000000ULL *
803                                 abs(target_freq - calculated_clock->dot),
804                              target_freq);
805         /*
806          * Prefer a better P value over a better (smaller) error if the error
807          * is small. Ensure this preference for future configurations too by
808          * setting the error to 0.
809          */
810         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
811                 *error_ppm = 0;
812
813                 return true;
814         }
815
816         return *error_ppm + 10 < best_error_ppm;
817 }
818
819 /*
820  * Returns a set of divisors for the desired target clock with the given
821  * refclk, or FALSE.  The returned values represent the clock equation:
822  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
823  */
824 static bool
825 vlv_find_best_dpll(const struct intel_limit *limit,
826                    struct intel_crtc_state *crtc_state,
827                    int target, int refclk, struct dpll *match_clock,
828                    struct dpll *best_clock)
829 {
830         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
831         struct drm_device *dev = crtc->base.dev;
832         struct dpll clock;
833         unsigned int bestppm = 1000000;
834         /* min update 19.2 MHz */
835         int max_n = min(limit->n.max, refclk / 19200);
836         bool found = false;
837
838         target *= 5; /* fast clock */
839
840         memset(best_clock, 0, sizeof(*best_clock));
841
842         /* based on hardware requirement, prefer smaller n to precision */
843         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
844                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
845                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
846                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
847                                 clock.p = clock.p1 * clock.p2;
848                                 /* based on hardware requirement, prefer bigger m1,m2 values */
849                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
850                                         unsigned int ppm;
851
852                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
853                                                                      refclk * clock.m1);
854
855                                         vlv_calc_dpll_params(refclk, &clock);
856
857                                         if (!intel_PLL_is_valid(to_i915(dev),
858                                                                 limit,
859                                                                 &clock))
860                                                 continue;
861
862                                         if (!vlv_PLL_is_optimal(dev, target,
863                                                                 &clock,
864                                                                 best_clock,
865                                                                 bestppm, &ppm))
866                                                 continue;
867
868                                         *best_clock = clock;
869                                         bestppm = ppm;
870                                         found = true;
871                                 }
872                         }
873                 }
874         }
875
876         return found;
877 }
878
879 /*
880  * Returns a set of divisors for the desired target clock with the given
881  * refclk, or FALSE.  The returned values represent the clock equation:
882  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
883  */
884 static bool
885 chv_find_best_dpll(const struct intel_limit *limit,
886                    struct intel_crtc_state *crtc_state,
887                    int target, int refclk, struct dpll *match_clock,
888                    struct dpll *best_clock)
889 {
890         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
891         struct drm_device *dev = crtc->base.dev;
892         unsigned int best_error_ppm;
893         struct dpll clock;
894         uint64_t m2;
895         int found = false;
896
897         memset(best_clock, 0, sizeof(*best_clock));
898         best_error_ppm = 1000000;
899
900         /*
901          * Based on hardware doc, the n always set to 1, and m1 always
902          * set to 2.  If requires to support 200Mhz refclk, we need to
903          * revisit this because n may not 1 anymore.
904          */
905         clock.n = 1, clock.m1 = 2;
906         target *= 5;    /* fast clock */
907
908         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
909                 for (clock.p2 = limit->p2.p2_fast;
910                                 clock.p2 >= limit->p2.p2_slow;
911                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
912                         unsigned int error_ppm;
913
914                         clock.p = clock.p1 * clock.p2;
915
916                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
917                                         clock.n) << 22, refclk * clock.m1);
918
919                         if (m2 > INT_MAX/clock.m1)
920                                 continue;
921
922                         clock.m2 = m2;
923
924                         chv_calc_dpll_params(refclk, &clock);
925
926                         if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
927                                 continue;
928
929                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
930                                                 best_error_ppm, &error_ppm))
931                                 continue;
932
933                         *best_clock = clock;
934                         best_error_ppm = error_ppm;
935                         found = true;
936                 }
937         }
938
939         return found;
940 }
941
942 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
943                         struct dpll *best_clock)
944 {
945         int refclk = 100000;
946         const struct intel_limit *limit = &intel_limits_bxt;
947
948         return chv_find_best_dpll(limit, crtc_state,
949                                   target_clock, refclk, NULL, best_clock);
950 }
951
952 bool intel_crtc_active(struct intel_crtc *crtc)
953 {
954         /* Be paranoid as we can arrive here with only partial
955          * state retrieved from the hardware during setup.
956          *
957          * We can ditch the adjusted_mode.crtc_clock check as soon
958          * as Haswell has gained clock readout/fastboot support.
959          *
960          * We can ditch the crtc->primary->fb check as soon as we can
961          * properly reconstruct framebuffers.
962          *
963          * FIXME: The intel_crtc->active here should be switched to
964          * crtc->state->active once we have proper CRTC states wired up
965          * for atomic.
966          */
967         return crtc->active && crtc->base.primary->state->fb &&
968                 crtc->config->base.adjusted_mode.crtc_clock;
969 }
970
971 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
972                                              enum pipe pipe)
973 {
974         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
975
976         return crtc->config->cpu_transcoder;
977 }
978
979 static bool pipe_dsl_stopped(struct drm_i915_private *dev_priv, enum pipe pipe)
980 {
981         i915_reg_t reg = PIPEDSL(pipe);
982         u32 line1, line2;
983         u32 line_mask;
984
985         if (IS_GEN2(dev_priv))
986                 line_mask = DSL_LINEMASK_GEN2;
987         else
988                 line_mask = DSL_LINEMASK_GEN3;
989
990         line1 = I915_READ(reg) & line_mask;
991         msleep(5);
992         line2 = I915_READ(reg) & line_mask;
993
994         return line1 == line2;
995 }
996
997 /*
998  * intel_wait_for_pipe_off - wait for pipe to turn off
999  * @crtc: crtc whose pipe to wait for
1000  *
1001  * After disabling a pipe, we can't wait for vblank in the usual way,
1002  * spinning on the vblank interrupt status bit, since we won't actually
1003  * see an interrupt when the pipe is disabled.
1004  *
1005  * On Gen4 and above:
1006  *   wait for the pipe register state bit to turn off
1007  *
1008  * Otherwise:
1009  *   wait for the display line value to settle (it usually
1010  *   ends up stopping at the start of the next frame).
1011  *
1012  */
1013 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1014 {
1015         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1016         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1017         enum pipe pipe = crtc->pipe;
1018
1019         if (INTEL_GEN(dev_priv) >= 4) {
1020                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1021
1022                 /* Wait for the Pipe State to go off */
1023                 if (intel_wait_for_register(dev_priv,
1024                                             reg, I965_PIPECONF_ACTIVE, 0,
1025                                             100))
1026                         WARN(1, "pipe_off wait timed out\n");
1027         } else {
1028                 /* Wait for the display line to settle */
1029                 if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
1030                         WARN(1, "pipe_off wait timed out\n");
1031         }
1032 }
1033
1034 /* Only for pre-ILK configs */
1035 void assert_pll(struct drm_i915_private *dev_priv,
1036                 enum pipe pipe, bool state)
1037 {
1038         u32 val;
1039         bool cur_state;
1040
1041         val = I915_READ(DPLL(pipe));
1042         cur_state = !!(val & DPLL_VCO_ENABLE);
1043         I915_STATE_WARN(cur_state != state,
1044              "PLL state assertion failure (expected %s, current %s)\n",
1045                         onoff(state), onoff(cur_state));
1046 }
1047
1048 /* XXX: the dsi pll is shared between MIPI DSI ports */
1049 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1050 {
1051         u32 val;
1052         bool cur_state;
1053
1054         mutex_lock(&dev_priv->sb_lock);
1055         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1056         mutex_unlock(&dev_priv->sb_lock);
1057
1058         cur_state = val & DSI_PLL_VCO_EN;
1059         I915_STATE_WARN(cur_state != state,
1060              "DSI PLL state assertion failure (expected %s, current %s)\n",
1061                         onoff(state), onoff(cur_state));
1062 }
1063
1064 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1065                           enum pipe pipe, bool state)
1066 {
1067         bool cur_state;
1068         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1069                                                                       pipe);
1070
1071         if (HAS_DDI(dev_priv)) {
1072                 /* DDI does not have a specific FDI_TX register */
1073                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1074                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1075         } else {
1076                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1077                 cur_state = !!(val & FDI_TX_ENABLE);
1078         }
1079         I915_STATE_WARN(cur_state != state,
1080              "FDI TX state assertion failure (expected %s, current %s)\n",
1081                         onoff(state), onoff(cur_state));
1082 }
1083 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1084 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1085
1086 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1087                           enum pipe pipe, bool state)
1088 {
1089         u32 val;
1090         bool cur_state;
1091
1092         val = I915_READ(FDI_RX_CTL(pipe));
1093         cur_state = !!(val & FDI_RX_ENABLE);
1094         I915_STATE_WARN(cur_state != state,
1095              "FDI RX state assertion failure (expected %s, current %s)\n",
1096                         onoff(state), onoff(cur_state));
1097 }
1098 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1099 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1100
1101 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1102                                       enum pipe pipe)
1103 {
1104         u32 val;
1105
1106         /* ILK FDI PLL is always enabled */
1107         if (IS_GEN5(dev_priv))
1108                 return;
1109
1110         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1111         if (HAS_DDI(dev_priv))
1112                 return;
1113
1114         val = I915_READ(FDI_TX_CTL(pipe));
1115         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1116 }
1117
1118 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1119                        enum pipe pipe, bool state)
1120 {
1121         u32 val;
1122         bool cur_state;
1123
1124         val = I915_READ(FDI_RX_CTL(pipe));
1125         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1126         I915_STATE_WARN(cur_state != state,
1127              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1128                         onoff(state), onoff(cur_state));
1129 }
1130
1131 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1132 {
1133         i915_reg_t pp_reg;
1134         u32 val;
1135         enum pipe panel_pipe = PIPE_A;
1136         bool locked = true;
1137
1138         if (WARN_ON(HAS_DDI(dev_priv)))
1139                 return;
1140
1141         if (HAS_PCH_SPLIT(dev_priv)) {
1142                 u32 port_sel;
1143
1144                 pp_reg = PP_CONTROL(0);
1145                 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1146
1147                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1148                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1149                         panel_pipe = PIPE_B;
1150                 /* XXX: else fix for eDP */
1151         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1152                 /* presumably write lock depends on pipe, not port select */
1153                 pp_reg = PP_CONTROL(pipe);
1154                 panel_pipe = pipe;
1155         } else {
1156                 pp_reg = PP_CONTROL(0);
1157                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1158                         panel_pipe = PIPE_B;
1159         }
1160
1161         val = I915_READ(pp_reg);
1162         if (!(val & PANEL_POWER_ON) ||
1163             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1164                 locked = false;
1165
1166         I915_STATE_WARN(panel_pipe == pipe && locked,
1167              "panel assertion failure, pipe %c regs locked\n",
1168              pipe_name(pipe));
1169 }
1170
1171 static void assert_cursor(struct drm_i915_private *dev_priv,
1172                           enum pipe pipe, bool state)
1173 {
1174         bool cur_state;
1175
1176         if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
1177                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1178         else
1179                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1180
1181         I915_STATE_WARN(cur_state != state,
1182              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1183                         pipe_name(pipe), onoff(state), onoff(cur_state));
1184 }
1185 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1186 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1187
1188 void assert_pipe(struct drm_i915_private *dev_priv,
1189                  enum pipe pipe, bool state)
1190 {
1191         bool cur_state;
1192         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1193                                                                       pipe);
1194         enum intel_display_power_domain power_domain;
1195
1196         /* if we need the pipe quirk it must be always on */
1197         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1198             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1199                 state = true;
1200
1201         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1202         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1203                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1204                 cur_state = !!(val & PIPECONF_ENABLE);
1205
1206                 intel_display_power_put(dev_priv, power_domain);
1207         } else {
1208                 cur_state = false;
1209         }
1210
1211         I915_STATE_WARN(cur_state != state,
1212              "pipe %c assertion failure (expected %s, current %s)\n",
1213                         pipe_name(pipe), onoff(state), onoff(cur_state));
1214 }
1215
1216 static void assert_plane(struct drm_i915_private *dev_priv,
1217                          enum plane plane, bool state)
1218 {
1219         u32 val;
1220         bool cur_state;
1221
1222         val = I915_READ(DSPCNTR(plane));
1223         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1224         I915_STATE_WARN(cur_state != state,
1225              "plane %c assertion failure (expected %s, current %s)\n",
1226                         plane_name(plane), onoff(state), onoff(cur_state));
1227 }
1228
1229 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1230 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1231
1232 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1233                                    enum pipe pipe)
1234 {
1235         int i;
1236
1237         /* Primary planes are fixed to pipes on gen4+ */
1238         if (INTEL_GEN(dev_priv) >= 4) {
1239                 u32 val = I915_READ(DSPCNTR(pipe));
1240                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1241                      "plane %c assertion failure, should be disabled but not\n",
1242                      plane_name(pipe));
1243                 return;
1244         }
1245
1246         /* Need to check both planes against the pipe */
1247         for_each_pipe(dev_priv, i) {
1248                 u32 val = I915_READ(DSPCNTR(i));
1249                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1250                         DISPPLANE_SEL_PIPE_SHIFT;
1251                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1252                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1253                      plane_name(i), pipe_name(pipe));
1254         }
1255 }
1256
1257 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1258                                     enum pipe pipe)
1259 {
1260         int sprite;
1261
1262         if (INTEL_GEN(dev_priv) >= 9) {
1263                 for_each_sprite(dev_priv, pipe, sprite) {
1264                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1265                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1266                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1267                              sprite, pipe_name(pipe));
1268                 }
1269         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1270                 for_each_sprite(dev_priv, pipe, sprite) {
1271                         u32 val = I915_READ(SPCNTR(pipe, PLANE_SPRITE0 + sprite));
1272                         I915_STATE_WARN(val & SP_ENABLE,
1273                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1274                              sprite_name(pipe, sprite), pipe_name(pipe));
1275                 }
1276         } else if (INTEL_GEN(dev_priv) >= 7) {
1277                 u32 val = I915_READ(SPRCTL(pipe));
1278                 I915_STATE_WARN(val & SPRITE_ENABLE,
1279                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1280                      plane_name(pipe), pipe_name(pipe));
1281         } else if (INTEL_GEN(dev_priv) >= 5) {
1282                 u32 val = I915_READ(DVSCNTR(pipe));
1283                 I915_STATE_WARN(val & DVS_ENABLE,
1284                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1285                      plane_name(pipe), pipe_name(pipe));
1286         }
1287 }
1288
1289 static void assert_vblank_disabled(struct drm_crtc *crtc)
1290 {
1291         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1292                 drm_crtc_vblank_put(crtc);
1293 }
1294
1295 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1296                                     enum pipe pipe)
1297 {
1298         u32 val;
1299         bool enabled;
1300
1301         val = I915_READ(PCH_TRANSCONF(pipe));
1302         enabled = !!(val & TRANS_ENABLE);
1303         I915_STATE_WARN(enabled,
1304              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1305              pipe_name(pipe));
1306 }
1307
1308 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1309                             enum pipe pipe, u32 port_sel, u32 val)
1310 {
1311         if ((val & DP_PORT_EN) == 0)
1312                 return false;
1313
1314         if (HAS_PCH_CPT(dev_priv)) {
1315                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1316                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1317                         return false;
1318         } else if (IS_CHERRYVIEW(dev_priv)) {
1319                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1320                         return false;
1321         } else {
1322                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1323                         return false;
1324         }
1325         return true;
1326 }
1327
1328 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1329                               enum pipe pipe, u32 val)
1330 {
1331         if ((val & SDVO_ENABLE) == 0)
1332                 return false;
1333
1334         if (HAS_PCH_CPT(dev_priv)) {
1335                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1336                         return false;
1337         } else if (IS_CHERRYVIEW(dev_priv)) {
1338                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1339                         return false;
1340         } else {
1341                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1342                         return false;
1343         }
1344         return true;
1345 }
1346
1347 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1348                               enum pipe pipe, u32 val)
1349 {
1350         if ((val & LVDS_PORT_EN) == 0)
1351                 return false;
1352
1353         if (HAS_PCH_CPT(dev_priv)) {
1354                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1355                         return false;
1356         } else {
1357                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1358                         return false;
1359         }
1360         return true;
1361 }
1362
1363 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1364                               enum pipe pipe, u32 val)
1365 {
1366         if ((val & ADPA_DAC_ENABLE) == 0)
1367                 return false;
1368         if (HAS_PCH_CPT(dev_priv)) {
1369                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1370                         return false;
1371         } else {
1372                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1373                         return false;
1374         }
1375         return true;
1376 }
1377
1378 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1379                                    enum pipe pipe, i915_reg_t reg,
1380                                    u32 port_sel)
1381 {
1382         u32 val = I915_READ(reg);
1383         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1384              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1385              i915_mmio_reg_offset(reg), pipe_name(pipe));
1386
1387         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1388              && (val & DP_PIPEB_SELECT),
1389              "IBX PCH dp port still using transcoder B\n");
1390 }
1391
1392 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1393                                      enum pipe pipe, i915_reg_t reg)
1394 {
1395         u32 val = I915_READ(reg);
1396         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1397              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1398              i915_mmio_reg_offset(reg), pipe_name(pipe));
1399
1400         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1401              && (val & SDVO_PIPE_B_SELECT),
1402              "IBX PCH hdmi port still using transcoder B\n");
1403 }
1404
1405 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1406                                       enum pipe pipe)
1407 {
1408         u32 val;
1409
1410         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1411         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1412         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1413
1414         val = I915_READ(PCH_ADPA);
1415         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1416              "PCH VGA enabled on transcoder %c, should be disabled\n",
1417              pipe_name(pipe));
1418
1419         val = I915_READ(PCH_LVDS);
1420         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1421              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1422              pipe_name(pipe));
1423
1424         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1425         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1426         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1427 }
1428
1429 static void _vlv_enable_pll(struct intel_crtc *crtc,
1430                             const struct intel_crtc_state *pipe_config)
1431 {
1432         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1433         enum pipe pipe = crtc->pipe;
1434
1435         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1436         POSTING_READ(DPLL(pipe));
1437         udelay(150);
1438
1439         if (intel_wait_for_register(dev_priv,
1440                                     DPLL(pipe),
1441                                     DPLL_LOCK_VLV,
1442                                     DPLL_LOCK_VLV,
1443                                     1))
1444                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1445 }
1446
1447 static void vlv_enable_pll(struct intel_crtc *crtc,
1448                            const struct intel_crtc_state *pipe_config)
1449 {
1450         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1451         enum pipe pipe = crtc->pipe;
1452
1453         assert_pipe_disabled(dev_priv, pipe);
1454
1455         /* PLL is protected by panel, make sure we can write it */
1456         assert_panel_unlocked(dev_priv, pipe);
1457
1458         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1459                 _vlv_enable_pll(crtc, pipe_config);
1460
1461         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1462         POSTING_READ(DPLL_MD(pipe));
1463 }
1464
1465
1466 static void _chv_enable_pll(struct intel_crtc *crtc,
1467                             const struct intel_crtc_state *pipe_config)
1468 {
1469         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1470         enum pipe pipe = crtc->pipe;
1471         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1472         u32 tmp;
1473
1474         mutex_lock(&dev_priv->sb_lock);
1475
1476         /* Enable back the 10bit clock to display controller */
1477         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1478         tmp |= DPIO_DCLKP_EN;
1479         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1480
1481         mutex_unlock(&dev_priv->sb_lock);
1482
1483         /*
1484          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1485          */
1486         udelay(1);
1487
1488         /* Enable PLL */
1489         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1490
1491         /* Check PLL is locked */
1492         if (intel_wait_for_register(dev_priv,
1493                                     DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1494                                     1))
1495                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1496 }
1497
1498 static void chv_enable_pll(struct intel_crtc *crtc,
1499                            const struct intel_crtc_state *pipe_config)
1500 {
1501         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1502         enum pipe pipe = crtc->pipe;
1503
1504         assert_pipe_disabled(dev_priv, pipe);
1505
1506         /* PLL is protected by panel, make sure we can write it */
1507         assert_panel_unlocked(dev_priv, pipe);
1508
1509         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1510                 _chv_enable_pll(crtc, pipe_config);
1511
1512         if (pipe != PIPE_A) {
1513                 /*
1514                  * WaPixelRepeatModeFixForC0:chv
1515                  *
1516                  * DPLLCMD is AWOL. Use chicken bits to propagate
1517                  * the value from DPLLBMD to either pipe B or C.
1518                  */
1519                 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1520                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1521                 I915_WRITE(CBR4_VLV, 0);
1522                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1523
1524                 /*
1525                  * DPLLB VGA mode also seems to cause problems.
1526                  * We should always have it disabled.
1527                  */
1528                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1529         } else {
1530                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1531                 POSTING_READ(DPLL_MD(pipe));
1532         }
1533 }
1534
1535 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1536 {
1537         struct intel_crtc *crtc;
1538         int count = 0;
1539
1540         for_each_intel_crtc(&dev_priv->drm, crtc) {
1541                 count += crtc->base.state->active &&
1542                         intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1543         }
1544
1545         return count;
1546 }
1547
1548 static void i9xx_enable_pll(struct intel_crtc *crtc)
1549 {
1550         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1551         i915_reg_t reg = DPLL(crtc->pipe);
1552         u32 dpll = crtc->config->dpll_hw_state.dpll;
1553
1554         assert_pipe_disabled(dev_priv, crtc->pipe);
1555
1556         /* PLL is protected by panel, make sure we can write it */
1557         if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1558                 assert_panel_unlocked(dev_priv, crtc->pipe);
1559
1560         /* Enable DVO 2x clock on both PLLs if necessary */
1561         if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1562                 /*
1563                  * It appears to be important that we don't enable this
1564                  * for the current pipe before otherwise configuring the
1565                  * PLL. No idea how this should be handled if multiple
1566                  * DVO outputs are enabled simultaneosly.
1567                  */
1568                 dpll |= DPLL_DVO_2X_MODE;
1569                 I915_WRITE(DPLL(!crtc->pipe),
1570                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1571         }
1572
1573         /*
1574          * Apparently we need to have VGA mode enabled prior to changing
1575          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1576          * dividers, even though the register value does change.
1577          */
1578         I915_WRITE(reg, 0);
1579
1580         I915_WRITE(reg, dpll);
1581
1582         /* Wait for the clocks to stabilize. */
1583         POSTING_READ(reg);
1584         udelay(150);
1585
1586         if (INTEL_GEN(dev_priv) >= 4) {
1587                 I915_WRITE(DPLL_MD(crtc->pipe),
1588                            crtc->config->dpll_hw_state.dpll_md);
1589         } else {
1590                 /* The pixel multiplier can only be updated once the
1591                  * DPLL is enabled and the clocks are stable.
1592                  *
1593                  * So write it again.
1594                  */
1595                 I915_WRITE(reg, dpll);
1596         }
1597
1598         /* We do this three times for luck */
1599         I915_WRITE(reg, dpll);
1600         POSTING_READ(reg);
1601         udelay(150); /* wait for warmup */
1602         I915_WRITE(reg, dpll);
1603         POSTING_READ(reg);
1604         udelay(150); /* wait for warmup */
1605         I915_WRITE(reg, dpll);
1606         POSTING_READ(reg);
1607         udelay(150); /* wait for warmup */
1608 }
1609
1610 /**
1611  * i9xx_disable_pll - disable a PLL
1612  * @dev_priv: i915 private structure
1613  * @pipe: pipe PLL to disable
1614  *
1615  * Disable the PLL for @pipe, making sure the pipe is off first.
1616  *
1617  * Note!  This is for pre-ILK only.
1618  */
1619 static void i9xx_disable_pll(struct intel_crtc *crtc)
1620 {
1621         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1622         enum pipe pipe = crtc->pipe;
1623
1624         /* Disable DVO 2x clock on both PLLs if necessary */
1625         if (IS_I830(dev_priv) &&
1626             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1627             !intel_num_dvo_pipes(dev_priv)) {
1628                 I915_WRITE(DPLL(PIPE_B),
1629                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1630                 I915_WRITE(DPLL(PIPE_A),
1631                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1632         }
1633
1634         /* Don't disable pipe or pipe PLLs if needed */
1635         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1636             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1637                 return;
1638
1639         /* Make sure the pipe isn't still relying on us */
1640         assert_pipe_disabled(dev_priv, pipe);
1641
1642         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1643         POSTING_READ(DPLL(pipe));
1644 }
1645
1646 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1647 {
1648         u32 val;
1649
1650         /* Make sure the pipe isn't still relying on us */
1651         assert_pipe_disabled(dev_priv, pipe);
1652
1653         val = DPLL_INTEGRATED_REF_CLK_VLV |
1654                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1655         if (pipe != PIPE_A)
1656                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1657
1658         I915_WRITE(DPLL(pipe), val);
1659         POSTING_READ(DPLL(pipe));
1660 }
1661
1662 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1663 {
1664         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1665         u32 val;
1666
1667         /* Make sure the pipe isn't still relying on us */
1668         assert_pipe_disabled(dev_priv, pipe);
1669
1670         val = DPLL_SSC_REF_CLK_CHV |
1671                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1672         if (pipe != PIPE_A)
1673                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1674
1675         I915_WRITE(DPLL(pipe), val);
1676         POSTING_READ(DPLL(pipe));
1677
1678         mutex_lock(&dev_priv->sb_lock);
1679
1680         /* Disable 10bit clock to display controller */
1681         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1682         val &= ~DPIO_DCLKP_EN;
1683         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1684
1685         mutex_unlock(&dev_priv->sb_lock);
1686 }
1687
1688 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1689                          struct intel_digital_port *dport,
1690                          unsigned int expected_mask)
1691 {
1692         u32 port_mask;
1693         i915_reg_t dpll_reg;
1694
1695         switch (dport->port) {
1696         case PORT_B:
1697                 port_mask = DPLL_PORTB_READY_MASK;
1698                 dpll_reg = DPLL(0);
1699                 break;
1700         case PORT_C:
1701                 port_mask = DPLL_PORTC_READY_MASK;
1702                 dpll_reg = DPLL(0);
1703                 expected_mask <<= 4;
1704                 break;
1705         case PORT_D:
1706                 port_mask = DPLL_PORTD_READY_MASK;
1707                 dpll_reg = DPIO_PHY_STATUS;
1708                 break;
1709         default:
1710                 BUG();
1711         }
1712
1713         if (intel_wait_for_register(dev_priv,
1714                                     dpll_reg, port_mask, expected_mask,
1715                                     1000))
1716                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1717                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1718 }
1719
1720 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1721                                            enum pipe pipe)
1722 {
1723         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1724                                                                 pipe);
1725         i915_reg_t reg;
1726         uint32_t val, pipeconf_val;
1727
1728         /* Make sure PCH DPLL is enabled */
1729         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1730
1731         /* FDI must be feeding us bits for PCH ports */
1732         assert_fdi_tx_enabled(dev_priv, pipe);
1733         assert_fdi_rx_enabled(dev_priv, pipe);
1734
1735         if (HAS_PCH_CPT(dev_priv)) {
1736                 /* Workaround: Set the timing override bit before enabling the
1737                  * pch transcoder. */
1738                 reg = TRANS_CHICKEN2(pipe);
1739                 val = I915_READ(reg);
1740                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1741                 I915_WRITE(reg, val);
1742         }
1743
1744         reg = PCH_TRANSCONF(pipe);
1745         val = I915_READ(reg);
1746         pipeconf_val = I915_READ(PIPECONF(pipe));
1747
1748         if (HAS_PCH_IBX(dev_priv)) {
1749                 /*
1750                  * Make the BPC in transcoder be consistent with
1751                  * that in pipeconf reg. For HDMI we must use 8bpc
1752                  * here for both 8bpc and 12bpc.
1753                  */
1754                 val &= ~PIPECONF_BPC_MASK;
1755                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1756                         val |= PIPECONF_8BPC;
1757                 else
1758                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1759         }
1760
1761         val &= ~TRANS_INTERLACE_MASK;
1762         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1763                 if (HAS_PCH_IBX(dev_priv) &&
1764                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1765                         val |= TRANS_LEGACY_INTERLACED_ILK;
1766                 else
1767                         val |= TRANS_INTERLACED;
1768         else
1769                 val |= TRANS_PROGRESSIVE;
1770
1771         I915_WRITE(reg, val | TRANS_ENABLE);
1772         if (intel_wait_for_register(dev_priv,
1773                                     reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1774                                     100))
1775                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1776 }
1777
1778 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1779                                       enum transcoder cpu_transcoder)
1780 {
1781         u32 val, pipeconf_val;
1782
1783         /* FDI must be feeding us bits for PCH ports */
1784         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1785         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1786
1787         /* Workaround: set timing override bit. */
1788         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1789         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1790         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1791
1792         val = TRANS_ENABLE;
1793         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1794
1795         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1796             PIPECONF_INTERLACED_ILK)
1797                 val |= TRANS_INTERLACED;
1798         else
1799                 val |= TRANS_PROGRESSIVE;
1800
1801         I915_WRITE(LPT_TRANSCONF, val);
1802         if (intel_wait_for_register(dev_priv,
1803                                     LPT_TRANSCONF,
1804                                     TRANS_STATE_ENABLE,
1805                                     TRANS_STATE_ENABLE,
1806                                     100))
1807                 DRM_ERROR("Failed to enable PCH transcoder\n");
1808 }
1809
1810 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1811                                             enum pipe pipe)
1812 {
1813         i915_reg_t reg;
1814         uint32_t val;
1815
1816         /* FDI relies on the transcoder */
1817         assert_fdi_tx_disabled(dev_priv, pipe);
1818         assert_fdi_rx_disabled(dev_priv, pipe);
1819
1820         /* Ports must be off as well */
1821         assert_pch_ports_disabled(dev_priv, pipe);
1822
1823         reg = PCH_TRANSCONF(pipe);
1824         val = I915_READ(reg);
1825         val &= ~TRANS_ENABLE;
1826         I915_WRITE(reg, val);
1827         /* wait for PCH transcoder off, transcoder state */
1828         if (intel_wait_for_register(dev_priv,
1829                                     reg, TRANS_STATE_ENABLE, 0,
1830                                     50))
1831                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1832
1833         if (HAS_PCH_CPT(dev_priv)) {
1834                 /* Workaround: Clear the timing override chicken bit again. */
1835                 reg = TRANS_CHICKEN2(pipe);
1836                 val = I915_READ(reg);
1837                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1838                 I915_WRITE(reg, val);
1839         }
1840 }
1841
1842 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1843 {
1844         u32 val;
1845
1846         val = I915_READ(LPT_TRANSCONF);
1847         val &= ~TRANS_ENABLE;
1848         I915_WRITE(LPT_TRANSCONF, val);
1849         /* wait for PCH transcoder off, transcoder state */
1850         if (intel_wait_for_register(dev_priv,
1851                                     LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1852                                     50))
1853                 DRM_ERROR("Failed to disable PCH transcoder\n");
1854
1855         /* Workaround: clear timing override bit. */
1856         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1857         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1858         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1859 }
1860
1861 enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1862 {
1863         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1864
1865         WARN_ON(!crtc->config->has_pch_encoder);
1866
1867         if (HAS_PCH_LPT(dev_priv))
1868                 return TRANSCODER_A;
1869         else
1870                 return (enum transcoder) crtc->pipe;
1871 }
1872
1873 /**
1874  * intel_enable_pipe - enable a pipe, asserting requirements
1875  * @crtc: crtc responsible for the pipe
1876  *
1877  * Enable @crtc's pipe, making sure that various hardware specific requirements
1878  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1879  */
1880 static void intel_enable_pipe(struct intel_crtc *crtc)
1881 {
1882         struct drm_device *dev = crtc->base.dev;
1883         struct drm_i915_private *dev_priv = to_i915(dev);
1884         enum pipe pipe = crtc->pipe;
1885         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1886         i915_reg_t reg;
1887         u32 val;
1888
1889         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1890
1891         assert_planes_disabled(dev_priv, pipe);
1892         assert_cursor_disabled(dev_priv, pipe);
1893         assert_sprites_disabled(dev_priv, pipe);
1894
1895         /*
1896          * A pipe without a PLL won't actually be able to drive bits from
1897          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1898          * need the check.
1899          */
1900         if (HAS_GMCH_DISPLAY(dev_priv)) {
1901                 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1902                         assert_dsi_pll_enabled(dev_priv);
1903                 else
1904                         assert_pll_enabled(dev_priv, pipe);
1905         } else {
1906                 if (crtc->config->has_pch_encoder) {
1907                         /* if driving the PCH, we need FDI enabled */
1908                         assert_fdi_rx_pll_enabled(dev_priv,
1909                                                   (enum pipe) intel_crtc_pch_transcoder(crtc));
1910                         assert_fdi_tx_pll_enabled(dev_priv,
1911                                                   (enum pipe) cpu_transcoder);
1912                 }
1913                 /* FIXME: assert CPU port conditions for SNB+ */
1914         }
1915
1916         reg = PIPECONF(cpu_transcoder);
1917         val = I915_READ(reg);
1918         if (val & PIPECONF_ENABLE) {
1919                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1920                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1921                 return;
1922         }
1923
1924         I915_WRITE(reg, val | PIPECONF_ENABLE);
1925         POSTING_READ(reg);
1926
1927         /*
1928          * Until the pipe starts DSL will read as 0, which would cause
1929          * an apparent vblank timestamp jump, which messes up also the
1930          * frame count when it's derived from the timestamps. So let's
1931          * wait for the pipe to start properly before we call
1932          * drm_crtc_vblank_on()
1933          */
1934         if (dev->max_vblank_count == 0 &&
1935             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1936                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1937 }
1938
1939 /**
1940  * intel_disable_pipe - disable a pipe, asserting requirements
1941  * @crtc: crtc whose pipes is to be disabled
1942  *
1943  * Disable the pipe of @crtc, making sure that various hardware
1944  * specific requirements are met, if applicable, e.g. plane
1945  * disabled, panel fitter off, etc.
1946  *
1947  * Will wait until the pipe has shut down before returning.
1948  */
1949 static void intel_disable_pipe(struct intel_crtc *crtc)
1950 {
1951         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1952         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1953         enum pipe pipe = crtc->pipe;
1954         i915_reg_t reg;
1955         u32 val;
1956
1957         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1958
1959         /*
1960          * Make sure planes won't keep trying to pump pixels to us,
1961          * or we might hang the display.
1962          */
1963         assert_planes_disabled(dev_priv, pipe);
1964         assert_cursor_disabled(dev_priv, pipe);
1965         assert_sprites_disabled(dev_priv, pipe);
1966
1967         reg = PIPECONF(cpu_transcoder);
1968         val = I915_READ(reg);
1969         if ((val & PIPECONF_ENABLE) == 0)
1970                 return;
1971
1972         /*
1973          * Double wide has implications for planes
1974          * so best keep it disabled when not needed.
1975          */
1976         if (crtc->config->double_wide)
1977                 val &= ~PIPECONF_DOUBLE_WIDE;
1978
1979         /* Don't disable pipe or pipe PLLs if needed */
1980         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
1981             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1982                 val &= ~PIPECONF_ENABLE;
1983
1984         I915_WRITE(reg, val);
1985         if ((val & PIPECONF_ENABLE) == 0)
1986                 intel_wait_for_pipe_off(crtc);
1987 }
1988
1989 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1990 {
1991         return IS_GEN2(dev_priv) ? 2048 : 4096;
1992 }
1993
1994 static unsigned int
1995 intel_tile_width_bytes(const struct drm_framebuffer *fb, int plane)
1996 {
1997         struct drm_i915_private *dev_priv = to_i915(fb->dev);
1998         unsigned int cpp = fb->format->cpp[plane];
1999
2000         switch (fb->modifier) {
2001         case DRM_FORMAT_MOD_LINEAR:
2002                 return cpp;
2003         case I915_FORMAT_MOD_X_TILED:
2004                 if (IS_GEN2(dev_priv))
2005                         return 128;
2006                 else
2007                         return 512;
2008         case I915_FORMAT_MOD_Y_TILED:
2009                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2010                         return 128;
2011                 else
2012                         return 512;
2013         case I915_FORMAT_MOD_Yf_TILED:
2014                 switch (cpp) {
2015                 case 1:
2016                         return 64;
2017                 case 2:
2018                 case 4:
2019                         return 128;
2020                 case 8:
2021                 case 16:
2022                         return 256;
2023                 default:
2024                         MISSING_CASE(cpp);
2025                         return cpp;
2026                 }
2027                 break;
2028         default:
2029                 MISSING_CASE(fb->modifier);
2030                 return cpp;
2031         }
2032 }
2033
2034 static unsigned int
2035 intel_tile_height(const struct drm_framebuffer *fb, int plane)
2036 {
2037         if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
2038                 return 1;
2039         else
2040                 return intel_tile_size(to_i915(fb->dev)) /
2041                         intel_tile_width_bytes(fb, plane);
2042 }
2043
2044 /* Return the tile dimensions in pixel units */
2045 static void intel_tile_dims(const struct drm_framebuffer *fb, int plane,
2046                             unsigned int *tile_width,
2047                             unsigned int *tile_height)
2048 {
2049         unsigned int tile_width_bytes = intel_tile_width_bytes(fb, plane);
2050         unsigned int cpp = fb->format->cpp[plane];
2051
2052         *tile_width = tile_width_bytes / cpp;
2053         *tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes;
2054 }
2055
2056 unsigned int
2057 intel_fb_align_height(const struct drm_framebuffer *fb,
2058                       int plane, unsigned int height)
2059 {
2060         unsigned int tile_height = intel_tile_height(fb, plane);
2061
2062         return ALIGN(height, tile_height);
2063 }
2064
2065 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2066 {
2067         unsigned int size = 0;
2068         int i;
2069
2070         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2071                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2072
2073         return size;
2074 }
2075
2076 static void
2077 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2078                         const struct drm_framebuffer *fb,
2079                         unsigned int rotation)
2080 {
2081         view->type = I915_GGTT_VIEW_NORMAL;
2082         if (drm_rotation_90_or_270(rotation)) {
2083                 view->type = I915_GGTT_VIEW_ROTATED;
2084                 view->rotated = to_intel_framebuffer(fb)->rot_info;
2085         }
2086 }
2087
2088 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2089 {
2090         if (INTEL_INFO(dev_priv)->gen >= 9)
2091                 return 256 * 1024;
2092         else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2093                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2094                 return 128 * 1024;
2095         else if (INTEL_INFO(dev_priv)->gen >= 4)
2096                 return 4 * 1024;
2097         else
2098                 return 0;
2099 }
2100
2101 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2102                                          int plane)
2103 {
2104         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2105
2106         /* AUX_DIST needs only 4K alignment */
2107         if (fb->format->format == DRM_FORMAT_NV12 && plane == 1)
2108                 return 4096;
2109
2110         switch (fb->modifier) {
2111         case DRM_FORMAT_MOD_LINEAR:
2112                 return intel_linear_alignment(dev_priv);
2113         case I915_FORMAT_MOD_X_TILED:
2114                 if (INTEL_GEN(dev_priv) >= 9)
2115                         return 256 * 1024;
2116                 return 0;
2117         case I915_FORMAT_MOD_Y_TILED:
2118         case I915_FORMAT_MOD_Yf_TILED:
2119                 return 1 * 1024 * 1024;
2120         default:
2121                 MISSING_CASE(fb->modifier);
2122                 return 0;
2123         }
2124 }
2125
2126 struct i915_vma *
2127 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2128 {
2129         struct drm_device *dev = fb->dev;
2130         struct drm_i915_private *dev_priv = to_i915(dev);
2131         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2132         struct i915_ggtt_view view;
2133         struct i915_vma *vma;
2134         u32 alignment;
2135
2136         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2137
2138         alignment = intel_surf_alignment(fb, 0);
2139
2140         intel_fill_fb_ggtt_view(&view, fb, rotation);
2141
2142         /* Note that the w/a also requires 64 PTE of padding following the
2143          * bo. We currently fill all unused PTE with the shadow page and so
2144          * we should always have valid PTE following the scanout preventing
2145          * the VT-d warning.
2146          */
2147         if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2148                 alignment = 256 * 1024;
2149
2150         /*
2151          * Global gtt pte registers are special registers which actually forward
2152          * writes to a chunk of system memory. Which means that there is no risk
2153          * that the register values disappear as soon as we call
2154          * intel_runtime_pm_put(), so it is correct to wrap only the
2155          * pin/unpin/fence and not more.
2156          */
2157         intel_runtime_pm_get(dev_priv);
2158
2159         vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2160         if (IS_ERR(vma))
2161                 goto err;
2162
2163         if (i915_vma_is_map_and_fenceable(vma)) {
2164                 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2165                  * fence, whereas 965+ only requires a fence if using
2166                  * framebuffer compression.  For simplicity, we always, when
2167                  * possible, install a fence as the cost is not that onerous.
2168                  *
2169                  * If we fail to fence the tiled scanout, then either the
2170                  * modeset will reject the change (which is highly unlikely as
2171                  * the affected systems, all but one, do not have unmappable
2172                  * space) or we will not be able to enable full powersaving
2173                  * techniques (also likely not to apply due to various limits
2174                  * FBC and the like impose on the size of the buffer, which
2175                  * presumably we violated anyway with this unmappable buffer).
2176                  * Anyway, it is presumably better to stumble onwards with
2177                  * something and try to run the system in a "less than optimal"
2178                  * mode that matches the user configuration.
2179                  */
2180                 if (i915_vma_get_fence(vma) == 0)
2181                         i915_vma_pin_fence(vma);
2182         }
2183
2184         i915_vma_get(vma);
2185 err:
2186         intel_runtime_pm_put(dev_priv);
2187         return vma;
2188 }
2189
2190 void intel_unpin_fb_vma(struct i915_vma *vma)
2191 {
2192         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
2193
2194         i915_vma_unpin_fence(vma);
2195         i915_gem_object_unpin_from_display_plane(vma);
2196         i915_vma_put(vma);
2197 }
2198
2199 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2200                           unsigned int rotation)
2201 {
2202         if (drm_rotation_90_or_270(rotation))
2203                 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2204         else
2205                 return fb->pitches[plane];
2206 }
2207
2208 /*
2209  * Convert the x/y offsets into a linear offset.
2210  * Only valid with 0/180 degree rotation, which is fine since linear
2211  * offset is only used with linear buffers on pre-hsw and tiled buffers
2212  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2213  */
2214 u32 intel_fb_xy_to_linear(int x, int y,
2215                           const struct intel_plane_state *state,
2216                           int plane)
2217 {
2218         const struct drm_framebuffer *fb = state->base.fb;
2219         unsigned int cpp = fb->format->cpp[plane];
2220         unsigned int pitch = fb->pitches[plane];
2221
2222         return y * pitch + x * cpp;
2223 }
2224
2225 /*
2226  * Add the x/y offsets derived from fb->offsets[] to the user
2227  * specified plane src x/y offsets. The resulting x/y offsets
2228  * specify the start of scanout from the beginning of the gtt mapping.
2229  */
2230 void intel_add_fb_offsets(int *x, int *y,
2231                           const struct intel_plane_state *state,
2232                           int plane)
2233
2234 {
2235         const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2236         unsigned int rotation = state->base.rotation;
2237
2238         if (drm_rotation_90_or_270(rotation)) {
2239                 *x += intel_fb->rotated[plane].x;
2240                 *y += intel_fb->rotated[plane].y;
2241         } else {
2242                 *x += intel_fb->normal[plane].x;
2243                 *y += intel_fb->normal[plane].y;
2244         }
2245 }
2246
2247 /*
2248  * Input tile dimensions and pitch must already be
2249  * rotated to match x and y, and in pixel units.
2250  */
2251 static u32 _intel_adjust_tile_offset(int *x, int *y,
2252                                      unsigned int tile_width,
2253                                      unsigned int tile_height,
2254                                      unsigned int tile_size,
2255                                      unsigned int pitch_tiles,
2256                                      u32 old_offset,
2257                                      u32 new_offset)
2258 {
2259         unsigned int pitch_pixels = pitch_tiles * tile_width;
2260         unsigned int tiles;
2261
2262         WARN_ON(old_offset & (tile_size - 1));
2263         WARN_ON(new_offset & (tile_size - 1));
2264         WARN_ON(new_offset > old_offset);
2265
2266         tiles = (old_offset - new_offset) / tile_size;
2267
2268         *y += tiles / pitch_tiles * tile_height;
2269         *x += tiles % pitch_tiles * tile_width;
2270
2271         /* minimize x in case it got needlessly big */
2272         *y += *x / pitch_pixels * tile_height;
2273         *x %= pitch_pixels;
2274
2275         return new_offset;
2276 }
2277
2278 /*
2279  * Adjust the tile offset by moving the difference into
2280  * the x/y offsets.
2281  */
2282 static u32 intel_adjust_tile_offset(int *x, int *y,
2283                                     const struct intel_plane_state *state, int plane,
2284                                     u32 old_offset, u32 new_offset)
2285 {
2286         const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2287         const struct drm_framebuffer *fb = state->base.fb;
2288         unsigned int cpp = fb->format->cpp[plane];
2289         unsigned int rotation = state->base.rotation;
2290         unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2291
2292         WARN_ON(new_offset > old_offset);
2293
2294         if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2295                 unsigned int tile_size, tile_width, tile_height;
2296                 unsigned int pitch_tiles;
2297
2298                 tile_size = intel_tile_size(dev_priv);
2299                 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2300
2301                 if (drm_rotation_90_or_270(rotation)) {
2302                         pitch_tiles = pitch / tile_height;
2303                         swap(tile_width, tile_height);
2304                 } else {
2305                         pitch_tiles = pitch / (tile_width * cpp);
2306                 }
2307
2308                 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2309                                           tile_size, pitch_tiles,
2310                                           old_offset, new_offset);
2311         } else {
2312                 old_offset += *y * pitch + *x * cpp;
2313
2314                 *y = (old_offset - new_offset) / pitch;
2315                 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2316         }
2317
2318         return new_offset;
2319 }
2320
2321 /*
2322  * Computes the linear offset to the base tile and adjusts
2323  * x, y. bytes per pixel is assumed to be a power-of-two.
2324  *
2325  * In the 90/270 rotated case, x and y are assumed
2326  * to be already rotated to match the rotated GTT view, and
2327  * pitch is the tile_height aligned framebuffer height.
2328  *
2329  * This function is used when computing the derived information
2330  * under intel_framebuffer, so using any of that information
2331  * here is not allowed. Anything under drm_framebuffer can be
2332  * used. This is why the user has to pass in the pitch since it
2333  * is specified in the rotated orientation.
2334  */
2335 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2336                                       int *x, int *y,
2337                                       const struct drm_framebuffer *fb, int plane,
2338                                       unsigned int pitch,
2339                                       unsigned int rotation,
2340                                       u32 alignment)
2341 {
2342         uint64_t fb_modifier = fb->modifier;
2343         unsigned int cpp = fb->format->cpp[plane];
2344         u32 offset, offset_aligned;
2345
2346         if (alignment)
2347                 alignment--;
2348
2349         if (fb_modifier != DRM_FORMAT_MOD_LINEAR) {
2350                 unsigned int tile_size, tile_width, tile_height;
2351                 unsigned int tile_rows, tiles, pitch_tiles;
2352
2353                 tile_size = intel_tile_size(dev_priv);
2354                 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2355
2356                 if (drm_rotation_90_or_270(rotation)) {
2357                         pitch_tiles = pitch / tile_height;
2358                         swap(tile_width, tile_height);
2359                 } else {
2360                         pitch_tiles = pitch / (tile_width * cpp);
2361                 }
2362
2363                 tile_rows = *y / tile_height;
2364                 *y %= tile_height;
2365
2366                 tiles = *x / tile_width;
2367                 *x %= tile_width;
2368
2369                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2370                 offset_aligned = offset & ~alignment;
2371
2372                 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2373                                           tile_size, pitch_tiles,
2374                                           offset, offset_aligned);
2375         } else {
2376                 offset = *y * pitch + *x * cpp;
2377                 offset_aligned = offset & ~alignment;
2378
2379                 *y = (offset & alignment) / pitch;
2380                 *x = ((offset & alignment) - *y * pitch) / cpp;
2381         }
2382
2383         return offset_aligned;
2384 }
2385
2386 u32 intel_compute_tile_offset(int *x, int *y,
2387                               const struct intel_plane_state *state,
2388                               int plane)
2389 {
2390         const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2391         const struct drm_framebuffer *fb = state->base.fb;
2392         unsigned int rotation = state->base.rotation;
2393         int pitch = intel_fb_pitch(fb, plane, rotation);
2394         u32 alignment = intel_surf_alignment(fb, plane);
2395
2396         return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2397                                           rotation, alignment);
2398 }
2399
2400 /* Convert the fb->offset[] linear offset into x/y offsets */
2401 static void intel_fb_offset_to_xy(int *x, int *y,
2402                                   const struct drm_framebuffer *fb, int plane)
2403 {
2404         unsigned int cpp = fb->format->cpp[plane];
2405         unsigned int pitch = fb->pitches[plane];
2406         u32 linear_offset = fb->offsets[plane];
2407
2408         *y = linear_offset / pitch;
2409         *x = linear_offset % pitch / cpp;
2410 }
2411
2412 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2413 {
2414         switch (fb_modifier) {
2415         case I915_FORMAT_MOD_X_TILED:
2416                 return I915_TILING_X;
2417         case I915_FORMAT_MOD_Y_TILED:
2418                 return I915_TILING_Y;
2419         default:
2420                 return I915_TILING_NONE;
2421         }
2422 }
2423
2424 static int
2425 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2426                    struct drm_framebuffer *fb)
2427 {
2428         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2429         struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2430         u32 gtt_offset_rotated = 0;
2431         unsigned int max_size = 0;
2432         int i, num_planes = fb->format->num_planes;
2433         unsigned int tile_size = intel_tile_size(dev_priv);
2434
2435         for (i = 0; i < num_planes; i++) {
2436                 unsigned int width, height;
2437                 unsigned int cpp, size;
2438                 u32 offset;
2439                 int x, y;
2440
2441                 cpp = fb->format->cpp[i];
2442                 width = drm_framebuffer_plane_width(fb->width, fb, i);
2443                 height = drm_framebuffer_plane_height(fb->height, fb, i);
2444
2445                 intel_fb_offset_to_xy(&x, &y, fb, i);
2446
2447                 /*
2448                  * The fence (if used) is aligned to the start of the object
2449                  * so having the framebuffer wrap around across the edge of the
2450                  * fenced region doesn't really work. We have no API to configure
2451                  * the fence start offset within the object (nor could we probably
2452                  * on gen2/3). So it's just easier if we just require that the
2453                  * fb layout agrees with the fence layout. We already check that the
2454                  * fb stride matches the fence stride elsewhere.
2455                  */
2456                 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2457                     (x + width) * cpp > fb->pitches[i]) {
2458                         DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2459                                       i, fb->offsets[i]);
2460                         return -EINVAL;
2461                 }
2462
2463                 /*
2464                  * First pixel of the framebuffer from
2465                  * the start of the normal gtt mapping.
2466                  */
2467                 intel_fb->normal[i].x = x;
2468                 intel_fb->normal[i].y = y;
2469
2470                 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2471                                                     fb, i, fb->pitches[i],
2472                                                     DRM_ROTATE_0, tile_size);
2473                 offset /= tile_size;
2474
2475                 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2476                         unsigned int tile_width, tile_height;
2477                         unsigned int pitch_tiles;
2478                         struct drm_rect r;
2479
2480                         intel_tile_dims(fb, i, &tile_width, &tile_height);
2481
2482                         rot_info->plane[i].offset = offset;
2483                         rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2484                         rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2485                         rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2486
2487                         intel_fb->rotated[i].pitch =
2488                                 rot_info->plane[i].height * tile_height;
2489
2490                         /* how many tiles does this plane need */
2491                         size = rot_info->plane[i].stride * rot_info->plane[i].height;
2492                         /*
2493                          * If the plane isn't horizontally tile aligned,
2494                          * we need one more tile.
2495                          */
2496                         if (x != 0)
2497                                 size++;
2498
2499                         /* rotate the x/y offsets to match the GTT view */
2500                         r.x1 = x;
2501                         r.y1 = y;
2502                         r.x2 = x + width;
2503                         r.y2 = y + height;
2504                         drm_rect_rotate(&r,
2505                                         rot_info->plane[i].width * tile_width,
2506                                         rot_info->plane[i].height * tile_height,
2507                                         DRM_ROTATE_270);
2508                         x = r.x1;
2509                         y = r.y1;
2510
2511                         /* rotate the tile dimensions to match the GTT view */
2512                         pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2513                         swap(tile_width, tile_height);
2514
2515                         /*
2516                          * We only keep the x/y offsets, so push all of the
2517                          * gtt offset into the x/y offsets.
2518                          */
2519                         _intel_adjust_tile_offset(&x, &y,
2520                                                   tile_width, tile_height,
2521                                                   tile_size, pitch_tiles,
2522                                                   gtt_offset_rotated * tile_size, 0);
2523
2524                         gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2525
2526                         /*
2527                          * First pixel of the framebuffer from
2528                          * the start of the rotated gtt mapping.
2529                          */
2530                         intel_fb->rotated[i].x = x;
2531                         intel_fb->rotated[i].y = y;
2532                 } else {
2533                         size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2534                                             x * cpp, tile_size);
2535                 }
2536
2537                 /* how many tiles in total needed in the bo */
2538                 max_size = max(max_size, offset + size);
2539         }
2540
2541         if (max_size * tile_size > intel_fb->obj->base.size) {
2542                 DRM_DEBUG_KMS("fb too big for bo (need %u bytes, have %zu bytes)\n",
2543                               max_size * tile_size, intel_fb->obj->base.size);
2544                 return -EINVAL;
2545         }
2546
2547         return 0;
2548 }
2549
2550 static int i9xx_format_to_fourcc(int format)
2551 {
2552         switch (format) {
2553         case DISPPLANE_8BPP:
2554                 return DRM_FORMAT_C8;
2555         case DISPPLANE_BGRX555:
2556                 return DRM_FORMAT_XRGB1555;
2557         case DISPPLANE_BGRX565:
2558                 return DRM_FORMAT_RGB565;
2559         default:
2560         case DISPPLANE_BGRX888:
2561                 return DRM_FORMAT_XRGB8888;
2562         case DISPPLANE_RGBX888:
2563                 return DRM_FORMAT_XBGR8888;
2564         case DISPPLANE_BGRX101010:
2565                 return DRM_FORMAT_XRGB2101010;
2566         case DISPPLANE_RGBX101010:
2567                 return DRM_FORMAT_XBGR2101010;
2568         }
2569 }
2570
2571 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2572 {
2573         switch (format) {
2574         case PLANE_CTL_FORMAT_RGB_565:
2575                 return DRM_FORMAT_RGB565;
2576         default:
2577         case PLANE_CTL_FORMAT_XRGB_8888:
2578                 if (rgb_order) {
2579                         if (alpha)
2580                                 return DRM_FORMAT_ABGR8888;
2581                         else
2582                                 return DRM_FORMAT_XBGR8888;
2583                 } else {
2584                         if (alpha)
2585                                 return DRM_FORMAT_ARGB8888;
2586                         else
2587                                 return DRM_FORMAT_XRGB8888;
2588                 }
2589         case PLANE_CTL_FORMAT_XRGB_2101010:
2590                 if (rgb_order)
2591                         return DRM_FORMAT_XBGR2101010;
2592                 else
2593                         return DRM_FORMAT_XRGB2101010;
2594         }
2595 }
2596
2597 static bool
2598 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2599                               struct intel_initial_plane_config *plane_config)
2600 {
2601         struct drm_device *dev = crtc->base.dev;
2602         struct drm_i915_private *dev_priv = to_i915(dev);
2603         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2604         struct drm_i915_gem_object *obj = NULL;
2605         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2606         struct drm_framebuffer *fb = &plane_config->fb->base;
2607         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2608         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2609                                     PAGE_SIZE);
2610
2611         size_aligned -= base_aligned;
2612
2613         if (plane_config->size == 0)
2614                 return false;
2615
2616         /* If the FB is too big, just don't use it since fbdev is not very
2617          * important and we should probably use that space with FBC or other
2618          * features. */
2619         if (size_aligned * 2 > ggtt->stolen_usable_size)
2620                 return false;
2621
2622         mutex_lock(&dev->struct_mutex);
2623         obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
2624                                                              base_aligned,
2625                                                              base_aligned,
2626                                                              size_aligned);
2627         mutex_unlock(&dev->struct_mutex);
2628         if (!obj)
2629                 return false;
2630
2631         if (plane_config->tiling == I915_TILING_X)
2632                 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2633
2634         mode_cmd.pixel_format = fb->format->format;
2635         mode_cmd.width = fb->width;
2636         mode_cmd.height = fb->height;
2637         mode_cmd.pitches[0] = fb->pitches[0];
2638         mode_cmd.modifier[0] = fb->modifier;
2639         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2640
2641         if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
2642                 DRM_DEBUG_KMS("intel fb init failed\n");
2643                 goto out_unref_obj;
2644         }
2645
2646
2647         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2648         return true;
2649
2650 out_unref_obj:
2651         i915_gem_object_put(obj);
2652         return false;
2653 }
2654
2655 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2656 static void
2657 update_state_fb(struct drm_plane *plane)
2658 {
2659         if (plane->fb == plane->state->fb)
2660                 return;
2661
2662         if (plane->state->fb)
2663                 drm_framebuffer_unreference(plane->state->fb);
2664         plane->state->fb = plane->fb;
2665         if (plane->state->fb)
2666                 drm_framebuffer_reference(plane->state->fb);
2667 }
2668
2669 static void
2670 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
2671                         struct intel_plane_state *plane_state,
2672                         bool visible)
2673 {
2674         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2675
2676         plane_state->base.visible = visible;
2677
2678         /* FIXME pre-g4x don't work like this */
2679         if (visible) {
2680                 crtc_state->base.plane_mask |= BIT(drm_plane_index(&plane->base));
2681                 crtc_state->active_planes |= BIT(plane->id);
2682         } else {
2683                 crtc_state->base.plane_mask &= ~BIT(drm_plane_index(&plane->base));
2684                 crtc_state->active_planes &= ~BIT(plane->id);
2685         }
2686
2687         DRM_DEBUG_KMS("%s active planes 0x%x\n",
2688                       crtc_state->base.crtc->name,
2689                       crtc_state->active_planes);
2690 }
2691
2692 static void
2693 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2694                              struct intel_initial_plane_config *plane_config)
2695 {
2696         struct drm_device *dev = intel_crtc->base.dev;
2697         struct drm_i915_private *dev_priv = to_i915(dev);
2698         struct drm_crtc *c;
2699         struct drm_i915_gem_object *obj;
2700         struct drm_plane *primary = intel_crtc->base.primary;
2701         struct drm_plane_state *plane_state = primary->state;
2702         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2703         struct intel_plane *intel_plane = to_intel_plane(primary);
2704         struct intel_plane_state *intel_state =
2705                 to_intel_plane_state(plane_state);
2706         struct drm_framebuffer *fb;
2707
2708         if (!plane_config->fb)
2709                 return;
2710
2711         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2712                 fb = &plane_config->fb->base;
2713                 goto valid_fb;
2714         }
2715
2716         kfree(plane_config->fb);
2717
2718         /*
2719          * Failed to alloc the obj, check to see if we should share
2720          * an fb with another CRTC instead
2721          */
2722         for_each_crtc(dev, c) {
2723                 struct intel_plane_state *state;
2724
2725                 if (c == &intel_crtc->base)
2726                         continue;
2727
2728                 if (!to_intel_crtc(c)->active)
2729                         continue;
2730
2731                 state = to_intel_plane_state(c->primary->state);
2732                 if (!state->vma)
2733                         continue;
2734
2735                 if (intel_plane_ggtt_offset(state) == plane_config->base) {
2736                         fb = c->primary->fb;
2737                         drm_framebuffer_reference(fb);
2738                         goto valid_fb;
2739                 }
2740         }
2741
2742         /*
2743          * We've failed to reconstruct the BIOS FB.  Current display state
2744          * indicates that the primary plane is visible, but has a NULL FB,
2745          * which will lead to problems later if we don't fix it up.  The
2746          * simplest solution is to just disable the primary plane now and
2747          * pretend the BIOS never had it enabled.
2748          */
2749         intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2750                                 to_intel_plane_state(plane_state),
2751                                 false);
2752         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2753         trace_intel_disable_plane(primary, intel_crtc);
2754         intel_plane->disable_plane(primary, &intel_crtc->base);
2755
2756         return;
2757
2758 valid_fb:
2759         mutex_lock(&dev->struct_mutex);
2760         intel_state->vma =
2761                 intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2762         mutex_unlock(&dev->struct_mutex);
2763         if (IS_ERR(intel_state->vma)) {
2764                 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2765                           intel_crtc->pipe, PTR_ERR(intel_state->vma));
2766
2767                 intel_state->vma = NULL;
2768                 drm_framebuffer_unreference(fb);
2769                 return;
2770         }
2771
2772         plane_state->src_x = 0;
2773         plane_state->src_y = 0;
2774         plane_state->src_w = fb->width << 16;
2775         plane_state->src_h = fb->height << 16;
2776
2777         plane_state->crtc_x = 0;
2778         plane_state->crtc_y = 0;
2779         plane_state->crtc_w = fb->width;
2780         plane_state->crtc_h = fb->height;
2781
2782         intel_state->base.src = drm_plane_state_src(plane_state);
2783         intel_state->base.dst = drm_plane_state_dest(plane_state);
2784
2785         obj = intel_fb_obj(fb);
2786         if (i915_gem_object_is_tiled(obj))
2787                 dev_priv->preserve_bios_swizzle = true;
2788
2789         drm_framebuffer_reference(fb);
2790         primary->fb = primary->state->fb = fb;
2791         primary->crtc = primary->state->crtc = &intel_crtc->base;
2792
2793         intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2794                                 to_intel_plane_state(plane_state),
2795                                 true);
2796
2797         atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2798                   &obj->frontbuffer_bits);
2799 }
2800
2801 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2802                                unsigned int rotation)
2803 {
2804         int cpp = fb->format->cpp[plane];
2805
2806         switch (fb->modifier) {
2807         case DRM_FORMAT_MOD_LINEAR:
2808         case I915_FORMAT_MOD_X_TILED:
2809                 switch (cpp) {
2810                 case 8:
2811                         return 4096;
2812                 case 4:
2813                 case 2:
2814                 case 1:
2815                         return 8192;
2816                 default:
2817                         MISSING_CASE(cpp);
2818                         break;
2819                 }
2820                 break;
2821         case I915_FORMAT_MOD_Y_TILED:
2822         case I915_FORMAT_MOD_Yf_TILED:
2823                 switch (cpp) {
2824                 case 8:
2825                         return 2048;
2826                 case 4:
2827                         return 4096;
2828                 case 2:
2829                 case 1:
2830                         return 8192;
2831                 default:
2832                         MISSING_CASE(cpp);
2833                         break;
2834                 }
2835                 break;
2836         default:
2837                 MISSING_CASE(fb->modifier);
2838         }
2839
2840         return 2048;
2841 }
2842
2843 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2844 {
2845         const struct drm_framebuffer *fb = plane_state->base.fb;
2846         unsigned int rotation = plane_state->base.rotation;
2847         int x = plane_state->base.src.x1 >> 16;
2848         int y = plane_state->base.src.y1 >> 16;
2849         int w = drm_rect_width(&plane_state->base.src) >> 16;
2850         int h = drm_rect_height(&plane_state->base.src) >> 16;
2851         int max_width = skl_max_plane_width(fb, 0, rotation);
2852         int max_height = 4096;
2853         u32 alignment, offset, aux_offset = plane_state->aux.offset;
2854
2855         if (w > max_width || h > max_height) {
2856                 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2857                               w, h, max_width, max_height);
2858                 return -EINVAL;
2859         }
2860
2861         intel_add_fb_offsets(&x, &y, plane_state, 0);
2862         offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2863         alignment = intel_surf_alignment(fb, 0);
2864
2865         /*
2866          * AUX surface offset is specified as the distance from the
2867          * main surface offset, and it must be non-negative. Make
2868          * sure that is what we will get.
2869          */
2870         if (offset > aux_offset)
2871                 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2872                                                   offset, aux_offset & ~(alignment - 1));
2873
2874         /*
2875          * When using an X-tiled surface, the plane blows up
2876          * if the x offset + width exceed the stride.
2877          *
2878          * TODO: linear and Y-tiled seem fine, Yf untested,
2879          */
2880         if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2881                 int cpp = fb->format->cpp[0];
2882
2883                 while ((x + w) * cpp > fb->pitches[0]) {
2884                         if (offset == 0) {
2885                                 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2886                                 return -EINVAL;
2887                         }
2888
2889                         offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2890                                                           offset, offset - alignment);
2891                 }
2892         }
2893
2894         plane_state->main.offset = offset;
2895         plane_state->main.x = x;
2896         plane_state->main.y = y;
2897
2898         return 0;
2899 }
2900
2901 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2902 {
2903         const struct drm_framebuffer *fb = plane_state->base.fb;
2904         unsigned int rotation = plane_state->base.rotation;
2905         int max_width = skl_max_plane_width(fb, 1, rotation);
2906         int max_height = 4096;
2907         int x = plane_state->base.src.x1 >> 17;
2908         int y = plane_state->base.src.y1 >> 17;
2909         int w = drm_rect_width(&plane_state->base.src) >> 17;
2910         int h = drm_rect_height(&plane_state->base.src) >> 17;
2911         u32 offset;
2912
2913         intel_add_fb_offsets(&x, &y, plane_state, 1);
2914         offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2915
2916         /* FIXME not quite sure how/if these apply to the chroma plane */
2917         if (w > max_width || h > max_height) {
2918                 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2919                               w, h, max_width, max_height);
2920                 return -EINVAL;
2921         }
2922
2923         plane_state->aux.offset = offset;
2924         plane_state->aux.x = x;
2925         plane_state->aux.y = y;
2926
2927         return 0;
2928 }
2929
2930 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2931 {
2932         const struct drm_framebuffer *fb = plane_state->base.fb;
2933         unsigned int rotation = plane_state->base.rotation;
2934         int ret;
2935
2936         if (!plane_state->base.visible)
2937                 return 0;
2938
2939         /* Rotate src coordinates to match rotated GTT view */
2940         if (drm_rotation_90_or_270(rotation))
2941                 drm_rect_rotate(&plane_state->base.src,
2942                                 fb->width << 16, fb->height << 16,
2943                                 DRM_ROTATE_270);
2944
2945         /*
2946          * Handle the AUX surface first since
2947          * the main surface setup depends on it.
2948          */
2949         if (fb->format->format == DRM_FORMAT_NV12) {
2950                 ret = skl_check_nv12_aux_surface(plane_state);
2951                 if (ret)
2952                         return ret;
2953         } else {
2954                 plane_state->aux.offset = ~0xfff;
2955                 plane_state->aux.x = 0;
2956                 plane_state->aux.y = 0;
2957         }
2958
2959         ret = skl_check_main_surface(plane_state);
2960         if (ret)
2961                 return ret;
2962
2963         return 0;
2964 }
2965
2966 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
2967                           const struct intel_plane_state *plane_state)
2968 {
2969         struct drm_i915_private *dev_priv =
2970                 to_i915(plane_state->base.plane->dev);
2971         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2972         const struct drm_framebuffer *fb = plane_state->base.fb;
2973         unsigned int rotation = plane_state->base.rotation;
2974         u32 dspcntr;
2975
2976         dspcntr = DISPLAY_PLANE_ENABLE | DISPPLANE_GAMMA_ENABLE;
2977
2978         if (IS_G4X(dev_priv) || IS_GEN5(dev_priv) ||
2979             IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
2980                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2981
2982         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2983                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2984
2985         if (INTEL_GEN(dev_priv) < 4) {
2986                 if (crtc->pipe == PIPE_B)
2987                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2988         }
2989
2990         switch (fb->format->format) {
2991         case DRM_FORMAT_C8:
2992                 dspcntr |= DISPPLANE_8BPP;
2993                 break;
2994         case DRM_FORMAT_XRGB1555:
2995                 dspcntr |= DISPPLANE_BGRX555;
2996                 break;
2997         case DRM_FORMAT_RGB565:
2998                 dspcntr |= DISPPLANE_BGRX565;
2999                 break;
3000         case DRM_FORMAT_XRGB8888:
3001                 dspcntr |= DISPPLANE_BGRX888;
3002                 break;
3003         case DRM_FORMAT_XBGR8888:
3004                 dspcntr |= DISPPLANE_RGBX888;
3005                 break;
3006         case DRM_FORMAT_XRGB2101010:
3007                 dspcntr |= DISPPLANE_BGRX101010;
3008                 break;
3009         case DRM_FORMAT_XBGR2101010:
3010                 dspcntr |= DISPPLANE_RGBX101010;
3011                 break;
3012         default:
3013                 MISSING_CASE(fb->format->format);
3014                 return 0;
3015         }
3016
3017         if (INTEL_GEN(dev_priv) >= 4 &&
3018             fb->modifier == I915_FORMAT_MOD_X_TILED)
3019                 dspcntr |= DISPPLANE_TILED;
3020
3021         if (rotation & DRM_ROTATE_180)
3022                 dspcntr |= DISPPLANE_ROTATE_180;
3023
3024         if (rotation & DRM_REFLECT_X)
3025                 dspcntr |= DISPPLANE_MIRROR;
3026
3027         return dspcntr;
3028 }
3029
3030 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
3031 {
3032         struct drm_i915_private *dev_priv =
3033                 to_i915(plane_state->base.plane->dev);
3034         int src_x = plane_state->base.src.x1 >> 16;
3035         int src_y = plane_state->base.src.y1 >> 16;
3036         u32 offset;
3037
3038         intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
3039
3040         if (INTEL_GEN(dev_priv) >= 4)
3041                 offset = intel_compute_tile_offset(&src_x, &src_y,
3042                                                    plane_state, 0);
3043         else
3044                 offset = 0;
3045
3046         /* HSW/BDW do this automagically in hardware */
3047         if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
3048                 unsigned int rotation = plane_state->base.rotation;
3049                 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3050                 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3051
3052                 if (rotation & DRM_ROTATE_180) {
3053                         src_x += src_w - 1;
3054                         src_y += src_h - 1;
3055                 } else if (rotation & DRM_REFLECT_X) {
3056                         src_x += src_w - 1;
3057                 }
3058         }
3059
3060         plane_state->main.offset = offset;
3061         plane_state->main.x = src_x;
3062         plane_state->main.y = src_y;
3063
3064         return 0;
3065 }
3066
3067 static void i9xx_update_primary_plane(struct drm_plane *primary,
3068                                       const struct intel_crtc_state *crtc_state,
3069                                       const struct intel_plane_state *plane_state)
3070 {
3071         struct drm_i915_private *dev_priv = to_i915(primary->dev);
3072         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3073         struct drm_framebuffer *fb = plane_state->base.fb;
3074         int plane = intel_crtc->plane;
3075         u32 linear_offset;
3076         u32 dspcntr = plane_state->ctl;
3077         i915_reg_t reg = DSPCNTR(plane);
3078         int x = plane_state->main.x;
3079         int y = plane_state->main.y;
3080         unsigned long irqflags;
3081
3082         linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3083
3084         if (INTEL_GEN(dev_priv) >= 4)
3085                 intel_crtc->dspaddr_offset = plane_state->main.offset;
3086         else
3087                 intel_crtc->dspaddr_offset = linear_offset;
3088
3089         intel_crtc->adjusted_x = x;
3090         intel_crtc->adjusted_y = y;
3091
3092         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3093
3094         if (INTEL_GEN(dev_priv) < 4) {
3095                 /* pipesrc and dspsize control the size that is scaled from,
3096                  * which should always be the user's requested size.
3097                  */
3098                 I915_WRITE_FW(DSPSIZE(plane),
3099                               ((crtc_state->pipe_src_h - 1) << 16) |
3100                               (crtc_state->pipe_src_w - 1));
3101                 I915_WRITE_FW(DSPPOS(plane), 0);
3102         } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3103                 I915_WRITE_FW(PRIMSIZE(plane),
3104                               ((crtc_state->pipe_src_h - 1) << 16) |
3105                               (crtc_state->pipe_src_w - 1));
3106                 I915_WRITE_FW(PRIMPOS(plane), 0);
3107                 I915_WRITE_FW(PRIMCNSTALPHA(plane), 0);
3108         }
3109
3110         I915_WRITE_FW(reg, dspcntr);
3111
3112         I915_WRITE_FW(DSPSTRIDE(plane), fb->pitches[0]);
3113         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3114                 I915_WRITE_FW(DSPSURF(plane),
3115                               intel_plane_ggtt_offset(plane_state) +
3116                               intel_crtc->dspaddr_offset);
3117                 I915_WRITE_FW(DSPOFFSET(plane), (y << 16) | x);
3118         } else if (INTEL_GEN(dev_priv) >= 4) {
3119                 I915_WRITE_FW(DSPSURF(plane),
3120                               intel_plane_ggtt_offset(plane_state) +
3121                               intel_crtc->dspaddr_offset);
3122                 I915_WRITE_FW(DSPTILEOFF(plane), (y << 16) | x);
3123                 I915_WRITE_FW(DSPLINOFF(plane), linear_offset);
3124         } else {
3125                 I915_WRITE_FW(DSPADDR(plane),
3126                               intel_plane_ggtt_offset(plane_state) +
3127                               intel_crtc->dspaddr_offset);
3128         }
3129         POSTING_READ_FW(reg);
3130
3131         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3132 }
3133
3134 static void i9xx_disable_primary_plane(struct drm_plane *primary,
3135                                        struct drm_crtc *crtc)
3136 {
3137         struct drm_device *dev = crtc->dev;
3138         struct drm_i915_private *dev_priv = to_i915(dev);
3139         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3140         int plane = intel_crtc->plane;
3141         unsigned long irqflags;
3142
3143         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3144
3145         I915_WRITE_FW(DSPCNTR(plane), 0);
3146         if (INTEL_INFO(dev_priv)->gen >= 4)
3147                 I915_WRITE_FW(DSPSURF(plane), 0);
3148         else
3149                 I915_WRITE_FW(DSPADDR(plane), 0);
3150         POSTING_READ_FW(DSPCNTR(plane));
3151
3152         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3153 }
3154
3155 static u32
3156 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int plane)
3157 {
3158         if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
3159                 return 64;
3160         else
3161                 return intel_tile_width_bytes(fb, plane);
3162 }
3163
3164 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3165 {
3166         struct drm_device *dev = intel_crtc->base.dev;
3167         struct drm_i915_private *dev_priv = to_i915(dev);
3168
3169         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3170         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3171         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3172 }
3173
3174 /*
3175  * This function detaches (aka. unbinds) unused scalers in hardware
3176  */
3177 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3178 {
3179         struct intel_crtc_scaler_state *scaler_state;
3180         int i;
3181
3182         scaler_state = &intel_crtc->config->scaler_state;
3183
3184         /* loop through and disable scalers that aren't in use */
3185         for (i = 0; i < intel_crtc->num_scalers; i++) {
3186                 if (!scaler_state->scalers[i].in_use)
3187                         skl_detach_scaler(intel_crtc, i);
3188         }
3189 }
3190
3191 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3192                      unsigned int rotation)
3193 {
3194         u32 stride;
3195
3196         if (plane >= fb->format->num_planes)
3197                 return 0;
3198
3199         stride = intel_fb_pitch(fb, plane, rotation);
3200
3201         /*
3202          * The stride is either expressed as a multiple of 64 bytes chunks for
3203          * linear buffers or in number of tiles for tiled buffers.
3204          */
3205         if (drm_rotation_90_or_270(rotation))
3206                 stride /= intel_tile_height(fb, plane);
3207         else
3208                 stride /= intel_fb_stride_alignment(fb, plane);
3209
3210         return stride;
3211 }
3212
3213 static u32 skl_plane_ctl_format(uint32_t pixel_format)
3214 {
3215         switch (pixel_format) {
3216         case DRM_FORMAT_C8:
3217                 return PLANE_CTL_FORMAT_INDEXED;
3218         case DRM_FORMAT_RGB565:
3219                 return PLANE_CTL_FORMAT_RGB_565;
3220         case DRM_FORMAT_XBGR8888:
3221                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3222         case DRM_FORMAT_XRGB8888:
3223                 return PLANE_CTL_FORMAT_XRGB_8888;
3224         /*
3225          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3226          * to be already pre-multiplied. We need to add a knob (or a different
3227          * DRM_FORMAT) for user-space to configure that.
3228          */
3229         case DRM_FORMAT_ABGR8888:
3230                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3231                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3232         case DRM_FORMAT_ARGB8888:
3233                 return PLANE_CTL_FORMAT_XRGB_8888 |
3234                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3235         case DRM_FORMAT_XRGB2101010:
3236                 return PLANE_CTL_FORMAT_XRGB_2101010;
3237         case DRM_FORMAT_XBGR2101010:
3238                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3239         case DRM_FORMAT_YUYV:
3240                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3241         case DRM_FORMAT_YVYU:
3242                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3243         case DRM_FORMAT_UYVY:
3244                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3245         case DRM_FORMAT_VYUY:
3246                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3247         default:
3248                 MISSING_CASE(pixel_format);
3249         }
3250
3251         return 0;
3252 }
3253
3254 static u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3255 {
3256         switch (fb_modifier) {
3257         case DRM_FORMAT_MOD_LINEAR:
3258                 break;
3259         case I915_FORMAT_MOD_X_TILED:
3260                 return PLANE_CTL_TILED_X;
3261         case I915_FORMAT_MOD_Y_TILED:
3262                 return PLANE_CTL_TILED_Y;
3263         case I915_FORMAT_MOD_Yf_TILED:
3264                 return PLANE_CTL_TILED_YF;
3265         default:
3266                 MISSING_CASE(fb_modifier);
3267         }
3268
3269         return 0;
3270 }
3271
3272 static u32 skl_plane_ctl_rotation(unsigned int rotation)
3273 {
3274         switch (rotation) {
3275         case DRM_ROTATE_0:
3276                 break;
3277         /*
3278          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3279          * while i915 HW rotation is clockwise, thats why this swapping.
3280          */
3281         case DRM_ROTATE_90:
3282                 return PLANE_CTL_ROTATE_270;
3283         case DRM_ROTATE_180:
3284                 return PLANE_CTL_ROTATE_180;
3285         case DRM_ROTATE_270:
3286                 return PLANE_CTL_ROTATE_90;
3287         default:
3288                 MISSING_CASE(rotation);
3289         }
3290
3291         return 0;
3292 }
3293
3294 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
3295                   const struct intel_plane_state *plane_state)
3296 {
3297         struct drm_i915_private *dev_priv =
3298                 to_i915(plane_state->base.plane->dev);
3299         const struct drm_framebuffer *fb = plane_state->base.fb;
3300         unsigned int rotation = plane_state->base.rotation;
3301         const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
3302         u32 plane_ctl;
3303
3304         plane_ctl = PLANE_CTL_ENABLE;
3305
3306         if (!IS_GEMINILAKE(dev_priv)) {
3307                 plane_ctl |=
3308                         PLANE_CTL_PIPE_GAMMA_ENABLE |
3309                         PLANE_CTL_PIPE_CSC_ENABLE |
3310                         PLANE_CTL_PLANE_GAMMA_DISABLE;
3311         }
3312
3313         plane_ctl |= skl_plane_ctl_format(fb->format->format);
3314         plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3315         plane_ctl |= skl_plane_ctl_rotation(rotation);
3316
3317         if (key->flags & I915_SET_COLORKEY_DESTINATION)
3318                 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
3319         else if (key->flags & I915_SET_COLORKEY_SOURCE)
3320                 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
3321
3322         return plane_ctl;
3323 }
3324
3325 static void skylake_update_primary_plane(struct drm_plane *plane,
3326                                          const struct intel_crtc_state *crtc_state,
3327                                          const struct intel_plane_state *plane_state)
3328 {
3329         struct drm_device *dev = plane->dev;
3330         struct drm_i915_private *dev_priv = to_i915(dev);
3331         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3332         struct drm_framebuffer *fb = plane_state->base.fb;
3333         enum plane_id plane_id = to_intel_plane(plane)->id;
3334         enum pipe pipe = to_intel_plane(plane)->pipe;
3335         u32 plane_ctl = plane_state->ctl;
3336         unsigned int rotation = plane_state->base.rotation;
3337         u32 stride = skl_plane_stride(fb, 0, rotation);
3338         u32 surf_addr = plane_state->main.offset;
3339         int scaler_id = plane_state->scaler_id;
3340         int src_x = plane_state->main.x;
3341         int src_y = plane_state->main.y;
3342         int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3343         int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3344         int dst_x = plane_state->base.dst.x1;
3345         int dst_y = plane_state->base.dst.y1;
3346         int dst_w = drm_rect_width(&plane_state->base.dst);
3347         int dst_h = drm_rect_height(&plane_state->base.dst);
3348         unsigned long irqflags;
3349
3350         /* Sizes are 0 based */
3351         src_w--;
3352         src_h--;
3353         dst_w--;
3354         dst_h--;
3355
3356         intel_crtc->dspaddr_offset = surf_addr;
3357
3358         intel_crtc->adjusted_x = src_x;
3359         intel_crtc->adjusted_y = src_y;
3360
3361         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3362
3363         if (IS_GEMINILAKE(dev_priv)) {
3364                 I915_WRITE_FW(PLANE_COLOR_CTL(pipe, plane_id),
3365                               PLANE_COLOR_PIPE_GAMMA_ENABLE |
3366                               PLANE_COLOR_PIPE_CSC_ENABLE |
3367                               PLANE_COLOR_PLANE_GAMMA_DISABLE);
3368         }
3369
3370         I915_WRITE_FW(PLANE_CTL(pipe, plane_id), plane_ctl);
3371         I915_WRITE_FW(PLANE_OFFSET(pipe, plane_id), (src_y << 16) | src_x);
3372         I915_WRITE_FW(PLANE_STRIDE(pipe, plane_id), stride);
3373         I915_WRITE_FW(PLANE_SIZE(pipe, plane_id), (src_h << 16) | src_w);
3374
3375         if (scaler_id >= 0) {
3376                 uint32_t ps_ctrl = 0;
3377
3378                 WARN_ON(!dst_w || !dst_h);
3379                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(plane_id) |
3380                         crtc_state->scaler_state.scalers[scaler_id].mode;
3381                 I915_WRITE_FW(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3382                 I915_WRITE_FW(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3383                 I915_WRITE_FW(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3384                 I915_WRITE_FW(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3385                 I915_WRITE_FW(PLANE_POS(pipe, plane_id), 0);
3386         } else {
3387                 I915_WRITE_FW(PLANE_POS(pipe, plane_id), (dst_y << 16) | dst_x);
3388         }
3389
3390         I915_WRITE_FW(PLANE_SURF(pipe, plane_id),
3391                       intel_plane_ggtt_offset(plane_state) + surf_addr);
3392
3393         POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3394
3395         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3396 }
3397
3398 static void skylake_disable_primary_plane(struct drm_plane *primary,
3399                                           struct drm_crtc *crtc)
3400 {
3401         struct drm_device *dev = crtc->dev;
3402         struct drm_i915_private *dev_priv = to_i915(dev);
3403         enum plane_id plane_id = to_intel_plane(primary)->id;
3404         enum pipe pipe = to_intel_plane(primary)->pipe;
3405         unsigned long irqflags;
3406
3407         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3408
3409         I915_WRITE_FW(PLANE_CTL(pipe, plane_id), 0);
3410         I915_WRITE_FW(PLANE_SURF(pipe, plane_id), 0);
3411         POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3412
3413         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3414 }
3415
3416 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3417 {
3418         struct intel_crtc *crtc;
3419
3420         for_each_intel_crtc(&dev_priv->drm, crtc)
3421                 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3422 }
3423
3424 static void intel_update_primary_planes(struct drm_device *dev)
3425 {
3426         struct drm_crtc *crtc;
3427
3428         for_each_crtc(dev, crtc) {
3429                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3430                 struct intel_plane_state *plane_state =
3431                         to_intel_plane_state(plane->base.state);
3432
3433                 if (plane_state->base.visible) {
3434                         trace_intel_update_plane(&plane->base,
3435                                                  to_intel_crtc(crtc));
3436
3437                         plane->update_plane(&plane->base,
3438                                             to_intel_crtc_state(crtc->state),
3439                                             plane_state);
3440                 }
3441         }
3442 }
3443
3444 static int
3445 __intel_display_resume(struct drm_device *dev,
3446                        struct drm_atomic_state *state,
3447                        struct drm_modeset_acquire_ctx *ctx)
3448 {
3449         struct drm_crtc_state *crtc_state;
3450         struct drm_crtc *crtc;
3451         int i, ret;
3452
3453         intel_modeset_setup_hw_state(dev, ctx);
3454         i915_redisable_vga(to_i915(dev));
3455
3456         if (!state)
3457                 return 0;
3458
3459         /*
3460          * We've duplicated the state, pointers to the old state are invalid.
3461          *
3462          * Don't attempt to use the old state until we commit the duplicated state.
3463          */
3464         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
3465                 /*
3466                  * Force recalculation even if we restore
3467                  * current state. With fast modeset this may not result
3468                  * in a modeset when the state is compatible.
3469                  */
3470                 crtc_state->mode_changed = true;
3471         }
3472
3473         /* ignore any reset values/BIOS leftovers in the WM registers */
3474         if (!HAS_GMCH_DISPLAY(to_i915(dev)))
3475                 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3476
3477         ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
3478
3479         WARN_ON(ret == -EDEADLK);
3480         return ret;
3481 }
3482
3483 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3484 {
3485         return intel_has_gpu_reset(dev_priv) &&
3486                 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3487 }
3488
3489 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3490 {
3491         struct drm_device *dev = &dev_priv->drm;
3492         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3493         struct drm_atomic_state *state;
3494         int ret;
3495
3496         /*
3497          * Need mode_config.mutex so that we don't
3498          * trample ongoing ->detect() and whatnot.
3499          */
3500         mutex_lock(&dev->mode_config.mutex);
3501         drm_modeset_acquire_init(ctx, 0);
3502         while (1) {
3503                 ret = drm_modeset_lock_all_ctx(dev, ctx);
3504                 if (ret != -EDEADLK)
3505                         break;
3506
3507                 drm_modeset_backoff(ctx);
3508         }
3509
3510         /* reset doesn't touch the display, but flips might get nuked anyway, */
3511         if (!i915.force_reset_modeset_test &&
3512             !gpu_reset_clobbers_display(dev_priv))
3513                 return;
3514
3515         /*
3516          * Disabling the crtcs gracefully seems nicer. Also the
3517          * g33 docs say we should at least disable all the planes.
3518          */
3519         state = drm_atomic_helper_duplicate_state(dev, ctx);
3520         if (IS_ERR(state)) {
3521                 ret = PTR_ERR(state);
3522                 DRM_ERROR("Duplicating state failed with %i\n", ret);
3523                 return;
3524         }
3525
3526         ret = drm_atomic_helper_disable_all(dev, ctx);
3527         if (ret) {
3528                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3529                 drm_atomic_state_put(state);
3530                 return;
3531         }
3532
3533         dev_priv->modeset_restore_state = state;
3534         state->acquire_ctx = ctx;
3535 }
3536
3537 void intel_finish_reset(struct drm_i915_private *dev_priv)
3538 {
3539         struct drm_device *dev = &dev_priv->drm;
3540         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3541         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3542         int ret;
3543
3544         /*
3545          * Flips in the rings will be nuked by the reset,
3546          * so complete all pending flips so that user space
3547          * will get its events and not get stuck.
3548          */
3549         intel_complete_page_flips(dev_priv);
3550
3551         dev_priv->modeset_restore_state = NULL;
3552
3553         /* reset doesn't touch the display */
3554         if (!gpu_reset_clobbers_display(dev_priv)) {
3555                 if (!state) {
3556                         /*
3557                          * Flips in the rings have been nuked by the reset,
3558                          * so update the base address of all primary
3559                          * planes to the the last fb to make sure we're
3560                          * showing the correct fb after a reset.
3561                          *
3562                          * FIXME: Atomic will make this obsolete since we won't schedule
3563                          * CS-based flips (which might get lost in gpu resets) any more.
3564                          */
3565                         intel_update_primary_planes(dev);
3566                 } else {
3567                         ret = __intel_display_resume(dev, state, ctx);
3568                         if (ret)
3569                                 DRM_ERROR("Restoring old state failed with %i\n", ret);
3570                 }
3571         } else {
3572                 /*
3573                  * The display has been reset as well,
3574                  * so need a full re-initialization.
3575                  */
3576                 intel_runtime_pm_disable_interrupts(dev_priv);
3577                 intel_runtime_pm_enable_interrupts(dev_priv);
3578
3579                 intel_pps_unlock_regs_wa(dev_priv);
3580                 intel_modeset_init_hw(dev);
3581
3582                 spin_lock_irq(&dev_priv->irq_lock);
3583                 if (dev_priv->display.hpd_irq_setup)
3584                         dev_priv->display.hpd_irq_setup(dev_priv);
3585                 spin_unlock_irq(&dev_priv->irq_lock);
3586
3587                 ret = __intel_display_resume(dev, state, ctx);
3588                 if (ret)
3589                         DRM_ERROR("Restoring old state failed with %i\n", ret);
3590
3591                 intel_hpd_init(dev_priv);
3592         }
3593
3594         if (state)
3595                 drm_atomic_state_put(state);
3596         drm_modeset_drop_locks(ctx);
3597         drm_modeset_acquire_fini(ctx);
3598         mutex_unlock(&dev->mode_config.mutex);
3599 }
3600
3601 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3602 {
3603         struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3604
3605         if (i915_reset_backoff(error))
3606                 return true;
3607
3608         if (crtc->reset_count != i915_reset_count(error))
3609                 return true;
3610
3611         return false;
3612 }
3613
3614 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3615 {
3616         struct drm_device *dev = crtc->dev;
3617         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3618         bool pending;
3619
3620         if (abort_flip_on_reset(intel_crtc))
3621                 return false;
3622
3623         spin_lock_irq(&dev->event_lock);
3624         pending = to_intel_crtc(crtc)->flip_work != NULL;
3625         spin_unlock_irq(&dev->event_lock);
3626
3627         return pending;
3628 }
3629
3630 static void intel_update_pipe_config(struct intel_crtc *crtc,
3631                                      struct intel_crtc_state *old_crtc_state)
3632 {
3633         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3634         struct intel_crtc_state *pipe_config =
3635                 to_intel_crtc_state(crtc->base.state);
3636
3637         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3638         crtc->base.mode = crtc->base.state->mode;
3639
3640         /*
3641          * Update pipe size and adjust fitter if needed: the reason for this is
3642          * that in compute_mode_changes we check the native mode (not the pfit
3643          * mode) to see if we can flip rather than do a full mode set. In the
3644          * fastboot case, we'll flip, but if we don't update the pipesrc and
3645          * pfit state, we'll end up with a big fb scanned out into the wrong
3646          * sized surface.
3647          */
3648
3649         I915_WRITE(PIPESRC(crtc->pipe),
3650                    ((pipe_config->pipe_src_w - 1) << 16) |
3651                    (pipe_config->pipe_src_h - 1));
3652
3653         /* on skylake this is done by detaching scalers */
3654         if (INTEL_GEN(dev_priv) >= 9) {
3655                 skl_detach_scalers(crtc);
3656
3657                 if (pipe_config->pch_pfit.enabled)
3658                         skylake_pfit_enable(crtc);
3659         } else if (HAS_PCH_SPLIT(dev_priv)) {
3660                 if (pipe_config->pch_pfit.enabled)
3661                         ironlake_pfit_enable(crtc);
3662                 else if (old_crtc_state->pch_pfit.enabled)
3663                         ironlake_pfit_disable(crtc, true);
3664         }
3665 }
3666
3667 static void intel_fdi_normal_train(struct intel_crtc *crtc)
3668 {
3669         struct drm_device *dev = crtc->base.dev;
3670         struct drm_i915_private *dev_priv = to_i915(dev);
3671         int pipe = crtc->pipe;
3672         i915_reg_t reg;
3673         u32 temp;
3674
3675         /* enable normal train */
3676         reg = FDI_TX_CTL(pipe);
3677         temp = I915_READ(reg);
3678         if (IS_IVYBRIDGE(dev_priv)) {
3679                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3680                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3681         } else {
3682                 temp &= ~FDI_LINK_TRAIN_NONE;
3683                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3684         }
3685         I915_WRITE(reg, temp);
3686
3687         reg = FDI_RX_CTL(pipe);
3688         temp = I915_READ(reg);
3689         if (HAS_PCH_CPT(dev_priv)) {
3690                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3691                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3692         } else {
3693                 temp &= ~FDI_LINK_TRAIN_NONE;
3694                 temp |= FDI_LINK_TRAIN_NONE;
3695         }
3696         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3697
3698         /* wait one idle pattern time */
3699         POSTING_READ(reg);
3700         udelay(1000);
3701
3702         /* IVB wants error correction enabled */
3703         if (IS_IVYBRIDGE(dev_priv))
3704                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3705                            FDI_FE_ERRC_ENABLE);
3706 }
3707
3708 /* The FDI link training functions for ILK/Ibexpeak. */
3709 static void ironlake_fdi_link_train(struct intel_crtc *crtc,
3710                                     const struct intel_crtc_state *crtc_state)
3711 {
3712         struct drm_device *dev = crtc->base.dev;
3713         struct drm_i915_private *dev_priv = to_i915(dev);
3714         int pipe = crtc->pipe;
3715         i915_reg_t reg;
3716         u32 temp, tries;
3717
3718         /* FDI needs bits from pipe first */
3719         assert_pipe_enabled(dev_priv, pipe);
3720
3721         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3722            for train result */
3723         reg = FDI_RX_IMR(pipe);
3724         temp = I915_READ(reg);
3725         temp &= ~FDI_RX_SYMBOL_LOCK;
3726         temp &= ~FDI_RX_BIT_LOCK;
3727         I915_WRITE(reg, temp);
3728         I915_READ(reg);
3729         udelay(150);
3730
3731         /* enable CPU FDI TX and PCH FDI RX */
3732         reg = FDI_TX_CTL(pipe);
3733         temp = I915_READ(reg);
3734         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3735         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3736         temp &= ~FDI_LINK_TRAIN_NONE;
3737         temp |= FDI_LINK_TRAIN_PATTERN_1;
3738         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3739
3740         reg = FDI_RX_CTL(pipe);
3741         temp = I915_READ(reg);
3742         temp &= ~FDI_LINK_TRAIN_NONE;
3743         temp |= FDI_LINK_TRAIN_PATTERN_1;
3744         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3745
3746         POSTING_READ(reg);
3747         udelay(150);
3748
3749         /* Ironlake workaround, enable clock pointer after FDI enable*/
3750         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3751         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3752                    FDI_RX_PHASE_SYNC_POINTER_EN);
3753
3754         reg = FDI_RX_IIR(pipe);
3755         for (tries = 0; tries < 5; tries++) {
3756                 temp = I915_READ(reg);
3757                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3758
3759                 if ((temp & FDI_RX_BIT_LOCK)) {
3760                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3761                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3762                         break;
3763                 }
3764         }
3765         if (tries == 5)
3766                 DRM_ERROR("FDI train 1 fail!\n");
3767
3768         /* Train 2 */
3769         reg = FDI_TX_CTL(pipe);
3770         temp = I915_READ(reg);
3771         temp &= ~FDI_LINK_TRAIN_NONE;
3772         temp |= FDI_LINK_TRAIN_PATTERN_2;
3773         I915_WRITE(reg, temp);
3774
3775         reg = FDI_RX_CTL(pipe);
3776         temp = I915_READ(reg);
3777         temp &= ~FDI_LINK_TRAIN_NONE;
3778         temp |= FDI_LINK_TRAIN_PATTERN_2;
3779         I915_WRITE(reg, temp);
3780
3781         POSTING_READ(reg);
3782         udelay(150);
3783
3784         reg = FDI_RX_IIR(pipe);
3785         for (tries = 0; tries < 5; tries++) {
3786                 temp = I915_READ(reg);
3787                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3788
3789                 if (temp & FDI_RX_SYMBOL_LOCK) {
3790                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3791                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3792                         break;
3793                 }
3794         }
3795         if (tries == 5)
3796                 DRM_ERROR("FDI train 2 fail!\n");
3797
3798         DRM_DEBUG_KMS("FDI train done\n");
3799
3800 }
3801
3802 static const int snb_b_fdi_train_param[] = {
3803         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3804         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3805         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3806         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3807 };
3808
3809 /* The FDI link training functions for SNB/Cougarpoint. */
3810 static void gen6_fdi_link_train(struct intel_crtc *crtc,
3811                                 const struct intel_crtc_state *crtc_state)
3812 {
3813         struct drm_device *dev = crtc->base.dev;
3814         struct drm_i915_private *dev_priv = to_i915(dev);
3815         int pipe = crtc->pipe;
3816         i915_reg_t reg;
3817         u32 temp, i, retry;
3818
3819         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3820            for train result */
3821         reg = FDI_RX_IMR(pipe);
3822         temp = I915_READ(reg);
3823         temp &= ~FDI_RX_SYMBOL_LOCK;
3824         temp &= ~FDI_RX_BIT_LOCK;
3825         I915_WRITE(reg, temp);
3826
3827         POSTING_READ(reg);
3828         udelay(150);
3829
3830         /* enable CPU FDI TX and PCH FDI RX */
3831         reg = FDI_TX_CTL(pipe);
3832         temp = I915_READ(reg);
3833         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3834         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3835         temp &= ~FDI_LINK_TRAIN_NONE;
3836         temp |= FDI_LINK_TRAIN_PATTERN_1;
3837         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3838         /* SNB-B */
3839         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3840         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3841
3842         I915_WRITE(FDI_RX_MISC(pipe),
3843                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3844
3845         reg = FDI_RX_CTL(pipe);
3846         temp = I915_READ(reg);
3847         if (HAS_PCH_CPT(dev_priv)) {
3848                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3849                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3850         } else {
3851                 temp &= ~FDI_LINK_TRAIN_NONE;
3852                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3853         }
3854         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3855
3856         POSTING_READ(reg);
3857         udelay(150);
3858
3859         for (i = 0; i < 4; i++) {
3860                 reg = FDI_TX_CTL(pipe);
3861                 temp = I915_READ(reg);
3862                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3863                 temp |= snb_b_fdi_train_param[i];
3864                 I915_WRITE(reg, temp);
3865
3866                 POSTING_READ(reg);
3867                 udelay(500);
3868
3869                 for (retry = 0; retry < 5; retry++) {
3870                         reg = FDI_RX_IIR(pipe);
3871                         temp = I915_READ(reg);
3872                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3873                         if (temp & FDI_RX_BIT_LOCK) {
3874                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3875                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3876                                 break;
3877                         }
3878                         udelay(50);
3879                 }
3880                 if (retry < 5)
3881                         break;
3882         }
3883         if (i == 4)
3884                 DRM_ERROR("FDI train 1 fail!\n");
3885
3886         /* Train 2 */
3887         reg = FDI_TX_CTL(pipe);
3888         temp = I915_READ(reg);
3889         temp &= ~FDI_LINK_TRAIN_NONE;
3890         temp |= FDI_LINK_TRAIN_PATTERN_2;
3891         if (IS_GEN6(dev_priv)) {
3892                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3893                 /* SNB-B */
3894                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3895         }
3896         I915_WRITE(reg, temp);
3897
3898         reg = FDI_RX_CTL(pipe);
3899         temp = I915_READ(reg);
3900         if (HAS_PCH_CPT(dev_priv)) {
3901                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3902                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3903         } else {
3904                 temp &= ~FDI_LINK_TRAIN_NONE;
3905                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3906         }
3907         I915_WRITE(reg, temp);
3908
3909         POSTING_READ(reg);
3910         udelay(150);
3911
3912         for (i = 0; i < 4; i++) {
3913                 reg = FDI_TX_CTL(pipe);
3914                 temp = I915_READ(reg);
3915                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3916                 temp |= snb_b_fdi_train_param[i];
3917                 I915_WRITE(reg, temp);
3918
3919                 POSTING_READ(reg);
3920                 udelay(500);
3921
3922                 for (retry = 0; retry < 5; retry++) {
3923                         reg = FDI_RX_IIR(pipe);
3924                         temp = I915_READ(reg);
3925                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3926                         if (temp & FDI_RX_SYMBOL_LOCK) {
3927                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3928                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3929                                 break;
3930                         }
3931                         udelay(50);
3932                 }
3933                 if (retry < 5)
3934                         break;
3935         }
3936         if (i == 4)
3937                 DRM_ERROR("FDI train 2 fail!\n");
3938
3939         DRM_DEBUG_KMS("FDI train done.\n");
3940 }
3941
3942 /* Manual link training for Ivy Bridge A0 parts */
3943 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
3944                                       const struct intel_crtc_state *crtc_state)
3945 {
3946         struct drm_device *dev = crtc->base.dev;
3947         struct drm_i915_private *dev_priv = to_i915(dev);
3948         int pipe = crtc->pipe;
3949         i915_reg_t reg;
3950         u32 temp, i, j;
3951
3952         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3953            for train result */
3954         reg = FDI_RX_IMR(pipe);
3955         temp = I915_READ(reg);
3956         temp &= ~FDI_RX_SYMBOL_LOCK;
3957         temp &= ~FDI_RX_BIT_LOCK;
3958         I915_WRITE(reg, temp);
3959
3960         POSTING_READ(reg);
3961         udelay(150);
3962
3963         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3964                       I915_READ(FDI_RX_IIR(pipe)));
3965
3966         /* Try each vswing and preemphasis setting twice before moving on */
3967         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3968                 /* disable first in case we need to retry */
3969                 reg = FDI_TX_CTL(pipe);
3970                 temp = I915_READ(reg);
3971                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3972                 temp &= ~FDI_TX_ENABLE;
3973                 I915_WRITE(reg, temp);
3974
3975                 reg = FDI_RX_CTL(pipe);
3976                 temp = I915_READ(reg);
3977                 temp &= ~FDI_LINK_TRAIN_AUTO;
3978                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3979                 temp &= ~FDI_RX_ENABLE;
3980                 I915_WRITE(reg, temp);
3981
3982                 /* enable CPU FDI TX and PCH FDI RX */
3983                 reg = FDI_TX_CTL(pipe);
3984                 temp = I915_READ(reg);
3985                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3986                 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3987                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3988                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3989                 temp |= snb_b_fdi_train_param[j/2];
3990                 temp |= FDI_COMPOSITE_SYNC;
3991                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3992
3993                 I915_WRITE(FDI_RX_MISC(pipe),
3994                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3995
3996                 reg = FDI_RX_CTL(pipe);
3997                 temp = I915_READ(reg);
3998                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3999                 temp |= FDI_COMPOSITE_SYNC;
4000                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4001
4002                 POSTING_READ(reg);
4003                 udelay(1); /* should be 0.5us */
4004
4005                 for (i = 0; i < 4; i++) {
4006                         reg = FDI_RX_IIR(pipe);
4007                         temp = I915_READ(reg);
4008                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4009
4010                         if (temp & FDI_RX_BIT_LOCK ||
4011                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4012                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4013                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4014                                               i);
4015                                 break;
4016                         }
4017                         udelay(1); /* should be 0.5us */
4018                 }
4019                 if (i == 4) {
4020                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4021                         continue;
4022                 }
4023
4024                 /* Train 2 */
4025                 reg = FDI_TX_CTL(pipe);
4026                 temp = I915_READ(reg);
4027                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4028                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4029                 I915_WRITE(reg, temp);
4030
4031                 reg = FDI_RX_CTL(pipe);
4032                 temp = I915_READ(reg);
4033                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4034                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4035                 I915_WRITE(reg, temp);
4036
4037                 POSTING_READ(reg);
4038                 udelay(2); /* should be 1.5us */
4039
4040                 for (i = 0; i < 4; i++) {
4041                         reg = FDI_RX_IIR(pipe);
4042                         temp = I915_READ(reg);
4043                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4044
4045                         if (temp & FDI_RX_SYMBOL_LOCK ||
4046                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4047                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4048                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4049                                               i);
4050                                 goto train_done;
4051                         }
4052                         udelay(2); /* should be 1.5us */
4053                 }
4054                 if (i == 4)
4055                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4056         }
4057
4058 train_done:
4059         DRM_DEBUG_KMS("FDI train done.\n");
4060 }
4061
4062 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4063 {
4064         struct drm_device *dev = intel_crtc->base.dev;
4065         struct drm_i915_private *dev_priv = to_i915(dev);
4066         int pipe = intel_crtc->pipe;
4067         i915_reg_t reg;
4068         u32 temp;
4069
4070         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4071         reg = FDI_RX_CTL(pipe);
4072         temp = I915_READ(reg);
4073         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4074         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4075         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4076         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4077
4078         POSTING_READ(reg);
4079         udelay(200);
4080
4081         /* Switch from Rawclk to PCDclk */
4082         temp = I915_READ(reg);
4083         I915_WRITE(reg, temp | FDI_PCDCLK);
4084
4085         POSTING_READ(reg);
4086         udelay(200);
4087
4088         /* Enable CPU FDI TX PLL, always on for Ironlake */
4089         reg = FDI_TX_CTL(pipe);
4090         temp = I915_READ(reg);
4091         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4092                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4093
4094                 POSTING_READ(reg);
4095                 udelay(100);
4096         }
4097 }
4098
4099 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4100 {
4101         struct drm_device *dev = intel_crtc->base.dev;
4102         struct drm_i915_private *dev_priv = to_i915(dev);
4103         int pipe = intel_crtc->pipe;
4104         i915_reg_t reg;
4105         u32 temp;
4106
4107         /* Switch from PCDclk to Rawclk */
4108         reg = FDI_RX_CTL(pipe);
4109         temp = I915_READ(reg);
4110         I915_WRITE(reg, temp & ~FDI_PCDCLK);
4111
4112         /* Disable CPU FDI TX PLL */
4113         reg = FDI_TX_CTL(pipe);
4114         temp = I915_READ(reg);
4115         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4116
4117         POSTING_READ(reg);
4118         udelay(100);
4119
4120         reg = FDI_RX_CTL(pipe);
4121         temp = I915_READ(reg);
4122         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4123
4124         /* Wait for the clocks to turn off. */
4125         POSTING_READ(reg);
4126         udelay(100);
4127 }
4128
4129 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4130 {
4131         struct drm_device *dev = crtc->dev;
4132         struct drm_i915_private *dev_priv = to_i915(dev);
4133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4134         int pipe = intel_crtc->pipe;
4135         i915_reg_t reg;
4136         u32 temp;
4137
4138         /* disable CPU FDI tx and PCH FDI rx */
4139         reg = FDI_TX_CTL(pipe);
4140         temp = I915_READ(reg);
4141         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4142         POSTING_READ(reg);
4143
4144         reg = FDI_RX_CTL(pipe);
4145         temp = I915_READ(reg);
4146         temp &= ~(0x7 << 16);
4147         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4148         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4149
4150         POSTING_READ(reg);
4151         udelay(100);
4152
4153         /* Ironlake workaround, disable clock pointer after downing FDI */
4154         if (HAS_PCH_IBX(dev_priv))
4155                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4156
4157         /* still set train pattern 1 */
4158         reg = FDI_TX_CTL(pipe);
4159         temp = I915_READ(reg);
4160         temp &= ~FDI_LINK_TRAIN_NONE;
4161         temp |= FDI_LINK_TRAIN_PATTERN_1;
4162         I915_WRITE(reg, temp);
4163
4164         reg = FDI_RX_CTL(pipe);
4165         temp = I915_READ(reg);
4166         if (HAS_PCH_CPT(dev_priv)) {
4167                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4168                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4169         } else {
4170                 temp &= ~FDI_LINK_TRAIN_NONE;
4171                 temp |= FDI_LINK_TRAIN_PATTERN_1;
4172         }
4173         /* BPC in FDI rx is consistent with that in PIPECONF */
4174         temp &= ~(0x07 << 16);
4175         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4176         I915_WRITE(reg, temp);
4177
4178         POSTING_READ(reg);
4179         udelay(100);
4180 }
4181
4182 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4183 {
4184         struct intel_crtc *crtc;
4185
4186         /* Note that we don't need to be called with mode_config.lock here
4187          * as our list of CRTC objects is static for the lifetime of the
4188          * device and so cannot disappear as we iterate. Similarly, we can
4189          * happily treat the predicates as racy, atomic checks as userspace
4190          * cannot claim and pin a new fb without at least acquring the
4191          * struct_mutex and so serialising with us.
4192          */
4193         for_each_intel_crtc(&dev_priv->drm, crtc) {
4194                 if (atomic_read(&crtc->unpin_work_count) == 0)
4195                         continue;
4196
4197                 if (crtc->flip_work)
4198                         intel_wait_for_vblank(dev_priv, crtc->pipe);
4199
4200                 return true;
4201         }
4202
4203         return false;
4204 }
4205
4206 static void page_flip_completed(struct intel_crtc *intel_crtc)
4207 {
4208         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4209         struct intel_flip_work *work = intel_crtc->flip_work;
4210
4211         intel_crtc->flip_work = NULL;
4212
4213         if (work->event)
4214                 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4215
4216         drm_crtc_vblank_put(&intel_crtc->base);
4217
4218         wake_up_all(&dev_priv->pending_flip_queue);
4219         trace_i915_flip_complete(intel_crtc->plane,
4220                                  work->pending_flip_obj);
4221
4222         queue_work(dev_priv->wq, &work->unpin_work);
4223 }
4224
4225 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4226 {
4227         struct drm_device *dev = crtc->dev;
4228         struct drm_i915_private *dev_priv = to_i915(dev);
4229         long ret;
4230
4231         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4232
4233         ret = wait_event_interruptible_timeout(
4234                                         dev_priv->pending_flip_queue,
4235                                         !intel_crtc_has_pending_flip(crtc),
4236                                         60*HZ);
4237
4238         if (ret < 0)
4239                 return ret;
4240
4241         if (ret == 0) {
4242                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4243                 struct intel_flip_work *work;
4244
4245                 spin_lock_irq(&dev->event_lock);
4246                 work = intel_crtc->flip_work;
4247                 if (work && !is_mmio_work(work)) {
4248                         WARN_ONCE(1, "Removing stuck page flip\n");
4249                         page_flip_completed(intel_crtc);
4250                 }
4251                 spin_unlock_irq(&dev->event_lock);
4252         }
4253
4254         return 0;
4255 }
4256
4257 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4258 {
4259         u32 temp;
4260
4261         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4262
4263         mutex_lock(&dev_priv->sb_lock);
4264
4265         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4266         temp |= SBI_SSCCTL_DISABLE;
4267         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4268
4269         mutex_unlock(&dev_priv->sb_lock);
4270 }
4271
4272 /* Program iCLKIP clock to the desired frequency */
4273 static void lpt_program_iclkip(struct intel_crtc *crtc)
4274 {
4275         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4276         int clock = crtc->config->base.adjusted_mode.crtc_clock;
4277         u32 divsel, phaseinc, auxdiv, phasedir = 0;
4278         u32 temp;
4279
4280         lpt_disable_iclkip(dev_priv);
4281
4282         /* The iCLK virtual clock root frequency is in MHz,
4283          * but the adjusted_mode->crtc_clock in in KHz. To get the
4284          * divisors, it is necessary to divide one by another, so we
4285          * convert the virtual clock precision to KHz here for higher
4286          * precision.
4287          */
4288         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4289                 u32 iclk_virtual_root_freq = 172800 * 1000;
4290                 u32 iclk_pi_range = 64;
4291                 u32 desired_divisor;
4292
4293                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4294                                                     clock << auxdiv);
4295                 divsel = (desired_divisor / iclk_pi_range) - 2;
4296                 phaseinc = desired_divisor % iclk_pi_range;
4297
4298                 /*
4299                  * Near 20MHz is a corner case which is
4300                  * out of range for the 7-bit divisor
4301                  */
4302                 if (divsel <= 0x7f)
4303                         break;
4304         }
4305
4306         /* This should not happen with any sane values */
4307         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4308                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4309         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4310                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4311
4312         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4313                         clock,
4314                         auxdiv,
4315                         divsel,
4316                         phasedir,
4317                         phaseinc);
4318
4319         mutex_lock(&dev_priv->sb_lock);
4320
4321         /* Program SSCDIVINTPHASE6 */
4322         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4323         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4324         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4325         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4326         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4327         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4328         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4329         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4330
4331         /* Program SSCAUXDIV */
4332         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4333         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4334         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4335         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4336
4337         /* Enable modulator and associated divider */
4338         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4339         temp &= ~SBI_SSCCTL_DISABLE;
4340         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4341
4342         mutex_unlock(&dev_priv->sb_lock);
4343
4344         /* Wait for initialization time */
4345         udelay(24);
4346
4347         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4348 }
4349
4350 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4351 {
4352         u32 divsel, phaseinc, auxdiv;
4353         u32 iclk_virtual_root_freq = 172800 * 1000;
4354         u32 iclk_pi_range = 64;
4355         u32 desired_divisor;
4356         u32 temp;
4357
4358         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4359                 return 0;
4360
4361         mutex_lock(&dev_priv->sb_lock);
4362
4363         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4364         if (temp & SBI_SSCCTL_DISABLE) {
4365                 mutex_unlock(&dev_priv->sb_lock);
4366                 return 0;
4367         }
4368
4369         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4370         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4371                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4372         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4373                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4374
4375         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4376         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4377                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4378
4379         mutex_unlock(&dev_priv->sb_lock);
4380
4381         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4382
4383         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4384                                  desired_divisor << auxdiv);
4385 }
4386
4387 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4388                                                 enum pipe pch_transcoder)
4389 {
4390         struct drm_device *dev = crtc->base.dev;
4391         struct drm_i915_private *dev_priv = to_i915(dev);
4392         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4393
4394         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4395                    I915_READ(HTOTAL(cpu_transcoder)));
4396         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4397                    I915_READ(HBLANK(cpu_transcoder)));
4398         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4399                    I915_READ(HSYNC(cpu_transcoder)));
4400
4401         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4402                    I915_READ(VTOTAL(cpu_transcoder)));
4403         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4404                    I915_READ(VBLANK(cpu_transcoder)));
4405         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4406                    I915_READ(VSYNC(cpu_transcoder)));
4407         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4408                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4409 }
4410
4411 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4412 {
4413         struct drm_i915_private *dev_priv = to_i915(dev);
4414         uint32_t temp;
4415
4416         temp = I915_READ(SOUTH_CHICKEN1);
4417         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4418                 return;
4419
4420         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4421         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4422
4423         temp &= ~FDI_BC_BIFURCATION_SELECT;
4424         if (enable)
4425                 temp |= FDI_BC_BIFURCATION_SELECT;
4426
4427         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4428         I915_WRITE(SOUTH_CHICKEN1, temp);
4429         POSTING_READ(SOUTH_CHICKEN1);
4430 }
4431
4432 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4433 {
4434         struct drm_device *dev = intel_crtc->base.dev;
4435
4436         switch (intel_crtc->pipe) {
4437         case PIPE_A:
4438                 break;
4439         case PIPE_B:
4440                 if (intel_crtc->config->fdi_lanes > 2)
4441                         cpt_set_fdi_bc_bifurcation(dev, false);
4442                 else
4443                         cpt_set_fdi_bc_bifurcation(dev, true);
4444
4445                 break;
4446         case PIPE_C:
4447                 cpt_set_fdi_bc_bifurcation(dev, true);
4448
4449                 break;
4450         default:
4451                 BUG();
4452         }
4453 }
4454
4455 /* Return which DP Port should be selected for Transcoder DP control */
4456 static enum port
4457 intel_trans_dp_port_sel(struct intel_crtc *crtc)
4458 {
4459         struct drm_device *dev = crtc->base.dev;
4460         struct intel_encoder *encoder;
4461
4462         for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
4463                 if (encoder->type == INTEL_OUTPUT_DP ||
4464                     encoder->type == INTEL_OUTPUT_EDP)
4465                         return enc_to_dig_port(&encoder->base)->port;
4466         }
4467
4468         return -1;
4469 }
4470
4471 /*
4472  * Enable PCH resources required for PCH ports:
4473  *   - PCH PLLs
4474  *   - FDI training & RX/TX
4475  *   - update transcoder timings
4476  *   - DP transcoding bits
4477  *   - transcoder
4478  */
4479 static void ironlake_pch_enable(const struct intel_crtc_state *crtc_state)
4480 {
4481         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4482         struct drm_device *dev = crtc->base.dev;
4483         struct drm_i915_private *dev_priv = to_i915(dev);
4484         int pipe = crtc->pipe;
4485         u32 temp;
4486
4487         assert_pch_transcoder_disabled(dev_priv, pipe);
4488
4489         if (IS_IVYBRIDGE(dev_priv))
4490                 ivybridge_update_fdi_bc_bifurcation(crtc);
4491
4492         /* Write the TU size bits before fdi link training, so that error
4493          * detection works. */
4494         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4495                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4496
4497         /* For PCH output, training FDI link */
4498         dev_priv->display.fdi_link_train(crtc, crtc_state);
4499
4500         /* We need to program the right clock selection before writing the pixel
4501          * mutliplier into the DPLL. */
4502         if (HAS_PCH_CPT(dev_priv)) {
4503                 u32 sel;
4504
4505                 temp = I915_READ(PCH_DPLL_SEL);
4506                 temp |= TRANS_DPLL_ENABLE(pipe);
4507                 sel = TRANS_DPLLB_SEL(pipe);
4508                 if (crtc_state->shared_dpll ==
4509                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4510                         temp |= sel;
4511                 else
4512                         temp &= ~sel;
4513                 I915_WRITE(PCH_DPLL_SEL, temp);
4514         }
4515
4516         /* XXX: pch pll's can be enabled any time before we enable the PCH
4517          * transcoder, and we actually should do this to not upset any PCH
4518          * transcoder that already use the clock when we share it.
4519          *
4520          * Note that enable_shared_dpll tries to do the right thing, but
4521          * get_shared_dpll unconditionally resets the pll - we need that to have
4522          * the right LVDS enable sequence. */
4523         intel_enable_shared_dpll(crtc);
4524
4525         /* set transcoder timing, panel must allow it */
4526         assert_panel_unlocked(dev_priv, pipe);
4527         ironlake_pch_transcoder_set_timings(crtc, pipe);
4528
4529         intel_fdi_normal_train(crtc);
4530
4531         /* For PCH DP, enable TRANS_DP_CTL */
4532         if (HAS_PCH_CPT(dev_priv) &&
4533             intel_crtc_has_dp_encoder(crtc_state)) {
4534                 const struct drm_display_mode *adjusted_mode =
4535                         &crtc_state->base.adjusted_mode;
4536                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4537                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4538                 temp = I915_READ(reg);
4539                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4540                           TRANS_DP_SYNC_MASK |
4541                           TRANS_DP_BPC_MASK);
4542                 temp |= TRANS_DP_OUTPUT_ENABLE;
4543                 temp |= bpc << 9; /* same format but at 11:9 */
4544
4545                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4546                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4547                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4548                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4549
4550                 switch (intel_trans_dp_port_sel(crtc)) {
4551                 case PORT_B:
4552                         temp |= TRANS_DP_PORT_SEL_B;
4553                         break;
4554                 case PORT_C:
4555                         temp |= TRANS_DP_PORT_SEL_C;
4556                         break;
4557                 case PORT_D:
4558                         temp |= TRANS_DP_PORT_SEL_D;
4559                         break;
4560                 default:
4561                         BUG();
4562                 }
4563
4564                 I915_WRITE(reg, temp);
4565         }
4566
4567         ironlake_enable_pch_transcoder(dev_priv, pipe);
4568 }
4569
4570 static void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
4571 {
4572         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4573         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4574         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
4575
4576         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4577
4578         lpt_program_iclkip(crtc);
4579
4580         /* Set transcoder timing. */
4581         ironlake_pch_transcoder_set_timings(crtc, PIPE_A);
4582
4583         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4584 }
4585
4586 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4587 {
4588         struct drm_i915_private *dev_priv = to_i915(dev);
4589         i915_reg_t dslreg = PIPEDSL(pipe);
4590         u32 temp;
4591
4592         temp = I915_READ(dslreg);
4593         udelay(500);
4594         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4595                 if (wait_for(I915_READ(dslreg) != temp, 5))
4596                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4597         }
4598 }
4599
4600 static int
4601 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4602                   unsigned int scaler_user, int *scaler_id,
4603                   int src_w, int src_h, int dst_w, int dst_h)
4604 {
4605         struct intel_crtc_scaler_state *scaler_state =
4606                 &crtc_state->scaler_state;
4607         struct intel_crtc *intel_crtc =
4608                 to_intel_crtc(crtc_state->base.crtc);
4609         int need_scaling;
4610
4611         /*
4612          * Src coordinates are already rotated by 270 degrees for
4613          * the 90/270 degree plane rotation cases (to match the
4614          * GTT mapping), hence no need to account for rotation here.
4615          */
4616         need_scaling = src_w != dst_w || src_h != dst_h;
4617
4618         /*
4619          * if plane is being disabled or scaler is no more required or force detach
4620          *  - free scaler binded to this plane/crtc
4621          *  - in order to do this, update crtc->scaler_usage
4622          *
4623          * Here scaler state in crtc_state is set free so that
4624          * scaler can be assigned to other user. Actual register
4625          * update to free the scaler is done in plane/panel-fit programming.
4626          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4627          */
4628         if (force_detach || !need_scaling) {
4629                 if (*scaler_id >= 0) {
4630                         scaler_state->scaler_users &= ~(1 << scaler_user);
4631                         scaler_state->scalers[*scaler_id].in_use = 0;
4632
4633                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4634                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4635                                 intel_crtc->pipe, scaler_user, *scaler_id,
4636                                 scaler_state->scaler_users);
4637                         *scaler_id = -1;
4638                 }
4639                 return 0;
4640         }
4641
4642         /* range checks */
4643         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4644                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4645
4646                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4647                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4648                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4649                         "size is out of scaler range\n",
4650                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4651                 return -EINVAL;
4652         }
4653
4654         /* mark this plane as a scaler user in crtc_state */
4655         scaler_state->scaler_users |= (1 << scaler_user);
4656         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4657                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4658                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4659                 scaler_state->scaler_users);
4660
4661         return 0;
4662 }
4663
4664 /**
4665  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4666  *
4667  * @state: crtc's scaler state
4668  *
4669  * Return
4670  *     0 - scaler_usage updated successfully
4671  *    error - requested scaling cannot be supported or other error condition
4672  */
4673 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4674 {
4675         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4676
4677         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4678                 &state->scaler_state.scaler_id,
4679                 state->pipe_src_w, state->pipe_src_h,
4680                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4681 }
4682
4683 /**
4684  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4685  *
4686  * @state: crtc's scaler state
4687  * @plane_state: atomic plane state to update
4688  *
4689  * Return
4690  *     0 - scaler_usage updated successfully
4691  *    error - requested scaling cannot be supported or other error condition
4692  */
4693 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4694                                    struct intel_plane_state *plane_state)
4695 {
4696
4697         struct intel_plane *intel_plane =
4698                 to_intel_plane(plane_state->base.plane);
4699         struct drm_framebuffer *fb = plane_state->base.fb;
4700         int ret;
4701
4702         bool force_detach = !fb || !plane_state->base.visible;
4703
4704         ret = skl_update_scaler(crtc_state, force_detach,
4705                                 drm_plane_index(&intel_plane->base),
4706                                 &plane_state->scaler_id,
4707                                 drm_rect_width(&plane_state->base.src) >> 16,
4708                                 drm_rect_height(&plane_state->base.src) >> 16,
4709                                 drm_rect_width(&plane_state->base.dst),
4710                                 drm_rect_height(&plane_state->base.dst));
4711
4712         if (ret || plane_state->scaler_id < 0)
4713                 return ret;
4714
4715         /* check colorkey */
4716         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4717                 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4718                               intel_plane->base.base.id,
4719                               intel_plane->base.name);
4720                 return -EINVAL;
4721         }
4722
4723         /* Check src format */
4724         switch (fb->format->format) {
4725         case DRM_FORMAT_RGB565:
4726         case DRM_FORMAT_XBGR8888:
4727         case DRM_FORMAT_XRGB8888:
4728         case DRM_FORMAT_ABGR8888:
4729         case DRM_FORMAT_ARGB8888:
4730         case DRM_FORMAT_XRGB2101010:
4731         case DRM_FORMAT_XBGR2101010:
4732         case DRM_FORMAT_YUYV:
4733         case DRM_FORMAT_YVYU:
4734         case DRM_FORMAT_UYVY:
4735         case DRM_FORMAT_VYUY:
4736                 break;
4737         default:
4738                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4739                               intel_plane->base.base.id, intel_plane->base.name,
4740                               fb->base.id, fb->format->format);
4741                 return -EINVAL;
4742         }
4743
4744         return 0;
4745 }
4746
4747 static void skylake_scaler_disable(struct intel_crtc *crtc)
4748 {
4749         int i;
4750
4751         for (i = 0; i < crtc->num_scalers; i++)
4752                 skl_detach_scaler(crtc, i);
4753 }
4754
4755 static void skylake_pfit_enable(struct intel_crtc *crtc)
4756 {
4757         struct drm_device *dev = crtc->base.dev;
4758         struct drm_i915_private *dev_priv = to_i915(dev);
4759         int pipe = crtc->pipe;
4760         struct intel_crtc_scaler_state *scaler_state =
4761                 &crtc->config->scaler_state;
4762
4763         if (crtc->config->pch_pfit.enabled) {
4764                 int id;
4765
4766                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0))
4767                         return;
4768
4769                 id = scaler_state->scaler_id;
4770                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4771                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4772                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4773                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4774         }
4775 }
4776
4777 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4778 {
4779         struct drm_device *dev = crtc->base.dev;
4780         struct drm_i915_private *dev_priv = to_i915(dev);
4781         int pipe = crtc->pipe;
4782
4783         if (crtc->config->pch_pfit.enabled) {
4784                 /* Force use of hard-coded filter coefficients
4785                  * as some pre-programmed values are broken,
4786                  * e.g. x201.
4787                  */
4788                 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4789                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4790                                                  PF_PIPE_SEL_IVB(pipe));
4791                 else
4792                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4793                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4794                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4795         }
4796 }
4797
4798 void hsw_enable_ips(struct intel_crtc *crtc)
4799 {
4800         struct drm_device *dev = crtc->base.dev;
4801         struct drm_i915_private *dev_priv = to_i915(dev);
4802
4803         if (!crtc->config->ips_enabled)
4804                 return;
4805
4806         /*
4807          * We can only enable IPS after we enable a plane and wait for a vblank
4808          * This function is called from post_plane_update, which is run after
4809          * a vblank wait.
4810          */
4811
4812         assert_plane_enabled(dev_priv, crtc->plane);
4813         if (IS_BROADWELL(dev_priv)) {
4814                 mutex_lock(&dev_priv->rps.hw_lock);
4815                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4816                 mutex_unlock(&dev_priv->rps.hw_lock);
4817                 /* Quoting Art Runyan: "its not safe to expect any particular
4818                  * value in IPS_CTL bit 31 after enabling IPS through the
4819                  * mailbox." Moreover, the mailbox may return a bogus state,
4820                  * so we need to just enable it and continue on.
4821                  */
4822         } else {
4823                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4824                 /* The bit only becomes 1 in the next vblank, so this wait here
4825                  * is essentially intel_wait_for_vblank. If we don't have this
4826                  * and don't wait for vblanks until the end of crtc_enable, then
4827                  * the HW state readout code will complain that the expected
4828                  * IPS_CTL value is not the one we read. */
4829                 if (intel_wait_for_register(dev_priv,
4830                                             IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4831                                             50))
4832                         DRM_ERROR("Timed out waiting for IPS enable\n");
4833         }
4834 }
4835
4836 void hsw_disable_ips(struct intel_crtc *crtc)
4837 {
4838         struct drm_device *dev = crtc->base.dev;
4839         struct drm_i915_private *dev_priv = to_i915(dev);
4840
4841         if (!crtc->config->ips_enabled)
4842                 return;
4843
4844         assert_plane_enabled(dev_priv, crtc->plane);
4845         if (IS_BROADWELL(dev_priv)) {
4846                 mutex_lock(&dev_priv->rps.hw_lock);
4847                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4848                 mutex_unlock(&dev_priv->rps.hw_lock);
4849                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4850                 if (intel_wait_for_register(dev_priv,
4851                                             IPS_CTL, IPS_ENABLE, 0,
4852                                             42))
4853                         DRM_ERROR("Timed out waiting for IPS disable\n");
4854         } else {
4855                 I915_WRITE(IPS_CTL, 0);
4856                 POSTING_READ(IPS_CTL);
4857         }
4858
4859         /* We need to wait for a vblank before we can disable the plane. */
4860         intel_wait_for_vblank(dev_priv, crtc->pipe);
4861 }
4862
4863 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4864 {
4865         if (intel_crtc->overlay) {
4866                 struct drm_device *dev = intel_crtc->base.dev;
4867                 struct drm_i915_private *dev_priv = to_i915(dev);
4868
4869                 mutex_lock(&dev->struct_mutex);
4870                 dev_priv->mm.interruptible = false;
4871                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4872                 dev_priv->mm.interruptible = true;
4873                 mutex_unlock(&dev->struct_mutex);
4874         }
4875
4876         /* Let userspace switch the overlay on again. In most cases userspace
4877          * has to recompute where to put it anyway.
4878          */
4879 }
4880
4881 /**
4882  * intel_post_enable_primary - Perform operations after enabling primary plane
4883  * @crtc: the CRTC whose primary plane was just enabled
4884  *
4885  * Performs potentially sleeping operations that must be done after the primary
4886  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4887  * called due to an explicit primary plane update, or due to an implicit
4888  * re-enable that is caused when a sprite plane is updated to no longer
4889  * completely hide the primary plane.
4890  */
4891 static void
4892 intel_post_enable_primary(struct drm_crtc *crtc)
4893 {
4894         struct drm_device *dev = crtc->dev;
4895         struct drm_i915_private *dev_priv = to_i915(dev);
4896         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4897         int pipe = intel_crtc->pipe;
4898
4899         /*
4900          * FIXME IPS should be fine as long as one plane is
4901          * enabled, but in practice it seems to have problems
4902          * when going from primary only to sprite only and vice
4903          * versa.
4904          */
4905         hsw_enable_ips(intel_crtc);
4906
4907         /*
4908          * Gen2 reports pipe underruns whenever all planes are disabled.
4909          * So don't enable underrun reporting before at least some planes
4910          * are enabled.
4911          * FIXME: Need to fix the logic to work when we turn off all planes
4912          * but leave the pipe running.
4913          */
4914         if (IS_GEN2(dev_priv))
4915                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4916
4917         /* Underruns don't always raise interrupts, so check manually. */
4918         intel_check_cpu_fifo_underruns(dev_priv);
4919         intel_check_pch_fifo_underruns(dev_priv);
4920 }
4921
4922 /* FIXME move all this to pre_plane_update() with proper state tracking */
4923 static void
4924 intel_pre_disable_primary(struct drm_crtc *crtc)
4925 {
4926         struct drm_device *dev = crtc->dev;
4927         struct drm_i915_private *dev_priv = to_i915(dev);
4928         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4929         int pipe = intel_crtc->pipe;
4930
4931         /*
4932          * Gen2 reports pipe underruns whenever all planes are disabled.
4933          * So diasble underrun reporting before all the planes get disabled.
4934          * FIXME: Need to fix the logic to work when we turn off all planes
4935          * but leave the pipe running.
4936          */
4937         if (IS_GEN2(dev_priv))
4938                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4939
4940         /*
4941          * FIXME IPS should be fine as long as one plane is
4942          * enabled, but in practice it seems to have problems
4943          * when going from primary only to sprite only and vice
4944          * versa.
4945          */
4946         hsw_disable_ips(intel_crtc);
4947 }
4948
4949 /* FIXME get rid of this and use pre_plane_update */
4950 static void
4951 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4952 {
4953         struct drm_device *dev = crtc->dev;
4954         struct drm_i915_private *dev_priv = to_i915(dev);
4955         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4956         int pipe = intel_crtc->pipe;
4957
4958         intel_pre_disable_primary(crtc);
4959
4960         /*
4961          * Vblank time updates from the shadow to live plane control register
4962          * are blocked if the memory self-refresh mode is active at that
4963          * moment. So to make sure the plane gets truly disabled, disable
4964          * first the self-refresh mode. The self-refresh enable bit in turn
4965          * will be checked/applied by the HW only at the next frame start
4966          * event which is after the vblank start event, so we need to have a
4967          * wait-for-vblank between disabling the plane and the pipe.
4968          */
4969         if (HAS_GMCH_DISPLAY(dev_priv) &&
4970             intel_set_memory_cxsr(dev_priv, false))
4971                 intel_wait_for_vblank(dev_priv, pipe);
4972 }
4973
4974 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4975 {
4976         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4977         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4978         struct intel_crtc_state *pipe_config =
4979                 to_intel_crtc_state(crtc->base.state);
4980         struct drm_plane *primary = crtc->base.primary;
4981         struct drm_plane_state *old_pri_state =
4982                 drm_atomic_get_existing_plane_state(old_state, primary);
4983
4984         intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
4985
4986         if (pipe_config->update_wm_post && pipe_config->base.active)
4987                 intel_update_watermarks(crtc);
4988
4989         if (old_pri_state) {
4990                 struct intel_plane_state *primary_state =
4991                         to_intel_plane_state(primary->state);
4992                 struct intel_plane_state *old_primary_state =
4993                         to_intel_plane_state(old_pri_state);
4994
4995                 intel_fbc_post_update(crtc);
4996
4997                 if (primary_state->base.visible &&
4998                     (needs_modeset(&pipe_config->base) ||
4999                      !old_primary_state->base.visible))
5000                         intel_post_enable_primary(&crtc->base);
5001         }
5002 }
5003
5004 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state,
5005                                    struct intel_crtc_state *pipe_config)
5006 {
5007         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5008         struct drm_device *dev = crtc->base.dev;
5009         struct drm_i915_private *dev_priv = to_i915(dev);
5010         struct drm_atomic_state *old_state = old_crtc_state->base.state;
5011         struct drm_plane *primary = crtc->base.primary;
5012         struct drm_plane_state *old_pri_state =
5013                 drm_atomic_get_existing_plane_state(old_state, primary);
5014         bool modeset = needs_modeset(&pipe_config->base);
5015         struct intel_atomic_state *old_intel_state =
5016                 to_intel_atomic_state(old_state);
5017
5018         if (old_pri_state) {
5019                 struct intel_plane_state *primary_state =
5020                         to_intel_plane_state(primary->state);
5021                 struct intel_plane_state *old_primary_state =
5022                         to_intel_plane_state(old_pri_state);
5023
5024                 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5025
5026                 if (old_primary_state->base.visible &&
5027                     (modeset || !primary_state->base.visible))
5028                         intel_pre_disable_primary(&crtc->base);
5029         }
5030
5031         /*
5032          * Vblank time updates from the shadow to live plane control register
5033          * are blocked if the memory self-refresh mode is active at that
5034          * moment. So to make sure the plane gets truly disabled, disable
5035          * first the self-refresh mode. The self-refresh enable bit in turn
5036          * will be checked/applied by the HW only at the next frame start
5037          * event which is after the vblank start event, so we need to have a
5038          * wait-for-vblank between disabling the plane and the pipe.
5039          */
5040         if (HAS_GMCH_DISPLAY(dev_priv) && old_crtc_state->base.active &&
5041             pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
5042                 intel_wait_for_vblank(dev_priv, crtc->pipe);
5043
5044         /*
5045          * IVB workaround: must disable low power watermarks for at least
5046          * one frame before enabling scaling.  LP watermarks can be re-enabled
5047          * when scaling is disabled.
5048          *
5049          * WaCxSRDisabledForSpriteScaling:ivb
5050          */
5051         if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev))
5052                 intel_wait_for_vblank(dev_priv, crtc->pipe);
5053
5054         /*
5055          * If we're doing a modeset, we're done.  No need to do any pre-vblank
5056          * watermark programming here.
5057          */
5058         if (needs_modeset(&pipe_config->base))
5059                 return;
5060
5061         /*
5062          * For platforms that support atomic watermarks, program the
5063          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
5064          * will be the intermediate values that are safe for both pre- and
5065          * post- vblank; when vblank happens, the 'active' values will be set
5066          * to the final 'target' values and we'll do this again to get the
5067          * optimal watermarks.  For gen9+ platforms, the values we program here
5068          * will be the final target values which will get automatically latched
5069          * at vblank time; no further programming will be necessary.
5070          *
5071          * If a platform hasn't been transitioned to atomic watermarks yet,
5072          * we'll continue to update watermarks the old way, if flags tell
5073          * us to.
5074          */
5075         if (dev_priv->display.initial_watermarks != NULL)
5076                 dev_priv->display.initial_watermarks(old_intel_state,
5077                                                      pipe_config);
5078         else if (pipe_config->update_wm_pre)
5079                 intel_update_watermarks(crtc);
5080 }
5081
5082 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5083 {
5084         struct drm_device *dev = crtc->dev;
5085         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5086         struct drm_plane *p;
5087         int pipe = intel_crtc->pipe;
5088
5089         intel_crtc_dpms_overlay_disable(intel_crtc);
5090
5091         drm_for_each_plane_mask(p, dev, plane_mask)
5092                 to_intel_plane(p)->disable_plane(p, crtc);
5093
5094         /*
5095          * FIXME: Once we grow proper nuclear flip support out of this we need
5096          * to compute the mask of flip planes precisely. For the time being
5097          * consider this a flip to a NULL plane.
5098          */
5099         intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5100 }
5101
5102 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5103                                           struct intel_crtc_state *crtc_state,
5104                                           struct drm_atomic_state *old_state)
5105 {
5106         struct drm_connector_state *conn_state;
5107         struct drm_connector *conn;
5108         int i;
5109
5110         for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5111                 struct intel_encoder *encoder =
5112                         to_intel_encoder(conn_state->best_encoder);
5113
5114                 if (conn_state->crtc != crtc)
5115                         continue;
5116
5117                 if (encoder->pre_pll_enable)
5118                         encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5119         }
5120 }
5121
5122 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5123                                       struct intel_crtc_state *crtc_state,
5124                                       struct drm_atomic_state *old_state)
5125 {
5126         struct drm_connector_state *conn_state;
5127         struct drm_connector *conn;
5128         int i;
5129
5130         for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5131                 struct intel_encoder *encoder =
5132                         to_intel_encoder(conn_state->best_encoder);
5133
5134                 if (conn_state->crtc != crtc)
5135                         continue;
5136
5137                 if (encoder->pre_enable)
5138                         encoder->pre_enable(encoder, crtc_state, conn_state);
5139         }
5140 }
5141
5142 static void intel_encoders_enable(struct drm_crtc *crtc,
5143                                   struct intel_crtc_state *crtc_state,
5144                                   struct drm_atomic_state *old_state)
5145 {
5146         struct drm_connector_state *conn_state;
5147         struct drm_connector *conn;
5148         int i;
5149
5150         for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5151                 struct intel_encoder *encoder =
5152                         to_intel_encoder(conn_state->best_encoder);
5153
5154                 if (conn_state->crtc != crtc)
5155                         continue;
5156
5157                 encoder->enable(encoder, crtc_state, conn_state);
5158                 intel_opregion_notify_encoder(encoder, true);
5159         }
5160 }
5161
5162 static void intel_encoders_disable(struct drm_crtc *crtc,
5163                                    struct intel_crtc_state *old_crtc_state,
5164                                    struct drm_atomic_state *old_state)
5165 {
5166         struct drm_connector_state *old_conn_state;
5167         struct drm_connector *conn;
5168         int i;
5169
5170         for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5171                 struct intel_encoder *encoder =
5172                         to_intel_encoder(old_conn_state->best_encoder);
5173
5174                 if (old_conn_state->crtc != crtc)
5175                         continue;
5176
5177                 intel_opregion_notify_encoder(encoder, false);
5178                 encoder->disable(encoder, old_crtc_state, old_conn_state);
5179         }
5180 }
5181
5182 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5183                                         struct intel_crtc_state *old_crtc_state,
5184                                         struct drm_atomic_state *old_state)
5185 {
5186         struct drm_connector_state *old_conn_state;
5187         struct drm_connector *conn;
5188         int i;
5189
5190         for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5191                 struct intel_encoder *encoder =
5192                         to_intel_encoder(old_conn_state->best_encoder);
5193
5194                 if (old_conn_state->crtc != crtc)
5195                         continue;
5196
5197                 if (encoder->post_disable)
5198                         encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5199         }
5200 }
5201
5202 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5203                                             struct intel_crtc_state *old_crtc_state,
5204                                             struct drm_atomic_state *old_state)
5205 {
5206         struct drm_connector_state *old_conn_state;
5207         struct drm_connector *conn;
5208         int i;
5209
5210         for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5211                 struct intel_encoder *encoder =
5212                         to_intel_encoder(old_conn_state->best_encoder);
5213
5214                 if (old_conn_state->crtc != crtc)
5215                         continue;
5216
5217                 if (encoder->post_pll_disable)
5218                         encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5219         }
5220 }
5221
5222 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5223                                  struct drm_atomic_state *old_state)
5224 {
5225         struct drm_crtc *crtc = pipe_config->base.crtc;
5226         struct drm_device *dev = crtc->dev;
5227         struct drm_i915_private *dev_priv = to_i915(dev);
5228         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5229         int pipe = intel_crtc->pipe;
5230         struct intel_atomic_state *old_intel_state =
5231                 to_intel_atomic_state(old_state);
5232
5233         if (WARN_ON(intel_crtc->active))
5234                 return;
5235
5236         /*
5237          * Sometimes spurious CPU pipe underruns happen during FDI
5238          * training, at least with VGA+HDMI cloning. Suppress them.
5239          *
5240          * On ILK we get an occasional spurious CPU pipe underruns
5241          * between eDP port A enable and vdd enable. Also PCH port
5242          * enable seems to result in the occasional CPU pipe underrun.
5243          *
5244          * Spurious PCH underruns also occur during PCH enabling.
5245          */
5246         if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5247                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5248         if (intel_crtc->config->has_pch_encoder)
5249                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5250
5251         if (intel_crtc->config->has_pch_encoder)
5252                 intel_prepare_shared_dpll(intel_crtc);
5253
5254         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5255                 intel_dp_set_m_n(intel_crtc, M1_N1);
5256
5257         intel_set_pipe_timings(intel_crtc);
5258         intel_set_pipe_src_size(intel_crtc);
5259
5260         if (intel_crtc->config->has_pch_encoder) {
5261                 intel_cpu_transcoder_set_m_n(intel_crtc,
5262                                      &intel_crtc->config->fdi_m_n, NULL);
5263         }
5264
5265         ironlake_set_pipeconf(crtc);
5266
5267         intel_crtc->active = true;
5268
5269         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5270
5271         if (intel_crtc->config->has_pch_encoder) {
5272                 /* Note: FDI PLL enabling _must_ be done before we enable the
5273                  * cpu pipes, hence this is separate from all the other fdi/pch
5274                  * enabling. */
5275                 ironlake_fdi_pll_enable(intel_crtc);
5276         } else {
5277                 assert_fdi_tx_disabled(dev_priv, pipe);
5278                 assert_fdi_rx_disabled(dev_priv, pipe);
5279         }
5280
5281         ironlake_pfit_enable(intel_crtc);
5282
5283         /*
5284          * On ILK+ LUT must be loaded before the pipe is running but with
5285          * clocks enabled
5286          */
5287         intel_color_load_luts(&pipe_config->base);
5288
5289         if (dev_priv->display.initial_watermarks != NULL)
5290                 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5291         intel_enable_pipe(intel_crtc);
5292
5293         if (intel_crtc->config->has_pch_encoder)
5294                 ironlake_pch_enable(pipe_config);
5295
5296         assert_vblank_disabled(crtc);
5297         drm_crtc_vblank_on(crtc);
5298
5299         intel_encoders_enable(crtc, pipe_config, old_state);
5300
5301         if (HAS_PCH_CPT(dev_priv))
5302                 cpt_verify_modeset(dev, intel_crtc->pipe);
5303
5304         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5305         if (intel_crtc->config->has_pch_encoder)
5306                 intel_wait_for_vblank(dev_priv, pipe);
5307         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5308         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5309 }
5310
5311 /* IPS only exists on ULT machines and is tied to pipe A. */
5312 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5313 {
5314         return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5315 }
5316
5317 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5318                                 struct drm_atomic_state *old_state)
5319 {
5320         struct drm_crtc *crtc = pipe_config->base.crtc;
5321         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5322         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5323         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5324         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5325         struct intel_atomic_state *old_intel_state =
5326                 to_intel_atomic_state(old_state);
5327
5328         if (WARN_ON(intel_crtc->active))
5329                 return;
5330
5331         if (intel_crtc->config->has_pch_encoder)
5332                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5333                                                       false);
5334
5335         intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5336
5337         if (intel_crtc->config->shared_dpll)
5338                 intel_enable_shared_dpll(intel_crtc);
5339
5340         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5341                 intel_dp_set_m_n(intel_crtc, M1_N1);
5342
5343         if (!transcoder_is_dsi(cpu_transcoder))
5344                 intel_set_pipe_timings(intel_crtc);
5345
5346         intel_set_pipe_src_size(intel_crtc);
5347
5348         if (cpu_transcoder != TRANSCODER_EDP &&
5349             !transcoder_is_dsi(cpu_transcoder)) {
5350                 I915_WRITE(PIPE_MULT(cpu_transcoder),
5351                            intel_crtc->config->pixel_multiplier - 1);
5352         }
5353
5354         if (intel_crtc->config->has_pch_encoder) {
5355                 intel_cpu_transcoder_set_m_n(intel_crtc,
5356                                      &intel_crtc->config->fdi_m_n, NULL);
5357         }
5358
5359         if (!transcoder_is_dsi(cpu_transcoder))
5360                 haswell_set_pipeconf(crtc);
5361
5362         haswell_set_pipemisc(crtc);
5363
5364         intel_color_set_csc(&pipe_config->base);
5365
5366         intel_crtc->active = true;
5367
5368         if (intel_crtc->config->has_pch_encoder)
5369                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5370         else
5371                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5372
5373         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5374
5375         if (intel_crtc->config->has_pch_encoder)
5376                 dev_priv->display.fdi_link_train(intel_crtc, pipe_config);
5377
5378         if (!transcoder_is_dsi(cpu_transcoder))
5379                 intel_ddi_enable_pipe_clock(pipe_config);
5380
5381         if (INTEL_GEN(dev_priv) >= 9)
5382                 skylake_pfit_enable(intel_crtc);
5383         else
5384                 ironlake_pfit_enable(intel_crtc);
5385
5386         /*
5387          * On ILK+ LUT must be loaded before the pipe is running but with
5388          * clocks enabled
5389          */
5390         intel_color_load_luts(&pipe_config->base);
5391
5392         intel_ddi_set_pipe_settings(pipe_config);
5393         if (!transcoder_is_dsi(cpu_transcoder))
5394                 intel_ddi_enable_transcoder_func(pipe_config);
5395
5396         if (dev_priv->display.initial_watermarks != NULL)
5397                 dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
5398
5399         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5400         if (!transcoder_is_dsi(cpu_transcoder))
5401                 intel_enable_pipe(intel_crtc);
5402
5403         if (intel_crtc->config->has_pch_encoder)
5404                 lpt_pch_enable(pipe_config);
5405
5406         if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5407                 intel_ddi_set_vc_payload_alloc(pipe_config, true);
5408
5409         assert_vblank_disabled(crtc);
5410         drm_crtc_vblank_on(crtc);
5411
5412         intel_encoders_enable(crtc, pipe_config, old_state);
5413
5414         if (intel_crtc->config->has_pch_encoder) {
5415                 intel_wait_for_vblank(dev_priv, pipe);
5416                 intel_wait_for_vblank(dev_priv, pipe);
5417                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5418                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5419                                                       true);
5420         }
5421
5422         /* If we change the relative order between pipe/planes enabling, we need
5423          * to change the workaround. */
5424         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5425         if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5426                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5427                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5428         }
5429 }
5430
5431 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5432 {
5433         struct drm_device *dev = crtc->base.dev;
5434         struct drm_i915_private *dev_priv = to_i915(dev);
5435         int pipe = crtc->pipe;
5436
5437         /* To avoid upsetting the power well on haswell only disable the pfit if
5438          * it's in use. The hw state code will make sure we get this right. */
5439         if (force || crtc->config->pch_pfit.enabled) {
5440                 I915_WRITE(PF_CTL(pipe), 0);
5441                 I915_WRITE(PF_WIN_POS(pipe), 0);
5442                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5443         }
5444 }
5445
5446 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5447                                   struct drm_atomic_state *old_state)
5448 {
5449         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5450         struct drm_device *dev = crtc->dev;
5451         struct drm_i915_private *dev_priv = to_i915(dev);
5452         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5453         int pipe = intel_crtc->pipe;
5454
5455         /*
5456          * Sometimes spurious CPU pipe underruns happen when the
5457          * pipe is already disabled, but FDI RX/TX is still enabled.
5458          * Happens at least with VGA+HDMI cloning. Suppress them.
5459          */
5460         if (intel_crtc->config->has_pch_encoder) {
5461                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5462                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5463         }
5464
5465         intel_encoders_disable(crtc, old_crtc_state, old_state);
5466
5467         drm_crtc_vblank_off(crtc);
5468         assert_vblank_disabled(crtc);
5469
5470         intel_disable_pipe(intel_crtc);
5471
5472         ironlake_pfit_disable(intel_crtc, false);
5473
5474         if (intel_crtc->config->has_pch_encoder)
5475                 ironlake_fdi_disable(crtc);
5476
5477         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5478
5479         if (intel_crtc->config->has_pch_encoder) {
5480                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5481
5482                 if (HAS_PCH_CPT(dev_priv)) {
5483                         i915_reg_t reg;
5484                         u32 temp;
5485
5486                         /* disable TRANS_DP_CTL */
5487                         reg = TRANS_DP_CTL(pipe);
5488                         temp = I915_READ(reg);
5489                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5490                                   TRANS_DP_PORT_SEL_MASK);
5491                         temp |= TRANS_DP_PORT_SEL_NONE;
5492                         I915_WRITE(reg, temp);
5493
5494                         /* disable DPLL_SEL */
5495                         temp = I915_READ(PCH_DPLL_SEL);
5496                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5497                         I915_WRITE(PCH_DPLL_SEL, temp);
5498                 }
5499
5500                 ironlake_fdi_pll_disable(intel_crtc);
5501         }
5502
5503         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5504         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5505 }
5506
5507 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5508                                  struct drm_atomic_state *old_state)
5509 {
5510         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5511         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5512         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5513         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5514
5515         if (intel_crtc->config->has_pch_encoder)
5516                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5517                                                       false);
5518
5519         intel_encoders_disable(crtc, old_crtc_state, old_state);
5520
5521         drm_crtc_vblank_off(crtc);
5522         assert_vblank_disabled(crtc);
5523
5524         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5525         if (!transcoder_is_dsi(cpu_transcoder))
5526                 intel_disable_pipe(intel_crtc);
5527
5528         if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5529                 intel_ddi_set_vc_payload_alloc(intel_crtc->config, false);
5530
5531         if (!transcoder_is_dsi(cpu_transcoder))
5532                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5533
5534         if (INTEL_GEN(dev_priv) >= 9)
5535                 skylake_scaler_disable(intel_crtc);
5536         else
5537                 ironlake_pfit_disable(intel_crtc, false);
5538
5539         if (!transcoder_is_dsi(cpu_transcoder))
5540                 intel_ddi_disable_pipe_clock(intel_crtc->config);
5541
5542         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5543
5544         if (old_crtc_state->has_pch_encoder)
5545                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5546                                                       true);
5547 }
5548
5549 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5550 {
5551         struct drm_device *dev = crtc->base.dev;
5552         struct drm_i915_private *dev_priv = to_i915(dev);
5553         struct intel_crtc_state *pipe_config = crtc->config;
5554
5555         if (!pipe_config->gmch_pfit.control)
5556                 return;
5557
5558         /*
5559          * The panel fitter should only be adjusted whilst the pipe is disabled,
5560          * according to register description and PRM.
5561          */
5562         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5563         assert_pipe_disabled(dev_priv, crtc->pipe);
5564
5565         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5566         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5567
5568         /* Border color in case we don't scale up to the full screen. Black by
5569          * default, change to something else for debugging. */
5570         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5571 }
5572
5573 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
5574 {
5575         switch (port) {
5576         case PORT_A:
5577                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5578         case PORT_B:
5579                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5580         case PORT_C:
5581                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5582         case PORT_D:
5583                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5584         case PORT_E:
5585                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5586         default:
5587                 MISSING_CASE(port);
5588                 return POWER_DOMAIN_PORT_OTHER;
5589         }
5590 }
5591
5592 static u64 get_crtc_power_domains(struct drm_crtc *crtc,
5593                                   struct intel_crtc_state *crtc_state)
5594 {
5595         struct drm_device *dev = crtc->dev;
5596         struct drm_i915_private *dev_priv = to_i915(dev);
5597         struct drm_encoder *encoder;
5598         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5599         enum pipe pipe = intel_crtc->pipe;
5600         u64 mask;
5601         enum transcoder transcoder = crtc_state->cpu_transcoder;
5602
5603         if (!crtc_state->base.active)
5604                 return 0;
5605
5606         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5607         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5608         if (crtc_state->pch_pfit.enabled ||
5609             crtc_state->pch_pfit.force_thru)
5610                 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5611
5612         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5613                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5614
5615                 mask |= BIT_ULL(intel_encoder->power_domain);
5616         }
5617
5618         if (HAS_DDI(dev_priv) && crtc_state->has_audio)
5619                 mask |= BIT(POWER_DOMAIN_AUDIO);
5620
5621         if (crtc_state->shared_dpll)
5622                 mask |= BIT_ULL(POWER_DOMAIN_PLLS);
5623
5624         return mask;
5625 }
5626
5627 static u64
5628 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5629                                struct intel_crtc_state *crtc_state)
5630 {
5631         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5632         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5633         enum intel_display_power_domain domain;
5634         u64 domains, new_domains, old_domains;
5635
5636         old_domains = intel_crtc->enabled_power_domains;
5637         intel_crtc->enabled_power_domains = new_domains =
5638                 get_crtc_power_domains(crtc, crtc_state);
5639
5640         domains = new_domains & ~old_domains;
5641
5642         for_each_power_domain(domain, domains)
5643                 intel_display_power_get(dev_priv, domain);
5644
5645         return old_domains & ~new_domains;
5646 }
5647
5648 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5649                                       u64 domains)
5650 {
5651         enum intel_display_power_domain domain;
5652
5653         for_each_power_domain(domain, domains)
5654                 intel_display_power_put(dev_priv, domain);
5655 }
5656
5657 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
5658                                    struct drm_atomic_state *old_state)
5659 {
5660         struct intel_atomic_state *old_intel_state =
5661                 to_intel_atomic_state(old_state);
5662         struct drm_crtc *crtc = pipe_config->base.crtc;
5663         struct drm_device *dev = crtc->dev;
5664         struct drm_i915_private *dev_priv = to_i915(dev);
5665         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5666         int pipe = intel_crtc->pipe;
5667
5668         if (WARN_ON(intel_crtc->active))
5669                 return;
5670
5671         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5672                 intel_dp_set_m_n(intel_crtc, M1_N1);
5673
5674         intel_set_pipe_timings(intel_crtc);
5675         intel_set_pipe_src_size(intel_crtc);
5676
5677         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
5678                 struct drm_i915_private *dev_priv = to_i915(dev);
5679
5680                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5681                 I915_WRITE(CHV_CANVAS(pipe), 0);
5682         }
5683
5684         i9xx_set_pipeconf(intel_crtc);
5685
5686         intel_crtc->active = true;
5687
5688         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5689
5690         intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5691
5692         if (IS_CHERRYVIEW(dev_priv)) {
5693                 chv_prepare_pll(intel_crtc, intel_crtc->config);
5694                 chv_enable_pll(intel_crtc, intel_crtc->config);
5695         } else {
5696                 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5697                 vlv_enable_pll(intel_crtc, intel_crtc->config);
5698         }
5699
5700         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5701
5702         i9xx_pfit_enable(intel_crtc);
5703
5704         intel_color_load_luts(&pipe_config->base);
5705
5706         dev_priv->display.initial_watermarks(old_intel_state,
5707                                              pipe_config);
5708         intel_enable_pipe(intel_crtc);
5709
5710         assert_vblank_disabled(crtc);
5711         drm_crtc_vblank_on(crtc);
5712
5713         intel_encoders_enable(crtc, pipe_config, old_state);
5714 }
5715
5716 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5717 {
5718         struct drm_device *dev = crtc->base.dev;
5719         struct drm_i915_private *dev_priv = to_i915(dev);
5720
5721         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5722         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5723 }
5724
5725 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
5726                              struct drm_atomic_state *old_state)
5727 {
5728         struct drm_crtc *crtc = pipe_config->base.crtc;
5729         struct drm_device *dev = crtc->dev;
5730         struct drm_i915_private *dev_priv = to_i915(dev);
5731         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5732         enum pipe pipe = intel_crtc->pipe;
5733
5734         if (WARN_ON(intel_crtc->active))
5735                 return;
5736
5737         i9xx_set_pll_dividers(intel_crtc);
5738
5739         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5740                 intel_dp_set_m_n(intel_crtc, M1_N1);
5741
5742         intel_set_pipe_timings(intel_crtc);
5743         intel_set_pipe_src_size(intel_crtc);
5744
5745         i9xx_set_pipeconf(intel_crtc);
5746
5747         intel_crtc->active = true;
5748
5749         if (!IS_GEN2(dev_priv))
5750                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5751
5752         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5753
5754         i9xx_enable_pll(intel_crtc);
5755
5756         i9xx_pfit_enable(intel_crtc);
5757
5758         intel_color_load_luts(&pipe_config->base);
5759
5760         intel_update_watermarks(intel_crtc);
5761         intel_enable_pipe(intel_crtc);
5762
5763         assert_vblank_disabled(crtc);
5764         drm_crtc_vblank_on(crtc);
5765
5766         intel_encoders_enable(crtc, pipe_config, old_state);
5767 }
5768
5769 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5770 {
5771         struct drm_device *dev = crtc->base.dev;
5772         struct drm_i915_private *dev_priv = to_i915(dev);
5773
5774         if (!crtc->config->gmch_pfit.control)
5775                 return;
5776
5777         assert_pipe_disabled(dev_priv, crtc->pipe);
5778
5779         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5780                          I915_READ(PFIT_CONTROL));
5781         I915_WRITE(PFIT_CONTROL, 0);
5782 }
5783
5784 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
5785                               struct drm_atomic_state *old_state)
5786 {
5787         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5788         struct drm_device *dev = crtc->dev;
5789         struct drm_i915_private *dev_priv = to_i915(dev);
5790         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5791         int pipe = intel_crtc->pipe;
5792
5793         /*
5794          * On gen2 planes are double buffered but the pipe isn't, so we must
5795          * wait for planes to fully turn off before disabling the pipe.
5796          */
5797         if (IS_GEN2(dev_priv))
5798                 intel_wait_for_vblank(dev_priv, pipe);
5799
5800         intel_encoders_disable(crtc, old_crtc_state, old_state);
5801
5802         drm_crtc_vblank_off(crtc);
5803         assert_vblank_disabled(crtc);
5804
5805         intel_disable_pipe(intel_crtc);
5806
5807         i9xx_pfit_disable(intel_crtc);
5808
5809         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5810
5811         if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
5812                 if (IS_CHERRYVIEW(dev_priv))
5813                         chv_disable_pll(dev_priv, pipe);
5814                 else if (IS_VALLEYVIEW(dev_priv))
5815                         vlv_disable_pll(dev_priv, pipe);
5816                 else
5817                         i9xx_disable_pll(intel_crtc);
5818         }
5819
5820         intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
5821
5822         if (!IS_GEN2(dev_priv))
5823                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5824
5825         if (!dev_priv->display.initial_watermarks)
5826                 intel_update_watermarks(intel_crtc);
5827 }
5828
5829 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc,
5830                                         struct drm_modeset_acquire_ctx *ctx)
5831 {
5832         struct intel_encoder *encoder;
5833         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5834         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5835         enum intel_display_power_domain domain;
5836         u64 domains;
5837         struct drm_atomic_state *state;
5838         struct intel_crtc_state *crtc_state;
5839         int ret;
5840
5841         if (!intel_crtc->active)
5842                 return;
5843
5844         if (crtc->primary->state->visible) {
5845                 WARN_ON(intel_crtc->flip_work);
5846
5847                 intel_pre_disable_primary_noatomic(crtc);
5848
5849                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
5850                 crtc->primary->state->visible = false;
5851         }
5852
5853         state = drm_atomic_state_alloc(crtc->dev);
5854         if (!state) {
5855                 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
5856                               crtc->base.id, crtc->name);
5857                 return;
5858         }
5859
5860         state->acquire_ctx = ctx;
5861
5862         /* Everything's already locked, -EDEADLK can't happen. */
5863         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5864         ret = drm_atomic_add_affected_connectors(state, crtc);
5865
5866         WARN_ON(IS_ERR(crtc_state) || ret);
5867
5868         dev_priv->display.crtc_disable(crtc_state, state);
5869
5870         drm_atomic_state_put(state);
5871
5872         DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
5873                       crtc->base.id, crtc->name);
5874
5875         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
5876         crtc->state->active = false;
5877         intel_crtc->active = false;
5878         crtc->enabled = false;
5879         crtc->state->connector_mask = 0;
5880         crtc->state->encoder_mask = 0;
5881
5882         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
5883                 encoder->base.crtc = NULL;
5884
5885         intel_fbc_disable(intel_crtc);
5886         intel_update_watermarks(intel_crtc);
5887         intel_disable_shared_dpll(intel_crtc);
5888
5889         domains = intel_crtc->enabled_power_domains;
5890         for_each_power_domain(domain, domains)
5891                 intel_display_power_put(dev_priv, domain);
5892         intel_crtc->enabled_power_domains = 0;
5893
5894         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
5895         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
5896 }
5897
5898 /*
5899  * turn all crtc's off, but do not adjust state
5900  * This has to be paired with a call to intel_modeset_setup_hw_state.
5901  */
5902 int intel_display_suspend(struct drm_device *dev)
5903 {
5904         struct drm_i915_private *dev_priv = to_i915(dev);
5905         struct drm_atomic_state *state;
5906         int ret;
5907
5908         state = drm_atomic_helper_suspend(dev);
5909         ret = PTR_ERR_OR_ZERO(state);
5910         if (ret)
5911                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
5912         else
5913                 dev_priv->modeset_restore_state = state;
5914         return ret;
5915 }
5916
5917 void intel_encoder_destroy(struct drm_encoder *encoder)
5918 {
5919         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5920
5921         drm_encoder_cleanup(encoder);
5922         kfree(intel_encoder);
5923 }
5924
5925 /* Cross check the actual hw state with our own modeset state tracking (and it's
5926  * internal consistency). */
5927 static void intel_connector_verify_state(struct intel_connector *connector)
5928 {
5929         struct drm_crtc *crtc = connector->base.state->crtc;
5930
5931         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5932                       connector->base.base.id,
5933                       connector->base.name);
5934
5935         if (connector->get_hw_state(connector)) {
5936                 struct intel_encoder *encoder = connector->encoder;
5937                 struct drm_connector_state *conn_state = connector->base.state;
5938
5939                 I915_STATE_WARN(!crtc,
5940                          "connector enabled without attached crtc\n");
5941
5942                 if (!crtc)
5943                         return;
5944
5945                 I915_STATE_WARN(!crtc->state->active,
5946                       "connector is active, but attached crtc isn't\n");
5947
5948                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
5949                         return;
5950
5951                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
5952                         "atomic encoder doesn't match attached encoder\n");
5953
5954                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
5955                         "attached encoder crtc differs from connector crtc\n");
5956         } else {
5957                 I915_STATE_WARN(crtc && crtc->state->active,
5958                         "attached crtc is active, but connector isn't\n");
5959                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
5960                         "best encoder set without crtc!\n");
5961         }
5962 }
5963
5964 int intel_connector_init(struct intel_connector *connector)
5965 {
5966         drm_atomic_helper_connector_reset(&connector->base);
5967
5968         if (!connector->base.state)
5969                 return -ENOMEM;
5970
5971         return 0;
5972 }
5973
5974 struct intel_connector *intel_connector_alloc(void)
5975 {
5976         struct intel_connector *connector;
5977
5978         connector = kzalloc(sizeof *connector, GFP_KERNEL);
5979         if (!connector)
5980                 return NULL;
5981
5982         if (intel_connector_init(connector) < 0) {
5983                 kfree(connector);
5984                 return NULL;
5985         }
5986
5987         return connector;
5988 }
5989
5990 /* Simple connector->get_hw_state implementation for encoders that support only
5991  * one connector and no cloning and hence the encoder state determines the state
5992  * of the connector. */
5993 bool intel_connector_get_hw_state(struct intel_connector *connector)
5994 {
5995         enum pipe pipe = 0;
5996         struct intel_encoder *encoder = connector->encoder;
5997
5998         return encoder->get_hw_state(encoder, &pipe);
5999 }
6000
6001 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6002 {
6003         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6004                 return crtc_state->fdi_lanes;
6005
6006         return 0;
6007 }
6008
6009 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6010                                      struct intel_crtc_state *pipe_config)
6011 {
6012         struct drm_i915_private *dev_priv = to_i915(dev);
6013         struct drm_atomic_state *state = pipe_config->base.state;
6014         struct intel_crtc *other_crtc;
6015         struct intel_crtc_state *other_crtc_state;
6016
6017         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6018                       pipe_name(pipe), pipe_config->fdi_lanes);
6019         if (pipe_config->fdi_lanes > 4) {
6020                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6021                               pipe_name(pipe), pipe_config->fdi_lanes);
6022                 return -EINVAL;
6023         }
6024
6025         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
6026                 if (pipe_config->fdi_lanes > 2) {
6027                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6028                                       pipe_config->fdi_lanes);
6029                         return -EINVAL;
6030                 } else {
6031                         return 0;
6032                 }
6033         }
6034
6035         if (INTEL_INFO(dev_priv)->num_pipes == 2)
6036                 return 0;
6037
6038         /* Ivybridge 3 pipe is really complicated */
6039         switch (pipe) {
6040         case PIPE_A:
6041                 return 0;
6042         case PIPE_B:
6043                 if (pipe_config->fdi_lanes <= 2)
6044                         return 0;
6045
6046                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
6047                 other_crtc_state =
6048                         intel_atomic_get_crtc_state(state, other_crtc);
6049                 if (IS_ERR(other_crtc_state))
6050                         return PTR_ERR(other_crtc_state);
6051
6052                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6053                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6054                                       pipe_name(pipe), pipe_config->fdi_lanes);
6055                         return -EINVAL;
6056                 }
6057                 return 0;
6058         case PIPE_C:
6059                 if (pipe_config->fdi_lanes > 2) {
6060                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6061                                       pipe_name(pipe), pipe_config->fdi_lanes);
6062                         return -EINVAL;
6063                 }
6064
6065                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
6066                 other_crtc_state =
6067                         intel_atomic_get_crtc_state(state, other_crtc);
6068                 if (IS_ERR(other_crtc_state))
6069                         return PTR_ERR(other_crtc_state);
6070
6071                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6072                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6073                         return -EINVAL;
6074                 }
6075                 return 0;
6076         default:
6077                 BUG();
6078         }
6079 }
6080
6081 #define RETRY 1
6082 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6083                                        struct intel_crtc_state *pipe_config)
6084 {
6085         struct drm_device *dev = intel_crtc->base.dev;
6086         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6087         int lane, link_bw, fdi_dotclock, ret;
6088         bool needs_recompute = false;
6089
6090 retry:
6091         /* FDI is a binary signal running at ~2.7GHz, encoding
6092          * each output octet as 10 bits. The actual frequency
6093          * is stored as a divider into a 100MHz clock, and the
6094          * mode pixel clock is stored in units of 1KHz.
6095          * Hence the bw of each lane in terms of the mode signal
6096          * is:
6097          */
6098         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6099
6100         fdi_dotclock = adjusted_mode->crtc_clock;
6101
6102         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6103                                            pipe_config->pipe_bpp);
6104
6105         pipe_config->fdi_lanes = lane;
6106
6107         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6108                                link_bw, &pipe_config->fdi_m_n, false);
6109
6110         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6111         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6112                 pipe_config->pipe_bpp -= 2*3;
6113                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6114                               pipe_config->pipe_bpp);
6115                 needs_recompute = true;
6116                 pipe_config->bw_constrained = true;
6117
6118                 goto retry;
6119         }
6120
6121         if (needs_recompute)
6122                 return RETRY;
6123
6124         return ret;
6125 }
6126
6127 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6128                                      struct intel_crtc_state *pipe_config)
6129 {
6130         if (pipe_config->pipe_bpp > 24)
6131                 return false;
6132
6133         /* HSW can handle pixel rate up to cdclk? */
6134         if (IS_HASWELL(dev_priv))
6135                 return true;
6136
6137         /*
6138          * We compare against max which means we must take
6139          * the increased cdclk requirement into account when
6140          * calculating the new cdclk.
6141          *
6142          * Should measure whether using a lower cdclk w/o IPS
6143          */
6144         return pipe_config->pixel_rate <=
6145                 dev_priv->max_cdclk_freq * 95 / 100;
6146 }
6147
6148 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6149                                    struct intel_crtc_state *pipe_config)
6150 {
6151         struct drm_device *dev = crtc->base.dev;
6152         struct drm_i915_private *dev_priv = to_i915(dev);
6153
6154         pipe_config->ips_enabled = i915.enable_ips &&
6155                 hsw_crtc_supports_ips(crtc) &&
6156                 pipe_config_supports_ips(dev_priv, pipe_config);
6157 }
6158
6159 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6160 {
6161         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6162
6163         /* GDG double wide on either pipe, otherwise pipe A only */
6164         return INTEL_INFO(dev_priv)->gen < 4 &&
6165                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6166 }
6167
6168 static uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
6169 {
6170         uint32_t pixel_rate;
6171
6172         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
6173
6174         /*
6175          * We only use IF-ID interlacing. If we ever use
6176          * PF-ID we'll need to adjust the pixel_rate here.
6177          */
6178
6179         if (pipe_config->pch_pfit.enabled) {
6180                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
6181                 uint32_t pfit_size = pipe_config->pch_pfit.size;
6182
6183                 pipe_w = pipe_config->pipe_src_w;
6184                 pipe_h = pipe_config->pipe_src_h;
6185
6186                 pfit_w = (pfit_size >> 16) & 0xFFFF;
6187                 pfit_h = pfit_size & 0xFFFF;
6188                 if (pipe_w < pfit_w)
6189                         pipe_w = pfit_w;
6190                 if (pipe_h < pfit_h)
6191                         pipe_h = pfit_h;
6192
6193                 if (WARN_ON(!pfit_w || !pfit_h))
6194                         return pixel_rate;
6195
6196                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
6197                                      pfit_w * pfit_h);
6198         }
6199
6200         return pixel_rate;
6201 }
6202
6203 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
6204 {
6205         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
6206
6207         if (HAS_GMCH_DISPLAY(dev_priv))
6208                 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
6209                 crtc_state->pixel_rate =
6210                         crtc_state->base.adjusted_mode.crtc_clock;
6211         else
6212                 crtc_state->pixel_rate =
6213                         ilk_pipe_pixel_rate(crtc_state);
6214 }
6215
6216 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6217                                      struct intel_crtc_state *pipe_config)
6218 {
6219         struct drm_device *dev = crtc->base.dev;
6220         struct drm_i915_private *dev_priv = to_i915(dev);
6221         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6222         int clock_limit = dev_priv->max_dotclk_freq;
6223
6224         if (INTEL_GEN(dev_priv) < 4) {
6225                 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6226
6227                 /*
6228                  * Enable double wide mode when the dot clock
6229                  * is > 90% of the (display) core speed.
6230                  */
6231                 if (intel_crtc_supports_double_wide(crtc) &&
6232                     adjusted_mode->crtc_clock > clock_limit) {
6233                         clock_limit = dev_priv->max_dotclk_freq;
6234                         pipe_config->double_wide = true;
6235                 }
6236         }
6237
6238         if (adjusted_mode->crtc_clock > clock_limit) {
6239                 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6240                               adjusted_mode->crtc_clock, clock_limit,
6241                               yesno(pipe_config->double_wide));
6242                 return -EINVAL;
6243         }
6244
6245         /*
6246          * Pipe horizontal size must be even in:
6247          * - DVO ganged mode
6248          * - LVDS dual channel mode
6249          * - Double wide pipe
6250          */
6251         if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6252              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6253                 pipe_config->pipe_src_w &= ~1;
6254
6255         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6256          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6257          */
6258         if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
6259                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6260                 return -EINVAL;
6261
6262         intel_crtc_compute_pixel_rate(pipe_config);
6263
6264         if (HAS_IPS(dev_priv))
6265                 hsw_compute_ips_config(crtc, pipe_config);
6266
6267         if (pipe_config->has_pch_encoder)
6268                 return ironlake_fdi_compute_config(crtc, pipe_config);
6269
6270         return 0;
6271 }
6272
6273 static void
6274 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6275 {
6276         while (*num > DATA_LINK_M_N_MASK ||
6277                *den > DATA_LINK_M_N_MASK) {
6278                 *num >>= 1;
6279                 *den >>= 1;
6280         }
6281 }
6282
6283 static void compute_m_n(unsigned int m, unsigned int n,
6284                         uint32_t *ret_m, uint32_t *ret_n,
6285                         bool reduce_m_n)
6286 {
6287         /*
6288          * Reduce M/N as much as possible without loss in precision. Several DP
6289          * dongles in particular seem to be fussy about too large *link* M/N
6290          * values. The passed in values are more likely to have the least
6291          * significant bits zero than M after rounding below, so do this first.
6292          */
6293         if (reduce_m_n) {
6294                 while ((m & 1) == 0 && (n & 1) == 0) {
6295                         m >>= 1;
6296                         n >>= 1;
6297                 }
6298         }
6299
6300         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6301         *ret_m = div_u64((uint64_t) m * *ret_n, n);
6302         intel_reduce_m_n_ratio(ret_m, ret_n);
6303 }
6304
6305 void
6306 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6307                        int pixel_clock, int link_clock,
6308                        struct intel_link_m_n *m_n,
6309                        bool reduce_m_n)
6310 {
6311         m_n->tu = 64;
6312
6313         compute_m_n(bits_per_pixel * pixel_clock,
6314                     link_clock * nlanes * 8,
6315                     &m_n->gmch_m, &m_n->gmch_n,
6316                     reduce_m_n);
6317
6318         compute_m_n(pixel_clock, link_clock,
6319                     &m_n->link_m, &m_n->link_n,
6320                     reduce_m_n);
6321 }
6322
6323 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6324 {
6325         if (i915.panel_use_ssc >= 0)
6326                 return i915.panel_use_ssc != 0;
6327         return dev_priv->vbt.lvds_use_ssc
6328                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6329 }
6330
6331 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6332 {
6333         return (1 << dpll->n) << 16 | dpll->m2;
6334 }
6335
6336 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6337 {
6338         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6339 }
6340
6341 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6342                                      struct intel_crtc_state *crtc_state,
6343                                      struct dpll *reduced_clock)
6344 {
6345         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6346         u32 fp, fp2 = 0;
6347
6348         if (IS_PINEVIEW(dev_priv)) {
6349                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6350                 if (reduced_clock)
6351                         fp2 = pnv_dpll_compute_fp(reduced_clock);
6352         } else {
6353                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6354                 if (reduced_clock)
6355                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
6356         }
6357
6358         crtc_state->dpll_hw_state.fp0 = fp;
6359
6360         crtc->lowfreq_avail = false;
6361         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6362             reduced_clock) {
6363                 crtc_state->dpll_hw_state.fp1 = fp2;
6364                 crtc->lowfreq_avail = true;
6365         } else {
6366                 crtc_state->dpll_hw_state.fp1 = fp;
6367         }
6368 }
6369
6370 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6371                 pipe)
6372 {
6373         u32 reg_val;
6374
6375         /*
6376          * PLLB opamp always calibrates to max value of 0x3f, force enable it
6377          * and set it to a reasonable value instead.
6378          */
6379         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6380         reg_val &= 0xffffff00;
6381         reg_val |= 0x00000030;
6382         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6383
6384         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6385         reg_val &= 0x8cffffff;
6386         reg_val = 0x8c000000;
6387         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6388
6389         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6390         reg_val &= 0xffffff00;
6391         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6392
6393         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6394         reg_val &= 0x00ffffff;
6395         reg_val |= 0xb0000000;
6396         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6397 }
6398
6399 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6400                                          struct intel_link_m_n *m_n)
6401 {
6402         struct drm_device *dev = crtc->base.dev;
6403         struct drm_i915_private *dev_priv = to_i915(dev);
6404         int pipe = crtc->pipe;
6405
6406         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6407         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6408         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6409         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6410 }
6411
6412 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6413                                          struct intel_link_m_n *m_n,
6414                                          struct intel_link_m_n *m2_n2)
6415 {
6416         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6417         int pipe = crtc->pipe;
6418         enum transcoder transcoder = crtc->config->cpu_transcoder;
6419
6420         if (INTEL_GEN(dev_priv) >= 5) {
6421                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6422                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6423                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6424                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6425                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6426                  * for gen < 8) and if DRRS is supported (to make sure the
6427                  * registers are not unnecessarily accessed).
6428                  */
6429                 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
6430                     INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
6431                         I915_WRITE(PIPE_DATA_M2(transcoder),
6432                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6433                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6434                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6435                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6436                 }
6437         } else {
6438                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6439                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6440                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6441                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6442         }
6443 }
6444
6445 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6446 {
6447         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6448
6449         if (m_n == M1_N1) {
6450                 dp_m_n = &crtc->config->dp_m_n;
6451                 dp_m2_n2 = &crtc->config->dp_m2_n2;
6452         } else if (m_n == M2_N2) {
6453
6454                 /*
6455                  * M2_N2 registers are not supported. Hence m2_n2 divider value
6456                  * needs to be programmed into M1_N1.
6457                  */
6458                 dp_m_n = &crtc->config->dp_m2_n2;
6459         } else {
6460                 DRM_ERROR("Unsupported divider value\n");
6461                 return;
6462         }
6463
6464         if (crtc->config->has_pch_encoder)
6465                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6466         else
6467                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6468 }
6469
6470 static void vlv_compute_dpll(struct intel_crtc *crtc,
6471                              struct intel_crtc_state *pipe_config)
6472 {
6473         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
6474                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6475         if (crtc->pipe != PIPE_A)
6476                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6477
6478         /* DPLL not used with DSI, but still need the rest set up */
6479         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6480                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
6481                         DPLL_EXT_BUFFER_ENABLE_VLV;
6482
6483         pipe_config->dpll_hw_state.dpll_md =
6484                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6485 }
6486
6487 static void chv_compute_dpll(struct intel_crtc *crtc,
6488                              struct intel_crtc_state *pipe_config)
6489 {
6490         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
6491                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6492         if (crtc->pipe != PIPE_A)
6493                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6494
6495         /* DPLL not used with DSI, but still need the rest set up */
6496         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6497                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
6498
6499         pipe_config->dpll_hw_state.dpll_md =
6500                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6501 }
6502
6503 static void vlv_prepare_pll(struct intel_crtc *crtc,
6504                             const struct intel_crtc_state *pipe_config)
6505 {
6506         struct drm_device *dev = crtc->base.dev;
6507         struct drm_i915_private *dev_priv = to_i915(dev);
6508         enum pipe pipe = crtc->pipe;
6509         u32 mdiv;
6510         u32 bestn, bestm1, bestm2, bestp1, bestp2;
6511         u32 coreclk, reg_val;
6512
6513         /* Enable Refclk */
6514         I915_WRITE(DPLL(pipe),
6515                    pipe_config->dpll_hw_state.dpll &
6516                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
6517
6518         /* No need to actually set up the DPLL with DSI */
6519         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6520                 return;
6521
6522         mutex_lock(&dev_priv->sb_lock);
6523
6524         bestn = pipe_config->dpll.n;
6525         bestm1 = pipe_config->dpll.m1;
6526         bestm2 = pipe_config->dpll.m2;
6527         bestp1 = pipe_config->dpll.p1;
6528         bestp2 = pipe_config->dpll.p2;
6529
6530         /* See eDP HDMI DPIO driver vbios notes doc */
6531
6532         /* PLL B needs special handling */
6533         if (pipe == PIPE_B)
6534                 vlv_pllb_recal_opamp(dev_priv, pipe);
6535
6536         /* Set up Tx target for periodic Rcomp update */
6537         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6538
6539         /* Disable target IRef on PLL */
6540         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6541         reg_val &= 0x00ffffff;
6542         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6543
6544         /* Disable fast lock */
6545         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6546
6547         /* Set idtafcrecal before PLL is enabled */
6548         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6549         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6550         mdiv |= ((bestn << DPIO_N_SHIFT));
6551         mdiv |= (1 << DPIO_K_SHIFT);
6552
6553         /*
6554          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6555          * but we don't support that).
6556          * Note: don't use the DAC post divider as it seems unstable.
6557          */
6558         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6559         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6560
6561         mdiv |= DPIO_ENABLE_CALIBRATION;
6562         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6563
6564         /* Set HBR and RBR LPF coefficients */
6565         if (pipe_config->port_clock == 162000 ||
6566             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
6567             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
6568                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6569                                  0x009f0003);
6570         else
6571                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6572                                  0x00d0000f);
6573
6574         if (intel_crtc_has_dp_encoder(pipe_config)) {
6575                 /* Use SSC source */
6576                 if (pipe == PIPE_A)
6577                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6578                                          0x0df40000);
6579                 else
6580                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6581                                          0x0df70000);
6582         } else { /* HDMI or VGA */
6583                 /* Use bend source */
6584                 if (pipe == PIPE_A)
6585                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6586                                          0x0df70000);
6587                 else
6588                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6589                                          0x0df40000);
6590         }
6591
6592         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6593         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6594         if (intel_crtc_has_dp_encoder(crtc->config))
6595                 coreclk |= 0x01000000;
6596         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6597
6598         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6599         mutex_unlock(&dev_priv->sb_lock);
6600 }
6601
6602 static void chv_prepare_pll(struct intel_crtc *crtc,
6603                             const struct intel_crtc_state *pipe_config)
6604 {
6605         struct drm_device *dev = crtc->base.dev;
6606         struct drm_i915_private *dev_priv = to_i915(dev);
6607         enum pipe pipe = crtc->pipe;
6608         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6609         u32 loopfilter, tribuf_calcntr;
6610         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6611         u32 dpio_val;
6612         int vco;
6613
6614         /* Enable Refclk and SSC */
6615         I915_WRITE(DPLL(pipe),
6616                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6617
6618         /* No need to actually set up the DPLL with DSI */
6619         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6620                 return;
6621
6622         bestn = pipe_config->dpll.n;
6623         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6624         bestm1 = pipe_config->dpll.m1;
6625         bestm2 = pipe_config->dpll.m2 >> 22;
6626         bestp1 = pipe_config->dpll.p1;
6627         bestp2 = pipe_config->dpll.p2;
6628         vco = pipe_config->dpll.vco;
6629         dpio_val = 0;
6630         loopfilter = 0;
6631
6632         mutex_lock(&dev_priv->sb_lock);
6633
6634         /* p1 and p2 divider */
6635         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6636                         5 << DPIO_CHV_S1_DIV_SHIFT |
6637                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6638                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6639                         1 << DPIO_CHV_K_DIV_SHIFT);
6640
6641         /* Feedback post-divider - m2 */
6642         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6643
6644         /* Feedback refclk divider - n and m1 */
6645         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6646                         DPIO_CHV_M1_DIV_BY_2 |
6647                         1 << DPIO_CHV_N_DIV_SHIFT);
6648
6649         /* M2 fraction division */
6650         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6651
6652         /* M2 fraction division enable */
6653         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6654         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6655         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6656         if (bestm2_frac)
6657                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6658         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6659
6660         /* Program digital lock detect threshold */
6661         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6662         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6663                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6664         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6665         if (!bestm2_frac)
6666                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6667         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6668
6669         /* Loop filter */
6670         if (vco == 5400000) {
6671                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6672                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6673                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6674                 tribuf_calcntr = 0x9;
6675         } else if (vco <= 6200000) {
6676                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6677                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6678                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6679                 tribuf_calcntr = 0x9;
6680         } else if (vco <= 6480000) {
6681                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6682                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6683                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6684                 tribuf_calcntr = 0x8;
6685         } else {
6686                 /* Not supported. Apply the same limits as in the max case */
6687                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6688                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6689                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6690                 tribuf_calcntr = 0;
6691         }
6692         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6693
6694         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6695         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6696         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6697         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6698
6699         /* AFC Recal */
6700         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6701                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6702                         DPIO_AFC_RECAL);
6703
6704         mutex_unlock(&dev_priv->sb_lock);
6705 }
6706
6707 /**
6708  * vlv_force_pll_on - forcibly enable just the PLL
6709  * @dev_priv: i915 private structure
6710  * @pipe: pipe PLL to enable
6711  * @dpll: PLL configuration
6712  *
6713  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6714  * in cases where we need the PLL enabled even when @pipe is not going to
6715  * be enabled.
6716  */
6717 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
6718                      const struct dpll *dpll)
6719 {
6720         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
6721         struct intel_crtc_state *pipe_config;
6722
6723         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
6724         if (!pipe_config)
6725                 return -ENOMEM;
6726
6727         pipe_config->base.crtc = &crtc->base;
6728         pipe_config->pixel_multiplier = 1;
6729         pipe_config->dpll = *dpll;
6730
6731         if (IS_CHERRYVIEW(dev_priv)) {
6732                 chv_compute_dpll(crtc, pipe_config);
6733                 chv_prepare_pll(crtc, pipe_config);
6734                 chv_enable_pll(crtc, pipe_config);
6735         } else {
6736                 vlv_compute_dpll(crtc, pipe_config);
6737                 vlv_prepare_pll(crtc, pipe_config);
6738                 vlv_enable_pll(crtc, pipe_config);
6739         }
6740
6741         kfree(pipe_config);
6742
6743         return 0;
6744 }
6745
6746 /**
6747  * vlv_force_pll_off - forcibly disable just the PLL
6748  * @dev_priv: i915 private structure
6749  * @pipe: pipe PLL to disable
6750  *
6751  * Disable the PLL for @pipe. To be used in cases where we need
6752  * the PLL enabled even when @pipe is not going to be enabled.
6753  */
6754 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
6755 {
6756         if (IS_CHERRYVIEW(dev_priv))
6757                 chv_disable_pll(dev_priv, pipe);
6758         else
6759                 vlv_disable_pll(dev_priv, pipe);
6760 }
6761
6762 static void i9xx_compute_dpll(struct intel_crtc *crtc,
6763                               struct intel_crtc_state *crtc_state,
6764                               struct dpll *reduced_clock)
6765 {
6766         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6767         u32 dpll;
6768         struct dpll *clock = &crtc_state->dpll;
6769
6770         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6771
6772         dpll = DPLL_VGA_MODE_DIS;
6773
6774         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
6775                 dpll |= DPLLB_MODE_LVDS;
6776         else
6777                 dpll |= DPLLB_MODE_DAC_SERIAL;
6778
6779         if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
6780             IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
6781                 dpll |= (crtc_state->pixel_multiplier - 1)
6782                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6783         }
6784
6785         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
6786             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
6787                 dpll |= DPLL_SDVO_HIGH_SPEED;
6788
6789         if (intel_crtc_has_dp_encoder(crtc_state))
6790                 dpll |= DPLL_SDVO_HIGH_SPEED;
6791
6792         /* compute bitmask from p1 value */
6793         if (IS_PINEVIEW(dev_priv))
6794                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6795         else {
6796                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6797                 if (IS_G4X(dev_priv) && reduced_clock)
6798                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6799         }
6800         switch (clock->p2) {
6801         case 5:
6802                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6803                 break;
6804         case 7:
6805                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6806                 break;
6807         case 10:
6808                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6809                 break;
6810         case 14:
6811                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6812                 break;
6813         }
6814         if (INTEL_GEN(dev_priv) >= 4)
6815                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6816
6817         if (crtc_state->sdvo_tv_clock)
6818                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6819         else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6820                  intel_panel_use_ssc(dev_priv))
6821                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6822         else
6823                 dpll |= PLL_REF_INPUT_DREFCLK;
6824
6825         dpll |= DPLL_VCO_ENABLE;
6826         crtc_state->dpll_hw_state.dpll = dpll;
6827
6828         if (INTEL_GEN(dev_priv) >= 4) {
6829                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6830                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6831                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6832         }
6833 }
6834
6835 static void i8xx_compute_dpll(struct intel_crtc *crtc,
6836                               struct intel_crtc_state *crtc_state,
6837                               struct dpll *reduced_clock)
6838 {
6839         struct drm_device *dev = crtc->base.dev;
6840         struct drm_i915_private *dev_priv = to_i915(dev);
6841         u32 dpll;
6842         struct dpll *clock = &crtc_state->dpll;
6843
6844         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6845
6846         dpll = DPLL_VGA_MODE_DIS;
6847
6848         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
6849                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6850         } else {
6851                 if (clock->p1 == 2)
6852                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6853                 else
6854                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6855                 if (clock->p2 == 4)
6856                         dpll |= PLL_P2_DIVIDE_BY_4;
6857         }
6858
6859         if (!IS_I830(dev_priv) &&
6860             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
6861                 dpll |= DPLL_DVO_2X_MODE;
6862
6863         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6864             intel_panel_use_ssc(dev_priv))
6865                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6866         else
6867                 dpll |= PLL_REF_INPUT_DREFCLK;
6868
6869         dpll |= DPLL_VCO_ENABLE;
6870         crtc_state->dpll_hw_state.dpll = dpll;
6871 }
6872
6873 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6874 {
6875         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
6876         enum pipe pipe = intel_crtc->pipe;
6877         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6878         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
6879         uint32_t crtc_vtotal, crtc_vblank_end;
6880         int vsyncshift = 0;
6881
6882         /* We need to be careful not to changed the adjusted mode, for otherwise
6883          * the hw state checker will get angry at the mismatch. */
6884         crtc_vtotal = adjusted_mode->crtc_vtotal;
6885         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6886
6887         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6888                 /* the chip adds 2 halflines automatically */
6889                 crtc_vtotal -= 1;
6890                 crtc_vblank_end -= 1;
6891
6892                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
6893                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6894                 else
6895                         vsyncshift = adjusted_mode->crtc_hsync_start -
6896                                 adjusted_mode->crtc_htotal / 2;
6897                 if (vsyncshift < 0)
6898                         vsyncshift += adjusted_mode->crtc_htotal;
6899         }
6900
6901         if (INTEL_GEN(dev_priv) > 3)
6902                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6903
6904         I915_WRITE(HTOTAL(cpu_transcoder),
6905                    (adjusted_mode->crtc_hdisplay - 1) |
6906                    ((adjusted_mode->crtc_htotal - 1) << 16));
6907         I915_WRITE(HBLANK(cpu_transcoder),
6908                    (adjusted_mode->crtc_hblank_start - 1) |
6909                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6910         I915_WRITE(HSYNC(cpu_transcoder),
6911                    (adjusted_mode->crtc_hsync_start - 1) |
6912                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6913
6914         I915_WRITE(VTOTAL(cpu_transcoder),
6915                    (adjusted_mode->crtc_vdisplay - 1) |
6916                    ((crtc_vtotal - 1) << 16));
6917         I915_WRITE(VBLANK(cpu_transcoder),
6918                    (adjusted_mode->crtc_vblank_start - 1) |
6919                    ((crtc_vblank_end - 1) << 16));
6920         I915_WRITE(VSYNC(cpu_transcoder),
6921                    (adjusted_mode->crtc_vsync_start - 1) |
6922                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6923
6924         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6925          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6926          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6927          * bits. */
6928         if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
6929             (pipe == PIPE_B || pipe == PIPE_C))
6930                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6931
6932 }
6933
6934 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
6935 {
6936         struct drm_device *dev = intel_crtc->base.dev;
6937         struct drm_i915_private *dev_priv = to_i915(dev);
6938         enum pipe pipe = intel_crtc->pipe;
6939
6940         /* pipesrc controls the size that is scaled from, which should
6941          * always be the user's requested size.
6942          */
6943         I915_WRITE(PIPESRC(pipe),
6944                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
6945                    (intel_crtc->config->pipe_src_h - 1));
6946 }
6947
6948 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6949                                    struct intel_crtc_state *pipe_config)
6950 {
6951         struct drm_device *dev = crtc->base.dev;
6952         struct drm_i915_private *dev_priv = to_i915(dev);
6953         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6954         uint32_t tmp;
6955
6956         tmp = I915_READ(HTOTAL(cpu_transcoder));
6957         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6958         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6959         tmp = I915_READ(HBLANK(cpu_transcoder));
6960         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6961         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6962         tmp = I915_READ(HSYNC(cpu_transcoder));
6963         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6964         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6965
6966         tmp = I915_READ(VTOTAL(cpu_transcoder));
6967         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6968         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6969         tmp = I915_READ(VBLANK(cpu_transcoder));
6970         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6971         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6972         tmp = I915_READ(VSYNC(cpu_transcoder));
6973         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6974         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6975
6976         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6977                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6978                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6979                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6980         }
6981 }
6982
6983 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
6984                                     struct intel_crtc_state *pipe_config)
6985 {
6986         struct drm_device *dev = crtc->base.dev;
6987         struct drm_i915_private *dev_priv = to_i915(dev);
6988         u32 tmp;
6989
6990         tmp = I915_READ(PIPESRC(crtc->pipe));
6991         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6992         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6993
6994         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6995         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
6996 }
6997
6998 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6999                                  struct intel_crtc_state *pipe_config)
7000 {
7001         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7002         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7003         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7004         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7005
7006         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7007         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7008         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7009         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7010
7011         mode->flags = pipe_config->base.adjusted_mode.flags;
7012         mode->type = DRM_MODE_TYPE_DRIVER;
7013
7014         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7015
7016         mode->hsync = drm_mode_hsync(mode);
7017         mode->vrefresh = drm_mode_vrefresh(mode);
7018         drm_mode_set_name(mode);
7019 }
7020
7021 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7022 {
7023         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
7024         uint32_t pipeconf;
7025
7026         pipeconf = 0;
7027
7028         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7029             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7030                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7031
7032         if (intel_crtc->config->double_wide)
7033                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7034
7035         /* only g4x and later have fancy bpc/dither controls */
7036         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7037             IS_CHERRYVIEW(dev_priv)) {
7038                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7039                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7040                         pipeconf |= PIPECONF_DITHER_EN |
7041                                     PIPECONF_DITHER_TYPE_SP;
7042
7043                 switch (intel_crtc->config->pipe_bpp) {
7044                 case 18:
7045                         pipeconf |= PIPECONF_6BPC;
7046                         break;
7047                 case 24:
7048                         pipeconf |= PIPECONF_8BPC;
7049                         break;
7050                 case 30:
7051                         pipeconf |= PIPECONF_10BPC;
7052                         break;
7053                 default:
7054                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7055                         BUG();
7056                 }
7057         }
7058
7059         if (HAS_PIPE_CXSR(dev_priv)) {
7060                 if (intel_crtc->lowfreq_avail) {
7061                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7062                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7063                 } else {
7064                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7065                 }
7066         }
7067
7068         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7069                 if (INTEL_GEN(dev_priv) < 4 ||
7070                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7071                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7072                 else
7073                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7074         } else
7075                 pipeconf |= PIPECONF_PROGRESSIVE;
7076
7077         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7078              intel_crtc->config->limited_color_range)
7079                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7080
7081         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7082         POSTING_READ(PIPECONF(intel_crtc->pipe));
7083 }
7084
7085 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7086                                    struct intel_crtc_state *crtc_state)
7087 {
7088         struct drm_device *dev = crtc->base.dev;
7089         struct drm_i915_private *dev_priv = to_i915(dev);
7090         const struct intel_limit *limit;
7091         int refclk = 48000;
7092
7093         memset(&crtc_state->dpll_hw_state, 0,
7094                sizeof(crtc_state->dpll_hw_state));
7095
7096         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7097                 if (intel_panel_use_ssc(dev_priv)) {
7098                         refclk = dev_priv->vbt.lvds_ssc_freq;
7099                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7100                 }
7101
7102                 limit = &intel_limits_i8xx_lvds;
7103         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7104                 limit = &intel_limits_i8xx_dvo;
7105         } else {
7106                 limit = &intel_limits_i8xx_dac;
7107         }
7108
7109         if (!crtc_state->clock_set &&
7110             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7111                                  refclk, NULL, &crtc_state->dpll)) {
7112                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7113                 return -EINVAL;
7114         }
7115
7116         i8xx_compute_dpll(crtc, crtc_state, NULL);
7117
7118         return 0;
7119 }
7120
7121 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7122                                   struct intel_crtc_state *crtc_state)
7123 {
7124         struct drm_device *dev = crtc->base.dev;
7125         struct drm_i915_private *dev_priv = to_i915(dev);
7126         const struct intel_limit *limit;
7127         int refclk = 96000;
7128
7129         memset(&crtc_state->dpll_hw_state, 0,
7130                sizeof(crtc_state->dpll_hw_state));
7131
7132         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7133                 if (intel_panel_use_ssc(dev_priv)) {
7134                         refclk = dev_priv->vbt.lvds_ssc_freq;
7135                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7136                 }
7137
7138                 if (intel_is_dual_link_lvds(dev))
7139                         limit = &intel_limits_g4x_dual_channel_lvds;
7140                 else
7141                         limit = &intel_limits_g4x_single_channel_lvds;
7142         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7143                    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7144                 limit = &intel_limits_g4x_hdmi;
7145         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7146                 limit = &intel_limits_g4x_sdvo;
7147         } else {
7148                 /* The option is for other outputs */
7149                 limit = &intel_limits_i9xx_sdvo;
7150         }
7151
7152         if (!crtc_state->clock_set &&
7153             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7154                                 refclk, NULL, &crtc_state->dpll)) {
7155                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7156                 return -EINVAL;
7157         }
7158
7159         i9xx_compute_dpll(crtc, crtc_state, NULL);
7160
7161         return 0;
7162 }
7163
7164 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7165                                   struct intel_crtc_state *crtc_state)
7166 {
7167         struct drm_device *dev = crtc->base.dev;
7168         struct drm_i915_private *dev_priv = to_i915(dev);
7169         const struct intel_limit *limit;
7170         int refclk = 96000;
7171
7172         memset(&crtc_state->dpll_hw_state, 0,
7173                sizeof(crtc_state->dpll_hw_state));
7174
7175         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7176                 if (intel_panel_use_ssc(dev_priv)) {
7177                         refclk = dev_priv->vbt.lvds_ssc_freq;
7178                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7179                 }
7180
7181                 limit = &intel_limits_pineview_lvds;
7182         } else {
7183                 limit = &intel_limits_pineview_sdvo;
7184         }
7185
7186         if (!crtc_state->clock_set &&
7187             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7188                                 refclk, NULL, &crtc_state->dpll)) {
7189                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7190                 return -EINVAL;
7191         }
7192
7193         i9xx_compute_dpll(crtc, crtc_state, NULL);
7194
7195         return 0;
7196 }
7197
7198 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7199                                    struct intel_crtc_state *crtc_state)
7200 {
7201         struct drm_device *dev = crtc->base.dev;
7202         struct drm_i915_private *dev_priv = to_i915(dev);
7203         const struct intel_limit *limit;
7204         int refclk = 96000;
7205
7206         memset(&crtc_state->dpll_hw_state, 0,
7207                sizeof(crtc_state->dpll_hw_state));
7208
7209         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7210                 if (intel_panel_use_ssc(dev_priv)) {
7211                         refclk = dev_priv->vbt.lvds_ssc_freq;
7212                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7213                 }
7214
7215                 limit = &intel_limits_i9xx_lvds;
7216         } else {
7217                 limit = &intel_limits_i9xx_sdvo;
7218         }
7219
7220         if (!crtc_state->clock_set &&
7221             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7222                                  refclk, NULL, &crtc_state->dpll)) {
7223                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7224                 return -EINVAL;
7225         }
7226
7227         i9xx_compute_dpll(crtc, crtc_state, NULL);
7228
7229         return 0;
7230 }
7231
7232 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7233                                   struct intel_crtc_state *crtc_state)
7234 {
7235         int refclk = 100000;
7236         const struct intel_limit *limit = &intel_limits_chv;
7237
7238         memset(&crtc_state->dpll_hw_state, 0,
7239                sizeof(crtc_state->dpll_hw_state));
7240
7241         if (!crtc_state->clock_set &&
7242             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7243                                 refclk, NULL, &crtc_state->dpll)) {
7244                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7245                 return -EINVAL;
7246         }
7247
7248         chv_compute_dpll(crtc, crtc_state);
7249
7250         return 0;
7251 }
7252
7253 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7254                                   struct intel_crtc_state *crtc_state)
7255 {
7256         int refclk = 100000;
7257         const struct intel_limit *limit = &intel_limits_vlv;
7258
7259         memset(&crtc_state->dpll_hw_state, 0,
7260                sizeof(crtc_state->dpll_hw_state));
7261
7262         if (!crtc_state->clock_set &&
7263             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7264                                 refclk, NULL, &crtc_state->dpll)) {
7265                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7266                 return -EINVAL;
7267         }
7268
7269         vlv_compute_dpll(crtc, crtc_state);
7270
7271         return 0;
7272 }
7273
7274 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7275                                  struct intel_crtc_state *pipe_config)
7276 {
7277         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7278         uint32_t tmp;
7279
7280         if (INTEL_GEN(dev_priv) <= 3 &&
7281             (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
7282                 return;
7283
7284         tmp = I915_READ(PFIT_CONTROL);
7285         if (!(tmp & PFIT_ENABLE))
7286                 return;
7287
7288         /* Check whether the pfit is attached to our pipe. */
7289         if (INTEL_GEN(dev_priv) < 4) {
7290                 if (crtc->pipe != PIPE_B)
7291                         return;
7292         } else {
7293                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7294                         return;
7295         }
7296
7297         pipe_config->gmch_pfit.control = tmp;
7298         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7299 }
7300
7301 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7302                                struct intel_crtc_state *pipe_config)
7303 {
7304         struct drm_device *dev = crtc->base.dev;
7305         struct drm_i915_private *dev_priv = to_i915(dev);
7306         int pipe = pipe_config->cpu_transcoder;
7307         struct dpll clock;
7308         u32 mdiv;
7309         int refclk = 100000;
7310
7311         /* In case of DSI, DPLL will not be used */
7312         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7313                 return;
7314
7315         mutex_lock(&dev_priv->sb_lock);
7316         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7317         mutex_unlock(&dev_priv->sb_lock);
7318
7319         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7320         clock.m2 = mdiv & DPIO_M2DIV_MASK;
7321         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7322         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7323         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7324
7325         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7326 }
7327
7328 static void
7329 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7330                               struct intel_initial_plane_config *plane_config)
7331 {
7332         struct drm_device *dev = crtc->base.dev;
7333         struct drm_i915_private *dev_priv = to_i915(dev);
7334         u32 val, base, offset;
7335         int pipe = crtc->pipe, plane = crtc->plane;
7336         int fourcc, pixel_format;
7337         unsigned int aligned_height;
7338         struct drm_framebuffer *fb;
7339         struct intel_framebuffer *intel_fb;
7340
7341         val = I915_READ(DSPCNTR(plane));
7342         if (!(val & DISPLAY_PLANE_ENABLE))
7343                 return;
7344
7345         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7346         if (!intel_fb) {
7347                 DRM_DEBUG_KMS("failed to alloc fb\n");
7348                 return;
7349         }
7350
7351         fb = &intel_fb->base;
7352
7353         fb->dev = dev;
7354
7355         if (INTEL_GEN(dev_priv) >= 4) {
7356                 if (val & DISPPLANE_TILED) {
7357                         plane_config->tiling = I915_TILING_X;
7358                         fb->modifier = I915_FORMAT_MOD_X_TILED;
7359                 }
7360         }
7361
7362         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7363         fourcc = i9xx_format_to_fourcc(pixel_format);
7364         fb->format = drm_format_info(fourcc);
7365
7366         if (INTEL_GEN(dev_priv) >= 4) {
7367                 if (plane_config->tiling)
7368                         offset = I915_READ(DSPTILEOFF(plane));
7369                 else
7370                         offset = I915_READ(DSPLINOFF(plane));
7371                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7372         } else {
7373                 base = I915_READ(DSPADDR(plane));
7374         }
7375         plane_config->base = base;
7376
7377         val = I915_READ(PIPESRC(pipe));
7378         fb->width = ((val >> 16) & 0xfff) + 1;
7379         fb->height = ((val >> 0) & 0xfff) + 1;
7380
7381         val = I915_READ(DSPSTRIDE(pipe));
7382         fb->pitches[0] = val & 0xffffffc0;
7383
7384         aligned_height = intel_fb_align_height(fb, 0, fb->height);
7385
7386         plane_config->size = fb->pitches[0] * aligned_height;
7387
7388         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7389                       pipe_name(pipe), plane, fb->width, fb->height,
7390                       fb->format->cpp[0] * 8, base, fb->pitches[0],
7391                       plane_config->size);
7392
7393         plane_config->fb = intel_fb;
7394 }
7395
7396 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7397                                struct intel_crtc_state *pipe_config)
7398 {
7399         struct drm_device *dev = crtc->base.dev;
7400         struct drm_i915_private *dev_priv = to_i915(dev);
7401         int pipe = pipe_config->cpu_transcoder;
7402         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7403         struct dpll clock;
7404         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
7405         int refclk = 100000;
7406
7407         /* In case of DSI, DPLL will not be used */
7408         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7409                 return;
7410
7411         mutex_lock(&dev_priv->sb_lock);
7412         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7413         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7414         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7415         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7416         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7417         mutex_unlock(&dev_priv->sb_lock);
7418
7419         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7420         clock.m2 = (pll_dw0 & 0xff) << 22;
7421         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
7422                 clock.m2 |= pll_dw2 & 0x3fffff;
7423         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7424         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7425         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7426
7427         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
7428 }
7429
7430 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7431                                  struct intel_crtc_state *pipe_config)
7432 {
7433         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7434         enum intel_display_power_domain power_domain;
7435         uint32_t tmp;
7436         bool ret;
7437
7438         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
7439         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
7440                 return false;
7441
7442         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7443         pipe_config->shared_dpll = NULL;
7444
7445         ret = false;
7446
7447         tmp = I915_READ(PIPECONF(crtc->pipe));
7448         if (!(tmp & PIPECONF_ENABLE))
7449                 goto out;
7450
7451         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7452             IS_CHERRYVIEW(dev_priv)) {
7453                 switch (tmp & PIPECONF_BPC_MASK) {
7454                 case PIPECONF_6BPC:
7455                         pipe_config->pipe_bpp = 18;
7456                         break;
7457                 case PIPECONF_8BPC:
7458                         pipe_config->pipe_bpp = 24;
7459                         break;
7460                 case PIPECONF_10BPC:
7461                         pipe_config->pipe_bpp = 30;
7462                         break;
7463                 default:
7464                         break;
7465                 }
7466         }
7467
7468         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7469             (tmp & PIPECONF_COLOR_RANGE_SELECT))
7470                 pipe_config->limited_color_range = true;
7471
7472         if (INTEL_GEN(dev_priv) < 4)
7473                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7474
7475         intel_get_pipe_timings(crtc, pipe_config);
7476         intel_get_pipe_src_size(crtc, pipe_config);
7477
7478         i9xx_get_pfit_config(crtc, pipe_config);
7479
7480         if (INTEL_GEN(dev_priv) >= 4) {
7481                 /* No way to read it out on pipes B and C */
7482                 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
7483                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
7484                 else
7485                         tmp = I915_READ(DPLL_MD(crtc->pipe));
7486                 pipe_config->pixel_multiplier =
7487                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7488                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7489                 pipe_config->dpll_hw_state.dpll_md = tmp;
7490         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
7491                    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
7492                 tmp = I915_READ(DPLL(crtc->pipe));
7493                 pipe_config->pixel_multiplier =
7494                         ((tmp & SDVO_MULTIPLIER_MASK)
7495                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7496         } else {
7497                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7498                  * port and will be fixed up in the encoder->get_config
7499                  * function. */
7500                 pipe_config->pixel_multiplier = 1;
7501         }
7502         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7503         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
7504                 /*
7505                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7506                  * on 830. Filter it out here so that we don't
7507                  * report errors due to that.
7508                  */
7509                 if (IS_I830(dev_priv))
7510                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7511
7512                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7513                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7514         } else {
7515                 /* Mask out read-only status bits. */
7516                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7517                                                      DPLL_PORTC_READY_MASK |
7518                                                      DPLL_PORTB_READY_MASK);
7519         }
7520
7521         if (IS_CHERRYVIEW(dev_priv))
7522                 chv_crtc_clock_get(crtc, pipe_config);
7523         else if (IS_VALLEYVIEW(dev_priv))
7524                 vlv_crtc_clock_get(crtc, pipe_config);
7525         else
7526                 i9xx_crtc_clock_get(crtc, pipe_config);
7527
7528         /*
7529          * Normally the dotclock is filled in by the encoder .get_config()
7530          * but in case the pipe is enabled w/o any ports we need a sane
7531          * default.
7532          */
7533         pipe_config->base.adjusted_mode.crtc_clock =
7534                 pipe_config->port_clock / pipe_config->pixel_multiplier;
7535
7536         ret = true;
7537
7538 out:
7539         intel_display_power_put(dev_priv, power_domain);
7540
7541         return ret;
7542 }
7543
7544 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
7545 {
7546         struct intel_encoder *encoder;
7547         int i;
7548         u32 val, final;
7549         bool has_lvds = false;
7550         bool has_cpu_edp = false;
7551         bool has_panel = false;
7552         bool has_ck505 = false;
7553         bool can_ssc = false;
7554         bool using_ssc_source = false;
7555
7556         /* We need to take the global config into account */
7557         for_each_intel_encoder(&dev_priv->drm, encoder) {
7558                 switch (encoder->type) {
7559                 case INTEL_OUTPUT_LVDS:
7560                         has_panel = true;
7561                         has_lvds = true;
7562                         break;
7563                 case INTEL_OUTPUT_EDP:
7564                         has_panel = true;
7565                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7566                                 has_cpu_edp = true;
7567                         break;
7568                 default:
7569                         break;
7570                 }
7571         }
7572
7573         if (HAS_PCH_IBX(dev_priv)) {
7574                 has_ck505 = dev_priv->vbt.display_clock_mode;
7575                 can_ssc = has_ck505;
7576         } else {
7577                 has_ck505 = false;
7578                 can_ssc = true;
7579         }
7580
7581         /* Check if any DPLLs are using the SSC source */
7582         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
7583                 u32 temp = I915_READ(PCH_DPLL(i));
7584
7585                 if (!(temp & DPLL_VCO_ENABLE))
7586                         continue;
7587
7588                 if ((temp & PLL_REF_INPUT_MASK) ==
7589                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7590                         using_ssc_source = true;
7591                         break;
7592                 }
7593         }
7594
7595         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
7596                       has_panel, has_lvds, has_ck505, using_ssc_source);
7597
7598         /* Ironlake: try to setup display ref clock before DPLL
7599          * enabling. This is only under driver's control after
7600          * PCH B stepping, previous chipset stepping should be
7601          * ignoring this setting.
7602          */
7603         val = I915_READ(PCH_DREF_CONTROL);
7604
7605         /* As we must carefully and slowly disable/enable each source in turn,
7606          * compute the final state we want first and check if we need to
7607          * make any changes at all.
7608          */
7609         final = val;
7610         final &= ~DREF_NONSPREAD_SOURCE_MASK;
7611         if (has_ck505)
7612                 final |= DREF_NONSPREAD_CK505_ENABLE;
7613         else
7614                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7615
7616         final &= ~DREF_SSC_SOURCE_MASK;
7617         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7618         final &= ~DREF_SSC1_ENABLE;
7619
7620         if (has_panel) {
7621                 final |= DREF_SSC_SOURCE_ENABLE;
7622
7623                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7624                         final |= DREF_SSC1_ENABLE;
7625
7626                 if (has_cpu_edp) {
7627                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
7628                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7629                         else
7630                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7631                 } else
7632                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7633         } else if (using_ssc_source) {
7634                 final |= DREF_SSC_SOURCE_ENABLE;
7635                 final |= DREF_SSC1_ENABLE;
7636         }
7637
7638         if (final == val)
7639                 return;
7640
7641         /* Always enable nonspread source */
7642         val &= ~DREF_NONSPREAD_SOURCE_MASK;
7643
7644         if (has_ck505)
7645                 val |= DREF_NONSPREAD_CK505_ENABLE;
7646         else
7647                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7648
7649         if (has_panel) {
7650                 val &= ~DREF_SSC_SOURCE_MASK;
7651                 val |= DREF_SSC_SOURCE_ENABLE;
7652
7653                 /* SSC must be turned on before enabling the CPU output  */
7654                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7655                         DRM_DEBUG_KMS("Using SSC on panel\n");
7656                         val |= DREF_SSC1_ENABLE;
7657                 } else
7658                         val &= ~DREF_SSC1_ENABLE;
7659
7660                 /* Get SSC going before enabling the outputs */
7661                 I915_WRITE(PCH_DREF_CONTROL, val);
7662                 POSTING_READ(PCH_DREF_CONTROL);
7663                 udelay(200);
7664
7665                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7666
7667                 /* Enable CPU source on CPU attached eDP */
7668                 if (has_cpu_edp) {
7669                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7670                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
7671                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7672                         } else
7673                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7674                 } else
7675                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7676
7677                 I915_WRITE(PCH_DREF_CONTROL, val);
7678                 POSTING_READ(PCH_DREF_CONTROL);
7679                 udelay(200);
7680         } else {
7681                 DRM_DEBUG_KMS("Disabling CPU source output\n");
7682
7683                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7684
7685                 /* Turn off CPU output */
7686                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7687
7688                 I915_WRITE(PCH_DREF_CONTROL, val);
7689                 POSTING_READ(PCH_DREF_CONTROL);
7690                 udelay(200);
7691
7692                 if (!using_ssc_source) {
7693                         DRM_DEBUG_KMS("Disabling SSC source\n");
7694
7695                         /* Turn off the SSC source */
7696                         val &= ~DREF_SSC_SOURCE_MASK;
7697                         val |= DREF_SSC_SOURCE_DISABLE;
7698
7699                         /* Turn off SSC1 */
7700                         val &= ~DREF_SSC1_ENABLE;
7701
7702                         I915_WRITE(PCH_DREF_CONTROL, val);
7703                         POSTING_READ(PCH_DREF_CONTROL);
7704                         udelay(200);
7705                 }
7706         }
7707
7708         BUG_ON(val != final);
7709 }
7710
7711 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7712 {
7713         uint32_t tmp;
7714
7715         tmp = I915_READ(SOUTH_CHICKEN2);
7716         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7717         I915_WRITE(SOUTH_CHICKEN2, tmp);
7718
7719         if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
7720                         FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7721                 DRM_ERROR("FDI mPHY reset assert timeout\n");
7722
7723         tmp = I915_READ(SOUTH_CHICKEN2);
7724         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7725         I915_WRITE(SOUTH_CHICKEN2, tmp);
7726
7727         if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
7728                          FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7729                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7730 }
7731
7732 /* WaMPhyProgramming:hsw */
7733 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7734 {
7735         uint32_t tmp;
7736
7737         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7738         tmp &= ~(0xFF << 24);
7739         tmp |= (0x12 << 24);
7740         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7741
7742         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7743         tmp |= (1 << 11);
7744         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7745
7746         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7747         tmp |= (1 << 11);
7748         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7749
7750         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7751         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7752         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7753
7754         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7755         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7756         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7757
7758         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7759         tmp &= ~(7 << 13);
7760         tmp |= (5 << 13);
7761         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7762
7763         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7764         tmp &= ~(7 << 13);
7765         tmp |= (5 << 13);
7766         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7767
7768         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7769         tmp &= ~0xFF;
7770         tmp |= 0x1C;
7771         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7772
7773         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7774         tmp &= ~0xFF;
7775         tmp |= 0x1C;
7776         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7777
7778         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7779         tmp &= ~(0xFF << 16);
7780         tmp |= (0x1C << 16);
7781         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7782
7783         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7784         tmp &= ~(0xFF << 16);
7785         tmp |= (0x1C << 16);
7786         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7787
7788         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7789         tmp |= (1 << 27);
7790         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7791
7792         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7793         tmp |= (1 << 27);
7794         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7795
7796         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7797         tmp &= ~(0xF << 28);
7798         tmp |= (4 << 28);
7799         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7800
7801         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7802         tmp &= ~(0xF << 28);
7803         tmp |= (4 << 28);
7804         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7805 }
7806
7807 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7808  * Programming" based on the parameters passed:
7809  * - Sequence to enable CLKOUT_DP
7810  * - Sequence to enable CLKOUT_DP without spread
7811  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7812  */
7813 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
7814                                  bool with_spread, bool with_fdi)
7815 {
7816         uint32_t reg, tmp;
7817
7818         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7819                 with_spread = true;
7820         if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
7821             with_fdi, "LP PCH doesn't have FDI\n"))
7822                 with_fdi = false;
7823
7824         mutex_lock(&dev_priv->sb_lock);
7825
7826         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7827         tmp &= ~SBI_SSCCTL_DISABLE;
7828         tmp |= SBI_SSCCTL_PATHALT;
7829         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7830
7831         udelay(24);
7832
7833         if (with_spread) {
7834                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7835                 tmp &= ~SBI_SSCCTL_PATHALT;
7836                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7837
7838                 if (with_fdi) {
7839                         lpt_reset_fdi_mphy(dev_priv);
7840                         lpt_program_fdi_mphy(dev_priv);
7841                 }
7842         }
7843
7844         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7845         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7846         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7847         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7848
7849         mutex_unlock(&dev_priv->sb_lock);
7850 }
7851
7852 /* Sequence to disable CLKOUT_DP */
7853 static void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
7854 {
7855         uint32_t reg, tmp;
7856
7857         mutex_lock(&dev_priv->sb_lock);
7858
7859         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7860         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7861         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7862         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7863
7864         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7865         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7866                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7867                         tmp |= SBI_SSCCTL_PATHALT;
7868                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7869                         udelay(32);
7870                 }
7871                 tmp |= SBI_SSCCTL_DISABLE;
7872                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7873         }
7874
7875         mutex_unlock(&dev_priv->sb_lock);
7876 }
7877
7878 #define BEND_IDX(steps) ((50 + (steps)) / 5)
7879
7880 static const uint16_t sscdivintphase[] = {
7881         [BEND_IDX( 50)] = 0x3B23,
7882         [BEND_IDX( 45)] = 0x3B23,
7883         [BEND_IDX( 40)] = 0x3C23,
7884         [BEND_IDX( 35)] = 0x3C23,
7885         [BEND_IDX( 30)] = 0x3D23,
7886         [BEND_IDX( 25)] = 0x3D23,
7887         [BEND_IDX( 20)] = 0x3E23,
7888         [BEND_IDX( 15)] = 0x3E23,
7889         [BEND_IDX( 10)] = 0x3F23,
7890         [BEND_IDX(  5)] = 0x3F23,
7891         [BEND_IDX(  0)] = 0x0025,
7892         [BEND_IDX( -5)] = 0x0025,
7893         [BEND_IDX(-10)] = 0x0125,
7894         [BEND_IDX(-15)] = 0x0125,
7895         [BEND_IDX(-20)] = 0x0225,
7896         [BEND_IDX(-25)] = 0x0225,
7897         [BEND_IDX(-30)] = 0x0325,
7898         [BEND_IDX(-35)] = 0x0325,
7899         [BEND_IDX(-40)] = 0x0425,
7900         [BEND_IDX(-45)] = 0x0425,
7901         [BEND_IDX(-50)] = 0x0525,
7902 };
7903
7904 /*
7905  * Bend CLKOUT_DP
7906  * steps -50 to 50 inclusive, in steps of 5
7907  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
7908  * change in clock period = -(steps / 10) * 5.787 ps
7909  */
7910 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
7911 {
7912         uint32_t tmp;
7913         int idx = BEND_IDX(steps);
7914
7915         if (WARN_ON(steps % 5 != 0))
7916                 return;
7917
7918         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
7919                 return;
7920
7921         mutex_lock(&dev_priv->sb_lock);
7922
7923         if (steps % 10 != 0)
7924                 tmp = 0xAAAAAAAB;
7925         else
7926                 tmp = 0x00000000;
7927         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
7928
7929         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
7930         tmp &= 0xffff0000;
7931         tmp |= sscdivintphase[idx];
7932         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
7933
7934         mutex_unlock(&dev_priv->sb_lock);
7935 }
7936
7937 #undef BEND_IDX
7938
7939 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
7940 {
7941         struct intel_encoder *encoder;
7942         bool has_vga = false;
7943
7944         for_each_intel_encoder(&dev_priv->drm, encoder) {
7945                 switch (encoder->type) {
7946                 case INTEL_OUTPUT_ANALOG:
7947                         has_vga = true;
7948                         break;
7949                 default:
7950                         break;
7951                 }
7952         }
7953
7954         if (has_vga) {
7955                 lpt_bend_clkout_dp(dev_priv, 0);
7956                 lpt_enable_clkout_dp(dev_priv, true, true);
7957         } else {
7958                 lpt_disable_clkout_dp(dev_priv);
7959         }
7960 }
7961
7962 /*
7963  * Initialize reference clocks when the driver loads
7964  */
7965 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
7966 {
7967         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
7968                 ironlake_init_pch_refclk(dev_priv);
7969         else if (HAS_PCH_LPT(dev_priv))
7970                 lpt_init_pch_refclk(dev_priv);
7971 }
7972
7973 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7974 {
7975         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
7976         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7977         int pipe = intel_crtc->pipe;
7978         uint32_t val;
7979
7980         val = 0;
7981
7982         switch (intel_crtc->config->pipe_bpp) {
7983         case 18:
7984                 val |= PIPECONF_6BPC;
7985                 break;
7986         case 24:
7987                 val |= PIPECONF_8BPC;
7988                 break;
7989         case 30:
7990                 val |= PIPECONF_10BPC;
7991                 break;
7992         case 36:
7993                 val |= PIPECONF_12BPC;
7994                 break;
7995         default:
7996                 /* Case prevented by intel_choose_pipe_bpp_dither. */
7997                 BUG();
7998         }
7999
8000         if (intel_crtc->config->dither)
8001                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8002
8003         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8004                 val |= PIPECONF_INTERLACED_ILK;
8005         else
8006                 val |= PIPECONF_PROGRESSIVE;
8007
8008         if (intel_crtc->config->limited_color_range)
8009                 val |= PIPECONF_COLOR_RANGE_SELECT;
8010
8011         I915_WRITE(PIPECONF(pipe), val);
8012         POSTING_READ(PIPECONF(pipe));
8013 }
8014
8015 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8016 {
8017         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8018         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8019         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8020         u32 val = 0;
8021
8022         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8023                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8024
8025         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8026                 val |= PIPECONF_INTERLACED_ILK;
8027         else
8028                 val |= PIPECONF_PROGRESSIVE;
8029
8030         I915_WRITE(PIPECONF(cpu_transcoder), val);
8031         POSTING_READ(PIPECONF(cpu_transcoder));
8032 }
8033
8034 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8035 {
8036         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8037         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8038
8039         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8040                 u32 val = 0;
8041
8042                 switch (intel_crtc->config->pipe_bpp) {
8043                 case 18:
8044                         val |= PIPEMISC_DITHER_6_BPC;
8045                         break;
8046                 case 24:
8047                         val |= PIPEMISC_DITHER_8_BPC;
8048                         break;
8049                 case 30:
8050                         val |= PIPEMISC_DITHER_10_BPC;
8051                         break;
8052                 case 36:
8053                         val |= PIPEMISC_DITHER_12_BPC;
8054                         break;
8055                 default:
8056                         /* Case prevented by pipe_config_set_bpp. */
8057                         BUG();
8058                 }
8059
8060                 if (intel_crtc->config->dither)
8061                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8062
8063                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8064         }
8065 }
8066
8067 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8068 {
8069         /*
8070          * Account for spread spectrum to avoid
8071          * oversubscribing the link. Max center spread
8072          * is 2.5%; use 5% for safety's sake.
8073          */
8074         u32 bps = target_clock * bpp * 21 / 20;
8075         return DIV_ROUND_UP(bps, link_bw * 8);
8076 }
8077
8078 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8079 {
8080         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8081 }
8082
8083 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8084                                   struct intel_crtc_state *crtc_state,
8085                                   struct dpll *reduced_clock)
8086 {
8087         struct drm_crtc *crtc = &intel_crtc->base;
8088         struct drm_device *dev = crtc->dev;
8089         struct drm_i915_private *dev_priv = to_i915(dev);
8090         u32 dpll, fp, fp2;
8091         int factor;
8092
8093         /* Enable autotuning of the PLL clock (if permissible) */
8094         factor = 21;
8095         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8096                 if ((intel_panel_use_ssc(dev_priv) &&
8097                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8098                     (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
8099                         factor = 25;
8100         } else if (crtc_state->sdvo_tv_clock)
8101                 factor = 20;
8102
8103         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8104
8105         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8106                 fp |= FP_CB_TUNE;
8107
8108         if (reduced_clock) {
8109                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8110
8111                 if (reduced_clock->m < factor * reduced_clock->n)
8112                         fp2 |= FP_CB_TUNE;
8113         } else {
8114                 fp2 = fp;
8115         }
8116
8117         dpll = 0;
8118
8119         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8120                 dpll |= DPLLB_MODE_LVDS;
8121         else
8122                 dpll |= DPLLB_MODE_DAC_SERIAL;
8123
8124         dpll |= (crtc_state->pixel_multiplier - 1)
8125                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8126
8127         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8128             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8129                 dpll |= DPLL_SDVO_HIGH_SPEED;
8130
8131         if (intel_crtc_has_dp_encoder(crtc_state))
8132                 dpll |= DPLL_SDVO_HIGH_SPEED;
8133
8134         /*
8135          * The high speed IO clock is only really required for
8136          * SDVO/HDMI/DP, but we also enable it for CRT to make it
8137          * possible to share the DPLL between CRT and HDMI. Enabling
8138          * the clock needlessly does no real harm, except use up a
8139          * bit of power potentially.
8140          *
8141          * We'll limit this to IVB with 3 pipes, since it has only two
8142          * DPLLs and so DPLL sharing is the only way to get three pipes
8143          * driving PCH ports at the same time. On SNB we could do this,
8144          * and potentially avoid enabling the second DPLL, but it's not
8145          * clear if it''s a win or loss power wise. No point in doing
8146          * this on ILK at all since it has a fixed DPLL<->pipe mapping.
8147          */
8148         if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
8149             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
8150                 dpll |= DPLL_SDVO_HIGH_SPEED;
8151
8152         /* compute bitmask from p1 value */
8153         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8154         /* also FPA1 */
8155         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8156
8157         switch (crtc_state->dpll.p2) {
8158         case 5:
8159                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8160                 break;
8161         case 7:
8162                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8163                 break;
8164         case 10:
8165                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8166                 break;
8167         case 14:
8168                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8169                 break;
8170         }
8171
8172         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8173             intel_panel_use_ssc(dev_priv))
8174                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8175         else
8176                 dpll |= PLL_REF_INPUT_DREFCLK;
8177
8178         dpll |= DPLL_VCO_ENABLE;
8179
8180         crtc_state->dpll_hw_state.dpll = dpll;
8181         crtc_state->dpll_hw_state.fp0 = fp;
8182         crtc_state->dpll_hw_state.fp1 = fp2;
8183 }
8184
8185 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8186                                        struct intel_crtc_state *crtc_state)
8187 {
8188         struct drm_device *dev = crtc->base.dev;
8189         struct drm_i915_private *dev_priv = to_i915(dev);
8190         struct dpll reduced_clock;
8191         bool has_reduced_clock = false;
8192         struct intel_shared_dpll *pll;
8193         const struct intel_limit *limit;
8194         int refclk = 120000;
8195
8196         memset(&crtc_state->dpll_hw_state, 0,
8197                sizeof(crtc_state->dpll_hw_state));
8198
8199         crtc->lowfreq_avail = false;
8200
8201         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8202         if (!crtc_state->has_pch_encoder)
8203                 return 0;
8204
8205         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8206                 if (intel_panel_use_ssc(dev_priv)) {
8207                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8208                                       dev_priv->vbt.lvds_ssc_freq);
8209                         refclk = dev_priv->vbt.lvds_ssc_freq;
8210                 }
8211
8212                 if (intel_is_dual_link_lvds(dev)) {
8213                         if (refclk == 100000)
8214                                 limit = &intel_limits_ironlake_dual_lvds_100m;
8215                         else
8216                                 limit = &intel_limits_ironlake_dual_lvds;
8217                 } else {
8218                         if (refclk == 100000)
8219                                 limit = &intel_limits_ironlake_single_lvds_100m;
8220                         else
8221                                 limit = &intel_limits_ironlake_single_lvds;
8222                 }
8223         } else {
8224                 limit = &intel_limits_ironlake_dac;
8225         }
8226
8227         if (!crtc_state->clock_set &&
8228             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8229                                 refclk, NULL, &crtc_state->dpll)) {
8230                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8231                 return -EINVAL;
8232         }
8233
8234         ironlake_compute_dpll(crtc, crtc_state,
8235                               has_reduced_clock ? &reduced_clock : NULL);
8236
8237         pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
8238         if (pll == NULL) {
8239                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8240                                  pipe_name(crtc->pipe));
8241                 return -EINVAL;
8242         }
8243
8244         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8245             has_reduced_clock)
8246                 crtc->lowfreq_avail = true;
8247
8248         return 0;
8249 }
8250
8251 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8252                                          struct intel_link_m_n *m_n)
8253 {
8254         struct drm_device *dev = crtc->base.dev;
8255         struct drm_i915_private *dev_priv = to_i915(dev);
8256         enum pipe pipe = crtc->pipe;
8257
8258         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8259         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8260         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8261                 & ~TU_SIZE_MASK;
8262         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8263         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8264                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8265 }
8266
8267 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8268                                          enum transcoder transcoder,
8269                                          struct intel_link_m_n *m_n,
8270                                          struct intel_link_m_n *m2_n2)
8271 {
8272         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8273         enum pipe pipe = crtc->pipe;
8274
8275         if (INTEL_GEN(dev_priv) >= 5) {
8276                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8277                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8278                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8279                         & ~TU_SIZE_MASK;
8280                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8281                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8282                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8283                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8284                  * gen < 8) and if DRRS is supported (to make sure the
8285                  * registers are not unnecessarily read).
8286                  */
8287                 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
8288                         crtc->config->has_drrs) {
8289                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8290                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8291                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8292                                         & ~TU_SIZE_MASK;
8293                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8294                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8295                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8296                 }
8297         } else {
8298                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8299                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8300                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8301                         & ~TU_SIZE_MASK;
8302                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8303                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8304                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8305         }
8306 }
8307
8308 void intel_dp_get_m_n(struct intel_crtc *crtc,
8309                       struct intel_crtc_state *pipe_config)
8310 {
8311         if (pipe_config->has_pch_encoder)
8312                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8313         else
8314                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8315                                              &pipe_config->dp_m_n,
8316                                              &pipe_config->dp_m2_n2);
8317 }
8318
8319 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8320                                         struct intel_crtc_state *pipe_config)
8321 {
8322         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8323                                      &pipe_config->fdi_m_n, NULL);
8324 }
8325
8326 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8327                                     struct intel_crtc_state *pipe_config)
8328 {
8329         struct drm_device *dev = crtc->base.dev;
8330         struct drm_i915_private *dev_priv = to_i915(dev);
8331         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8332         uint32_t ps_ctrl = 0;
8333         int id = -1;
8334         int i;
8335
8336         /* find scaler attached to this pipe */
8337         for (i = 0; i < crtc->num_scalers; i++) {
8338                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8339                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8340                         id = i;
8341                         pipe_config->pch_pfit.enabled = true;
8342                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8343                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8344                         break;
8345                 }
8346         }
8347
8348         scaler_state->scaler_id = id;
8349         if (id >= 0) {
8350                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8351         } else {
8352                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8353         }
8354 }
8355
8356 static void
8357 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8358                                  struct intel_initial_plane_config *plane_config)
8359 {
8360         struct drm_device *dev = crtc->base.dev;
8361         struct drm_i915_private *dev_priv = to_i915(dev);
8362         u32 val, base, offset, stride_mult, tiling;
8363         int pipe = crtc->pipe;
8364         int fourcc, pixel_format;
8365         unsigned int aligned_height;
8366         struct drm_framebuffer *fb;
8367         struct intel_framebuffer *intel_fb;
8368
8369         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8370         if (!intel_fb) {
8371                 DRM_DEBUG_KMS("failed to alloc fb\n");
8372                 return;
8373         }
8374
8375         fb = &intel_fb->base;
8376
8377         fb->dev = dev;
8378
8379         val = I915_READ(PLANE_CTL(pipe, 0));
8380         if (!(val & PLANE_CTL_ENABLE))
8381                 goto error;
8382
8383         pixel_format = val & PLANE_CTL_FORMAT_MASK;
8384         fourcc = skl_format_to_fourcc(pixel_format,
8385                                       val & PLANE_CTL_ORDER_RGBX,
8386                                       val & PLANE_CTL_ALPHA_MASK);
8387         fb->format = drm_format_info(fourcc);
8388
8389         tiling = val & PLANE_CTL_TILED_MASK;
8390         switch (tiling) {
8391         case PLANE_CTL_TILED_LINEAR:
8392                 fb->modifier = DRM_FORMAT_MOD_LINEAR;
8393                 break;
8394         case PLANE_CTL_TILED_X:
8395                 plane_config->tiling = I915_TILING_X;
8396                 fb->modifier = I915_FORMAT_MOD_X_TILED;
8397                 break;
8398         case PLANE_CTL_TILED_Y:
8399                 fb->modifier = I915_FORMAT_MOD_Y_TILED;
8400                 break;
8401         case PLANE_CTL_TILED_YF:
8402                 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
8403                 break;
8404         default:
8405                 MISSING_CASE(tiling);
8406                 goto error;
8407         }
8408
8409         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8410         plane_config->base = base;
8411
8412         offset = I915_READ(PLANE_OFFSET(pipe, 0));
8413
8414         val = I915_READ(PLANE_SIZE(pipe, 0));
8415         fb->height = ((val >> 16) & 0xfff) + 1;
8416         fb->width = ((val >> 0) & 0x1fff) + 1;
8417
8418         val = I915_READ(PLANE_STRIDE(pipe, 0));
8419         stride_mult = intel_fb_stride_alignment(fb, 0);
8420         fb->pitches[0] = (val & 0x3ff) * stride_mult;
8421
8422         aligned_height = intel_fb_align_height(fb, 0, fb->height);
8423
8424         plane_config->size = fb->pitches[0] * aligned_height;
8425
8426         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8427                       pipe_name(pipe), fb->width, fb->height,
8428                       fb->format->cpp[0] * 8, base, fb->pitches[0],
8429                       plane_config->size);
8430
8431         plane_config->fb = intel_fb;
8432         return;
8433
8434 error:
8435         kfree(intel_fb);
8436 }
8437
8438 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8439                                      struct intel_crtc_state *pipe_config)
8440 {
8441         struct drm_device *dev = crtc->base.dev;
8442         struct drm_i915_private *dev_priv = to_i915(dev);
8443         uint32_t tmp;
8444
8445         tmp = I915_READ(PF_CTL(crtc->pipe));
8446
8447         if (tmp & PF_ENABLE) {
8448                 pipe_config->pch_pfit.enabled = true;
8449                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8450                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8451
8452                 /* We currently do not free assignements of panel fitters on
8453                  * ivb/hsw (since we don't use the higher upscaling modes which
8454                  * differentiates them) so just WARN about this case for now. */
8455                 if (IS_GEN7(dev_priv)) {
8456                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8457                                 PF_PIPE_SEL_IVB(crtc->pipe));
8458                 }
8459         }
8460 }
8461
8462 static void
8463 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8464                                   struct intel_initial_plane_config *plane_config)
8465 {
8466         struct drm_device *dev = crtc->base.dev;
8467         struct drm_i915_private *dev_priv = to_i915(dev);
8468         u32 val, base, offset;
8469         int pipe = crtc->pipe;
8470         int fourcc, pixel_format;
8471         unsigned int aligned_height;
8472         struct drm_framebuffer *fb;
8473         struct intel_framebuffer *intel_fb;
8474
8475         val = I915_READ(DSPCNTR(pipe));
8476         if (!(val & DISPLAY_PLANE_ENABLE))
8477                 return;
8478
8479         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8480         if (!intel_fb) {
8481                 DRM_DEBUG_KMS("failed to alloc fb\n");
8482                 return;
8483         }
8484
8485         fb = &intel_fb->base;
8486
8487         fb->dev = dev;
8488
8489         if (INTEL_GEN(dev_priv) >= 4) {
8490                 if (val & DISPPLANE_TILED) {
8491                         plane_config->tiling = I915_TILING_X;
8492                         fb->modifier = I915_FORMAT_MOD_X_TILED;
8493                 }
8494         }
8495
8496         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8497         fourcc = i9xx_format_to_fourcc(pixel_format);
8498         fb->format = drm_format_info(fourcc);
8499
8500         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8501         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
8502                 offset = I915_READ(DSPOFFSET(pipe));
8503         } else {
8504                 if (plane_config->tiling)
8505                         offset = I915_READ(DSPTILEOFF(pipe));
8506                 else
8507                         offset = I915_READ(DSPLINOFF(pipe));
8508         }
8509         plane_config->base = base;
8510
8511         val = I915_READ(PIPESRC(pipe));
8512         fb->width = ((val >> 16) & 0xfff) + 1;
8513         fb->height = ((val >> 0) & 0xfff) + 1;
8514
8515         val = I915_READ(DSPSTRIDE(pipe));
8516         fb->pitches[0] = val & 0xffffffc0;
8517
8518         aligned_height = intel_fb_align_height(fb, 0, fb->height);
8519
8520         plane_config->size = fb->pitches[0] * aligned_height;
8521
8522         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8523                       pipe_name(pipe), fb->width, fb->height,
8524                       fb->format->cpp[0] * 8, base, fb->pitches[0],
8525                       plane_config->size);
8526
8527         plane_config->fb = intel_fb;
8528 }
8529
8530 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8531                                      struct intel_crtc_state *pipe_config)
8532 {
8533         struct drm_device *dev = crtc->base.dev;
8534         struct drm_i915_private *dev_priv = to_i915(dev);
8535         enum intel_display_power_domain power_domain;
8536         uint32_t tmp;
8537         bool ret;
8538
8539         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8540         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8541                 return false;
8542
8543         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8544         pipe_config->shared_dpll = NULL;
8545
8546         ret = false;
8547         tmp = I915_READ(PIPECONF(crtc->pipe));
8548         if (!(tmp & PIPECONF_ENABLE))
8549                 goto out;
8550
8551         switch (tmp & PIPECONF_BPC_MASK) {
8552         case PIPECONF_6BPC:
8553                 pipe_config->pipe_bpp = 18;
8554                 break;
8555         case PIPECONF_8BPC:
8556                 pipe_config->pipe_bpp = 24;
8557                 break;
8558         case PIPECONF_10BPC:
8559                 pipe_config->pipe_bpp = 30;
8560                 break;
8561         case PIPECONF_12BPC:
8562                 pipe_config->pipe_bpp = 36;
8563                 break;
8564         default:
8565                 break;
8566         }
8567
8568         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8569                 pipe_config->limited_color_range = true;
8570
8571         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8572                 struct intel_shared_dpll *pll;
8573                 enum intel_dpll_id pll_id;
8574
8575                 pipe_config->has_pch_encoder = true;
8576
8577                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8578                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8579                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8580
8581                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8582
8583                 if (HAS_PCH_IBX(dev_priv)) {
8584                         /*
8585                          * The pipe->pch transcoder and pch transcoder->pll
8586                          * mapping is fixed.
8587                          */
8588                         pll_id = (enum intel_dpll_id) crtc->pipe;
8589                 } else {
8590                         tmp = I915_READ(PCH_DPLL_SEL);
8591                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8592                                 pll_id = DPLL_ID_PCH_PLL_B;
8593                         else
8594                                 pll_id= DPLL_ID_PCH_PLL_A;
8595                 }
8596
8597                 pipe_config->shared_dpll =
8598                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
8599                 pll = pipe_config->shared_dpll;
8600
8601                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
8602                                                  &pipe_config->dpll_hw_state));
8603
8604                 tmp = pipe_config->dpll_hw_state.dpll;
8605                 pipe_config->pixel_multiplier =
8606                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8607                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8608
8609                 ironlake_pch_clock_get(crtc, pipe_config);
8610         } else {
8611                 pipe_config->pixel_multiplier = 1;
8612         }
8613
8614         intel_get_pipe_timings(crtc, pipe_config);
8615         intel_get_pipe_src_size(crtc, pipe_config);
8616
8617         ironlake_get_pfit_config(crtc, pipe_config);
8618
8619         ret = true;
8620
8621 out:
8622         intel_display_power_put(dev_priv, power_domain);
8623
8624         return ret;
8625 }
8626
8627 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8628 {
8629         struct drm_device *dev = &dev_priv->drm;
8630         struct intel_crtc *crtc;
8631
8632         for_each_intel_crtc(dev, crtc)
8633                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8634                      pipe_name(crtc->pipe));
8635
8636         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8637         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8638         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8639         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8640         I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
8641         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8642              "CPU PWM1 enabled\n");
8643         if (IS_HASWELL(dev_priv))
8644                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8645                      "CPU PWM2 enabled\n");
8646         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8647              "PCH PWM1 enabled\n");
8648         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8649              "Utility pin enabled\n");
8650         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8651
8652         /*
8653          * In theory we can still leave IRQs enabled, as long as only the HPD
8654          * interrupts remain enabled. We used to check for that, but since it's
8655          * gen-specific and since we only disable LCPLL after we fully disable
8656          * the interrupts, the check below should be enough.
8657          */
8658         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8659 }
8660
8661 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8662 {
8663         if (IS_HASWELL(dev_priv))
8664                 return I915_READ(D_COMP_HSW);
8665         else
8666                 return I915_READ(D_COMP_BDW);
8667 }
8668
8669 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8670 {
8671         if (IS_HASWELL(dev_priv)) {
8672                 mutex_lock(&dev_priv->rps.hw_lock);
8673                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8674                                             val))
8675                         DRM_DEBUG_KMS("Failed to write to D_COMP\n");
8676                 mutex_unlock(&dev_priv->rps.hw_lock);
8677         } else {
8678                 I915_WRITE(D_COMP_BDW, val);
8679                 POSTING_READ(D_COMP_BDW);
8680         }
8681 }
8682
8683 /*
8684  * This function implements pieces of two sequences from BSpec:
8685  * - Sequence for display software to disable LCPLL
8686  * - Sequence for display software to allow package C8+
8687  * The steps implemented here are just the steps that actually touch the LCPLL
8688  * register. Callers should take care of disabling all the display engine
8689  * functions, doing the mode unset, fixing interrupts, etc.
8690  */
8691 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8692                               bool switch_to_fclk, bool allow_power_down)
8693 {
8694         uint32_t val;
8695
8696         assert_can_disable_lcpll(dev_priv);
8697
8698         val = I915_READ(LCPLL_CTL);
8699
8700         if (switch_to_fclk) {
8701                 val |= LCPLL_CD_SOURCE_FCLK;
8702                 I915_WRITE(LCPLL_CTL, val);
8703
8704                 if (wait_for_us(I915_READ(LCPLL_CTL) &
8705                                 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8706                         DRM_ERROR("Switching to FCLK failed\n");
8707
8708                 val = I915_READ(LCPLL_CTL);
8709         }
8710
8711         val |= LCPLL_PLL_DISABLE;
8712         I915_WRITE(LCPLL_CTL, val);
8713         POSTING_READ(LCPLL_CTL);
8714
8715         if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
8716                 DRM_ERROR("LCPLL still locked\n");
8717
8718         val = hsw_read_dcomp(dev_priv);
8719         val |= D_COMP_COMP_DISABLE;
8720         hsw_write_dcomp(dev_priv, val);
8721         ndelay(100);
8722
8723         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8724                      1))
8725                 DRM_ERROR("D_COMP RCOMP still in progress\n");
8726
8727         if (allow_power_down) {
8728                 val = I915_READ(LCPLL_CTL);
8729                 val |= LCPLL_POWER_DOWN_ALLOW;
8730                 I915_WRITE(LCPLL_CTL, val);
8731                 POSTING_READ(LCPLL_CTL);
8732         }
8733 }
8734
8735 /*
8736  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8737  * source.
8738  */
8739 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8740 {
8741         uint32_t val;
8742
8743         val = I915_READ(LCPLL_CTL);
8744
8745         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8746                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8747                 return;
8748
8749         /*
8750          * Make sure we're not on PC8 state before disabling PC8, otherwise
8751          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8752          */
8753         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8754
8755         if (val & LCPLL_POWER_DOWN_ALLOW) {
8756                 val &= ~LCPLL_POWER_DOWN_ALLOW;
8757                 I915_WRITE(LCPLL_CTL, val);
8758                 POSTING_READ(LCPLL_CTL);
8759         }
8760
8761         val = hsw_read_dcomp(dev_priv);
8762         val |= D_COMP_COMP_FORCE;
8763         val &= ~D_COMP_COMP_DISABLE;
8764         hsw_write_dcomp(dev_priv, val);
8765
8766         val = I915_READ(LCPLL_CTL);
8767         val &= ~LCPLL_PLL_DISABLE;
8768         I915_WRITE(LCPLL_CTL, val);
8769
8770         if (intel_wait_for_register(dev_priv,
8771                                     LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
8772                                     5))
8773                 DRM_ERROR("LCPLL not locked yet\n");
8774
8775         if (val & LCPLL_CD_SOURCE_FCLK) {
8776                 val = I915_READ(LCPLL_CTL);
8777                 val &= ~LCPLL_CD_SOURCE_FCLK;
8778                 I915_WRITE(LCPLL_CTL, val);
8779
8780                 if (wait_for_us((I915_READ(LCPLL_CTL) &
8781                                  LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8782                         DRM_ERROR("Switching back to LCPLL failed\n");
8783         }
8784
8785         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8786         intel_update_cdclk(dev_priv);
8787 }
8788
8789 /*
8790  * Package states C8 and deeper are really deep PC states that can only be
8791  * reached when all the devices on the system allow it, so even if the graphics
8792  * device allows PC8+, it doesn't mean the system will actually get to these
8793  * states. Our driver only allows PC8+ when going into runtime PM.
8794  *
8795  * The requirements for PC8+ are that all the outputs are disabled, the power
8796  * well is disabled and most interrupts are disabled, and these are also
8797  * requirements for runtime PM. When these conditions are met, we manually do
8798  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8799  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8800  * hang the machine.
8801  *
8802  * When we really reach PC8 or deeper states (not just when we allow it) we lose
8803  * the state of some registers, so when we come back from PC8+ we need to
8804  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8805  * need to take care of the registers kept by RC6. Notice that this happens even
8806  * if we don't put the device in PCI D3 state (which is what currently happens
8807  * because of the runtime PM support).
8808  *
8809  * For more, read "Display Sequences for Package C8" on the hardware
8810  * documentation.
8811  */
8812 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8813 {
8814         uint32_t val;
8815
8816         DRM_DEBUG_KMS("Enabling package C8+\n");
8817
8818         if (HAS_PCH_LPT_LP(dev_priv)) {
8819                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8820                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8821                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8822         }
8823
8824         lpt_disable_clkout_dp(dev_priv);
8825         hsw_disable_lcpll(dev_priv, true, true);
8826 }
8827
8828 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8829 {
8830         uint32_t val;
8831
8832         DRM_DEBUG_KMS("Disabling package C8+\n");
8833
8834         hsw_restore_lcpll(dev_priv);
8835         lpt_init_pch_refclk(dev_priv);
8836
8837         if (HAS_PCH_LPT_LP(dev_priv)) {
8838                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8839                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8840                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8841         }
8842 }
8843
8844 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8845                                       struct intel_crtc_state *crtc_state)
8846 {
8847         if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
8848                 struct intel_encoder *encoder =
8849                         intel_ddi_get_crtc_new_encoder(crtc_state);
8850
8851                 if (!intel_get_shared_dpll(crtc, crtc_state, encoder)) {
8852                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8853                                          pipe_name(crtc->pipe));
8854                         return -EINVAL;
8855                 }
8856         }
8857
8858         crtc->lowfreq_avail = false;
8859
8860         return 0;
8861 }
8862
8863 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
8864                                 enum port port,
8865                                 struct intel_crtc_state *pipe_config)
8866 {
8867         enum intel_dpll_id id;
8868
8869         switch (port) {
8870         case PORT_A:
8871                 id = DPLL_ID_SKL_DPLL0;
8872                 break;
8873         case PORT_B:
8874                 id = DPLL_ID_SKL_DPLL1;
8875                 break;
8876         case PORT_C:
8877                 id = DPLL_ID_SKL_DPLL2;
8878                 break;
8879         default:
8880                 DRM_ERROR("Incorrect port type\n");
8881                 return;
8882         }
8883
8884         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8885 }
8886
8887 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8888                                 enum port port,
8889                                 struct intel_crtc_state *pipe_config)
8890 {
8891         enum intel_dpll_id id;
8892         u32 temp;
8893
8894         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8895         id = temp >> (port * 3 + 1);
8896
8897         if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
8898                 return;
8899
8900         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8901 }
8902
8903 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8904                                 enum port port,
8905                                 struct intel_crtc_state *pipe_config)
8906 {
8907         enum intel_dpll_id id;
8908         uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8909
8910         switch (ddi_pll_sel) {
8911         case PORT_CLK_SEL_WRPLL1:
8912                 id = DPLL_ID_WRPLL1;
8913                 break;
8914         case PORT_CLK_SEL_WRPLL2:
8915                 id = DPLL_ID_WRPLL2;
8916                 break;
8917         case PORT_CLK_SEL_SPLL:
8918                 id = DPLL_ID_SPLL;
8919                 break;
8920         case PORT_CLK_SEL_LCPLL_810:
8921                 id = DPLL_ID_LCPLL_810;
8922                 break;
8923         case PORT_CLK_SEL_LCPLL_1350:
8924                 id = DPLL_ID_LCPLL_1350;
8925                 break;
8926         case PORT_CLK_SEL_LCPLL_2700:
8927                 id = DPLL_ID_LCPLL_2700;
8928                 break;
8929         default:
8930                 MISSING_CASE(ddi_pll_sel);
8931                 /* fall through */
8932         case PORT_CLK_SEL_NONE:
8933                 return;
8934         }
8935
8936         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8937 }
8938
8939 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
8940                                      struct intel_crtc_state *pipe_config,
8941                                      u64 *power_domain_mask)
8942 {
8943         struct drm_device *dev = crtc->base.dev;
8944         struct drm_i915_private *dev_priv = to_i915(dev);
8945         enum intel_display_power_domain power_domain;
8946         u32 tmp;
8947
8948         /*
8949          * The pipe->transcoder mapping is fixed with the exception of the eDP
8950          * transcoder handled below.
8951          */
8952         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8953
8954         /*
8955          * XXX: Do intel_display_power_get_if_enabled before reading this (for
8956          * consistency and less surprising code; it's in always on power).
8957          */
8958         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8959         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8960                 enum pipe trans_edp_pipe;
8961                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8962                 default:
8963                         WARN(1, "unknown pipe linked to edp transcoder\n");
8964                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8965                 case TRANS_DDI_EDP_INPUT_A_ON:
8966                         trans_edp_pipe = PIPE_A;
8967                         break;
8968                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8969                         trans_edp_pipe = PIPE_B;
8970                         break;
8971                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8972                         trans_edp_pipe = PIPE_C;
8973                         break;
8974                 }
8975
8976                 if (trans_edp_pipe == crtc->pipe)
8977                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
8978         }
8979
8980         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
8981         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8982                 return false;
8983         *power_domain_mask |= BIT_ULL(power_domain);
8984
8985         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8986
8987         return tmp & PIPECONF_ENABLE;
8988 }
8989
8990 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
8991                                          struct intel_crtc_state *pipe_config,
8992                                          u64 *power_domain_mask)
8993 {
8994         struct drm_device *dev = crtc->base.dev;
8995         struct drm_i915_private *dev_priv = to_i915(dev);
8996         enum intel_display_power_domain power_domain;
8997         enum port port;
8998         enum transcoder cpu_transcoder;
8999         u32 tmp;
9000
9001         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9002                 if (port == PORT_A)
9003                         cpu_transcoder = TRANSCODER_DSI_A;
9004                 else
9005                         cpu_transcoder = TRANSCODER_DSI_C;
9006
9007                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9008                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9009                         continue;
9010                 *power_domain_mask |= BIT_ULL(power_domain);
9011
9012                 /*
9013                  * The PLL needs to be enabled with a valid divider
9014                  * configuration, otherwise accessing DSI registers will hang
9015                  * the machine. See BSpec North Display Engine
9016                  * registers/MIPI[BXT]. We can break out here early, since we
9017                  * need the same DSI PLL to be enabled for both DSI ports.
9018                  */
9019                 if (!intel_dsi_pll_is_enabled(dev_priv))
9020                         break;
9021
9022                 /* XXX: this works for video mode only */
9023                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9024                 if (!(tmp & DPI_ENABLE))
9025                         continue;
9026
9027                 tmp = I915_READ(MIPI_CTRL(port));
9028                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9029                         continue;
9030
9031                 pipe_config->cpu_transcoder = cpu_transcoder;
9032                 break;
9033         }
9034
9035         return transcoder_is_dsi(pipe_config->cpu_transcoder);
9036 }
9037
9038 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9039                                        struct intel_crtc_state *pipe_config)
9040 {
9041         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9042         struct intel_shared_dpll *pll;
9043         enum port port;
9044         uint32_t tmp;
9045
9046         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9047
9048         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9049
9050         if (IS_GEN9_BC(dev_priv))
9051                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9052         else if (IS_GEN9_LP(dev_priv))
9053                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9054         else
9055                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9056
9057         pll = pipe_config->shared_dpll;
9058         if (pll) {
9059                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9060                                                  &pipe_config->dpll_hw_state));
9061         }
9062
9063         /*
9064          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9065          * DDI E. So just check whether this pipe is wired to DDI E and whether
9066          * the PCH transcoder is on.
9067          */
9068         if (INTEL_GEN(dev_priv) < 9 &&
9069             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9070                 pipe_config->has_pch_encoder = true;
9071
9072                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9073                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9074                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9075
9076                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9077         }
9078 }
9079
9080 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9081                                     struct intel_crtc_state *pipe_config)
9082 {
9083         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9084         enum intel_display_power_domain power_domain;
9085         u64 power_domain_mask;
9086         bool active;
9087
9088         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9089         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9090                 return false;
9091         power_domain_mask = BIT_ULL(power_domain);
9092
9093         pipe_config->shared_dpll = NULL;
9094
9095         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9096
9097         if (IS_GEN9_LP(dev_priv) &&
9098             bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
9099                 WARN_ON(active);
9100                 active = true;
9101         }
9102
9103         if (!active)
9104                 goto out;
9105
9106         if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9107                 haswell_get_ddi_port_state(crtc, pipe_config);
9108                 intel_get_pipe_timings(crtc, pipe_config);
9109         }
9110
9111         intel_get_pipe_src_size(crtc, pipe_config);
9112
9113         pipe_config->gamma_mode =
9114                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
9115
9116         if (INTEL_GEN(dev_priv) >= 9) {
9117                 intel_crtc_init_scalers(crtc, pipe_config);
9118
9119                 pipe_config->scaler_state.scaler_id = -1;
9120                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9121         }
9122
9123         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9124         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9125                 power_domain_mask |= BIT_ULL(power_domain);
9126                 if (INTEL_GEN(dev_priv) >= 9)
9127                         skylake_get_pfit_config(crtc, pipe_config);
9128                 else
9129                         ironlake_get_pfit_config(crtc, pipe_config);
9130         }
9131
9132         if (IS_HASWELL(dev_priv))
9133                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9134                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9135
9136         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
9137             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9138                 pipe_config->pixel_multiplier =
9139                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9140         } else {
9141                 pipe_config->pixel_multiplier = 1;
9142         }
9143
9144 out:
9145         for_each_power_domain(power_domain, power_domain_mask)
9146                 intel_display_power_put(dev_priv, power_domain);
9147
9148         return active;
9149 }
9150
9151 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
9152                            const struct intel_plane_state *plane_state)
9153 {
9154         unsigned int width = plane_state->base.crtc_w;
9155         unsigned int stride = roundup_pow_of_two(width) * 4;
9156
9157         switch (stride) {
9158         default:
9159                 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9160                           width, stride);
9161                 stride = 256;
9162                 /* fallthrough */
9163         case 256:
9164         case 512:
9165         case 1024:
9166         case 2048:
9167                 break;
9168         }
9169
9170         return CURSOR_ENABLE |
9171                 CURSOR_GAMMA_ENABLE |
9172                 CURSOR_FORMAT_ARGB |
9173                 CURSOR_STRIDE(stride);
9174 }
9175
9176 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
9177                                const struct intel_plane_state *plane_state)
9178 {
9179         struct drm_device *dev = crtc->dev;
9180         struct drm_i915_private *dev_priv = to_i915(dev);
9181         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9182         uint32_t cntl = 0, size = 0;
9183
9184         if (plane_state && plane_state->base.visible) {
9185                 unsigned int width = plane_state->base.crtc_w;
9186                 unsigned int height = plane_state->base.crtc_h;
9187
9188                 cntl = plane_state->ctl;
9189                 size = (height << 12) | width;
9190         }
9191
9192         if (intel_crtc->cursor_cntl != 0 &&
9193             (intel_crtc->cursor_base != base ||
9194              intel_crtc->cursor_size != size ||
9195              intel_crtc->cursor_cntl != cntl)) {
9196                 /* On these chipsets we can only modify the base/size/stride
9197                  * whilst the cursor is disabled.
9198                  */
9199                 I915_WRITE_FW(CURCNTR(PIPE_A), 0);
9200                 POSTING_READ_FW(CURCNTR(PIPE_A));
9201                 intel_crtc->cursor_cntl = 0;
9202         }
9203
9204         if (intel_crtc->cursor_base != base) {
9205                 I915_WRITE_FW(CURBASE(PIPE_A), base);
9206                 intel_crtc->cursor_base = base;
9207         }
9208
9209         if (intel_crtc->cursor_size != size) {
9210                 I915_WRITE_FW(CURSIZE, size);
9211                 intel_crtc->cursor_size = size;
9212         }
9213
9214         if (intel_crtc->cursor_cntl != cntl) {
9215                 I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
9216                 POSTING_READ_FW(CURCNTR(PIPE_A));
9217                 intel_crtc->cursor_cntl = cntl;
9218         }
9219 }
9220
9221 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
9222                            const struct intel_plane_state *plane_state)
9223 {
9224         struct drm_i915_private *dev_priv =
9225                 to_i915(plane_state->base.plane->dev);
9226         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9227         enum pipe pipe = crtc->pipe;
9228         u32 cntl;
9229
9230         cntl = MCURSOR_GAMMA_ENABLE;
9231
9232         if (HAS_DDI(dev_priv))
9233                 cntl |= CURSOR_PIPE_CSC_ENABLE;
9234
9235         cntl |= pipe << 28; /* Connect to correct pipe */
9236
9237         switch (plane_state->base.crtc_w) {
9238         case 64:
9239                 cntl |= CURSOR_MODE_64_ARGB_AX;
9240                 break;
9241         case 128:
9242                 cntl |= CURSOR_MODE_128_ARGB_AX;
9243                 break;
9244         case 256:
9245                 cntl |= CURSOR_MODE_256_ARGB_AX;
9246                 break;
9247         default:
9248                 MISSING_CASE(plane_state->base.crtc_w);
9249                 return 0;
9250         }
9251
9252         if (plane_state->base.rotation & DRM_ROTATE_180)
9253                 cntl |= CURSOR_ROTATE_180;
9254
9255         return cntl;
9256 }
9257
9258 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
9259                                const struct intel_plane_state *plane_state)
9260 {
9261         struct drm_device *dev = crtc->dev;
9262         struct drm_i915_private *dev_priv = to_i915(dev);
9263         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9264         int pipe = intel_crtc->pipe;
9265         uint32_t cntl = 0;
9266
9267         if (plane_state && plane_state->base.visible)
9268                 cntl = plane_state->ctl;
9269
9270         if (intel_crtc->cursor_cntl != cntl) {
9271                 I915_WRITE_FW(CURCNTR(pipe), cntl);
9272                 POSTING_READ_FW(CURCNTR(pipe));
9273                 intel_crtc->cursor_cntl = cntl;
9274         }
9275
9276         /* and commit changes on next vblank */
9277         I915_WRITE_FW(CURBASE(pipe), base);
9278         POSTING_READ_FW(CURBASE(pipe));
9279
9280         intel_crtc->cursor_base = base;
9281 }
9282
9283 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9284 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9285                                      const struct intel_plane_state *plane_state)
9286 {
9287         struct drm_device *dev = crtc->dev;
9288         struct drm_i915_private *dev_priv = to_i915(dev);
9289         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9290         int pipe = intel_crtc->pipe;
9291         u32 base = intel_crtc->cursor_addr;
9292         unsigned long irqflags;
9293         u32 pos = 0;
9294
9295         if (plane_state) {
9296                 int x = plane_state->base.crtc_x;
9297                 int y = plane_state->base.crtc_y;
9298
9299                 if (x < 0) {
9300                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9301                         x = -x;
9302                 }
9303                 pos |= x << CURSOR_X_SHIFT;
9304
9305                 if (y < 0) {
9306                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9307                         y = -y;
9308                 }
9309                 pos |= y << CURSOR_Y_SHIFT;
9310
9311                 /* ILK+ do this automagically */
9312                 if (HAS_GMCH_DISPLAY(dev_priv) &&
9313                     plane_state->base.rotation & DRM_ROTATE_180) {
9314                         base += (plane_state->base.crtc_h *
9315                                  plane_state->base.crtc_w - 1) * 4;
9316                 }
9317         }
9318
9319         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9320
9321         I915_WRITE_FW(CURPOS(pipe), pos);
9322
9323         if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
9324                 i845_update_cursor(crtc, base, plane_state);
9325         else
9326                 i9xx_update_cursor(crtc, base, plane_state);
9327
9328         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9329 }
9330
9331 static bool cursor_size_ok(struct drm_i915_private *dev_priv,
9332                            uint32_t width, uint32_t height)
9333 {
9334         if (width == 0 || height == 0)
9335                 return false;
9336
9337         /*
9338          * 845g/865g are special in that they are only limited by
9339          * the width of their cursors, the height is arbitrary up to
9340          * the precision of the register. Everything else requires
9341          * square cursors, limited to a few power-of-two sizes.
9342          */
9343         if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
9344                 if ((width & 63) != 0)
9345                         return false;
9346
9347                 if (width > (IS_I845G(dev_priv) ? 64 : 512))
9348                         return false;
9349
9350                 if (height > 1023)
9351                         return false;
9352         } else {
9353                 switch (width | height) {
9354                 case 256:
9355                 case 128:
9356                         if (IS_GEN2(dev_priv))
9357                                 return false;
9358                 case 64:
9359                         break;
9360                 default:
9361                         return false;
9362                 }
9363         }
9364
9365         return true;
9366 }
9367
9368 /* VESA 640x480x72Hz mode to set on the pipe */
9369 static struct drm_display_mode load_detect_mode = {
9370         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9371                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9372 };
9373
9374 struct drm_framebuffer *
9375 intel_framebuffer_create(struct drm_i915_gem_object *obj,
9376                          struct drm_mode_fb_cmd2 *mode_cmd)
9377 {
9378         struct intel_framebuffer *intel_fb;
9379         int ret;
9380
9381         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9382         if (!intel_fb)
9383                 return ERR_PTR(-ENOMEM);
9384
9385         ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
9386         if (ret)
9387                 goto err;
9388
9389         return &intel_fb->base;
9390
9391 err:
9392         kfree(intel_fb);
9393         return ERR_PTR(ret);
9394 }
9395
9396 static u32
9397 intel_framebuffer_pitch_for_width(int width, int bpp)
9398 {
9399         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9400         return ALIGN(pitch, 64);
9401 }
9402
9403 static u32
9404 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9405 {
9406         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9407         return PAGE_ALIGN(pitch * mode->vdisplay);
9408 }
9409
9410 static struct drm_framebuffer *
9411 intel_framebuffer_create_for_mode(struct drm_device *dev,
9412                                   struct drm_display_mode *mode,
9413                                   int depth, int bpp)
9414 {
9415         struct drm_framebuffer *fb;
9416         struct drm_i915_gem_object *obj;
9417         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9418
9419         obj = i915_gem_object_create(to_i915(dev),
9420                                     intel_framebuffer_size_for_mode(mode, bpp));
9421         if (IS_ERR(obj))
9422                 return ERR_CAST(obj);
9423
9424         mode_cmd.width = mode->hdisplay;
9425         mode_cmd.height = mode->vdisplay;
9426         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9427                                                                 bpp);
9428         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9429
9430         fb = intel_framebuffer_create(obj, &mode_cmd);
9431         if (IS_ERR(fb))
9432                 i915_gem_object_put(obj);
9433
9434         return fb;
9435 }
9436
9437 static struct drm_framebuffer *
9438 mode_fits_in_fbdev(struct drm_device *dev,
9439                    struct drm_display_mode *mode)
9440 {
9441 #ifdef CONFIG_DRM_FBDEV_EMULATION
9442         struct drm_i915_private *dev_priv = to_i915(dev);
9443         struct drm_i915_gem_object *obj;
9444         struct drm_framebuffer *fb;
9445
9446         if (!dev_priv->fbdev)
9447                 return NULL;
9448
9449         if (!dev_priv->fbdev->fb)
9450                 return NULL;
9451
9452         obj = dev_priv->fbdev->fb->obj;
9453         BUG_ON(!obj);
9454
9455         fb = &dev_priv->fbdev->fb->base;
9456         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9457                                                                fb->format->cpp[0] * 8))
9458                 return NULL;
9459
9460         if (obj->base.size < mode->vdisplay * fb->pitches[0])
9461                 return NULL;
9462
9463         drm_framebuffer_reference(fb);
9464         return fb;
9465 #else
9466         return NULL;
9467 #endif
9468 }
9469
9470 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9471                                            struct drm_crtc *crtc,
9472                                            struct drm_display_mode *mode,
9473                                            struct drm_framebuffer *fb,
9474                                            int x, int y)
9475 {
9476         struct drm_plane_state *plane_state;
9477         int hdisplay, vdisplay;
9478         int ret;
9479
9480         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9481         if (IS_ERR(plane_state))
9482                 return PTR_ERR(plane_state);
9483
9484         if (mode)
9485                 drm_mode_get_hv_timing(mode, &hdisplay, &vdisplay);
9486         else
9487                 hdisplay = vdisplay = 0;
9488
9489         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9490         if (ret)
9491                 return ret;
9492         drm_atomic_set_fb_for_plane(plane_state, fb);
9493         plane_state->crtc_x = 0;
9494         plane_state->crtc_y = 0;
9495         plane_state->crtc_w = hdisplay;
9496         plane_state->crtc_h = vdisplay;
9497         plane_state->src_x = x << 16;
9498         plane_state->src_y = y << 16;
9499         plane_state->src_w = hdisplay << 16;
9500         plane_state->src_h = vdisplay << 16;
9501
9502         return 0;
9503 }
9504
9505 int intel_get_load_detect_pipe(struct drm_connector *connector,
9506                                struct drm_display_mode *mode,
9507                                struct intel_load_detect_pipe *old,
9508                                struct drm_modeset_acquire_ctx *ctx)
9509 {
9510         struct intel_crtc *intel_crtc;
9511         struct intel_encoder *intel_encoder =
9512                 intel_attached_encoder(connector);
9513         struct drm_crtc *possible_crtc;
9514         struct drm_encoder *encoder = &intel_encoder->base;
9515         struct drm_crtc *crtc = NULL;
9516         struct drm_device *dev = encoder->dev;
9517         struct drm_i915_private *dev_priv = to_i915(dev);
9518         struct drm_framebuffer *fb;
9519         struct drm_mode_config *config = &dev->mode_config;
9520         struct drm_atomic_state *state = NULL, *restore_state = NULL;
9521         struct drm_connector_state *connector_state;
9522         struct intel_crtc_state *crtc_state;
9523         int ret, i = -1;
9524
9525         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9526                       connector->base.id, connector->name,
9527                       encoder->base.id, encoder->name);
9528
9529         old->restore_state = NULL;
9530
9531         WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
9532
9533         /*
9534          * Algorithm gets a little messy:
9535          *
9536          *   - if the connector already has an assigned crtc, use it (but make
9537          *     sure it's on first)
9538          *
9539          *   - try to find the first unused crtc that can drive this connector,
9540          *     and use that if we find one
9541          */
9542
9543         /* See if we already have a CRTC for this connector */
9544         if (connector->state->crtc) {
9545                 crtc = connector->state->crtc;
9546
9547                 ret = drm_modeset_lock(&crtc->mutex, ctx);
9548                 if (ret)
9549                         goto fail;
9550
9551                 /* Make sure the crtc and connector are running */
9552                 goto found;
9553         }
9554
9555         /* Find an unused one (if possible) */
9556         for_each_crtc(dev, possible_crtc) {
9557                 i++;
9558                 if (!(encoder->possible_crtcs & (1 << i)))
9559                         continue;
9560
9561                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
9562                 if (ret)
9563                         goto fail;
9564
9565                 if (possible_crtc->state->enable) {
9566                         drm_modeset_unlock(&possible_crtc->mutex);
9567                         continue;
9568                 }
9569
9570                 crtc = possible_crtc;
9571                 break;
9572         }
9573
9574         /*
9575          * If we didn't find an unused CRTC, don't use any.
9576          */
9577         if (!crtc) {
9578                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9579                 goto fail;
9580         }
9581
9582 found:
9583         intel_crtc = to_intel_crtc(crtc);
9584
9585         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9586         if (ret)
9587                 goto fail;
9588
9589         state = drm_atomic_state_alloc(dev);
9590         restore_state = drm_atomic_state_alloc(dev);
9591         if (!state || !restore_state) {
9592                 ret = -ENOMEM;
9593                 goto fail;
9594         }
9595
9596         state->acquire_ctx = ctx;
9597         restore_state->acquire_ctx = ctx;
9598
9599         connector_state = drm_atomic_get_connector_state(state, connector);
9600         if (IS_ERR(connector_state)) {
9601                 ret = PTR_ERR(connector_state);
9602                 goto fail;
9603         }
9604
9605         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
9606         if (ret)
9607                 goto fail;
9608
9609         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9610         if (IS_ERR(crtc_state)) {
9611                 ret = PTR_ERR(crtc_state);
9612                 goto fail;
9613         }
9614
9615         crtc_state->base.active = crtc_state->base.enable = true;
9616
9617         if (!mode)
9618                 mode = &load_detect_mode;
9619
9620         /* We need a framebuffer large enough to accommodate all accesses
9621          * that the plane may generate whilst we perform load detection.
9622          * We can not rely on the fbcon either being present (we get called
9623          * during its initialisation to detect all boot displays, or it may
9624          * not even exist) or that it is large enough to satisfy the
9625          * requested mode.
9626          */
9627         fb = mode_fits_in_fbdev(dev, mode);
9628         if (fb == NULL) {
9629                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9630                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9631         } else
9632                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9633         if (IS_ERR(fb)) {
9634                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9635                 goto fail;
9636         }
9637
9638         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
9639         if (ret)
9640                 goto fail;
9641
9642         drm_framebuffer_unreference(fb);
9643
9644         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
9645         if (ret)
9646                 goto fail;
9647
9648         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
9649         if (!ret)
9650                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
9651         if (!ret)
9652                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
9653         if (ret) {
9654                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
9655                 goto fail;
9656         }
9657
9658         ret = drm_atomic_commit(state);
9659         if (ret) {
9660                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9661                 goto fail;
9662         }
9663
9664         old->restore_state = restore_state;
9665         drm_atomic_state_put(state);
9666
9667         /* let the connector get through one full cycle before testing */
9668         intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
9669         return true;
9670
9671 fail:
9672         if (state) {
9673                 drm_atomic_state_put(state);
9674                 state = NULL;
9675         }
9676         if (restore_state) {
9677                 drm_atomic_state_put(restore_state);
9678                 restore_state = NULL;
9679         }
9680
9681         if (ret == -EDEADLK)
9682                 return ret;
9683
9684         return false;
9685 }
9686
9687 void intel_release_load_detect_pipe(struct drm_connector *connector,
9688                                     struct intel_load_detect_pipe *old,
9689                                     struct drm_modeset_acquire_ctx *ctx)
9690 {
9691         struct intel_encoder *intel_encoder =
9692                 intel_attached_encoder(connector);
9693         struct drm_encoder *encoder = &intel_encoder->base;
9694         struct drm_atomic_state *state = old->restore_state;
9695         int ret;
9696
9697         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9698                       connector->base.id, connector->name,
9699                       encoder->base.id, encoder->name);
9700
9701         if (!state)
9702                 return;
9703
9704         ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
9705         if (ret)
9706                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
9707         drm_atomic_state_put(state);
9708 }
9709
9710 static int i9xx_pll_refclk(struct drm_device *dev,
9711                            const struct intel_crtc_state *pipe_config)
9712 {
9713         struct drm_i915_private *dev_priv = to_i915(dev);
9714         u32 dpll = pipe_config->dpll_hw_state.dpll;
9715
9716         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9717                 return dev_priv->vbt.lvds_ssc_freq;
9718         else if (HAS_PCH_SPLIT(dev_priv))
9719                 return 120000;
9720         else if (!IS_GEN2(dev_priv))
9721                 return 96000;
9722         else
9723                 return 48000;
9724 }
9725
9726 /* Returns the clock of the currently programmed mode of the given pipe. */
9727 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9728                                 struct intel_crtc_state *pipe_config)
9729 {
9730         struct drm_device *dev = crtc->base.dev;
9731         struct drm_i915_private *dev_priv = to_i915(dev);
9732         int pipe = pipe_config->cpu_transcoder;
9733         u32 dpll = pipe_config->dpll_hw_state.dpll;
9734         u32 fp;
9735         struct dpll clock;
9736         int port_clock;
9737         int refclk = i9xx_pll_refclk(dev, pipe_config);
9738
9739         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9740                 fp = pipe_config->dpll_hw_state.fp0;
9741         else
9742                 fp = pipe_config->dpll_hw_state.fp1;
9743
9744         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9745         if (IS_PINEVIEW(dev_priv)) {
9746                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9747                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9748         } else {
9749                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9750                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9751         }
9752
9753         if (!IS_GEN2(dev_priv)) {
9754                 if (IS_PINEVIEW(dev_priv))
9755                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9756                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9757                 else
9758                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9759                                DPLL_FPA01_P1_POST_DIV_SHIFT);
9760
9761                 switch (dpll & DPLL_MODE_MASK) {
9762                 case DPLLB_MODE_DAC_SERIAL:
9763                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9764                                 5 : 10;
9765                         break;
9766                 case DPLLB_MODE_LVDS:
9767                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9768                                 7 : 14;
9769                         break;
9770                 default:
9771                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9772                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
9773                         return;
9774                 }
9775
9776                 if (IS_PINEVIEW(dev_priv))
9777                         port_clock = pnv_calc_dpll_params(refclk, &clock);
9778                 else
9779                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
9780         } else {
9781                 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
9782                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9783
9784                 if (is_lvds) {
9785                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9786                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
9787
9788                         if (lvds & LVDS_CLKB_POWER_UP)
9789                                 clock.p2 = 7;
9790                         else
9791                                 clock.p2 = 14;
9792                 } else {
9793                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
9794                                 clock.p1 = 2;
9795                         else {
9796                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9797                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9798                         }
9799                         if (dpll & PLL_P2_DIVIDE_BY_4)
9800                                 clock.p2 = 4;
9801                         else
9802                                 clock.p2 = 2;
9803                 }
9804
9805                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
9806         }
9807
9808         /*
9809          * This value includes pixel_multiplier. We will use
9810          * port_clock to compute adjusted_mode.crtc_clock in the
9811          * encoder's get_config() function.
9812          */
9813         pipe_config->port_clock = port_clock;
9814 }
9815
9816 int intel_dotclock_calculate(int link_freq,
9817                              const struct intel_link_m_n *m_n)
9818 {
9819         /*
9820          * The calculation for the data clock is:
9821          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
9822          * But we want to avoid losing precison if possible, so:
9823          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
9824          *
9825          * and the link clock is simpler:
9826          * link_clock = (m * link_clock) / n
9827          */
9828
9829         if (!m_n->link_n)
9830                 return 0;
9831
9832         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9833 }
9834
9835 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
9836                                    struct intel_crtc_state *pipe_config)
9837 {
9838         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9839
9840         /* read out port_clock from the DPLL */
9841         i9xx_crtc_clock_get(crtc, pipe_config);
9842
9843         /*
9844          * In case there is an active pipe without active ports,
9845          * we may need some idea for the dotclock anyway.
9846          * Calculate one based on the FDI configuration.
9847          */
9848         pipe_config->base.adjusted_mode.crtc_clock =
9849                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
9850                                          &pipe_config->fdi_m_n);
9851 }
9852
9853 /** Returns the currently programmed mode of the given pipe. */
9854 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9855                                              struct drm_crtc *crtc)
9856 {
9857         struct drm_i915_private *dev_priv = to_i915(dev);
9858         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9859         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9860         struct drm_display_mode *mode;
9861         struct intel_crtc_state *pipe_config;
9862         int htot = I915_READ(HTOTAL(cpu_transcoder));
9863         int hsync = I915_READ(HSYNC(cpu_transcoder));
9864         int vtot = I915_READ(VTOTAL(cpu_transcoder));
9865         int vsync = I915_READ(VSYNC(cpu_transcoder));
9866         enum pipe pipe = intel_crtc->pipe;
9867
9868         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9869         if (!mode)
9870                 return NULL;
9871
9872         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9873         if (!pipe_config) {
9874                 kfree(mode);
9875                 return NULL;
9876         }
9877
9878         /*
9879          * Construct a pipe_config sufficient for getting the clock info
9880          * back out of crtc_clock_get.
9881          *
9882          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9883          * to use a real value here instead.
9884          */
9885         pipe_config->cpu_transcoder = (enum transcoder) pipe;
9886         pipe_config->pixel_multiplier = 1;
9887         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9888         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9889         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9890         i9xx_crtc_clock_get(intel_crtc, pipe_config);
9891
9892         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
9893         mode->hdisplay = (htot & 0xffff) + 1;
9894         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9895         mode->hsync_start = (hsync & 0xffff) + 1;
9896         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9897         mode->vdisplay = (vtot & 0xffff) + 1;
9898         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9899         mode->vsync_start = (vsync & 0xffff) + 1;
9900         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9901
9902         drm_mode_set_name(mode);
9903
9904         kfree(pipe_config);
9905
9906         return mode;
9907 }
9908
9909 static void intel_crtc_destroy(struct drm_crtc *crtc)
9910 {
9911         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9912         struct drm_device *dev = crtc->dev;
9913         struct intel_flip_work *work;
9914
9915         spin_lock_irq(&dev->event_lock);
9916         work = intel_crtc->flip_work;
9917         intel_crtc->flip_work = NULL;
9918         spin_unlock_irq(&dev->event_lock);
9919
9920         if (work) {
9921                 cancel_work_sync(&work->mmio_work);
9922                 cancel_work_sync(&work->unpin_work);
9923                 kfree(work);
9924         }
9925
9926         drm_crtc_cleanup(crtc);
9927
9928         kfree(intel_crtc);
9929 }
9930
9931 static void intel_unpin_work_fn(struct work_struct *__work)
9932 {
9933         struct intel_flip_work *work =
9934                 container_of(__work, struct intel_flip_work, unpin_work);
9935         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
9936         struct drm_device *dev = crtc->base.dev;
9937         struct drm_plane *primary = crtc->base.primary;
9938
9939         if (is_mmio_work(work))
9940                 flush_work(&work->mmio_work);
9941
9942         mutex_lock(&dev->struct_mutex);
9943         intel_unpin_fb_vma(work->old_vma);
9944         i915_gem_object_put(work->pending_flip_obj);
9945         mutex_unlock(&dev->struct_mutex);
9946
9947         i915_gem_request_put(work->flip_queued_req);
9948
9949         intel_frontbuffer_flip_complete(to_i915(dev),
9950                                         to_intel_plane(primary)->frontbuffer_bit);
9951         intel_fbc_post_update(crtc);
9952         drm_framebuffer_unreference(work->old_fb);
9953
9954         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
9955         atomic_dec(&crtc->unpin_work_count);
9956
9957         kfree(work);
9958 }
9959
9960 /* Is 'a' after or equal to 'b'? */
9961 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9962 {
9963         return !((a - b) & 0x80000000);
9964 }
9965
9966 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
9967                                    struct intel_flip_work *work)
9968 {
9969         struct drm_device *dev = crtc->base.dev;
9970         struct drm_i915_private *dev_priv = to_i915(dev);
9971
9972         if (abort_flip_on_reset(crtc))
9973                 return true;
9974
9975         /*
9976          * The relevant registers doen't exist on pre-ctg.
9977          * As the flip done interrupt doesn't trigger for mmio
9978          * flips on gmch platforms, a flip count check isn't
9979          * really needed there. But since ctg has the registers,
9980          * include it in the check anyway.
9981          */
9982         if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
9983                 return true;
9984
9985         /*
9986          * BDW signals flip done immediately if the plane
9987          * is disabled, even if the plane enable is already
9988          * armed to occur at the next vblank :(
9989          */
9990
9991         /*
9992          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9993          * used the same base address. In that case the mmio flip might
9994          * have completed, but the CS hasn't even executed the flip yet.
9995          *
9996          * A flip count check isn't enough as the CS might have updated
9997          * the base address just after start of vblank, but before we
9998          * managed to process the interrupt. This means we'd complete the
9999          * CS flip too soon.
10000          *
10001          * Combining both checks should get us a good enough result. It may
10002          * still happen that the CS flip has been executed, but has not
10003          * yet actually completed. But in case the base address is the same
10004          * anyway, we don't really care.
10005          */
10006         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10007                 crtc->flip_work->gtt_offset &&
10008                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10009                                     crtc->flip_work->flip_count);
10010 }
10011
10012 static bool
10013 __pageflip_finished_mmio(struct intel_crtc *crtc,
10014                                struct intel_flip_work *work)
10015 {
10016         /*
10017          * MMIO work completes when vblank is different from
10018          * flip_queued_vblank.
10019          *
10020          * Reset counter value doesn't matter, this is handled by
10021          * i915_wait_request finishing early, so no need to handle
10022          * reset here.
10023          */
10024         return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
10025 }
10026
10027
10028 static bool pageflip_finished(struct intel_crtc *crtc,
10029                               struct intel_flip_work *work)
10030 {
10031         if (!atomic_read(&work->pending))
10032                 return false;
10033
10034         smp_rmb();
10035
10036         if (is_mmio_work(work))
10037                 return __pageflip_finished_mmio(crtc, work);
10038         else
10039                 return __pageflip_finished_cs(crtc, work);
10040 }
10041
10042 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
10043 {
10044         struct drm_device *dev = &dev_priv->drm;
10045         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10046         struct intel_flip_work *work;
10047         unsigned long flags;
10048
10049         /* Ignore early vblank irqs */
10050         if (!crtc)
10051                 return;
10052
10053         /*
10054          * This is called both by irq handlers and the reset code (to complete
10055          * lost pageflips) so needs the full irqsave spinlocks.
10056          */
10057         spin_lock_irqsave(&dev->event_lock, flags);
10058         work = crtc->flip_work;
10059
10060         if (work != NULL &&
10061             !is_mmio_work(work) &&
10062             pageflip_finished(crtc, work))
10063                 page_flip_completed(crtc);
10064
10065         spin_unlock_irqrestore(&dev->event_lock, flags);
10066 }
10067
10068 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
10069 {
10070         struct drm_device *dev = &dev_priv->drm;
10071         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10072         struct intel_flip_work *work;
10073         unsigned long flags;
10074
10075         /* Ignore early vblank irqs */
10076         if (!crtc)
10077                 return;
10078
10079         /*
10080          * This is called both by irq handlers and the reset code (to complete
10081          * lost pageflips) so needs the full irqsave spinlocks.
10082          */
10083         spin_lock_irqsave(&dev->event_lock, flags);
10084         work = crtc->flip_work;
10085
10086         if (work != NULL &&
10087             is_mmio_work(work) &&
10088             pageflip_finished(crtc, work))
10089                 page_flip_completed(crtc);
10090
10091         spin_unlock_irqrestore(&dev->event_lock, flags);
10092 }
10093
10094 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
10095                                                struct intel_flip_work *work)
10096 {
10097         work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
10098
10099         /* Ensure that the work item is consistent when activating it ... */
10100         smp_mb__before_atomic();
10101         atomic_set(&work->pending, 1);
10102 }
10103
10104 static int intel_gen2_queue_flip(struct drm_device *dev,
10105                                  struct drm_crtc *crtc,
10106                                  struct drm_framebuffer *fb,
10107                                  struct drm_i915_gem_object *obj,
10108                                  struct drm_i915_gem_request *req,
10109                                  uint32_t flags)
10110 {
10111         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10112         u32 flip_mask, *cs;
10113
10114         cs = intel_ring_begin(req, 6);
10115         if (IS_ERR(cs))
10116                 return PTR_ERR(cs);
10117
10118         /* Can't queue multiple flips, so wait for the previous
10119          * one to finish before executing the next.
10120          */
10121         if (intel_crtc->plane)
10122                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10123         else
10124                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10125         *cs++ = MI_WAIT_FOR_EVENT | flip_mask;
10126         *cs++ = MI_NOOP;
10127         *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10128         *cs++ = fb->pitches[0];
10129         *cs++ = intel_crtc->flip_work->gtt_offset;
10130         *cs++ = 0; /* aux display base address, unused */
10131
10132         return 0;
10133 }
10134
10135 static int intel_gen3_queue_flip(struct drm_device *dev,
10136                                  struct drm_crtc *crtc,
10137                                  struct drm_framebuffer *fb,
10138                                  struct drm_i915_gem_object *obj,
10139                                  struct drm_i915_gem_request *req,
10140                                  uint32_t flags)
10141 {
10142         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10143         u32 flip_mask, *cs;
10144
10145         cs = intel_ring_begin(req, 6);
10146         if (IS_ERR(cs))
10147                 return PTR_ERR(cs);
10148
10149         if (intel_crtc->plane)
10150                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10151         else
10152                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10153         *cs++ = MI_WAIT_FOR_EVENT | flip_mask;
10154         *cs++ = MI_NOOP;
10155         *cs++ = MI_DISPLAY_FLIP_I915 | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10156         *cs++ = fb->pitches[0];
10157         *cs++ = intel_crtc->flip_work->gtt_offset;
10158         *cs++ = MI_NOOP;
10159
10160         return 0;
10161 }
10162
10163 static int intel_gen4_queue_flip(struct drm_device *dev,
10164                                  struct drm_crtc *crtc,
10165                                  struct drm_framebuffer *fb,
10166                                  struct drm_i915_gem_object *obj,
10167                                  struct drm_i915_gem_request *req,
10168                                  uint32_t flags)
10169 {
10170         struct drm_i915_private *dev_priv = to_i915(dev);
10171         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10172         u32 pf, pipesrc, *cs;
10173
10174         cs = intel_ring_begin(req, 4);
10175         if (IS_ERR(cs))
10176                 return PTR_ERR(cs);
10177
10178         /* i965+ uses the linear or tiled offsets from the
10179          * Display Registers (which do not change across a page-flip)
10180          * so we need only reprogram the base address.
10181          */
10182         *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10183         *cs++ = fb->pitches[0];
10184         *cs++ = intel_crtc->flip_work->gtt_offset |
10185                 intel_fb_modifier_to_tiling(fb->modifier);
10186
10187         /* XXX Enabling the panel-fitter across page-flip is so far
10188          * untested on non-native modes, so ignore it for now.
10189          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10190          */
10191         pf = 0;
10192         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10193         *cs++ = pf | pipesrc;
10194
10195         return 0;
10196 }
10197
10198 static int intel_gen6_queue_flip(struct drm_device *dev,
10199                                  struct drm_crtc *crtc,
10200                                  struct drm_framebuffer *fb,
10201                                  struct drm_i915_gem_object *obj,
10202                                  struct drm_i915_gem_request *req,
10203                                  uint32_t flags)
10204 {
10205         struct drm_i915_private *dev_priv = to_i915(dev);
10206         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10207         u32 pf, pipesrc, *cs;
10208
10209         cs = intel_ring_begin(req, 4);
10210         if (IS_ERR(cs))
10211                 return PTR_ERR(cs);
10212
10213         *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10214         *cs++ = fb->pitches[0] | intel_fb_modifier_to_tiling(fb->modifier);
10215         *cs++ = intel_crtc->flip_work->gtt_offset;
10216
10217         /* Contrary to the suggestions in the documentation,
10218          * "Enable Panel Fitter" does not seem to be required when page
10219          * flipping with a non-native mode, and worse causes a normal
10220          * modeset to fail.
10221          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10222          */
10223         pf = 0;
10224         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10225         *cs++ = pf | pipesrc;
10226
10227         return 0;
10228 }
10229
10230 static int intel_gen7_queue_flip(struct drm_device *dev,
10231                                  struct drm_crtc *crtc,
10232                                  struct drm_framebuffer *fb,
10233                                  struct drm_i915_gem_object *obj,
10234                                  struct drm_i915_gem_request *req,
10235                                  uint32_t flags)
10236 {
10237         struct drm_i915_private *dev_priv = to_i915(dev);
10238         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10239         u32 *cs, plane_bit = 0;
10240         int len, ret;
10241
10242         switch (intel_crtc->plane) {
10243         case PLANE_A:
10244                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10245                 break;
10246         case PLANE_B:
10247                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10248                 break;
10249         case PLANE_C:
10250                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10251                 break;
10252         default:
10253                 WARN_ONCE(1, "unknown plane in flip command\n");
10254                 return -ENODEV;
10255         }
10256
10257         len = 4;
10258         if (req->engine->id == RCS) {
10259                 len += 6;
10260                 /*
10261                  * On Gen 8, SRM is now taking an extra dword to accommodate
10262                  * 48bits addresses, and we need a NOOP for the batch size to
10263                  * stay even.
10264                  */
10265                 if (IS_GEN8(dev_priv))
10266                         len += 2;
10267         }
10268
10269         /*
10270          * BSpec MI_DISPLAY_FLIP for IVB:
10271          * "The full packet must be contained within the same cache line."
10272          *
10273          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10274          * cacheline, if we ever start emitting more commands before
10275          * the MI_DISPLAY_FLIP we may need to first emit everything else,
10276          * then do the cacheline alignment, and finally emit the
10277          * MI_DISPLAY_FLIP.
10278          */
10279         ret = intel_ring_cacheline_align(req);
10280         if (ret)
10281                 return ret;
10282
10283         cs = intel_ring_begin(req, len);
10284         if (IS_ERR(cs))
10285                 return PTR_ERR(cs);
10286
10287         /* Unmask the flip-done completion message. Note that the bspec says that
10288          * we should do this for both the BCS and RCS, and that we must not unmask
10289          * more than one flip event at any time (or ensure that one flip message
10290          * can be sent by waiting for flip-done prior to queueing new flips).
10291          * Experimentation says that BCS works despite DERRMR masking all
10292          * flip-done completion events and that unmasking all planes at once
10293          * for the RCS also doesn't appear to drop events. Setting the DERRMR
10294          * to zero does lead to lockups within MI_DISPLAY_FLIP.
10295          */
10296         if (req->engine->id == RCS) {
10297                 *cs++ = MI_LOAD_REGISTER_IMM(1);
10298                 *cs++ = i915_mmio_reg_offset(DERRMR);
10299                 *cs++ = ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10300                           DERRMR_PIPEB_PRI_FLIP_DONE |
10301                           DERRMR_PIPEC_PRI_FLIP_DONE);
10302                 if (IS_GEN8(dev_priv))
10303                         *cs++ = MI_STORE_REGISTER_MEM_GEN8 |
10304                                 MI_SRM_LRM_GLOBAL_GTT;
10305                 else
10306                         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
10307                 *cs++ = i915_mmio_reg_offset(DERRMR);
10308                 *cs++ = i915_ggtt_offset(req->engine->scratch) + 256;
10309                 if (IS_GEN8(dev_priv)) {
10310                         *cs++ = 0;
10311                         *cs++ = MI_NOOP;
10312                 }
10313         }
10314
10315         *cs++ = MI_DISPLAY_FLIP_I915 | plane_bit;
10316         *cs++ = fb->pitches[0] | intel_fb_modifier_to_tiling(fb->modifier);
10317         *cs++ = intel_crtc->flip_work->gtt_offset;
10318         *cs++ = MI_NOOP;
10319
10320         return 0;
10321 }
10322
10323 static bool use_mmio_flip(struct intel_engine_cs *engine,
10324                           struct drm_i915_gem_object *obj)
10325 {
10326         /*
10327          * This is not being used for older platforms, because
10328          * non-availability of flip done interrupt forces us to use
10329          * CS flips. Older platforms derive flip done using some clever
10330          * tricks involving the flip_pending status bits and vblank irqs.
10331          * So using MMIO flips there would disrupt this mechanism.
10332          */
10333
10334         if (engine == NULL)
10335                 return true;
10336
10337         if (INTEL_GEN(engine->i915) < 5)
10338                 return false;
10339
10340         if (i915.use_mmio_flip < 0)
10341                 return false;
10342         else if (i915.use_mmio_flip > 0)
10343                 return true;
10344         else if (i915.enable_execlists)
10345                 return true;
10346
10347         return engine != i915_gem_object_last_write_engine(obj);
10348 }
10349
10350 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
10351                              unsigned int rotation,
10352                              struct intel_flip_work *work)
10353 {
10354         struct drm_device *dev = intel_crtc->base.dev;
10355         struct drm_i915_private *dev_priv = to_i915(dev);
10356         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10357         const enum pipe pipe = intel_crtc->pipe;
10358         u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
10359
10360         ctl = I915_READ(PLANE_CTL(pipe, 0));
10361         ctl &= ~PLANE_CTL_TILED_MASK;
10362         switch (fb->modifier) {
10363         case DRM_FORMAT_MOD_LINEAR:
10364                 break;
10365         case I915_FORMAT_MOD_X_TILED:
10366                 ctl |= PLANE_CTL_TILED_X;
10367                 break;
10368         case I915_FORMAT_MOD_Y_TILED:
10369                 ctl |= PLANE_CTL_TILED_Y;
10370                 break;
10371         case I915_FORMAT_MOD_Yf_TILED:
10372                 ctl |= PLANE_CTL_TILED_YF;
10373                 break;
10374         default:
10375                 MISSING_CASE(fb->modifier);
10376         }
10377
10378         /*
10379          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10380          * PLANE_SURF updates, the update is then guaranteed to be atomic.
10381          */
10382         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10383         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10384
10385         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
10386         POSTING_READ(PLANE_SURF(pipe, 0));
10387 }
10388
10389 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
10390                              struct intel_flip_work *work)
10391 {
10392         struct drm_device *dev = intel_crtc->base.dev;
10393         struct drm_i915_private *dev_priv = to_i915(dev);
10394         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10395         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
10396         u32 dspcntr;
10397
10398         dspcntr = I915_READ(reg);
10399
10400         if (fb->modifier == I915_FORMAT_MOD_X_TILED)
10401                 dspcntr |= DISPPLANE_TILED;
10402         else
10403                 dspcntr &= ~DISPPLANE_TILED;
10404
10405         I915_WRITE(reg, dspcntr);
10406
10407         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
10408         POSTING_READ(DSPSURF(intel_crtc->plane));
10409 }
10410
10411 static void intel_mmio_flip_work_func(struct work_struct *w)
10412 {
10413         struct intel_flip_work *work =
10414                 container_of(w, struct intel_flip_work, mmio_work);
10415         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10416         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10417         struct intel_framebuffer *intel_fb =
10418                 to_intel_framebuffer(crtc->base.primary->fb);
10419         struct drm_i915_gem_object *obj = intel_fb->obj;
10420
10421         WARN_ON(i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT, NULL) < 0);
10422
10423         intel_pipe_update_start(crtc);
10424
10425         if (INTEL_GEN(dev_priv) >= 9)
10426                 skl_do_mmio_flip(crtc, work->rotation, work);
10427         else
10428                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10429                 ilk_do_mmio_flip(crtc, work);
10430
10431         intel_pipe_update_end(crtc, work);
10432 }
10433
10434 static int intel_default_queue_flip(struct drm_device *dev,
10435                                     struct drm_crtc *crtc,
10436                                     struct drm_framebuffer *fb,
10437                                     struct drm_i915_gem_object *obj,
10438                                     struct drm_i915_gem_request *req,
10439                                     uint32_t flags)
10440 {
10441         return -ENODEV;
10442 }
10443
10444 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
10445                                       struct intel_crtc *intel_crtc,
10446                                       struct intel_flip_work *work)
10447 {
10448         u32 addr, vblank;
10449
10450         if (!atomic_read(&work->pending))
10451                 return false;
10452
10453         smp_rmb();
10454
10455         vblank = intel_crtc_get_vblank_counter(intel_crtc);
10456         if (work->flip_ready_vblank == 0) {
10457                 if (work->flip_queued_req &&
10458                     !i915_gem_request_completed(work->flip_queued_req))
10459                         return false;
10460
10461                 work->flip_ready_vblank = vblank;
10462         }
10463
10464         if (vblank - work->flip_ready_vblank < 3)
10465                 return false;
10466
10467         /* Potential stall - if we see that the flip has happened,
10468          * assume a missed interrupt. */
10469         if (INTEL_GEN(dev_priv) >= 4)
10470                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10471         else
10472                 addr = I915_READ(DSPADDR(intel_crtc->plane));
10473
10474         /* There is a potential issue here with a false positive after a flip
10475          * to the same address. We could address this by checking for a
10476          * non-incrementing frame counter.
10477          */
10478         return addr == work->gtt_offset;
10479 }
10480
10481 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
10482 {
10483         struct drm_device *dev = &dev_priv->drm;
10484         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10485         struct intel_flip_work *work;
10486
10487         WARN_ON(!in_interrupt());
10488
10489         if (crtc == NULL)
10490                 return;
10491
10492         spin_lock(&dev->event_lock);
10493         work = crtc->flip_work;
10494
10495         if (work != NULL && !is_mmio_work(work) &&
10496             __pageflip_stall_check_cs(dev_priv, crtc, work)) {
10497                 WARN_ONCE(1,
10498                           "Kicking stuck page flip: queued at %d, now %d\n",
10499                         work->flip_queued_vblank, intel_crtc_get_vblank_counter(crtc));
10500                 page_flip_completed(crtc);
10501                 work = NULL;
10502         }
10503
10504         if (work != NULL && !is_mmio_work(work) &&
10505             intel_crtc_get_vblank_counter(crtc) - work->flip_queued_vblank > 1)
10506                 intel_queue_rps_boost_for_request(work->flip_queued_req);
10507         spin_unlock(&dev->event_lock);
10508 }
10509
10510 __maybe_unused
10511 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10512                                 struct drm_framebuffer *fb,
10513                                 struct drm_pending_vblank_event *event,
10514                                 uint32_t page_flip_flags)
10515 {
10516         struct drm_device *dev = crtc->dev;
10517         struct drm_i915_private *dev_priv = to_i915(dev);
10518         struct drm_framebuffer *old_fb = crtc->primary->fb;
10519         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10520         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10521         struct drm_plane *primary = crtc->primary;
10522         enum pipe pipe = intel_crtc->pipe;
10523         struct intel_flip_work *work;
10524         struct intel_engine_cs *engine;
10525         bool mmio_flip;
10526         struct drm_i915_gem_request *request;
10527         struct i915_vma *vma;
10528         int ret;
10529
10530         /*
10531          * drm_mode_page_flip_ioctl() should already catch this, but double
10532          * check to be safe.  In the future we may enable pageflipping from
10533          * a disabled primary plane.
10534          */
10535         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10536                 return -EBUSY;
10537
10538         /* Can't change pixel format via MI display flips. */
10539         if (fb->format != crtc->primary->fb->format)
10540                 return -EINVAL;
10541
10542         /*
10543          * TILEOFF/LINOFF registers can't be changed via MI display flips.
10544          * Note that pitch changes could also affect these register.
10545          */
10546         if (INTEL_GEN(dev_priv) > 3 &&
10547             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10548              fb->pitches[0] != crtc->primary->fb->pitches[0]))
10549                 return -EINVAL;
10550
10551         if (i915_terminally_wedged(&dev_priv->gpu_error))
10552                 goto out_hang;
10553
10554         work = kzalloc(sizeof(*work), GFP_KERNEL);
10555         if (work == NULL)
10556                 return -ENOMEM;
10557
10558         work->event = event;
10559         work->crtc = crtc;
10560         work->old_fb = old_fb;
10561         INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
10562
10563         ret = drm_crtc_vblank_get(crtc);
10564         if (ret)
10565                 goto free_work;
10566
10567         /* We borrow the event spin lock for protecting flip_work */
10568         spin_lock_irq(&dev->event_lock);
10569         if (intel_crtc->flip_work) {
10570                 /* Before declaring the flip queue wedged, check if
10571                  * the hardware completed the operation behind our backs.
10572                  */
10573                 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
10574                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10575                         page_flip_completed(intel_crtc);
10576                 } else {
10577                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10578                         spin_unlock_irq(&dev->event_lock);
10579
10580                         drm_crtc_vblank_put(crtc);
10581                         kfree(work);
10582                         return -EBUSY;
10583                 }
10584         }
10585         intel_crtc->flip_work = work;
10586         spin_unlock_irq(&dev->event_lock);
10587
10588         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10589                 flush_workqueue(dev_priv->wq);
10590
10591         /* Reference the objects for the scheduled work. */
10592         drm_framebuffer_reference(work->old_fb);
10593
10594         crtc->primary->fb = fb;
10595         update_state_fb(crtc->primary);
10596
10597         work->pending_flip_obj = i915_gem_object_get(obj);
10598
10599         ret = i915_mutex_lock_interruptible(dev);
10600         if (ret)
10601                 goto cleanup;
10602
10603         intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
10604         if (i915_reset_backoff_or_wedged(&dev_priv->gpu_error)) {
10605                 ret = -EIO;
10606                 goto unlock;
10607         }
10608
10609         atomic_inc(&intel_crtc->unpin_work_count);
10610
10611         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
10612                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
10613
10614         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
10615                 engine = dev_priv->engine[BCS];
10616                 if (fb->modifier != old_fb->modifier)
10617                         /* vlv: DISPLAY_FLIP fails to change tiling */
10618                         engine = NULL;
10619         } else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
10620                 engine = dev_priv->engine[BCS];
10621         } else if (INTEL_GEN(dev_priv) >= 7) {
10622                 engine = i915_gem_object_last_write_engine(obj);
10623                 if (engine == NULL || engine->id != RCS)
10624                         engine = dev_priv->engine[BCS];
10625         } else {
10626                 engine = dev_priv->engine[RCS];
10627         }
10628
10629         mmio_flip = use_mmio_flip(engine, obj);
10630
10631         vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
10632         if (IS_ERR(vma)) {
10633                 ret = PTR_ERR(vma);
10634                 goto cleanup_pending;
10635         }
10636
10637         work->old_vma = to_intel_plane_state(primary->state)->vma;
10638         to_intel_plane_state(primary->state)->vma = vma;
10639
10640         work->gtt_offset = i915_ggtt_offset(vma) + intel_crtc->dspaddr_offset;
10641         work->rotation = crtc->primary->state->rotation;
10642
10643         /*
10644          * There's the potential that the next frame will not be compatible with
10645          * FBC, so we want to call pre_update() before the actual page flip.
10646          * The problem is that pre_update() caches some information about the fb
10647          * object, so we want to do this only after the object is pinned. Let's
10648          * be on the safe side and do this immediately before scheduling the
10649          * flip.
10650          */
10651         intel_fbc_pre_update(intel_crtc, intel_crtc->config,
10652                              to_intel_plane_state(primary->state));
10653
10654         if (mmio_flip) {
10655                 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
10656                 queue_work(system_unbound_wq, &work->mmio_work);
10657         } else {
10658                 request = i915_gem_request_alloc(engine,
10659                                                  dev_priv->kernel_context);
10660                 if (IS_ERR(request)) {
10661                         ret = PTR_ERR(request);
10662                         goto cleanup_unpin;
10663                 }
10664
10665                 ret = i915_gem_request_await_object(request, obj, false);
10666                 if (ret)
10667                         goto cleanup_request;
10668
10669                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
10670                                                    page_flip_flags);
10671                 if (ret)
10672                         goto cleanup_request;
10673
10674                 intel_mark_page_flip_active(intel_crtc, work);
10675
10676                 work->flip_queued_req = i915_gem_request_get(request);
10677                 i915_add_request(request);
10678         }
10679
10680         i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
10681         i915_gem_track_fb(intel_fb_obj(old_fb), obj,
10682                           to_intel_plane(primary)->frontbuffer_bit);
10683         mutex_unlock(&dev->struct_mutex);
10684
10685         intel_frontbuffer_flip_prepare(to_i915(dev),
10686                                        to_intel_plane(primary)->frontbuffer_bit);
10687
10688         trace_i915_flip_request(intel_crtc->plane, obj);
10689
10690         return 0;
10691
10692 cleanup_request:
10693         i915_add_request(request);
10694 cleanup_unpin:
10695         to_intel_plane_state(primary->state)->vma = work->old_vma;
10696         intel_unpin_fb_vma(vma);
10697 cleanup_pending:
10698         atomic_dec(&intel_crtc->unpin_work_count);
10699 unlock:
10700         mutex_unlock(&dev->struct_mutex);
10701 cleanup:
10702         crtc->primary->fb = old_fb;
10703         update_state_fb(crtc->primary);
10704
10705         i915_gem_object_put(obj);
10706         drm_framebuffer_unreference(work->old_fb);
10707
10708         spin_lock_irq(&dev->event_lock);
10709         intel_crtc->flip_work = NULL;
10710         spin_unlock_irq(&dev->event_lock);
10711
10712         drm_crtc_vblank_put(crtc);
10713 free_work:
10714         kfree(work);
10715
10716         if (ret == -EIO) {
10717                 struct drm_atomic_state *state;
10718                 struct drm_plane_state *plane_state;
10719
10720 out_hang:
10721                 state = drm_atomic_state_alloc(dev);
10722                 if (!state)
10723                         return -ENOMEM;
10724                 state->acquire_ctx = dev->mode_config.acquire_ctx;
10725
10726 retry:
10727                 plane_state = drm_atomic_get_plane_state(state, primary);
10728                 ret = PTR_ERR_OR_ZERO(plane_state);
10729                 if (!ret) {
10730                         drm_atomic_set_fb_for_plane(plane_state, fb);
10731
10732                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
10733                         if (!ret)
10734                                 ret = drm_atomic_commit(state);
10735                 }
10736
10737                 if (ret == -EDEADLK) {
10738                         drm_modeset_backoff(state->acquire_ctx);
10739                         drm_atomic_state_clear(state);
10740                         goto retry;
10741                 }
10742
10743                 drm_atomic_state_put(state);
10744
10745                 if (ret == 0 && event) {
10746                         spin_lock_irq(&dev->event_lock);
10747                         drm_crtc_send_vblank_event(crtc, event);
10748                         spin_unlock_irq(&dev->event_lock);
10749                 }
10750         }
10751         return ret;
10752 }
10753
10754
10755 /**
10756  * intel_wm_need_update - Check whether watermarks need updating
10757  * @plane: drm plane
10758  * @state: new plane state
10759  *
10760  * Check current plane state versus the new one to determine whether
10761  * watermarks need to be recalculated.
10762  *
10763  * Returns true or false.
10764  */
10765 static bool intel_wm_need_update(struct drm_plane *plane,
10766                                  struct drm_plane_state *state)
10767 {
10768         struct intel_plane_state *new = to_intel_plane_state(state);
10769         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
10770
10771         /* Update watermarks on tiling or size changes. */
10772         if (new->base.visible != cur->base.visible)
10773                 return true;
10774
10775         if (!cur->base.fb || !new->base.fb)
10776                 return false;
10777
10778         if (cur->base.fb->modifier != new->base.fb->modifier ||
10779             cur->base.rotation != new->base.rotation ||
10780             drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
10781             drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
10782             drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
10783             drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
10784                 return true;
10785
10786         return false;
10787 }
10788
10789 static bool needs_scaling(struct intel_plane_state *state)
10790 {
10791         int src_w = drm_rect_width(&state->base.src) >> 16;
10792         int src_h = drm_rect_height(&state->base.src) >> 16;
10793         int dst_w = drm_rect_width(&state->base.dst);
10794         int dst_h = drm_rect_height(&state->base.dst);
10795
10796         return (src_w != dst_w || src_h != dst_h);
10797 }
10798
10799 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
10800                                     struct drm_plane_state *plane_state)
10801 {
10802         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
10803         struct drm_crtc *crtc = crtc_state->crtc;
10804         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10805         struct intel_plane *plane = to_intel_plane(plane_state->plane);
10806         struct drm_device *dev = crtc->dev;
10807         struct drm_i915_private *dev_priv = to_i915(dev);
10808         struct intel_plane_state *old_plane_state =
10809                 to_intel_plane_state(plane->base.state);
10810         bool mode_changed = needs_modeset(crtc_state);
10811         bool was_crtc_enabled = crtc->state->active;
10812         bool is_crtc_enabled = crtc_state->active;
10813         bool turn_off, turn_on, visible, was_visible;
10814         struct drm_framebuffer *fb = plane_state->fb;
10815         int ret;
10816
10817         if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
10818                 ret = skl_update_scaler_plane(
10819                         to_intel_crtc_state(crtc_state),
10820                         to_intel_plane_state(plane_state));
10821                 if (ret)
10822                         return ret;
10823         }
10824
10825         was_visible = old_plane_state->base.visible;
10826         visible = plane_state->visible;
10827
10828         if (!was_crtc_enabled && WARN_ON(was_visible))
10829                 was_visible = false;
10830
10831         /*
10832          * Visibility is calculated as if the crtc was on, but
10833          * after scaler setup everything depends on it being off
10834          * when the crtc isn't active.
10835          *
10836          * FIXME this is wrong for watermarks. Watermarks should also
10837          * be computed as if the pipe would be active. Perhaps move
10838          * per-plane wm computation to the .check_plane() hook, and
10839          * only combine the results from all planes in the current place?
10840          */
10841         if (!is_crtc_enabled) {
10842                 plane_state->visible = visible = false;
10843                 to_intel_crtc_state(crtc_state)->active_planes &= ~BIT(plane->id);
10844         }
10845
10846         if (!was_visible && !visible)
10847                 return 0;
10848
10849         if (fb != old_plane_state->base.fb)
10850                 pipe_config->fb_changed = true;
10851
10852         turn_off = was_visible && (!visible || mode_changed);
10853         turn_on = visible && (!was_visible || mode_changed);
10854
10855         DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
10856                          intel_crtc->base.base.id, intel_crtc->base.name,
10857                          plane->base.base.id, plane->base.name,
10858                          fb ? fb->base.id : -1);
10859
10860         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
10861                          plane->base.base.id, plane->base.name,
10862                          was_visible, visible,
10863                          turn_off, turn_on, mode_changed);
10864
10865         if (turn_on) {
10866                 if (INTEL_GEN(dev_priv) < 5)
10867                         pipe_config->update_wm_pre = true;
10868
10869                 /* must disable cxsr around plane enable/disable */
10870                 if (plane->id != PLANE_CURSOR)
10871                         pipe_config->disable_cxsr = true;
10872         } else if (turn_off) {
10873                 if (INTEL_GEN(dev_priv) < 5)
10874                         pipe_config->update_wm_post = true;
10875
10876                 /* must disable cxsr around plane enable/disable */
10877                 if (plane->id != PLANE_CURSOR)
10878                         pipe_config->disable_cxsr = true;
10879         } else if (intel_wm_need_update(&plane->base, plane_state)) {
10880                 if (INTEL_GEN(dev_priv) < 5) {
10881                         /* FIXME bollocks */
10882                         pipe_config->update_wm_pre = true;
10883                         pipe_config->update_wm_post = true;
10884                 }
10885         }
10886
10887         if (visible || was_visible)
10888                 pipe_config->fb_bits |= plane->frontbuffer_bit;
10889
10890         /*
10891          * WaCxSRDisabledForSpriteScaling:ivb
10892          *
10893          * cstate->update_wm was already set above, so this flag will
10894          * take effect when we commit and program watermarks.
10895          */
10896         if (plane->id == PLANE_SPRITE0 && IS_IVYBRIDGE(dev_priv) &&
10897             needs_scaling(to_intel_plane_state(plane_state)) &&
10898             !needs_scaling(old_plane_state))
10899                 pipe_config->disable_lp_wm = true;
10900
10901         return 0;
10902 }
10903
10904 static bool encoders_cloneable(const struct intel_encoder *a,
10905                                const struct intel_encoder *b)
10906 {
10907         /* masks could be asymmetric, so check both ways */
10908         return a == b || (a->cloneable & (1 << b->type) &&
10909                           b->cloneable & (1 << a->type));
10910 }
10911
10912 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
10913                                          struct intel_crtc *crtc,
10914                                          struct intel_encoder *encoder)
10915 {
10916         struct intel_encoder *source_encoder;
10917         struct drm_connector *connector;
10918         struct drm_connector_state *connector_state;
10919         int i;
10920
10921         for_each_new_connector_in_state(state, connector, connector_state, i) {
10922                 if (connector_state->crtc != &crtc->base)
10923                         continue;
10924
10925                 source_encoder =
10926                         to_intel_encoder(connector_state->best_encoder);
10927                 if (!encoders_cloneable(encoder, source_encoder))
10928                         return false;
10929         }
10930
10931         return true;
10932 }
10933
10934 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
10935                                    struct drm_crtc_state *crtc_state)
10936 {
10937         struct drm_device *dev = crtc->dev;
10938         struct drm_i915_private *dev_priv = to_i915(dev);
10939         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10940         struct intel_crtc_state *pipe_config =
10941                 to_intel_crtc_state(crtc_state);
10942         struct drm_atomic_state *state = crtc_state->state;
10943         int ret;
10944         bool mode_changed = needs_modeset(crtc_state);
10945
10946         if (mode_changed && !crtc_state->active)
10947                 pipe_config->update_wm_post = true;
10948
10949         if (mode_changed && crtc_state->enable &&
10950             dev_priv->display.crtc_compute_clock &&
10951             !WARN_ON(pipe_config->shared_dpll)) {
10952                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
10953                                                            pipe_config);
10954                 if (ret)
10955                         return ret;
10956         }
10957
10958         if (crtc_state->color_mgmt_changed) {
10959                 ret = intel_color_check(crtc, crtc_state);
10960                 if (ret)
10961                         return ret;
10962
10963                 /*
10964                  * Changing color management on Intel hardware is
10965                  * handled as part of planes update.
10966                  */
10967                 crtc_state->planes_changed = true;
10968         }
10969
10970         ret = 0;
10971         if (dev_priv->display.compute_pipe_wm) {
10972                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
10973                 if (ret) {
10974                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
10975                         return ret;
10976                 }
10977         }
10978
10979         if (dev_priv->display.compute_intermediate_wm &&
10980             !to_intel_atomic_state(state)->skip_intermediate_wm) {
10981                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
10982                         return 0;
10983
10984                 /*
10985                  * Calculate 'intermediate' watermarks that satisfy both the
10986                  * old state and the new state.  We can program these
10987                  * immediately.
10988                  */
10989                 ret = dev_priv->display.compute_intermediate_wm(dev,
10990                                                                 intel_crtc,
10991                                                                 pipe_config);
10992                 if (ret) {
10993                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
10994                         return ret;
10995                 }
10996         } else if (dev_priv->display.compute_intermediate_wm) {
10997                 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
10998                         pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
10999         }
11000
11001         if (INTEL_GEN(dev_priv) >= 9) {
11002                 if (mode_changed)
11003                         ret = skl_update_scaler_crtc(pipe_config);
11004
11005                 if (!ret)
11006                         ret = intel_atomic_setup_scalers(dev_priv, intel_crtc,
11007                                                          pipe_config);
11008         }
11009
11010         return ret;
11011 }
11012
11013 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11014         .atomic_begin = intel_begin_crtc_commit,
11015         .atomic_flush = intel_finish_crtc_commit,
11016         .atomic_check = intel_crtc_atomic_check,
11017 };
11018
11019 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11020 {
11021         struct intel_connector *connector;
11022         struct drm_connector_list_iter conn_iter;
11023
11024         drm_connector_list_iter_begin(dev, &conn_iter);
11025         for_each_intel_connector_iter(connector, &conn_iter) {
11026                 if (connector->base.state->crtc)
11027                         drm_connector_unreference(&connector->base);
11028
11029                 if (connector->base.encoder) {
11030                         connector->base.state->best_encoder =
11031                                 connector->base.encoder;
11032                         connector->base.state->crtc =
11033                                 connector->base.encoder->crtc;
11034
11035                         drm_connector_reference(&connector->base);
11036                 } else {
11037                         connector->base.state->best_encoder = NULL;
11038                         connector->base.state->crtc = NULL;
11039                 }
11040         }
11041         drm_connector_list_iter_end(&conn_iter);
11042 }
11043
11044 static void
11045 connected_sink_compute_bpp(struct intel_connector *connector,
11046                            struct intel_crtc_state *pipe_config)
11047 {
11048         const struct drm_display_info *info = &connector->base.display_info;
11049         int bpp = pipe_config->pipe_bpp;
11050
11051         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11052                       connector->base.base.id,
11053                       connector->base.name);
11054
11055         /* Don't use an invalid EDID bpc value */
11056         if (info->bpc != 0 && info->bpc * 3 < bpp) {
11057                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11058                               bpp, info->bpc * 3);
11059                 pipe_config->pipe_bpp = info->bpc * 3;
11060         }
11061
11062         /* Clamp bpp to 8 on screens without EDID 1.4 */
11063         if (info->bpc == 0 && bpp > 24) {
11064                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11065                               bpp);
11066                 pipe_config->pipe_bpp = 24;
11067         }
11068 }
11069
11070 static int
11071 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11072                           struct intel_crtc_state *pipe_config)
11073 {
11074         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11075         struct drm_atomic_state *state;
11076         struct drm_connector *connector;
11077         struct drm_connector_state *connector_state;
11078         int bpp, i;
11079
11080         if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
11081             IS_CHERRYVIEW(dev_priv)))
11082                 bpp = 10*3;
11083         else if (INTEL_GEN(dev_priv) >= 5)
11084                 bpp = 12*3;
11085         else
11086                 bpp = 8*3;
11087
11088
11089         pipe_config->pipe_bpp = bpp;
11090
11091         state = pipe_config->base.state;
11092
11093         /* Clamp display bpp to EDID value */
11094         for_each_new_connector_in_state(state, connector, connector_state, i) {
11095                 if (connector_state->crtc != &crtc->base)
11096                         continue;
11097
11098                 connected_sink_compute_bpp(to_intel_connector(connector),
11099                                            pipe_config);
11100         }
11101
11102         return bpp;
11103 }
11104
11105 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11106 {
11107         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11108                         "type: 0x%x flags: 0x%x\n",
11109                 mode->crtc_clock,
11110                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11111                 mode->crtc_hsync_end, mode->crtc_htotal,
11112                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11113                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11114 }
11115
11116 static inline void
11117 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
11118                       unsigned int lane_count, struct intel_link_m_n *m_n)
11119 {
11120         DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11121                       id, lane_count,
11122                       m_n->gmch_m, m_n->gmch_n,
11123                       m_n->link_m, m_n->link_n, m_n->tu);
11124 }
11125
11126 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11127                                    struct intel_crtc_state *pipe_config,
11128                                    const char *context)
11129 {
11130         struct drm_device *dev = crtc->base.dev;
11131         struct drm_i915_private *dev_priv = to_i915(dev);
11132         struct drm_plane *plane;
11133         struct intel_plane *intel_plane;
11134         struct intel_plane_state *state;
11135         struct drm_framebuffer *fb;
11136
11137         DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
11138                       crtc->base.base.id, crtc->base.name, context);
11139
11140         DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
11141                       transcoder_name(pipe_config->cpu_transcoder),
11142                       pipe_config->pipe_bpp, pipe_config->dither);
11143
11144         if (pipe_config->has_pch_encoder)
11145                 intel_dump_m_n_config(pipe_config, "fdi",
11146                                       pipe_config->fdi_lanes,
11147                                       &pipe_config->fdi_m_n);
11148
11149         if (intel_crtc_has_dp_encoder(pipe_config)) {
11150                 intel_dump_m_n_config(pipe_config, "dp m_n",
11151                                 pipe_config->lane_count, &pipe_config->dp_m_n);
11152                 if (pipe_config->has_drrs)
11153                         intel_dump_m_n_config(pipe_config, "dp m2_n2",
11154                                               pipe_config->lane_count,
11155                                               &pipe_config->dp_m2_n2);
11156         }
11157
11158         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11159                       pipe_config->has_audio, pipe_config->has_infoframe);
11160
11161         DRM_DEBUG_KMS("requested mode:\n");
11162         drm_mode_debug_printmodeline(&pipe_config->base.mode);
11163         DRM_DEBUG_KMS("adjusted mode:\n");
11164         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11165         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11166         DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
11167                       pipe_config->port_clock,
11168                       pipe_config->pipe_src_w, pipe_config->pipe_src_h,
11169                       pipe_config->pixel_rate);
11170
11171         if (INTEL_GEN(dev_priv) >= 9)
11172                 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11173                               crtc->num_scalers,
11174                               pipe_config->scaler_state.scaler_users,
11175                               pipe_config->scaler_state.scaler_id);
11176
11177         if (HAS_GMCH_DISPLAY(dev_priv))
11178                 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11179                               pipe_config->gmch_pfit.control,
11180                               pipe_config->gmch_pfit.pgm_ratios,
11181                               pipe_config->gmch_pfit.lvds_border_bits);
11182         else
11183                 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11184                               pipe_config->pch_pfit.pos,
11185                               pipe_config->pch_pfit.size,
11186                               enableddisabled(pipe_config->pch_pfit.enabled));
11187
11188         DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
11189                       pipe_config->ips_enabled, pipe_config->double_wide);
11190
11191         intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
11192
11193         DRM_DEBUG_KMS("planes on this crtc\n");
11194         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11195                 struct drm_format_name_buf format_name;
11196                 intel_plane = to_intel_plane(plane);
11197                 if (intel_plane->pipe != crtc->pipe)
11198                         continue;
11199
11200                 state = to_intel_plane_state(plane->state);
11201                 fb = state->base.fb;
11202                 if (!fb) {
11203                         DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
11204                                       plane->base.id, plane->name, state->scaler_id);
11205                         continue;
11206                 }
11207
11208                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
11209                               plane->base.id, plane->name,
11210                               fb->base.id, fb->width, fb->height,
11211                               drm_get_format_name(fb->format->format, &format_name));
11212                 if (INTEL_GEN(dev_priv) >= 9)
11213                         DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
11214                                       state->scaler_id,
11215                                       state->base.src.x1 >> 16,
11216                                       state->base.src.y1 >> 16,
11217                                       drm_rect_width(&state->base.src) >> 16,
11218                                       drm_rect_height(&state->base.src) >> 16,
11219                                       state->base.dst.x1, state->base.dst.y1,
11220                                       drm_rect_width(&state->base.dst),
11221                                       drm_rect_height(&state->base.dst));
11222         }
11223 }
11224
11225 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11226 {
11227         struct drm_device *dev = state->dev;
11228         struct drm_connector *connector;
11229         unsigned int used_ports = 0;
11230         unsigned int used_mst_ports = 0;
11231
11232         /*
11233          * Walk the connector list instead of the encoder
11234          * list to detect the problem on ddi platforms
11235          * where there's just one encoder per digital port.
11236          */
11237         drm_for_each_connector(connector, dev) {
11238                 struct drm_connector_state *connector_state;
11239                 struct intel_encoder *encoder;
11240
11241                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
11242                 if (!connector_state)
11243                         connector_state = connector->state;
11244
11245                 if (!connector_state->best_encoder)
11246                         continue;
11247
11248                 encoder = to_intel_encoder(connector_state->best_encoder);
11249
11250                 WARN_ON(!connector_state->crtc);
11251
11252                 switch (encoder->type) {
11253                         unsigned int port_mask;
11254                 case INTEL_OUTPUT_UNKNOWN:
11255                         if (WARN_ON(!HAS_DDI(to_i915(dev))))
11256                                 break;
11257                 case INTEL_OUTPUT_DP:
11258                 case INTEL_OUTPUT_HDMI:
11259                 case INTEL_OUTPUT_EDP:
11260                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11261
11262                         /* the same port mustn't appear more than once */
11263                         if (used_ports & port_mask)
11264                                 return false;
11265
11266                         used_ports |= port_mask;
11267                         break;
11268                 case INTEL_OUTPUT_DP_MST:
11269                         used_mst_ports |=
11270                                 1 << enc_to_mst(&encoder->base)->primary->port;
11271                         break;
11272                 default:
11273                         break;
11274                 }
11275         }
11276
11277         /* can't mix MST and SST/HDMI on the same port */
11278         if (used_ports & used_mst_ports)
11279                 return false;
11280
11281         return true;
11282 }
11283
11284 static void
11285 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11286 {
11287         struct drm_i915_private *dev_priv =
11288                 to_i915(crtc_state->base.crtc->dev);
11289         struct intel_crtc_scaler_state scaler_state;
11290         struct intel_dpll_hw_state dpll_hw_state;
11291         struct intel_shared_dpll *shared_dpll;
11292         struct intel_crtc_wm_state wm_state;
11293         bool force_thru;
11294
11295         /* FIXME: before the switch to atomic started, a new pipe_config was
11296          * kzalloc'd. Code that depends on any field being zero should be
11297          * fixed, so that the crtc_state can be safely duplicated. For now,
11298          * only fields that are know to not cause problems are preserved. */
11299
11300         scaler_state = crtc_state->scaler_state;
11301         shared_dpll = crtc_state->shared_dpll;
11302         dpll_hw_state = crtc_state->dpll_hw_state;
11303         force_thru = crtc_state->pch_pfit.force_thru;
11304         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11305                 wm_state = crtc_state->wm;
11306
11307         /* Keep base drm_crtc_state intact, only clear our extended struct */
11308         BUILD_BUG_ON(offsetof(struct intel_crtc_state, base));
11309         memset(&crtc_state->base + 1, 0,
11310                sizeof(*crtc_state) - sizeof(crtc_state->base));
11311
11312         crtc_state->scaler_state = scaler_state;
11313         crtc_state->shared_dpll = shared_dpll;
11314         crtc_state->dpll_hw_state = dpll_hw_state;
11315         crtc_state->pch_pfit.force_thru = force_thru;
11316         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11317                 crtc_state->wm = wm_state;
11318 }
11319
11320 static int
11321 intel_modeset_pipe_config(struct drm_crtc *crtc,
11322                           struct intel_crtc_state *pipe_config)
11323 {
11324         struct drm_atomic_state *state = pipe_config->base.state;
11325         struct intel_encoder *encoder;
11326         struct drm_connector *connector;
11327         struct drm_connector_state *connector_state;
11328         int base_bpp, ret = -EINVAL;
11329         int i;
11330         bool retry = true;
11331
11332         clear_intel_crtc_state(pipe_config);
11333
11334         pipe_config->cpu_transcoder =
11335                 (enum transcoder) to_intel_crtc(crtc)->pipe;
11336
11337         /*
11338          * Sanitize sync polarity flags based on requested ones. If neither
11339          * positive or negative polarity is requested, treat this as meaning
11340          * negative polarity.
11341          */
11342         if (!(pipe_config->base.adjusted_mode.flags &
11343               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
11344                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
11345
11346         if (!(pipe_config->base.adjusted_mode.flags &
11347               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
11348                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
11349
11350         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11351                                              pipe_config);
11352         if (base_bpp < 0)
11353                 goto fail;
11354
11355         /*
11356          * Determine the real pipe dimensions. Note that stereo modes can
11357          * increase the actual pipe size due to the frame doubling and
11358          * insertion of additional space for blanks between the frame. This
11359          * is stored in the crtc timings. We use the requested mode to do this
11360          * computation to clearly distinguish it from the adjusted mode, which
11361          * can be changed by the connectors in the below retry loop.
11362          */
11363         drm_mode_get_hv_timing(&pipe_config->base.mode,
11364                                &pipe_config->pipe_src_w,
11365                                &pipe_config->pipe_src_h);
11366
11367         for_each_new_connector_in_state(state, connector, connector_state, i) {
11368                 if (connector_state->crtc != crtc)
11369                         continue;
11370
11371                 encoder = to_intel_encoder(connector_state->best_encoder);
11372
11373                 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
11374                         DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11375                         goto fail;
11376                 }
11377
11378                 /*
11379                  * Determine output_types before calling the .compute_config()
11380                  * hooks so that the hooks can use this information safely.
11381                  */
11382                 pipe_config->output_types |= 1 << encoder->type;
11383         }
11384
11385 encoder_retry:
11386         /* Ensure the port clock defaults are reset when retrying. */
11387         pipe_config->port_clock = 0;
11388         pipe_config->pixel_multiplier = 1;
11389
11390         /* Fill in default crtc timings, allow encoders to overwrite them. */
11391         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11392                               CRTC_STEREO_DOUBLE);
11393
11394         /* Pass our mode to the connectors and the CRTC to give them a chance to
11395          * adjust it according to limitations or connector properties, and also
11396          * a chance to reject the mode entirely.
11397          */
11398         for_each_new_connector_in_state(state, connector, connector_state, i) {
11399                 if (connector_state->crtc != crtc)
11400                         continue;
11401
11402                 encoder = to_intel_encoder(connector_state->best_encoder);
11403
11404                 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
11405                         DRM_DEBUG_KMS("Encoder config failure\n");
11406                         goto fail;
11407                 }
11408         }
11409
11410         /* Set default port clock if not overwritten by the encoder. Needs to be
11411          * done afterwards in case the encoder adjusts the mode. */
11412         if (!pipe_config->port_clock)
11413                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11414                         * pipe_config->pixel_multiplier;
11415
11416         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11417         if (ret < 0) {
11418                 DRM_DEBUG_KMS("CRTC fixup failed\n");
11419                 goto fail;
11420         }
11421
11422         if (ret == RETRY) {
11423                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11424                         ret = -EINVAL;
11425                         goto fail;
11426                 }
11427
11428                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11429                 retry = false;
11430                 goto encoder_retry;
11431         }
11432
11433         /* Dithering seems to not pass-through bits correctly when it should, so
11434          * only enable it on 6bpc panels and when its not a compliance
11435          * test requesting 6bpc video pattern.
11436          */
11437         pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
11438                 !pipe_config->dither_force_disable;
11439         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
11440                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11441
11442 fail:
11443         return ret;
11444 }
11445
11446 static void
11447 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
11448 {
11449         struct drm_crtc *crtc;
11450         struct drm_crtc_state *new_crtc_state;
11451         int i;
11452
11453         /* Double check state. */
11454         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
11455                 to_intel_crtc(crtc)->config = to_intel_crtc_state(new_crtc_state);
11456
11457                 /* Update hwmode for vblank functions */
11458                 if (new_crtc_state->active)
11459                         crtc->hwmode = new_crtc_state->adjusted_mode;
11460                 else
11461                         crtc->hwmode.crtc_clock = 0;
11462
11463                 /*
11464                  * Update legacy state to satisfy fbc code. This can
11465                  * be removed when fbc uses the atomic state.
11466                  */
11467                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
11468                         struct drm_plane_state *plane_state = crtc->primary->state;
11469
11470                         crtc->primary->fb = plane_state->fb;
11471                         crtc->x = plane_state->src_x >> 16;
11472                         crtc->y = plane_state->src_y >> 16;
11473                 }
11474         }
11475 }
11476
11477 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11478 {
11479         int diff;
11480
11481         if (clock1 == clock2)
11482                 return true;
11483
11484         if (!clock1 || !clock2)
11485                 return false;
11486
11487         diff = abs(clock1 - clock2);
11488
11489         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11490                 return true;
11491
11492         return false;
11493 }
11494
11495 static bool
11496 intel_compare_m_n(unsigned int m, unsigned int n,
11497                   unsigned int m2, unsigned int n2,
11498                   bool exact)
11499 {
11500         if (m == m2 && n == n2)
11501                 return true;
11502
11503         if (exact || !m || !n || !m2 || !n2)
11504                 return false;
11505
11506         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
11507
11508         if (n > n2) {
11509                 while (n > n2) {
11510                         m2 <<= 1;
11511                         n2 <<= 1;
11512                 }
11513         } else if (n < n2) {
11514                 while (n < n2) {
11515                         m <<= 1;
11516                         n <<= 1;
11517                 }
11518         }
11519
11520         if (n != n2)
11521                 return false;
11522
11523         return intel_fuzzy_clock_check(m, m2);
11524 }
11525
11526 static bool
11527 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
11528                        struct intel_link_m_n *m2_n2,
11529                        bool adjust)
11530 {
11531         if (m_n->tu == m2_n2->tu &&
11532             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
11533                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
11534             intel_compare_m_n(m_n->link_m, m_n->link_n,
11535                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
11536                 if (adjust)
11537                         *m2_n2 = *m_n;
11538
11539                 return true;
11540         }
11541
11542         return false;
11543 }
11544
11545 static void __printf(3, 4)
11546 pipe_config_err(bool adjust, const char *name, const char *format, ...)
11547 {
11548         char *level;
11549         unsigned int category;
11550         struct va_format vaf;
11551         va_list args;
11552
11553         if (adjust) {
11554                 level = KERN_DEBUG;
11555                 category = DRM_UT_KMS;
11556         } else {
11557                 level = KERN_ERR;
11558                 category = DRM_UT_NONE;
11559         }
11560
11561         va_start(args, format);
11562         vaf.fmt = format;
11563         vaf.va = &args;
11564
11565         drm_printk(level, category, "mismatch in %s %pV", name, &vaf);
11566
11567         va_end(args);
11568 }
11569
11570 static bool
11571 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
11572                           struct intel_crtc_state *current_config,
11573                           struct intel_crtc_state *pipe_config,
11574                           bool adjust)
11575 {
11576         bool ret = true;
11577
11578 #define PIPE_CONF_CHECK_X(name) \
11579         if (current_config->name != pipe_config->name) { \
11580                 pipe_config_err(adjust, __stringify(name), \
11581                           "(expected 0x%08x, found 0x%08x)\n", \
11582                           current_config->name, \
11583                           pipe_config->name); \
11584                 ret = false; \
11585         }
11586
11587 #define PIPE_CONF_CHECK_I(name) \
11588         if (current_config->name != pipe_config->name) { \
11589                 pipe_config_err(adjust, __stringify(name), \
11590                           "(expected %i, found %i)\n", \
11591                           current_config->name, \
11592                           pipe_config->name); \
11593                 ret = false; \
11594         }
11595
11596 #define PIPE_CONF_CHECK_P(name) \
11597         if (current_config->name != pipe_config->name) { \
11598                 pipe_config_err(adjust, __stringify(name), \
11599                           "(expected %p, found %p)\n", \
11600                           current_config->name, \
11601                           pipe_config->name); \
11602                 ret = false; \
11603         }
11604
11605 #define PIPE_CONF_CHECK_M_N(name) \
11606         if (!intel_compare_link_m_n(&current_config->name, \
11607                                     &pipe_config->name,\
11608                                     adjust)) { \
11609                 pipe_config_err(adjust, __stringify(name), \
11610                           "(expected tu %i gmch %i/%i link %i/%i, " \
11611                           "found tu %i, gmch %i/%i link %i/%i)\n", \
11612                           current_config->name.tu, \
11613                           current_config->name.gmch_m, \
11614                           current_config->name.gmch_n, \
11615                           current_config->name.link_m, \
11616                           current_config->name.link_n, \
11617                           pipe_config->name.tu, \
11618                           pipe_config->name.gmch_m, \
11619                           pipe_config->name.gmch_n, \
11620                           pipe_config->name.link_m, \
11621                           pipe_config->name.link_n); \
11622                 ret = false; \
11623         }
11624
11625 /* This is required for BDW+ where there is only one set of registers for
11626  * switching between high and low RR.
11627  * This macro can be used whenever a comparison has to be made between one
11628  * hw state and multiple sw state variables.
11629  */
11630 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
11631         if (!intel_compare_link_m_n(&current_config->name, \
11632                                     &pipe_config->name, adjust) && \
11633             !intel_compare_link_m_n(&current_config->alt_name, \
11634                                     &pipe_config->name, adjust)) { \
11635                 pipe_config_err(adjust, __stringify(name), \
11636                           "(expected tu %i gmch %i/%i link %i/%i, " \
11637                           "or tu %i gmch %i/%i link %i/%i, " \
11638                           "found tu %i, gmch %i/%i link %i/%i)\n", \
11639                           current_config->name.tu, \
11640                           current_config->name.gmch_m, \
11641                           current_config->name.gmch_n, \
11642                           current_config->name.link_m, \
11643                           current_config->name.link_n, \
11644                           current_config->alt_name.tu, \
11645                           current_config->alt_name.gmch_m, \
11646                           current_config->alt_name.gmch_n, \
11647                           current_config->alt_name.link_m, \
11648                           current_config->alt_name.link_n, \
11649                           pipe_config->name.tu, \
11650                           pipe_config->name.gmch_m, \
11651                           pipe_config->name.gmch_n, \
11652                           pipe_config->name.link_m, \
11653                           pipe_config->name.link_n); \
11654                 ret = false; \
11655         }
11656
11657 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
11658         if ((current_config->name ^ pipe_config->name) & (mask)) { \
11659                 pipe_config_err(adjust, __stringify(name), \
11660                           "(%x) (expected %i, found %i)\n", \
11661                           (mask), \
11662                           current_config->name & (mask), \
11663                           pipe_config->name & (mask)); \
11664                 ret = false; \
11665         }
11666
11667 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11668         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11669                 pipe_config_err(adjust, __stringify(name), \
11670                           "(expected %i, found %i)\n", \
11671                           current_config->name, \
11672                           pipe_config->name); \
11673                 ret = false; \
11674         }
11675
11676 #define PIPE_CONF_QUIRK(quirk)  \
11677         ((current_config->quirks | pipe_config->quirks) & (quirk))
11678
11679         PIPE_CONF_CHECK_I(cpu_transcoder);
11680
11681         PIPE_CONF_CHECK_I(has_pch_encoder);
11682         PIPE_CONF_CHECK_I(fdi_lanes);
11683         PIPE_CONF_CHECK_M_N(fdi_m_n);
11684
11685         PIPE_CONF_CHECK_I(lane_count);
11686         PIPE_CONF_CHECK_X(lane_lat_optim_mask);
11687
11688         if (INTEL_GEN(dev_priv) < 8) {
11689                 PIPE_CONF_CHECK_M_N(dp_m_n);
11690
11691                 if (current_config->has_drrs)
11692                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
11693         } else
11694                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
11695
11696         PIPE_CONF_CHECK_X(output_types);
11697
11698         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11699         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11700         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11701         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11702         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11703         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11704
11705         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11706         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11707         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11708         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11709         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11710         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11711
11712         PIPE_CONF_CHECK_I(pixel_multiplier);
11713         PIPE_CONF_CHECK_I(has_hdmi_sink);
11714         if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
11715             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11716                 PIPE_CONF_CHECK_I(limited_color_range);
11717
11718         PIPE_CONF_CHECK_I(hdmi_scrambling);
11719         PIPE_CONF_CHECK_I(hdmi_high_tmds_clock_ratio);
11720         PIPE_CONF_CHECK_I(has_infoframe);
11721
11722         PIPE_CONF_CHECK_I(has_audio);
11723
11724         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11725                               DRM_MODE_FLAG_INTERLACE);
11726
11727         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11728                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11729                                       DRM_MODE_FLAG_PHSYNC);
11730                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11731                                       DRM_MODE_FLAG_NHSYNC);
11732                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11733                                       DRM_MODE_FLAG_PVSYNC);
11734                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11735                                       DRM_MODE_FLAG_NVSYNC);
11736         }
11737
11738         PIPE_CONF_CHECK_X(gmch_pfit.control);
11739         /* pfit ratios are autocomputed by the hw on gen4+ */
11740         if (INTEL_GEN(dev_priv) < 4)
11741                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
11742         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
11743
11744         if (!adjust) {
11745                 PIPE_CONF_CHECK_I(pipe_src_w);
11746                 PIPE_CONF_CHECK_I(pipe_src_h);
11747
11748                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11749                 if (current_config->pch_pfit.enabled) {
11750                         PIPE_CONF_CHECK_X(pch_pfit.pos);
11751                         PIPE_CONF_CHECK_X(pch_pfit.size);
11752                 }
11753
11754                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11755                 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
11756         }
11757
11758         /* BDW+ don't expose a synchronous way to read the state */
11759         if (IS_HASWELL(dev_priv))
11760                 PIPE_CONF_CHECK_I(ips_enabled);
11761
11762         PIPE_CONF_CHECK_I(double_wide);
11763
11764         PIPE_CONF_CHECK_P(shared_dpll);
11765         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11766         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11767         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11768         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11769         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11770         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
11771         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11772         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11773         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11774
11775         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
11776         PIPE_CONF_CHECK_X(dsi_pll.div);
11777
11778         if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
11779                 PIPE_CONF_CHECK_I(pipe_bpp);
11780
11781         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11782         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11783
11784 #undef PIPE_CONF_CHECK_X
11785 #undef PIPE_CONF_CHECK_I
11786 #undef PIPE_CONF_CHECK_P
11787 #undef PIPE_CONF_CHECK_FLAGS
11788 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11789 #undef PIPE_CONF_QUIRK
11790
11791         return ret;
11792 }
11793
11794 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
11795                                            const struct intel_crtc_state *pipe_config)
11796 {
11797         if (pipe_config->has_pch_encoder) {
11798                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11799                                                             &pipe_config->fdi_m_n);
11800                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
11801
11802                 /*
11803                  * FDI already provided one idea for the dotclock.
11804                  * Yell if the encoder disagrees.
11805                  */
11806                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
11807                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11808                      fdi_dotclock, dotclock);
11809         }
11810 }
11811
11812 static void verify_wm_state(struct drm_crtc *crtc,
11813                             struct drm_crtc_state *new_state)
11814 {
11815         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
11816         struct skl_ddb_allocation hw_ddb, *sw_ddb;
11817         struct skl_pipe_wm hw_wm, *sw_wm;
11818         struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
11819         struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
11820         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11821         const enum pipe pipe = intel_crtc->pipe;
11822         int plane, level, max_level = ilk_wm_max_level(dev_priv);
11823
11824         if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
11825                 return;
11826
11827         skl_pipe_wm_get_hw_state(crtc, &hw_wm);
11828         sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
11829
11830         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11831         sw_ddb = &dev_priv->wm.skl_hw.ddb;
11832
11833         /* planes */
11834         for_each_universal_plane(dev_priv, pipe, plane) {
11835                 hw_plane_wm = &hw_wm.planes[plane];
11836                 sw_plane_wm = &sw_wm->planes[plane];
11837
11838                 /* Watermarks */
11839                 for (level = 0; level <= max_level; level++) {
11840                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
11841                                                 &sw_plane_wm->wm[level]))
11842                                 continue;
11843
11844                         DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11845                                   pipe_name(pipe), plane + 1, level,
11846                                   sw_plane_wm->wm[level].plane_en,
11847                                   sw_plane_wm->wm[level].plane_res_b,
11848                                   sw_plane_wm->wm[level].plane_res_l,
11849                                   hw_plane_wm->wm[level].plane_en,
11850                                   hw_plane_wm->wm[level].plane_res_b,
11851                                   hw_plane_wm->wm[level].plane_res_l);
11852                 }
11853
11854                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
11855                                          &sw_plane_wm->trans_wm)) {
11856                         DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11857                                   pipe_name(pipe), plane + 1,
11858                                   sw_plane_wm->trans_wm.plane_en,
11859                                   sw_plane_wm->trans_wm.plane_res_b,
11860                                   sw_plane_wm->trans_wm.plane_res_l,
11861                                   hw_plane_wm->trans_wm.plane_en,
11862                                   hw_plane_wm->trans_wm.plane_res_b,
11863                                   hw_plane_wm->trans_wm.plane_res_l);
11864                 }
11865
11866                 /* DDB */
11867                 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
11868                 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
11869
11870                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
11871                         DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
11872                                   pipe_name(pipe), plane + 1,
11873                                   sw_ddb_entry->start, sw_ddb_entry->end,
11874                                   hw_ddb_entry->start, hw_ddb_entry->end);
11875                 }
11876         }
11877
11878         /*
11879          * cursor
11880          * If the cursor plane isn't active, we may not have updated it's ddb
11881          * allocation. In that case since the ddb allocation will be updated
11882          * once the plane becomes visible, we can skip this check
11883          */
11884         if (intel_crtc->cursor_addr) {
11885                 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
11886                 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
11887
11888                 /* Watermarks */
11889                 for (level = 0; level <= max_level; level++) {
11890                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
11891                                                 &sw_plane_wm->wm[level]))
11892                                 continue;
11893
11894                         DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11895                                   pipe_name(pipe), level,
11896                                   sw_plane_wm->wm[level].plane_en,
11897                                   sw_plane_wm->wm[level].plane_res_b,
11898                                   sw_plane_wm->wm[level].plane_res_l,
11899                                   hw_plane_wm->wm[level].plane_en,
11900                                   hw_plane_wm->wm[level].plane_res_b,
11901                                   hw_plane_wm->wm[level].plane_res_l);
11902                 }
11903
11904                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
11905                                          &sw_plane_wm->trans_wm)) {
11906                         DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11907                                   pipe_name(pipe),
11908                                   sw_plane_wm->trans_wm.plane_en,
11909                                   sw_plane_wm->trans_wm.plane_res_b,
11910                                   sw_plane_wm->trans_wm.plane_res_l,
11911                                   hw_plane_wm->trans_wm.plane_en,
11912                                   hw_plane_wm->trans_wm.plane_res_b,
11913                                   hw_plane_wm->trans_wm.plane_res_l);
11914                 }
11915
11916                 /* DDB */
11917                 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
11918                 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
11919
11920                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
11921                         DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
11922                                   pipe_name(pipe),
11923                                   sw_ddb_entry->start, sw_ddb_entry->end,
11924                                   hw_ddb_entry->start, hw_ddb_entry->end);
11925                 }
11926         }
11927 }
11928
11929 static void
11930 verify_connector_state(struct drm_device *dev,
11931                        struct drm_atomic_state *state,
11932                        struct drm_crtc *crtc)
11933 {
11934         struct drm_connector *connector;
11935         struct drm_connector_state *new_conn_state;
11936         int i;
11937
11938         for_each_new_connector_in_state(state, connector, new_conn_state, i) {
11939                 struct drm_encoder *encoder = connector->encoder;
11940
11941                 if (new_conn_state->crtc != crtc)
11942                         continue;
11943
11944                 intel_connector_verify_state(to_intel_connector(connector));
11945
11946                 I915_STATE_WARN(new_conn_state->best_encoder != encoder,
11947                      "connector's atomic encoder doesn't match legacy encoder\n");
11948         }
11949 }
11950
11951 static void
11952 verify_encoder_state(struct drm_device *dev, struct drm_atomic_state *state)
11953 {
11954         struct intel_encoder *encoder;
11955         struct drm_connector *connector;
11956         struct drm_connector_state *old_conn_state, *new_conn_state;
11957         int i;
11958
11959         for_each_intel_encoder(dev, encoder) {
11960                 bool enabled = false, found = false;
11961                 enum pipe pipe;
11962
11963                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11964                               encoder->base.base.id,
11965                               encoder->base.name);
11966
11967                 for_each_oldnew_connector_in_state(state, connector, old_conn_state,
11968                                                    new_conn_state, i) {
11969                         if (old_conn_state->best_encoder == &encoder->base)
11970                                 found = true;
11971
11972                         if (new_conn_state->best_encoder != &encoder->base)
11973                                 continue;
11974                         found = enabled = true;
11975
11976                         I915_STATE_WARN(new_conn_state->crtc !=
11977                                         encoder->base.crtc,
11978                              "connector's crtc doesn't match encoder crtc\n");
11979                 }
11980
11981                 if (!found)
11982                         continue;
11983
11984                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
11985                      "encoder's enabled state mismatch "
11986                      "(expected %i, found %i)\n",
11987                      !!encoder->base.crtc, enabled);
11988
11989                 if (!encoder->base.crtc) {
11990                         bool active;
11991
11992                         active = encoder->get_hw_state(encoder, &pipe);
11993                         I915_STATE_WARN(active,
11994                              "encoder detached but still enabled on pipe %c.\n",
11995                              pipe_name(pipe));
11996                 }
11997         }
11998 }
11999
12000 static void
12001 verify_crtc_state(struct drm_crtc *crtc,
12002                   struct drm_crtc_state *old_crtc_state,
12003                   struct drm_crtc_state *new_crtc_state)
12004 {
12005         struct drm_device *dev = crtc->dev;
12006         struct drm_i915_private *dev_priv = to_i915(dev);
12007         struct intel_encoder *encoder;
12008         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12009         struct intel_crtc_state *pipe_config, *sw_config;
12010         struct drm_atomic_state *old_state;
12011         bool active;
12012
12013         old_state = old_crtc_state->state;
12014         __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
12015         pipe_config = to_intel_crtc_state(old_crtc_state);
12016         memset(pipe_config, 0, sizeof(*pipe_config));
12017         pipe_config->base.crtc = crtc;
12018         pipe_config->base.state = old_state;
12019
12020         DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
12021
12022         active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12023
12024         /* hw state is inconsistent with the pipe quirk */
12025         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12026             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12027                 active = new_crtc_state->active;
12028
12029         I915_STATE_WARN(new_crtc_state->active != active,
12030              "crtc active state doesn't match with hw state "
12031              "(expected %i, found %i)\n", new_crtc_state->active, active);
12032
12033         I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12034              "transitional active state does not match atomic hw state "
12035              "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12036
12037         for_each_encoder_on_crtc(dev, crtc, encoder) {
12038                 enum pipe pipe;
12039
12040                 active = encoder->get_hw_state(encoder, &pipe);
12041                 I915_STATE_WARN(active != new_crtc_state->active,
12042                         "[ENCODER:%i] active %i with crtc active %i\n",
12043                         encoder->base.base.id, active, new_crtc_state->active);
12044
12045                 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12046                                 "Encoder connected to wrong pipe %c\n",
12047                                 pipe_name(pipe));
12048
12049                 if (active) {
12050                         pipe_config->output_types |= 1 << encoder->type;
12051                         encoder->get_config(encoder, pipe_config);
12052                 }
12053         }
12054
12055         intel_crtc_compute_pixel_rate(pipe_config);
12056
12057         if (!new_crtc_state->active)
12058                 return;
12059
12060         intel_pipe_config_sanity_check(dev_priv, pipe_config);
12061
12062         sw_config = to_intel_crtc_state(crtc->state);
12063         if (!intel_pipe_config_compare(dev_priv, sw_config,
12064                                        pipe_config, false)) {
12065                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12066                 intel_dump_pipe_config(intel_crtc, pipe_config,
12067                                        "[hw state]");
12068                 intel_dump_pipe_config(intel_crtc, sw_config,
12069                                        "[sw state]");
12070         }
12071 }
12072
12073 static void
12074 verify_single_dpll_state(struct drm_i915_private *dev_priv,
12075                          struct intel_shared_dpll *pll,
12076                          struct drm_crtc *crtc,
12077                          struct drm_crtc_state *new_state)
12078 {
12079         struct intel_dpll_hw_state dpll_hw_state;
12080         unsigned crtc_mask;
12081         bool active;
12082
12083         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12084
12085         DRM_DEBUG_KMS("%s\n", pll->name);
12086
12087         active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
12088
12089         if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12090                 I915_STATE_WARN(!pll->on && pll->active_mask,
12091                      "pll in active use but not on in sw tracking\n");
12092                 I915_STATE_WARN(pll->on && !pll->active_mask,
12093                      "pll is on but not used by any active crtc\n");
12094                 I915_STATE_WARN(pll->on != active,
12095                      "pll on state mismatch (expected %i, found %i)\n",
12096                      pll->on, active);
12097         }
12098
12099         if (!crtc) {
12100                 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
12101                                 "more active pll users than references: %x vs %x\n",
12102                                 pll->active_mask, pll->state.crtc_mask);
12103
12104                 return;
12105         }
12106
12107         crtc_mask = 1 << drm_crtc_index(crtc);
12108
12109         if (new_state->active)
12110                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
12111                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
12112                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12113         else
12114                 I915_STATE_WARN(pll->active_mask & crtc_mask,
12115                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
12116                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12117
12118         I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
12119                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
12120                         crtc_mask, pll->state.crtc_mask);
12121
12122         I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
12123                                           &dpll_hw_state,
12124                                           sizeof(dpll_hw_state)),
12125                         "pll hw state mismatch\n");
12126 }
12127
12128 static void
12129 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
12130                          struct drm_crtc_state *old_crtc_state,
12131                          struct drm_crtc_state *new_crtc_state)
12132 {
12133         struct drm_i915_private *dev_priv = to_i915(dev);
12134         struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
12135         struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
12136
12137         if (new_state->shared_dpll)
12138                 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
12139
12140         if (old_state->shared_dpll &&
12141             old_state->shared_dpll != new_state->shared_dpll) {
12142                 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
12143                 struct intel_shared_dpll *pll = old_state->shared_dpll;
12144
12145                 I915_STATE_WARN(pll->active_mask & crtc_mask,
12146                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
12147                                 pipe_name(drm_crtc_index(crtc)));
12148                 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
12149                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
12150                                 pipe_name(drm_crtc_index(crtc)));
12151         }
12152 }
12153
12154 static void
12155 intel_modeset_verify_crtc(struct drm_crtc *crtc,
12156                           struct drm_atomic_state *state,
12157                           struct drm_crtc_state *old_state,
12158                           struct drm_crtc_state *new_state)
12159 {
12160         if (!needs_modeset(new_state) &&
12161             !to_intel_crtc_state(new_state)->update_pipe)
12162                 return;
12163
12164         verify_wm_state(crtc, new_state);
12165         verify_connector_state(crtc->dev, state, crtc);
12166         verify_crtc_state(crtc, old_state, new_state);
12167         verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
12168 }
12169
12170 static void
12171 verify_disabled_dpll_state(struct drm_device *dev)
12172 {
12173         struct drm_i915_private *dev_priv = to_i915(dev);
12174         int i;
12175
12176         for (i = 0; i < dev_priv->num_shared_dpll; i++)
12177                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
12178 }
12179
12180 static void
12181 intel_modeset_verify_disabled(struct drm_device *dev,
12182                               struct drm_atomic_state *state)
12183 {
12184         verify_encoder_state(dev, state);
12185         verify_connector_state(dev, state, NULL);
12186         verify_disabled_dpll_state(dev);
12187 }
12188
12189 static void update_scanline_offset(struct intel_crtc *crtc)
12190 {
12191         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12192
12193         /*
12194          * The scanline counter increments at the leading edge of hsync.
12195          *
12196          * On most platforms it starts counting from vtotal-1 on the
12197          * first active line. That means the scanline counter value is
12198          * always one less than what we would expect. Ie. just after
12199          * start of vblank, which also occurs at start of hsync (on the
12200          * last active line), the scanline counter will read vblank_start-1.
12201          *
12202          * On gen2 the scanline counter starts counting from 1 instead
12203          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12204          * to keep the value positive), instead of adding one.
12205          *
12206          * On HSW+ the behaviour of the scanline counter depends on the output
12207          * type. For DP ports it behaves like most other platforms, but on HDMI
12208          * there's an extra 1 line difference. So we need to add two instead of
12209          * one to the value.
12210          *
12211          * On VLV/CHV DSI the scanline counter would appear to increment
12212          * approx. 1/3 of a scanline before start of vblank. Unfortunately
12213          * that means we can't tell whether we're in vblank or not while
12214          * we're on that particular line. We must still set scanline_offset
12215          * to 1 so that the vblank timestamps come out correct when we query
12216          * the scanline counter from within the vblank interrupt handler.
12217          * However if queried just before the start of vblank we'll get an
12218          * answer that's slightly in the future.
12219          */
12220         if (IS_GEN2(dev_priv)) {
12221                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12222                 int vtotal;
12223
12224                 vtotal = adjusted_mode->crtc_vtotal;
12225                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12226                         vtotal /= 2;
12227
12228                 crtc->scanline_offset = vtotal - 1;
12229         } else if (HAS_DDI(dev_priv) &&
12230                    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
12231                 crtc->scanline_offset = 2;
12232         } else
12233                 crtc->scanline_offset = 1;
12234 }
12235
12236 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12237 {
12238         struct drm_device *dev = state->dev;
12239         struct drm_i915_private *dev_priv = to_i915(dev);
12240         struct drm_crtc *crtc;
12241         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12242         int i;
12243
12244         if (!dev_priv->display.crtc_compute_clock)
12245                 return;
12246
12247         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12248                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12249                 struct intel_shared_dpll *old_dpll =
12250                         to_intel_crtc_state(old_crtc_state)->shared_dpll;
12251
12252                 if (!needs_modeset(new_crtc_state))
12253                         continue;
12254
12255                 to_intel_crtc_state(new_crtc_state)->shared_dpll = NULL;
12256
12257                 if (!old_dpll)
12258                         continue;
12259
12260                 intel_release_shared_dpll(old_dpll, intel_crtc, state);
12261         }
12262 }
12263
12264 /*
12265  * This implements the workaround described in the "notes" section of the mode
12266  * set sequence documentation. When going from no pipes or single pipe to
12267  * multiple pipes, and planes are enabled after the pipe, we need to wait at
12268  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12269  */
12270 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12271 {
12272         struct drm_crtc_state *crtc_state;
12273         struct intel_crtc *intel_crtc;
12274         struct drm_crtc *crtc;
12275         struct intel_crtc_state *first_crtc_state = NULL;
12276         struct intel_crtc_state *other_crtc_state = NULL;
12277         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12278         int i;
12279
12280         /* look at all crtc's that are going to be enabled in during modeset */
12281         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
12282                 intel_crtc = to_intel_crtc(crtc);
12283
12284                 if (!crtc_state->active || !needs_modeset(crtc_state))
12285                         continue;
12286
12287                 if (first_crtc_state) {
12288                         other_crtc_state = to_intel_crtc_state(crtc_state);
12289                         break;
12290                 } else {
12291                         first_crtc_state = to_intel_crtc_state(crtc_state);
12292                         first_pipe = intel_crtc->pipe;
12293                 }
12294         }
12295
12296         /* No workaround needed? */
12297         if (!first_crtc_state)
12298                 return 0;
12299
12300         /* w/a possibly needed, check how many crtc's are already enabled. */
12301         for_each_intel_crtc(state->dev, intel_crtc) {
12302                 struct intel_crtc_state *pipe_config;
12303
12304                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12305                 if (IS_ERR(pipe_config))
12306                         return PTR_ERR(pipe_config);
12307
12308                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12309
12310                 if (!pipe_config->base.active ||
12311                     needs_modeset(&pipe_config->base))
12312                         continue;
12313
12314                 /* 2 or more enabled crtcs means no need for w/a */
12315                 if (enabled_pipe != INVALID_PIPE)
12316                         return 0;
12317
12318                 enabled_pipe = intel_crtc->pipe;
12319         }
12320
12321         if (enabled_pipe != INVALID_PIPE)
12322                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12323         else if (other_crtc_state)
12324                 other_crtc_state->hsw_workaround_pipe = first_pipe;
12325
12326         return 0;
12327 }
12328
12329 static int intel_lock_all_pipes(struct drm_atomic_state *state)
12330 {
12331         struct drm_crtc *crtc;
12332
12333         /* Add all pipes to the state */
12334         for_each_crtc(state->dev, crtc) {
12335                 struct drm_crtc_state *crtc_state;
12336
12337                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12338                 if (IS_ERR(crtc_state))
12339                         return PTR_ERR(crtc_state);
12340         }
12341
12342         return 0;
12343 }
12344
12345 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12346 {
12347         struct drm_crtc *crtc;
12348
12349         /*
12350          * Add all pipes to the state, and force
12351          * a modeset on all the active ones.
12352          */
12353         for_each_crtc(state->dev, crtc) {
12354                 struct drm_crtc_state *crtc_state;
12355                 int ret;
12356
12357                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12358                 if (IS_ERR(crtc_state))
12359                         return PTR_ERR(crtc_state);
12360
12361                 if (!crtc_state->active || needs_modeset(crtc_state))
12362                         continue;
12363
12364                 crtc_state->mode_changed = true;
12365
12366                 ret = drm_atomic_add_affected_connectors(state, crtc);
12367                 if (ret)
12368                         return ret;
12369
12370                 ret = drm_atomic_add_affected_planes(state, crtc);
12371                 if (ret)
12372                         return ret;
12373         }
12374
12375         return 0;
12376 }
12377
12378 static int intel_modeset_checks(struct drm_atomic_state *state)
12379 {
12380         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12381         struct drm_i915_private *dev_priv = to_i915(state->dev);
12382         struct drm_crtc *crtc;
12383         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12384         int ret = 0, i;
12385
12386         if (!check_digital_port_conflicts(state)) {
12387                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12388                 return -EINVAL;
12389         }
12390
12391         intel_state->modeset = true;
12392         intel_state->active_crtcs = dev_priv->active_crtcs;
12393         intel_state->cdclk.logical = dev_priv->cdclk.logical;
12394         intel_state->cdclk.actual = dev_priv->cdclk.actual;
12395
12396         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12397                 if (new_crtc_state->active)
12398                         intel_state->active_crtcs |= 1 << i;
12399                 else
12400                         intel_state->active_crtcs &= ~(1 << i);
12401
12402                 if (old_crtc_state->active != new_crtc_state->active)
12403                         intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
12404         }
12405
12406         /*
12407          * See if the config requires any additional preparation, e.g.
12408          * to adjust global state with pipes off.  We need to do this
12409          * here so we can get the modeset_pipe updated config for the new
12410          * mode set on this crtc.  For other crtcs we need to use the
12411          * adjusted_mode bits in the crtc directly.
12412          */
12413         if (dev_priv->display.modeset_calc_cdclk) {
12414                 ret = dev_priv->display.modeset_calc_cdclk(state);
12415                 if (ret < 0)
12416                         return ret;
12417
12418                 /*
12419                  * Writes to dev_priv->cdclk.logical must protected by
12420                  * holding all the crtc locks, even if we don't end up
12421                  * touching the hardware
12422                  */
12423                 if (!intel_cdclk_state_compare(&dev_priv->cdclk.logical,
12424                                                &intel_state->cdclk.logical)) {
12425                         ret = intel_lock_all_pipes(state);
12426                         if (ret < 0)
12427                                 return ret;
12428                 }
12429
12430                 /* All pipes must be switched off while we change the cdclk. */
12431                 if (!intel_cdclk_state_compare(&dev_priv->cdclk.actual,
12432                                                &intel_state->cdclk.actual)) {
12433                         ret = intel_modeset_all_pipes(state);
12434                         if (ret < 0)
12435                                 return ret;
12436                 }
12437
12438                 DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n",
12439                               intel_state->cdclk.logical.cdclk,
12440                               intel_state->cdclk.actual.cdclk);
12441         } else {
12442                 to_intel_atomic_state(state)->cdclk.logical = dev_priv->cdclk.logical;
12443         }
12444
12445         intel_modeset_clear_plls(state);
12446
12447         if (IS_HASWELL(dev_priv))
12448                 return haswell_mode_set_planes_workaround(state);
12449
12450         return 0;
12451 }
12452
12453 /*
12454  * Handle calculation of various watermark data at the end of the atomic check
12455  * phase.  The code here should be run after the per-crtc and per-plane 'check'
12456  * handlers to ensure that all derived state has been updated.
12457  */
12458 static int calc_watermark_data(struct drm_atomic_state *state)
12459 {
12460         struct drm_device *dev = state->dev;
12461         struct drm_i915_private *dev_priv = to_i915(dev);
12462
12463         /* Is there platform-specific watermark information to calculate? */
12464         if (dev_priv->display.compute_global_watermarks)
12465                 return dev_priv->display.compute_global_watermarks(state);
12466
12467         return 0;
12468 }
12469
12470 /**
12471  * intel_atomic_check - validate state object
12472  * @dev: drm device
12473  * @state: state to validate
12474  */
12475 static int intel_atomic_check(struct drm_device *dev,
12476                               struct drm_atomic_state *state)
12477 {
12478         struct drm_i915_private *dev_priv = to_i915(dev);
12479         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12480         struct drm_crtc *crtc;
12481         struct drm_crtc_state *old_crtc_state, *crtc_state;
12482         int ret, i;
12483         bool any_ms = false;
12484
12485         ret = drm_atomic_helper_check_modeset(dev, state);
12486         if (ret)
12487                 return ret;
12488
12489         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, crtc_state, i) {
12490                 struct intel_crtc_state *pipe_config =
12491                         to_intel_crtc_state(crtc_state);
12492
12493                 /* Catch I915_MODE_FLAG_INHERITED */
12494                 if (crtc_state->mode.private_flags != old_crtc_state->mode.private_flags)
12495                         crtc_state->mode_changed = true;
12496
12497                 if (!needs_modeset(crtc_state))
12498                         continue;
12499
12500                 if (!crtc_state->enable) {
12501                         any_ms = true;
12502                         continue;
12503                 }
12504
12505                 /* FIXME: For only active_changed we shouldn't need to do any
12506                  * state recomputation at all. */
12507
12508                 ret = drm_atomic_add_affected_connectors(state, crtc);
12509                 if (ret)
12510                         return ret;
12511
12512                 ret = intel_modeset_pipe_config(crtc, pipe_config);
12513                 if (ret) {
12514                         intel_dump_pipe_config(to_intel_crtc(crtc),
12515                                                pipe_config, "[failed]");
12516                         return ret;
12517                 }
12518
12519                 if (i915.fastboot &&
12520                     intel_pipe_config_compare(dev_priv,
12521                                         to_intel_crtc_state(old_crtc_state),
12522                                         pipe_config, true)) {
12523                         crtc_state->mode_changed = false;
12524                         pipe_config->update_pipe = true;
12525                 }
12526
12527                 if (needs_modeset(crtc_state))
12528                         any_ms = true;
12529
12530                 ret = drm_atomic_add_affected_planes(state, crtc);
12531                 if (ret)
12532                         return ret;
12533
12534                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
12535                                        needs_modeset(crtc_state) ?
12536                                        "[modeset]" : "[fastset]");
12537         }
12538
12539         if (any_ms) {
12540                 ret = intel_modeset_checks(state);
12541
12542                 if (ret)
12543                         return ret;
12544         } else {
12545                 intel_state->cdclk.logical = dev_priv->cdclk.logical;
12546         }
12547
12548         ret = drm_atomic_helper_check_planes(dev, state);
12549         if (ret)
12550                 return ret;
12551
12552         intel_fbc_choose_crtc(dev_priv, state);
12553         return calc_watermark_data(state);
12554 }
12555
12556 static int intel_atomic_prepare_commit(struct drm_device *dev,
12557                                        struct drm_atomic_state *state)
12558 {
12559         struct drm_i915_private *dev_priv = to_i915(dev);
12560         struct drm_crtc_state *crtc_state;
12561         struct drm_crtc *crtc;
12562         int i, ret;
12563
12564         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
12565                 if (state->legacy_cursor_update)
12566                         continue;
12567
12568                 ret = intel_crtc_wait_for_pending_flips(crtc);
12569                 if (ret)
12570                         return ret;
12571
12572                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
12573                         flush_workqueue(dev_priv->wq);
12574         }
12575
12576         ret = mutex_lock_interruptible(&dev->struct_mutex);
12577         if (ret)
12578                 return ret;
12579
12580         ret = drm_atomic_helper_prepare_planes(dev, state);
12581         mutex_unlock(&dev->struct_mutex);
12582
12583         return ret;
12584 }
12585
12586 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
12587 {
12588         struct drm_device *dev = crtc->base.dev;
12589
12590         if (!dev->max_vblank_count)
12591                 return drm_accurate_vblank_count(&crtc->base);
12592
12593         return dev->driver->get_vblank_counter(dev, crtc->pipe);
12594 }
12595
12596 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
12597                                           struct drm_i915_private *dev_priv,
12598                                           unsigned crtc_mask)
12599 {
12600         unsigned last_vblank_count[I915_MAX_PIPES];
12601         enum pipe pipe;
12602         int ret;
12603
12604         if (!crtc_mask)
12605                 return;
12606
12607         for_each_pipe(dev_priv, pipe) {
12608                 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12609                                                                   pipe);
12610
12611                 if (!((1 << pipe) & crtc_mask))
12612                         continue;
12613
12614                 ret = drm_crtc_vblank_get(&crtc->base);
12615                 if (WARN_ON(ret != 0)) {
12616                         crtc_mask &= ~(1 << pipe);
12617                         continue;
12618                 }
12619
12620                 last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
12621         }
12622
12623         for_each_pipe(dev_priv, pipe) {
12624                 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12625                                                                   pipe);
12626                 long lret;
12627
12628                 if (!((1 << pipe) & crtc_mask))
12629                         continue;
12630
12631                 lret = wait_event_timeout(dev->vblank[pipe].queue,
12632                                 last_vblank_count[pipe] !=
12633                                         drm_crtc_vblank_count(&crtc->base),
12634                                 msecs_to_jiffies(50));
12635
12636                 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
12637
12638                 drm_crtc_vblank_put(&crtc->base);
12639         }
12640 }
12641
12642 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
12643 {
12644         /* fb updated, need to unpin old fb */
12645         if (crtc_state->fb_changed)
12646                 return true;
12647
12648         /* wm changes, need vblank before final wm's */
12649         if (crtc_state->update_wm_post)
12650                 return true;
12651
12652         if (crtc_state->wm.need_postvbl_update)
12653                 return true;
12654
12655         return false;
12656 }
12657
12658 static void intel_update_crtc(struct drm_crtc *crtc,
12659                               struct drm_atomic_state *state,
12660                               struct drm_crtc_state *old_crtc_state,
12661                               struct drm_crtc_state *new_crtc_state,
12662                               unsigned int *crtc_vblank_mask)
12663 {
12664         struct drm_device *dev = crtc->dev;
12665         struct drm_i915_private *dev_priv = to_i915(dev);
12666         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12667         struct intel_crtc_state *pipe_config = to_intel_crtc_state(new_crtc_state);
12668         bool modeset = needs_modeset(new_crtc_state);
12669
12670         if (modeset) {
12671                 update_scanline_offset(intel_crtc);
12672                 dev_priv->display.crtc_enable(pipe_config, state);
12673         } else {
12674                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12675                                        pipe_config);
12676         }
12677
12678         if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12679                 intel_fbc_enable(
12680                     intel_crtc, pipe_config,
12681                     to_intel_plane_state(crtc->primary->state));
12682         }
12683
12684         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
12685
12686         if (needs_vblank_wait(pipe_config))
12687                 *crtc_vblank_mask |= drm_crtc_mask(crtc);
12688 }
12689
12690 static void intel_update_crtcs(struct drm_atomic_state *state,
12691                                unsigned int *crtc_vblank_mask)
12692 {
12693         struct drm_crtc *crtc;
12694         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12695         int i;
12696
12697         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12698                 if (!new_crtc_state->active)
12699                         continue;
12700
12701                 intel_update_crtc(crtc, state, old_crtc_state,
12702                                   new_crtc_state, crtc_vblank_mask);
12703         }
12704 }
12705
12706 static void skl_update_crtcs(struct drm_atomic_state *state,
12707                              unsigned int *crtc_vblank_mask)
12708 {
12709         struct drm_i915_private *dev_priv = to_i915(state->dev);
12710         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12711         struct drm_crtc *crtc;
12712         struct intel_crtc *intel_crtc;
12713         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12714         struct intel_crtc_state *cstate;
12715         unsigned int updated = 0;
12716         bool progress;
12717         enum pipe pipe;
12718         int i;
12719
12720         const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
12721
12722         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i)
12723                 /* ignore allocations for crtc's that have been turned off. */
12724                 if (new_crtc_state->active)
12725                         entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
12726
12727         /*
12728          * Whenever the number of active pipes changes, we need to make sure we
12729          * update the pipes in the right order so that their ddb allocations
12730          * never overlap with eachother inbetween CRTC updates. Otherwise we'll
12731          * cause pipe underruns and other bad stuff.
12732          */
12733         do {
12734                 progress = false;
12735
12736                 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12737                         bool vbl_wait = false;
12738                         unsigned int cmask = drm_crtc_mask(crtc);
12739
12740                         intel_crtc = to_intel_crtc(crtc);
12741                         cstate = to_intel_crtc_state(crtc->state);
12742                         pipe = intel_crtc->pipe;
12743
12744                         if (updated & cmask || !cstate->base.active)
12745                                 continue;
12746
12747                         if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
12748                                 continue;
12749
12750                         updated |= cmask;
12751                         entries[i] = &cstate->wm.skl.ddb;
12752
12753                         /*
12754                          * If this is an already active pipe, it's DDB changed,
12755                          * and this isn't the last pipe that needs updating
12756                          * then we need to wait for a vblank to pass for the
12757                          * new ddb allocation to take effect.
12758                          */
12759                         if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
12760                                                  &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
12761                             !new_crtc_state->active_changed &&
12762                             intel_state->wm_results.dirty_pipes != updated)
12763                                 vbl_wait = true;
12764
12765                         intel_update_crtc(crtc, state, old_crtc_state,
12766                                           new_crtc_state, crtc_vblank_mask);
12767
12768                         if (vbl_wait)
12769                                 intel_wait_for_vblank(dev_priv, pipe);
12770
12771                         progress = true;
12772                 }
12773         } while (progress);
12774 }
12775
12776 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
12777 {
12778         struct intel_atomic_state *state, *next;
12779         struct llist_node *freed;
12780
12781         freed = llist_del_all(&dev_priv->atomic_helper.free_list);
12782         llist_for_each_entry_safe(state, next, freed, freed)
12783                 drm_atomic_state_put(&state->base);
12784 }
12785
12786 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
12787 {
12788         struct drm_i915_private *dev_priv =
12789                 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
12790
12791         intel_atomic_helper_free_state(dev_priv);
12792 }
12793
12794 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
12795 {
12796         struct drm_device *dev = state->dev;
12797         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12798         struct drm_i915_private *dev_priv = to_i915(dev);
12799         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12800         struct drm_crtc *crtc;
12801         struct intel_crtc_state *intel_cstate;
12802         bool hw_check = intel_state->modeset;
12803         u64 put_domains[I915_MAX_PIPES] = {};
12804         unsigned crtc_vblank_mask = 0;
12805         int i;
12806
12807         drm_atomic_helper_wait_for_dependencies(state);
12808
12809         if (intel_state->modeset)
12810                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
12811
12812         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12813                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12814
12815                 if (needs_modeset(new_crtc_state) ||
12816                     to_intel_crtc_state(new_crtc_state)->update_pipe) {
12817                         hw_check = true;
12818
12819                         put_domains[to_intel_crtc(crtc)->pipe] =
12820                                 modeset_get_crtc_power_domains(crtc,
12821                                         to_intel_crtc_state(new_crtc_state));
12822                 }
12823
12824                 if (!needs_modeset(new_crtc_state))
12825                         continue;
12826
12827                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12828                                        to_intel_crtc_state(new_crtc_state));
12829
12830                 if (old_crtc_state->active) {
12831                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
12832                         dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
12833                         intel_crtc->active = false;
12834                         intel_fbc_disable(intel_crtc);
12835                         intel_disable_shared_dpll(intel_crtc);
12836
12837                         /*
12838                          * Underruns don't always raise
12839                          * interrupts, so check manually.
12840                          */
12841                         intel_check_cpu_fifo_underruns(dev_priv);
12842                         intel_check_pch_fifo_underruns(dev_priv);
12843
12844                         if (!crtc->state->active) {
12845                                 /*
12846                                  * Make sure we don't call initial_watermarks
12847                                  * for ILK-style watermark updates.
12848                                  *
12849                                  * No clue what this is supposed to achieve.
12850                                  */
12851                                 if (INTEL_GEN(dev_priv) >= 9)
12852                                         dev_priv->display.initial_watermarks(intel_state,
12853                                                                              to_intel_crtc_state(crtc->state));
12854                         }
12855                 }
12856         }
12857
12858         /* Only after disabling all output pipelines that will be changed can we
12859          * update the the output configuration. */
12860         intel_modeset_update_crtc_state(state);
12861
12862         if (intel_state->modeset) {
12863                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
12864
12865                 intel_set_cdclk(dev_priv, &dev_priv->cdclk.actual);
12866
12867                 /*
12868                  * SKL workaround: bspec recommends we disable the SAGV when we
12869                  * have more then one pipe enabled
12870                  */
12871                 if (!intel_can_enable_sagv(state))
12872                         intel_disable_sagv(dev_priv);
12873
12874                 intel_modeset_verify_disabled(dev, state);
12875         }
12876
12877         /* Complete the events for pipes that have now been disabled */
12878         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
12879                 bool modeset = needs_modeset(new_crtc_state);
12880
12881                 /* Complete events for now disable pipes here. */
12882                 if (modeset && !new_crtc_state->active && new_crtc_state->event) {
12883                         spin_lock_irq(&dev->event_lock);
12884                         drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
12885                         spin_unlock_irq(&dev->event_lock);
12886
12887                         new_crtc_state->event = NULL;
12888                 }
12889         }
12890
12891         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
12892         dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
12893
12894         /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
12895          * already, but still need the state for the delayed optimization. To
12896          * fix this:
12897          * - wrap the optimization/post_plane_update stuff into a per-crtc work.
12898          * - schedule that vblank worker _before_ calling hw_done
12899          * - at the start of commit_tail, cancel it _synchrously
12900          * - switch over to the vblank wait helper in the core after that since
12901          *   we don't need out special handling any more.
12902          */
12903         if (!state->legacy_cursor_update)
12904                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
12905
12906         /*
12907          * Now that the vblank has passed, we can go ahead and program the
12908          * optimal watermarks on platforms that need two-step watermark
12909          * programming.
12910          *
12911          * TODO: Move this (and other cleanup) to an async worker eventually.
12912          */
12913         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
12914                 intel_cstate = to_intel_crtc_state(new_crtc_state);
12915
12916                 if (dev_priv->display.optimize_watermarks)
12917                         dev_priv->display.optimize_watermarks(intel_state,
12918                                                               intel_cstate);
12919         }
12920
12921         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12922                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
12923
12924                 if (put_domains[i])
12925                         modeset_put_power_domains(dev_priv, put_domains[i]);
12926
12927                 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
12928         }
12929
12930         if (intel_state->modeset && intel_can_enable_sagv(state))
12931                 intel_enable_sagv(dev_priv);
12932
12933         drm_atomic_helper_commit_hw_done(state);
12934
12935         if (intel_state->modeset)
12936                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
12937
12938         mutex_lock(&dev->struct_mutex);
12939         drm_atomic_helper_cleanup_planes(dev, state);
12940         mutex_unlock(&dev->struct_mutex);
12941
12942         drm_atomic_helper_commit_cleanup_done(state);
12943
12944         drm_atomic_state_put(state);
12945
12946         /* As one of the primary mmio accessors, KMS has a high likelihood
12947          * of triggering bugs in unclaimed access. After we finish
12948          * modesetting, see if an error has been flagged, and if so
12949          * enable debugging for the next modeset - and hope we catch
12950          * the culprit.
12951          *
12952          * XXX note that we assume display power is on at this point.
12953          * This might hold true now but we need to add pm helper to check
12954          * unclaimed only when the hardware is on, as atomic commits
12955          * can happen also when the device is completely off.
12956          */
12957         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
12958
12959         intel_atomic_helper_free_state(dev_priv);
12960 }
12961
12962 static void intel_atomic_commit_work(struct work_struct *work)
12963 {
12964         struct drm_atomic_state *state =
12965                 container_of(work, struct drm_atomic_state, commit_work);
12966
12967         intel_atomic_commit_tail(state);
12968 }
12969
12970 static int __i915_sw_fence_call
12971 intel_atomic_commit_ready(struct i915_sw_fence *fence,
12972                           enum i915_sw_fence_notify notify)
12973 {
12974         struct intel_atomic_state *state =
12975                 container_of(fence, struct intel_atomic_state, commit_ready);
12976
12977         switch (notify) {
12978         case FENCE_COMPLETE:
12979                 if (state->base.commit_work.func)
12980                         queue_work(system_unbound_wq, &state->base.commit_work);
12981                 break;
12982
12983         case FENCE_FREE:
12984                 {
12985                         struct intel_atomic_helper *helper =
12986                                 &to_i915(state->base.dev)->atomic_helper;
12987
12988                         if (llist_add(&state->freed, &helper->free_list))
12989                                 schedule_work(&helper->free_work);
12990                         break;
12991                 }
12992         }
12993
12994         return NOTIFY_DONE;
12995 }
12996
12997 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
12998 {
12999         struct drm_plane_state *old_plane_state, *new_plane_state;
13000         struct drm_plane *plane;
13001         int i;
13002
13003         for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i)
13004                 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
13005                                   intel_fb_obj(new_plane_state->fb),
13006                                   to_intel_plane(plane)->frontbuffer_bit);
13007 }
13008
13009 /**
13010  * intel_atomic_commit - commit validated state object
13011  * @dev: DRM device
13012  * @state: the top-level driver state object
13013  * @nonblock: nonblocking commit
13014  *
13015  * This function commits a top-level state object that has been validated
13016  * with drm_atomic_helper_check().
13017  *
13018  * RETURNS
13019  * Zero for success or -errno.
13020  */
13021 static int intel_atomic_commit(struct drm_device *dev,
13022                                struct drm_atomic_state *state,
13023                                bool nonblock)
13024 {
13025         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13026         struct drm_i915_private *dev_priv = to_i915(dev);
13027         int ret = 0;
13028
13029         ret = drm_atomic_helper_setup_commit(state, nonblock);
13030         if (ret)
13031                 return ret;
13032
13033         drm_atomic_state_get(state);
13034         i915_sw_fence_init(&intel_state->commit_ready,
13035                            intel_atomic_commit_ready);
13036
13037         ret = intel_atomic_prepare_commit(dev, state);
13038         if (ret) {
13039                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13040                 i915_sw_fence_commit(&intel_state->commit_ready);
13041                 return ret;
13042         }
13043
13044         /*
13045          * The intel_legacy_cursor_update() fast path takes care
13046          * of avoiding the vblank waits for simple cursor
13047          * movement and flips. For cursor on/off and size changes,
13048          * we want to perform the vblank waits so that watermark
13049          * updates happen during the correct frames. Gen9+ have
13050          * double buffered watermarks and so shouldn't need this.
13051          *
13052          * Do this after drm_atomic_helper_setup_commit() and
13053          * intel_atomic_prepare_commit() because we still want
13054          * to skip the flip and fb cleanup waits. Although that
13055          * does risk yanking the mapping from under the display
13056          * engine.
13057          *
13058          * FIXME doing watermarks and fb cleanup from a vblank worker
13059          * (assuming we had any) would solve these problems.
13060          */
13061         if (INTEL_GEN(dev_priv) < 9)
13062                 state->legacy_cursor_update = false;
13063
13064         drm_atomic_helper_swap_state(state, true);
13065         dev_priv->wm.distrust_bios_wm = false;
13066         intel_shared_dpll_swap_state(state);
13067         intel_atomic_track_fbs(state);
13068
13069         if (intel_state->modeset) {
13070                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13071                        sizeof(intel_state->min_pixclk));
13072                 dev_priv->active_crtcs = intel_state->active_crtcs;
13073                 dev_priv->cdclk.logical = intel_state->cdclk.logical;
13074                 dev_priv->cdclk.actual = intel_state->cdclk.actual;
13075         }
13076
13077         drm_atomic_state_get(state);
13078         INIT_WORK(&state->commit_work,
13079                   nonblock ? intel_atomic_commit_work : NULL);
13080
13081         i915_sw_fence_commit(&intel_state->commit_ready);
13082         if (!nonblock) {
13083                 i915_sw_fence_wait(&intel_state->commit_ready);
13084                 intel_atomic_commit_tail(state);
13085         }
13086
13087         return 0;
13088 }
13089
13090 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13091 {
13092         struct drm_device *dev = crtc->dev;
13093         struct drm_atomic_state *state;
13094         struct drm_crtc_state *crtc_state;
13095         int ret;
13096
13097         state = drm_atomic_state_alloc(dev);
13098         if (!state) {
13099                 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
13100                               crtc->base.id, crtc->name);
13101                 return;
13102         }
13103
13104         state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
13105
13106 retry:
13107         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13108         ret = PTR_ERR_OR_ZERO(crtc_state);
13109         if (!ret) {
13110                 if (!crtc_state->active)
13111                         goto out;
13112
13113                 crtc_state->mode_changed = true;
13114                 ret = drm_atomic_commit(state);
13115         }
13116
13117         if (ret == -EDEADLK) {
13118                 drm_atomic_state_clear(state);
13119                 drm_modeset_backoff(state->acquire_ctx);
13120                 goto retry;
13121         }
13122
13123 out:
13124         drm_atomic_state_put(state);
13125 }
13126
13127 static const struct drm_crtc_funcs intel_crtc_funcs = {
13128         .gamma_set = drm_atomic_helper_legacy_gamma_set,
13129         .set_config = drm_atomic_helper_set_config,
13130         .set_property = drm_atomic_helper_crtc_set_property,
13131         .destroy = intel_crtc_destroy,
13132         .page_flip = drm_atomic_helper_page_flip,
13133         .atomic_duplicate_state = intel_crtc_duplicate_state,
13134         .atomic_destroy_state = intel_crtc_destroy_state,
13135         .set_crc_source = intel_crtc_set_crc_source,
13136 };
13137
13138 /**
13139  * intel_prepare_plane_fb - Prepare fb for usage on plane
13140  * @plane: drm plane to prepare for
13141  * @fb: framebuffer to prepare for presentation
13142  *
13143  * Prepares a framebuffer for usage on a display plane.  Generally this
13144  * involves pinning the underlying object and updating the frontbuffer tracking
13145  * bits.  Some older platforms need special physical address handling for
13146  * cursor planes.
13147  *
13148  * Must be called with struct_mutex held.
13149  *
13150  * Returns 0 on success, negative error code on failure.
13151  */
13152 int
13153 intel_prepare_plane_fb(struct drm_plane *plane,
13154                        struct drm_plane_state *new_state)
13155 {
13156         struct intel_atomic_state *intel_state =
13157                 to_intel_atomic_state(new_state->state);
13158         struct drm_i915_private *dev_priv = to_i915(plane->dev);
13159         struct drm_framebuffer *fb = new_state->fb;
13160         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13161         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13162         int ret;
13163
13164         if (obj) {
13165                 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13166                     INTEL_INFO(dev_priv)->cursor_needs_physical) {
13167                         const int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
13168
13169                         ret = i915_gem_object_attach_phys(obj, align);
13170                         if (ret) {
13171                                 DRM_DEBUG_KMS("failed to attach phys object\n");
13172                                 return ret;
13173                         }
13174                 } else {
13175                         struct i915_vma *vma;
13176
13177                         vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13178                         if (IS_ERR(vma)) {
13179                                 DRM_DEBUG_KMS("failed to pin object\n");
13180                                 return PTR_ERR(vma);
13181                         }
13182
13183                         to_intel_plane_state(new_state)->vma = vma;
13184                 }
13185         }
13186
13187         if (!obj && !old_obj)
13188                 return 0;
13189
13190         if (old_obj) {
13191                 struct drm_crtc_state *crtc_state =
13192                         drm_atomic_get_existing_crtc_state(new_state->state,
13193                                                            plane->state->crtc);
13194
13195                 /* Big Hammer, we also need to ensure that any pending
13196                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13197                  * current scanout is retired before unpinning the old
13198                  * framebuffer. Note that we rely on userspace rendering
13199                  * into the buffer attached to the pipe they are waiting
13200                  * on. If not, userspace generates a GPU hang with IPEHR
13201                  * point to the MI_WAIT_FOR_EVENT.
13202                  *
13203                  * This should only fail upon a hung GPU, in which case we
13204                  * can safely continue.
13205                  */
13206                 if (needs_modeset(crtc_state)) {
13207                         ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
13208                                                               old_obj->resv, NULL,
13209                                                               false, 0,
13210                                                               GFP_KERNEL);
13211                         if (ret < 0)
13212                                 return ret;
13213                 }
13214         }
13215
13216         if (new_state->fence) { /* explicit fencing */
13217                 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
13218                                                     new_state->fence,
13219                                                     I915_FENCE_TIMEOUT,
13220                                                     GFP_KERNEL);
13221                 if (ret < 0)
13222                         return ret;
13223         }
13224
13225         if (!obj)
13226                 return 0;
13227
13228         if (!new_state->fence) { /* implicit fencing */
13229                 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
13230                                                       obj->resv, NULL,
13231                                                       false, I915_FENCE_TIMEOUT,
13232                                                       GFP_KERNEL);
13233                 if (ret < 0)
13234                         return ret;
13235
13236                 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
13237         }
13238
13239         return 0;
13240 }
13241
13242 /**
13243  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13244  * @plane: drm plane to clean up for
13245  * @fb: old framebuffer that was on plane
13246  *
13247  * Cleans up a framebuffer that has just been removed from a plane.
13248  *
13249  * Must be called with struct_mutex held.
13250  */
13251 void
13252 intel_cleanup_plane_fb(struct drm_plane *plane,
13253                        struct drm_plane_state *old_state)
13254 {
13255         struct i915_vma *vma;
13256
13257         /* Should only be called after a successful intel_prepare_plane_fb()! */
13258         vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
13259         if (vma)
13260                 intel_unpin_fb_vma(vma);
13261 }
13262
13263 int
13264 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13265 {
13266         struct drm_i915_private *dev_priv;
13267         int max_scale;
13268         int crtc_clock, max_dotclk;
13269
13270         if (!intel_crtc || !crtc_state->base.enable)
13271                 return DRM_PLANE_HELPER_NO_SCALING;
13272
13273         dev_priv = to_i915(intel_crtc->base.dev);
13274
13275         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13276         max_dotclk = to_intel_atomic_state(crtc_state->base.state)->cdclk.logical.cdclk;
13277
13278         if (IS_GEMINILAKE(dev_priv))
13279                 max_dotclk *= 2;
13280
13281         if (WARN_ON_ONCE(!crtc_clock || max_dotclk < crtc_clock))
13282                 return DRM_PLANE_HELPER_NO_SCALING;
13283
13284         /*
13285          * skl max scale is lower of:
13286          *    close to 3 but not 3, -1 is for that purpose
13287          *            or
13288          *    cdclk/crtc_clock
13289          */
13290         max_scale = min((1 << 16) * 3 - 1,
13291                         (1 << 8) * ((max_dotclk << 8) / crtc_clock));
13292
13293         return max_scale;
13294 }
13295
13296 static int
13297 intel_check_primary_plane(struct drm_plane *plane,
13298                           struct intel_crtc_state *crtc_state,
13299                           struct intel_plane_state *state)
13300 {
13301         struct drm_i915_private *dev_priv = to_i915(plane->dev);
13302         struct drm_crtc *crtc = state->base.crtc;
13303         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13304         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13305         bool can_position = false;
13306         int ret;
13307
13308         if (INTEL_GEN(dev_priv) >= 9) {
13309                 /* use scaler when colorkey is not required */
13310                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13311                         min_scale = 1;
13312                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13313                 }
13314                 can_position = true;
13315         }
13316
13317         ret = drm_plane_helper_check_state(&state->base,
13318                                            &state->clip,
13319                                            min_scale, max_scale,
13320                                            can_position, true);
13321         if (ret)
13322                 return ret;
13323
13324         if (!state->base.fb)
13325                 return 0;
13326
13327         if (INTEL_GEN(dev_priv) >= 9) {
13328                 ret = skl_check_plane_surface(state);
13329                 if (ret)
13330                         return ret;
13331
13332                 state->ctl = skl_plane_ctl(crtc_state, state);
13333         } else {
13334                 ret = i9xx_check_plane_surface(state);
13335                 if (ret)
13336                         return ret;
13337
13338                 state->ctl = i9xx_plane_ctl(crtc_state, state);
13339         }
13340
13341         return 0;
13342 }
13343
13344 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13345                                     struct drm_crtc_state *old_crtc_state)
13346 {
13347         struct drm_device *dev = crtc->dev;
13348         struct drm_i915_private *dev_priv = to_i915(dev);
13349         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13350         struct intel_crtc_state *intel_cstate =
13351                 to_intel_crtc_state(crtc->state);
13352         struct intel_crtc_state *old_intel_cstate =
13353                 to_intel_crtc_state(old_crtc_state);
13354         struct intel_atomic_state *old_intel_state =
13355                 to_intel_atomic_state(old_crtc_state->state);
13356         bool modeset = needs_modeset(crtc->state);
13357
13358         if (!modeset &&
13359             (intel_cstate->base.color_mgmt_changed ||
13360              intel_cstate->update_pipe)) {
13361                 intel_color_set_csc(crtc->state);
13362                 intel_color_load_luts(crtc->state);
13363         }
13364
13365         /* Perform vblank evasion around commit operation */
13366         intel_pipe_update_start(intel_crtc);
13367
13368         if (modeset)
13369                 goto out;
13370
13371         if (intel_cstate->update_pipe)
13372                 intel_update_pipe_config(intel_crtc, old_intel_cstate);
13373         else if (INTEL_GEN(dev_priv) >= 9)
13374                 skl_detach_scalers(intel_crtc);
13375
13376 out:
13377         if (dev_priv->display.atomic_update_watermarks)
13378                 dev_priv->display.atomic_update_watermarks(old_intel_state,
13379                                                            intel_cstate);
13380 }
13381
13382 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13383                                      struct drm_crtc_state *old_crtc_state)
13384 {
13385         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13386
13387         intel_pipe_update_end(intel_crtc, NULL);
13388 }
13389
13390 /**
13391  * intel_plane_destroy - destroy a plane
13392  * @plane: plane to destroy
13393  *
13394  * Common destruction function for all types of planes (primary, cursor,
13395  * sprite).
13396  */
13397 void intel_plane_destroy(struct drm_plane *plane)
13398 {
13399         drm_plane_cleanup(plane);
13400         kfree(to_intel_plane(plane));
13401 }
13402
13403 const struct drm_plane_funcs intel_plane_funcs = {
13404         .update_plane = drm_atomic_helper_update_plane,
13405         .disable_plane = drm_atomic_helper_disable_plane,
13406         .destroy = intel_plane_destroy,
13407         .set_property = drm_atomic_helper_plane_set_property,
13408         .atomic_get_property = intel_plane_atomic_get_property,
13409         .atomic_set_property = intel_plane_atomic_set_property,
13410         .atomic_duplicate_state = intel_plane_duplicate_state,
13411         .atomic_destroy_state = intel_plane_destroy_state,
13412 };
13413
13414 static int
13415 intel_legacy_cursor_update(struct drm_plane *plane,
13416                            struct drm_crtc *crtc,
13417                            struct drm_framebuffer *fb,
13418                            int crtc_x, int crtc_y,
13419                            unsigned int crtc_w, unsigned int crtc_h,
13420                            uint32_t src_x, uint32_t src_y,
13421                            uint32_t src_w, uint32_t src_h,
13422                            struct drm_modeset_acquire_ctx *ctx)
13423 {
13424         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13425         int ret;
13426         struct drm_plane_state *old_plane_state, *new_plane_state;
13427         struct intel_plane *intel_plane = to_intel_plane(plane);
13428         struct drm_framebuffer *old_fb;
13429         struct drm_crtc_state *crtc_state = crtc->state;
13430         struct i915_vma *old_vma;
13431
13432         /*
13433          * When crtc is inactive or there is a modeset pending,
13434          * wait for it to complete in the slowpath
13435          */
13436         if (!crtc_state->active || needs_modeset(crtc_state) ||
13437             to_intel_crtc_state(crtc_state)->update_pipe)
13438                 goto slow;
13439
13440         old_plane_state = plane->state;
13441
13442         /*
13443          * If any parameters change that may affect watermarks,
13444          * take the slowpath. Only changing fb or position should be
13445          * in the fastpath.
13446          */
13447         if (old_plane_state->crtc != crtc ||
13448             old_plane_state->src_w != src_w ||
13449             old_plane_state->src_h != src_h ||
13450             old_plane_state->crtc_w != crtc_w ||
13451             old_plane_state->crtc_h != crtc_h ||
13452             !old_plane_state->fb != !fb)
13453                 goto slow;
13454
13455         new_plane_state = intel_plane_duplicate_state(plane);
13456         if (!new_plane_state)
13457                 return -ENOMEM;
13458
13459         drm_atomic_set_fb_for_plane(new_plane_state, fb);
13460
13461         new_plane_state->src_x = src_x;
13462         new_plane_state->src_y = src_y;
13463         new_plane_state->src_w = src_w;
13464         new_plane_state->src_h = src_h;
13465         new_plane_state->crtc_x = crtc_x;
13466         new_plane_state->crtc_y = crtc_y;
13467         new_plane_state->crtc_w = crtc_w;
13468         new_plane_state->crtc_h = crtc_h;
13469
13470         ret = intel_plane_atomic_check_with_state(to_intel_crtc_state(crtc->state),
13471                                                   to_intel_plane_state(new_plane_state));
13472         if (ret)
13473                 goto out_free;
13474
13475         ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
13476         if (ret)
13477                 goto out_free;
13478
13479         if (INTEL_INFO(dev_priv)->cursor_needs_physical) {
13480                 int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
13481
13482                 ret = i915_gem_object_attach_phys(intel_fb_obj(fb), align);
13483                 if (ret) {
13484                         DRM_DEBUG_KMS("failed to attach phys object\n");
13485                         goto out_unlock;
13486                 }
13487         } else {
13488                 struct i915_vma *vma;
13489
13490                 vma = intel_pin_and_fence_fb_obj(fb, new_plane_state->rotation);
13491                 if (IS_ERR(vma)) {
13492                         DRM_DEBUG_KMS("failed to pin object\n");
13493
13494                         ret = PTR_ERR(vma);
13495                         goto out_unlock;
13496                 }
13497
13498                 to_intel_plane_state(new_plane_state)->vma = vma;
13499         }
13500
13501         old_fb = old_plane_state->fb;
13502         old_vma = to_intel_plane_state(old_plane_state)->vma;
13503
13504         i915_gem_track_fb(intel_fb_obj(old_fb), intel_fb_obj(fb),
13505                           intel_plane->frontbuffer_bit);
13506
13507         /* Swap plane state */
13508         new_plane_state->fence = old_plane_state->fence;
13509         *to_intel_plane_state(old_plane_state) = *to_intel_plane_state(new_plane_state);
13510         new_plane_state->fence = NULL;
13511         new_plane_state->fb = old_fb;
13512         to_intel_plane_state(new_plane_state)->vma = old_vma;
13513
13514         if (plane->state->visible) {
13515                 trace_intel_update_plane(plane, to_intel_crtc(crtc));
13516                 intel_plane->update_plane(plane,
13517                                           to_intel_crtc_state(crtc->state),
13518                                           to_intel_plane_state(plane->state));
13519         } else {
13520                 trace_intel_disable_plane(plane, to_intel_crtc(crtc));
13521                 intel_plane->disable_plane(plane, crtc);
13522         }
13523
13524         intel_cleanup_plane_fb(plane, new_plane_state);
13525
13526 out_unlock:
13527         mutex_unlock(&dev_priv->drm.struct_mutex);
13528 out_free:
13529         intel_plane_destroy_state(plane, new_plane_state);
13530         return ret;
13531
13532 slow:
13533         return drm_atomic_helper_update_plane(plane, crtc, fb,
13534                                               crtc_x, crtc_y, crtc_w, crtc_h,
13535                                               src_x, src_y, src_w, src_h, ctx);
13536 }
13537
13538 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
13539         .update_plane = intel_legacy_cursor_update,
13540         .disable_plane = drm_atomic_helper_disable_plane,
13541         .destroy = intel_plane_destroy,
13542         .set_property = drm_atomic_helper_plane_set_property,
13543         .atomic_get_property = intel_plane_atomic_get_property,
13544         .atomic_set_property = intel_plane_atomic_set_property,
13545         .atomic_duplicate_state = intel_plane_duplicate_state,
13546         .atomic_destroy_state = intel_plane_destroy_state,
13547 };
13548
13549 static struct intel_plane *
13550 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
13551 {
13552         struct intel_plane *primary = NULL;
13553         struct intel_plane_state *state = NULL;
13554         const uint32_t *intel_primary_formats;
13555         unsigned int supported_rotations;
13556         unsigned int num_formats;
13557         int ret;
13558
13559         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13560         if (!primary) {
13561                 ret = -ENOMEM;
13562                 goto fail;
13563         }
13564
13565         state = intel_create_plane_state(&primary->base);
13566         if (!state) {
13567                 ret = -ENOMEM;
13568                 goto fail;
13569         }
13570
13571         primary->base.state = &state->base;
13572
13573         primary->can_scale = false;
13574         primary->max_downscale = 1;
13575         if (INTEL_GEN(dev_priv) >= 9) {
13576                 primary->can_scale = true;
13577                 state->scaler_id = -1;
13578         }
13579         primary->pipe = pipe;
13580         /*
13581          * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
13582          * port is hooked to pipe B. Hence we want plane A feeding pipe B.
13583          */
13584         if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
13585                 primary->plane = (enum plane) !pipe;
13586         else
13587                 primary->plane = (enum plane) pipe;
13588         primary->id = PLANE_PRIMARY;
13589         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13590         primary->check_plane = intel_check_primary_plane;
13591
13592         if (INTEL_GEN(dev_priv) >= 9) {
13593                 intel_primary_formats = skl_primary_formats;
13594                 num_formats = ARRAY_SIZE(skl_primary_formats);
13595
13596                 primary->update_plane = skylake_update_primary_plane;
13597                 primary->disable_plane = skylake_disable_primary_plane;
13598         } else if (INTEL_GEN(dev_priv) >= 4) {
13599                 intel_primary_formats = i965_primary_formats;
13600                 num_formats = ARRAY_SIZE(i965_primary_formats);
13601
13602                 primary->update_plane = i9xx_update_primary_plane;
13603                 primary->disable_plane = i9xx_disable_primary_plane;
13604         } else {
13605                 intel_primary_formats = i8xx_primary_formats;
13606                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13607
13608                 primary->update_plane = i9xx_update_primary_plane;
13609                 primary->disable_plane = i9xx_disable_primary_plane;
13610         }
13611
13612         if (INTEL_GEN(dev_priv) >= 9)
13613                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13614                                                0, &intel_plane_funcs,
13615                                                intel_primary_formats, num_formats,
13616                                                DRM_PLANE_TYPE_PRIMARY,
13617                                                "plane 1%c", pipe_name(pipe));
13618         else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
13619                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13620                                                0, &intel_plane_funcs,
13621                                                intel_primary_formats, num_formats,
13622                                                DRM_PLANE_TYPE_PRIMARY,
13623                                                "primary %c", pipe_name(pipe));
13624         else
13625                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13626                                                0, &intel_plane_funcs,
13627                                                intel_primary_formats, num_formats,
13628                                                DRM_PLANE_TYPE_PRIMARY,
13629                                                "plane %c", plane_name(primary->plane));
13630         if (ret)
13631                 goto fail;
13632
13633         if (INTEL_GEN(dev_priv) >= 9) {
13634                 supported_rotations =
13635                         DRM_ROTATE_0 | DRM_ROTATE_90 |
13636                         DRM_ROTATE_180 | DRM_ROTATE_270;
13637         } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
13638                 supported_rotations =
13639                         DRM_ROTATE_0 | DRM_ROTATE_180 |
13640                         DRM_REFLECT_X;
13641         } else if (INTEL_GEN(dev_priv) >= 4) {
13642                 supported_rotations =
13643                         DRM_ROTATE_0 | DRM_ROTATE_180;
13644         } else {
13645                 supported_rotations = DRM_ROTATE_0;
13646         }
13647
13648         if (INTEL_GEN(dev_priv) >= 4)
13649                 drm_plane_create_rotation_property(&primary->base,
13650                                                    DRM_ROTATE_0,
13651                                                    supported_rotations);
13652
13653         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13654
13655         return primary;
13656
13657 fail:
13658         kfree(state);
13659         kfree(primary);
13660
13661         return ERR_PTR(ret);
13662 }
13663
13664 static int
13665 intel_check_cursor_plane(struct drm_plane *plane,
13666                          struct intel_crtc_state *crtc_state,
13667                          struct intel_plane_state *state)
13668 {
13669         struct drm_i915_private *dev_priv = to_i915(plane->dev);
13670         struct drm_framebuffer *fb = state->base.fb;
13671         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13672         enum pipe pipe = to_intel_plane(plane)->pipe;
13673         unsigned stride;
13674         int ret;
13675
13676         ret = drm_plane_helper_check_state(&state->base,
13677                                            &state->clip,
13678                                            DRM_PLANE_HELPER_NO_SCALING,
13679                                            DRM_PLANE_HELPER_NO_SCALING,
13680                                            true, true);
13681         if (ret)
13682                 return ret;
13683
13684         /* if we want to turn off the cursor ignore width and height */
13685         if (!obj)
13686                 return 0;
13687
13688         /* Check for which cursor types we support */
13689         if (!cursor_size_ok(dev_priv, state->base.crtc_w,
13690                             state->base.crtc_h)) {
13691                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13692                           state->base.crtc_w, state->base.crtc_h);
13693                 return -EINVAL;
13694         }
13695
13696         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13697         if (obj->base.size < stride * state->base.crtc_h) {
13698                 DRM_DEBUG_KMS("buffer is too small\n");
13699                 return -ENOMEM;
13700         }
13701
13702         if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
13703                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13704                 return -EINVAL;
13705         }
13706
13707         /*
13708          * There's something wrong with the cursor on CHV pipe C.
13709          * If it straddles the left edge of the screen then
13710          * moving it away from the edge or disabling it often
13711          * results in a pipe underrun, and often that can lead to
13712          * dead pipe (constant underrun reported, and it scans
13713          * out just a solid color). To recover from that, the
13714          * display power well must be turned off and on again.
13715          * Refuse the put the cursor into that compromised position.
13716          */
13717         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
13718             state->base.visible && state->base.crtc_x < 0) {
13719                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
13720                 return -EINVAL;
13721         }
13722
13723         if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
13724                 state->ctl = i845_cursor_ctl(crtc_state, state);
13725         else
13726                 state->ctl = i9xx_cursor_ctl(crtc_state, state);
13727
13728         return 0;
13729 }
13730
13731 static void
13732 intel_disable_cursor_plane(struct drm_plane *plane,
13733                            struct drm_crtc *crtc)
13734 {
13735         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13736
13737         intel_crtc->cursor_addr = 0;
13738         intel_crtc_update_cursor(crtc, NULL);
13739 }
13740
13741 static void
13742 intel_update_cursor_plane(struct drm_plane *plane,
13743                           const struct intel_crtc_state *crtc_state,
13744                           const struct intel_plane_state *state)
13745 {
13746         struct drm_crtc *crtc = crtc_state->base.crtc;
13747         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13748         struct drm_i915_private *dev_priv = to_i915(plane->dev);
13749         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13750         uint32_t addr;
13751
13752         if (!obj)
13753                 addr = 0;
13754         else if (!INTEL_INFO(dev_priv)->cursor_needs_physical)
13755                 addr = intel_plane_ggtt_offset(state);
13756         else
13757                 addr = obj->phys_handle->busaddr;
13758
13759         intel_crtc->cursor_addr = addr;
13760         intel_crtc_update_cursor(crtc, state);
13761 }
13762
13763 static struct intel_plane *
13764 intel_cursor_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
13765 {
13766         struct intel_plane *cursor = NULL;
13767         struct intel_plane_state *state = NULL;
13768         int ret;
13769
13770         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13771         if (!cursor) {
13772                 ret = -ENOMEM;
13773                 goto fail;
13774         }
13775
13776         state = intel_create_plane_state(&cursor->base);
13777         if (!state) {
13778                 ret = -ENOMEM;
13779                 goto fail;
13780         }
13781
13782         cursor->base.state = &state->base;
13783
13784         cursor->can_scale = false;
13785         cursor->max_downscale = 1;
13786         cursor->pipe = pipe;
13787         cursor->plane = pipe;
13788         cursor->id = PLANE_CURSOR;
13789         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13790         cursor->check_plane = intel_check_cursor_plane;
13791         cursor->update_plane = intel_update_cursor_plane;
13792         cursor->disable_plane = intel_disable_cursor_plane;
13793
13794         ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
13795                                        0, &intel_cursor_plane_funcs,
13796                                        intel_cursor_formats,
13797                                        ARRAY_SIZE(intel_cursor_formats),
13798                                        DRM_PLANE_TYPE_CURSOR,
13799                                        "cursor %c", pipe_name(pipe));
13800         if (ret)
13801                 goto fail;
13802
13803         if (INTEL_GEN(dev_priv) >= 4)
13804                 drm_plane_create_rotation_property(&cursor->base,
13805                                                    DRM_ROTATE_0,
13806                                                    DRM_ROTATE_0 |
13807                                                    DRM_ROTATE_180);
13808
13809         if (INTEL_GEN(dev_priv) >= 9)
13810                 state->scaler_id = -1;
13811
13812         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13813
13814         return cursor;
13815
13816 fail:
13817         kfree(state);
13818         kfree(cursor);
13819
13820         return ERR_PTR(ret);
13821 }
13822
13823 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
13824                                     struct intel_crtc_state *crtc_state)
13825 {
13826         struct intel_crtc_scaler_state *scaler_state =
13827                 &crtc_state->scaler_state;
13828         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13829         int i;
13830
13831         crtc->num_scalers = dev_priv->info.num_scalers[crtc->pipe];
13832         if (!crtc->num_scalers)
13833                 return;
13834
13835         for (i = 0; i < crtc->num_scalers; i++) {
13836                 struct intel_scaler *scaler = &scaler_state->scalers[i];
13837
13838                 scaler->in_use = 0;
13839                 scaler->mode = PS_SCALER_MODE_DYN;
13840         }
13841
13842         scaler_state->scaler_id = -1;
13843 }
13844
13845 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
13846 {
13847         struct intel_crtc *intel_crtc;
13848         struct intel_crtc_state *crtc_state = NULL;
13849         struct intel_plane *primary = NULL;
13850         struct intel_plane *cursor = NULL;
13851         int sprite, ret;
13852
13853         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13854         if (!intel_crtc)
13855                 return -ENOMEM;
13856
13857         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13858         if (!crtc_state) {
13859                 ret = -ENOMEM;
13860                 goto fail;
13861         }
13862         intel_crtc->config = crtc_state;
13863         intel_crtc->base.state = &crtc_state->base;
13864         crtc_state->base.crtc = &intel_crtc->base;
13865
13866         primary = intel_primary_plane_create(dev_priv, pipe);
13867         if (IS_ERR(primary)) {
13868                 ret = PTR_ERR(primary);
13869                 goto fail;
13870         }
13871         intel_crtc->plane_ids_mask |= BIT(primary->id);
13872
13873         for_each_sprite(dev_priv, pipe, sprite) {
13874                 struct intel_plane *plane;
13875
13876                 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
13877                 if (IS_ERR(plane)) {
13878                         ret = PTR_ERR(plane);
13879                         goto fail;
13880                 }
13881                 intel_crtc->plane_ids_mask |= BIT(plane->id);
13882         }
13883
13884         cursor = intel_cursor_plane_create(dev_priv, pipe);
13885         if (IS_ERR(cursor)) {
13886                 ret = PTR_ERR(cursor);
13887                 goto fail;
13888         }
13889         intel_crtc->plane_ids_mask |= BIT(cursor->id);
13890
13891         ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
13892                                         &primary->base, &cursor->base,
13893                                         &intel_crtc_funcs,
13894                                         "pipe %c", pipe_name(pipe));
13895         if (ret)
13896                 goto fail;
13897
13898         intel_crtc->pipe = pipe;
13899         intel_crtc->plane = primary->plane;
13900
13901         intel_crtc->cursor_base = ~0;
13902         intel_crtc->cursor_cntl = ~0;
13903         intel_crtc->cursor_size = ~0;
13904
13905         /* initialize shared scalers */
13906         intel_crtc_init_scalers(intel_crtc, crtc_state);
13907
13908         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13909                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13910         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
13911         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
13912
13913         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13914
13915         intel_color_init(&intel_crtc->base);
13916
13917         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13918
13919         return 0;
13920
13921 fail:
13922         /*
13923          * drm_mode_config_cleanup() will free up any
13924          * crtcs/planes already initialized.
13925          */
13926         kfree(crtc_state);
13927         kfree(intel_crtc);
13928
13929         return ret;
13930 }
13931
13932 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13933 {
13934         struct drm_device *dev = connector->base.dev;
13935
13936         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13937
13938         if (!connector->base.state->crtc)
13939                 return INVALID_PIPE;
13940
13941         return to_intel_crtc(connector->base.state->crtc)->pipe;
13942 }
13943
13944 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13945                                 struct drm_file *file)
13946 {
13947         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13948         struct drm_crtc *drmmode_crtc;
13949         struct intel_crtc *crtc;
13950
13951         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13952         if (!drmmode_crtc)
13953                 return -ENOENT;
13954
13955         crtc = to_intel_crtc(drmmode_crtc);
13956         pipe_from_crtc_id->pipe = crtc->pipe;
13957
13958         return 0;
13959 }
13960
13961 static int intel_encoder_clones(struct intel_encoder *encoder)
13962 {
13963         struct drm_device *dev = encoder->base.dev;
13964         struct intel_encoder *source_encoder;
13965         int index_mask = 0;
13966         int entry = 0;
13967
13968         for_each_intel_encoder(dev, source_encoder) {
13969                 if (encoders_cloneable(encoder, source_encoder))
13970                         index_mask |= (1 << entry);
13971
13972                 entry++;
13973         }
13974
13975         return index_mask;
13976 }
13977
13978 static bool has_edp_a(struct drm_i915_private *dev_priv)
13979 {
13980         if (!IS_MOBILE(dev_priv))
13981                 return false;
13982
13983         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13984                 return false;
13985
13986         if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13987                 return false;
13988
13989         return true;
13990 }
13991
13992 static bool intel_crt_present(struct drm_i915_private *dev_priv)
13993 {
13994         if (INTEL_GEN(dev_priv) >= 9)
13995                 return false;
13996
13997         if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
13998                 return false;
13999
14000         if (IS_CHERRYVIEW(dev_priv))
14001                 return false;
14002
14003         if (HAS_PCH_LPT_H(dev_priv) &&
14004             I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14005                 return false;
14006
14007         /* DDI E can't be used if DDI A requires 4 lanes */
14008         if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14009                 return false;
14010
14011         if (!dev_priv->vbt.int_crt_support)
14012                 return false;
14013
14014         return true;
14015 }
14016
14017 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
14018 {
14019         int pps_num;
14020         int pps_idx;
14021
14022         if (HAS_DDI(dev_priv))
14023                 return;
14024         /*
14025          * This w/a is needed at least on CPT/PPT, but to be sure apply it
14026          * everywhere where registers can be write protected.
14027          */
14028         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14029                 pps_num = 2;
14030         else
14031                 pps_num = 1;
14032
14033         for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
14034                 u32 val = I915_READ(PP_CONTROL(pps_idx));
14035
14036                 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
14037                 I915_WRITE(PP_CONTROL(pps_idx), val);
14038         }
14039 }
14040
14041 static void intel_pps_init(struct drm_i915_private *dev_priv)
14042 {
14043         if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
14044                 dev_priv->pps_mmio_base = PCH_PPS_BASE;
14045         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14046                 dev_priv->pps_mmio_base = VLV_PPS_BASE;
14047         else
14048                 dev_priv->pps_mmio_base = PPS_BASE;
14049
14050         intel_pps_unlock_regs_wa(dev_priv);
14051 }
14052
14053 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
14054 {
14055         struct intel_encoder *encoder;
14056         bool dpd_is_edp = false;
14057
14058         intel_pps_init(dev_priv);
14059
14060         /*
14061          * intel_edp_init_connector() depends on this completing first, to
14062          * prevent the registeration of both eDP and LVDS and the incorrect
14063          * sharing of the PPS.
14064          */
14065         intel_lvds_init(dev_priv);
14066
14067         if (intel_crt_present(dev_priv))
14068                 intel_crt_init(dev_priv);
14069
14070         if (IS_GEN9_LP(dev_priv)) {
14071                 /*
14072                  * FIXME: Broxton doesn't support port detection via the
14073                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14074                  * detect the ports.
14075                  */
14076                 intel_ddi_init(dev_priv, PORT_A);
14077                 intel_ddi_init(dev_priv, PORT_B);
14078                 intel_ddi_init(dev_priv, PORT_C);
14079
14080                 intel_dsi_init(dev_priv);
14081         } else if (HAS_DDI(dev_priv)) {
14082                 int found;
14083
14084                 /*
14085                  * Haswell uses DDI functions to detect digital outputs.
14086                  * On SKL pre-D0 the strap isn't connected, so we assume
14087                  * it's there.
14088                  */
14089                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14090                 /* WaIgnoreDDIAStrap: skl */
14091                 if (found || IS_GEN9_BC(dev_priv))
14092                         intel_ddi_init(dev_priv, PORT_A);
14093
14094                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14095                  * register */
14096                 found = I915_READ(SFUSE_STRAP);
14097
14098                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14099                         intel_ddi_init(dev_priv, PORT_B);
14100                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14101                         intel_ddi_init(dev_priv, PORT_C);
14102                 if (found & SFUSE_STRAP_DDID_DETECTED)
14103                         intel_ddi_init(dev_priv, PORT_D);
14104                 /*
14105                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14106                  */
14107                 if (IS_GEN9_BC(dev_priv) &&
14108                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14109                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14110                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14111                         intel_ddi_init(dev_priv, PORT_E);
14112
14113         } else if (HAS_PCH_SPLIT(dev_priv)) {
14114                 int found;
14115                 dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
14116
14117                 if (has_edp_a(dev_priv))
14118                         intel_dp_init(dev_priv, DP_A, PORT_A);
14119
14120                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14121                         /* PCH SDVOB multiplex with HDMIB */
14122                         found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
14123                         if (!found)
14124                                 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
14125                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14126                                 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
14127                 }
14128
14129                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14130                         intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
14131
14132                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14133                         intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
14134
14135                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14136                         intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
14137
14138                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14139                         intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
14140         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
14141                 bool has_edp, has_port;
14142
14143                 /*
14144                  * The DP_DETECTED bit is the latched state of the DDC
14145                  * SDA pin at boot. However since eDP doesn't require DDC
14146                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14147                  * eDP ports may have been muxed to an alternate function.
14148                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14149                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14150                  * detect eDP ports.
14151                  *
14152                  * Sadly the straps seem to be missing sometimes even for HDMI
14153                  * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14154                  * and VBT for the presence of the port. Additionally we can't
14155                  * trust the port type the VBT declares as we've seen at least
14156                  * HDMI ports that the VBT claim are DP or eDP.
14157                  */
14158                 has_edp = intel_dp_is_edp(dev_priv, PORT_B);
14159                 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14160                 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14161                         has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
14162                 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14163                         intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
14164
14165                 has_edp = intel_dp_is_edp(dev_priv, PORT_C);
14166                 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14167                 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14168                         has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
14169                 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14170                         intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
14171
14172                 if (IS_CHERRYVIEW(dev_priv)) {
14173                         /*
14174                          * eDP not supported on port D,
14175                          * so no need to worry about it
14176                          */
14177                         has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14178                         if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14179                                 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
14180                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14181                                 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
14182                 }
14183
14184                 intel_dsi_init(dev_priv);
14185         } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
14186                 bool found = false;
14187
14188                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14189                         DRM_DEBUG_KMS("probing SDVOB\n");
14190                         found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
14191                         if (!found && IS_G4X(dev_priv)) {
14192                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14193                                 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
14194                         }
14195
14196                         if (!found && IS_G4X(dev_priv))
14197                                 intel_dp_init(dev_priv, DP_B, PORT_B);
14198                 }
14199
14200                 /* Before G4X SDVOC doesn't have its own detect register */
14201
14202                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14203                         DRM_DEBUG_KMS("probing SDVOC\n");
14204                         found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
14205                 }
14206
14207                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14208
14209                         if (IS_G4X(dev_priv)) {
14210                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14211                                 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
14212                         }
14213                         if (IS_G4X(dev_priv))
14214                                 intel_dp_init(dev_priv, DP_C, PORT_C);
14215                 }
14216
14217                 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
14218                         intel_dp_init(dev_priv, DP_D, PORT_D);
14219         } else if (IS_GEN2(dev_priv))
14220                 intel_dvo_init(dev_priv);
14221
14222         if (SUPPORTS_TV(dev_priv))
14223                 intel_tv_init(dev_priv);
14224
14225         intel_psr_init(dev_priv);
14226
14227         for_each_intel_encoder(&dev_priv->drm, encoder) {
14228                 encoder->base.possible_crtcs = encoder->crtc_mask;
14229                 encoder->base.possible_clones =
14230                         intel_encoder_clones(encoder);
14231         }
14232
14233         intel_init_pch_refclk(dev_priv);
14234
14235         drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
14236 }
14237
14238 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14239 {
14240         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14241
14242         drm_framebuffer_cleanup(fb);
14243
14244         i915_gem_object_lock(intel_fb->obj);
14245         WARN_ON(!intel_fb->obj->framebuffer_references--);
14246         i915_gem_object_unlock(intel_fb->obj);
14247
14248         i915_gem_object_put(intel_fb->obj);
14249
14250         kfree(intel_fb);
14251 }
14252
14253 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14254                                                 struct drm_file *file,
14255                                                 unsigned int *handle)
14256 {
14257         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14258         struct drm_i915_gem_object *obj = intel_fb->obj;
14259
14260         if (obj->userptr.mm) {
14261                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14262                 return -EINVAL;
14263         }
14264
14265         return drm_gem_handle_create(file, &obj->base, handle);
14266 }
14267
14268 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14269                                         struct drm_file *file,
14270                                         unsigned flags, unsigned color,
14271                                         struct drm_clip_rect *clips,
14272                                         unsigned num_clips)
14273 {
14274         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14275
14276         i915_gem_object_flush_if_display(obj);
14277         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
14278
14279         return 0;
14280 }
14281
14282 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14283         .destroy = intel_user_framebuffer_destroy,
14284         .create_handle = intel_user_framebuffer_create_handle,
14285         .dirty = intel_user_framebuffer_dirty,
14286 };
14287
14288 static
14289 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
14290                          uint64_t fb_modifier, uint32_t pixel_format)
14291 {
14292         u32 gen = INTEL_GEN(dev_priv);
14293
14294         if (gen >= 9) {
14295                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14296
14297                 /* "The stride in bytes must not exceed the of the size of 8K
14298                  *  pixels and 32K bytes."
14299                  */
14300                 return min(8192 * cpp, 32768);
14301         } else if (gen >= 5 && !HAS_GMCH_DISPLAY(dev_priv)) {
14302                 return 32*1024;
14303         } else if (gen >= 4) {
14304                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14305                         return 16*1024;
14306                 else
14307                         return 32*1024;
14308         } else if (gen >= 3) {
14309                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14310                         return 8*1024;
14311                 else
14312                         return 16*1024;
14313         } else {
14314                 /* XXX DSPC is limited to 4k tiled */
14315                 return 8*1024;
14316         }
14317 }
14318
14319 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
14320                                   struct drm_i915_gem_object *obj,
14321                                   struct drm_mode_fb_cmd2 *mode_cmd)
14322 {
14323         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
14324         struct drm_format_name_buf format_name;
14325         u32 pitch_limit, stride_alignment;
14326         unsigned int tiling, stride;
14327         int ret = -EINVAL;
14328
14329         i915_gem_object_lock(obj);
14330         obj->framebuffer_references++;
14331         tiling = i915_gem_object_get_tiling(obj);
14332         stride = i915_gem_object_get_stride(obj);
14333         i915_gem_object_unlock(obj);
14334
14335         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14336                 /*
14337                  * If there's a fence, enforce that
14338                  * the fb modifier and tiling mode match.
14339                  */
14340                 if (tiling != I915_TILING_NONE &&
14341                     tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
14342                         DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
14343                         goto err;
14344                 }
14345         } else {
14346                 if (tiling == I915_TILING_X) {
14347                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14348                 } else if (tiling == I915_TILING_Y) {
14349                         DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
14350                         goto err;
14351                 }
14352         }
14353
14354         /* Passed in modifier sanity checking. */
14355         switch (mode_cmd->modifier[0]) {
14356         case I915_FORMAT_MOD_Y_TILED:
14357         case I915_FORMAT_MOD_Yf_TILED:
14358                 if (INTEL_GEN(dev_priv) < 9) {
14359                         DRM_DEBUG_KMS("Unsupported tiling 0x%llx!\n",
14360                                       mode_cmd->modifier[0]);
14361                         goto err;
14362                 }
14363         case DRM_FORMAT_MOD_LINEAR:
14364         case I915_FORMAT_MOD_X_TILED:
14365                 break;
14366         default:
14367                 DRM_DEBUG_KMS("Unsupported fb modifier 0x%llx!\n",
14368                               mode_cmd->modifier[0]);
14369                 goto err;
14370         }
14371
14372         /*
14373          * gen2/3 display engine uses the fence if present,
14374          * so the tiling mode must match the fb modifier exactly.
14375          */
14376         if (INTEL_INFO(dev_priv)->gen < 4 &&
14377             tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
14378                 DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
14379                 goto err;
14380         }
14381
14382         pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
14383                                            mode_cmd->pixel_format);
14384         if (mode_cmd->pitches[0] > pitch_limit) {
14385                 DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
14386                               mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
14387                               "tiled" : "linear",
14388                               mode_cmd->pitches[0], pitch_limit);
14389                 goto err;
14390         }
14391
14392         /*
14393          * If there's a fence, enforce that
14394          * the fb pitch and fence stride match.
14395          */
14396         if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
14397                 DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
14398                               mode_cmd->pitches[0], stride);
14399                 goto err;
14400         }
14401
14402         /* Reject formats not supported by any plane early. */
14403         switch (mode_cmd->pixel_format) {
14404         case DRM_FORMAT_C8:
14405         case DRM_FORMAT_RGB565:
14406         case DRM_FORMAT_XRGB8888:
14407         case DRM_FORMAT_ARGB8888:
14408                 break;
14409         case DRM_FORMAT_XRGB1555:
14410                 if (INTEL_GEN(dev_priv) > 3) {
14411                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14412                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14413                         goto err;
14414                 }
14415                 break;
14416         case DRM_FORMAT_ABGR8888:
14417                 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
14418                     INTEL_GEN(dev_priv) < 9) {
14419                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14420                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14421                         goto err;
14422                 }
14423                 break;
14424         case DRM_FORMAT_XBGR8888:
14425         case DRM_FORMAT_XRGB2101010:
14426         case DRM_FORMAT_XBGR2101010:
14427                 if (INTEL_GEN(dev_priv) < 4) {
14428                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14429                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14430                         goto err;
14431                 }
14432                 break;
14433         case DRM_FORMAT_ABGR2101010:
14434                 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
14435                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14436                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14437                         goto err;
14438                 }
14439                 break;
14440         case DRM_FORMAT_YUYV:
14441         case DRM_FORMAT_UYVY:
14442         case DRM_FORMAT_YVYU:
14443         case DRM_FORMAT_VYUY:
14444                 if (INTEL_GEN(dev_priv) < 5) {
14445                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14446                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14447                         goto err;
14448                 }
14449                 break;
14450         default:
14451                 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14452                               drm_get_format_name(mode_cmd->pixel_format, &format_name));
14453                 goto err;
14454         }
14455
14456         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14457         if (mode_cmd->offsets[0] != 0)
14458                 goto err;
14459
14460         drm_helper_mode_fill_fb_struct(&dev_priv->drm,
14461                                        &intel_fb->base, mode_cmd);
14462
14463         stride_alignment = intel_fb_stride_alignment(&intel_fb->base, 0);
14464         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14465                 DRM_DEBUG_KMS("pitch (%d) must be at least %u byte aligned\n",
14466                               mode_cmd->pitches[0], stride_alignment);
14467                 goto err;
14468         }
14469
14470         intel_fb->obj = obj;
14471
14472         ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
14473         if (ret)
14474                 goto err;
14475
14476         ret = drm_framebuffer_init(obj->base.dev,
14477                                    &intel_fb->base,
14478                                    &intel_fb_funcs);
14479         if (ret) {
14480                 DRM_ERROR("framebuffer init failed %d\n", ret);
14481                 goto err;
14482         }
14483
14484         return 0;
14485
14486 err:
14487         i915_gem_object_lock(obj);
14488         obj->framebuffer_references--;
14489         i915_gem_object_unlock(obj);
14490         return ret;
14491 }
14492
14493 static struct drm_framebuffer *
14494 intel_user_framebuffer_create(struct drm_device *dev,
14495                               struct drm_file *filp,
14496                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14497 {
14498         struct drm_framebuffer *fb;
14499         struct drm_i915_gem_object *obj;
14500         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14501
14502         obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
14503         if (!obj)
14504                 return ERR_PTR(-ENOENT);
14505
14506         fb = intel_framebuffer_create(obj, &mode_cmd);
14507         if (IS_ERR(fb))
14508                 i915_gem_object_put(obj);
14509
14510         return fb;
14511 }
14512
14513 static void intel_atomic_state_free(struct drm_atomic_state *state)
14514 {
14515         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14516
14517         drm_atomic_state_default_release(state);
14518
14519         i915_sw_fence_fini(&intel_state->commit_ready);
14520
14521         kfree(state);
14522 }
14523
14524 static const struct drm_mode_config_funcs intel_mode_funcs = {
14525         .fb_create = intel_user_framebuffer_create,
14526         .output_poll_changed = intel_fbdev_output_poll_changed,
14527         .atomic_check = intel_atomic_check,
14528         .atomic_commit = intel_atomic_commit,
14529         .atomic_state_alloc = intel_atomic_state_alloc,
14530         .atomic_state_clear = intel_atomic_state_clear,
14531         .atomic_state_free = intel_atomic_state_free,
14532 };
14533
14534 /**
14535  * intel_init_display_hooks - initialize the display modesetting hooks
14536  * @dev_priv: device private
14537  */
14538 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14539 {
14540         intel_init_cdclk_hooks(dev_priv);
14541
14542         if (INTEL_INFO(dev_priv)->gen >= 9) {
14543                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14544                 dev_priv->display.get_initial_plane_config =
14545                         skylake_get_initial_plane_config;
14546                 dev_priv->display.crtc_compute_clock =
14547                         haswell_crtc_compute_clock;
14548                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14549                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14550         } else if (HAS_DDI(dev_priv)) {
14551                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14552                 dev_priv->display.get_initial_plane_config =
14553                         ironlake_get_initial_plane_config;
14554                 dev_priv->display.crtc_compute_clock =
14555                         haswell_crtc_compute_clock;
14556                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14557                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14558         } else if (HAS_PCH_SPLIT(dev_priv)) {
14559                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14560                 dev_priv->display.get_initial_plane_config =
14561                         ironlake_get_initial_plane_config;
14562                 dev_priv->display.crtc_compute_clock =
14563                         ironlake_crtc_compute_clock;
14564                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14565                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14566         } else if (IS_CHERRYVIEW(dev_priv)) {
14567                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14568                 dev_priv->display.get_initial_plane_config =
14569                         i9xx_get_initial_plane_config;
14570                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14571                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14572                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14573         } else if (IS_VALLEYVIEW(dev_priv)) {
14574                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14575                 dev_priv->display.get_initial_plane_config =
14576                         i9xx_get_initial_plane_config;
14577                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14578                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14579                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14580         } else if (IS_G4X(dev_priv)) {
14581                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14582                 dev_priv->display.get_initial_plane_config =
14583                         i9xx_get_initial_plane_config;
14584                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14585                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14586                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14587         } else if (IS_PINEVIEW(dev_priv)) {
14588                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14589                 dev_priv->display.get_initial_plane_config =
14590                         i9xx_get_initial_plane_config;
14591                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14592                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14593                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14594         } else if (!IS_GEN2(dev_priv)) {
14595                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14596                 dev_priv->display.get_initial_plane_config =
14597                         i9xx_get_initial_plane_config;
14598                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14599                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14600                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14601         } else {
14602                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14603                 dev_priv->display.get_initial_plane_config =
14604                         i9xx_get_initial_plane_config;
14605                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14606                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14607                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14608         }
14609
14610         if (IS_GEN5(dev_priv)) {
14611                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14612         } else if (IS_GEN6(dev_priv)) {
14613                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14614         } else if (IS_IVYBRIDGE(dev_priv)) {
14615                 /* FIXME: detect B0+ stepping and use auto training */
14616                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14617         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
14618                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14619         }
14620
14621         if (dev_priv->info.gen >= 9)
14622                 dev_priv->display.update_crtcs = skl_update_crtcs;
14623         else
14624                 dev_priv->display.update_crtcs = intel_update_crtcs;
14625
14626         switch (INTEL_INFO(dev_priv)->gen) {
14627         case 2:
14628                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14629                 break;
14630
14631         case 3:
14632                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14633                 break;
14634
14635         case 4:
14636         case 5:
14637                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14638                 break;
14639
14640         case 6:
14641                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14642                 break;
14643         case 7:
14644         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14645                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14646                 break;
14647         case 9:
14648                 /* Drop through - unsupported since execlist only. */
14649         default:
14650                 /* Default just returns -ENODEV to indicate unsupported */
14651                 dev_priv->display.queue_flip = intel_default_queue_flip;
14652         }
14653 }
14654
14655 /*
14656  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14657  * resume, or other times.  This quirk makes sure that's the case for
14658  * affected systems.
14659  */
14660 static void quirk_pipea_force(struct drm_device *dev)
14661 {
14662         struct drm_i915_private *dev_priv = to_i915(dev);
14663
14664         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14665         DRM_INFO("applying pipe a force quirk\n");
14666 }
14667
14668 static void quirk_pipeb_force(struct drm_device *dev)
14669 {
14670         struct drm_i915_private *dev_priv = to_i915(dev);
14671
14672         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14673         DRM_INFO("applying pipe b force quirk\n");
14674 }
14675
14676 /*
14677  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14678  */
14679 static void quirk_ssc_force_disable(struct drm_device *dev)
14680 {
14681         struct drm_i915_private *dev_priv = to_i915(dev);
14682         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14683         DRM_INFO("applying lvds SSC disable quirk\n");
14684 }
14685
14686 /*
14687  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14688  * brightness value
14689  */
14690 static void quirk_invert_brightness(struct drm_device *dev)
14691 {
14692         struct drm_i915_private *dev_priv = to_i915(dev);
14693         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14694         DRM_INFO("applying inverted panel brightness quirk\n");
14695 }
14696
14697 /* Some VBT's incorrectly indicate no backlight is present */
14698 static void quirk_backlight_present(struct drm_device *dev)
14699 {
14700         struct drm_i915_private *dev_priv = to_i915(dev);
14701         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14702         DRM_INFO("applying backlight present quirk\n");
14703 }
14704
14705 struct intel_quirk {
14706         int device;
14707         int subsystem_vendor;
14708         int subsystem_device;
14709         void (*hook)(struct drm_device *dev);
14710 };
14711
14712 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14713 struct intel_dmi_quirk {
14714         void (*hook)(struct drm_device *dev);
14715         const struct dmi_system_id (*dmi_id_list)[];
14716 };
14717
14718 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14719 {
14720         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14721         return 1;
14722 }
14723
14724 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14725         {
14726                 .dmi_id_list = &(const struct dmi_system_id[]) {
14727                         {
14728                                 .callback = intel_dmi_reverse_brightness,
14729                                 .ident = "NCR Corporation",
14730                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14731                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14732                                 },
14733                         },
14734                         { }  /* terminating entry */
14735                 },
14736                 .hook = quirk_invert_brightness,
14737         },
14738 };
14739
14740 static struct intel_quirk intel_quirks[] = {
14741         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14742         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14743
14744         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14745         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14746
14747         /* 830 needs to leave pipe A & dpll A up */
14748         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14749
14750         /* 830 needs to leave pipe B & dpll B up */
14751         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14752
14753         /* Lenovo U160 cannot use SSC on LVDS */
14754         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14755
14756         /* Sony Vaio Y cannot use SSC on LVDS */
14757         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14758
14759         /* Acer Aspire 5734Z must invert backlight brightness */
14760         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14761
14762         /* Acer/eMachines G725 */
14763         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14764
14765         /* Acer/eMachines e725 */
14766         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14767
14768         /* Acer/Packard Bell NCL20 */
14769         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14770
14771         /* Acer Aspire 4736Z */
14772         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14773
14774         /* Acer Aspire 5336 */
14775         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14776
14777         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14778         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14779
14780         /* Acer C720 Chromebook (Core i3 4005U) */
14781         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14782
14783         /* Apple Macbook 2,1 (Core 2 T7400) */
14784         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14785
14786         /* Apple Macbook 4,1 */
14787         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14788
14789         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14790         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14791
14792         /* HP Chromebook 14 (Celeron 2955U) */
14793         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14794
14795         /* Dell Chromebook 11 */
14796         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14797
14798         /* Dell Chromebook 11 (2015 version) */
14799         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14800 };
14801
14802 static void intel_init_quirks(struct drm_device *dev)
14803 {
14804         struct pci_dev *d = dev->pdev;
14805         int i;
14806
14807         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14808                 struct intel_quirk *q = &intel_quirks[i];
14809
14810                 if (d->device == q->device &&
14811                     (d->subsystem_vendor == q->subsystem_vendor ||
14812                      q->subsystem_vendor == PCI_ANY_ID) &&
14813                     (d->subsystem_device == q->subsystem_device ||
14814                      q->subsystem_device == PCI_ANY_ID))
14815                         q->hook(dev);
14816         }
14817         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14818                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14819                         intel_dmi_quirks[i].hook(dev);
14820         }
14821 }
14822
14823 /* Disable the VGA plane that we never use */
14824 static void i915_disable_vga(struct drm_i915_private *dev_priv)
14825 {
14826         struct pci_dev *pdev = dev_priv->drm.pdev;
14827         u8 sr1;
14828         i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
14829
14830         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14831         vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
14832         outb(SR01, VGA_SR_INDEX);
14833         sr1 = inb(VGA_SR_DATA);
14834         outb(sr1 | 1<<5, VGA_SR_DATA);
14835         vga_put(pdev, VGA_RSRC_LEGACY_IO);
14836         udelay(300);
14837
14838         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14839         POSTING_READ(vga_reg);
14840 }
14841
14842 void intel_modeset_init_hw(struct drm_device *dev)
14843 {
14844         struct drm_i915_private *dev_priv = to_i915(dev);
14845
14846         intel_update_cdclk(dev_priv);
14847         dev_priv->cdclk.logical = dev_priv->cdclk.actual = dev_priv->cdclk.hw;
14848
14849         intel_init_clock_gating(dev_priv);
14850 }
14851
14852 /*
14853  * Calculate what we think the watermarks should be for the state we've read
14854  * out of the hardware and then immediately program those watermarks so that
14855  * we ensure the hardware settings match our internal state.
14856  *
14857  * We can calculate what we think WM's should be by creating a duplicate of the
14858  * current state (which was constructed during hardware readout) and running it
14859  * through the atomic check code to calculate new watermark values in the
14860  * state object.
14861  */
14862 static void sanitize_watermarks(struct drm_device *dev)
14863 {
14864         struct drm_i915_private *dev_priv = to_i915(dev);
14865         struct drm_atomic_state *state;
14866         struct intel_atomic_state *intel_state;
14867         struct drm_crtc *crtc;
14868         struct drm_crtc_state *cstate;
14869         struct drm_modeset_acquire_ctx ctx;
14870         int ret;
14871         int i;
14872
14873         /* Only supported on platforms that use atomic watermark design */
14874         if (!dev_priv->display.optimize_watermarks)
14875                 return;
14876
14877         /*
14878          * We need to hold connection_mutex before calling duplicate_state so
14879          * that the connector loop is protected.
14880          */
14881         drm_modeset_acquire_init(&ctx, 0);
14882 retry:
14883         ret = drm_modeset_lock_all_ctx(dev, &ctx);
14884         if (ret == -EDEADLK) {
14885                 drm_modeset_backoff(&ctx);
14886                 goto retry;
14887         } else if (WARN_ON(ret)) {
14888                 goto fail;
14889         }
14890
14891         state = drm_atomic_helper_duplicate_state(dev, &ctx);
14892         if (WARN_ON(IS_ERR(state)))
14893                 goto fail;
14894
14895         intel_state = to_intel_atomic_state(state);
14896
14897         /*
14898          * Hardware readout is the only time we don't want to calculate
14899          * intermediate watermarks (since we don't trust the current
14900          * watermarks).
14901          */
14902         if (!HAS_GMCH_DISPLAY(dev_priv))
14903                 intel_state->skip_intermediate_wm = true;
14904
14905         ret = intel_atomic_check(dev, state);
14906         if (ret) {
14907                 /*
14908                  * If we fail here, it means that the hardware appears to be
14909                  * programmed in a way that shouldn't be possible, given our
14910                  * understanding of watermark requirements.  This might mean a
14911                  * mistake in the hardware readout code or a mistake in the
14912                  * watermark calculations for a given platform.  Raise a WARN
14913                  * so that this is noticeable.
14914                  *
14915                  * If this actually happens, we'll have to just leave the
14916                  * BIOS-programmed watermarks untouched and hope for the best.
14917                  */
14918                 WARN(true, "Could not determine valid watermarks for inherited state\n");
14919                 goto put_state;
14920         }
14921
14922         /* Write calculated watermark values back */
14923         for_each_new_crtc_in_state(state, crtc, cstate, i) {
14924                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
14925
14926                 cs->wm.need_postvbl_update = true;
14927                 dev_priv->display.optimize_watermarks(intel_state, cs);
14928         }
14929
14930 put_state:
14931         drm_atomic_state_put(state);
14932 fail:
14933         drm_modeset_drop_locks(&ctx);
14934         drm_modeset_acquire_fini(&ctx);
14935 }
14936
14937 int intel_modeset_init(struct drm_device *dev)
14938 {
14939         struct drm_i915_private *dev_priv = to_i915(dev);
14940         struct i915_ggtt *ggtt = &dev_priv->ggtt;
14941         enum pipe pipe;
14942         struct intel_crtc *crtc;
14943
14944         drm_mode_config_init(dev);
14945
14946         dev->mode_config.min_width = 0;
14947         dev->mode_config.min_height = 0;
14948
14949         dev->mode_config.preferred_depth = 24;
14950         dev->mode_config.prefer_shadow = 1;
14951
14952         dev->mode_config.allow_fb_modifiers = true;
14953
14954         dev->mode_config.funcs = &intel_mode_funcs;
14955
14956         INIT_WORK(&dev_priv->atomic_helper.free_work,
14957                   intel_atomic_helper_free_state_worker);
14958
14959         intel_init_quirks(dev);
14960
14961         intel_init_pm(dev_priv);
14962
14963         if (INTEL_INFO(dev_priv)->num_pipes == 0)
14964                 return 0;
14965
14966         /*
14967          * There may be no VBT; and if the BIOS enabled SSC we can
14968          * just keep using it to avoid unnecessary flicker.  Whereas if the
14969          * BIOS isn't using it, don't assume it will work even if the VBT
14970          * indicates as much.
14971          */
14972         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
14973                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14974                                             DREF_SSC1_ENABLE);
14975
14976                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14977                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14978                                      bios_lvds_use_ssc ? "en" : "dis",
14979                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14980                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14981                 }
14982         }
14983
14984         if (IS_GEN2(dev_priv)) {
14985                 dev->mode_config.max_width = 2048;
14986                 dev->mode_config.max_height = 2048;
14987         } else if (IS_GEN3(dev_priv)) {
14988                 dev->mode_config.max_width = 4096;
14989                 dev->mode_config.max_height = 4096;
14990         } else {
14991                 dev->mode_config.max_width = 8192;
14992                 dev->mode_config.max_height = 8192;
14993         }
14994
14995         if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
14996                 dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
14997                 dev->mode_config.cursor_height = 1023;
14998         } else if (IS_GEN2(dev_priv)) {
14999                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15000                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15001         } else {
15002                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15003                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15004         }
15005
15006         dev->mode_config.fb_base = ggtt->mappable_base;
15007
15008         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15009                       INTEL_INFO(dev_priv)->num_pipes,
15010                       INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
15011
15012         for_each_pipe(dev_priv, pipe) {
15013                 int ret;
15014
15015                 ret = intel_crtc_init(dev_priv, pipe);
15016                 if (ret) {
15017                         drm_mode_config_cleanup(dev);
15018                         return ret;
15019                 }
15020         }
15021
15022         intel_shared_dpll_init(dev);
15023
15024         intel_update_czclk(dev_priv);
15025         intel_modeset_init_hw(dev);
15026
15027         if (dev_priv->max_cdclk_freq == 0)
15028                 intel_update_max_cdclk(dev_priv);
15029
15030         /* Just disable it once at startup */
15031         i915_disable_vga(dev_priv);
15032         intel_setup_outputs(dev_priv);
15033
15034         drm_modeset_lock_all(dev);
15035         intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
15036         drm_modeset_unlock_all(dev);
15037
15038         for_each_intel_crtc(dev, crtc) {
15039                 struct intel_initial_plane_config plane_config = {};
15040
15041                 if (!crtc->active)
15042                         continue;
15043
15044                 /*
15045                  * Note that reserving the BIOS fb up front prevents us
15046                  * from stuffing other stolen allocations like the ring
15047                  * on top.  This prevents some ugliness at boot time, and
15048                  * can even allow for smooth boot transitions if the BIOS
15049                  * fb is large enough for the active pipe configuration.
15050                  */
15051                 dev_priv->display.get_initial_plane_config(crtc,
15052                                                            &plane_config);
15053
15054                 /*
15055                  * If the fb is shared between multiple heads, we'll
15056                  * just get the first one.
15057                  */
15058                 intel_find_initial_plane_obj(crtc, &plane_config);
15059         }
15060
15061         /*
15062          * Make sure hardware watermarks really match the state we read out.
15063          * Note that we need to do this after reconstructing the BIOS fb's
15064          * since the watermark calculation done here will use pstate->fb.
15065          */
15066         if (!HAS_GMCH_DISPLAY(dev_priv))
15067                 sanitize_watermarks(dev);
15068
15069         return 0;
15070 }
15071
15072 static void intel_enable_pipe_a(struct drm_device *dev,
15073                                 struct drm_modeset_acquire_ctx *ctx)
15074 {
15075         struct intel_connector *connector;
15076         struct drm_connector_list_iter conn_iter;
15077         struct drm_connector *crt = NULL;
15078         struct intel_load_detect_pipe load_detect_temp;
15079         int ret;
15080
15081         /* We can't just switch on the pipe A, we need to set things up with a
15082          * proper mode and output configuration. As a gross hack, enable pipe A
15083          * by enabling the load detect pipe once. */
15084         drm_connector_list_iter_begin(dev, &conn_iter);
15085         for_each_intel_connector_iter(connector, &conn_iter) {
15086                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15087                         crt = &connector->base;
15088                         break;
15089                 }
15090         }
15091         drm_connector_list_iter_end(&conn_iter);
15092
15093         if (!crt)
15094                 return;
15095
15096         ret = intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx);
15097         WARN(ret < 0, "All modeset mutexes are locked, but intel_get_load_detect_pipe failed\n");
15098
15099         if (ret > 0)
15100                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15101 }
15102
15103 static bool
15104 intel_check_plane_mapping(struct intel_crtc *crtc)
15105 {
15106         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15107         u32 val;
15108
15109         if (INTEL_INFO(dev_priv)->num_pipes == 1)
15110                 return true;
15111
15112         val = I915_READ(DSPCNTR(!crtc->plane));
15113
15114         if ((val & DISPLAY_PLANE_ENABLE) &&
15115             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15116                 return false;
15117
15118         return true;
15119 }
15120
15121 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15122 {
15123         struct drm_device *dev = crtc->base.dev;
15124         struct intel_encoder *encoder;
15125
15126         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15127                 return true;
15128
15129         return false;
15130 }
15131
15132 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
15133 {
15134         struct drm_device *dev = encoder->base.dev;
15135         struct intel_connector *connector;
15136
15137         for_each_connector_on_encoder(dev, &encoder->base, connector)
15138                 return connector;
15139
15140         return NULL;
15141 }
15142
15143 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
15144                               enum transcoder pch_transcoder)
15145 {
15146         return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
15147                 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
15148 }
15149
15150 static void intel_sanitize_crtc(struct intel_crtc *crtc,
15151                                 struct drm_modeset_acquire_ctx *ctx)
15152 {
15153         struct drm_device *dev = crtc->base.dev;
15154         struct drm_i915_private *dev_priv = to_i915(dev);
15155         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15156
15157         /* Clear any frame start delays used for debugging left by the BIOS */
15158         if (!transcoder_is_dsi(cpu_transcoder)) {
15159                 i915_reg_t reg = PIPECONF(cpu_transcoder);
15160
15161                 I915_WRITE(reg,
15162                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15163         }
15164
15165         /* restore vblank interrupts to correct state */
15166         drm_crtc_vblank_reset(&crtc->base);
15167         if (crtc->active) {
15168                 struct intel_plane *plane;
15169
15170                 drm_crtc_vblank_on(&crtc->base);
15171
15172                 /* Disable everything but the primary plane */
15173                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15174                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15175                                 continue;
15176
15177                         trace_intel_disable_plane(&plane->base, crtc);
15178                         plane->disable_plane(&plane->base, &crtc->base);
15179                 }
15180         }
15181
15182         /* We need to sanitize the plane -> pipe mapping first because this will
15183          * disable the crtc (and hence change the state) if it is wrong. Note
15184          * that gen4+ has a fixed plane -> pipe mapping.  */
15185         if (INTEL_GEN(dev_priv) < 4 && !intel_check_plane_mapping(crtc)) {
15186                 bool plane;
15187
15188                 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
15189                               crtc->base.base.id, crtc->base.name);
15190
15191                 /* Pipe has the wrong plane attached and the plane is active.
15192                  * Temporarily change the plane mapping and disable everything
15193                  * ...  */
15194                 plane = crtc->plane;
15195                 crtc->base.primary->state->visible = true;
15196                 crtc->plane = !plane;
15197                 intel_crtc_disable_noatomic(&crtc->base, ctx);
15198                 crtc->plane = plane;
15199         }
15200
15201         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15202             crtc->pipe == PIPE_A && !crtc->active) {
15203                 /* BIOS forgot to enable pipe A, this mostly happens after
15204                  * resume. Force-enable the pipe to fix this, the update_dpms
15205                  * call below we restore the pipe to the right state, but leave
15206                  * the required bits on. */
15207                 intel_enable_pipe_a(dev, ctx);
15208         }
15209
15210         /* Adjust the state of the output pipe according to whether we
15211          * have active connectors/encoders. */
15212         if (crtc->active && !intel_crtc_has_encoders(crtc))
15213                 intel_crtc_disable_noatomic(&crtc->base, ctx);
15214
15215         if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
15216                 /*
15217                  * We start out with underrun reporting disabled to avoid races.
15218                  * For correct bookkeeping mark this on active crtcs.
15219                  *
15220                  * Also on gmch platforms we dont have any hardware bits to
15221                  * disable the underrun reporting. Which means we need to start
15222                  * out with underrun reporting disabled also on inactive pipes,
15223                  * since otherwise we'll complain about the garbage we read when
15224                  * e.g. coming up after runtime pm.
15225                  *
15226                  * No protection against concurrent access is required - at
15227                  * worst a fifo underrun happens which also sets this to false.
15228                  */
15229                 crtc->cpu_fifo_underrun_disabled = true;
15230                 /*
15231                  * We track the PCH trancoder underrun reporting state
15232                  * within the crtc. With crtc for pipe A housing the underrun
15233                  * reporting state for PCH transcoder A, crtc for pipe B housing
15234                  * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
15235                  * and marking underrun reporting as disabled for the non-existing
15236                  * PCH transcoders B and C would prevent enabling the south
15237                  * error interrupt (see cpt_can_enable_serr_int()).
15238                  */
15239                 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
15240                         crtc->pch_fifo_underrun_disabled = true;
15241         }
15242 }
15243
15244 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15245 {
15246         struct intel_connector *connector;
15247
15248         /* We need to check both for a crtc link (meaning that the
15249          * encoder is active and trying to read from a pipe) and the
15250          * pipe itself being active. */
15251         bool has_active_crtc = encoder->base.crtc &&
15252                 to_intel_crtc(encoder->base.crtc)->active;
15253
15254         connector = intel_encoder_find_connector(encoder);
15255         if (connector && !has_active_crtc) {
15256                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15257                               encoder->base.base.id,
15258                               encoder->base.name);
15259
15260                 /* Connector is active, but has no active pipe. This is
15261                  * fallout from our resume register restoring. Disable
15262                  * the encoder manually again. */
15263                 if (encoder->base.crtc) {
15264                         struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
15265
15266                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15267                                       encoder->base.base.id,
15268                                       encoder->base.name);
15269                         encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
15270                         if (encoder->post_disable)
15271                                 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
15272                 }
15273                 encoder->base.crtc = NULL;
15274
15275                 /* Inconsistent output/port/pipe state happens presumably due to
15276                  * a bug in one of the get_hw_state functions. Or someplace else
15277                  * in our code, like the register restore mess on resume. Clamp
15278                  * things to off as a safer default. */
15279
15280                 connector->base.dpms = DRM_MODE_DPMS_OFF;
15281                 connector->base.encoder = NULL;
15282         }
15283         /* Enabled encoders without active connectors will be fixed in
15284          * the crtc fixup. */
15285 }
15286
15287 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
15288 {
15289         i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
15290
15291         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15292                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15293                 i915_disable_vga(dev_priv);
15294         }
15295 }
15296
15297 void i915_redisable_vga(struct drm_i915_private *dev_priv)
15298 {
15299         /* This function can be called both from intel_modeset_setup_hw_state or
15300          * at a very early point in our resume sequence, where the power well
15301          * structures are not yet restored. Since this function is at a very
15302          * paranoid "someone might have enabled VGA while we were not looking"
15303          * level, just check if the power well is enabled instead of trying to
15304          * follow the "don't touch the power well if we don't need it" policy
15305          * the rest of the driver uses. */
15306         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15307                 return;
15308
15309         i915_redisable_vga_power_on(dev_priv);
15310
15311         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15312 }
15313
15314 static bool primary_get_hw_state(struct intel_plane *plane)
15315 {
15316         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15317
15318         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15319 }
15320
15321 /* FIXME read out full plane state for all planes */
15322 static void readout_plane_state(struct intel_crtc *crtc)
15323 {
15324         struct intel_plane *primary = to_intel_plane(crtc->base.primary);
15325         bool visible;
15326
15327         visible = crtc->active && primary_get_hw_state(primary);
15328
15329         intel_set_plane_visible(to_intel_crtc_state(crtc->base.state),
15330                                 to_intel_plane_state(primary->base.state),
15331                                 visible);
15332 }
15333
15334 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15335 {
15336         struct drm_i915_private *dev_priv = to_i915(dev);
15337         enum pipe pipe;
15338         struct intel_crtc *crtc;
15339         struct intel_encoder *encoder;
15340         struct intel_connector *connector;
15341         struct drm_connector_list_iter conn_iter;
15342         int i;
15343
15344         dev_priv->active_crtcs = 0;
15345
15346         for_each_intel_crtc(dev, crtc) {
15347                 struct intel_crtc_state *crtc_state =
15348                         to_intel_crtc_state(crtc->base.state);
15349
15350                 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
15351                 memset(crtc_state, 0, sizeof(*crtc_state));
15352                 crtc_state->base.crtc = &crtc->base;
15353
15354                 crtc_state->base.active = crtc_state->base.enable =
15355                         dev_priv->display.get_pipe_config(crtc, crtc_state);
15356
15357                 crtc->base.enabled = crtc_state->base.enable;
15358                 crtc->active = crtc_state->base.active;
15359
15360                 if (crtc_state->base.active)
15361                         dev_priv->active_crtcs |= 1 << crtc->pipe;
15362
15363                 readout_plane_state(crtc);
15364
15365                 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
15366                               crtc->base.base.id, crtc->base.name,
15367                               enableddisabled(crtc_state->base.active));
15368         }
15369
15370         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15371                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15372
15373                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15374                                                   &pll->state.hw_state);
15375                 pll->state.crtc_mask = 0;
15376                 for_each_intel_crtc(dev, crtc) {
15377                         struct intel_crtc_state *crtc_state =
15378                                 to_intel_crtc_state(crtc->base.state);
15379
15380                         if (crtc_state->base.active &&
15381                             crtc_state->shared_dpll == pll)
15382                                 pll->state.crtc_mask |= 1 << crtc->pipe;
15383                 }
15384                 pll->active_mask = pll->state.crtc_mask;
15385
15386                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15387                               pll->name, pll->state.crtc_mask, pll->on);
15388         }
15389
15390         for_each_intel_encoder(dev, encoder) {
15391                 pipe = 0;
15392
15393                 if (encoder->get_hw_state(encoder, &pipe)) {
15394                         struct intel_crtc_state *crtc_state;
15395
15396                         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15397                         crtc_state = to_intel_crtc_state(crtc->base.state);
15398
15399                         encoder->base.crtc = &crtc->base;
15400                         crtc_state->output_types |= 1 << encoder->type;
15401                         encoder->get_config(encoder, crtc_state);
15402                 } else {
15403                         encoder->base.crtc = NULL;
15404                 }
15405
15406                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15407                               encoder->base.base.id, encoder->base.name,
15408                               enableddisabled(encoder->base.crtc),
15409                               pipe_name(pipe));
15410         }
15411
15412         drm_connector_list_iter_begin(dev, &conn_iter);
15413         for_each_intel_connector_iter(connector, &conn_iter) {
15414                 if (connector->get_hw_state(connector)) {
15415                         connector->base.dpms = DRM_MODE_DPMS_ON;
15416
15417                         encoder = connector->encoder;
15418                         connector->base.encoder = &encoder->base;
15419
15420                         if (encoder->base.crtc &&
15421                             encoder->base.crtc->state->active) {
15422                                 /*
15423                                  * This has to be done during hardware readout
15424                                  * because anything calling .crtc_disable may
15425                                  * rely on the connector_mask being accurate.
15426                                  */
15427                                 encoder->base.crtc->state->connector_mask |=
15428                                         1 << drm_connector_index(&connector->base);
15429                                 encoder->base.crtc->state->encoder_mask |=
15430                                         1 << drm_encoder_index(&encoder->base);
15431                         }
15432
15433                 } else {
15434                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15435                         connector->base.encoder = NULL;
15436                 }
15437                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15438                               connector->base.base.id, connector->base.name,
15439                               enableddisabled(connector->base.encoder));
15440         }
15441         drm_connector_list_iter_end(&conn_iter);
15442
15443         for_each_intel_crtc(dev, crtc) {
15444                 struct intel_crtc_state *crtc_state =
15445                         to_intel_crtc_state(crtc->base.state);
15446                 int pixclk = 0;
15447
15448                 crtc->base.hwmode = crtc_state->base.adjusted_mode;
15449
15450                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15451                 if (crtc_state->base.active) {
15452                         intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
15453                         intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
15454                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15455
15456                         /*
15457                          * The initial mode needs to be set in order to keep
15458                          * the atomic core happy. It wants a valid mode if the
15459                          * crtc's enabled, so we do the above call.
15460                          *
15461                          * But we don't set all the derived state fully, hence
15462                          * set a flag to indicate that a full recalculation is
15463                          * needed on the next commit.
15464                          */
15465                         crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
15466
15467                         intel_crtc_compute_pixel_rate(crtc_state);
15468
15469                         if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv) ||
15470                             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15471                                 pixclk = crtc_state->pixel_rate;
15472                         else
15473                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15474
15475                         /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15476                         if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
15477                                 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15478
15479                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15480                         update_scanline_offset(crtc);
15481                 }
15482
15483                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15484
15485                 intel_pipe_config_sanity_check(dev_priv, crtc_state);
15486         }
15487 }
15488
15489 static void
15490 get_encoder_power_domains(struct drm_i915_private *dev_priv)
15491 {
15492         struct intel_encoder *encoder;
15493
15494         for_each_intel_encoder(&dev_priv->drm, encoder) {
15495                 u64 get_domains;
15496                 enum intel_display_power_domain domain;
15497
15498                 if (!encoder->get_power_domains)
15499                         continue;
15500
15501                 get_domains = encoder->get_power_domains(encoder);
15502                 for_each_power_domain(domain, get_domains)
15503                         intel_display_power_get(dev_priv, domain);
15504         }
15505 }
15506
15507 /* Scan out the current hw modeset state,
15508  * and sanitizes it to the current state
15509  */
15510 static void
15511 intel_modeset_setup_hw_state(struct drm_device *dev,
15512                              struct drm_modeset_acquire_ctx *ctx)
15513 {
15514         struct drm_i915_private *dev_priv = to_i915(dev);
15515         enum pipe pipe;
15516         struct intel_crtc *crtc;
15517         struct intel_encoder *encoder;
15518         int i;
15519
15520         intel_modeset_readout_hw_state(dev);
15521
15522         /* HW state is read out, now we need to sanitize this mess. */
15523         get_encoder_power_domains(dev_priv);
15524
15525         for_each_intel_encoder(dev, encoder) {
15526                 intel_sanitize_encoder(encoder);
15527         }
15528
15529         for_each_pipe(dev_priv, pipe) {
15530                 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15531
15532                 intel_sanitize_crtc(crtc, ctx);
15533                 intel_dump_pipe_config(crtc, crtc->config,
15534                                        "[setup_hw_state]");
15535         }
15536
15537         intel_modeset_update_connector_atomic_state(dev);
15538
15539         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15540                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15541
15542                 if (!pll->on || pll->active_mask)
15543                         continue;
15544
15545                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15546
15547                 pll->funcs.disable(dev_priv, pll);
15548                 pll->on = false;
15549         }
15550
15551         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15552                 vlv_wm_get_hw_state(dev);
15553                 vlv_wm_sanitize(dev_priv);
15554         } else if (IS_GEN9(dev_priv)) {
15555                 skl_wm_get_hw_state(dev);
15556         } else if (HAS_PCH_SPLIT(dev_priv)) {
15557                 ilk_wm_get_hw_state(dev);
15558         }
15559
15560         for_each_intel_crtc(dev, crtc) {
15561                 u64 put_domains;
15562
15563                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15564                 if (WARN_ON(put_domains))
15565                         modeset_put_power_domains(dev_priv, put_domains);
15566         }
15567         intel_display_set_init_power(dev_priv, false);
15568
15569         intel_power_domains_verify_state(dev_priv);
15570
15571         intel_fbc_init_pipe_state(dev_priv);
15572 }
15573
15574 void intel_display_resume(struct drm_device *dev)
15575 {
15576         struct drm_i915_private *dev_priv = to_i915(dev);
15577         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15578         struct drm_modeset_acquire_ctx ctx;
15579         int ret;
15580
15581         dev_priv->modeset_restore_state = NULL;
15582         if (state)
15583                 state->acquire_ctx = &ctx;
15584
15585         /*
15586          * This is a cludge because with real atomic modeset mode_config.mutex
15587          * won't be taken. Unfortunately some probed state like
15588          * audio_codec_enable is still protected by mode_config.mutex, so lock
15589          * it here for now.
15590          */
15591         mutex_lock(&dev->mode_config.mutex);
15592         drm_modeset_acquire_init(&ctx, 0);
15593
15594         while (1) {
15595                 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15596                 if (ret != -EDEADLK)
15597                         break;
15598
15599                 drm_modeset_backoff(&ctx);
15600         }
15601
15602         if (!ret)
15603                 ret = __intel_display_resume(dev, state, &ctx);
15604
15605         drm_modeset_drop_locks(&ctx);
15606         drm_modeset_acquire_fini(&ctx);
15607         mutex_unlock(&dev->mode_config.mutex);
15608
15609         if (ret)
15610                 DRM_ERROR("Restoring old state failed with %i\n", ret);
15611         if (state)
15612                 drm_atomic_state_put(state);
15613 }
15614
15615 void intel_modeset_gem_init(struct drm_device *dev)
15616 {
15617         struct drm_i915_private *dev_priv = to_i915(dev);
15618
15619         intel_init_gt_powersave(dev_priv);
15620
15621         intel_setup_overlay(dev_priv);
15622 }
15623
15624 int intel_connector_register(struct drm_connector *connector)
15625 {
15626         struct intel_connector *intel_connector = to_intel_connector(connector);
15627         int ret;
15628
15629         ret = intel_backlight_device_register(intel_connector);
15630         if (ret)
15631                 goto err;
15632
15633         return 0;
15634
15635 err:
15636         return ret;
15637 }
15638
15639 void intel_connector_unregister(struct drm_connector *connector)
15640 {
15641         struct intel_connector *intel_connector = to_intel_connector(connector);
15642
15643         intel_backlight_device_unregister(intel_connector);
15644         intel_panel_destroy_backlight(connector);
15645 }
15646
15647 void intel_modeset_cleanup(struct drm_device *dev)
15648 {
15649         struct drm_i915_private *dev_priv = to_i915(dev);
15650
15651         flush_work(&dev_priv->atomic_helper.free_work);
15652         WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
15653
15654         intel_disable_gt_powersave(dev_priv);
15655
15656         /*
15657          * Interrupts and polling as the first thing to avoid creating havoc.
15658          * Too much stuff here (turning of connectors, ...) would
15659          * experience fancy races otherwise.
15660          */
15661         intel_irq_uninstall(dev_priv);
15662
15663         /*
15664          * Due to the hpd irq storm handling the hotplug work can re-arm the
15665          * poll handlers. Hence disable polling after hpd handling is shut down.
15666          */
15667         drm_kms_helper_poll_fini(dev);
15668
15669         intel_unregister_dsm_handler();
15670
15671         intel_fbc_global_disable(dev_priv);
15672
15673         /* flush any delayed tasks or pending work */
15674         flush_scheduled_work();
15675
15676         drm_mode_config_cleanup(dev);
15677
15678         intel_cleanup_overlay(dev_priv);
15679
15680         intel_cleanup_gt_powersave(dev_priv);
15681
15682         intel_teardown_gmbus(dev_priv);
15683 }
15684
15685 void intel_connector_attach_encoder(struct intel_connector *connector,
15686                                     struct intel_encoder *encoder)
15687 {
15688         connector->encoder = encoder;
15689         drm_mode_connector_attach_encoder(&connector->base,
15690                                           &encoder->base);
15691 }
15692
15693 /*
15694  * set vga decode state - true == enable VGA decode
15695  */
15696 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
15697 {
15698         unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15699         u16 gmch_ctrl;
15700
15701         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15702                 DRM_ERROR("failed to read control word\n");
15703                 return -EIO;
15704         }
15705
15706         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15707                 return 0;
15708
15709         if (state)
15710                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15711         else
15712                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15713
15714         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15715                 DRM_ERROR("failed to write control word\n");
15716                 return -EIO;
15717         }
15718
15719         return 0;
15720 }
15721
15722 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
15723
15724 struct intel_display_error_state {
15725
15726         u32 power_well_driver;
15727
15728         int num_transcoders;
15729
15730         struct intel_cursor_error_state {
15731                 u32 control;
15732                 u32 position;
15733                 u32 base;
15734                 u32 size;
15735         } cursor[I915_MAX_PIPES];
15736
15737         struct intel_pipe_error_state {
15738                 bool power_domain_on;
15739                 u32 source;
15740                 u32 stat;
15741         } pipe[I915_MAX_PIPES];
15742
15743         struct intel_plane_error_state {
15744                 u32 control;
15745                 u32 stride;
15746                 u32 size;
15747                 u32 pos;
15748                 u32 addr;
15749                 u32 surface;
15750                 u32 tile_offset;
15751         } plane[I915_MAX_PIPES];
15752
15753         struct intel_transcoder_error_state {
15754                 bool power_domain_on;
15755                 enum transcoder cpu_transcoder;
15756
15757                 u32 conf;
15758
15759                 u32 htotal;
15760                 u32 hblank;
15761                 u32 hsync;
15762                 u32 vtotal;
15763                 u32 vblank;
15764                 u32 vsync;
15765         } transcoder[4];
15766 };
15767
15768 struct intel_display_error_state *
15769 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
15770 {
15771         struct intel_display_error_state *error;
15772         int transcoders[] = {
15773                 TRANSCODER_A,
15774                 TRANSCODER_B,
15775                 TRANSCODER_C,
15776                 TRANSCODER_EDP,
15777         };
15778         int i;
15779
15780         if (INTEL_INFO(dev_priv)->num_pipes == 0)
15781                 return NULL;
15782
15783         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15784         if (error == NULL)
15785                 return NULL;
15786
15787         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15788                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15789
15790         for_each_pipe(dev_priv, i) {
15791                 error->pipe[i].power_domain_on =
15792                         __intel_display_power_is_enabled(dev_priv,
15793                                                          POWER_DOMAIN_PIPE(i));
15794                 if (!error->pipe[i].power_domain_on)
15795                         continue;
15796
15797                 error->cursor[i].control = I915_READ(CURCNTR(i));
15798                 error->cursor[i].position = I915_READ(CURPOS(i));
15799                 error->cursor[i].base = I915_READ(CURBASE(i));
15800
15801                 error->plane[i].control = I915_READ(DSPCNTR(i));
15802                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15803                 if (INTEL_GEN(dev_priv) <= 3) {
15804                         error->plane[i].size = I915_READ(DSPSIZE(i));
15805                         error->plane[i].pos = I915_READ(DSPPOS(i));
15806                 }
15807                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15808                         error->plane[i].addr = I915_READ(DSPADDR(i));
15809                 if (INTEL_GEN(dev_priv) >= 4) {
15810                         error->plane[i].surface = I915_READ(DSPSURF(i));
15811                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15812                 }
15813
15814                 error->pipe[i].source = I915_READ(PIPESRC(i));
15815
15816                 if (HAS_GMCH_DISPLAY(dev_priv))
15817                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15818         }
15819
15820         /* Note: this does not include DSI transcoders. */
15821         error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
15822         if (HAS_DDI(dev_priv))
15823                 error->num_transcoders++; /* Account for eDP. */
15824
15825         for (i = 0; i < error->num_transcoders; i++) {
15826                 enum transcoder cpu_transcoder = transcoders[i];
15827
15828                 error->transcoder[i].power_domain_on =
15829                         __intel_display_power_is_enabled(dev_priv,
15830                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15831                 if (!error->transcoder[i].power_domain_on)
15832                         continue;
15833
15834                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15835
15836                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15837                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15838                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15839                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15840                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15841                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15842                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15843         }
15844
15845         return error;
15846 }
15847
15848 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15849
15850 void
15851 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15852                                 struct intel_display_error_state *error)
15853 {
15854         struct drm_i915_private *dev_priv = m->i915;
15855         int i;
15856
15857         if (!error)
15858                 return;
15859
15860         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
15861         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15862                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15863                            error->power_well_driver);
15864         for_each_pipe(dev_priv, i) {
15865                 err_printf(m, "Pipe [%d]:\n", i);
15866                 err_printf(m, "  Power: %s\n",
15867                            onoff(error->pipe[i].power_domain_on));
15868                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15869                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15870
15871                 err_printf(m, "Plane [%d]:\n", i);
15872                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15873                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15874                 if (INTEL_GEN(dev_priv) <= 3) {
15875                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15876                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15877                 }
15878                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15879                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15880                 if (INTEL_GEN(dev_priv) >= 4) {
15881                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15882                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15883                 }
15884
15885                 err_printf(m, "Cursor [%d]:\n", i);
15886                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15887                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15888                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15889         }
15890
15891         for (i = 0; i < error->num_transcoders; i++) {
15892                 err_printf(m, "CPU transcoder: %s\n",
15893                            transcoder_name(error->transcoder[i].cpu_transcoder));
15894                 err_printf(m, "  Power: %s\n",
15895                            onoff(error->transcoder[i].power_domain_on));
15896                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15897                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15898                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15899                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15900                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15901                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15902                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15903         }
15904 }
15905
15906 #endif