Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mattst88...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_clflush.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51
52 /* Primary plane formats for gen <= 3 */
53 static const uint32_t i8xx_primary_formats[] = {
54         DRM_FORMAT_C8,
55         DRM_FORMAT_RGB565,
56         DRM_FORMAT_XRGB1555,
57         DRM_FORMAT_XRGB8888,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t i965_primary_formats[] = {
62         DRM_FORMAT_C8,
63         DRM_FORMAT_RGB565,
64         DRM_FORMAT_XRGB8888,
65         DRM_FORMAT_XBGR8888,
66         DRM_FORMAT_XRGB2101010,
67         DRM_FORMAT_XBGR2101010,
68 };
69
70 static const uint64_t i9xx_format_modifiers[] = {
71         I915_FORMAT_MOD_X_TILED,
72         DRM_FORMAT_MOD_LINEAR,
73         DRM_FORMAT_MOD_INVALID
74 };
75
76 static const uint32_t skl_primary_formats[] = {
77         DRM_FORMAT_C8,
78         DRM_FORMAT_RGB565,
79         DRM_FORMAT_XRGB8888,
80         DRM_FORMAT_XBGR8888,
81         DRM_FORMAT_ARGB8888,
82         DRM_FORMAT_ABGR8888,
83         DRM_FORMAT_XRGB2101010,
84         DRM_FORMAT_XBGR2101010,
85         DRM_FORMAT_YUYV,
86         DRM_FORMAT_YVYU,
87         DRM_FORMAT_UYVY,
88         DRM_FORMAT_VYUY,
89 };
90
91 static const uint64_t skl_format_modifiers_noccs[] = {
92         I915_FORMAT_MOD_Yf_TILED,
93         I915_FORMAT_MOD_Y_TILED,
94         I915_FORMAT_MOD_X_TILED,
95         DRM_FORMAT_MOD_LINEAR,
96         DRM_FORMAT_MOD_INVALID
97 };
98
99 static const uint64_t skl_format_modifiers_ccs[] = {
100         I915_FORMAT_MOD_Yf_TILED_CCS,
101         I915_FORMAT_MOD_Y_TILED_CCS,
102         I915_FORMAT_MOD_Yf_TILED,
103         I915_FORMAT_MOD_Y_TILED,
104         I915_FORMAT_MOD_X_TILED,
105         DRM_FORMAT_MOD_LINEAR,
106         DRM_FORMAT_MOD_INVALID
107 };
108
109 /* Cursor formats */
110 static const uint32_t intel_cursor_formats[] = {
111         DRM_FORMAT_ARGB8888,
112 };
113
114 static const uint64_t cursor_format_modifiers[] = {
115         DRM_FORMAT_MOD_LINEAR,
116         DRM_FORMAT_MOD_INVALID
117 };
118
119 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
120                                 struct intel_crtc_state *pipe_config);
121 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
122                                    struct intel_crtc_state *pipe_config);
123
124 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
125                                   struct drm_i915_gem_object *obj,
126                                   struct drm_mode_fb_cmd2 *mode_cmd);
127 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
128 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
129 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
130 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
131                                          struct intel_link_m_n *m_n,
132                                          struct intel_link_m_n *m2_n2);
133 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
134 static void haswell_set_pipeconf(struct drm_crtc *crtc);
135 static void haswell_set_pipemisc(struct drm_crtc *crtc);
136 static void vlv_prepare_pll(struct intel_crtc *crtc,
137                             const struct intel_crtc_state *pipe_config);
138 static void chv_prepare_pll(struct intel_crtc *crtc,
139                             const struct intel_crtc_state *pipe_config);
140 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
141 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
142 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
143                                     struct intel_crtc_state *crtc_state);
144 static void skylake_pfit_enable(struct intel_crtc *crtc);
145 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
146 static void ironlake_pfit_enable(struct intel_crtc *crtc);
147 static void intel_modeset_setup_hw_state(struct drm_device *dev,
148                                          struct drm_modeset_acquire_ctx *ctx);
149 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
150
151 struct intel_limit {
152         struct {
153                 int min, max;
154         } dot, vco, n, m, m1, m2, p, p1;
155
156         struct {
157                 int dot_limit;
158                 int p2_slow, p2_fast;
159         } p2;
160 };
161
162 /* returns HPLL frequency in kHz */
163 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
164 {
165         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
166
167         /* Obtain SKU information */
168         mutex_lock(&dev_priv->sb_lock);
169         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
170                 CCK_FUSE_HPLL_FREQ_MASK;
171         mutex_unlock(&dev_priv->sb_lock);
172
173         return vco_freq[hpll_freq] * 1000;
174 }
175
176 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
177                       const char *name, u32 reg, int ref_freq)
178 {
179         u32 val;
180         int divider;
181
182         mutex_lock(&dev_priv->sb_lock);
183         val = vlv_cck_read(dev_priv, reg);
184         mutex_unlock(&dev_priv->sb_lock);
185
186         divider = val & CCK_FREQUENCY_VALUES;
187
188         WARN((val & CCK_FREQUENCY_STATUS) !=
189              (divider << CCK_FREQUENCY_STATUS_SHIFT),
190              "%s change in progress\n", name);
191
192         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
193 }
194
195 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
196                            const char *name, u32 reg)
197 {
198         if (dev_priv->hpll_freq == 0)
199                 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
200
201         return vlv_get_cck_clock(dev_priv, name, reg,
202                                  dev_priv->hpll_freq);
203 }
204
205 static void intel_update_czclk(struct drm_i915_private *dev_priv)
206 {
207         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
208                 return;
209
210         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
211                                                       CCK_CZ_CLOCK_CONTROL);
212
213         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
214 }
215
216 static inline u32 /* units of 100MHz */
217 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
218                     const struct intel_crtc_state *pipe_config)
219 {
220         if (HAS_DDI(dev_priv))
221                 return pipe_config->port_clock; /* SPLL */
222         else if (IS_GEN5(dev_priv))
223                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
224         else
225                 return 270000;
226 }
227
228 static const struct intel_limit intel_limits_i8xx_dac = {
229         .dot = { .min = 25000, .max = 350000 },
230         .vco = { .min = 908000, .max = 1512000 },
231         .n = { .min = 2, .max = 16 },
232         .m = { .min = 96, .max = 140 },
233         .m1 = { .min = 18, .max = 26 },
234         .m2 = { .min = 6, .max = 16 },
235         .p = { .min = 4, .max = 128 },
236         .p1 = { .min = 2, .max = 33 },
237         .p2 = { .dot_limit = 165000,
238                 .p2_slow = 4, .p2_fast = 2 },
239 };
240
241 static const struct intel_limit intel_limits_i8xx_dvo = {
242         .dot = { .min = 25000, .max = 350000 },
243         .vco = { .min = 908000, .max = 1512000 },
244         .n = { .min = 2, .max = 16 },
245         .m = { .min = 96, .max = 140 },
246         .m1 = { .min = 18, .max = 26 },
247         .m2 = { .min = 6, .max = 16 },
248         .p = { .min = 4, .max = 128 },
249         .p1 = { .min = 2, .max = 33 },
250         .p2 = { .dot_limit = 165000,
251                 .p2_slow = 4, .p2_fast = 4 },
252 };
253
254 static const struct intel_limit intel_limits_i8xx_lvds = {
255         .dot = { .min = 25000, .max = 350000 },
256         .vco = { .min = 908000, .max = 1512000 },
257         .n = { .min = 2, .max = 16 },
258         .m = { .min = 96, .max = 140 },
259         .m1 = { .min = 18, .max = 26 },
260         .m2 = { .min = 6, .max = 16 },
261         .p = { .min = 4, .max = 128 },
262         .p1 = { .min = 1, .max = 6 },
263         .p2 = { .dot_limit = 165000,
264                 .p2_slow = 14, .p2_fast = 7 },
265 };
266
267 static const struct intel_limit intel_limits_i9xx_sdvo = {
268         .dot = { .min = 20000, .max = 400000 },
269         .vco = { .min = 1400000, .max = 2800000 },
270         .n = { .min = 1, .max = 6 },
271         .m = { .min = 70, .max = 120 },
272         .m1 = { .min = 8, .max = 18 },
273         .m2 = { .min = 3, .max = 7 },
274         .p = { .min = 5, .max = 80 },
275         .p1 = { .min = 1, .max = 8 },
276         .p2 = { .dot_limit = 200000,
277                 .p2_slow = 10, .p2_fast = 5 },
278 };
279
280 static const struct intel_limit intel_limits_i9xx_lvds = {
281         .dot = { .min = 20000, .max = 400000 },
282         .vco = { .min = 1400000, .max = 2800000 },
283         .n = { .min = 1, .max = 6 },
284         .m = { .min = 70, .max = 120 },
285         .m1 = { .min = 8, .max = 18 },
286         .m2 = { .min = 3, .max = 7 },
287         .p = { .min = 7, .max = 98 },
288         .p1 = { .min = 1, .max = 8 },
289         .p2 = { .dot_limit = 112000,
290                 .p2_slow = 14, .p2_fast = 7 },
291 };
292
293
294 static const struct intel_limit intel_limits_g4x_sdvo = {
295         .dot = { .min = 25000, .max = 270000 },
296         .vco = { .min = 1750000, .max = 3500000},
297         .n = { .min = 1, .max = 4 },
298         .m = { .min = 104, .max = 138 },
299         .m1 = { .min = 17, .max = 23 },
300         .m2 = { .min = 5, .max = 11 },
301         .p = { .min = 10, .max = 30 },
302         .p1 = { .min = 1, .max = 3},
303         .p2 = { .dot_limit = 270000,
304                 .p2_slow = 10,
305                 .p2_fast = 10
306         },
307 };
308
309 static const struct intel_limit intel_limits_g4x_hdmi = {
310         .dot = { .min = 22000, .max = 400000 },
311         .vco = { .min = 1750000, .max = 3500000},
312         .n = { .min = 1, .max = 4 },
313         .m = { .min = 104, .max = 138 },
314         .m1 = { .min = 16, .max = 23 },
315         .m2 = { .min = 5, .max = 11 },
316         .p = { .min = 5, .max = 80 },
317         .p1 = { .min = 1, .max = 8},
318         .p2 = { .dot_limit = 165000,
319                 .p2_slow = 10, .p2_fast = 5 },
320 };
321
322 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
323         .dot = { .min = 20000, .max = 115000 },
324         .vco = { .min = 1750000, .max = 3500000 },
325         .n = { .min = 1, .max = 3 },
326         .m = { .min = 104, .max = 138 },
327         .m1 = { .min = 17, .max = 23 },
328         .m2 = { .min = 5, .max = 11 },
329         .p = { .min = 28, .max = 112 },
330         .p1 = { .min = 2, .max = 8 },
331         .p2 = { .dot_limit = 0,
332                 .p2_slow = 14, .p2_fast = 14
333         },
334 };
335
336 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
337         .dot = { .min = 80000, .max = 224000 },
338         .vco = { .min = 1750000, .max = 3500000 },
339         .n = { .min = 1, .max = 3 },
340         .m = { .min = 104, .max = 138 },
341         .m1 = { .min = 17, .max = 23 },
342         .m2 = { .min = 5, .max = 11 },
343         .p = { .min = 14, .max = 42 },
344         .p1 = { .min = 2, .max = 6 },
345         .p2 = { .dot_limit = 0,
346                 .p2_slow = 7, .p2_fast = 7
347         },
348 };
349
350 static const struct intel_limit intel_limits_pineview_sdvo = {
351         .dot = { .min = 20000, .max = 400000},
352         .vco = { .min = 1700000, .max = 3500000 },
353         /* Pineview's Ncounter is a ring counter */
354         .n = { .min = 3, .max = 6 },
355         .m = { .min = 2, .max = 256 },
356         /* Pineview only has one combined m divider, which we treat as m2. */
357         .m1 = { .min = 0, .max = 0 },
358         .m2 = { .min = 0, .max = 254 },
359         .p = { .min = 5, .max = 80 },
360         .p1 = { .min = 1, .max = 8 },
361         .p2 = { .dot_limit = 200000,
362                 .p2_slow = 10, .p2_fast = 5 },
363 };
364
365 static const struct intel_limit intel_limits_pineview_lvds = {
366         .dot = { .min = 20000, .max = 400000 },
367         .vco = { .min = 1700000, .max = 3500000 },
368         .n = { .min = 3, .max = 6 },
369         .m = { .min = 2, .max = 256 },
370         .m1 = { .min = 0, .max = 0 },
371         .m2 = { .min = 0, .max = 254 },
372         .p = { .min = 7, .max = 112 },
373         .p1 = { .min = 1, .max = 8 },
374         .p2 = { .dot_limit = 112000,
375                 .p2_slow = 14, .p2_fast = 14 },
376 };
377
378 /* Ironlake / Sandybridge
379  *
380  * We calculate clock using (register_value + 2) for N/M1/M2, so here
381  * the range value for them is (actual_value - 2).
382  */
383 static const struct intel_limit intel_limits_ironlake_dac = {
384         .dot = { .min = 25000, .max = 350000 },
385         .vco = { .min = 1760000, .max = 3510000 },
386         .n = { .min = 1, .max = 5 },
387         .m = { .min = 79, .max = 127 },
388         .m1 = { .min = 12, .max = 22 },
389         .m2 = { .min = 5, .max = 9 },
390         .p = { .min = 5, .max = 80 },
391         .p1 = { .min = 1, .max = 8 },
392         .p2 = { .dot_limit = 225000,
393                 .p2_slow = 10, .p2_fast = 5 },
394 };
395
396 static const struct intel_limit intel_limits_ironlake_single_lvds = {
397         .dot = { .min = 25000, .max = 350000 },
398         .vco = { .min = 1760000, .max = 3510000 },
399         .n = { .min = 1, .max = 3 },
400         .m = { .min = 79, .max = 118 },
401         .m1 = { .min = 12, .max = 22 },
402         .m2 = { .min = 5, .max = 9 },
403         .p = { .min = 28, .max = 112 },
404         .p1 = { .min = 2, .max = 8 },
405         .p2 = { .dot_limit = 225000,
406                 .p2_slow = 14, .p2_fast = 14 },
407 };
408
409 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
410         .dot = { .min = 25000, .max = 350000 },
411         .vco = { .min = 1760000, .max = 3510000 },
412         .n = { .min = 1, .max = 3 },
413         .m = { .min = 79, .max = 127 },
414         .m1 = { .min = 12, .max = 22 },
415         .m2 = { .min = 5, .max = 9 },
416         .p = { .min = 14, .max = 56 },
417         .p1 = { .min = 2, .max = 8 },
418         .p2 = { .dot_limit = 225000,
419                 .p2_slow = 7, .p2_fast = 7 },
420 };
421
422 /* LVDS 100mhz refclk limits. */
423 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
424         .dot = { .min = 25000, .max = 350000 },
425         .vco = { .min = 1760000, .max = 3510000 },
426         .n = { .min = 1, .max = 2 },
427         .m = { .min = 79, .max = 126 },
428         .m1 = { .min = 12, .max = 22 },
429         .m2 = { .min = 5, .max = 9 },
430         .p = { .min = 28, .max = 112 },
431         .p1 = { .min = 2, .max = 8 },
432         .p2 = { .dot_limit = 225000,
433                 .p2_slow = 14, .p2_fast = 14 },
434 };
435
436 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
437         .dot = { .min = 25000, .max = 350000 },
438         .vco = { .min = 1760000, .max = 3510000 },
439         .n = { .min = 1, .max = 3 },
440         .m = { .min = 79, .max = 126 },
441         .m1 = { .min = 12, .max = 22 },
442         .m2 = { .min = 5, .max = 9 },
443         .p = { .min = 14, .max = 42 },
444         .p1 = { .min = 2, .max = 6 },
445         .p2 = { .dot_limit = 225000,
446                 .p2_slow = 7, .p2_fast = 7 },
447 };
448
449 static const struct intel_limit intel_limits_vlv = {
450          /*
451           * These are the data rate limits (measured in fast clocks)
452           * since those are the strictest limits we have. The fast
453           * clock and actual rate limits are more relaxed, so checking
454           * them would make no difference.
455           */
456         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
457         .vco = { .min = 4000000, .max = 6000000 },
458         .n = { .min = 1, .max = 7 },
459         .m1 = { .min = 2, .max = 3 },
460         .m2 = { .min = 11, .max = 156 },
461         .p1 = { .min = 2, .max = 3 },
462         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
463 };
464
465 static const struct intel_limit intel_limits_chv = {
466         /*
467          * These are the data rate limits (measured in fast clocks)
468          * since those are the strictest limits we have.  The fast
469          * clock and actual rate limits are more relaxed, so checking
470          * them would make no difference.
471          */
472         .dot = { .min = 25000 * 5, .max = 540000 * 5},
473         .vco = { .min = 4800000, .max = 6480000 },
474         .n = { .min = 1, .max = 1 },
475         .m1 = { .min = 2, .max = 2 },
476         .m2 = { .min = 24 << 22, .max = 175 << 22 },
477         .p1 = { .min = 2, .max = 4 },
478         .p2 = { .p2_slow = 1, .p2_fast = 14 },
479 };
480
481 static const struct intel_limit intel_limits_bxt = {
482         /* FIXME: find real dot limits */
483         .dot = { .min = 0, .max = INT_MAX },
484         .vco = { .min = 4800000, .max = 6700000 },
485         .n = { .min = 1, .max = 1 },
486         .m1 = { .min = 2, .max = 2 },
487         /* FIXME: find real m2 limits */
488         .m2 = { .min = 2 << 22, .max = 255 << 22 },
489         .p1 = { .min = 2, .max = 4 },
490         .p2 = { .p2_slow = 1, .p2_fast = 20 },
491 };
492
493 static bool
494 needs_modeset(struct drm_crtc_state *state)
495 {
496         return drm_atomic_crtc_needs_modeset(state);
497 }
498
499 /*
500  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
501  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
502  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
503  * The helpers' return value is the rate of the clock that is fed to the
504  * display engine's pipe which can be the above fast dot clock rate or a
505  * divided-down version of it.
506  */
507 /* m1 is reserved as 0 in Pineview, n is a ring counter */
508 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
509 {
510         clock->m = clock->m2 + 2;
511         clock->p = clock->p1 * clock->p2;
512         if (WARN_ON(clock->n == 0 || clock->p == 0))
513                 return 0;
514         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
515         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
516
517         return clock->dot;
518 }
519
520 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
521 {
522         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
523 }
524
525 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
526 {
527         clock->m = i9xx_dpll_compute_m(clock);
528         clock->p = clock->p1 * clock->p2;
529         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
530                 return 0;
531         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
532         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
533
534         return clock->dot;
535 }
536
537 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
538 {
539         clock->m = clock->m1 * clock->m2;
540         clock->p = clock->p1 * clock->p2;
541         if (WARN_ON(clock->n == 0 || clock->p == 0))
542                 return 0;
543         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
544         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
545
546         return clock->dot / 5;
547 }
548
549 int chv_calc_dpll_params(int refclk, struct dpll *clock)
550 {
551         clock->m = clock->m1 * clock->m2;
552         clock->p = clock->p1 * clock->p2;
553         if (WARN_ON(clock->n == 0 || clock->p == 0))
554                 return 0;
555         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
556                         clock->n << 22);
557         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
558
559         return clock->dot / 5;
560 }
561
562 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
563 /**
564  * Returns whether the given set of divisors are valid for a given refclk with
565  * the given connectors.
566  */
567
568 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
569                                const struct intel_limit *limit,
570                                const struct dpll *clock)
571 {
572         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
573                 INTELPllInvalid("n out of range\n");
574         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
575                 INTELPllInvalid("p1 out of range\n");
576         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
577                 INTELPllInvalid("m2 out of range\n");
578         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
579                 INTELPllInvalid("m1 out of range\n");
580
581         if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
582             !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
583                 if (clock->m1 <= clock->m2)
584                         INTELPllInvalid("m1 <= m2\n");
585
586         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
587             !IS_GEN9_LP(dev_priv)) {
588                 if (clock->p < limit->p.min || limit->p.max < clock->p)
589                         INTELPllInvalid("p out of range\n");
590                 if (clock->m < limit->m.min || limit->m.max < clock->m)
591                         INTELPllInvalid("m out of range\n");
592         }
593
594         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
595                 INTELPllInvalid("vco out of range\n");
596         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
597          * connector, etc., rather than just a single range.
598          */
599         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
600                 INTELPllInvalid("dot out of range\n");
601
602         return true;
603 }
604
605 static int
606 i9xx_select_p2_div(const struct intel_limit *limit,
607                    const struct intel_crtc_state *crtc_state,
608                    int target)
609 {
610         struct drm_device *dev = crtc_state->base.crtc->dev;
611
612         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
613                 /*
614                  * For LVDS just rely on its current settings for dual-channel.
615                  * We haven't figured out how to reliably set up different
616                  * single/dual channel state, if we even can.
617                  */
618                 if (intel_is_dual_link_lvds(dev))
619                         return limit->p2.p2_fast;
620                 else
621                         return limit->p2.p2_slow;
622         } else {
623                 if (target < limit->p2.dot_limit)
624                         return limit->p2.p2_slow;
625                 else
626                         return limit->p2.p2_fast;
627         }
628 }
629
630 /*
631  * Returns a set of divisors for the desired target clock with the given
632  * refclk, or FALSE.  The returned values represent the clock equation:
633  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
634  *
635  * Target and reference clocks are specified in kHz.
636  *
637  * If match_clock is provided, then best_clock P divider must match the P
638  * divider from @match_clock used for LVDS downclocking.
639  */
640 static bool
641 i9xx_find_best_dpll(const struct intel_limit *limit,
642                     struct intel_crtc_state *crtc_state,
643                     int target, int refclk, struct dpll *match_clock,
644                     struct dpll *best_clock)
645 {
646         struct drm_device *dev = crtc_state->base.crtc->dev;
647         struct dpll clock;
648         int err = target;
649
650         memset(best_clock, 0, sizeof(*best_clock));
651
652         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
653
654         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
655              clock.m1++) {
656                 for (clock.m2 = limit->m2.min;
657                      clock.m2 <= limit->m2.max; clock.m2++) {
658                         if (clock.m2 >= clock.m1)
659                                 break;
660                         for (clock.n = limit->n.min;
661                              clock.n <= limit->n.max; clock.n++) {
662                                 for (clock.p1 = limit->p1.min;
663                                         clock.p1 <= limit->p1.max; clock.p1++) {
664                                         int this_err;
665
666                                         i9xx_calc_dpll_params(refclk, &clock);
667                                         if (!intel_PLL_is_valid(to_i915(dev),
668                                                                 limit,
669                                                                 &clock))
670                                                 continue;
671                                         if (match_clock &&
672                                             clock.p != match_clock->p)
673                                                 continue;
674
675                                         this_err = abs(clock.dot - target);
676                                         if (this_err < err) {
677                                                 *best_clock = clock;
678                                                 err = this_err;
679                                         }
680                                 }
681                         }
682                 }
683         }
684
685         return (err != target);
686 }
687
688 /*
689  * Returns a set of divisors for the desired target clock with the given
690  * refclk, or FALSE.  The returned values represent the clock equation:
691  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
692  *
693  * Target and reference clocks are specified in kHz.
694  *
695  * If match_clock is provided, then best_clock P divider must match the P
696  * divider from @match_clock used for LVDS downclocking.
697  */
698 static bool
699 pnv_find_best_dpll(const struct intel_limit *limit,
700                    struct intel_crtc_state *crtc_state,
701                    int target, int refclk, struct dpll *match_clock,
702                    struct dpll *best_clock)
703 {
704         struct drm_device *dev = crtc_state->base.crtc->dev;
705         struct dpll clock;
706         int err = target;
707
708         memset(best_clock, 0, sizeof(*best_clock));
709
710         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
711
712         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
713              clock.m1++) {
714                 for (clock.m2 = limit->m2.min;
715                      clock.m2 <= limit->m2.max; clock.m2++) {
716                         for (clock.n = limit->n.min;
717                              clock.n <= limit->n.max; clock.n++) {
718                                 for (clock.p1 = limit->p1.min;
719                                         clock.p1 <= limit->p1.max; clock.p1++) {
720                                         int this_err;
721
722                                         pnv_calc_dpll_params(refclk, &clock);
723                                         if (!intel_PLL_is_valid(to_i915(dev),
724                                                                 limit,
725                                                                 &clock))
726                                                 continue;
727                                         if (match_clock &&
728                                             clock.p != match_clock->p)
729                                                 continue;
730
731                                         this_err = abs(clock.dot - target);
732                                         if (this_err < err) {
733                                                 *best_clock = clock;
734                                                 err = this_err;
735                                         }
736                                 }
737                         }
738                 }
739         }
740
741         return (err != target);
742 }
743
744 /*
745  * Returns a set of divisors for the desired target clock with the given
746  * refclk, or FALSE.  The returned values represent the clock equation:
747  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
748  *
749  * Target and reference clocks are specified in kHz.
750  *
751  * If match_clock is provided, then best_clock P divider must match the P
752  * divider from @match_clock used for LVDS downclocking.
753  */
754 static bool
755 g4x_find_best_dpll(const struct intel_limit *limit,
756                    struct intel_crtc_state *crtc_state,
757                    int target, int refclk, struct dpll *match_clock,
758                    struct dpll *best_clock)
759 {
760         struct drm_device *dev = crtc_state->base.crtc->dev;
761         struct dpll clock;
762         int max_n;
763         bool found = false;
764         /* approximately equals target * 0.00585 */
765         int err_most = (target >> 8) + (target >> 9);
766
767         memset(best_clock, 0, sizeof(*best_clock));
768
769         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
770
771         max_n = limit->n.max;
772         /* based on hardware requirement, prefer smaller n to precision */
773         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
774                 /* based on hardware requirement, prefere larger m1,m2 */
775                 for (clock.m1 = limit->m1.max;
776                      clock.m1 >= limit->m1.min; clock.m1--) {
777                         for (clock.m2 = limit->m2.max;
778                              clock.m2 >= limit->m2.min; clock.m2--) {
779                                 for (clock.p1 = limit->p1.max;
780                                      clock.p1 >= limit->p1.min; clock.p1--) {
781                                         int this_err;
782
783                                         i9xx_calc_dpll_params(refclk, &clock);
784                                         if (!intel_PLL_is_valid(to_i915(dev),
785                                                                 limit,
786                                                                 &clock))
787                                                 continue;
788
789                                         this_err = abs(clock.dot - target);
790                                         if (this_err < err_most) {
791                                                 *best_clock = clock;
792                                                 err_most = this_err;
793                                                 max_n = clock.n;
794                                                 found = true;
795                                         }
796                                 }
797                         }
798                 }
799         }
800         return found;
801 }
802
803 /*
804  * Check if the calculated PLL configuration is more optimal compared to the
805  * best configuration and error found so far. Return the calculated error.
806  */
807 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
808                                const struct dpll *calculated_clock,
809                                const struct dpll *best_clock,
810                                unsigned int best_error_ppm,
811                                unsigned int *error_ppm)
812 {
813         /*
814          * For CHV ignore the error and consider only the P value.
815          * Prefer a bigger P value based on HW requirements.
816          */
817         if (IS_CHERRYVIEW(to_i915(dev))) {
818                 *error_ppm = 0;
819
820                 return calculated_clock->p > best_clock->p;
821         }
822
823         if (WARN_ON_ONCE(!target_freq))
824                 return false;
825
826         *error_ppm = div_u64(1000000ULL *
827                                 abs(target_freq - calculated_clock->dot),
828                              target_freq);
829         /*
830          * Prefer a better P value over a better (smaller) error if the error
831          * is small. Ensure this preference for future configurations too by
832          * setting the error to 0.
833          */
834         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
835                 *error_ppm = 0;
836
837                 return true;
838         }
839
840         return *error_ppm + 10 < best_error_ppm;
841 }
842
843 /*
844  * Returns a set of divisors for the desired target clock with the given
845  * refclk, or FALSE.  The returned values represent the clock equation:
846  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
847  */
848 static bool
849 vlv_find_best_dpll(const struct intel_limit *limit,
850                    struct intel_crtc_state *crtc_state,
851                    int target, int refclk, struct dpll *match_clock,
852                    struct dpll *best_clock)
853 {
854         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
855         struct drm_device *dev = crtc->base.dev;
856         struct dpll clock;
857         unsigned int bestppm = 1000000;
858         /* min update 19.2 MHz */
859         int max_n = min(limit->n.max, refclk / 19200);
860         bool found = false;
861
862         target *= 5; /* fast clock */
863
864         memset(best_clock, 0, sizeof(*best_clock));
865
866         /* based on hardware requirement, prefer smaller n to precision */
867         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
868                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
869                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
870                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
871                                 clock.p = clock.p1 * clock.p2;
872                                 /* based on hardware requirement, prefer bigger m1,m2 values */
873                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
874                                         unsigned int ppm;
875
876                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
877                                                                      refclk * clock.m1);
878
879                                         vlv_calc_dpll_params(refclk, &clock);
880
881                                         if (!intel_PLL_is_valid(to_i915(dev),
882                                                                 limit,
883                                                                 &clock))
884                                                 continue;
885
886                                         if (!vlv_PLL_is_optimal(dev, target,
887                                                                 &clock,
888                                                                 best_clock,
889                                                                 bestppm, &ppm))
890                                                 continue;
891
892                                         *best_clock = clock;
893                                         bestppm = ppm;
894                                         found = true;
895                                 }
896                         }
897                 }
898         }
899
900         return found;
901 }
902
903 /*
904  * Returns a set of divisors for the desired target clock with the given
905  * refclk, or FALSE.  The returned values represent the clock equation:
906  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
907  */
908 static bool
909 chv_find_best_dpll(const struct intel_limit *limit,
910                    struct intel_crtc_state *crtc_state,
911                    int target, int refclk, struct dpll *match_clock,
912                    struct dpll *best_clock)
913 {
914         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
915         struct drm_device *dev = crtc->base.dev;
916         unsigned int best_error_ppm;
917         struct dpll clock;
918         uint64_t m2;
919         int found = false;
920
921         memset(best_clock, 0, sizeof(*best_clock));
922         best_error_ppm = 1000000;
923
924         /*
925          * Based on hardware doc, the n always set to 1, and m1 always
926          * set to 2.  If requires to support 200Mhz refclk, we need to
927          * revisit this because n may not 1 anymore.
928          */
929         clock.n = 1, clock.m1 = 2;
930         target *= 5;    /* fast clock */
931
932         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
933                 for (clock.p2 = limit->p2.p2_fast;
934                                 clock.p2 >= limit->p2.p2_slow;
935                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
936                         unsigned int error_ppm;
937
938                         clock.p = clock.p1 * clock.p2;
939
940                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
941                                         clock.n) << 22, refclk * clock.m1);
942
943                         if (m2 > INT_MAX/clock.m1)
944                                 continue;
945
946                         clock.m2 = m2;
947
948                         chv_calc_dpll_params(refclk, &clock);
949
950                         if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
951                                 continue;
952
953                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
954                                                 best_error_ppm, &error_ppm))
955                                 continue;
956
957                         *best_clock = clock;
958                         best_error_ppm = error_ppm;
959                         found = true;
960                 }
961         }
962
963         return found;
964 }
965
966 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
967                         struct dpll *best_clock)
968 {
969         int refclk = 100000;
970         const struct intel_limit *limit = &intel_limits_bxt;
971
972         return chv_find_best_dpll(limit, crtc_state,
973                                   target_clock, refclk, NULL, best_clock);
974 }
975
976 bool intel_crtc_active(struct intel_crtc *crtc)
977 {
978         /* Be paranoid as we can arrive here with only partial
979          * state retrieved from the hardware during setup.
980          *
981          * We can ditch the adjusted_mode.crtc_clock check as soon
982          * as Haswell has gained clock readout/fastboot support.
983          *
984          * We can ditch the crtc->primary->fb check as soon as we can
985          * properly reconstruct framebuffers.
986          *
987          * FIXME: The intel_crtc->active here should be switched to
988          * crtc->state->active once we have proper CRTC states wired up
989          * for atomic.
990          */
991         return crtc->active && crtc->base.primary->state->fb &&
992                 crtc->config->base.adjusted_mode.crtc_clock;
993 }
994
995 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
996                                              enum pipe pipe)
997 {
998         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
999
1000         return crtc->config->cpu_transcoder;
1001 }
1002
1003 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1004                                     enum pipe pipe)
1005 {
1006         i915_reg_t reg = PIPEDSL(pipe);
1007         u32 line1, line2;
1008         u32 line_mask;
1009
1010         if (IS_GEN2(dev_priv))
1011                 line_mask = DSL_LINEMASK_GEN2;
1012         else
1013                 line_mask = DSL_LINEMASK_GEN3;
1014
1015         line1 = I915_READ(reg) & line_mask;
1016         msleep(5);
1017         line2 = I915_READ(reg) & line_mask;
1018
1019         return line1 != line2;
1020 }
1021
1022 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1023 {
1024         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1025         enum pipe pipe = crtc->pipe;
1026
1027         /* Wait for the display line to settle/start moving */
1028         if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1029                 DRM_ERROR("pipe %c scanline %s wait timed out\n",
1030                           pipe_name(pipe), onoff(state));
1031 }
1032
1033 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1034 {
1035         wait_for_pipe_scanline_moving(crtc, false);
1036 }
1037
1038 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1039 {
1040         wait_for_pipe_scanline_moving(crtc, true);
1041 }
1042
1043 /*
1044  * intel_wait_for_pipe_off - wait for pipe to turn off
1045  * @crtc: crtc whose pipe to wait for
1046  *
1047  * After disabling a pipe, we can't wait for vblank in the usual way,
1048  * spinning on the vblank interrupt status bit, since we won't actually
1049  * see an interrupt when the pipe is disabled.
1050  *
1051  * On Gen4 and above:
1052  *   wait for the pipe register state bit to turn off
1053  *
1054  * Otherwise:
1055  *   wait for the display line value to settle (it usually
1056  *   ends up stopping at the start of the next frame).
1057  *
1058  */
1059 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1060 {
1061         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1062         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1063
1064         if (INTEL_GEN(dev_priv) >= 4) {
1065                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1066
1067                 /* Wait for the Pipe State to go off */
1068                 if (intel_wait_for_register(dev_priv,
1069                                             reg, I965_PIPECONF_ACTIVE, 0,
1070                                             100))
1071                         WARN(1, "pipe_off wait timed out\n");
1072         } else {
1073                 intel_wait_for_pipe_scanline_stopped(crtc);
1074         }
1075 }
1076
1077 /* Only for pre-ILK configs */
1078 void assert_pll(struct drm_i915_private *dev_priv,
1079                 enum pipe pipe, bool state)
1080 {
1081         u32 val;
1082         bool cur_state;
1083
1084         val = I915_READ(DPLL(pipe));
1085         cur_state = !!(val & DPLL_VCO_ENABLE);
1086         I915_STATE_WARN(cur_state != state,
1087              "PLL state assertion failure (expected %s, current %s)\n",
1088                         onoff(state), onoff(cur_state));
1089 }
1090
1091 /* XXX: the dsi pll is shared between MIPI DSI ports */
1092 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1093 {
1094         u32 val;
1095         bool cur_state;
1096
1097         mutex_lock(&dev_priv->sb_lock);
1098         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1099         mutex_unlock(&dev_priv->sb_lock);
1100
1101         cur_state = val & DSI_PLL_VCO_EN;
1102         I915_STATE_WARN(cur_state != state,
1103              "DSI PLL state assertion failure (expected %s, current %s)\n",
1104                         onoff(state), onoff(cur_state));
1105 }
1106
1107 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1108                           enum pipe pipe, bool state)
1109 {
1110         bool cur_state;
1111         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1112                                                                       pipe);
1113
1114         if (HAS_DDI(dev_priv)) {
1115                 /* DDI does not have a specific FDI_TX register */
1116                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1117                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1118         } else {
1119                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1120                 cur_state = !!(val & FDI_TX_ENABLE);
1121         }
1122         I915_STATE_WARN(cur_state != state,
1123              "FDI TX state assertion failure (expected %s, current %s)\n",
1124                         onoff(state), onoff(cur_state));
1125 }
1126 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1127 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1128
1129 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1130                           enum pipe pipe, bool state)
1131 {
1132         u32 val;
1133         bool cur_state;
1134
1135         val = I915_READ(FDI_RX_CTL(pipe));
1136         cur_state = !!(val & FDI_RX_ENABLE);
1137         I915_STATE_WARN(cur_state != state,
1138              "FDI RX state assertion failure (expected %s, current %s)\n",
1139                         onoff(state), onoff(cur_state));
1140 }
1141 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1142 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1143
1144 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1145                                       enum pipe pipe)
1146 {
1147         u32 val;
1148
1149         /* ILK FDI PLL is always enabled */
1150         if (IS_GEN5(dev_priv))
1151                 return;
1152
1153         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1154         if (HAS_DDI(dev_priv))
1155                 return;
1156
1157         val = I915_READ(FDI_TX_CTL(pipe));
1158         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1159 }
1160
1161 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1162                        enum pipe pipe, bool state)
1163 {
1164         u32 val;
1165         bool cur_state;
1166
1167         val = I915_READ(FDI_RX_CTL(pipe));
1168         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1169         I915_STATE_WARN(cur_state != state,
1170              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1171                         onoff(state), onoff(cur_state));
1172 }
1173
1174 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1175 {
1176         i915_reg_t pp_reg;
1177         u32 val;
1178         enum pipe panel_pipe = PIPE_A;
1179         bool locked = true;
1180
1181         if (WARN_ON(HAS_DDI(dev_priv)))
1182                 return;
1183
1184         if (HAS_PCH_SPLIT(dev_priv)) {
1185                 u32 port_sel;
1186
1187                 pp_reg = PP_CONTROL(0);
1188                 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1189
1190                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1191                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1192                         panel_pipe = PIPE_B;
1193                 /* XXX: else fix for eDP */
1194         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1195                 /* presumably write lock depends on pipe, not port select */
1196                 pp_reg = PP_CONTROL(pipe);
1197                 panel_pipe = pipe;
1198         } else {
1199                 pp_reg = PP_CONTROL(0);
1200                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1201                         panel_pipe = PIPE_B;
1202         }
1203
1204         val = I915_READ(pp_reg);
1205         if (!(val & PANEL_POWER_ON) ||
1206             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1207                 locked = false;
1208
1209         I915_STATE_WARN(panel_pipe == pipe && locked,
1210              "panel assertion failure, pipe %c regs locked\n",
1211              pipe_name(pipe));
1212 }
1213
1214 void assert_pipe(struct drm_i915_private *dev_priv,
1215                  enum pipe pipe, bool state)
1216 {
1217         bool cur_state;
1218         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1219                                                                       pipe);
1220         enum intel_display_power_domain power_domain;
1221
1222         /* we keep both pipes enabled on 830 */
1223         if (IS_I830(dev_priv))
1224                 state = true;
1225
1226         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1227         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1228                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1229                 cur_state = !!(val & PIPECONF_ENABLE);
1230
1231                 intel_display_power_put(dev_priv, power_domain);
1232         } else {
1233                 cur_state = false;
1234         }
1235
1236         I915_STATE_WARN(cur_state != state,
1237              "pipe %c assertion failure (expected %s, current %s)\n",
1238                         pipe_name(pipe), onoff(state), onoff(cur_state));
1239 }
1240
1241 static void assert_plane(struct intel_plane *plane, bool state)
1242 {
1243         bool cur_state = plane->get_hw_state(plane);
1244
1245         I915_STATE_WARN(cur_state != state,
1246                         "%s assertion failure (expected %s, current %s)\n",
1247                         plane->base.name, onoff(state), onoff(cur_state));
1248 }
1249
1250 #define assert_plane_enabled(p) assert_plane(p, true)
1251 #define assert_plane_disabled(p) assert_plane(p, false)
1252
1253 static void assert_planes_disabled(struct intel_crtc *crtc)
1254 {
1255         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1256         struct intel_plane *plane;
1257
1258         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1259                 assert_plane_disabled(plane);
1260 }
1261
1262 static void assert_vblank_disabled(struct drm_crtc *crtc)
1263 {
1264         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1265                 drm_crtc_vblank_put(crtc);
1266 }
1267
1268 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1269                                     enum pipe pipe)
1270 {
1271         u32 val;
1272         bool enabled;
1273
1274         val = I915_READ(PCH_TRANSCONF(pipe));
1275         enabled = !!(val & TRANS_ENABLE);
1276         I915_STATE_WARN(enabled,
1277              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1278              pipe_name(pipe));
1279 }
1280
1281 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1282                             enum pipe pipe, u32 port_sel, u32 val)
1283 {
1284         if ((val & DP_PORT_EN) == 0)
1285                 return false;
1286
1287         if (HAS_PCH_CPT(dev_priv)) {
1288                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1289                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1290                         return false;
1291         } else if (IS_CHERRYVIEW(dev_priv)) {
1292                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1293                         return false;
1294         } else {
1295                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1296                         return false;
1297         }
1298         return true;
1299 }
1300
1301 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1302                               enum pipe pipe, u32 val)
1303 {
1304         if ((val & SDVO_ENABLE) == 0)
1305                 return false;
1306
1307         if (HAS_PCH_CPT(dev_priv)) {
1308                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1309                         return false;
1310         } else if (IS_CHERRYVIEW(dev_priv)) {
1311                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1312                         return false;
1313         } else {
1314                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1315                         return false;
1316         }
1317         return true;
1318 }
1319
1320 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1321                               enum pipe pipe, u32 val)
1322 {
1323         if ((val & LVDS_PORT_EN) == 0)
1324                 return false;
1325
1326         if (HAS_PCH_CPT(dev_priv)) {
1327                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1328                         return false;
1329         } else {
1330                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1331                         return false;
1332         }
1333         return true;
1334 }
1335
1336 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1337                               enum pipe pipe, u32 val)
1338 {
1339         if ((val & ADPA_DAC_ENABLE) == 0)
1340                 return false;
1341         if (HAS_PCH_CPT(dev_priv)) {
1342                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1343                         return false;
1344         } else {
1345                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1346                         return false;
1347         }
1348         return true;
1349 }
1350
1351 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1352                                    enum pipe pipe, i915_reg_t reg,
1353                                    u32 port_sel)
1354 {
1355         u32 val = I915_READ(reg);
1356         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1357              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1358              i915_mmio_reg_offset(reg), pipe_name(pipe));
1359
1360         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1361              && (val & DP_PIPEB_SELECT),
1362              "IBX PCH dp port still using transcoder B\n");
1363 }
1364
1365 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1366                                      enum pipe pipe, i915_reg_t reg)
1367 {
1368         u32 val = I915_READ(reg);
1369         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1370              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1371              i915_mmio_reg_offset(reg), pipe_name(pipe));
1372
1373         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1374              && (val & SDVO_PIPE_B_SELECT),
1375              "IBX PCH hdmi port still using transcoder B\n");
1376 }
1377
1378 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1379                                       enum pipe pipe)
1380 {
1381         u32 val;
1382
1383         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1384         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1385         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1386
1387         val = I915_READ(PCH_ADPA);
1388         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1389              "PCH VGA enabled on transcoder %c, should be disabled\n",
1390              pipe_name(pipe));
1391
1392         val = I915_READ(PCH_LVDS);
1393         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1394              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1395              pipe_name(pipe));
1396
1397         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1398         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1399         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1400 }
1401
1402 static void _vlv_enable_pll(struct intel_crtc *crtc,
1403                             const struct intel_crtc_state *pipe_config)
1404 {
1405         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1406         enum pipe pipe = crtc->pipe;
1407
1408         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1409         POSTING_READ(DPLL(pipe));
1410         udelay(150);
1411
1412         if (intel_wait_for_register(dev_priv,
1413                                     DPLL(pipe),
1414                                     DPLL_LOCK_VLV,
1415                                     DPLL_LOCK_VLV,
1416                                     1))
1417                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1418 }
1419
1420 static void vlv_enable_pll(struct intel_crtc *crtc,
1421                            const struct intel_crtc_state *pipe_config)
1422 {
1423         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1424         enum pipe pipe = crtc->pipe;
1425
1426         assert_pipe_disabled(dev_priv, pipe);
1427
1428         /* PLL is protected by panel, make sure we can write it */
1429         assert_panel_unlocked(dev_priv, pipe);
1430
1431         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1432                 _vlv_enable_pll(crtc, pipe_config);
1433
1434         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1435         POSTING_READ(DPLL_MD(pipe));
1436 }
1437
1438
1439 static void _chv_enable_pll(struct intel_crtc *crtc,
1440                             const struct intel_crtc_state *pipe_config)
1441 {
1442         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1443         enum pipe pipe = crtc->pipe;
1444         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1445         u32 tmp;
1446
1447         mutex_lock(&dev_priv->sb_lock);
1448
1449         /* Enable back the 10bit clock to display controller */
1450         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1451         tmp |= DPIO_DCLKP_EN;
1452         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1453
1454         mutex_unlock(&dev_priv->sb_lock);
1455
1456         /*
1457          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1458          */
1459         udelay(1);
1460
1461         /* Enable PLL */
1462         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1463
1464         /* Check PLL is locked */
1465         if (intel_wait_for_register(dev_priv,
1466                                     DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1467                                     1))
1468                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1469 }
1470
1471 static void chv_enable_pll(struct intel_crtc *crtc,
1472                            const struct intel_crtc_state *pipe_config)
1473 {
1474         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1475         enum pipe pipe = crtc->pipe;
1476
1477         assert_pipe_disabled(dev_priv, pipe);
1478
1479         /* PLL is protected by panel, make sure we can write it */
1480         assert_panel_unlocked(dev_priv, pipe);
1481
1482         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1483                 _chv_enable_pll(crtc, pipe_config);
1484
1485         if (pipe != PIPE_A) {
1486                 /*
1487                  * WaPixelRepeatModeFixForC0:chv
1488                  *
1489                  * DPLLCMD is AWOL. Use chicken bits to propagate
1490                  * the value from DPLLBMD to either pipe B or C.
1491                  */
1492                 I915_WRITE(CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1493                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1494                 I915_WRITE(CBR4_VLV, 0);
1495                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1496
1497                 /*
1498                  * DPLLB VGA mode also seems to cause problems.
1499                  * We should always have it disabled.
1500                  */
1501                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1502         } else {
1503                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1504                 POSTING_READ(DPLL_MD(pipe));
1505         }
1506 }
1507
1508 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1509 {
1510         struct intel_crtc *crtc;
1511         int count = 0;
1512
1513         for_each_intel_crtc(&dev_priv->drm, crtc) {
1514                 count += crtc->base.state->active &&
1515                         intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1516         }
1517
1518         return count;
1519 }
1520
1521 static void i9xx_enable_pll(struct intel_crtc *crtc,
1522                             const struct intel_crtc_state *crtc_state)
1523 {
1524         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1525         i915_reg_t reg = DPLL(crtc->pipe);
1526         u32 dpll = crtc_state->dpll_hw_state.dpll;
1527         int i;
1528
1529         assert_pipe_disabled(dev_priv, crtc->pipe);
1530
1531         /* PLL is protected by panel, make sure we can write it */
1532         if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1533                 assert_panel_unlocked(dev_priv, crtc->pipe);
1534
1535         /* Enable DVO 2x clock on both PLLs if necessary */
1536         if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1537                 /*
1538                  * It appears to be important that we don't enable this
1539                  * for the current pipe before otherwise configuring the
1540                  * PLL. No idea how this should be handled if multiple
1541                  * DVO outputs are enabled simultaneosly.
1542                  */
1543                 dpll |= DPLL_DVO_2X_MODE;
1544                 I915_WRITE(DPLL(!crtc->pipe),
1545                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1546         }
1547
1548         /*
1549          * Apparently we need to have VGA mode enabled prior to changing
1550          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1551          * dividers, even though the register value does change.
1552          */
1553         I915_WRITE(reg, 0);
1554
1555         I915_WRITE(reg, dpll);
1556
1557         /* Wait for the clocks to stabilize. */
1558         POSTING_READ(reg);
1559         udelay(150);
1560
1561         if (INTEL_GEN(dev_priv) >= 4) {
1562                 I915_WRITE(DPLL_MD(crtc->pipe),
1563                            crtc_state->dpll_hw_state.dpll_md);
1564         } else {
1565                 /* The pixel multiplier can only be updated once the
1566                  * DPLL is enabled and the clocks are stable.
1567                  *
1568                  * So write it again.
1569                  */
1570                 I915_WRITE(reg, dpll);
1571         }
1572
1573         /* We do this three times for luck */
1574         for (i = 0; i < 3; i++) {
1575                 I915_WRITE(reg, dpll);
1576                 POSTING_READ(reg);
1577                 udelay(150); /* wait for warmup */
1578         }
1579 }
1580
1581 static void i9xx_disable_pll(struct intel_crtc *crtc)
1582 {
1583         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1584         enum pipe pipe = crtc->pipe;
1585
1586         /* Disable DVO 2x clock on both PLLs if necessary */
1587         if (IS_I830(dev_priv) &&
1588             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1589             !intel_num_dvo_pipes(dev_priv)) {
1590                 I915_WRITE(DPLL(PIPE_B),
1591                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1592                 I915_WRITE(DPLL(PIPE_A),
1593                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1594         }
1595
1596         /* Don't disable pipe or pipe PLLs if needed */
1597         if (IS_I830(dev_priv))
1598                 return;
1599
1600         /* Make sure the pipe isn't still relying on us */
1601         assert_pipe_disabled(dev_priv, pipe);
1602
1603         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1604         POSTING_READ(DPLL(pipe));
1605 }
1606
1607 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1608 {
1609         u32 val;
1610
1611         /* Make sure the pipe isn't still relying on us */
1612         assert_pipe_disabled(dev_priv, pipe);
1613
1614         val = DPLL_INTEGRATED_REF_CLK_VLV |
1615                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1616         if (pipe != PIPE_A)
1617                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1618
1619         I915_WRITE(DPLL(pipe), val);
1620         POSTING_READ(DPLL(pipe));
1621 }
1622
1623 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1624 {
1625         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1626         u32 val;
1627
1628         /* Make sure the pipe isn't still relying on us */
1629         assert_pipe_disabled(dev_priv, pipe);
1630
1631         val = DPLL_SSC_REF_CLK_CHV |
1632                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1633         if (pipe != PIPE_A)
1634                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1635
1636         I915_WRITE(DPLL(pipe), val);
1637         POSTING_READ(DPLL(pipe));
1638
1639         mutex_lock(&dev_priv->sb_lock);
1640
1641         /* Disable 10bit clock to display controller */
1642         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1643         val &= ~DPIO_DCLKP_EN;
1644         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1645
1646         mutex_unlock(&dev_priv->sb_lock);
1647 }
1648
1649 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1650                          struct intel_digital_port *dport,
1651                          unsigned int expected_mask)
1652 {
1653         u32 port_mask;
1654         i915_reg_t dpll_reg;
1655
1656         switch (dport->port) {
1657         case PORT_B:
1658                 port_mask = DPLL_PORTB_READY_MASK;
1659                 dpll_reg = DPLL(0);
1660                 break;
1661         case PORT_C:
1662                 port_mask = DPLL_PORTC_READY_MASK;
1663                 dpll_reg = DPLL(0);
1664                 expected_mask <<= 4;
1665                 break;
1666         case PORT_D:
1667                 port_mask = DPLL_PORTD_READY_MASK;
1668                 dpll_reg = DPIO_PHY_STATUS;
1669                 break;
1670         default:
1671                 BUG();
1672         }
1673
1674         if (intel_wait_for_register(dev_priv,
1675                                     dpll_reg, port_mask, expected_mask,
1676                                     1000))
1677                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1678                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1679 }
1680
1681 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1682                                            enum pipe pipe)
1683 {
1684         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1685                                                                 pipe);
1686         i915_reg_t reg;
1687         uint32_t val, pipeconf_val;
1688
1689         /* Make sure PCH DPLL is enabled */
1690         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1691
1692         /* FDI must be feeding us bits for PCH ports */
1693         assert_fdi_tx_enabled(dev_priv, pipe);
1694         assert_fdi_rx_enabled(dev_priv, pipe);
1695
1696         if (HAS_PCH_CPT(dev_priv)) {
1697                 /* Workaround: Set the timing override bit before enabling the
1698                  * pch transcoder. */
1699                 reg = TRANS_CHICKEN2(pipe);
1700                 val = I915_READ(reg);
1701                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1702                 I915_WRITE(reg, val);
1703         }
1704
1705         reg = PCH_TRANSCONF(pipe);
1706         val = I915_READ(reg);
1707         pipeconf_val = I915_READ(PIPECONF(pipe));
1708
1709         if (HAS_PCH_IBX(dev_priv)) {
1710                 /*
1711                  * Make the BPC in transcoder be consistent with
1712                  * that in pipeconf reg. For HDMI we must use 8bpc
1713                  * here for both 8bpc and 12bpc.
1714                  */
1715                 val &= ~PIPECONF_BPC_MASK;
1716                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1717                         val |= PIPECONF_8BPC;
1718                 else
1719                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1720         }
1721
1722         val &= ~TRANS_INTERLACE_MASK;
1723         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1724                 if (HAS_PCH_IBX(dev_priv) &&
1725                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1726                         val |= TRANS_LEGACY_INTERLACED_ILK;
1727                 else
1728                         val |= TRANS_INTERLACED;
1729         else
1730                 val |= TRANS_PROGRESSIVE;
1731
1732         I915_WRITE(reg, val | TRANS_ENABLE);
1733         if (intel_wait_for_register(dev_priv,
1734                                     reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1735                                     100))
1736                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1737 }
1738
1739 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1740                                       enum transcoder cpu_transcoder)
1741 {
1742         u32 val, pipeconf_val;
1743
1744         /* FDI must be feeding us bits for PCH ports */
1745         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1746         assert_fdi_rx_enabled(dev_priv, PIPE_A);
1747
1748         /* Workaround: set timing override bit. */
1749         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1750         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1751         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1752
1753         val = TRANS_ENABLE;
1754         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1755
1756         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1757             PIPECONF_INTERLACED_ILK)
1758                 val |= TRANS_INTERLACED;
1759         else
1760                 val |= TRANS_PROGRESSIVE;
1761
1762         I915_WRITE(LPT_TRANSCONF, val);
1763         if (intel_wait_for_register(dev_priv,
1764                                     LPT_TRANSCONF,
1765                                     TRANS_STATE_ENABLE,
1766                                     TRANS_STATE_ENABLE,
1767                                     100))
1768                 DRM_ERROR("Failed to enable PCH transcoder\n");
1769 }
1770
1771 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1772                                             enum pipe pipe)
1773 {
1774         i915_reg_t reg;
1775         uint32_t val;
1776
1777         /* FDI relies on the transcoder */
1778         assert_fdi_tx_disabled(dev_priv, pipe);
1779         assert_fdi_rx_disabled(dev_priv, pipe);
1780
1781         /* Ports must be off as well */
1782         assert_pch_ports_disabled(dev_priv, pipe);
1783
1784         reg = PCH_TRANSCONF(pipe);
1785         val = I915_READ(reg);
1786         val &= ~TRANS_ENABLE;
1787         I915_WRITE(reg, val);
1788         /* wait for PCH transcoder off, transcoder state */
1789         if (intel_wait_for_register(dev_priv,
1790                                     reg, TRANS_STATE_ENABLE, 0,
1791                                     50))
1792                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1793
1794         if (HAS_PCH_CPT(dev_priv)) {
1795                 /* Workaround: Clear the timing override chicken bit again. */
1796                 reg = TRANS_CHICKEN2(pipe);
1797                 val = I915_READ(reg);
1798                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1799                 I915_WRITE(reg, val);
1800         }
1801 }
1802
1803 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1804 {
1805         u32 val;
1806
1807         val = I915_READ(LPT_TRANSCONF);
1808         val &= ~TRANS_ENABLE;
1809         I915_WRITE(LPT_TRANSCONF, val);
1810         /* wait for PCH transcoder off, transcoder state */
1811         if (intel_wait_for_register(dev_priv,
1812                                     LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1813                                     50))
1814                 DRM_ERROR("Failed to disable PCH transcoder\n");
1815
1816         /* Workaround: clear timing override bit. */
1817         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1818         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1819         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1820 }
1821
1822 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1823 {
1824         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1825
1826         WARN_ON(!crtc->config->has_pch_encoder);
1827
1828         if (HAS_PCH_LPT(dev_priv))
1829                 return PIPE_A;
1830         else
1831                 return crtc->pipe;
1832 }
1833
1834 /**
1835  * intel_enable_pipe - enable a pipe, asserting requirements
1836  * @crtc: crtc responsible for the pipe
1837  *
1838  * Enable @crtc's pipe, making sure that various hardware specific requirements
1839  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1840  */
1841 static void intel_enable_pipe(struct intel_crtc *crtc)
1842 {
1843         struct drm_device *dev = crtc->base.dev;
1844         struct drm_i915_private *dev_priv = to_i915(dev);
1845         enum pipe pipe = crtc->pipe;
1846         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1847         i915_reg_t reg;
1848         u32 val;
1849
1850         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1851
1852         assert_planes_disabled(crtc);
1853
1854         /*
1855          * A pipe without a PLL won't actually be able to drive bits from
1856          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1857          * need the check.
1858          */
1859         if (HAS_GMCH_DISPLAY(dev_priv)) {
1860                 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1861                         assert_dsi_pll_enabled(dev_priv);
1862                 else
1863                         assert_pll_enabled(dev_priv, pipe);
1864         } else {
1865                 if (crtc->config->has_pch_encoder) {
1866                         /* if driving the PCH, we need FDI enabled */
1867                         assert_fdi_rx_pll_enabled(dev_priv,
1868                                                   intel_crtc_pch_transcoder(crtc));
1869                         assert_fdi_tx_pll_enabled(dev_priv,
1870                                                   (enum pipe) cpu_transcoder);
1871                 }
1872                 /* FIXME: assert CPU port conditions for SNB+ */
1873         }
1874
1875         reg = PIPECONF(cpu_transcoder);
1876         val = I915_READ(reg);
1877         if (val & PIPECONF_ENABLE) {
1878                 /* we keep both pipes enabled on 830 */
1879                 WARN_ON(!IS_I830(dev_priv));
1880                 return;
1881         }
1882
1883         I915_WRITE(reg, val | PIPECONF_ENABLE);
1884         POSTING_READ(reg);
1885
1886         /*
1887          * Until the pipe starts PIPEDSL reads will return a stale value,
1888          * which causes an apparent vblank timestamp jump when PIPEDSL
1889          * resets to its proper value. That also messes up the frame count
1890          * when it's derived from the timestamps. So let's wait for the
1891          * pipe to start properly before we call drm_crtc_vblank_on()
1892          */
1893         if (dev->max_vblank_count == 0)
1894                 intel_wait_for_pipe_scanline_moving(crtc);
1895 }
1896
1897 /**
1898  * intel_disable_pipe - disable a pipe, asserting requirements
1899  * @crtc: crtc whose pipes is to be disabled
1900  *
1901  * Disable the pipe of @crtc, making sure that various hardware
1902  * specific requirements are met, if applicable, e.g. plane
1903  * disabled, panel fitter off, etc.
1904  *
1905  * Will wait until the pipe has shut down before returning.
1906  */
1907 static void intel_disable_pipe(struct intel_crtc *crtc)
1908 {
1909         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1910         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1911         enum pipe pipe = crtc->pipe;
1912         i915_reg_t reg;
1913         u32 val;
1914
1915         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1916
1917         /*
1918          * Make sure planes won't keep trying to pump pixels to us,
1919          * or we might hang the display.
1920          */
1921         assert_planes_disabled(crtc);
1922
1923         reg = PIPECONF(cpu_transcoder);
1924         val = I915_READ(reg);
1925         if ((val & PIPECONF_ENABLE) == 0)
1926                 return;
1927
1928         /*
1929          * Double wide has implications for planes
1930          * so best keep it disabled when not needed.
1931          */
1932         if (crtc->config->double_wide)
1933                 val &= ~PIPECONF_DOUBLE_WIDE;
1934
1935         /* Don't disable pipe or pipe PLLs if needed */
1936         if (!IS_I830(dev_priv))
1937                 val &= ~PIPECONF_ENABLE;
1938
1939         I915_WRITE(reg, val);
1940         if ((val & PIPECONF_ENABLE) == 0)
1941                 intel_wait_for_pipe_off(crtc);
1942 }
1943
1944 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1945 {
1946         return IS_GEN2(dev_priv) ? 2048 : 4096;
1947 }
1948
1949 static unsigned int
1950 intel_tile_width_bytes(const struct drm_framebuffer *fb, int plane)
1951 {
1952         struct drm_i915_private *dev_priv = to_i915(fb->dev);
1953         unsigned int cpp = fb->format->cpp[plane];
1954
1955         switch (fb->modifier) {
1956         case DRM_FORMAT_MOD_LINEAR:
1957                 return cpp;
1958         case I915_FORMAT_MOD_X_TILED:
1959                 if (IS_GEN2(dev_priv))
1960                         return 128;
1961                 else
1962                         return 512;
1963         case I915_FORMAT_MOD_Y_TILED_CCS:
1964                 if (plane == 1)
1965                         return 128;
1966                 /* fall through */
1967         case I915_FORMAT_MOD_Y_TILED:
1968                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
1969                         return 128;
1970                 else
1971                         return 512;
1972         case I915_FORMAT_MOD_Yf_TILED_CCS:
1973                 if (plane == 1)
1974                         return 128;
1975                 /* fall through */
1976         case I915_FORMAT_MOD_Yf_TILED:
1977                 switch (cpp) {
1978                 case 1:
1979                         return 64;
1980                 case 2:
1981                 case 4:
1982                         return 128;
1983                 case 8:
1984                 case 16:
1985                         return 256;
1986                 default:
1987                         MISSING_CASE(cpp);
1988                         return cpp;
1989                 }
1990                 break;
1991         default:
1992                 MISSING_CASE(fb->modifier);
1993                 return cpp;
1994         }
1995 }
1996
1997 static unsigned int
1998 intel_tile_height(const struct drm_framebuffer *fb, int plane)
1999 {
2000         if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
2001                 return 1;
2002         else
2003                 return intel_tile_size(to_i915(fb->dev)) /
2004                         intel_tile_width_bytes(fb, plane);
2005 }
2006
2007 /* Return the tile dimensions in pixel units */
2008 static void intel_tile_dims(const struct drm_framebuffer *fb, int plane,
2009                             unsigned int *tile_width,
2010                             unsigned int *tile_height)
2011 {
2012         unsigned int tile_width_bytes = intel_tile_width_bytes(fb, plane);
2013         unsigned int cpp = fb->format->cpp[plane];
2014
2015         *tile_width = tile_width_bytes / cpp;
2016         *tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes;
2017 }
2018
2019 unsigned int
2020 intel_fb_align_height(const struct drm_framebuffer *fb,
2021                       int plane, unsigned int height)
2022 {
2023         unsigned int tile_height = intel_tile_height(fb, plane);
2024
2025         return ALIGN(height, tile_height);
2026 }
2027
2028 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2029 {
2030         unsigned int size = 0;
2031         int i;
2032
2033         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2034                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2035
2036         return size;
2037 }
2038
2039 static void
2040 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2041                         const struct drm_framebuffer *fb,
2042                         unsigned int rotation)
2043 {
2044         view->type = I915_GGTT_VIEW_NORMAL;
2045         if (drm_rotation_90_or_270(rotation)) {
2046                 view->type = I915_GGTT_VIEW_ROTATED;
2047                 view->rotated = to_intel_framebuffer(fb)->rot_info;
2048         }
2049 }
2050
2051 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2052 {
2053         if (IS_I830(dev_priv))
2054                 return 16 * 1024;
2055         else if (IS_I85X(dev_priv))
2056                 return 256;
2057         else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2058                 return 32;
2059         else
2060                 return 4 * 1024;
2061 }
2062
2063 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2064 {
2065         if (INTEL_INFO(dev_priv)->gen >= 9)
2066                 return 256 * 1024;
2067         else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2068                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2069                 return 128 * 1024;
2070         else if (INTEL_INFO(dev_priv)->gen >= 4)
2071                 return 4 * 1024;
2072         else
2073                 return 0;
2074 }
2075
2076 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2077                                          int plane)
2078 {
2079         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2080
2081         /* AUX_DIST needs only 4K alignment */
2082         if (plane == 1)
2083                 return 4096;
2084
2085         switch (fb->modifier) {
2086         case DRM_FORMAT_MOD_LINEAR:
2087                 return intel_linear_alignment(dev_priv);
2088         case I915_FORMAT_MOD_X_TILED:
2089                 if (INTEL_GEN(dev_priv) >= 9)
2090                         return 256 * 1024;
2091                 return 0;
2092         case I915_FORMAT_MOD_Y_TILED_CCS:
2093         case I915_FORMAT_MOD_Yf_TILED_CCS:
2094         case I915_FORMAT_MOD_Y_TILED:
2095         case I915_FORMAT_MOD_Yf_TILED:
2096                 return 1 * 1024 * 1024;
2097         default:
2098                 MISSING_CASE(fb->modifier);
2099                 return 0;
2100         }
2101 }
2102
2103 struct i915_vma *
2104 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2105 {
2106         struct drm_device *dev = fb->dev;
2107         struct drm_i915_private *dev_priv = to_i915(dev);
2108         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2109         struct i915_ggtt_view view;
2110         struct i915_vma *vma;
2111         u32 alignment;
2112
2113         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2114
2115         alignment = intel_surf_alignment(fb, 0);
2116
2117         intel_fill_fb_ggtt_view(&view, fb, rotation);
2118
2119         /* Note that the w/a also requires 64 PTE of padding following the
2120          * bo. We currently fill all unused PTE with the shadow page and so
2121          * we should always have valid PTE following the scanout preventing
2122          * the VT-d warning.
2123          */
2124         if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2125                 alignment = 256 * 1024;
2126
2127         /*
2128          * Global gtt pte registers are special registers which actually forward
2129          * writes to a chunk of system memory. Which means that there is no risk
2130          * that the register values disappear as soon as we call
2131          * intel_runtime_pm_put(), so it is correct to wrap only the
2132          * pin/unpin/fence and not more.
2133          */
2134         intel_runtime_pm_get(dev_priv);
2135
2136         atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2137
2138         vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2139         if (IS_ERR(vma))
2140                 goto err;
2141
2142         if (i915_vma_is_map_and_fenceable(vma)) {
2143                 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2144                  * fence, whereas 965+ only requires a fence if using
2145                  * framebuffer compression.  For simplicity, we always, when
2146                  * possible, install a fence as the cost is not that onerous.
2147                  *
2148                  * If we fail to fence the tiled scanout, then either the
2149                  * modeset will reject the change (which is highly unlikely as
2150                  * the affected systems, all but one, do not have unmappable
2151                  * space) or we will not be able to enable full powersaving
2152                  * techniques (also likely not to apply due to various limits
2153                  * FBC and the like impose on the size of the buffer, which
2154                  * presumably we violated anyway with this unmappable buffer).
2155                  * Anyway, it is presumably better to stumble onwards with
2156                  * something and try to run the system in a "less than optimal"
2157                  * mode that matches the user configuration.
2158                  */
2159                 i915_vma_pin_fence(vma);
2160         }
2161
2162         i915_vma_get(vma);
2163 err:
2164         atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2165
2166         intel_runtime_pm_put(dev_priv);
2167         return vma;
2168 }
2169
2170 void intel_unpin_fb_vma(struct i915_vma *vma)
2171 {
2172         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
2173
2174         i915_vma_unpin_fence(vma);
2175         i915_gem_object_unpin_from_display_plane(vma);
2176         i915_vma_put(vma);
2177 }
2178
2179 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2180                           unsigned int rotation)
2181 {
2182         if (drm_rotation_90_or_270(rotation))
2183                 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2184         else
2185                 return fb->pitches[plane];
2186 }
2187
2188 /*
2189  * Convert the x/y offsets into a linear offset.
2190  * Only valid with 0/180 degree rotation, which is fine since linear
2191  * offset is only used with linear buffers on pre-hsw and tiled buffers
2192  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2193  */
2194 u32 intel_fb_xy_to_linear(int x, int y,
2195                           const struct intel_plane_state *state,
2196                           int plane)
2197 {
2198         const struct drm_framebuffer *fb = state->base.fb;
2199         unsigned int cpp = fb->format->cpp[plane];
2200         unsigned int pitch = fb->pitches[plane];
2201
2202         return y * pitch + x * cpp;
2203 }
2204
2205 /*
2206  * Add the x/y offsets derived from fb->offsets[] to the user
2207  * specified plane src x/y offsets. The resulting x/y offsets
2208  * specify the start of scanout from the beginning of the gtt mapping.
2209  */
2210 void intel_add_fb_offsets(int *x, int *y,
2211                           const struct intel_plane_state *state,
2212                           int plane)
2213
2214 {
2215         const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2216         unsigned int rotation = state->base.rotation;
2217
2218         if (drm_rotation_90_or_270(rotation)) {
2219                 *x += intel_fb->rotated[plane].x;
2220                 *y += intel_fb->rotated[plane].y;
2221         } else {
2222                 *x += intel_fb->normal[plane].x;
2223                 *y += intel_fb->normal[plane].y;
2224         }
2225 }
2226
2227 static u32 __intel_adjust_tile_offset(int *x, int *y,
2228                                       unsigned int tile_width,
2229                                       unsigned int tile_height,
2230                                       unsigned int tile_size,
2231                                       unsigned int pitch_tiles,
2232                                       u32 old_offset,
2233                                       u32 new_offset)
2234 {
2235         unsigned int pitch_pixels = pitch_tiles * tile_width;
2236         unsigned int tiles;
2237
2238         WARN_ON(old_offset & (tile_size - 1));
2239         WARN_ON(new_offset & (tile_size - 1));
2240         WARN_ON(new_offset > old_offset);
2241
2242         tiles = (old_offset - new_offset) / tile_size;
2243
2244         *y += tiles / pitch_tiles * tile_height;
2245         *x += tiles % pitch_tiles * tile_width;
2246
2247         /* minimize x in case it got needlessly big */
2248         *y += *x / pitch_pixels * tile_height;
2249         *x %= pitch_pixels;
2250
2251         return new_offset;
2252 }
2253
2254 static u32 _intel_adjust_tile_offset(int *x, int *y,
2255                                      const struct drm_framebuffer *fb, int plane,
2256                                      unsigned int rotation,
2257                                      u32 old_offset, u32 new_offset)
2258 {
2259         const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2260         unsigned int cpp = fb->format->cpp[plane];
2261         unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2262
2263         WARN_ON(new_offset > old_offset);
2264
2265         if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2266                 unsigned int tile_size, tile_width, tile_height;
2267                 unsigned int pitch_tiles;
2268
2269                 tile_size = intel_tile_size(dev_priv);
2270                 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2271
2272                 if (drm_rotation_90_or_270(rotation)) {
2273                         pitch_tiles = pitch / tile_height;
2274                         swap(tile_width, tile_height);
2275                 } else {
2276                         pitch_tiles = pitch / (tile_width * cpp);
2277                 }
2278
2279                 __intel_adjust_tile_offset(x, y, tile_width, tile_height,
2280                                            tile_size, pitch_tiles,
2281                                            old_offset, new_offset);
2282         } else {
2283                 old_offset += *y * pitch + *x * cpp;
2284
2285                 *y = (old_offset - new_offset) / pitch;
2286                 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2287         }
2288
2289         return new_offset;
2290 }
2291
2292 /*
2293  * Adjust the tile offset by moving the difference into
2294  * the x/y offsets.
2295  */
2296 static u32 intel_adjust_tile_offset(int *x, int *y,
2297                                     const struct intel_plane_state *state, int plane,
2298                                     u32 old_offset, u32 new_offset)
2299 {
2300         return _intel_adjust_tile_offset(x, y, state->base.fb, plane,
2301                                          state->base.rotation,
2302                                          old_offset, new_offset);
2303 }
2304
2305 /*
2306  * Computes the linear offset to the base tile and adjusts
2307  * x, y. bytes per pixel is assumed to be a power-of-two.
2308  *
2309  * In the 90/270 rotated case, x and y are assumed
2310  * to be already rotated to match the rotated GTT view, and
2311  * pitch is the tile_height aligned framebuffer height.
2312  *
2313  * This function is used when computing the derived information
2314  * under intel_framebuffer, so using any of that information
2315  * here is not allowed. Anything under drm_framebuffer can be
2316  * used. This is why the user has to pass in the pitch since it
2317  * is specified in the rotated orientation.
2318  */
2319 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2320                                       int *x, int *y,
2321                                       const struct drm_framebuffer *fb, int plane,
2322                                       unsigned int pitch,
2323                                       unsigned int rotation,
2324                                       u32 alignment)
2325 {
2326         uint64_t fb_modifier = fb->modifier;
2327         unsigned int cpp = fb->format->cpp[plane];
2328         u32 offset, offset_aligned;
2329
2330         if (alignment)
2331                 alignment--;
2332
2333         if (fb_modifier != DRM_FORMAT_MOD_LINEAR) {
2334                 unsigned int tile_size, tile_width, tile_height;
2335                 unsigned int tile_rows, tiles, pitch_tiles;
2336
2337                 tile_size = intel_tile_size(dev_priv);
2338                 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2339
2340                 if (drm_rotation_90_or_270(rotation)) {
2341                         pitch_tiles = pitch / tile_height;
2342                         swap(tile_width, tile_height);
2343                 } else {
2344                         pitch_tiles = pitch / (tile_width * cpp);
2345                 }
2346
2347                 tile_rows = *y / tile_height;
2348                 *y %= tile_height;
2349
2350                 tiles = *x / tile_width;
2351                 *x %= tile_width;
2352
2353                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2354                 offset_aligned = offset & ~alignment;
2355
2356                 __intel_adjust_tile_offset(x, y, tile_width, tile_height,
2357                                            tile_size, pitch_tiles,
2358                                            offset, offset_aligned);
2359         } else {
2360                 offset = *y * pitch + *x * cpp;
2361                 offset_aligned = offset & ~alignment;
2362
2363                 *y = (offset & alignment) / pitch;
2364                 *x = ((offset & alignment) - *y * pitch) / cpp;
2365         }
2366
2367         return offset_aligned;
2368 }
2369
2370 u32 intel_compute_tile_offset(int *x, int *y,
2371                               const struct intel_plane_state *state,
2372                               int plane)
2373 {
2374         struct intel_plane *intel_plane = to_intel_plane(state->base.plane);
2375         struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2376         const struct drm_framebuffer *fb = state->base.fb;
2377         unsigned int rotation = state->base.rotation;
2378         int pitch = intel_fb_pitch(fb, plane, rotation);
2379         u32 alignment;
2380
2381         if (intel_plane->id == PLANE_CURSOR)
2382                 alignment = intel_cursor_alignment(dev_priv);
2383         else
2384                 alignment = intel_surf_alignment(fb, plane);
2385
2386         return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2387                                           rotation, alignment);
2388 }
2389
2390 /* Convert the fb->offset[] into x/y offsets */
2391 static int intel_fb_offset_to_xy(int *x, int *y,
2392                                  const struct drm_framebuffer *fb, int plane)
2393 {
2394         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2395
2396         if (fb->modifier != DRM_FORMAT_MOD_LINEAR &&
2397             fb->offsets[plane] % intel_tile_size(dev_priv))
2398                 return -EINVAL;
2399
2400         *x = 0;
2401         *y = 0;
2402
2403         _intel_adjust_tile_offset(x, y,
2404                                   fb, plane, DRM_MODE_ROTATE_0,
2405                                   fb->offsets[plane], 0);
2406
2407         return 0;
2408 }
2409
2410 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2411 {
2412         switch (fb_modifier) {
2413         case I915_FORMAT_MOD_X_TILED:
2414                 return I915_TILING_X;
2415         case I915_FORMAT_MOD_Y_TILED:
2416         case I915_FORMAT_MOD_Y_TILED_CCS:
2417                 return I915_TILING_Y;
2418         default:
2419                 return I915_TILING_NONE;
2420         }
2421 }
2422
2423 static const struct drm_format_info ccs_formats[] = {
2424         { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2425         { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2426         { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2427         { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2428 };
2429
2430 static const struct drm_format_info *
2431 lookup_format_info(const struct drm_format_info formats[],
2432                    int num_formats, u32 format)
2433 {
2434         int i;
2435
2436         for (i = 0; i < num_formats; i++) {
2437                 if (formats[i].format == format)
2438                         return &formats[i];
2439         }
2440
2441         return NULL;
2442 }
2443
2444 static const struct drm_format_info *
2445 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2446 {
2447         switch (cmd->modifier[0]) {
2448         case I915_FORMAT_MOD_Y_TILED_CCS:
2449         case I915_FORMAT_MOD_Yf_TILED_CCS:
2450                 return lookup_format_info(ccs_formats,
2451                                           ARRAY_SIZE(ccs_formats),
2452                                           cmd->pixel_format);
2453         default:
2454                 return NULL;
2455         }
2456 }
2457
2458 static int
2459 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2460                    struct drm_framebuffer *fb)
2461 {
2462         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2463         struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2464         u32 gtt_offset_rotated = 0;
2465         unsigned int max_size = 0;
2466         int i, num_planes = fb->format->num_planes;
2467         unsigned int tile_size = intel_tile_size(dev_priv);
2468
2469         for (i = 0; i < num_planes; i++) {
2470                 unsigned int width, height;
2471                 unsigned int cpp, size;
2472                 u32 offset;
2473                 int x, y;
2474                 int ret;
2475
2476                 cpp = fb->format->cpp[i];
2477                 width = drm_framebuffer_plane_width(fb->width, fb, i);
2478                 height = drm_framebuffer_plane_height(fb->height, fb, i);
2479
2480                 ret = intel_fb_offset_to_xy(&x, &y, fb, i);
2481                 if (ret) {
2482                         DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2483                                       i, fb->offsets[i]);
2484                         return ret;
2485                 }
2486
2487                 if ((fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2488                      fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS) && i == 1) {
2489                         int hsub = fb->format->hsub;
2490                         int vsub = fb->format->vsub;
2491                         int tile_width, tile_height;
2492                         int main_x, main_y;
2493                         int ccs_x, ccs_y;
2494
2495                         intel_tile_dims(fb, i, &tile_width, &tile_height);
2496                         tile_width *= hsub;
2497                         tile_height *= vsub;
2498
2499                         ccs_x = (x * hsub) % tile_width;
2500                         ccs_y = (y * vsub) % tile_height;
2501                         main_x = intel_fb->normal[0].x % tile_width;
2502                         main_y = intel_fb->normal[0].y % tile_height;
2503
2504                         /*
2505                          * CCS doesn't have its own x/y offset register, so the intra CCS tile
2506                          * x/y offsets must match between CCS and the main surface.
2507                          */
2508                         if (main_x != ccs_x || main_y != ccs_y) {
2509                                 DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2510                                               main_x, main_y,
2511                                               ccs_x, ccs_y,
2512                                               intel_fb->normal[0].x,
2513                                               intel_fb->normal[0].y,
2514                                               x, y);
2515                                 return -EINVAL;
2516                         }
2517                 }
2518
2519                 /*
2520                  * The fence (if used) is aligned to the start of the object
2521                  * so having the framebuffer wrap around across the edge of the
2522                  * fenced region doesn't really work. We have no API to configure
2523                  * the fence start offset within the object (nor could we probably
2524                  * on gen2/3). So it's just easier if we just require that the
2525                  * fb layout agrees with the fence layout. We already check that the
2526                  * fb stride matches the fence stride elsewhere.
2527                  */
2528                 if (i == 0 && i915_gem_object_is_tiled(intel_fb->obj) &&
2529                     (x + width) * cpp > fb->pitches[i]) {
2530                         DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2531                                       i, fb->offsets[i]);
2532                         return -EINVAL;
2533                 }
2534
2535                 /*
2536                  * First pixel of the framebuffer from
2537                  * the start of the normal gtt mapping.
2538                  */
2539                 intel_fb->normal[i].x = x;
2540                 intel_fb->normal[i].y = y;
2541
2542                 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2543                                                     fb, i, fb->pitches[i],
2544                                                     DRM_MODE_ROTATE_0, tile_size);
2545                 offset /= tile_size;
2546
2547                 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2548                         unsigned int tile_width, tile_height;
2549                         unsigned int pitch_tiles;
2550                         struct drm_rect r;
2551
2552                         intel_tile_dims(fb, i, &tile_width, &tile_height);
2553
2554                         rot_info->plane[i].offset = offset;
2555                         rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2556                         rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2557                         rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2558
2559                         intel_fb->rotated[i].pitch =
2560                                 rot_info->plane[i].height * tile_height;
2561
2562                         /* how many tiles does this plane need */
2563                         size = rot_info->plane[i].stride * rot_info->plane[i].height;
2564                         /*
2565                          * If the plane isn't horizontally tile aligned,
2566                          * we need one more tile.
2567                          */
2568                         if (x != 0)
2569                                 size++;
2570
2571                         /* rotate the x/y offsets to match the GTT view */
2572                         r.x1 = x;
2573                         r.y1 = y;
2574                         r.x2 = x + width;
2575                         r.y2 = y + height;
2576                         drm_rect_rotate(&r,
2577                                         rot_info->plane[i].width * tile_width,
2578                                         rot_info->plane[i].height * tile_height,
2579                                         DRM_MODE_ROTATE_270);
2580                         x = r.x1;
2581                         y = r.y1;
2582
2583                         /* rotate the tile dimensions to match the GTT view */
2584                         pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2585                         swap(tile_width, tile_height);
2586
2587                         /*
2588                          * We only keep the x/y offsets, so push all of the
2589                          * gtt offset into the x/y offsets.
2590                          */
2591                         __intel_adjust_tile_offset(&x, &y,
2592                                                    tile_width, tile_height,
2593                                                    tile_size, pitch_tiles,
2594                                                    gtt_offset_rotated * tile_size, 0);
2595
2596                         gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2597
2598                         /*
2599                          * First pixel of the framebuffer from
2600                          * the start of the rotated gtt mapping.
2601                          */
2602                         intel_fb->rotated[i].x = x;
2603                         intel_fb->rotated[i].y = y;
2604                 } else {
2605                         size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2606                                             x * cpp, tile_size);
2607                 }
2608
2609                 /* how many tiles in total needed in the bo */
2610                 max_size = max(max_size, offset + size);
2611         }
2612
2613         if (max_size * tile_size > intel_fb->obj->base.size) {
2614                 DRM_DEBUG_KMS("fb too big for bo (need %u bytes, have %zu bytes)\n",
2615                               max_size * tile_size, intel_fb->obj->base.size);
2616                 return -EINVAL;
2617         }
2618
2619         return 0;
2620 }
2621
2622 static int i9xx_format_to_fourcc(int format)
2623 {
2624         switch (format) {
2625         case DISPPLANE_8BPP:
2626                 return DRM_FORMAT_C8;
2627         case DISPPLANE_BGRX555:
2628                 return DRM_FORMAT_XRGB1555;
2629         case DISPPLANE_BGRX565:
2630                 return DRM_FORMAT_RGB565;
2631         default:
2632         case DISPPLANE_BGRX888:
2633                 return DRM_FORMAT_XRGB8888;
2634         case DISPPLANE_RGBX888:
2635                 return DRM_FORMAT_XBGR8888;
2636         case DISPPLANE_BGRX101010:
2637                 return DRM_FORMAT_XRGB2101010;
2638         case DISPPLANE_RGBX101010:
2639                 return DRM_FORMAT_XBGR2101010;
2640         }
2641 }
2642
2643 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2644 {
2645         switch (format) {
2646         case PLANE_CTL_FORMAT_RGB_565:
2647                 return DRM_FORMAT_RGB565;
2648         default:
2649         case PLANE_CTL_FORMAT_XRGB_8888:
2650                 if (rgb_order) {
2651                         if (alpha)
2652                                 return DRM_FORMAT_ABGR8888;
2653                         else
2654                                 return DRM_FORMAT_XBGR8888;
2655                 } else {
2656                         if (alpha)
2657                                 return DRM_FORMAT_ARGB8888;
2658                         else
2659                                 return DRM_FORMAT_XRGB8888;
2660                 }
2661         case PLANE_CTL_FORMAT_XRGB_2101010:
2662                 if (rgb_order)
2663                         return DRM_FORMAT_XBGR2101010;
2664                 else
2665                         return DRM_FORMAT_XRGB2101010;
2666         }
2667 }
2668
2669 static bool
2670 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2671                               struct intel_initial_plane_config *plane_config)
2672 {
2673         struct drm_device *dev = crtc->base.dev;
2674         struct drm_i915_private *dev_priv = to_i915(dev);
2675         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2676         struct drm_i915_gem_object *obj = NULL;
2677         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2678         struct drm_framebuffer *fb = &plane_config->fb->base;
2679         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2680         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2681                                     PAGE_SIZE);
2682
2683         size_aligned -= base_aligned;
2684
2685         if (plane_config->size == 0)
2686                 return false;
2687
2688         /* If the FB is too big, just don't use it since fbdev is not very
2689          * important and we should probably use that space with FBC or other
2690          * features. */
2691         if (size_aligned * 2 > ggtt->stolen_usable_size)
2692                 return false;
2693
2694         mutex_lock(&dev->struct_mutex);
2695         obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
2696                                                              base_aligned,
2697                                                              base_aligned,
2698                                                              size_aligned);
2699         mutex_unlock(&dev->struct_mutex);
2700         if (!obj)
2701                 return false;
2702
2703         if (plane_config->tiling == I915_TILING_X)
2704                 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2705
2706         mode_cmd.pixel_format = fb->format->format;
2707         mode_cmd.width = fb->width;
2708         mode_cmd.height = fb->height;
2709         mode_cmd.pitches[0] = fb->pitches[0];
2710         mode_cmd.modifier[0] = fb->modifier;
2711         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2712
2713         if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
2714                 DRM_DEBUG_KMS("intel fb init failed\n");
2715                 goto out_unref_obj;
2716         }
2717
2718
2719         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2720         return true;
2721
2722 out_unref_obj:
2723         i915_gem_object_put(obj);
2724         return false;
2725 }
2726
2727 static void
2728 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
2729                         struct intel_plane_state *plane_state,
2730                         bool visible)
2731 {
2732         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2733
2734         plane_state->base.visible = visible;
2735
2736         /* FIXME pre-g4x don't work like this */
2737         if (visible) {
2738                 crtc_state->base.plane_mask |= BIT(drm_plane_index(&plane->base));
2739                 crtc_state->active_planes |= BIT(plane->id);
2740         } else {
2741                 crtc_state->base.plane_mask &= ~BIT(drm_plane_index(&plane->base));
2742                 crtc_state->active_planes &= ~BIT(plane->id);
2743         }
2744
2745         DRM_DEBUG_KMS("%s active planes 0x%x\n",
2746                       crtc_state->base.crtc->name,
2747                       crtc_state->active_planes);
2748 }
2749
2750 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
2751                                          struct intel_plane *plane)
2752 {
2753         struct intel_crtc_state *crtc_state =
2754                 to_intel_crtc_state(crtc->base.state);
2755         struct intel_plane_state *plane_state =
2756                 to_intel_plane_state(plane->base.state);
2757
2758         intel_set_plane_visible(crtc_state, plane_state, false);
2759
2760         if (plane->id == PLANE_PRIMARY)
2761                 intel_pre_disable_primary_noatomic(&crtc->base);
2762
2763         trace_intel_disable_plane(&plane->base, crtc);
2764         plane->disable_plane(plane, crtc);
2765 }
2766
2767 static void
2768 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2769                              struct intel_initial_plane_config *plane_config)
2770 {
2771         struct drm_device *dev = intel_crtc->base.dev;
2772         struct drm_i915_private *dev_priv = to_i915(dev);
2773         struct drm_crtc *c;
2774         struct drm_i915_gem_object *obj;
2775         struct drm_plane *primary = intel_crtc->base.primary;
2776         struct drm_plane_state *plane_state = primary->state;
2777         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2778         struct intel_plane *intel_plane = to_intel_plane(primary);
2779         struct intel_plane_state *intel_state =
2780                 to_intel_plane_state(plane_state);
2781         struct drm_framebuffer *fb;
2782
2783         if (!plane_config->fb)
2784                 return;
2785
2786         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2787                 fb = &plane_config->fb->base;
2788                 goto valid_fb;
2789         }
2790
2791         kfree(plane_config->fb);
2792
2793         /*
2794          * Failed to alloc the obj, check to see if we should share
2795          * an fb with another CRTC instead
2796          */
2797         for_each_crtc(dev, c) {
2798                 struct intel_plane_state *state;
2799
2800                 if (c == &intel_crtc->base)
2801                         continue;
2802
2803                 if (!to_intel_crtc(c)->active)
2804                         continue;
2805
2806                 state = to_intel_plane_state(c->primary->state);
2807                 if (!state->vma)
2808                         continue;
2809
2810                 if (intel_plane_ggtt_offset(state) == plane_config->base) {
2811                         fb = c->primary->fb;
2812                         drm_framebuffer_get(fb);
2813                         goto valid_fb;
2814                 }
2815         }
2816
2817         /*
2818          * We've failed to reconstruct the BIOS FB.  Current display state
2819          * indicates that the primary plane is visible, but has a NULL FB,
2820          * which will lead to problems later if we don't fix it up.  The
2821          * simplest solution is to just disable the primary plane now and
2822          * pretend the BIOS never had it enabled.
2823          */
2824         intel_plane_disable_noatomic(intel_crtc, intel_plane);
2825
2826         return;
2827
2828 valid_fb:
2829         mutex_lock(&dev->struct_mutex);
2830         intel_state->vma =
2831                 intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2832         mutex_unlock(&dev->struct_mutex);
2833         if (IS_ERR(intel_state->vma)) {
2834                 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2835                           intel_crtc->pipe, PTR_ERR(intel_state->vma));
2836
2837                 intel_state->vma = NULL;
2838                 drm_framebuffer_put(fb);
2839                 return;
2840         }
2841
2842         plane_state->src_x = 0;
2843         plane_state->src_y = 0;
2844         plane_state->src_w = fb->width << 16;
2845         plane_state->src_h = fb->height << 16;
2846
2847         plane_state->crtc_x = 0;
2848         plane_state->crtc_y = 0;
2849         plane_state->crtc_w = fb->width;
2850         plane_state->crtc_h = fb->height;
2851
2852         intel_state->base.src = drm_plane_state_src(plane_state);
2853         intel_state->base.dst = drm_plane_state_dest(plane_state);
2854
2855         obj = intel_fb_obj(fb);
2856         if (i915_gem_object_is_tiled(obj))
2857                 dev_priv->preserve_bios_swizzle = true;
2858
2859         drm_framebuffer_get(fb);
2860         primary->fb = primary->state->fb = fb;
2861         primary->crtc = primary->state->crtc = &intel_crtc->base;
2862
2863         intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2864                                 to_intel_plane_state(plane_state),
2865                                 true);
2866
2867         atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2868                   &obj->frontbuffer_bits);
2869 }
2870
2871 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2872                                unsigned int rotation)
2873 {
2874         int cpp = fb->format->cpp[plane];
2875
2876         switch (fb->modifier) {
2877         case DRM_FORMAT_MOD_LINEAR:
2878         case I915_FORMAT_MOD_X_TILED:
2879                 switch (cpp) {
2880                 case 8:
2881                         return 4096;
2882                 case 4:
2883                 case 2:
2884                 case 1:
2885                         return 8192;
2886                 default:
2887                         MISSING_CASE(cpp);
2888                         break;
2889                 }
2890                 break;
2891         case I915_FORMAT_MOD_Y_TILED_CCS:
2892         case I915_FORMAT_MOD_Yf_TILED_CCS:
2893                 /* FIXME AUX plane? */
2894         case I915_FORMAT_MOD_Y_TILED:
2895         case I915_FORMAT_MOD_Yf_TILED:
2896                 switch (cpp) {
2897                 case 8:
2898                         return 2048;
2899                 case 4:
2900                         return 4096;
2901                 case 2:
2902                 case 1:
2903                         return 8192;
2904                 default:
2905                         MISSING_CASE(cpp);
2906                         break;
2907                 }
2908                 break;
2909         default:
2910                 MISSING_CASE(fb->modifier);
2911         }
2912
2913         return 2048;
2914 }
2915
2916 static bool skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
2917                                            int main_x, int main_y, u32 main_offset)
2918 {
2919         const struct drm_framebuffer *fb = plane_state->base.fb;
2920         int hsub = fb->format->hsub;
2921         int vsub = fb->format->vsub;
2922         int aux_x = plane_state->aux.x;
2923         int aux_y = plane_state->aux.y;
2924         u32 aux_offset = plane_state->aux.offset;
2925         u32 alignment = intel_surf_alignment(fb, 1);
2926
2927         while (aux_offset >= main_offset && aux_y <= main_y) {
2928                 int x, y;
2929
2930                 if (aux_x == main_x && aux_y == main_y)
2931                         break;
2932
2933                 if (aux_offset == 0)
2934                         break;
2935
2936                 x = aux_x / hsub;
2937                 y = aux_y / vsub;
2938                 aux_offset = intel_adjust_tile_offset(&x, &y, plane_state, 1,
2939                                                       aux_offset, aux_offset - alignment);
2940                 aux_x = x * hsub + aux_x % hsub;
2941                 aux_y = y * vsub + aux_y % vsub;
2942         }
2943
2944         if (aux_x != main_x || aux_y != main_y)
2945                 return false;
2946
2947         plane_state->aux.offset = aux_offset;
2948         plane_state->aux.x = aux_x;
2949         plane_state->aux.y = aux_y;
2950
2951         return true;
2952 }
2953
2954 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2955 {
2956         const struct drm_framebuffer *fb = plane_state->base.fb;
2957         unsigned int rotation = plane_state->base.rotation;
2958         int x = plane_state->base.src.x1 >> 16;
2959         int y = plane_state->base.src.y1 >> 16;
2960         int w = drm_rect_width(&plane_state->base.src) >> 16;
2961         int h = drm_rect_height(&plane_state->base.src) >> 16;
2962         int max_width = skl_max_plane_width(fb, 0, rotation);
2963         int max_height = 4096;
2964         u32 alignment, offset, aux_offset = plane_state->aux.offset;
2965
2966         if (w > max_width || h > max_height) {
2967                 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2968                               w, h, max_width, max_height);
2969                 return -EINVAL;
2970         }
2971
2972         intel_add_fb_offsets(&x, &y, plane_state, 0);
2973         offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2974         alignment = intel_surf_alignment(fb, 0);
2975
2976         /*
2977          * AUX surface offset is specified as the distance from the
2978          * main surface offset, and it must be non-negative. Make
2979          * sure that is what we will get.
2980          */
2981         if (offset > aux_offset)
2982                 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2983                                                   offset, aux_offset & ~(alignment - 1));
2984
2985         /*
2986          * When using an X-tiled surface, the plane blows up
2987          * if the x offset + width exceed the stride.
2988          *
2989          * TODO: linear and Y-tiled seem fine, Yf untested,
2990          */
2991         if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2992                 int cpp = fb->format->cpp[0];
2993
2994                 while ((x + w) * cpp > fb->pitches[0]) {
2995                         if (offset == 0) {
2996                                 DRM_DEBUG_KMS("Unable to find suitable display surface offset due to X-tiling\n");
2997                                 return -EINVAL;
2998                         }
2999
3000                         offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
3001                                                           offset, offset - alignment);
3002                 }
3003         }
3004
3005         /*
3006          * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3007          * they match with the main surface x/y offsets.
3008          */
3009         if (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
3010             fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS) {
3011                 while (!skl_check_main_ccs_coordinates(plane_state, x, y, offset)) {
3012                         if (offset == 0)
3013                                 break;
3014
3015                         offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
3016                                                           offset, offset - alignment);
3017                 }
3018
3019                 if (x != plane_state->aux.x || y != plane_state->aux.y) {
3020                         DRM_DEBUG_KMS("Unable to find suitable display surface offset due to CCS\n");
3021                         return -EINVAL;
3022                 }
3023         }
3024
3025         plane_state->main.offset = offset;
3026         plane_state->main.x = x;
3027         plane_state->main.y = y;
3028
3029         return 0;
3030 }
3031
3032 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3033 {
3034         const struct drm_framebuffer *fb = plane_state->base.fb;
3035         unsigned int rotation = plane_state->base.rotation;
3036         int max_width = skl_max_plane_width(fb, 1, rotation);
3037         int max_height = 4096;
3038         int x = plane_state->base.src.x1 >> 17;
3039         int y = plane_state->base.src.y1 >> 17;
3040         int w = drm_rect_width(&plane_state->base.src) >> 17;
3041         int h = drm_rect_height(&plane_state->base.src) >> 17;
3042         u32 offset;
3043
3044         intel_add_fb_offsets(&x, &y, plane_state, 1);
3045         offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
3046
3047         /* FIXME not quite sure how/if these apply to the chroma plane */
3048         if (w > max_width || h > max_height) {
3049                 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
3050                               w, h, max_width, max_height);
3051                 return -EINVAL;
3052         }
3053
3054         plane_state->aux.offset = offset;
3055         plane_state->aux.x = x;
3056         plane_state->aux.y = y;
3057
3058         return 0;
3059 }
3060
3061 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
3062 {
3063         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
3064         struct intel_crtc *crtc = to_intel_crtc(plane_state->base.crtc);
3065         const struct drm_framebuffer *fb = plane_state->base.fb;
3066         int src_x = plane_state->base.src.x1 >> 16;
3067         int src_y = plane_state->base.src.y1 >> 16;
3068         int hsub = fb->format->hsub;
3069         int vsub = fb->format->vsub;
3070         int x = src_x / hsub;
3071         int y = src_y / vsub;
3072         u32 offset;
3073
3074         switch (plane->id) {
3075         case PLANE_PRIMARY:
3076         case PLANE_SPRITE0:
3077                 break;
3078         default:
3079                 DRM_DEBUG_KMS("RC support only on plane 1 and 2\n");
3080                 return -EINVAL;
3081         }
3082
3083         if (crtc->pipe == PIPE_C) {
3084                 DRM_DEBUG_KMS("No RC support on pipe C\n");
3085                 return -EINVAL;
3086         }
3087
3088         if (plane_state->base.rotation & ~(DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180)) {
3089                 DRM_DEBUG_KMS("RC support only with 0/180 degree rotation %x\n",
3090                               plane_state->base.rotation);
3091                 return -EINVAL;
3092         }
3093
3094         intel_add_fb_offsets(&x, &y, plane_state, 1);
3095         offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
3096
3097         plane_state->aux.offset = offset;
3098         plane_state->aux.x = x * hsub + src_x % hsub;
3099         plane_state->aux.y = y * vsub + src_y % vsub;
3100
3101         return 0;
3102 }
3103
3104 int skl_check_plane_surface(struct intel_plane_state *plane_state)
3105 {
3106         const struct drm_framebuffer *fb = plane_state->base.fb;
3107         unsigned int rotation = plane_state->base.rotation;
3108         int ret;
3109
3110         if (!plane_state->base.visible)
3111                 return 0;
3112
3113         /* Rotate src coordinates to match rotated GTT view */
3114         if (drm_rotation_90_or_270(rotation))
3115                 drm_rect_rotate(&plane_state->base.src,
3116                                 fb->width << 16, fb->height << 16,
3117                                 DRM_MODE_ROTATE_270);
3118
3119         /*
3120          * Handle the AUX surface first since
3121          * the main surface setup depends on it.
3122          */
3123         if (fb->format->format == DRM_FORMAT_NV12) {
3124                 ret = skl_check_nv12_aux_surface(plane_state);
3125                 if (ret)
3126                         return ret;
3127         } else if (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
3128                    fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS) {
3129                 ret = skl_check_ccs_aux_surface(plane_state);
3130                 if (ret)
3131                         return ret;
3132         } else {
3133                 plane_state->aux.offset = ~0xfff;
3134                 plane_state->aux.x = 0;
3135                 plane_state->aux.y = 0;
3136         }
3137
3138         ret = skl_check_main_surface(plane_state);
3139         if (ret)
3140                 return ret;
3141
3142         return 0;
3143 }
3144
3145 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
3146                           const struct intel_plane_state *plane_state)
3147 {
3148         struct drm_i915_private *dev_priv =
3149                 to_i915(plane_state->base.plane->dev);
3150         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3151         const struct drm_framebuffer *fb = plane_state->base.fb;
3152         unsigned int rotation = plane_state->base.rotation;
3153         u32 dspcntr;
3154
3155         dspcntr = DISPLAY_PLANE_ENABLE | DISPPLANE_GAMMA_ENABLE;
3156
3157         if (IS_G4X(dev_priv) || IS_GEN5(dev_priv) ||
3158             IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
3159                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3160
3161         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3162                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3163
3164         if (INTEL_GEN(dev_priv) < 4)
3165                 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
3166
3167         switch (fb->format->format) {
3168         case DRM_FORMAT_C8:
3169                 dspcntr |= DISPPLANE_8BPP;
3170                 break;
3171         case DRM_FORMAT_XRGB1555:
3172                 dspcntr |= DISPPLANE_BGRX555;
3173                 break;
3174         case DRM_FORMAT_RGB565:
3175                 dspcntr |= DISPPLANE_BGRX565;
3176                 break;
3177         case DRM_FORMAT_XRGB8888:
3178                 dspcntr |= DISPPLANE_BGRX888;
3179                 break;
3180         case DRM_FORMAT_XBGR8888:
3181                 dspcntr |= DISPPLANE_RGBX888;
3182                 break;
3183         case DRM_FORMAT_XRGB2101010:
3184                 dspcntr |= DISPPLANE_BGRX101010;
3185                 break;
3186         case DRM_FORMAT_XBGR2101010:
3187                 dspcntr |= DISPPLANE_RGBX101010;
3188                 break;
3189         default:
3190                 MISSING_CASE(fb->format->format);
3191                 return 0;
3192         }
3193
3194         if (INTEL_GEN(dev_priv) >= 4 &&
3195             fb->modifier == I915_FORMAT_MOD_X_TILED)
3196                 dspcntr |= DISPPLANE_TILED;
3197
3198         if (rotation & DRM_MODE_ROTATE_180)
3199                 dspcntr |= DISPPLANE_ROTATE_180;
3200
3201         if (rotation & DRM_MODE_REFLECT_X)
3202                 dspcntr |= DISPPLANE_MIRROR;
3203
3204         return dspcntr;
3205 }
3206
3207 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
3208 {
3209         struct drm_i915_private *dev_priv =
3210                 to_i915(plane_state->base.plane->dev);
3211         int src_x = plane_state->base.src.x1 >> 16;
3212         int src_y = plane_state->base.src.y1 >> 16;
3213         u32 offset;
3214
3215         intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
3216
3217         if (INTEL_GEN(dev_priv) >= 4)
3218                 offset = intel_compute_tile_offset(&src_x, &src_y,
3219                                                    plane_state, 0);
3220         else
3221                 offset = 0;
3222
3223         /* HSW/BDW do this automagically in hardware */
3224         if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
3225                 unsigned int rotation = plane_state->base.rotation;
3226                 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3227                 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3228
3229                 if (rotation & DRM_MODE_ROTATE_180) {
3230                         src_x += src_w - 1;
3231                         src_y += src_h - 1;
3232                 } else if (rotation & DRM_MODE_REFLECT_X) {
3233                         src_x += src_w - 1;
3234                 }
3235         }
3236
3237         plane_state->main.offset = offset;
3238         plane_state->main.x = src_x;
3239         plane_state->main.y = src_y;
3240
3241         return 0;
3242 }
3243
3244 static void i9xx_update_primary_plane(struct intel_plane *primary,
3245                                       const struct intel_crtc_state *crtc_state,
3246                                       const struct intel_plane_state *plane_state)
3247 {
3248         struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3249         const struct drm_framebuffer *fb = plane_state->base.fb;
3250         enum plane plane = primary->plane;
3251         u32 linear_offset;
3252         u32 dspcntr = plane_state->ctl;
3253         i915_reg_t reg = DSPCNTR(plane);
3254         int x = plane_state->main.x;
3255         int y = plane_state->main.y;
3256         unsigned long irqflags;
3257         u32 dspaddr_offset;
3258
3259         linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3260
3261         if (INTEL_GEN(dev_priv) >= 4)
3262                 dspaddr_offset = plane_state->main.offset;
3263         else
3264                 dspaddr_offset = linear_offset;
3265
3266         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3267
3268         if (INTEL_GEN(dev_priv) < 4) {
3269                 /* pipesrc and dspsize control the size that is scaled from,
3270                  * which should always be the user's requested size.
3271                  */
3272                 I915_WRITE_FW(DSPSIZE(plane),
3273                               ((crtc_state->pipe_src_h - 1) << 16) |
3274                               (crtc_state->pipe_src_w - 1));
3275                 I915_WRITE_FW(DSPPOS(plane), 0);
3276         } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3277                 I915_WRITE_FW(PRIMSIZE(plane),
3278                               ((crtc_state->pipe_src_h - 1) << 16) |
3279                               (crtc_state->pipe_src_w - 1));
3280                 I915_WRITE_FW(PRIMPOS(plane), 0);
3281                 I915_WRITE_FW(PRIMCNSTALPHA(plane), 0);
3282         }
3283
3284         I915_WRITE_FW(reg, dspcntr);
3285
3286         I915_WRITE_FW(DSPSTRIDE(plane), fb->pitches[0]);
3287         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3288                 I915_WRITE_FW(DSPSURF(plane),
3289                               intel_plane_ggtt_offset(plane_state) +
3290                               dspaddr_offset);
3291                 I915_WRITE_FW(DSPOFFSET(plane), (y << 16) | x);
3292         } else if (INTEL_GEN(dev_priv) >= 4) {
3293                 I915_WRITE_FW(DSPSURF(plane),
3294                               intel_plane_ggtt_offset(plane_state) +
3295                               dspaddr_offset);
3296                 I915_WRITE_FW(DSPTILEOFF(plane), (y << 16) | x);
3297                 I915_WRITE_FW(DSPLINOFF(plane), linear_offset);
3298         } else {
3299                 I915_WRITE_FW(DSPADDR(plane),
3300                               intel_plane_ggtt_offset(plane_state) +
3301                               dspaddr_offset);
3302         }
3303         POSTING_READ_FW(reg);
3304
3305         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3306 }
3307
3308 static void i9xx_disable_primary_plane(struct intel_plane *primary,
3309                                        struct intel_crtc *crtc)
3310 {
3311         struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3312         enum plane plane = primary->plane;
3313         unsigned long irqflags;
3314
3315         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3316
3317         I915_WRITE_FW(DSPCNTR(plane), 0);
3318         if (INTEL_INFO(dev_priv)->gen >= 4)
3319                 I915_WRITE_FW(DSPSURF(plane), 0);
3320         else
3321                 I915_WRITE_FW(DSPADDR(plane), 0);
3322         POSTING_READ_FW(DSPCNTR(plane));
3323
3324         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3325 }
3326
3327 static bool i9xx_plane_get_hw_state(struct intel_plane *primary)
3328 {
3329
3330         struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3331         enum intel_display_power_domain power_domain;
3332         enum plane plane = primary->plane;
3333         enum pipe pipe = primary->pipe;
3334         bool ret;
3335
3336         /*
3337          * Not 100% correct for planes that can move between pipes,
3338          * but that's only the case for gen2-4 which don't have any
3339          * display power wells.
3340          */
3341         power_domain = POWER_DOMAIN_PIPE(pipe);
3342         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3343                 return false;
3344
3345         ret = I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE;
3346
3347         intel_display_power_put(dev_priv, power_domain);
3348
3349         return ret;
3350 }
3351
3352 static u32
3353 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int plane)
3354 {
3355         if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
3356                 return 64;
3357         else
3358                 return intel_tile_width_bytes(fb, plane);
3359 }
3360
3361 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3362 {
3363         struct drm_device *dev = intel_crtc->base.dev;
3364         struct drm_i915_private *dev_priv = to_i915(dev);
3365
3366         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3367         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3368         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3369 }
3370
3371 /*
3372  * This function detaches (aka. unbinds) unused scalers in hardware
3373  */
3374 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3375 {
3376         struct intel_crtc_scaler_state *scaler_state;
3377         int i;
3378
3379         scaler_state = &intel_crtc->config->scaler_state;
3380
3381         /* loop through and disable scalers that aren't in use */
3382         for (i = 0; i < intel_crtc->num_scalers; i++) {
3383                 if (!scaler_state->scalers[i].in_use)
3384                         skl_detach_scaler(intel_crtc, i);
3385         }
3386 }
3387
3388 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3389                      unsigned int rotation)
3390 {
3391         u32 stride;
3392
3393         if (plane >= fb->format->num_planes)
3394                 return 0;
3395
3396         stride = intel_fb_pitch(fb, plane, rotation);
3397
3398         /*
3399          * The stride is either expressed as a multiple of 64 bytes chunks for
3400          * linear buffers or in number of tiles for tiled buffers.
3401          */
3402         if (drm_rotation_90_or_270(rotation))
3403                 stride /= intel_tile_height(fb, plane);
3404         else
3405                 stride /= intel_fb_stride_alignment(fb, plane);
3406
3407         return stride;
3408 }
3409
3410 static u32 skl_plane_ctl_format(uint32_t pixel_format)
3411 {
3412         switch (pixel_format) {
3413         case DRM_FORMAT_C8:
3414                 return PLANE_CTL_FORMAT_INDEXED;
3415         case DRM_FORMAT_RGB565:
3416                 return PLANE_CTL_FORMAT_RGB_565;
3417         case DRM_FORMAT_XBGR8888:
3418                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3419         case DRM_FORMAT_XRGB8888:
3420                 return PLANE_CTL_FORMAT_XRGB_8888;
3421         /*
3422          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3423          * to be already pre-multiplied. We need to add a knob (or a different
3424          * DRM_FORMAT) for user-space to configure that.
3425          */
3426         case DRM_FORMAT_ABGR8888:
3427                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3428                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3429         case DRM_FORMAT_ARGB8888:
3430                 return PLANE_CTL_FORMAT_XRGB_8888 |
3431                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3432         case DRM_FORMAT_XRGB2101010:
3433                 return PLANE_CTL_FORMAT_XRGB_2101010;
3434         case DRM_FORMAT_XBGR2101010:
3435                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3436         case DRM_FORMAT_YUYV:
3437                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3438         case DRM_FORMAT_YVYU:
3439                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3440         case DRM_FORMAT_UYVY:
3441                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3442         case DRM_FORMAT_VYUY:
3443                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3444         default:
3445                 MISSING_CASE(pixel_format);
3446         }
3447
3448         return 0;
3449 }
3450
3451 static u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3452 {
3453         switch (fb_modifier) {
3454         case DRM_FORMAT_MOD_LINEAR:
3455                 break;
3456         case I915_FORMAT_MOD_X_TILED:
3457                 return PLANE_CTL_TILED_X;
3458         case I915_FORMAT_MOD_Y_TILED:
3459                 return PLANE_CTL_TILED_Y;
3460         case I915_FORMAT_MOD_Y_TILED_CCS:
3461                 return PLANE_CTL_TILED_Y | PLANE_CTL_DECOMPRESSION_ENABLE;
3462         case I915_FORMAT_MOD_Yf_TILED:
3463                 return PLANE_CTL_TILED_YF;
3464         case I915_FORMAT_MOD_Yf_TILED_CCS:
3465                 return PLANE_CTL_TILED_YF | PLANE_CTL_DECOMPRESSION_ENABLE;
3466         default:
3467                 MISSING_CASE(fb_modifier);
3468         }
3469
3470         return 0;
3471 }
3472
3473 static u32 skl_plane_ctl_rotation(unsigned int rotation)
3474 {
3475         switch (rotation) {
3476         case DRM_MODE_ROTATE_0:
3477                 break;
3478         /*
3479          * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
3480          * while i915 HW rotation is clockwise, thats why this swapping.
3481          */
3482         case DRM_MODE_ROTATE_90:
3483                 return PLANE_CTL_ROTATE_270;
3484         case DRM_MODE_ROTATE_180:
3485                 return PLANE_CTL_ROTATE_180;
3486         case DRM_MODE_ROTATE_270:
3487                 return PLANE_CTL_ROTATE_90;
3488         default:
3489                 MISSING_CASE(rotation);
3490         }
3491
3492         return 0;
3493 }
3494
3495 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
3496                   const struct intel_plane_state *plane_state)
3497 {
3498         struct drm_i915_private *dev_priv =
3499                 to_i915(plane_state->base.plane->dev);
3500         const struct drm_framebuffer *fb = plane_state->base.fb;
3501         unsigned int rotation = plane_state->base.rotation;
3502         const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
3503         u32 plane_ctl;
3504
3505         plane_ctl = PLANE_CTL_ENABLE;
3506
3507         if (!IS_GEMINILAKE(dev_priv) && !IS_CANNONLAKE(dev_priv)) {
3508                 plane_ctl |=
3509                         PLANE_CTL_PIPE_GAMMA_ENABLE |
3510                         PLANE_CTL_PIPE_CSC_ENABLE |
3511                         PLANE_CTL_PLANE_GAMMA_DISABLE;
3512         }
3513
3514         plane_ctl |= skl_plane_ctl_format(fb->format->format);
3515         plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3516         plane_ctl |= skl_plane_ctl_rotation(rotation);
3517
3518         if (key->flags & I915_SET_COLORKEY_DESTINATION)
3519                 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
3520         else if (key->flags & I915_SET_COLORKEY_SOURCE)
3521                 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
3522
3523         return plane_ctl;
3524 }
3525
3526 static int
3527 __intel_display_resume(struct drm_device *dev,
3528                        struct drm_atomic_state *state,
3529                        struct drm_modeset_acquire_ctx *ctx)
3530 {
3531         struct drm_crtc_state *crtc_state;
3532         struct drm_crtc *crtc;
3533         int i, ret;
3534
3535         intel_modeset_setup_hw_state(dev, ctx);
3536         i915_redisable_vga(to_i915(dev));
3537
3538         if (!state)
3539                 return 0;
3540
3541         /*
3542          * We've duplicated the state, pointers to the old state are invalid.
3543          *
3544          * Don't attempt to use the old state until we commit the duplicated state.
3545          */
3546         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
3547                 /*
3548                  * Force recalculation even if we restore
3549                  * current state. With fast modeset this may not result
3550                  * in a modeset when the state is compatible.
3551                  */
3552                 crtc_state->mode_changed = true;
3553         }
3554
3555         /* ignore any reset values/BIOS leftovers in the WM registers */
3556         if (!HAS_GMCH_DISPLAY(to_i915(dev)))
3557                 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3558
3559         ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
3560
3561         WARN_ON(ret == -EDEADLK);
3562         return ret;
3563 }
3564
3565 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3566 {
3567         return intel_has_gpu_reset(dev_priv) &&
3568                 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3569 }
3570
3571 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3572 {
3573         struct drm_device *dev = &dev_priv->drm;
3574         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3575         struct drm_atomic_state *state;
3576         int ret;
3577
3578
3579         /* reset doesn't touch the display */
3580         if (!i915_modparams.force_reset_modeset_test &&
3581             !gpu_reset_clobbers_display(dev_priv))
3582                 return;
3583
3584         /* We have a modeset vs reset deadlock, defensively unbreak it. */
3585         set_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags);
3586         wake_up_all(&dev_priv->gpu_error.wait_queue);
3587
3588         if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
3589                 DRM_DEBUG_KMS("Modeset potentially stuck, unbreaking through wedging\n");
3590                 i915_gem_set_wedged(dev_priv);
3591         }
3592
3593         /*
3594          * Need mode_config.mutex so that we don't
3595          * trample ongoing ->detect() and whatnot.
3596          */
3597         mutex_lock(&dev->mode_config.mutex);
3598         drm_modeset_acquire_init(ctx, 0);
3599         while (1) {
3600                 ret = drm_modeset_lock_all_ctx(dev, ctx);
3601                 if (ret != -EDEADLK)
3602                         break;
3603
3604                 drm_modeset_backoff(ctx);
3605         }
3606         /*
3607          * Disabling the crtcs gracefully seems nicer. Also the
3608          * g33 docs say we should at least disable all the planes.
3609          */
3610         state = drm_atomic_helper_duplicate_state(dev, ctx);
3611         if (IS_ERR(state)) {
3612                 ret = PTR_ERR(state);
3613                 DRM_ERROR("Duplicating state failed with %i\n", ret);
3614                 return;
3615         }
3616
3617         ret = drm_atomic_helper_disable_all(dev, ctx);
3618         if (ret) {
3619                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3620                 drm_atomic_state_put(state);
3621                 return;
3622         }
3623
3624         dev_priv->modeset_restore_state = state;
3625         state->acquire_ctx = ctx;
3626 }
3627
3628 void intel_finish_reset(struct drm_i915_private *dev_priv)
3629 {
3630         struct drm_device *dev = &dev_priv->drm;
3631         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3632         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3633         int ret;
3634
3635         /* reset doesn't touch the display */
3636         if (!i915_modparams.force_reset_modeset_test &&
3637             !gpu_reset_clobbers_display(dev_priv))
3638                 return;
3639
3640         if (!state)
3641                 goto unlock;
3642
3643         dev_priv->modeset_restore_state = NULL;
3644
3645         /* reset doesn't touch the display */
3646         if (!gpu_reset_clobbers_display(dev_priv)) {
3647                 /* for testing only restore the display */
3648                 ret = __intel_display_resume(dev, state, ctx);
3649                 if (ret)
3650                         DRM_ERROR("Restoring old state failed with %i\n", ret);
3651         } else {
3652                 /*
3653                  * The display has been reset as well,
3654                  * so need a full re-initialization.
3655                  */
3656                 intel_runtime_pm_disable_interrupts(dev_priv);
3657                 intel_runtime_pm_enable_interrupts(dev_priv);
3658
3659                 intel_pps_unlock_regs_wa(dev_priv);
3660                 intel_modeset_init_hw(dev);
3661                 intel_init_clock_gating(dev_priv);
3662
3663                 spin_lock_irq(&dev_priv->irq_lock);
3664                 if (dev_priv->display.hpd_irq_setup)
3665                         dev_priv->display.hpd_irq_setup(dev_priv);
3666                 spin_unlock_irq(&dev_priv->irq_lock);
3667
3668                 ret = __intel_display_resume(dev, state, ctx);
3669                 if (ret)
3670                         DRM_ERROR("Restoring old state failed with %i\n", ret);
3671
3672                 intel_hpd_init(dev_priv);
3673         }
3674
3675         drm_atomic_state_put(state);
3676 unlock:
3677         drm_modeset_drop_locks(ctx);
3678         drm_modeset_acquire_fini(ctx);
3679         mutex_unlock(&dev->mode_config.mutex);
3680
3681         clear_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags);
3682 }
3683
3684 static void intel_update_pipe_config(const struct intel_crtc_state *old_crtc_state,
3685                                      const struct intel_crtc_state *new_crtc_state)
3686 {
3687         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
3688         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3689
3690         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3691         crtc->base.mode = new_crtc_state->base.mode;
3692
3693         /*
3694          * Update pipe size and adjust fitter if needed: the reason for this is
3695          * that in compute_mode_changes we check the native mode (not the pfit
3696          * mode) to see if we can flip rather than do a full mode set. In the
3697          * fastboot case, we'll flip, but if we don't update the pipesrc and
3698          * pfit state, we'll end up with a big fb scanned out into the wrong
3699          * sized surface.
3700          */
3701
3702         I915_WRITE(PIPESRC(crtc->pipe),
3703                    ((new_crtc_state->pipe_src_w - 1) << 16) |
3704                    (new_crtc_state->pipe_src_h - 1));
3705
3706         /* on skylake this is done by detaching scalers */
3707         if (INTEL_GEN(dev_priv) >= 9) {
3708                 skl_detach_scalers(crtc);
3709
3710                 if (new_crtc_state->pch_pfit.enabled)
3711                         skylake_pfit_enable(crtc);
3712         } else if (HAS_PCH_SPLIT(dev_priv)) {
3713                 if (new_crtc_state->pch_pfit.enabled)
3714                         ironlake_pfit_enable(crtc);
3715                 else if (old_crtc_state->pch_pfit.enabled)
3716                         ironlake_pfit_disable(crtc, true);
3717         }
3718 }
3719
3720 static void intel_fdi_normal_train(struct intel_crtc *crtc)
3721 {
3722         struct drm_device *dev = crtc->base.dev;
3723         struct drm_i915_private *dev_priv = to_i915(dev);
3724         int pipe = crtc->pipe;
3725         i915_reg_t reg;
3726         u32 temp;
3727
3728         /* enable normal train */
3729         reg = FDI_TX_CTL(pipe);
3730         temp = I915_READ(reg);
3731         if (IS_IVYBRIDGE(dev_priv)) {
3732                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3733                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3734         } else {
3735                 temp &= ~FDI_LINK_TRAIN_NONE;
3736                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3737         }
3738         I915_WRITE(reg, temp);
3739
3740         reg = FDI_RX_CTL(pipe);
3741         temp = I915_READ(reg);
3742         if (HAS_PCH_CPT(dev_priv)) {
3743                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3744                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3745         } else {
3746                 temp &= ~FDI_LINK_TRAIN_NONE;
3747                 temp |= FDI_LINK_TRAIN_NONE;
3748         }
3749         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3750
3751         /* wait one idle pattern time */
3752         POSTING_READ(reg);
3753         udelay(1000);
3754
3755         /* IVB wants error correction enabled */
3756         if (IS_IVYBRIDGE(dev_priv))
3757                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3758                            FDI_FE_ERRC_ENABLE);
3759 }
3760
3761 /* The FDI link training functions for ILK/Ibexpeak. */
3762 static void ironlake_fdi_link_train(struct intel_crtc *crtc,
3763                                     const struct intel_crtc_state *crtc_state)
3764 {
3765         struct drm_device *dev = crtc->base.dev;
3766         struct drm_i915_private *dev_priv = to_i915(dev);
3767         int pipe = crtc->pipe;
3768         i915_reg_t reg;
3769         u32 temp, tries;
3770
3771         /* FDI needs bits from pipe first */
3772         assert_pipe_enabled(dev_priv, pipe);
3773
3774         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3775            for train result */
3776         reg = FDI_RX_IMR(pipe);
3777         temp = I915_READ(reg);
3778         temp &= ~FDI_RX_SYMBOL_LOCK;
3779         temp &= ~FDI_RX_BIT_LOCK;
3780         I915_WRITE(reg, temp);
3781         I915_READ(reg);
3782         udelay(150);
3783
3784         /* enable CPU FDI TX and PCH FDI RX */
3785         reg = FDI_TX_CTL(pipe);
3786         temp = I915_READ(reg);
3787         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3788         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3789         temp &= ~FDI_LINK_TRAIN_NONE;
3790         temp |= FDI_LINK_TRAIN_PATTERN_1;
3791         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3792
3793         reg = FDI_RX_CTL(pipe);
3794         temp = I915_READ(reg);
3795         temp &= ~FDI_LINK_TRAIN_NONE;
3796         temp |= FDI_LINK_TRAIN_PATTERN_1;
3797         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3798
3799         POSTING_READ(reg);
3800         udelay(150);
3801
3802         /* Ironlake workaround, enable clock pointer after FDI enable*/
3803         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3804         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3805                    FDI_RX_PHASE_SYNC_POINTER_EN);
3806
3807         reg = FDI_RX_IIR(pipe);
3808         for (tries = 0; tries < 5; tries++) {
3809                 temp = I915_READ(reg);
3810                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3811
3812                 if ((temp & FDI_RX_BIT_LOCK)) {
3813                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3814                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3815                         break;
3816                 }
3817         }
3818         if (tries == 5)
3819                 DRM_ERROR("FDI train 1 fail!\n");
3820
3821         /* Train 2 */
3822         reg = FDI_TX_CTL(pipe);
3823         temp = I915_READ(reg);
3824         temp &= ~FDI_LINK_TRAIN_NONE;
3825         temp |= FDI_LINK_TRAIN_PATTERN_2;
3826         I915_WRITE(reg, temp);
3827
3828         reg = FDI_RX_CTL(pipe);
3829         temp = I915_READ(reg);
3830         temp &= ~FDI_LINK_TRAIN_NONE;
3831         temp |= FDI_LINK_TRAIN_PATTERN_2;
3832         I915_WRITE(reg, temp);
3833
3834         POSTING_READ(reg);
3835         udelay(150);
3836
3837         reg = FDI_RX_IIR(pipe);
3838         for (tries = 0; tries < 5; tries++) {
3839                 temp = I915_READ(reg);
3840                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3841
3842                 if (temp & FDI_RX_SYMBOL_LOCK) {
3843                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3844                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3845                         break;
3846                 }
3847         }
3848         if (tries == 5)
3849                 DRM_ERROR("FDI train 2 fail!\n");
3850
3851         DRM_DEBUG_KMS("FDI train done\n");
3852
3853 }
3854
3855 static const int snb_b_fdi_train_param[] = {
3856         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3857         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3858         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3859         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3860 };
3861
3862 /* The FDI link training functions for SNB/Cougarpoint. */
3863 static void gen6_fdi_link_train(struct intel_crtc *crtc,
3864                                 const struct intel_crtc_state *crtc_state)
3865 {
3866         struct drm_device *dev = crtc->base.dev;
3867         struct drm_i915_private *dev_priv = to_i915(dev);
3868         int pipe = crtc->pipe;
3869         i915_reg_t reg;
3870         u32 temp, i, retry;
3871
3872         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3873            for train result */
3874         reg = FDI_RX_IMR(pipe);
3875         temp = I915_READ(reg);
3876         temp &= ~FDI_RX_SYMBOL_LOCK;
3877         temp &= ~FDI_RX_BIT_LOCK;
3878         I915_WRITE(reg, temp);
3879
3880         POSTING_READ(reg);
3881         udelay(150);
3882
3883         /* enable CPU FDI TX and PCH FDI RX */
3884         reg = FDI_TX_CTL(pipe);
3885         temp = I915_READ(reg);
3886         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3887         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3888         temp &= ~FDI_LINK_TRAIN_NONE;
3889         temp |= FDI_LINK_TRAIN_PATTERN_1;
3890         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3891         /* SNB-B */
3892         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3893         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3894
3895         I915_WRITE(FDI_RX_MISC(pipe),
3896                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3897
3898         reg = FDI_RX_CTL(pipe);
3899         temp = I915_READ(reg);
3900         if (HAS_PCH_CPT(dev_priv)) {
3901                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3902                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3903         } else {
3904                 temp &= ~FDI_LINK_TRAIN_NONE;
3905                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3906         }
3907         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3908
3909         POSTING_READ(reg);
3910         udelay(150);
3911
3912         for (i = 0; i < 4; i++) {
3913                 reg = FDI_TX_CTL(pipe);
3914                 temp = I915_READ(reg);
3915                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3916                 temp |= snb_b_fdi_train_param[i];
3917                 I915_WRITE(reg, temp);
3918
3919                 POSTING_READ(reg);
3920                 udelay(500);
3921
3922                 for (retry = 0; retry < 5; retry++) {
3923                         reg = FDI_RX_IIR(pipe);
3924                         temp = I915_READ(reg);
3925                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3926                         if (temp & FDI_RX_BIT_LOCK) {
3927                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3928                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3929                                 break;
3930                         }
3931                         udelay(50);
3932                 }
3933                 if (retry < 5)
3934                         break;
3935         }
3936         if (i == 4)
3937                 DRM_ERROR("FDI train 1 fail!\n");
3938
3939         /* Train 2 */
3940         reg = FDI_TX_CTL(pipe);
3941         temp = I915_READ(reg);
3942         temp &= ~FDI_LINK_TRAIN_NONE;
3943         temp |= FDI_LINK_TRAIN_PATTERN_2;
3944         if (IS_GEN6(dev_priv)) {
3945                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3946                 /* SNB-B */
3947                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3948         }
3949         I915_WRITE(reg, temp);
3950
3951         reg = FDI_RX_CTL(pipe);
3952         temp = I915_READ(reg);
3953         if (HAS_PCH_CPT(dev_priv)) {
3954                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3955                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3956         } else {
3957                 temp &= ~FDI_LINK_TRAIN_NONE;
3958                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3959         }
3960         I915_WRITE(reg, temp);
3961
3962         POSTING_READ(reg);
3963         udelay(150);
3964
3965         for (i = 0; i < 4; i++) {
3966                 reg = FDI_TX_CTL(pipe);
3967                 temp = I915_READ(reg);
3968                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3969                 temp |= snb_b_fdi_train_param[i];
3970                 I915_WRITE(reg, temp);
3971
3972                 POSTING_READ(reg);
3973                 udelay(500);
3974
3975                 for (retry = 0; retry < 5; retry++) {
3976                         reg = FDI_RX_IIR(pipe);
3977                         temp = I915_READ(reg);
3978                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3979                         if (temp & FDI_RX_SYMBOL_LOCK) {
3980                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3981                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3982                                 break;
3983                         }
3984                         udelay(50);
3985                 }
3986                 if (retry < 5)
3987                         break;
3988         }
3989         if (i == 4)
3990                 DRM_ERROR("FDI train 2 fail!\n");
3991
3992         DRM_DEBUG_KMS("FDI train done.\n");
3993 }
3994
3995 /* Manual link training for Ivy Bridge A0 parts */
3996 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
3997                                       const struct intel_crtc_state *crtc_state)
3998 {
3999         struct drm_device *dev = crtc->base.dev;
4000         struct drm_i915_private *dev_priv = to_i915(dev);
4001         int pipe = crtc->pipe;
4002         i915_reg_t reg;
4003         u32 temp, i, j;
4004
4005         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4006            for train result */
4007         reg = FDI_RX_IMR(pipe);
4008         temp = I915_READ(reg);
4009         temp &= ~FDI_RX_SYMBOL_LOCK;
4010         temp &= ~FDI_RX_BIT_LOCK;
4011         I915_WRITE(reg, temp);
4012
4013         POSTING_READ(reg);
4014         udelay(150);
4015
4016         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4017                       I915_READ(FDI_RX_IIR(pipe)));
4018
4019         /* Try each vswing and preemphasis setting twice before moving on */
4020         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4021                 /* disable first in case we need to retry */
4022                 reg = FDI_TX_CTL(pipe);
4023                 temp = I915_READ(reg);
4024                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4025                 temp &= ~FDI_TX_ENABLE;
4026                 I915_WRITE(reg, temp);
4027
4028                 reg = FDI_RX_CTL(pipe);
4029                 temp = I915_READ(reg);
4030                 temp &= ~FDI_LINK_TRAIN_AUTO;
4031                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4032                 temp &= ~FDI_RX_ENABLE;
4033                 I915_WRITE(reg, temp);
4034
4035                 /* enable CPU FDI TX and PCH FDI RX */
4036                 reg = FDI_TX_CTL(pipe);
4037                 temp = I915_READ(reg);
4038                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4039                 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4040                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4041                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4042                 temp |= snb_b_fdi_train_param[j/2];
4043                 temp |= FDI_COMPOSITE_SYNC;
4044                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4045
4046                 I915_WRITE(FDI_RX_MISC(pipe),
4047                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4048
4049                 reg = FDI_RX_CTL(pipe);
4050                 temp = I915_READ(reg);
4051                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4052                 temp |= FDI_COMPOSITE_SYNC;
4053                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4054
4055                 POSTING_READ(reg);
4056                 udelay(1); /* should be 0.5us */
4057
4058                 for (i = 0; i < 4; i++) {
4059                         reg = FDI_RX_IIR(pipe);
4060                         temp = I915_READ(reg);
4061                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4062
4063                         if (temp & FDI_RX_BIT_LOCK ||
4064                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4065                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4066                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4067                                               i);
4068                                 break;
4069                         }
4070                         udelay(1); /* should be 0.5us */
4071                 }
4072                 if (i == 4) {
4073                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4074                         continue;
4075                 }
4076
4077                 /* Train 2 */
4078                 reg = FDI_TX_CTL(pipe);
4079                 temp = I915_READ(reg);
4080                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4081                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4082                 I915_WRITE(reg, temp);
4083
4084                 reg = FDI_RX_CTL(pipe);
4085                 temp = I915_READ(reg);
4086                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4087                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4088                 I915_WRITE(reg, temp);
4089
4090                 POSTING_READ(reg);
4091                 udelay(2); /* should be 1.5us */
4092
4093                 for (i = 0; i < 4; i++) {
4094                         reg = FDI_RX_IIR(pipe);
4095                         temp = I915_READ(reg);
4096                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4097
4098                         if (temp & FDI_RX_SYMBOL_LOCK ||
4099                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4100                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4101                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4102                                               i);
4103                                 goto train_done;
4104                         }
4105                         udelay(2); /* should be 1.5us */
4106                 }
4107                 if (i == 4)
4108                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4109         }
4110
4111 train_done:
4112         DRM_DEBUG_KMS("FDI train done.\n");
4113 }
4114
4115 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4116 {
4117         struct drm_device *dev = intel_crtc->base.dev;
4118         struct drm_i915_private *dev_priv = to_i915(dev);
4119         int pipe = intel_crtc->pipe;
4120         i915_reg_t reg;
4121         u32 temp;
4122
4123         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4124         reg = FDI_RX_CTL(pipe);
4125         temp = I915_READ(reg);
4126         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4127         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4128         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4129         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4130
4131         POSTING_READ(reg);
4132         udelay(200);
4133
4134         /* Switch from Rawclk to PCDclk */
4135         temp = I915_READ(reg);
4136         I915_WRITE(reg, temp | FDI_PCDCLK);
4137
4138         POSTING_READ(reg);
4139         udelay(200);
4140
4141         /* Enable CPU FDI TX PLL, always on for Ironlake */
4142         reg = FDI_TX_CTL(pipe);
4143         temp = I915_READ(reg);
4144         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4145                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4146
4147                 POSTING_READ(reg);
4148                 udelay(100);
4149         }
4150 }
4151
4152 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4153 {
4154         struct drm_device *dev = intel_crtc->base.dev;
4155         struct drm_i915_private *dev_priv = to_i915(dev);
4156         int pipe = intel_crtc->pipe;
4157         i915_reg_t reg;
4158         u32 temp;
4159
4160         /* Switch from PCDclk to Rawclk */
4161         reg = FDI_RX_CTL(pipe);
4162         temp = I915_READ(reg);
4163         I915_WRITE(reg, temp & ~FDI_PCDCLK);
4164
4165         /* Disable CPU FDI TX PLL */
4166         reg = FDI_TX_CTL(pipe);
4167         temp = I915_READ(reg);
4168         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4169
4170         POSTING_READ(reg);
4171         udelay(100);
4172
4173         reg = FDI_RX_CTL(pipe);
4174         temp = I915_READ(reg);
4175         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4176
4177         /* Wait for the clocks to turn off. */
4178         POSTING_READ(reg);
4179         udelay(100);
4180 }
4181
4182 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4183 {
4184         struct drm_device *dev = crtc->dev;
4185         struct drm_i915_private *dev_priv = to_i915(dev);
4186         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4187         int pipe = intel_crtc->pipe;
4188         i915_reg_t reg;
4189         u32 temp;
4190
4191         /* disable CPU FDI tx and PCH FDI rx */
4192         reg = FDI_TX_CTL(pipe);
4193         temp = I915_READ(reg);
4194         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4195         POSTING_READ(reg);
4196
4197         reg = FDI_RX_CTL(pipe);
4198         temp = I915_READ(reg);
4199         temp &= ~(0x7 << 16);
4200         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4201         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4202
4203         POSTING_READ(reg);
4204         udelay(100);
4205
4206         /* Ironlake workaround, disable clock pointer after downing FDI */
4207         if (HAS_PCH_IBX(dev_priv))
4208                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4209
4210         /* still set train pattern 1 */
4211         reg = FDI_TX_CTL(pipe);
4212         temp = I915_READ(reg);
4213         temp &= ~FDI_LINK_TRAIN_NONE;
4214         temp |= FDI_LINK_TRAIN_PATTERN_1;
4215         I915_WRITE(reg, temp);
4216
4217         reg = FDI_RX_CTL(pipe);
4218         temp = I915_READ(reg);
4219         if (HAS_PCH_CPT(dev_priv)) {
4220                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4221                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4222         } else {
4223                 temp &= ~FDI_LINK_TRAIN_NONE;
4224                 temp |= FDI_LINK_TRAIN_PATTERN_1;
4225         }
4226         /* BPC in FDI rx is consistent with that in PIPECONF */
4227         temp &= ~(0x07 << 16);
4228         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4229         I915_WRITE(reg, temp);
4230
4231         POSTING_READ(reg);
4232         udelay(100);
4233 }
4234
4235 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4236 {
4237         struct drm_crtc *crtc;
4238         bool cleanup_done;
4239
4240         drm_for_each_crtc(crtc, &dev_priv->drm) {
4241                 struct drm_crtc_commit *commit;
4242                 spin_lock(&crtc->commit_lock);
4243                 commit = list_first_entry_or_null(&crtc->commit_list,
4244                                                   struct drm_crtc_commit, commit_entry);
4245                 cleanup_done = commit ?
4246                         try_wait_for_completion(&commit->cleanup_done) : true;
4247                 spin_unlock(&crtc->commit_lock);
4248
4249                 if (cleanup_done)
4250                         continue;
4251
4252                 drm_crtc_wait_one_vblank(crtc);
4253
4254                 return true;
4255         }
4256
4257         return false;
4258 }
4259
4260 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4261 {
4262         u32 temp;
4263
4264         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4265
4266         mutex_lock(&dev_priv->sb_lock);
4267
4268         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4269         temp |= SBI_SSCCTL_DISABLE;
4270         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4271
4272         mutex_unlock(&dev_priv->sb_lock);
4273 }
4274
4275 /* Program iCLKIP clock to the desired frequency */
4276 static void lpt_program_iclkip(struct intel_crtc *crtc)
4277 {
4278         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4279         int clock = crtc->config->base.adjusted_mode.crtc_clock;
4280         u32 divsel, phaseinc, auxdiv, phasedir = 0;
4281         u32 temp;
4282
4283         lpt_disable_iclkip(dev_priv);
4284
4285         /* The iCLK virtual clock root frequency is in MHz,
4286          * but the adjusted_mode->crtc_clock in in KHz. To get the
4287          * divisors, it is necessary to divide one by another, so we
4288          * convert the virtual clock precision to KHz here for higher
4289          * precision.
4290          */
4291         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4292                 u32 iclk_virtual_root_freq = 172800 * 1000;
4293                 u32 iclk_pi_range = 64;
4294                 u32 desired_divisor;
4295
4296                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4297                                                     clock << auxdiv);
4298                 divsel = (desired_divisor / iclk_pi_range) - 2;
4299                 phaseinc = desired_divisor % iclk_pi_range;
4300
4301                 /*
4302                  * Near 20MHz is a corner case which is
4303                  * out of range for the 7-bit divisor
4304                  */
4305                 if (divsel <= 0x7f)
4306                         break;
4307         }
4308
4309         /* This should not happen with any sane values */
4310         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4311                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4312         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4313                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4314
4315         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4316                         clock,
4317                         auxdiv,
4318                         divsel,
4319                         phasedir,
4320                         phaseinc);
4321
4322         mutex_lock(&dev_priv->sb_lock);
4323
4324         /* Program SSCDIVINTPHASE6 */
4325         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4326         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4327         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4328         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4329         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4330         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4331         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4332         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4333
4334         /* Program SSCAUXDIV */
4335         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4336         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4337         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4338         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4339
4340         /* Enable modulator and associated divider */
4341         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4342         temp &= ~SBI_SSCCTL_DISABLE;
4343         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4344
4345         mutex_unlock(&dev_priv->sb_lock);
4346
4347         /* Wait for initialization time */
4348         udelay(24);
4349
4350         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4351 }
4352
4353 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4354 {
4355         u32 divsel, phaseinc, auxdiv;
4356         u32 iclk_virtual_root_freq = 172800 * 1000;
4357         u32 iclk_pi_range = 64;
4358         u32 desired_divisor;
4359         u32 temp;
4360
4361         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4362                 return 0;
4363
4364         mutex_lock(&dev_priv->sb_lock);
4365
4366         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4367         if (temp & SBI_SSCCTL_DISABLE) {
4368                 mutex_unlock(&dev_priv->sb_lock);
4369                 return 0;
4370         }
4371
4372         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4373         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4374                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4375         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4376                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4377
4378         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4379         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4380                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4381
4382         mutex_unlock(&dev_priv->sb_lock);
4383
4384         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4385
4386         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4387                                  desired_divisor << auxdiv);
4388 }
4389
4390 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4391                                                 enum pipe pch_transcoder)
4392 {
4393         struct drm_device *dev = crtc->base.dev;
4394         struct drm_i915_private *dev_priv = to_i915(dev);
4395         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4396
4397         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4398                    I915_READ(HTOTAL(cpu_transcoder)));
4399         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4400                    I915_READ(HBLANK(cpu_transcoder)));
4401         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4402                    I915_READ(HSYNC(cpu_transcoder)));
4403
4404         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4405                    I915_READ(VTOTAL(cpu_transcoder)));
4406         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4407                    I915_READ(VBLANK(cpu_transcoder)));
4408         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4409                    I915_READ(VSYNC(cpu_transcoder)));
4410         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4411                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4412 }
4413
4414 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4415 {
4416         struct drm_i915_private *dev_priv = to_i915(dev);
4417         uint32_t temp;
4418
4419         temp = I915_READ(SOUTH_CHICKEN1);
4420         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4421                 return;
4422
4423         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4424         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4425
4426         temp &= ~FDI_BC_BIFURCATION_SELECT;
4427         if (enable)
4428                 temp |= FDI_BC_BIFURCATION_SELECT;
4429
4430         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4431         I915_WRITE(SOUTH_CHICKEN1, temp);
4432         POSTING_READ(SOUTH_CHICKEN1);
4433 }
4434
4435 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4436 {
4437         struct drm_device *dev = intel_crtc->base.dev;
4438
4439         switch (intel_crtc->pipe) {
4440         case PIPE_A:
4441                 break;
4442         case PIPE_B:
4443                 if (intel_crtc->config->fdi_lanes > 2)
4444                         cpt_set_fdi_bc_bifurcation(dev, false);
4445                 else
4446                         cpt_set_fdi_bc_bifurcation(dev, true);
4447
4448                 break;
4449         case PIPE_C:
4450                 cpt_set_fdi_bc_bifurcation(dev, true);
4451
4452                 break;
4453         default:
4454                 BUG();
4455         }
4456 }
4457
4458 /* Return which DP Port should be selected for Transcoder DP control */
4459 static enum port
4460 intel_trans_dp_port_sel(struct intel_crtc *crtc)
4461 {
4462         struct drm_device *dev = crtc->base.dev;
4463         struct intel_encoder *encoder;
4464
4465         for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
4466                 if (encoder->type == INTEL_OUTPUT_DP ||
4467                     encoder->type == INTEL_OUTPUT_EDP)
4468                         return enc_to_dig_port(&encoder->base)->port;
4469         }
4470
4471         return -1;
4472 }
4473
4474 /*
4475  * Enable PCH resources required for PCH ports:
4476  *   - PCH PLLs
4477  *   - FDI training & RX/TX
4478  *   - update transcoder timings
4479  *   - DP transcoding bits
4480  *   - transcoder
4481  */
4482 static void ironlake_pch_enable(const struct intel_crtc_state *crtc_state)
4483 {
4484         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4485         struct drm_device *dev = crtc->base.dev;
4486         struct drm_i915_private *dev_priv = to_i915(dev);
4487         int pipe = crtc->pipe;
4488         u32 temp;
4489
4490         assert_pch_transcoder_disabled(dev_priv, pipe);
4491
4492         if (IS_IVYBRIDGE(dev_priv))
4493                 ivybridge_update_fdi_bc_bifurcation(crtc);
4494
4495         /* Write the TU size bits before fdi link training, so that error
4496          * detection works. */
4497         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4498                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4499
4500         /* For PCH output, training FDI link */
4501         dev_priv->display.fdi_link_train(crtc, crtc_state);
4502
4503         /* We need to program the right clock selection before writing the pixel
4504          * mutliplier into the DPLL. */
4505         if (HAS_PCH_CPT(dev_priv)) {
4506                 u32 sel;
4507
4508                 temp = I915_READ(PCH_DPLL_SEL);
4509                 temp |= TRANS_DPLL_ENABLE(pipe);
4510                 sel = TRANS_DPLLB_SEL(pipe);
4511                 if (crtc_state->shared_dpll ==
4512                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4513                         temp |= sel;
4514                 else
4515                         temp &= ~sel;
4516                 I915_WRITE(PCH_DPLL_SEL, temp);
4517         }
4518
4519         /* XXX: pch pll's can be enabled any time before we enable the PCH
4520          * transcoder, and we actually should do this to not upset any PCH
4521          * transcoder that already use the clock when we share it.
4522          *
4523          * Note that enable_shared_dpll tries to do the right thing, but
4524          * get_shared_dpll unconditionally resets the pll - we need that to have
4525          * the right LVDS enable sequence. */
4526         intel_enable_shared_dpll(crtc);
4527
4528         /* set transcoder timing, panel must allow it */
4529         assert_panel_unlocked(dev_priv, pipe);
4530         ironlake_pch_transcoder_set_timings(crtc, pipe);
4531
4532         intel_fdi_normal_train(crtc);
4533
4534         /* For PCH DP, enable TRANS_DP_CTL */
4535         if (HAS_PCH_CPT(dev_priv) &&
4536             intel_crtc_has_dp_encoder(crtc_state)) {
4537                 const struct drm_display_mode *adjusted_mode =
4538                         &crtc_state->base.adjusted_mode;
4539                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4540                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4541                 temp = I915_READ(reg);
4542                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4543                           TRANS_DP_SYNC_MASK |
4544                           TRANS_DP_BPC_MASK);
4545                 temp |= TRANS_DP_OUTPUT_ENABLE;
4546                 temp |= bpc << 9; /* same format but at 11:9 */
4547
4548                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4549                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4550                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4551                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4552
4553                 switch (intel_trans_dp_port_sel(crtc)) {
4554                 case PORT_B:
4555                         temp |= TRANS_DP_PORT_SEL_B;
4556                         break;
4557                 case PORT_C:
4558                         temp |= TRANS_DP_PORT_SEL_C;
4559                         break;
4560                 case PORT_D:
4561                         temp |= TRANS_DP_PORT_SEL_D;
4562                         break;
4563                 default:
4564                         BUG();
4565                 }
4566
4567                 I915_WRITE(reg, temp);
4568         }
4569
4570         ironlake_enable_pch_transcoder(dev_priv, pipe);
4571 }
4572
4573 static void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
4574 {
4575         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4576         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4577         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
4578
4579         assert_pch_transcoder_disabled(dev_priv, PIPE_A);
4580
4581         lpt_program_iclkip(crtc);
4582
4583         /* Set transcoder timing. */
4584         ironlake_pch_transcoder_set_timings(crtc, PIPE_A);
4585
4586         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4587 }
4588
4589 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4590 {
4591         struct drm_i915_private *dev_priv = to_i915(dev);
4592         i915_reg_t dslreg = PIPEDSL(pipe);
4593         u32 temp;
4594
4595         temp = I915_READ(dslreg);
4596         udelay(500);
4597         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4598                 if (wait_for(I915_READ(dslreg) != temp, 5))
4599                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4600         }
4601 }
4602
4603 static int
4604 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4605                   unsigned int scaler_user, int *scaler_id,
4606                   int src_w, int src_h, int dst_w, int dst_h)
4607 {
4608         struct intel_crtc_scaler_state *scaler_state =
4609                 &crtc_state->scaler_state;
4610         struct intel_crtc *intel_crtc =
4611                 to_intel_crtc(crtc_state->base.crtc);
4612         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4613         const struct drm_display_mode *adjusted_mode =
4614                 &crtc_state->base.adjusted_mode;
4615         int need_scaling;
4616
4617         /*
4618          * Src coordinates are already rotated by 270 degrees for
4619          * the 90/270 degree plane rotation cases (to match the
4620          * GTT mapping), hence no need to account for rotation here.
4621          */
4622         need_scaling = src_w != dst_w || src_h != dst_h;
4623
4624         if (crtc_state->ycbcr420 && scaler_user == SKL_CRTC_INDEX)
4625                 need_scaling = true;
4626
4627         /*
4628          * Scaling/fitting not supported in IF-ID mode in GEN9+
4629          * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
4630          * Once NV12 is enabled, handle it here while allocating scaler
4631          * for NV12.
4632          */
4633         if (INTEL_GEN(dev_priv) >= 9 && crtc_state->base.enable &&
4634             need_scaling && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4635                 DRM_DEBUG_KMS("Pipe/Plane scaling not supported with IF-ID mode\n");
4636                 return -EINVAL;
4637         }
4638
4639         /*
4640          * if plane is being disabled or scaler is no more required or force detach
4641          *  - free scaler binded to this plane/crtc
4642          *  - in order to do this, update crtc->scaler_usage
4643          *
4644          * Here scaler state in crtc_state is set free so that
4645          * scaler can be assigned to other user. Actual register
4646          * update to free the scaler is done in plane/panel-fit programming.
4647          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4648          */
4649         if (force_detach || !need_scaling) {
4650                 if (*scaler_id >= 0) {
4651                         scaler_state->scaler_users &= ~(1 << scaler_user);
4652                         scaler_state->scalers[*scaler_id].in_use = 0;
4653
4654                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4655                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4656                                 intel_crtc->pipe, scaler_user, *scaler_id,
4657                                 scaler_state->scaler_users);
4658                         *scaler_id = -1;
4659                 }
4660                 return 0;
4661         }
4662
4663         /* range checks */
4664         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4665                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4666
4667                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4668                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4669                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4670                         "size is out of scaler range\n",
4671                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4672                 return -EINVAL;
4673         }
4674
4675         /* mark this plane as a scaler user in crtc_state */
4676         scaler_state->scaler_users |= (1 << scaler_user);
4677         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4678                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4679                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4680                 scaler_state->scaler_users);
4681
4682         return 0;
4683 }
4684
4685 /**
4686  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4687  *
4688  * @state: crtc's scaler state
4689  *
4690  * Return
4691  *     0 - scaler_usage updated successfully
4692  *    error - requested scaling cannot be supported or other error condition
4693  */
4694 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4695 {
4696         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4697
4698         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4699                 &state->scaler_state.scaler_id,
4700                 state->pipe_src_w, state->pipe_src_h,
4701                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4702 }
4703
4704 /**
4705  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4706  *
4707  * @state: crtc's scaler state
4708  * @plane_state: atomic plane state to update
4709  *
4710  * Return
4711  *     0 - scaler_usage updated successfully
4712  *    error - requested scaling cannot be supported or other error condition
4713  */
4714 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4715                                    struct intel_plane_state *plane_state)
4716 {
4717
4718         struct intel_plane *intel_plane =
4719                 to_intel_plane(plane_state->base.plane);
4720         struct drm_framebuffer *fb = plane_state->base.fb;
4721         int ret;
4722
4723         bool force_detach = !fb || !plane_state->base.visible;
4724
4725         ret = skl_update_scaler(crtc_state, force_detach,
4726                                 drm_plane_index(&intel_plane->base),
4727                                 &plane_state->scaler_id,
4728                                 drm_rect_width(&plane_state->base.src) >> 16,
4729                                 drm_rect_height(&plane_state->base.src) >> 16,
4730                                 drm_rect_width(&plane_state->base.dst),
4731                                 drm_rect_height(&plane_state->base.dst));
4732
4733         if (ret || plane_state->scaler_id < 0)
4734                 return ret;
4735
4736         /* check colorkey */
4737         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4738                 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4739                               intel_plane->base.base.id,
4740                               intel_plane->base.name);
4741                 return -EINVAL;
4742         }
4743
4744         /* Check src format */
4745         switch (fb->format->format) {
4746         case DRM_FORMAT_RGB565:
4747         case DRM_FORMAT_XBGR8888:
4748         case DRM_FORMAT_XRGB8888:
4749         case DRM_FORMAT_ABGR8888:
4750         case DRM_FORMAT_ARGB8888:
4751         case DRM_FORMAT_XRGB2101010:
4752         case DRM_FORMAT_XBGR2101010:
4753         case DRM_FORMAT_YUYV:
4754         case DRM_FORMAT_YVYU:
4755         case DRM_FORMAT_UYVY:
4756         case DRM_FORMAT_VYUY:
4757                 break;
4758         default:
4759                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4760                               intel_plane->base.base.id, intel_plane->base.name,
4761                               fb->base.id, fb->format->format);
4762                 return -EINVAL;
4763         }
4764
4765         return 0;
4766 }
4767
4768 static void skylake_scaler_disable(struct intel_crtc *crtc)
4769 {
4770         int i;
4771
4772         for (i = 0; i < crtc->num_scalers; i++)
4773                 skl_detach_scaler(crtc, i);
4774 }
4775
4776 static void skylake_pfit_enable(struct intel_crtc *crtc)
4777 {
4778         struct drm_device *dev = crtc->base.dev;
4779         struct drm_i915_private *dev_priv = to_i915(dev);
4780         int pipe = crtc->pipe;
4781         struct intel_crtc_scaler_state *scaler_state =
4782                 &crtc->config->scaler_state;
4783
4784         if (crtc->config->pch_pfit.enabled) {
4785                 int id;
4786
4787                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0))
4788                         return;
4789
4790                 id = scaler_state->scaler_id;
4791                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4792                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4793                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4794                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4795         }
4796 }
4797
4798 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4799 {
4800         struct drm_device *dev = crtc->base.dev;
4801         struct drm_i915_private *dev_priv = to_i915(dev);
4802         int pipe = crtc->pipe;
4803
4804         if (crtc->config->pch_pfit.enabled) {
4805                 /* Force use of hard-coded filter coefficients
4806                  * as some pre-programmed values are broken,
4807                  * e.g. x201.
4808                  */
4809                 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4810                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4811                                                  PF_PIPE_SEL_IVB(pipe));
4812                 else
4813                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4814                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4815                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4816         }
4817 }
4818
4819 void hsw_enable_ips(struct intel_crtc *crtc)
4820 {
4821         struct drm_device *dev = crtc->base.dev;
4822         struct drm_i915_private *dev_priv = to_i915(dev);
4823
4824         if (!crtc->config->ips_enabled)
4825                 return;
4826
4827         /*
4828          * We can only enable IPS after we enable a plane and wait for a vblank
4829          * This function is called from post_plane_update, which is run after
4830          * a vblank wait.
4831          */
4832
4833         assert_plane_enabled(to_intel_plane(crtc->base.primary));
4834
4835         if (IS_BROADWELL(dev_priv)) {
4836                 mutex_lock(&dev_priv->pcu_lock);
4837                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL,
4838                                                 IPS_ENABLE | IPS_PCODE_CONTROL));
4839                 mutex_unlock(&dev_priv->pcu_lock);
4840                 /* Quoting Art Runyan: "its not safe to expect any particular
4841                  * value in IPS_CTL bit 31 after enabling IPS through the
4842                  * mailbox." Moreover, the mailbox may return a bogus state,
4843                  * so we need to just enable it and continue on.
4844                  */
4845         } else {
4846                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4847                 /* The bit only becomes 1 in the next vblank, so this wait here
4848                  * is essentially intel_wait_for_vblank. If we don't have this
4849                  * and don't wait for vblanks until the end of crtc_enable, then
4850                  * the HW state readout code will complain that the expected
4851                  * IPS_CTL value is not the one we read. */
4852                 if (intel_wait_for_register(dev_priv,
4853                                             IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4854                                             50))
4855                         DRM_ERROR("Timed out waiting for IPS enable\n");
4856         }
4857 }
4858
4859 void hsw_disable_ips(struct intel_crtc *crtc)
4860 {
4861         struct drm_device *dev = crtc->base.dev;
4862         struct drm_i915_private *dev_priv = to_i915(dev);
4863
4864         if (!crtc->config->ips_enabled)
4865                 return;
4866
4867         assert_plane_enabled(to_intel_plane(crtc->base.primary));
4868
4869         if (IS_BROADWELL(dev_priv)) {
4870                 mutex_lock(&dev_priv->pcu_lock);
4871                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4872                 mutex_unlock(&dev_priv->pcu_lock);
4873                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4874                 if (intel_wait_for_register(dev_priv,
4875                                             IPS_CTL, IPS_ENABLE, 0,
4876                                             42))
4877                         DRM_ERROR("Timed out waiting for IPS disable\n");
4878         } else {
4879                 I915_WRITE(IPS_CTL, 0);
4880                 POSTING_READ(IPS_CTL);
4881         }
4882
4883         /* We need to wait for a vblank before we can disable the plane. */
4884         intel_wait_for_vblank(dev_priv, crtc->pipe);
4885 }
4886
4887 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4888 {
4889         if (intel_crtc->overlay) {
4890                 struct drm_device *dev = intel_crtc->base.dev;
4891
4892                 mutex_lock(&dev->struct_mutex);
4893                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4894                 mutex_unlock(&dev->struct_mutex);
4895         }
4896
4897         /* Let userspace switch the overlay on again. In most cases userspace
4898          * has to recompute where to put it anyway.
4899          */
4900 }
4901
4902 /**
4903  * intel_post_enable_primary - Perform operations after enabling primary plane
4904  * @crtc: the CRTC whose primary plane was just enabled
4905  *
4906  * Performs potentially sleeping operations that must be done after the primary
4907  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4908  * called due to an explicit primary plane update, or due to an implicit
4909  * re-enable that is caused when a sprite plane is updated to no longer
4910  * completely hide the primary plane.
4911  */
4912 static void
4913 intel_post_enable_primary(struct drm_crtc *crtc)
4914 {
4915         struct drm_device *dev = crtc->dev;
4916         struct drm_i915_private *dev_priv = to_i915(dev);
4917         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4918         int pipe = intel_crtc->pipe;
4919
4920         /*
4921          * FIXME IPS should be fine as long as one plane is
4922          * enabled, but in practice it seems to have problems
4923          * when going from primary only to sprite only and vice
4924          * versa.
4925          */
4926         hsw_enable_ips(intel_crtc);
4927
4928         /*
4929          * Gen2 reports pipe underruns whenever all planes are disabled.
4930          * So don't enable underrun reporting before at least some planes
4931          * are enabled.
4932          * FIXME: Need to fix the logic to work when we turn off all planes
4933          * but leave the pipe running.
4934          */
4935         if (IS_GEN2(dev_priv))
4936                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4937
4938         /* Underruns don't always raise interrupts, so check manually. */
4939         intel_check_cpu_fifo_underruns(dev_priv);
4940         intel_check_pch_fifo_underruns(dev_priv);
4941 }
4942
4943 /* FIXME move all this to pre_plane_update() with proper state tracking */
4944 static void
4945 intel_pre_disable_primary(struct drm_crtc *crtc)
4946 {
4947         struct drm_device *dev = crtc->dev;
4948         struct drm_i915_private *dev_priv = to_i915(dev);
4949         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4950         int pipe = intel_crtc->pipe;
4951
4952         /*
4953          * Gen2 reports pipe underruns whenever all planes are disabled.
4954          * So diasble underrun reporting before all the planes get disabled.
4955          * FIXME: Need to fix the logic to work when we turn off all planes
4956          * but leave the pipe running.
4957          */
4958         if (IS_GEN2(dev_priv))
4959                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4960
4961         /*
4962          * FIXME IPS should be fine as long as one plane is
4963          * enabled, but in practice it seems to have problems
4964          * when going from primary only to sprite only and vice
4965          * versa.
4966          */
4967         hsw_disable_ips(intel_crtc);
4968 }
4969
4970 /* FIXME get rid of this and use pre_plane_update */
4971 static void
4972 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4973 {
4974         struct drm_device *dev = crtc->dev;
4975         struct drm_i915_private *dev_priv = to_i915(dev);
4976         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4977         int pipe = intel_crtc->pipe;
4978
4979         intel_pre_disable_primary(crtc);
4980
4981         /*
4982          * Vblank time updates from the shadow to live plane control register
4983          * are blocked if the memory self-refresh mode is active at that
4984          * moment. So to make sure the plane gets truly disabled, disable
4985          * first the self-refresh mode. The self-refresh enable bit in turn
4986          * will be checked/applied by the HW only at the next frame start
4987          * event which is after the vblank start event, so we need to have a
4988          * wait-for-vblank between disabling the plane and the pipe.
4989          */
4990         if (HAS_GMCH_DISPLAY(dev_priv) &&
4991             intel_set_memory_cxsr(dev_priv, false))
4992                 intel_wait_for_vblank(dev_priv, pipe);
4993 }
4994
4995 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4996 {
4997         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4998         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4999         struct intel_crtc_state *pipe_config =
5000                 intel_atomic_get_new_crtc_state(to_intel_atomic_state(old_state),
5001                                                 crtc);
5002         struct drm_plane *primary = crtc->base.primary;
5003         struct drm_plane_state *old_pri_state =
5004                 drm_atomic_get_existing_plane_state(old_state, primary);
5005
5006         intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5007
5008         if (pipe_config->update_wm_post && pipe_config->base.active)
5009                 intel_update_watermarks(crtc);
5010
5011         if (old_pri_state) {
5012                 struct intel_plane_state *primary_state =
5013                         intel_atomic_get_new_plane_state(to_intel_atomic_state(old_state),
5014                                                          to_intel_plane(primary));
5015                 struct intel_plane_state *old_primary_state =
5016                         to_intel_plane_state(old_pri_state);
5017
5018                 intel_fbc_post_update(crtc);
5019
5020                 if (primary_state->base.visible &&
5021                     (needs_modeset(&pipe_config->base) ||
5022                      !old_primary_state->base.visible))
5023                         intel_post_enable_primary(&crtc->base);
5024         }
5025 }
5026
5027 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state,
5028                                    struct intel_crtc_state *pipe_config)
5029 {
5030         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5031         struct drm_device *dev = crtc->base.dev;
5032         struct drm_i915_private *dev_priv = to_i915(dev);
5033         struct drm_atomic_state *old_state = old_crtc_state->base.state;
5034         struct drm_plane *primary = crtc->base.primary;
5035         struct drm_plane_state *old_pri_state =
5036                 drm_atomic_get_existing_plane_state(old_state, primary);
5037         bool modeset = needs_modeset(&pipe_config->base);
5038         struct intel_atomic_state *old_intel_state =
5039                 to_intel_atomic_state(old_state);
5040
5041         if (old_pri_state) {
5042                 struct intel_plane_state *primary_state =
5043                         intel_atomic_get_new_plane_state(old_intel_state,
5044                                                          to_intel_plane(primary));
5045                 struct intel_plane_state *old_primary_state =
5046                         to_intel_plane_state(old_pri_state);
5047
5048                 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5049
5050                 if (old_primary_state->base.visible &&
5051                     (modeset || !primary_state->base.visible))
5052                         intel_pre_disable_primary(&crtc->base);
5053         }
5054
5055         /*
5056          * Vblank time updates from the shadow to live plane control register
5057          * are blocked if the memory self-refresh mode is active at that
5058          * moment. So to make sure the plane gets truly disabled, disable
5059          * first the self-refresh mode. The self-refresh enable bit in turn
5060          * will be checked/applied by the HW only at the next frame start
5061          * event which is after the vblank start event, so we need to have a
5062          * wait-for-vblank between disabling the plane and the pipe.
5063          */
5064         if (HAS_GMCH_DISPLAY(dev_priv) && old_crtc_state->base.active &&
5065             pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
5066                 intel_wait_for_vblank(dev_priv, crtc->pipe);
5067
5068         /*
5069          * IVB workaround: must disable low power watermarks for at least
5070          * one frame before enabling scaling.  LP watermarks can be re-enabled
5071          * when scaling is disabled.
5072          *
5073          * WaCxSRDisabledForSpriteScaling:ivb
5074          */
5075         if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev))
5076                 intel_wait_for_vblank(dev_priv, crtc->pipe);
5077
5078         /*
5079          * If we're doing a modeset, we're done.  No need to do any pre-vblank
5080          * watermark programming here.
5081          */
5082         if (needs_modeset(&pipe_config->base))
5083                 return;
5084
5085         /*
5086          * For platforms that support atomic watermarks, program the
5087          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
5088          * will be the intermediate values that are safe for both pre- and
5089          * post- vblank; when vblank happens, the 'active' values will be set
5090          * to the final 'target' values and we'll do this again to get the
5091          * optimal watermarks.  For gen9+ platforms, the values we program here
5092          * will be the final target values which will get automatically latched
5093          * at vblank time; no further programming will be necessary.
5094          *
5095          * If a platform hasn't been transitioned to atomic watermarks yet,
5096          * we'll continue to update watermarks the old way, if flags tell
5097          * us to.
5098          */
5099         if (dev_priv->display.initial_watermarks != NULL)
5100                 dev_priv->display.initial_watermarks(old_intel_state,
5101                                                      pipe_config);
5102         else if (pipe_config->update_wm_pre)
5103                 intel_update_watermarks(crtc);
5104 }
5105
5106 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5107 {
5108         struct drm_device *dev = crtc->dev;
5109         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5110         struct drm_plane *p;
5111         int pipe = intel_crtc->pipe;
5112
5113         intel_crtc_dpms_overlay_disable(intel_crtc);
5114
5115         drm_for_each_plane_mask(p, dev, plane_mask)
5116                 to_intel_plane(p)->disable_plane(to_intel_plane(p), intel_crtc);
5117
5118         /*
5119          * FIXME: Once we grow proper nuclear flip support out of this we need
5120          * to compute the mask of flip planes precisely. For the time being
5121          * consider this a flip to a NULL plane.
5122          */
5123         intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5124 }
5125
5126 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5127                                           struct intel_crtc_state *crtc_state,
5128                                           struct drm_atomic_state *old_state)
5129 {
5130         struct drm_connector_state *conn_state;
5131         struct drm_connector *conn;
5132         int i;
5133
5134         for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5135                 struct intel_encoder *encoder =
5136                         to_intel_encoder(conn_state->best_encoder);
5137
5138                 if (conn_state->crtc != crtc)
5139                         continue;
5140
5141                 if (encoder->pre_pll_enable)
5142                         encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5143         }
5144 }
5145
5146 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5147                                       struct intel_crtc_state *crtc_state,
5148                                       struct drm_atomic_state *old_state)
5149 {
5150         struct drm_connector_state *conn_state;
5151         struct drm_connector *conn;
5152         int i;
5153
5154         for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5155                 struct intel_encoder *encoder =
5156                         to_intel_encoder(conn_state->best_encoder);
5157
5158                 if (conn_state->crtc != crtc)
5159                         continue;
5160
5161                 if (encoder->pre_enable)
5162                         encoder->pre_enable(encoder, crtc_state, conn_state);
5163         }
5164 }
5165
5166 static void intel_encoders_enable(struct drm_crtc *crtc,
5167                                   struct intel_crtc_state *crtc_state,
5168                                   struct drm_atomic_state *old_state)
5169 {
5170         struct drm_connector_state *conn_state;
5171         struct drm_connector *conn;
5172         int i;
5173
5174         for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5175                 struct intel_encoder *encoder =
5176                         to_intel_encoder(conn_state->best_encoder);
5177
5178                 if (conn_state->crtc != crtc)
5179                         continue;
5180
5181                 encoder->enable(encoder, crtc_state, conn_state);
5182                 intel_opregion_notify_encoder(encoder, true);
5183         }
5184 }
5185
5186 static void intel_encoders_disable(struct drm_crtc *crtc,
5187                                    struct intel_crtc_state *old_crtc_state,
5188                                    struct drm_atomic_state *old_state)
5189 {
5190         struct drm_connector_state *old_conn_state;
5191         struct drm_connector *conn;
5192         int i;
5193
5194         for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5195                 struct intel_encoder *encoder =
5196                         to_intel_encoder(old_conn_state->best_encoder);
5197
5198                 if (old_conn_state->crtc != crtc)
5199                         continue;
5200
5201                 intel_opregion_notify_encoder(encoder, false);
5202                 encoder->disable(encoder, old_crtc_state, old_conn_state);
5203         }
5204 }
5205
5206 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5207                                         struct intel_crtc_state *old_crtc_state,
5208                                         struct drm_atomic_state *old_state)
5209 {
5210         struct drm_connector_state *old_conn_state;
5211         struct drm_connector *conn;
5212         int i;
5213
5214         for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5215                 struct intel_encoder *encoder =
5216                         to_intel_encoder(old_conn_state->best_encoder);
5217
5218                 if (old_conn_state->crtc != crtc)
5219                         continue;
5220
5221                 if (encoder->post_disable)
5222                         encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5223         }
5224 }
5225
5226 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5227                                             struct intel_crtc_state *old_crtc_state,
5228                                             struct drm_atomic_state *old_state)
5229 {
5230         struct drm_connector_state *old_conn_state;
5231         struct drm_connector *conn;
5232         int i;
5233
5234         for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5235                 struct intel_encoder *encoder =
5236                         to_intel_encoder(old_conn_state->best_encoder);
5237
5238                 if (old_conn_state->crtc != crtc)
5239                         continue;
5240
5241                 if (encoder->post_pll_disable)
5242                         encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5243         }
5244 }
5245
5246 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5247                                  struct drm_atomic_state *old_state)
5248 {
5249         struct drm_crtc *crtc = pipe_config->base.crtc;
5250         struct drm_device *dev = crtc->dev;
5251         struct drm_i915_private *dev_priv = to_i915(dev);
5252         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5253         int pipe = intel_crtc->pipe;
5254         struct intel_atomic_state *old_intel_state =
5255                 to_intel_atomic_state(old_state);
5256
5257         if (WARN_ON(intel_crtc->active))
5258                 return;
5259
5260         /*
5261          * Sometimes spurious CPU pipe underruns happen during FDI
5262          * training, at least with VGA+HDMI cloning. Suppress them.
5263          *
5264          * On ILK we get an occasional spurious CPU pipe underruns
5265          * between eDP port A enable and vdd enable. Also PCH port
5266          * enable seems to result in the occasional CPU pipe underrun.
5267          *
5268          * Spurious PCH underruns also occur during PCH enabling.
5269          */
5270         if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5271                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5272         if (intel_crtc->config->has_pch_encoder)
5273                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5274
5275         if (intel_crtc->config->has_pch_encoder)
5276                 intel_prepare_shared_dpll(intel_crtc);
5277
5278         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5279                 intel_dp_set_m_n(intel_crtc, M1_N1);
5280
5281         intel_set_pipe_timings(intel_crtc);
5282         intel_set_pipe_src_size(intel_crtc);
5283
5284         if (intel_crtc->config->has_pch_encoder) {
5285                 intel_cpu_transcoder_set_m_n(intel_crtc,
5286                                      &intel_crtc->config->fdi_m_n, NULL);
5287         }
5288
5289         ironlake_set_pipeconf(crtc);
5290
5291         intel_crtc->active = true;
5292
5293         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5294
5295         if (intel_crtc->config->has_pch_encoder) {
5296                 /* Note: FDI PLL enabling _must_ be done before we enable the
5297                  * cpu pipes, hence this is separate from all the other fdi/pch
5298                  * enabling. */
5299                 ironlake_fdi_pll_enable(intel_crtc);
5300         } else {
5301                 assert_fdi_tx_disabled(dev_priv, pipe);
5302                 assert_fdi_rx_disabled(dev_priv, pipe);
5303         }
5304
5305         ironlake_pfit_enable(intel_crtc);
5306
5307         /*
5308          * On ILK+ LUT must be loaded before the pipe is running but with
5309          * clocks enabled
5310          */
5311         intel_color_load_luts(&pipe_config->base);
5312
5313         if (dev_priv->display.initial_watermarks != NULL)
5314                 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5315         intel_enable_pipe(intel_crtc);
5316
5317         if (intel_crtc->config->has_pch_encoder)
5318                 ironlake_pch_enable(pipe_config);
5319
5320         assert_vblank_disabled(crtc);
5321         drm_crtc_vblank_on(crtc);
5322
5323         intel_encoders_enable(crtc, pipe_config, old_state);
5324
5325         if (HAS_PCH_CPT(dev_priv))
5326                 cpt_verify_modeset(dev, intel_crtc->pipe);
5327
5328         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5329         if (intel_crtc->config->has_pch_encoder)
5330                 intel_wait_for_vblank(dev_priv, pipe);
5331         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5332         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5333 }
5334
5335 /* IPS only exists on ULT machines and is tied to pipe A. */
5336 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5337 {
5338         return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5339 }
5340
5341 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
5342                                             enum pipe pipe, bool apply)
5343 {
5344         u32 val = I915_READ(CLKGATE_DIS_PSL(pipe));
5345         u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
5346
5347         if (apply)
5348                 val |= mask;
5349         else
5350                 val &= ~mask;
5351
5352         I915_WRITE(CLKGATE_DIS_PSL(pipe), val);
5353 }
5354
5355 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5356                                 struct drm_atomic_state *old_state)
5357 {
5358         struct drm_crtc *crtc = pipe_config->base.crtc;
5359         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5360         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5361         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5362         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5363         struct intel_atomic_state *old_intel_state =
5364                 to_intel_atomic_state(old_state);
5365         bool psl_clkgate_wa;
5366
5367         if (WARN_ON(intel_crtc->active))
5368                 return;
5369
5370         intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5371
5372         if (intel_crtc->config->shared_dpll)
5373                 intel_enable_shared_dpll(intel_crtc);
5374
5375         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5376                 intel_dp_set_m_n(intel_crtc, M1_N1);
5377
5378         if (!transcoder_is_dsi(cpu_transcoder))
5379                 intel_set_pipe_timings(intel_crtc);
5380
5381         intel_set_pipe_src_size(intel_crtc);
5382
5383         if (cpu_transcoder != TRANSCODER_EDP &&
5384             !transcoder_is_dsi(cpu_transcoder)) {
5385                 I915_WRITE(PIPE_MULT(cpu_transcoder),
5386                            intel_crtc->config->pixel_multiplier - 1);
5387         }
5388
5389         if (intel_crtc->config->has_pch_encoder) {
5390                 intel_cpu_transcoder_set_m_n(intel_crtc,
5391                                      &intel_crtc->config->fdi_m_n, NULL);
5392         }
5393
5394         if (!transcoder_is_dsi(cpu_transcoder))
5395                 haswell_set_pipeconf(crtc);
5396
5397         haswell_set_pipemisc(crtc);
5398
5399         intel_color_set_csc(&pipe_config->base);
5400
5401         intel_crtc->active = true;
5402
5403         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5404
5405         if (!transcoder_is_dsi(cpu_transcoder))
5406                 intel_ddi_enable_pipe_clock(pipe_config);
5407
5408         /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */
5409         psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) &&
5410                          intel_crtc->config->pch_pfit.enabled;
5411         if (psl_clkgate_wa)
5412                 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
5413
5414         if (INTEL_GEN(dev_priv) >= 9)
5415                 skylake_pfit_enable(intel_crtc);
5416         else
5417                 ironlake_pfit_enable(intel_crtc);
5418
5419         /*
5420          * On ILK+ LUT must be loaded before the pipe is running but with
5421          * clocks enabled
5422          */
5423         intel_color_load_luts(&pipe_config->base);
5424
5425         intel_ddi_set_pipe_settings(pipe_config);
5426         if (!transcoder_is_dsi(cpu_transcoder))
5427                 intel_ddi_enable_transcoder_func(pipe_config);
5428
5429         if (dev_priv->display.initial_watermarks != NULL)
5430                 dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
5431
5432         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5433         if (!transcoder_is_dsi(cpu_transcoder))
5434                 intel_enable_pipe(intel_crtc);
5435
5436         if (intel_crtc->config->has_pch_encoder)
5437                 lpt_pch_enable(pipe_config);
5438
5439         if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5440                 intel_ddi_set_vc_payload_alloc(pipe_config, true);
5441
5442         assert_vblank_disabled(crtc);
5443         drm_crtc_vblank_on(crtc);
5444
5445         intel_encoders_enable(crtc, pipe_config, old_state);
5446
5447         if (psl_clkgate_wa) {
5448                 intel_wait_for_vblank(dev_priv, pipe);
5449                 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
5450         }
5451
5452         /* If we change the relative order between pipe/planes enabling, we need
5453          * to change the workaround. */
5454         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5455         if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5456                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5457                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5458         }
5459 }
5460
5461 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5462 {
5463         struct drm_device *dev = crtc->base.dev;
5464         struct drm_i915_private *dev_priv = to_i915(dev);
5465         int pipe = crtc->pipe;
5466
5467         /* To avoid upsetting the power well on haswell only disable the pfit if
5468          * it's in use. The hw state code will make sure we get this right. */
5469         if (force || crtc->config->pch_pfit.enabled) {
5470                 I915_WRITE(PF_CTL(pipe), 0);
5471                 I915_WRITE(PF_WIN_POS(pipe), 0);
5472                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5473         }
5474 }
5475
5476 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5477                                   struct drm_atomic_state *old_state)
5478 {
5479         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5480         struct drm_device *dev = crtc->dev;
5481         struct drm_i915_private *dev_priv = to_i915(dev);
5482         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5483         int pipe = intel_crtc->pipe;
5484
5485         /*
5486          * Sometimes spurious CPU pipe underruns happen when the
5487          * pipe is already disabled, but FDI RX/TX is still enabled.
5488          * Happens at least with VGA+HDMI cloning. Suppress them.
5489          */
5490         if (intel_crtc->config->has_pch_encoder) {
5491                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5492                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5493         }
5494
5495         intel_encoders_disable(crtc, old_crtc_state, old_state);
5496
5497         drm_crtc_vblank_off(crtc);
5498         assert_vblank_disabled(crtc);
5499
5500         intel_disable_pipe(intel_crtc);
5501
5502         ironlake_pfit_disable(intel_crtc, false);
5503
5504         if (intel_crtc->config->has_pch_encoder)
5505                 ironlake_fdi_disable(crtc);
5506
5507         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5508
5509         if (intel_crtc->config->has_pch_encoder) {
5510                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5511
5512                 if (HAS_PCH_CPT(dev_priv)) {
5513                         i915_reg_t reg;
5514                         u32 temp;
5515
5516                         /* disable TRANS_DP_CTL */
5517                         reg = TRANS_DP_CTL(pipe);
5518                         temp = I915_READ(reg);
5519                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5520                                   TRANS_DP_PORT_SEL_MASK);
5521                         temp |= TRANS_DP_PORT_SEL_NONE;
5522                         I915_WRITE(reg, temp);
5523
5524                         /* disable DPLL_SEL */
5525                         temp = I915_READ(PCH_DPLL_SEL);
5526                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5527                         I915_WRITE(PCH_DPLL_SEL, temp);
5528                 }
5529
5530                 ironlake_fdi_pll_disable(intel_crtc);
5531         }
5532
5533         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5534         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5535 }
5536
5537 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5538                                  struct drm_atomic_state *old_state)
5539 {
5540         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5541         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5542         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5543         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5544
5545         intel_encoders_disable(crtc, old_crtc_state, old_state);
5546
5547         drm_crtc_vblank_off(crtc);
5548         assert_vblank_disabled(crtc);
5549
5550         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5551         if (!transcoder_is_dsi(cpu_transcoder))
5552                 intel_disable_pipe(intel_crtc);
5553
5554         if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5555                 intel_ddi_set_vc_payload_alloc(intel_crtc->config, false);
5556
5557         if (!transcoder_is_dsi(cpu_transcoder))
5558                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5559
5560         if (INTEL_GEN(dev_priv) >= 9)
5561                 skylake_scaler_disable(intel_crtc);
5562         else
5563                 ironlake_pfit_disable(intel_crtc, false);
5564
5565         if (!transcoder_is_dsi(cpu_transcoder))
5566                 intel_ddi_disable_pipe_clock(intel_crtc->config);
5567
5568         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5569 }
5570
5571 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5572 {
5573         struct drm_device *dev = crtc->base.dev;
5574         struct drm_i915_private *dev_priv = to_i915(dev);
5575         struct intel_crtc_state *pipe_config = crtc->config;
5576
5577         if (!pipe_config->gmch_pfit.control)
5578                 return;
5579
5580         /*
5581          * The panel fitter should only be adjusted whilst the pipe is disabled,
5582          * according to register description and PRM.
5583          */
5584         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5585         assert_pipe_disabled(dev_priv, crtc->pipe);
5586
5587         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5588         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5589
5590         /* Border color in case we don't scale up to the full screen. Black by
5591          * default, change to something else for debugging. */
5592         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5593 }
5594
5595 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
5596 {
5597         switch (port) {
5598         case PORT_A:
5599                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5600         case PORT_B:
5601                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5602         case PORT_C:
5603                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5604         case PORT_D:
5605                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5606         case PORT_E:
5607                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5608         default:
5609                 MISSING_CASE(port);
5610                 return POWER_DOMAIN_PORT_OTHER;
5611         }
5612 }
5613
5614 static u64 get_crtc_power_domains(struct drm_crtc *crtc,
5615                                   struct intel_crtc_state *crtc_state)
5616 {
5617         struct drm_device *dev = crtc->dev;
5618         struct drm_i915_private *dev_priv = to_i915(dev);
5619         struct drm_encoder *encoder;
5620         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5621         enum pipe pipe = intel_crtc->pipe;
5622         u64 mask;
5623         enum transcoder transcoder = crtc_state->cpu_transcoder;
5624
5625         if (!crtc_state->base.active)
5626                 return 0;
5627
5628         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5629         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5630         if (crtc_state->pch_pfit.enabled ||
5631             crtc_state->pch_pfit.force_thru)
5632                 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5633
5634         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5635                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5636
5637                 mask |= BIT_ULL(intel_encoder->power_domain);
5638         }
5639
5640         if (HAS_DDI(dev_priv) && crtc_state->has_audio)
5641                 mask |= BIT(POWER_DOMAIN_AUDIO);
5642
5643         if (crtc_state->shared_dpll)
5644                 mask |= BIT_ULL(POWER_DOMAIN_PLLS);
5645
5646         return mask;
5647 }
5648
5649 static u64
5650 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5651                                struct intel_crtc_state *crtc_state)
5652 {
5653         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5654         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5655         enum intel_display_power_domain domain;
5656         u64 domains, new_domains, old_domains;
5657
5658         old_domains = intel_crtc->enabled_power_domains;
5659         intel_crtc->enabled_power_domains = new_domains =
5660                 get_crtc_power_domains(crtc, crtc_state);
5661
5662         domains = new_domains & ~old_domains;
5663
5664         for_each_power_domain(domain, domains)
5665                 intel_display_power_get(dev_priv, domain);
5666
5667         return old_domains & ~new_domains;
5668 }
5669
5670 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5671                                       u64 domains)
5672 {
5673         enum intel_display_power_domain domain;
5674
5675         for_each_power_domain(domain, domains)
5676                 intel_display_power_put(dev_priv, domain);
5677 }
5678
5679 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
5680                                    struct drm_atomic_state *old_state)
5681 {
5682         struct intel_atomic_state *old_intel_state =
5683                 to_intel_atomic_state(old_state);
5684         struct drm_crtc *crtc = pipe_config->base.crtc;
5685         struct drm_device *dev = crtc->dev;
5686         struct drm_i915_private *dev_priv = to_i915(dev);
5687         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5688         int pipe = intel_crtc->pipe;
5689
5690         if (WARN_ON(intel_crtc->active))
5691                 return;
5692
5693         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5694                 intel_dp_set_m_n(intel_crtc, M1_N1);
5695
5696         intel_set_pipe_timings(intel_crtc);
5697         intel_set_pipe_src_size(intel_crtc);
5698
5699         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
5700                 struct drm_i915_private *dev_priv = to_i915(dev);
5701
5702                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5703                 I915_WRITE(CHV_CANVAS(pipe), 0);
5704         }
5705
5706         i9xx_set_pipeconf(intel_crtc);
5707
5708         intel_crtc->active = true;
5709
5710         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5711
5712         intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5713
5714         if (IS_CHERRYVIEW(dev_priv)) {
5715                 chv_prepare_pll(intel_crtc, intel_crtc->config);
5716                 chv_enable_pll(intel_crtc, intel_crtc->config);
5717         } else {
5718                 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5719                 vlv_enable_pll(intel_crtc, intel_crtc->config);
5720         }
5721
5722         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5723
5724         i9xx_pfit_enable(intel_crtc);
5725
5726         intel_color_load_luts(&pipe_config->base);
5727
5728         dev_priv->display.initial_watermarks(old_intel_state,
5729                                              pipe_config);
5730         intel_enable_pipe(intel_crtc);
5731
5732         assert_vblank_disabled(crtc);
5733         drm_crtc_vblank_on(crtc);
5734
5735         intel_encoders_enable(crtc, pipe_config, old_state);
5736 }
5737
5738 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5739 {
5740         struct drm_device *dev = crtc->base.dev;
5741         struct drm_i915_private *dev_priv = to_i915(dev);
5742
5743         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5744         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5745 }
5746
5747 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
5748                              struct drm_atomic_state *old_state)
5749 {
5750         struct intel_atomic_state *old_intel_state =
5751                 to_intel_atomic_state(old_state);
5752         struct drm_crtc *crtc = pipe_config->base.crtc;
5753         struct drm_device *dev = crtc->dev;
5754         struct drm_i915_private *dev_priv = to_i915(dev);
5755         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5756         enum pipe pipe = intel_crtc->pipe;
5757
5758         if (WARN_ON(intel_crtc->active))
5759                 return;
5760
5761         i9xx_set_pll_dividers(intel_crtc);
5762
5763         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5764                 intel_dp_set_m_n(intel_crtc, M1_N1);
5765
5766         intel_set_pipe_timings(intel_crtc);
5767         intel_set_pipe_src_size(intel_crtc);
5768
5769         i9xx_set_pipeconf(intel_crtc);
5770
5771         intel_crtc->active = true;
5772
5773         if (!IS_GEN2(dev_priv))
5774                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5775
5776         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5777
5778         i9xx_enable_pll(intel_crtc, pipe_config);
5779
5780         i9xx_pfit_enable(intel_crtc);
5781
5782         intel_color_load_luts(&pipe_config->base);
5783
5784         if (dev_priv->display.initial_watermarks != NULL)
5785                 dev_priv->display.initial_watermarks(old_intel_state,
5786                                                      intel_crtc->config);
5787         else
5788                 intel_update_watermarks(intel_crtc);
5789         intel_enable_pipe(intel_crtc);
5790
5791         assert_vblank_disabled(crtc);
5792         drm_crtc_vblank_on(crtc);
5793
5794         intel_encoders_enable(crtc, pipe_config, old_state);
5795 }
5796
5797 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5798 {
5799         struct drm_device *dev = crtc->base.dev;
5800         struct drm_i915_private *dev_priv = to_i915(dev);
5801
5802         if (!crtc->config->gmch_pfit.control)
5803                 return;
5804
5805         assert_pipe_disabled(dev_priv, crtc->pipe);
5806
5807         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5808                          I915_READ(PFIT_CONTROL));
5809         I915_WRITE(PFIT_CONTROL, 0);
5810 }
5811
5812 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
5813                               struct drm_atomic_state *old_state)
5814 {
5815         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5816         struct drm_device *dev = crtc->dev;
5817         struct drm_i915_private *dev_priv = to_i915(dev);
5818         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5819         int pipe = intel_crtc->pipe;
5820
5821         /*
5822          * On gen2 planes are double buffered but the pipe isn't, so we must
5823          * wait for planes to fully turn off before disabling the pipe.
5824          */
5825         if (IS_GEN2(dev_priv))
5826                 intel_wait_for_vblank(dev_priv, pipe);
5827
5828         intel_encoders_disable(crtc, old_crtc_state, old_state);
5829
5830         drm_crtc_vblank_off(crtc);
5831         assert_vblank_disabled(crtc);
5832
5833         intel_disable_pipe(intel_crtc);
5834
5835         i9xx_pfit_disable(intel_crtc);
5836
5837         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5838
5839         if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
5840                 if (IS_CHERRYVIEW(dev_priv))
5841                         chv_disable_pll(dev_priv, pipe);
5842                 else if (IS_VALLEYVIEW(dev_priv))
5843                         vlv_disable_pll(dev_priv, pipe);
5844                 else
5845                         i9xx_disable_pll(intel_crtc);
5846         }
5847
5848         intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
5849
5850         if (!IS_GEN2(dev_priv))
5851                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5852
5853         if (!dev_priv->display.initial_watermarks)
5854                 intel_update_watermarks(intel_crtc);
5855
5856         /* clock the pipe down to 640x480@60 to potentially save power */
5857         if (IS_I830(dev_priv))
5858                 i830_enable_pipe(dev_priv, pipe);
5859 }
5860
5861 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc,
5862                                         struct drm_modeset_acquire_ctx *ctx)
5863 {
5864         struct intel_encoder *encoder;
5865         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5866         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5867         enum intel_display_power_domain domain;
5868         struct intel_plane *plane;
5869         u64 domains;
5870         struct drm_atomic_state *state;
5871         struct intel_crtc_state *crtc_state;
5872         int ret;
5873
5874         if (!intel_crtc->active)
5875                 return;
5876
5877         for_each_intel_plane_on_crtc(&dev_priv->drm, intel_crtc, plane) {
5878                 const struct intel_plane_state *plane_state =
5879                         to_intel_plane_state(plane->base.state);
5880
5881                 if (plane_state->base.visible)
5882                         intel_plane_disable_noatomic(intel_crtc, plane);
5883         }
5884
5885         state = drm_atomic_state_alloc(crtc->dev);
5886         if (!state) {
5887                 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
5888                               crtc->base.id, crtc->name);
5889                 return;
5890         }
5891
5892         state->acquire_ctx = ctx;
5893
5894         /* Everything's already locked, -EDEADLK can't happen. */
5895         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5896         ret = drm_atomic_add_affected_connectors(state, crtc);
5897
5898         WARN_ON(IS_ERR(crtc_state) || ret);
5899
5900         dev_priv->display.crtc_disable(crtc_state, state);
5901
5902         drm_atomic_state_put(state);
5903
5904         DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
5905                       crtc->base.id, crtc->name);
5906
5907         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
5908         crtc->state->active = false;
5909         intel_crtc->active = false;
5910         crtc->enabled = false;
5911         crtc->state->connector_mask = 0;
5912         crtc->state->encoder_mask = 0;
5913
5914         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
5915                 encoder->base.crtc = NULL;
5916
5917         intel_fbc_disable(intel_crtc);
5918         intel_update_watermarks(intel_crtc);
5919         intel_disable_shared_dpll(intel_crtc);
5920
5921         domains = intel_crtc->enabled_power_domains;
5922         for_each_power_domain(domain, domains)
5923                 intel_display_power_put(dev_priv, domain);
5924         intel_crtc->enabled_power_domains = 0;
5925
5926         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
5927         dev_priv->min_cdclk[intel_crtc->pipe] = 0;
5928 }
5929
5930 /*
5931  * turn all crtc's off, but do not adjust state
5932  * This has to be paired with a call to intel_modeset_setup_hw_state.
5933  */
5934 int intel_display_suspend(struct drm_device *dev)
5935 {
5936         struct drm_i915_private *dev_priv = to_i915(dev);
5937         struct drm_atomic_state *state;
5938         int ret;
5939
5940         state = drm_atomic_helper_suspend(dev);
5941         ret = PTR_ERR_OR_ZERO(state);
5942         if (ret)
5943                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
5944         else
5945                 dev_priv->modeset_restore_state = state;
5946         return ret;
5947 }
5948
5949 void intel_encoder_destroy(struct drm_encoder *encoder)
5950 {
5951         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5952
5953         drm_encoder_cleanup(encoder);
5954         kfree(intel_encoder);
5955 }
5956
5957 /* Cross check the actual hw state with our own modeset state tracking (and it's
5958  * internal consistency). */
5959 static void intel_connector_verify_state(struct drm_crtc_state *crtc_state,
5960                                          struct drm_connector_state *conn_state)
5961 {
5962         struct intel_connector *connector = to_intel_connector(conn_state->connector);
5963
5964         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5965                       connector->base.base.id,
5966                       connector->base.name);
5967
5968         if (connector->get_hw_state(connector)) {
5969                 struct intel_encoder *encoder = connector->encoder;
5970
5971                 I915_STATE_WARN(!crtc_state,
5972                          "connector enabled without attached crtc\n");
5973
5974                 if (!crtc_state)
5975                         return;
5976
5977                 I915_STATE_WARN(!crtc_state->active,
5978                       "connector is active, but attached crtc isn't\n");
5979
5980                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
5981                         return;
5982
5983                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
5984                         "atomic encoder doesn't match attached encoder\n");
5985
5986                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
5987                         "attached encoder crtc differs from connector crtc\n");
5988         } else {
5989                 I915_STATE_WARN(crtc_state && crtc_state->active,
5990                         "attached crtc is active, but connector isn't\n");
5991                 I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
5992                         "best encoder set without crtc!\n");
5993         }
5994 }
5995
5996 int intel_connector_init(struct intel_connector *connector)
5997 {
5998         struct intel_digital_connector_state *conn_state;
5999
6000         /*
6001          * Allocate enough memory to hold intel_digital_connector_state,
6002          * This might be a few bytes too many, but for connectors that don't
6003          * need it we'll free the state and allocate a smaller one on the first
6004          * succesful commit anyway.
6005          */
6006         conn_state = kzalloc(sizeof(*conn_state), GFP_KERNEL);
6007         if (!conn_state)
6008                 return -ENOMEM;
6009
6010         __drm_atomic_helper_connector_reset(&connector->base,
6011                                             &conn_state->base);
6012
6013         return 0;
6014 }
6015
6016 struct intel_connector *intel_connector_alloc(void)
6017 {
6018         struct intel_connector *connector;
6019
6020         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6021         if (!connector)
6022                 return NULL;
6023
6024         if (intel_connector_init(connector) < 0) {
6025                 kfree(connector);
6026                 return NULL;
6027         }
6028
6029         return connector;
6030 }
6031
6032 /*
6033  * Free the bits allocated by intel_connector_alloc.
6034  * This should only be used after intel_connector_alloc has returned
6035  * successfully, and before drm_connector_init returns successfully.
6036  * Otherwise the destroy callbacks for the connector and the state should
6037  * take care of proper cleanup/free
6038  */
6039 void intel_connector_free(struct intel_connector *connector)
6040 {
6041         kfree(to_intel_digital_connector_state(connector->base.state));
6042         kfree(connector);
6043 }
6044
6045 /* Simple connector->get_hw_state implementation for encoders that support only
6046  * one connector and no cloning and hence the encoder state determines the state
6047  * of the connector. */
6048 bool intel_connector_get_hw_state(struct intel_connector *connector)
6049 {
6050         enum pipe pipe = 0;
6051         struct intel_encoder *encoder = connector->encoder;
6052
6053         return encoder->get_hw_state(encoder, &pipe);
6054 }
6055
6056 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6057 {
6058         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6059                 return crtc_state->fdi_lanes;
6060
6061         return 0;
6062 }
6063
6064 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6065                                      struct intel_crtc_state *pipe_config)
6066 {
6067         struct drm_i915_private *dev_priv = to_i915(dev);
6068         struct drm_atomic_state *state = pipe_config->base.state;
6069         struct intel_crtc *other_crtc;
6070         struct intel_crtc_state *other_crtc_state;
6071
6072         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6073                       pipe_name(pipe), pipe_config->fdi_lanes);
6074         if (pipe_config->fdi_lanes > 4) {
6075                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6076                               pipe_name(pipe), pipe_config->fdi_lanes);
6077                 return -EINVAL;
6078         }
6079
6080         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
6081                 if (pipe_config->fdi_lanes > 2) {
6082                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6083                                       pipe_config->fdi_lanes);
6084                         return -EINVAL;
6085                 } else {
6086                         return 0;
6087                 }
6088         }
6089
6090         if (INTEL_INFO(dev_priv)->num_pipes == 2)
6091                 return 0;
6092
6093         /* Ivybridge 3 pipe is really complicated */
6094         switch (pipe) {
6095         case PIPE_A:
6096                 return 0;
6097         case PIPE_B:
6098                 if (pipe_config->fdi_lanes <= 2)
6099                         return 0;
6100
6101                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
6102                 other_crtc_state =
6103                         intel_atomic_get_crtc_state(state, other_crtc);
6104                 if (IS_ERR(other_crtc_state))
6105                         return PTR_ERR(other_crtc_state);
6106
6107                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6108                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6109                                       pipe_name(pipe), pipe_config->fdi_lanes);
6110                         return -EINVAL;
6111                 }
6112                 return 0;
6113         case PIPE_C:
6114                 if (pipe_config->fdi_lanes > 2) {
6115                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6116                                       pipe_name(pipe), pipe_config->fdi_lanes);
6117                         return -EINVAL;
6118                 }
6119
6120                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
6121                 other_crtc_state =
6122                         intel_atomic_get_crtc_state(state, other_crtc);
6123                 if (IS_ERR(other_crtc_state))
6124                         return PTR_ERR(other_crtc_state);
6125
6126                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6127                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6128                         return -EINVAL;
6129                 }
6130                 return 0;
6131         default:
6132                 BUG();
6133         }
6134 }
6135
6136 #define RETRY 1
6137 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6138                                        struct intel_crtc_state *pipe_config)
6139 {
6140         struct drm_device *dev = intel_crtc->base.dev;
6141         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6142         int lane, link_bw, fdi_dotclock, ret;
6143         bool needs_recompute = false;
6144
6145 retry:
6146         /* FDI is a binary signal running at ~2.7GHz, encoding
6147          * each output octet as 10 bits. The actual frequency
6148          * is stored as a divider into a 100MHz clock, and the
6149          * mode pixel clock is stored in units of 1KHz.
6150          * Hence the bw of each lane in terms of the mode signal
6151          * is:
6152          */
6153         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6154
6155         fdi_dotclock = adjusted_mode->crtc_clock;
6156
6157         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6158                                            pipe_config->pipe_bpp);
6159
6160         pipe_config->fdi_lanes = lane;
6161
6162         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6163                                link_bw, &pipe_config->fdi_m_n, false);
6164
6165         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6166         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6167                 pipe_config->pipe_bpp -= 2*3;
6168                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6169                               pipe_config->pipe_bpp);
6170                 needs_recompute = true;
6171                 pipe_config->bw_constrained = true;
6172
6173                 goto retry;
6174         }
6175
6176         if (needs_recompute)
6177                 return RETRY;
6178
6179         return ret;
6180 }
6181
6182 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6183                                      struct intel_crtc_state *pipe_config)
6184 {
6185         if (pipe_config->ips_force_disable)
6186                 return false;
6187
6188         if (pipe_config->pipe_bpp > 24)
6189                 return false;
6190
6191         /* HSW can handle pixel rate up to cdclk? */
6192         if (IS_HASWELL(dev_priv))
6193                 return true;
6194
6195         /*
6196          * We compare against max which means we must take
6197          * the increased cdclk requirement into account when
6198          * calculating the new cdclk.
6199          *
6200          * Should measure whether using a lower cdclk w/o IPS
6201          */
6202         return pipe_config->pixel_rate <=
6203                 dev_priv->max_cdclk_freq * 95 / 100;
6204 }
6205
6206 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6207                                    struct intel_crtc_state *pipe_config)
6208 {
6209         struct drm_device *dev = crtc->base.dev;
6210         struct drm_i915_private *dev_priv = to_i915(dev);
6211
6212         pipe_config->ips_enabled = i915_modparams.enable_ips &&
6213                 hsw_crtc_supports_ips(crtc) &&
6214                 pipe_config_supports_ips(dev_priv, pipe_config);
6215 }
6216
6217 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6218 {
6219         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6220
6221         /* GDG double wide on either pipe, otherwise pipe A only */
6222         return INTEL_INFO(dev_priv)->gen < 4 &&
6223                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6224 }
6225
6226 static uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
6227 {
6228         uint32_t pixel_rate;
6229
6230         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
6231
6232         /*
6233          * We only use IF-ID interlacing. If we ever use
6234          * PF-ID we'll need to adjust the pixel_rate here.
6235          */
6236
6237         if (pipe_config->pch_pfit.enabled) {
6238                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
6239                 uint32_t pfit_size = pipe_config->pch_pfit.size;
6240
6241                 pipe_w = pipe_config->pipe_src_w;
6242                 pipe_h = pipe_config->pipe_src_h;
6243
6244                 pfit_w = (pfit_size >> 16) & 0xFFFF;
6245                 pfit_h = pfit_size & 0xFFFF;
6246                 if (pipe_w < pfit_w)
6247                         pipe_w = pfit_w;
6248                 if (pipe_h < pfit_h)
6249                         pipe_h = pfit_h;
6250
6251                 if (WARN_ON(!pfit_w || !pfit_h))
6252                         return pixel_rate;
6253
6254                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
6255                                      pfit_w * pfit_h);
6256         }
6257
6258         return pixel_rate;
6259 }
6260
6261 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
6262 {
6263         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
6264
6265         if (HAS_GMCH_DISPLAY(dev_priv))
6266                 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
6267                 crtc_state->pixel_rate =
6268                         crtc_state->base.adjusted_mode.crtc_clock;
6269         else
6270                 crtc_state->pixel_rate =
6271                         ilk_pipe_pixel_rate(crtc_state);
6272 }
6273
6274 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6275                                      struct intel_crtc_state *pipe_config)
6276 {
6277         struct drm_device *dev = crtc->base.dev;
6278         struct drm_i915_private *dev_priv = to_i915(dev);
6279         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6280         int clock_limit = dev_priv->max_dotclk_freq;
6281
6282         if (INTEL_GEN(dev_priv) < 4) {
6283                 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6284
6285                 /*
6286                  * Enable double wide mode when the dot clock
6287                  * is > 90% of the (display) core speed.
6288                  */
6289                 if (intel_crtc_supports_double_wide(crtc) &&
6290                     adjusted_mode->crtc_clock > clock_limit) {
6291                         clock_limit = dev_priv->max_dotclk_freq;
6292                         pipe_config->double_wide = true;
6293                 }
6294         }
6295
6296         if (adjusted_mode->crtc_clock > clock_limit) {
6297                 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6298                               adjusted_mode->crtc_clock, clock_limit,
6299                               yesno(pipe_config->double_wide));
6300                 return -EINVAL;
6301         }
6302
6303         if (pipe_config->ycbcr420 && pipe_config->base.ctm) {
6304                 /*
6305                  * There is only one pipe CSC unit per pipe, and we need that
6306                  * for output conversion from RGB->YCBCR. So if CTM is already
6307                  * applied we can't support YCBCR420 output.
6308                  */
6309                 DRM_DEBUG_KMS("YCBCR420 and CTM together are not possible\n");
6310                 return -EINVAL;
6311         }
6312
6313         /*
6314          * Pipe horizontal size must be even in:
6315          * - DVO ganged mode
6316          * - LVDS dual channel mode
6317          * - Double wide pipe
6318          */
6319         if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6320              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6321                 pipe_config->pipe_src_w &= ~1;
6322
6323         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6324          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6325          */
6326         if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
6327                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6328                 return -EINVAL;
6329
6330         intel_crtc_compute_pixel_rate(pipe_config);
6331
6332         if (HAS_IPS(dev_priv))
6333                 hsw_compute_ips_config(crtc, pipe_config);
6334
6335         if (pipe_config->has_pch_encoder)
6336                 return ironlake_fdi_compute_config(crtc, pipe_config);
6337
6338         return 0;
6339 }
6340
6341 static void
6342 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6343 {
6344         while (*num > DATA_LINK_M_N_MASK ||
6345                *den > DATA_LINK_M_N_MASK) {
6346                 *num >>= 1;
6347                 *den >>= 1;
6348         }
6349 }
6350
6351 static void compute_m_n(unsigned int m, unsigned int n,
6352                         uint32_t *ret_m, uint32_t *ret_n,
6353                         bool reduce_m_n)
6354 {
6355         /*
6356          * Reduce M/N as much as possible without loss in precision. Several DP
6357          * dongles in particular seem to be fussy about too large *link* M/N
6358          * values. The passed in values are more likely to have the least
6359          * significant bits zero than M after rounding below, so do this first.
6360          */
6361         if (reduce_m_n) {
6362                 while ((m & 1) == 0 && (n & 1) == 0) {
6363                         m >>= 1;
6364                         n >>= 1;
6365                 }
6366         }
6367
6368         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6369         *ret_m = div_u64((uint64_t) m * *ret_n, n);
6370         intel_reduce_m_n_ratio(ret_m, ret_n);
6371 }
6372
6373 void
6374 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6375                        int pixel_clock, int link_clock,
6376                        struct intel_link_m_n *m_n,
6377                        bool reduce_m_n)
6378 {
6379         m_n->tu = 64;
6380
6381         compute_m_n(bits_per_pixel * pixel_clock,
6382                     link_clock * nlanes * 8,
6383                     &m_n->gmch_m, &m_n->gmch_n,
6384                     reduce_m_n);
6385
6386         compute_m_n(pixel_clock, link_clock,
6387                     &m_n->link_m, &m_n->link_n,
6388                     reduce_m_n);
6389 }
6390
6391 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6392 {
6393         if (i915_modparams.panel_use_ssc >= 0)
6394                 return i915_modparams.panel_use_ssc != 0;
6395         return dev_priv->vbt.lvds_use_ssc
6396                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6397 }
6398
6399 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6400 {
6401         return (1 << dpll->n) << 16 | dpll->m2;
6402 }
6403
6404 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6405 {
6406         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6407 }
6408
6409 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6410                                      struct intel_crtc_state *crtc_state,
6411                                      struct dpll *reduced_clock)
6412 {
6413         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6414         u32 fp, fp2 = 0;
6415
6416         if (IS_PINEVIEW(dev_priv)) {
6417                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6418                 if (reduced_clock)
6419                         fp2 = pnv_dpll_compute_fp(reduced_clock);
6420         } else {
6421                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6422                 if (reduced_clock)
6423                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
6424         }
6425
6426         crtc_state->dpll_hw_state.fp0 = fp;
6427
6428         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6429             reduced_clock) {
6430                 crtc_state->dpll_hw_state.fp1 = fp2;
6431         } else {
6432                 crtc_state->dpll_hw_state.fp1 = fp;
6433         }
6434 }
6435
6436 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6437                 pipe)
6438 {
6439         u32 reg_val;
6440
6441         /*
6442          * PLLB opamp always calibrates to max value of 0x3f, force enable it
6443          * and set it to a reasonable value instead.
6444          */
6445         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6446         reg_val &= 0xffffff00;
6447         reg_val |= 0x00000030;
6448         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6449
6450         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6451         reg_val &= 0x00ffffff;
6452         reg_val |= 0x8c000000;
6453         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6454
6455         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6456         reg_val &= 0xffffff00;
6457         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6458
6459         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6460         reg_val &= 0x00ffffff;
6461         reg_val |= 0xb0000000;
6462         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6463 }
6464
6465 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6466                                          struct intel_link_m_n *m_n)
6467 {
6468         struct drm_device *dev = crtc->base.dev;
6469         struct drm_i915_private *dev_priv = to_i915(dev);
6470         int pipe = crtc->pipe;
6471
6472         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6473         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6474         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6475         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6476 }
6477
6478 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6479                                          struct intel_link_m_n *m_n,
6480                                          struct intel_link_m_n *m2_n2)
6481 {
6482         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6483         int pipe = crtc->pipe;
6484         enum transcoder transcoder = crtc->config->cpu_transcoder;
6485
6486         if (INTEL_GEN(dev_priv) >= 5) {
6487                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6488                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6489                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6490                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6491                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6492                  * for gen < 8) and if DRRS is supported (to make sure the
6493                  * registers are not unnecessarily accessed).
6494                  */
6495                 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
6496                     INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
6497                         I915_WRITE(PIPE_DATA_M2(transcoder),
6498                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6499                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6500                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6501                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6502                 }
6503         } else {
6504                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6505                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6506                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6507                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6508         }
6509 }
6510
6511 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6512 {
6513         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6514
6515         if (m_n == M1_N1) {
6516                 dp_m_n = &crtc->config->dp_m_n;
6517                 dp_m2_n2 = &crtc->config->dp_m2_n2;
6518         } else if (m_n == M2_N2) {
6519
6520                 /*
6521                  * M2_N2 registers are not supported. Hence m2_n2 divider value
6522                  * needs to be programmed into M1_N1.
6523                  */
6524                 dp_m_n = &crtc->config->dp_m2_n2;
6525         } else {
6526                 DRM_ERROR("Unsupported divider value\n");
6527                 return;
6528         }
6529
6530         if (crtc->config->has_pch_encoder)
6531                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6532         else
6533                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6534 }
6535
6536 static void vlv_compute_dpll(struct intel_crtc *crtc,
6537                              struct intel_crtc_state *pipe_config)
6538 {
6539         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
6540                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6541         if (crtc->pipe != PIPE_A)
6542                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6543
6544         /* DPLL not used with DSI, but still need the rest set up */
6545         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6546                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
6547                         DPLL_EXT_BUFFER_ENABLE_VLV;
6548
6549         pipe_config->dpll_hw_state.dpll_md =
6550                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6551 }
6552
6553 static void chv_compute_dpll(struct intel_crtc *crtc,
6554                              struct intel_crtc_state *pipe_config)
6555 {
6556         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
6557                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6558         if (crtc->pipe != PIPE_A)
6559                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6560
6561         /* DPLL not used with DSI, but still need the rest set up */
6562         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6563                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
6564
6565         pipe_config->dpll_hw_state.dpll_md =
6566                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6567 }
6568
6569 static void vlv_prepare_pll(struct intel_crtc *crtc,
6570                             const struct intel_crtc_state *pipe_config)
6571 {
6572         struct drm_device *dev = crtc->base.dev;
6573         struct drm_i915_private *dev_priv = to_i915(dev);
6574         enum pipe pipe = crtc->pipe;
6575         u32 mdiv;
6576         u32 bestn, bestm1, bestm2, bestp1, bestp2;
6577         u32 coreclk, reg_val;
6578
6579         /* Enable Refclk */
6580         I915_WRITE(DPLL(pipe),
6581                    pipe_config->dpll_hw_state.dpll &
6582                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
6583
6584         /* No need to actually set up the DPLL with DSI */
6585         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6586                 return;
6587
6588         mutex_lock(&dev_priv->sb_lock);
6589
6590         bestn = pipe_config->dpll.n;
6591         bestm1 = pipe_config->dpll.m1;
6592         bestm2 = pipe_config->dpll.m2;
6593         bestp1 = pipe_config->dpll.p1;
6594         bestp2 = pipe_config->dpll.p2;
6595
6596         /* See eDP HDMI DPIO driver vbios notes doc */
6597
6598         /* PLL B needs special handling */
6599         if (pipe == PIPE_B)
6600                 vlv_pllb_recal_opamp(dev_priv, pipe);
6601
6602         /* Set up Tx target for periodic Rcomp update */
6603         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6604
6605         /* Disable target IRef on PLL */
6606         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6607         reg_val &= 0x00ffffff;
6608         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6609
6610         /* Disable fast lock */
6611         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6612
6613         /* Set idtafcrecal before PLL is enabled */
6614         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6615         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6616         mdiv |= ((bestn << DPIO_N_SHIFT));
6617         mdiv |= (1 << DPIO_K_SHIFT);
6618
6619         /*
6620          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6621          * but we don't support that).
6622          * Note: don't use the DAC post divider as it seems unstable.
6623          */
6624         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6625         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6626
6627         mdiv |= DPIO_ENABLE_CALIBRATION;
6628         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6629
6630         /* Set HBR and RBR LPF coefficients */
6631         if (pipe_config->port_clock == 162000 ||
6632             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
6633             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
6634                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6635                                  0x009f0003);
6636         else
6637                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6638                                  0x00d0000f);
6639
6640         if (intel_crtc_has_dp_encoder(pipe_config)) {
6641                 /* Use SSC source */
6642                 if (pipe == PIPE_A)
6643                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6644                                          0x0df40000);
6645                 else
6646                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6647                                          0x0df70000);
6648         } else { /* HDMI or VGA */
6649                 /* Use bend source */
6650                 if (pipe == PIPE_A)
6651                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6652                                          0x0df70000);
6653                 else
6654                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6655                                          0x0df40000);
6656         }
6657
6658         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6659         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6660         if (intel_crtc_has_dp_encoder(crtc->config))
6661                 coreclk |= 0x01000000;
6662         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6663
6664         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6665         mutex_unlock(&dev_priv->sb_lock);
6666 }
6667
6668 static void chv_prepare_pll(struct intel_crtc *crtc,
6669                             const struct intel_crtc_state *pipe_config)
6670 {
6671         struct drm_device *dev = crtc->base.dev;
6672         struct drm_i915_private *dev_priv = to_i915(dev);
6673         enum pipe pipe = crtc->pipe;
6674         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6675         u32 loopfilter, tribuf_calcntr;
6676         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6677         u32 dpio_val;
6678         int vco;
6679
6680         /* Enable Refclk and SSC */
6681         I915_WRITE(DPLL(pipe),
6682                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6683
6684         /* No need to actually set up the DPLL with DSI */
6685         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6686                 return;
6687
6688         bestn = pipe_config->dpll.n;
6689         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6690         bestm1 = pipe_config->dpll.m1;
6691         bestm2 = pipe_config->dpll.m2 >> 22;
6692         bestp1 = pipe_config->dpll.p1;
6693         bestp2 = pipe_config->dpll.p2;
6694         vco = pipe_config->dpll.vco;
6695         dpio_val = 0;
6696         loopfilter = 0;
6697
6698         mutex_lock(&dev_priv->sb_lock);
6699
6700         /* p1 and p2 divider */
6701         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6702                         5 << DPIO_CHV_S1_DIV_SHIFT |
6703                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6704                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6705                         1 << DPIO_CHV_K_DIV_SHIFT);
6706
6707         /* Feedback post-divider - m2 */
6708         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6709
6710         /* Feedback refclk divider - n and m1 */
6711         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6712                         DPIO_CHV_M1_DIV_BY_2 |
6713                         1 << DPIO_CHV_N_DIV_SHIFT);
6714
6715         /* M2 fraction division */
6716         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6717
6718         /* M2 fraction division enable */
6719         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6720         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6721         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6722         if (bestm2_frac)
6723                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6724         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6725
6726         /* Program digital lock detect threshold */
6727         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6728         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6729                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6730         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6731         if (!bestm2_frac)
6732                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6733         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6734
6735         /* Loop filter */
6736         if (vco == 5400000) {
6737                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6738                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6739                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6740                 tribuf_calcntr = 0x9;
6741         } else if (vco <= 6200000) {
6742                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6743                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6744                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6745                 tribuf_calcntr = 0x9;
6746         } else if (vco <= 6480000) {
6747                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6748                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6749                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6750                 tribuf_calcntr = 0x8;
6751         } else {
6752                 /* Not supported. Apply the same limits as in the max case */
6753                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6754                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6755                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6756                 tribuf_calcntr = 0;
6757         }
6758         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6759
6760         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6761         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6762         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6763         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6764
6765         /* AFC Recal */
6766         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6767                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6768                         DPIO_AFC_RECAL);
6769
6770         mutex_unlock(&dev_priv->sb_lock);
6771 }
6772
6773 /**
6774  * vlv_force_pll_on - forcibly enable just the PLL
6775  * @dev_priv: i915 private structure
6776  * @pipe: pipe PLL to enable
6777  * @dpll: PLL configuration
6778  *
6779  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6780  * in cases where we need the PLL enabled even when @pipe is not going to
6781  * be enabled.
6782  */
6783 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
6784                      const struct dpll *dpll)
6785 {
6786         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
6787         struct intel_crtc_state *pipe_config;
6788
6789         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
6790         if (!pipe_config)
6791                 return -ENOMEM;
6792
6793         pipe_config->base.crtc = &crtc->base;
6794         pipe_config->pixel_multiplier = 1;
6795         pipe_config->dpll = *dpll;
6796
6797         if (IS_CHERRYVIEW(dev_priv)) {
6798                 chv_compute_dpll(crtc, pipe_config);
6799                 chv_prepare_pll(crtc, pipe_config);
6800                 chv_enable_pll(crtc, pipe_config);
6801         } else {
6802                 vlv_compute_dpll(crtc, pipe_config);
6803                 vlv_prepare_pll(crtc, pipe_config);
6804                 vlv_enable_pll(crtc, pipe_config);
6805         }
6806
6807         kfree(pipe_config);
6808
6809         return 0;
6810 }
6811
6812 /**
6813  * vlv_force_pll_off - forcibly disable just the PLL
6814  * @dev_priv: i915 private structure
6815  * @pipe: pipe PLL to disable
6816  *
6817  * Disable the PLL for @pipe. To be used in cases where we need
6818  * the PLL enabled even when @pipe is not going to be enabled.
6819  */
6820 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
6821 {
6822         if (IS_CHERRYVIEW(dev_priv))
6823                 chv_disable_pll(dev_priv, pipe);
6824         else
6825                 vlv_disable_pll(dev_priv, pipe);
6826 }
6827
6828 static void i9xx_compute_dpll(struct intel_crtc *crtc,
6829                               struct intel_crtc_state *crtc_state,
6830                               struct dpll *reduced_clock)
6831 {
6832         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6833         u32 dpll;
6834         struct dpll *clock = &crtc_state->dpll;
6835
6836         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6837
6838         dpll = DPLL_VGA_MODE_DIS;
6839
6840         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
6841                 dpll |= DPLLB_MODE_LVDS;
6842         else
6843                 dpll |= DPLLB_MODE_DAC_SERIAL;
6844
6845         if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
6846             IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
6847                 dpll |= (crtc_state->pixel_multiplier - 1)
6848                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6849         }
6850
6851         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
6852             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
6853                 dpll |= DPLL_SDVO_HIGH_SPEED;
6854
6855         if (intel_crtc_has_dp_encoder(crtc_state))
6856                 dpll |= DPLL_SDVO_HIGH_SPEED;
6857
6858         /* compute bitmask from p1 value */
6859         if (IS_PINEVIEW(dev_priv))
6860                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6861         else {
6862                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6863                 if (IS_G4X(dev_priv) && reduced_clock)
6864                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6865         }
6866         switch (clock->p2) {
6867         case 5:
6868                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6869                 break;
6870         case 7:
6871                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6872                 break;
6873         case 10:
6874                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6875                 break;
6876         case 14:
6877                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6878                 break;
6879         }
6880         if (INTEL_GEN(dev_priv) >= 4)
6881                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6882
6883         if (crtc_state->sdvo_tv_clock)
6884                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6885         else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6886                  intel_panel_use_ssc(dev_priv))
6887                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6888         else
6889                 dpll |= PLL_REF_INPUT_DREFCLK;
6890
6891         dpll |= DPLL_VCO_ENABLE;
6892         crtc_state->dpll_hw_state.dpll = dpll;
6893
6894         if (INTEL_GEN(dev_priv) >= 4) {
6895                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6896                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6897                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6898         }
6899 }
6900
6901 static void i8xx_compute_dpll(struct intel_crtc *crtc,
6902                               struct intel_crtc_state *crtc_state,
6903                               struct dpll *reduced_clock)
6904 {
6905         struct drm_device *dev = crtc->base.dev;
6906         struct drm_i915_private *dev_priv = to_i915(dev);
6907         u32 dpll;
6908         struct dpll *clock = &crtc_state->dpll;
6909
6910         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6911
6912         dpll = DPLL_VGA_MODE_DIS;
6913
6914         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
6915                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6916         } else {
6917                 if (clock->p1 == 2)
6918                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6919                 else
6920                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6921                 if (clock->p2 == 4)
6922                         dpll |= PLL_P2_DIVIDE_BY_4;
6923         }
6924
6925         if (!IS_I830(dev_priv) &&
6926             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
6927                 dpll |= DPLL_DVO_2X_MODE;
6928
6929         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6930             intel_panel_use_ssc(dev_priv))
6931                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6932         else
6933                 dpll |= PLL_REF_INPUT_DREFCLK;
6934
6935         dpll |= DPLL_VCO_ENABLE;
6936         crtc_state->dpll_hw_state.dpll = dpll;
6937 }
6938
6939 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6940 {
6941         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
6942         enum pipe pipe = intel_crtc->pipe;
6943         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6944         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
6945         uint32_t crtc_vtotal, crtc_vblank_end;
6946         int vsyncshift = 0;
6947
6948         /* We need to be careful not to changed the adjusted mode, for otherwise
6949          * the hw state checker will get angry at the mismatch. */
6950         crtc_vtotal = adjusted_mode->crtc_vtotal;
6951         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6952
6953         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6954                 /* the chip adds 2 halflines automatically */
6955                 crtc_vtotal -= 1;
6956                 crtc_vblank_end -= 1;
6957
6958                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
6959                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6960                 else
6961                         vsyncshift = adjusted_mode->crtc_hsync_start -
6962                                 adjusted_mode->crtc_htotal / 2;
6963                 if (vsyncshift < 0)
6964                         vsyncshift += adjusted_mode->crtc_htotal;
6965         }
6966
6967         if (INTEL_GEN(dev_priv) > 3)
6968                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6969
6970         I915_WRITE(HTOTAL(cpu_transcoder),
6971                    (adjusted_mode->crtc_hdisplay - 1) |
6972                    ((adjusted_mode->crtc_htotal - 1) << 16));
6973         I915_WRITE(HBLANK(cpu_transcoder),
6974                    (adjusted_mode->crtc_hblank_start - 1) |
6975                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6976         I915_WRITE(HSYNC(cpu_transcoder),
6977                    (adjusted_mode->crtc_hsync_start - 1) |
6978                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6979
6980         I915_WRITE(VTOTAL(cpu_transcoder),
6981                    (adjusted_mode->crtc_vdisplay - 1) |
6982                    ((crtc_vtotal - 1) << 16));
6983         I915_WRITE(VBLANK(cpu_transcoder),
6984                    (adjusted_mode->crtc_vblank_start - 1) |
6985                    ((crtc_vblank_end - 1) << 16));
6986         I915_WRITE(VSYNC(cpu_transcoder),
6987                    (adjusted_mode->crtc_vsync_start - 1) |
6988                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6989
6990         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6991          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6992          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6993          * bits. */
6994         if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
6995             (pipe == PIPE_B || pipe == PIPE_C))
6996                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6997
6998 }
6999
7000 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7001 {
7002         struct drm_device *dev = intel_crtc->base.dev;
7003         struct drm_i915_private *dev_priv = to_i915(dev);
7004         enum pipe pipe = intel_crtc->pipe;
7005
7006         /* pipesrc controls the size that is scaled from, which should
7007          * always be the user's requested size.
7008          */
7009         I915_WRITE(PIPESRC(pipe),
7010                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7011                    (intel_crtc->config->pipe_src_h - 1));
7012 }
7013
7014 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7015                                    struct intel_crtc_state *pipe_config)
7016 {
7017         struct drm_device *dev = crtc->base.dev;
7018         struct drm_i915_private *dev_priv = to_i915(dev);
7019         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7020         uint32_t tmp;
7021
7022         tmp = I915_READ(HTOTAL(cpu_transcoder));
7023         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7024         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7025         tmp = I915_READ(HBLANK(cpu_transcoder));
7026         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7027         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7028         tmp = I915_READ(HSYNC(cpu_transcoder));
7029         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7030         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7031
7032         tmp = I915_READ(VTOTAL(cpu_transcoder));
7033         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7034         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7035         tmp = I915_READ(VBLANK(cpu_transcoder));
7036         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7037         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7038         tmp = I915_READ(VSYNC(cpu_transcoder));
7039         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7040         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7041
7042         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7043                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7044                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7045                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7046         }
7047 }
7048
7049 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7050                                     struct intel_crtc_state *pipe_config)
7051 {
7052         struct drm_device *dev = crtc->base.dev;
7053         struct drm_i915_private *dev_priv = to_i915(dev);
7054         u32 tmp;
7055
7056         tmp = I915_READ(PIPESRC(crtc->pipe));
7057         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7058         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7059
7060         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7061         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7062 }
7063
7064 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7065                                  struct intel_crtc_state *pipe_config)
7066 {
7067         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7068         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7069         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7070         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7071
7072         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7073         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7074         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7075         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7076
7077         mode->flags = pipe_config->base.adjusted_mode.flags;
7078         mode->type = DRM_MODE_TYPE_DRIVER;
7079
7080         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7081
7082         mode->hsync = drm_mode_hsync(mode);
7083         mode->vrefresh = drm_mode_vrefresh(mode);
7084         drm_mode_set_name(mode);
7085 }
7086
7087 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7088 {
7089         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
7090         uint32_t pipeconf;
7091
7092         pipeconf = 0;
7093
7094         /* we keep both pipes enabled on 830 */
7095         if (IS_I830(dev_priv))
7096                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7097
7098         if (intel_crtc->config->double_wide)
7099                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7100
7101         /* only g4x and later have fancy bpc/dither controls */
7102         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7103             IS_CHERRYVIEW(dev_priv)) {
7104                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7105                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7106                         pipeconf |= PIPECONF_DITHER_EN |
7107                                     PIPECONF_DITHER_TYPE_SP;
7108
7109                 switch (intel_crtc->config->pipe_bpp) {
7110                 case 18:
7111                         pipeconf |= PIPECONF_6BPC;
7112                         break;
7113                 case 24:
7114                         pipeconf |= PIPECONF_8BPC;
7115                         break;
7116                 case 30:
7117                         pipeconf |= PIPECONF_10BPC;
7118                         break;
7119                 default:
7120                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7121                         BUG();
7122                 }
7123         }
7124
7125         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7126                 if (INTEL_GEN(dev_priv) < 4 ||
7127                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7128                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7129                 else
7130                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7131         } else
7132                 pipeconf |= PIPECONF_PROGRESSIVE;
7133
7134         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7135              intel_crtc->config->limited_color_range)
7136                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7137
7138         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7139         POSTING_READ(PIPECONF(intel_crtc->pipe));
7140 }
7141
7142 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7143                                    struct intel_crtc_state *crtc_state)
7144 {
7145         struct drm_device *dev = crtc->base.dev;
7146         struct drm_i915_private *dev_priv = to_i915(dev);
7147         const struct intel_limit *limit;
7148         int refclk = 48000;
7149
7150         memset(&crtc_state->dpll_hw_state, 0,
7151                sizeof(crtc_state->dpll_hw_state));
7152
7153         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7154                 if (intel_panel_use_ssc(dev_priv)) {
7155                         refclk = dev_priv->vbt.lvds_ssc_freq;
7156                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7157                 }
7158
7159                 limit = &intel_limits_i8xx_lvds;
7160         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7161                 limit = &intel_limits_i8xx_dvo;
7162         } else {
7163                 limit = &intel_limits_i8xx_dac;
7164         }
7165
7166         if (!crtc_state->clock_set &&
7167             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7168                                  refclk, NULL, &crtc_state->dpll)) {
7169                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7170                 return -EINVAL;
7171         }
7172
7173         i8xx_compute_dpll(crtc, crtc_state, NULL);
7174
7175         return 0;
7176 }
7177
7178 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7179                                   struct intel_crtc_state *crtc_state)
7180 {
7181         struct drm_device *dev = crtc->base.dev;
7182         struct drm_i915_private *dev_priv = to_i915(dev);
7183         const struct intel_limit *limit;
7184         int refclk = 96000;
7185
7186         memset(&crtc_state->dpll_hw_state, 0,
7187                sizeof(crtc_state->dpll_hw_state));
7188
7189         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7190                 if (intel_panel_use_ssc(dev_priv)) {
7191                         refclk = dev_priv->vbt.lvds_ssc_freq;
7192                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7193                 }
7194
7195                 if (intel_is_dual_link_lvds(dev))
7196                         limit = &intel_limits_g4x_dual_channel_lvds;
7197                 else
7198                         limit = &intel_limits_g4x_single_channel_lvds;
7199         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7200                    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7201                 limit = &intel_limits_g4x_hdmi;
7202         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7203                 limit = &intel_limits_g4x_sdvo;
7204         } else {
7205                 /* The option is for other outputs */
7206                 limit = &intel_limits_i9xx_sdvo;
7207         }
7208
7209         if (!crtc_state->clock_set &&
7210             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7211                                 refclk, NULL, &crtc_state->dpll)) {
7212                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7213                 return -EINVAL;
7214         }
7215
7216         i9xx_compute_dpll(crtc, crtc_state, NULL);
7217
7218         return 0;
7219 }
7220
7221 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7222                                   struct intel_crtc_state *crtc_state)
7223 {
7224         struct drm_device *dev = crtc->base.dev;
7225         struct drm_i915_private *dev_priv = to_i915(dev);
7226         const struct intel_limit *limit;
7227         int refclk = 96000;
7228
7229         memset(&crtc_state->dpll_hw_state, 0,
7230                sizeof(crtc_state->dpll_hw_state));
7231
7232         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7233                 if (intel_panel_use_ssc(dev_priv)) {
7234                         refclk = dev_priv->vbt.lvds_ssc_freq;
7235                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7236                 }
7237
7238                 limit = &intel_limits_pineview_lvds;
7239         } else {
7240                 limit = &intel_limits_pineview_sdvo;
7241         }
7242
7243         if (!crtc_state->clock_set &&
7244             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7245                                 refclk, NULL, &crtc_state->dpll)) {
7246                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7247                 return -EINVAL;
7248         }
7249
7250         i9xx_compute_dpll(crtc, crtc_state, NULL);
7251
7252         return 0;
7253 }
7254
7255 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7256                                    struct intel_crtc_state *crtc_state)
7257 {
7258         struct drm_device *dev = crtc->base.dev;
7259         struct drm_i915_private *dev_priv = to_i915(dev);
7260         const struct intel_limit *limit;
7261         int refclk = 96000;
7262
7263         memset(&crtc_state->dpll_hw_state, 0,
7264                sizeof(crtc_state->dpll_hw_state));
7265
7266         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7267                 if (intel_panel_use_ssc(dev_priv)) {
7268                         refclk = dev_priv->vbt.lvds_ssc_freq;
7269                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7270                 }
7271
7272                 limit = &intel_limits_i9xx_lvds;
7273         } else {
7274                 limit = &intel_limits_i9xx_sdvo;
7275         }
7276
7277         if (!crtc_state->clock_set &&
7278             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7279                                  refclk, NULL, &crtc_state->dpll)) {
7280                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7281                 return -EINVAL;
7282         }
7283
7284         i9xx_compute_dpll(crtc, crtc_state, NULL);
7285
7286         return 0;
7287 }
7288
7289 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7290                                   struct intel_crtc_state *crtc_state)
7291 {
7292         int refclk = 100000;
7293         const struct intel_limit *limit = &intel_limits_chv;
7294
7295         memset(&crtc_state->dpll_hw_state, 0,
7296                sizeof(crtc_state->dpll_hw_state));
7297
7298         if (!crtc_state->clock_set &&
7299             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7300                                 refclk, NULL, &crtc_state->dpll)) {
7301                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7302                 return -EINVAL;
7303         }
7304
7305         chv_compute_dpll(crtc, crtc_state);
7306
7307         return 0;
7308 }
7309
7310 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7311                                   struct intel_crtc_state *crtc_state)
7312 {
7313         int refclk = 100000;
7314         const struct intel_limit *limit = &intel_limits_vlv;
7315
7316         memset(&crtc_state->dpll_hw_state, 0,
7317                sizeof(crtc_state->dpll_hw_state));
7318
7319         if (!crtc_state->clock_set &&
7320             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7321                                 refclk, NULL, &crtc_state->dpll)) {
7322                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7323                 return -EINVAL;
7324         }
7325
7326         vlv_compute_dpll(crtc, crtc_state);
7327
7328         return 0;
7329 }
7330
7331 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7332                                  struct intel_crtc_state *pipe_config)
7333 {
7334         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7335         uint32_t tmp;
7336
7337         if (INTEL_GEN(dev_priv) <= 3 &&
7338             (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
7339                 return;
7340
7341         tmp = I915_READ(PFIT_CONTROL);
7342         if (!(tmp & PFIT_ENABLE))
7343                 return;
7344
7345         /* Check whether the pfit is attached to our pipe. */
7346         if (INTEL_GEN(dev_priv) < 4) {
7347                 if (crtc->pipe != PIPE_B)
7348                         return;
7349         } else {
7350                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7351                         return;
7352         }
7353
7354         pipe_config->gmch_pfit.control = tmp;
7355         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7356 }
7357
7358 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7359                                struct intel_crtc_state *pipe_config)
7360 {
7361         struct drm_device *dev = crtc->base.dev;
7362         struct drm_i915_private *dev_priv = to_i915(dev);
7363         int pipe = pipe_config->cpu_transcoder;
7364         struct dpll clock;
7365         u32 mdiv;
7366         int refclk = 100000;
7367
7368         /* In case of DSI, DPLL will not be used */
7369         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7370                 return;
7371
7372         mutex_lock(&dev_priv->sb_lock);
7373         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7374         mutex_unlock(&dev_priv->sb_lock);
7375
7376         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7377         clock.m2 = mdiv & DPIO_M2DIV_MASK;
7378         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7379         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7380         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7381
7382         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7383 }
7384
7385 static void
7386 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7387                               struct intel_initial_plane_config *plane_config)
7388 {
7389         struct drm_device *dev = crtc->base.dev;
7390         struct drm_i915_private *dev_priv = to_i915(dev);
7391         u32 val, base, offset;
7392         int pipe = crtc->pipe, plane = crtc->plane;
7393         int fourcc, pixel_format;
7394         unsigned int aligned_height;
7395         struct drm_framebuffer *fb;
7396         struct intel_framebuffer *intel_fb;
7397
7398         val = I915_READ(DSPCNTR(plane));
7399         if (!(val & DISPLAY_PLANE_ENABLE))
7400                 return;
7401
7402         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7403         if (!intel_fb) {
7404                 DRM_DEBUG_KMS("failed to alloc fb\n");
7405                 return;
7406         }
7407
7408         fb = &intel_fb->base;
7409
7410         fb->dev = dev;
7411
7412         if (INTEL_GEN(dev_priv) >= 4) {
7413                 if (val & DISPPLANE_TILED) {
7414                         plane_config->tiling = I915_TILING_X;
7415                         fb->modifier = I915_FORMAT_MOD_X_TILED;
7416                 }
7417         }
7418
7419         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7420         fourcc = i9xx_format_to_fourcc(pixel_format);
7421         fb->format = drm_format_info(fourcc);
7422
7423         if (INTEL_GEN(dev_priv) >= 4) {
7424                 if (plane_config->tiling)
7425                         offset = I915_READ(DSPTILEOFF(plane));
7426                 else
7427                         offset = I915_READ(DSPLINOFF(plane));
7428                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7429         } else {
7430                 base = I915_READ(DSPADDR(plane));
7431         }
7432         plane_config->base = base;
7433
7434         val = I915_READ(PIPESRC(pipe));
7435         fb->width = ((val >> 16) & 0xfff) + 1;
7436         fb->height = ((val >> 0) & 0xfff) + 1;
7437
7438         val = I915_READ(DSPSTRIDE(pipe));
7439         fb->pitches[0] = val & 0xffffffc0;
7440
7441         aligned_height = intel_fb_align_height(fb, 0, fb->height);
7442
7443         plane_config->size = fb->pitches[0] * aligned_height;
7444
7445         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7446                       pipe_name(pipe), plane, fb->width, fb->height,
7447                       fb->format->cpp[0] * 8, base, fb->pitches[0],
7448                       plane_config->size);
7449
7450         plane_config->fb = intel_fb;
7451 }
7452
7453 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7454                                struct intel_crtc_state *pipe_config)
7455 {
7456         struct drm_device *dev = crtc->base.dev;
7457         struct drm_i915_private *dev_priv = to_i915(dev);
7458         int pipe = pipe_config->cpu_transcoder;
7459         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7460         struct dpll clock;
7461         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
7462         int refclk = 100000;
7463
7464         /* In case of DSI, DPLL will not be used */
7465         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7466                 return;
7467
7468         mutex_lock(&dev_priv->sb_lock);
7469         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7470         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7471         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7472         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7473         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7474         mutex_unlock(&dev_priv->sb_lock);
7475
7476         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7477         clock.m2 = (pll_dw0 & 0xff) << 22;
7478         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
7479                 clock.m2 |= pll_dw2 & 0x3fffff;
7480         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7481         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7482         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7483
7484         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
7485 }
7486
7487 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7488                                  struct intel_crtc_state *pipe_config)
7489 {
7490         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7491         enum intel_display_power_domain power_domain;
7492         uint32_t tmp;
7493         bool ret;
7494
7495         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
7496         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
7497                 return false;
7498
7499         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7500         pipe_config->shared_dpll = NULL;
7501
7502         ret = false;
7503
7504         tmp = I915_READ(PIPECONF(crtc->pipe));
7505         if (!(tmp & PIPECONF_ENABLE))
7506                 goto out;
7507
7508         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7509             IS_CHERRYVIEW(dev_priv)) {
7510                 switch (tmp & PIPECONF_BPC_MASK) {
7511                 case PIPECONF_6BPC:
7512                         pipe_config->pipe_bpp = 18;
7513                         break;
7514                 case PIPECONF_8BPC:
7515                         pipe_config->pipe_bpp = 24;
7516                         break;
7517                 case PIPECONF_10BPC:
7518                         pipe_config->pipe_bpp = 30;
7519                         break;
7520                 default:
7521                         break;
7522                 }
7523         }
7524
7525         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7526             (tmp & PIPECONF_COLOR_RANGE_SELECT))
7527                 pipe_config->limited_color_range = true;
7528
7529         if (INTEL_GEN(dev_priv) < 4)
7530                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7531
7532         intel_get_pipe_timings(crtc, pipe_config);
7533         intel_get_pipe_src_size(crtc, pipe_config);
7534
7535         i9xx_get_pfit_config(crtc, pipe_config);
7536
7537         if (INTEL_GEN(dev_priv) >= 4) {
7538                 /* No way to read it out on pipes B and C */
7539                 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
7540                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
7541                 else
7542                         tmp = I915_READ(DPLL_MD(crtc->pipe));
7543                 pipe_config->pixel_multiplier =
7544                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7545                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7546                 pipe_config->dpll_hw_state.dpll_md = tmp;
7547         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
7548                    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
7549                 tmp = I915_READ(DPLL(crtc->pipe));
7550                 pipe_config->pixel_multiplier =
7551                         ((tmp & SDVO_MULTIPLIER_MASK)
7552                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7553         } else {
7554                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7555                  * port and will be fixed up in the encoder->get_config
7556                  * function. */
7557                 pipe_config->pixel_multiplier = 1;
7558         }
7559         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7560         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
7561                 /*
7562                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7563                  * on 830. Filter it out here so that we don't
7564                  * report errors due to that.
7565                  */
7566                 if (IS_I830(dev_priv))
7567                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7568
7569                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7570                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7571         } else {
7572                 /* Mask out read-only status bits. */
7573                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7574                                                      DPLL_PORTC_READY_MASK |
7575                                                      DPLL_PORTB_READY_MASK);
7576         }
7577
7578         if (IS_CHERRYVIEW(dev_priv))
7579                 chv_crtc_clock_get(crtc, pipe_config);
7580         else if (IS_VALLEYVIEW(dev_priv))
7581                 vlv_crtc_clock_get(crtc, pipe_config);
7582         else
7583                 i9xx_crtc_clock_get(crtc, pipe_config);
7584
7585         /*
7586          * Normally the dotclock is filled in by the encoder .get_config()
7587          * but in case the pipe is enabled w/o any ports we need a sane
7588          * default.
7589          */
7590         pipe_config->base.adjusted_mode.crtc_clock =
7591                 pipe_config->port_clock / pipe_config->pixel_multiplier;
7592
7593         ret = true;
7594
7595 out:
7596         intel_display_power_put(dev_priv, power_domain);
7597
7598         return ret;
7599 }
7600
7601 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
7602 {
7603         struct intel_encoder *encoder;
7604         int i;
7605         u32 val, final;
7606         bool has_lvds = false;
7607         bool has_cpu_edp = false;
7608         bool has_panel = false;
7609         bool has_ck505 = false;
7610         bool can_ssc = false;
7611         bool using_ssc_source = false;
7612
7613         /* We need to take the global config into account */
7614         for_each_intel_encoder(&dev_priv->drm, encoder) {
7615                 switch (encoder->type) {
7616                 case INTEL_OUTPUT_LVDS:
7617                         has_panel = true;
7618                         has_lvds = true;
7619                         break;
7620                 case INTEL_OUTPUT_EDP:
7621                         has_panel = true;
7622                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7623                                 has_cpu_edp = true;
7624                         break;
7625                 default:
7626                         break;
7627                 }
7628         }
7629
7630         if (HAS_PCH_IBX(dev_priv)) {
7631                 has_ck505 = dev_priv->vbt.display_clock_mode;
7632                 can_ssc = has_ck505;
7633         } else {
7634                 has_ck505 = false;
7635                 can_ssc = true;
7636         }
7637
7638         /* Check if any DPLLs are using the SSC source */
7639         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
7640                 u32 temp = I915_READ(PCH_DPLL(i));
7641
7642                 if (!(temp & DPLL_VCO_ENABLE))
7643                         continue;
7644
7645                 if ((temp & PLL_REF_INPUT_MASK) ==
7646                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7647                         using_ssc_source = true;
7648                         break;
7649                 }
7650         }
7651
7652         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
7653                       has_panel, has_lvds, has_ck505, using_ssc_source);
7654
7655         /* Ironlake: try to setup display ref clock before DPLL
7656          * enabling. This is only under driver's control after
7657          * PCH B stepping, previous chipset stepping should be
7658          * ignoring this setting.
7659          */
7660         val = I915_READ(PCH_DREF_CONTROL);
7661
7662         /* As we must carefully and slowly disable/enable each source in turn,
7663          * compute the final state we want first and check if we need to
7664          * make any changes at all.
7665          */
7666         final = val;
7667         final &= ~DREF_NONSPREAD_SOURCE_MASK;
7668         if (has_ck505)
7669                 final |= DREF_NONSPREAD_CK505_ENABLE;
7670         else
7671                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7672
7673         final &= ~DREF_SSC_SOURCE_MASK;
7674         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7675         final &= ~DREF_SSC1_ENABLE;
7676
7677         if (has_panel) {
7678                 final |= DREF_SSC_SOURCE_ENABLE;
7679
7680                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7681                         final |= DREF_SSC1_ENABLE;
7682
7683                 if (has_cpu_edp) {
7684                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
7685                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7686                         else
7687                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7688                 } else
7689                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7690         } else if (using_ssc_source) {
7691                 final |= DREF_SSC_SOURCE_ENABLE;
7692                 final |= DREF_SSC1_ENABLE;
7693         }
7694
7695         if (final == val)
7696                 return;
7697
7698         /* Always enable nonspread source */
7699         val &= ~DREF_NONSPREAD_SOURCE_MASK;
7700
7701         if (has_ck505)
7702                 val |= DREF_NONSPREAD_CK505_ENABLE;
7703         else
7704                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7705
7706         if (has_panel) {
7707                 val &= ~DREF_SSC_SOURCE_MASK;
7708                 val |= DREF_SSC_SOURCE_ENABLE;
7709
7710                 /* SSC must be turned on before enabling the CPU output  */
7711                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7712                         DRM_DEBUG_KMS("Using SSC on panel\n");
7713                         val |= DREF_SSC1_ENABLE;
7714                 } else
7715                         val &= ~DREF_SSC1_ENABLE;
7716
7717                 /* Get SSC going before enabling the outputs */
7718                 I915_WRITE(PCH_DREF_CONTROL, val);
7719                 POSTING_READ(PCH_DREF_CONTROL);
7720                 udelay(200);
7721
7722                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7723
7724                 /* Enable CPU source on CPU attached eDP */
7725                 if (has_cpu_edp) {
7726                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7727                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
7728                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7729                         } else
7730                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7731                 } else
7732                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7733
7734                 I915_WRITE(PCH_DREF_CONTROL, val);
7735                 POSTING_READ(PCH_DREF_CONTROL);
7736                 udelay(200);
7737         } else {
7738                 DRM_DEBUG_KMS("Disabling CPU source output\n");
7739
7740                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7741
7742                 /* Turn off CPU output */
7743                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7744
7745                 I915_WRITE(PCH_DREF_CONTROL, val);
7746                 POSTING_READ(PCH_DREF_CONTROL);
7747                 udelay(200);
7748
7749                 if (!using_ssc_source) {
7750                         DRM_DEBUG_KMS("Disabling SSC source\n");
7751
7752                         /* Turn off the SSC source */
7753                         val &= ~DREF_SSC_SOURCE_MASK;
7754                         val |= DREF_SSC_SOURCE_DISABLE;
7755
7756                         /* Turn off SSC1 */
7757                         val &= ~DREF_SSC1_ENABLE;
7758
7759                         I915_WRITE(PCH_DREF_CONTROL, val);
7760                         POSTING_READ(PCH_DREF_CONTROL);
7761                         udelay(200);
7762                 }
7763         }
7764
7765         BUG_ON(val != final);
7766 }
7767
7768 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7769 {
7770         uint32_t tmp;
7771
7772         tmp = I915_READ(SOUTH_CHICKEN2);
7773         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7774         I915_WRITE(SOUTH_CHICKEN2, tmp);
7775
7776         if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
7777                         FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7778                 DRM_ERROR("FDI mPHY reset assert timeout\n");
7779
7780         tmp = I915_READ(SOUTH_CHICKEN2);
7781         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7782         I915_WRITE(SOUTH_CHICKEN2, tmp);
7783
7784         if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
7785                          FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7786                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7787 }
7788
7789 /* WaMPhyProgramming:hsw */
7790 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7791 {
7792         uint32_t tmp;
7793
7794         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7795         tmp &= ~(0xFF << 24);
7796         tmp |= (0x12 << 24);
7797         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7798
7799         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7800         tmp |= (1 << 11);
7801         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7802
7803         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7804         tmp |= (1 << 11);
7805         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7806
7807         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7808         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7809         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7810
7811         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7812         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7813         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7814
7815         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7816         tmp &= ~(7 << 13);
7817         tmp |= (5 << 13);
7818         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7819
7820         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7821         tmp &= ~(7 << 13);
7822         tmp |= (5 << 13);
7823         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7824
7825         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7826         tmp &= ~0xFF;
7827         tmp |= 0x1C;
7828         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7829
7830         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7831         tmp &= ~0xFF;
7832         tmp |= 0x1C;
7833         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7834
7835         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7836         tmp &= ~(0xFF << 16);
7837         tmp |= (0x1C << 16);
7838         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7839
7840         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7841         tmp &= ~(0xFF << 16);
7842         tmp |= (0x1C << 16);
7843         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7844
7845         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7846         tmp |= (1 << 27);
7847         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7848
7849         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7850         tmp |= (1 << 27);
7851         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7852
7853         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7854         tmp &= ~(0xF << 28);
7855         tmp |= (4 << 28);
7856         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7857
7858         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7859         tmp &= ~(0xF << 28);
7860         tmp |= (4 << 28);
7861         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7862 }
7863
7864 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7865  * Programming" based on the parameters passed:
7866  * - Sequence to enable CLKOUT_DP
7867  * - Sequence to enable CLKOUT_DP without spread
7868  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7869  */
7870 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
7871                                  bool with_spread, bool with_fdi)
7872 {
7873         uint32_t reg, tmp;
7874
7875         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7876                 with_spread = true;
7877         if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
7878             with_fdi, "LP PCH doesn't have FDI\n"))
7879                 with_fdi = false;
7880
7881         mutex_lock(&dev_priv->sb_lock);
7882
7883         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7884         tmp &= ~SBI_SSCCTL_DISABLE;
7885         tmp |= SBI_SSCCTL_PATHALT;
7886         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7887
7888         udelay(24);
7889
7890         if (with_spread) {
7891                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7892                 tmp &= ~SBI_SSCCTL_PATHALT;
7893                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7894
7895                 if (with_fdi) {
7896                         lpt_reset_fdi_mphy(dev_priv);
7897                         lpt_program_fdi_mphy(dev_priv);
7898                 }
7899         }
7900
7901         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7902         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7903         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7904         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7905
7906         mutex_unlock(&dev_priv->sb_lock);
7907 }
7908
7909 /* Sequence to disable CLKOUT_DP */
7910 static void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
7911 {
7912         uint32_t reg, tmp;
7913
7914         mutex_lock(&dev_priv->sb_lock);
7915
7916         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7917         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7918         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7919         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7920
7921         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7922         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7923                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7924                         tmp |= SBI_SSCCTL_PATHALT;
7925                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7926                         udelay(32);
7927                 }
7928                 tmp |= SBI_SSCCTL_DISABLE;
7929                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7930         }
7931
7932         mutex_unlock(&dev_priv->sb_lock);
7933 }
7934
7935 #define BEND_IDX(steps) ((50 + (steps)) / 5)
7936
7937 static const uint16_t sscdivintphase[] = {
7938         [BEND_IDX( 50)] = 0x3B23,
7939         [BEND_IDX( 45)] = 0x3B23,
7940         [BEND_IDX( 40)] = 0x3C23,
7941         [BEND_IDX( 35)] = 0x3C23,
7942         [BEND_IDX( 30)] = 0x3D23,
7943         [BEND_IDX( 25)] = 0x3D23,
7944         [BEND_IDX( 20)] = 0x3E23,
7945         [BEND_IDX( 15)] = 0x3E23,
7946         [BEND_IDX( 10)] = 0x3F23,
7947         [BEND_IDX(  5)] = 0x3F23,
7948         [BEND_IDX(  0)] = 0x0025,
7949         [BEND_IDX( -5)] = 0x0025,
7950         [BEND_IDX(-10)] = 0x0125,
7951         [BEND_IDX(-15)] = 0x0125,
7952         [BEND_IDX(-20)] = 0x0225,
7953         [BEND_IDX(-25)] = 0x0225,
7954         [BEND_IDX(-30)] = 0x0325,
7955         [BEND_IDX(-35)] = 0x0325,
7956         [BEND_IDX(-40)] = 0x0425,
7957         [BEND_IDX(-45)] = 0x0425,
7958         [BEND_IDX(-50)] = 0x0525,
7959 };
7960
7961 /*
7962  * Bend CLKOUT_DP
7963  * steps -50 to 50 inclusive, in steps of 5
7964  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
7965  * change in clock period = -(steps / 10) * 5.787 ps
7966  */
7967 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
7968 {
7969         uint32_t tmp;
7970         int idx = BEND_IDX(steps);
7971
7972         if (WARN_ON(steps % 5 != 0))
7973                 return;
7974
7975         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
7976                 return;
7977
7978         mutex_lock(&dev_priv->sb_lock);
7979
7980         if (steps % 10 != 0)
7981                 tmp = 0xAAAAAAAB;
7982         else
7983                 tmp = 0x00000000;
7984         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
7985
7986         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
7987         tmp &= 0xffff0000;
7988         tmp |= sscdivintphase[idx];
7989         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
7990
7991         mutex_unlock(&dev_priv->sb_lock);
7992 }
7993
7994 #undef BEND_IDX
7995
7996 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
7997 {
7998         struct intel_encoder *encoder;
7999         bool has_vga = false;
8000
8001         for_each_intel_encoder(&dev_priv->drm, encoder) {
8002                 switch (encoder->type) {
8003                 case INTEL_OUTPUT_ANALOG:
8004                         has_vga = true;
8005                         break;
8006                 default:
8007                         break;
8008                 }
8009         }
8010
8011         if (has_vga) {
8012                 lpt_bend_clkout_dp(dev_priv, 0);
8013                 lpt_enable_clkout_dp(dev_priv, true, true);
8014         } else {
8015                 lpt_disable_clkout_dp(dev_priv);
8016         }
8017 }
8018
8019 /*
8020  * Initialize reference clocks when the driver loads
8021  */
8022 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
8023 {
8024         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
8025                 ironlake_init_pch_refclk(dev_priv);
8026         else if (HAS_PCH_LPT(dev_priv))
8027                 lpt_init_pch_refclk(dev_priv);
8028 }
8029
8030 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8031 {
8032         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8033         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8034         int pipe = intel_crtc->pipe;
8035         uint32_t val;
8036
8037         val = 0;
8038
8039         switch (intel_crtc->config->pipe_bpp) {
8040         case 18:
8041                 val |= PIPECONF_6BPC;
8042                 break;
8043         case 24:
8044                 val |= PIPECONF_8BPC;
8045                 break;
8046         case 30:
8047                 val |= PIPECONF_10BPC;
8048                 break;
8049         case 36:
8050                 val |= PIPECONF_12BPC;
8051                 break;
8052         default:
8053                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8054                 BUG();
8055         }
8056
8057         if (intel_crtc->config->dither)
8058                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8059
8060         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8061                 val |= PIPECONF_INTERLACED_ILK;
8062         else
8063                 val |= PIPECONF_PROGRESSIVE;
8064
8065         if (intel_crtc->config->limited_color_range)
8066                 val |= PIPECONF_COLOR_RANGE_SELECT;
8067
8068         I915_WRITE(PIPECONF(pipe), val);
8069         POSTING_READ(PIPECONF(pipe));
8070 }
8071
8072 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8073 {
8074         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8075         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8076         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8077         u32 val = 0;
8078
8079         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8080                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8081
8082         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8083                 val |= PIPECONF_INTERLACED_ILK;
8084         else
8085                 val |= PIPECONF_PROGRESSIVE;
8086
8087         I915_WRITE(PIPECONF(cpu_transcoder), val);
8088         POSTING_READ(PIPECONF(cpu_transcoder));
8089 }
8090
8091 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8092 {
8093         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8094         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8095         struct intel_crtc_state *config = intel_crtc->config;
8096
8097         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8098                 u32 val = 0;
8099
8100                 switch (intel_crtc->config->pipe_bpp) {
8101                 case 18:
8102                         val |= PIPEMISC_DITHER_6_BPC;
8103                         break;
8104                 case 24:
8105                         val |= PIPEMISC_DITHER_8_BPC;
8106                         break;
8107                 case 30:
8108                         val |= PIPEMISC_DITHER_10_BPC;
8109                         break;
8110                 case 36:
8111                         val |= PIPEMISC_DITHER_12_BPC;
8112                         break;
8113                 default:
8114                         /* Case prevented by pipe_config_set_bpp. */
8115                         BUG();
8116                 }
8117
8118                 if (intel_crtc->config->dither)
8119                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8120
8121                 if (config->ycbcr420) {
8122                         val |= PIPEMISC_OUTPUT_COLORSPACE_YUV |
8123                                 PIPEMISC_YUV420_ENABLE |
8124                                 PIPEMISC_YUV420_MODE_FULL_BLEND;
8125                 }
8126
8127                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8128         }
8129 }
8130
8131 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8132 {
8133         /*
8134          * Account for spread spectrum to avoid
8135          * oversubscribing the link. Max center spread
8136          * is 2.5%; use 5% for safety's sake.
8137          */
8138         u32 bps = target_clock * bpp * 21 / 20;
8139         return DIV_ROUND_UP(bps, link_bw * 8);
8140 }
8141
8142 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8143 {
8144         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8145 }
8146
8147 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8148                                   struct intel_crtc_state *crtc_state,
8149                                   struct dpll *reduced_clock)
8150 {
8151         struct drm_crtc *crtc = &intel_crtc->base;
8152         struct drm_device *dev = crtc->dev;
8153         struct drm_i915_private *dev_priv = to_i915(dev);
8154         u32 dpll, fp, fp2;
8155         int factor;
8156
8157         /* Enable autotuning of the PLL clock (if permissible) */
8158         factor = 21;
8159         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8160                 if ((intel_panel_use_ssc(dev_priv) &&
8161                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8162                     (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
8163                         factor = 25;
8164         } else if (crtc_state->sdvo_tv_clock)
8165                 factor = 20;
8166
8167         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8168
8169         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8170                 fp |= FP_CB_TUNE;
8171
8172         if (reduced_clock) {
8173                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8174
8175                 if (reduced_clock->m < factor * reduced_clock->n)
8176                         fp2 |= FP_CB_TUNE;
8177         } else {
8178                 fp2 = fp;
8179         }
8180
8181         dpll = 0;
8182
8183         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8184                 dpll |= DPLLB_MODE_LVDS;
8185         else
8186                 dpll |= DPLLB_MODE_DAC_SERIAL;
8187
8188         dpll |= (crtc_state->pixel_multiplier - 1)
8189                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8190
8191         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8192             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8193                 dpll |= DPLL_SDVO_HIGH_SPEED;
8194
8195         if (intel_crtc_has_dp_encoder(crtc_state))
8196                 dpll |= DPLL_SDVO_HIGH_SPEED;
8197
8198         /*
8199          * The high speed IO clock is only really required for
8200          * SDVO/HDMI/DP, but we also enable it for CRT to make it
8201          * possible to share the DPLL between CRT and HDMI. Enabling
8202          * the clock needlessly does no real harm, except use up a
8203          * bit of power potentially.
8204          *
8205          * We'll limit this to IVB with 3 pipes, since it has only two
8206          * DPLLs and so DPLL sharing is the only way to get three pipes
8207          * driving PCH ports at the same time. On SNB we could do this,
8208          * and potentially avoid enabling the second DPLL, but it's not
8209          * clear if it''s a win or loss power wise. No point in doing
8210          * this on ILK at all since it has a fixed DPLL<->pipe mapping.
8211          */
8212         if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
8213             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
8214                 dpll |= DPLL_SDVO_HIGH_SPEED;
8215
8216         /* compute bitmask from p1 value */
8217         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8218         /* also FPA1 */
8219         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8220
8221         switch (crtc_state->dpll.p2) {
8222         case 5:
8223                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8224                 break;
8225         case 7:
8226                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8227                 break;
8228         case 10:
8229                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8230                 break;
8231         case 14:
8232                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8233                 break;
8234         }
8235
8236         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8237             intel_panel_use_ssc(dev_priv))
8238                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8239         else
8240                 dpll |= PLL_REF_INPUT_DREFCLK;
8241
8242         dpll |= DPLL_VCO_ENABLE;
8243
8244         crtc_state->dpll_hw_state.dpll = dpll;
8245         crtc_state->dpll_hw_state.fp0 = fp;
8246         crtc_state->dpll_hw_state.fp1 = fp2;
8247 }
8248
8249 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8250                                        struct intel_crtc_state *crtc_state)
8251 {
8252         struct drm_device *dev = crtc->base.dev;
8253         struct drm_i915_private *dev_priv = to_i915(dev);
8254         const struct intel_limit *limit;
8255         int refclk = 120000;
8256
8257         memset(&crtc_state->dpll_hw_state, 0,
8258                sizeof(crtc_state->dpll_hw_state));
8259
8260         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8261         if (!crtc_state->has_pch_encoder)
8262                 return 0;
8263
8264         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8265                 if (intel_panel_use_ssc(dev_priv)) {
8266                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8267                                       dev_priv->vbt.lvds_ssc_freq);
8268                         refclk = dev_priv->vbt.lvds_ssc_freq;
8269                 }
8270
8271                 if (intel_is_dual_link_lvds(dev)) {
8272                         if (refclk == 100000)
8273                                 limit = &intel_limits_ironlake_dual_lvds_100m;
8274                         else
8275                                 limit = &intel_limits_ironlake_dual_lvds;
8276                 } else {
8277                         if (refclk == 100000)
8278                                 limit = &intel_limits_ironlake_single_lvds_100m;
8279                         else
8280                                 limit = &intel_limits_ironlake_single_lvds;
8281                 }
8282         } else {
8283                 limit = &intel_limits_ironlake_dac;
8284         }
8285
8286         if (!crtc_state->clock_set &&
8287             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8288                                 refclk, NULL, &crtc_state->dpll)) {
8289                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8290                 return -EINVAL;
8291         }
8292
8293         ironlake_compute_dpll(crtc, crtc_state, NULL);
8294
8295         if (!intel_get_shared_dpll(crtc, crtc_state, NULL)) {
8296                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8297                                  pipe_name(crtc->pipe));
8298                 return -EINVAL;
8299         }
8300
8301         return 0;
8302 }
8303
8304 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8305                                          struct intel_link_m_n *m_n)
8306 {
8307         struct drm_device *dev = crtc->base.dev;
8308         struct drm_i915_private *dev_priv = to_i915(dev);
8309         enum pipe pipe = crtc->pipe;
8310
8311         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8312         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8313         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8314                 & ~TU_SIZE_MASK;
8315         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8316         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8317                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8318 }
8319
8320 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8321                                          enum transcoder transcoder,
8322                                          struct intel_link_m_n *m_n,
8323                                          struct intel_link_m_n *m2_n2)
8324 {
8325         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8326         enum pipe pipe = crtc->pipe;
8327
8328         if (INTEL_GEN(dev_priv) >= 5) {
8329                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8330                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8331                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8332                         & ~TU_SIZE_MASK;
8333                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8334                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8335                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8336                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8337                  * gen < 8) and if DRRS is supported (to make sure the
8338                  * registers are not unnecessarily read).
8339                  */
8340                 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
8341                         crtc->config->has_drrs) {
8342                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8343                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8344                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8345                                         & ~TU_SIZE_MASK;
8346                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8347                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8348                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8349                 }
8350         } else {
8351                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8352                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8353                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8354                         & ~TU_SIZE_MASK;
8355                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8356                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8357                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8358         }
8359 }
8360
8361 void intel_dp_get_m_n(struct intel_crtc *crtc,
8362                       struct intel_crtc_state *pipe_config)
8363 {
8364         if (pipe_config->has_pch_encoder)
8365                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8366         else
8367                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8368                                              &pipe_config->dp_m_n,
8369                                              &pipe_config->dp_m2_n2);
8370 }
8371
8372 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8373                                         struct intel_crtc_state *pipe_config)
8374 {
8375         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8376                                      &pipe_config->fdi_m_n, NULL);
8377 }
8378
8379 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8380                                     struct intel_crtc_state *pipe_config)
8381 {
8382         struct drm_device *dev = crtc->base.dev;
8383         struct drm_i915_private *dev_priv = to_i915(dev);
8384         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8385         uint32_t ps_ctrl = 0;
8386         int id = -1;
8387         int i;
8388
8389         /* find scaler attached to this pipe */
8390         for (i = 0; i < crtc->num_scalers; i++) {
8391                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8392                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8393                         id = i;
8394                         pipe_config->pch_pfit.enabled = true;
8395                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8396                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8397                         break;
8398                 }
8399         }
8400
8401         scaler_state->scaler_id = id;
8402         if (id >= 0) {
8403                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8404         } else {
8405                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8406         }
8407 }
8408
8409 static void
8410 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8411                                  struct intel_initial_plane_config *plane_config)
8412 {
8413         struct drm_device *dev = crtc->base.dev;
8414         struct drm_i915_private *dev_priv = to_i915(dev);
8415         u32 val, base, offset, stride_mult, tiling;
8416         int pipe = crtc->pipe;
8417         int fourcc, pixel_format;
8418         unsigned int aligned_height;
8419         struct drm_framebuffer *fb;
8420         struct intel_framebuffer *intel_fb;
8421
8422         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8423         if (!intel_fb) {
8424                 DRM_DEBUG_KMS("failed to alloc fb\n");
8425                 return;
8426         }
8427
8428         fb = &intel_fb->base;
8429
8430         fb->dev = dev;
8431
8432         val = I915_READ(PLANE_CTL(pipe, 0));
8433         if (!(val & PLANE_CTL_ENABLE))
8434                 goto error;
8435
8436         pixel_format = val & PLANE_CTL_FORMAT_MASK;
8437         fourcc = skl_format_to_fourcc(pixel_format,
8438                                       val & PLANE_CTL_ORDER_RGBX,
8439                                       val & PLANE_CTL_ALPHA_MASK);
8440         fb->format = drm_format_info(fourcc);
8441
8442         tiling = val & PLANE_CTL_TILED_MASK;
8443         switch (tiling) {
8444         case PLANE_CTL_TILED_LINEAR:
8445                 fb->modifier = DRM_FORMAT_MOD_LINEAR;
8446                 break;
8447         case PLANE_CTL_TILED_X:
8448                 plane_config->tiling = I915_TILING_X;
8449                 fb->modifier = I915_FORMAT_MOD_X_TILED;
8450                 break;
8451         case PLANE_CTL_TILED_Y:
8452                 if (val & PLANE_CTL_DECOMPRESSION_ENABLE)
8453                         fb->modifier = I915_FORMAT_MOD_Y_TILED_CCS;
8454                 else
8455                         fb->modifier = I915_FORMAT_MOD_Y_TILED;
8456                 break;
8457         case PLANE_CTL_TILED_YF:
8458                 if (val & PLANE_CTL_DECOMPRESSION_ENABLE)
8459                         fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
8460                 else
8461                         fb->modifier = I915_FORMAT_MOD_Yf_TILED;
8462                 break;
8463         default:
8464                 MISSING_CASE(tiling);
8465                 goto error;
8466         }
8467
8468         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8469         plane_config->base = base;
8470
8471         offset = I915_READ(PLANE_OFFSET(pipe, 0));
8472
8473         val = I915_READ(PLANE_SIZE(pipe, 0));
8474         fb->height = ((val >> 16) & 0xfff) + 1;
8475         fb->width = ((val >> 0) & 0x1fff) + 1;
8476
8477         val = I915_READ(PLANE_STRIDE(pipe, 0));
8478         stride_mult = intel_fb_stride_alignment(fb, 0);
8479         fb->pitches[0] = (val & 0x3ff) * stride_mult;
8480
8481         aligned_height = intel_fb_align_height(fb, 0, fb->height);
8482
8483         plane_config->size = fb->pitches[0] * aligned_height;
8484
8485         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8486                       pipe_name(pipe), fb->width, fb->height,
8487                       fb->format->cpp[0] * 8, base, fb->pitches[0],
8488                       plane_config->size);
8489
8490         plane_config->fb = intel_fb;
8491         return;
8492
8493 error:
8494         kfree(intel_fb);
8495 }
8496
8497 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8498                                      struct intel_crtc_state *pipe_config)
8499 {
8500         struct drm_device *dev = crtc->base.dev;
8501         struct drm_i915_private *dev_priv = to_i915(dev);
8502         uint32_t tmp;
8503
8504         tmp = I915_READ(PF_CTL(crtc->pipe));
8505
8506         if (tmp & PF_ENABLE) {
8507                 pipe_config->pch_pfit.enabled = true;
8508                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8509                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8510
8511                 /* We currently do not free assignements of panel fitters on
8512                  * ivb/hsw (since we don't use the higher upscaling modes which
8513                  * differentiates them) so just WARN about this case for now. */
8514                 if (IS_GEN7(dev_priv)) {
8515                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8516                                 PF_PIPE_SEL_IVB(crtc->pipe));
8517                 }
8518         }
8519 }
8520
8521 static void
8522 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8523                                   struct intel_initial_plane_config *plane_config)
8524 {
8525         struct drm_device *dev = crtc->base.dev;
8526         struct drm_i915_private *dev_priv = to_i915(dev);
8527         u32 val, base, offset;
8528         int pipe = crtc->pipe;
8529         int fourcc, pixel_format;
8530         unsigned int aligned_height;
8531         struct drm_framebuffer *fb;
8532         struct intel_framebuffer *intel_fb;
8533
8534         val = I915_READ(DSPCNTR(pipe));
8535         if (!(val & DISPLAY_PLANE_ENABLE))
8536                 return;
8537
8538         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8539         if (!intel_fb) {
8540                 DRM_DEBUG_KMS("failed to alloc fb\n");
8541                 return;
8542         }
8543
8544         fb = &intel_fb->base;
8545
8546         fb->dev = dev;
8547
8548         if (INTEL_GEN(dev_priv) >= 4) {
8549                 if (val & DISPPLANE_TILED) {
8550                         plane_config->tiling = I915_TILING_X;
8551                         fb->modifier = I915_FORMAT_MOD_X_TILED;
8552                 }
8553         }
8554
8555         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8556         fourcc = i9xx_format_to_fourcc(pixel_format);
8557         fb->format = drm_format_info(fourcc);
8558
8559         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8560         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
8561                 offset = I915_READ(DSPOFFSET(pipe));
8562         } else {
8563                 if (plane_config->tiling)
8564                         offset = I915_READ(DSPTILEOFF(pipe));
8565                 else
8566                         offset = I915_READ(DSPLINOFF(pipe));
8567         }
8568         plane_config->base = base;
8569
8570         val = I915_READ(PIPESRC(pipe));
8571         fb->width = ((val >> 16) & 0xfff) + 1;
8572         fb->height = ((val >> 0) & 0xfff) + 1;
8573
8574         val = I915_READ(DSPSTRIDE(pipe));
8575         fb->pitches[0] = val & 0xffffffc0;
8576
8577         aligned_height = intel_fb_align_height(fb, 0, fb->height);
8578
8579         plane_config->size = fb->pitches[0] * aligned_height;
8580
8581         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8582                       pipe_name(pipe), fb->width, fb->height,
8583                       fb->format->cpp[0] * 8, base, fb->pitches[0],
8584                       plane_config->size);
8585
8586         plane_config->fb = intel_fb;
8587 }
8588
8589 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8590                                      struct intel_crtc_state *pipe_config)
8591 {
8592         struct drm_device *dev = crtc->base.dev;
8593         struct drm_i915_private *dev_priv = to_i915(dev);
8594         enum intel_display_power_domain power_domain;
8595         uint32_t tmp;
8596         bool ret;
8597
8598         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8599         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8600                 return false;
8601
8602         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8603         pipe_config->shared_dpll = NULL;
8604
8605         ret = false;
8606         tmp = I915_READ(PIPECONF(crtc->pipe));
8607         if (!(tmp & PIPECONF_ENABLE))
8608                 goto out;
8609
8610         switch (tmp & PIPECONF_BPC_MASK) {
8611         case PIPECONF_6BPC:
8612                 pipe_config->pipe_bpp = 18;
8613                 break;
8614         case PIPECONF_8BPC:
8615                 pipe_config->pipe_bpp = 24;
8616                 break;
8617         case PIPECONF_10BPC:
8618                 pipe_config->pipe_bpp = 30;
8619                 break;
8620         case PIPECONF_12BPC:
8621                 pipe_config->pipe_bpp = 36;
8622                 break;
8623         default:
8624                 break;
8625         }
8626
8627         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8628                 pipe_config->limited_color_range = true;
8629
8630         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8631                 struct intel_shared_dpll *pll;
8632                 enum intel_dpll_id pll_id;
8633
8634                 pipe_config->has_pch_encoder = true;
8635
8636                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8637                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8638                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8639
8640                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8641
8642                 if (HAS_PCH_IBX(dev_priv)) {
8643                         /*
8644                          * The pipe->pch transcoder and pch transcoder->pll
8645                          * mapping is fixed.
8646                          */
8647                         pll_id = (enum intel_dpll_id) crtc->pipe;
8648                 } else {
8649                         tmp = I915_READ(PCH_DPLL_SEL);
8650                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8651                                 pll_id = DPLL_ID_PCH_PLL_B;
8652                         else
8653                                 pll_id= DPLL_ID_PCH_PLL_A;
8654                 }
8655
8656                 pipe_config->shared_dpll =
8657                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
8658                 pll = pipe_config->shared_dpll;
8659
8660                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
8661                                                  &pipe_config->dpll_hw_state));
8662
8663                 tmp = pipe_config->dpll_hw_state.dpll;
8664                 pipe_config->pixel_multiplier =
8665                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8666                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8667
8668                 ironlake_pch_clock_get(crtc, pipe_config);
8669         } else {
8670                 pipe_config->pixel_multiplier = 1;
8671         }
8672
8673         intel_get_pipe_timings(crtc, pipe_config);
8674         intel_get_pipe_src_size(crtc, pipe_config);
8675
8676         ironlake_get_pfit_config(crtc, pipe_config);
8677
8678         ret = true;
8679
8680 out:
8681         intel_display_power_put(dev_priv, power_domain);
8682
8683         return ret;
8684 }
8685
8686 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8687 {
8688         struct drm_device *dev = &dev_priv->drm;
8689         struct intel_crtc *crtc;
8690
8691         for_each_intel_crtc(dev, crtc)
8692                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8693                      pipe_name(crtc->pipe));
8694
8695         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_CTL_DRIVER(HSW_DISP_PW_GLOBAL)),
8696                         "Display power well on\n");
8697         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8698         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8699         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8700         I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
8701         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8702              "CPU PWM1 enabled\n");
8703         if (IS_HASWELL(dev_priv))
8704                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8705                      "CPU PWM2 enabled\n");
8706         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8707              "PCH PWM1 enabled\n");
8708         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8709              "Utility pin enabled\n");
8710         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8711
8712         /*
8713          * In theory we can still leave IRQs enabled, as long as only the HPD
8714          * interrupts remain enabled. We used to check for that, but since it's
8715          * gen-specific and since we only disable LCPLL after we fully disable
8716          * the interrupts, the check below should be enough.
8717          */
8718         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8719 }
8720
8721 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8722 {
8723         if (IS_HASWELL(dev_priv))
8724                 return I915_READ(D_COMP_HSW);
8725         else
8726                 return I915_READ(D_COMP_BDW);
8727 }
8728
8729 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8730 {
8731         if (IS_HASWELL(dev_priv)) {
8732                 mutex_lock(&dev_priv->pcu_lock);
8733                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8734                                             val))
8735                         DRM_DEBUG_KMS("Failed to write to D_COMP\n");
8736                 mutex_unlock(&dev_priv->pcu_lock);
8737         } else {
8738                 I915_WRITE(D_COMP_BDW, val);
8739                 POSTING_READ(D_COMP_BDW);
8740         }
8741 }
8742
8743 /*
8744  * This function implements pieces of two sequences from BSpec:
8745  * - Sequence for display software to disable LCPLL
8746  * - Sequence for display software to allow package C8+
8747  * The steps implemented here are just the steps that actually touch the LCPLL
8748  * register. Callers should take care of disabling all the display engine
8749  * functions, doing the mode unset, fixing interrupts, etc.
8750  */
8751 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8752                               bool switch_to_fclk, bool allow_power_down)
8753 {
8754         uint32_t val;
8755
8756         assert_can_disable_lcpll(dev_priv);
8757
8758         val = I915_READ(LCPLL_CTL);
8759
8760         if (switch_to_fclk) {
8761                 val |= LCPLL_CD_SOURCE_FCLK;
8762                 I915_WRITE(LCPLL_CTL, val);
8763
8764                 if (wait_for_us(I915_READ(LCPLL_CTL) &
8765                                 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8766                         DRM_ERROR("Switching to FCLK failed\n");
8767
8768                 val = I915_READ(LCPLL_CTL);
8769         }
8770
8771         val |= LCPLL_PLL_DISABLE;
8772         I915_WRITE(LCPLL_CTL, val);
8773         POSTING_READ(LCPLL_CTL);
8774
8775         if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
8776                 DRM_ERROR("LCPLL still locked\n");
8777
8778         val = hsw_read_dcomp(dev_priv);
8779         val |= D_COMP_COMP_DISABLE;
8780         hsw_write_dcomp(dev_priv, val);
8781         ndelay(100);
8782
8783         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8784                      1))
8785                 DRM_ERROR("D_COMP RCOMP still in progress\n");
8786
8787         if (allow_power_down) {
8788                 val = I915_READ(LCPLL_CTL);
8789                 val |= LCPLL_POWER_DOWN_ALLOW;
8790                 I915_WRITE(LCPLL_CTL, val);
8791                 POSTING_READ(LCPLL_CTL);
8792         }
8793 }
8794
8795 /*
8796  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8797  * source.
8798  */
8799 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8800 {
8801         uint32_t val;
8802
8803         val = I915_READ(LCPLL_CTL);
8804
8805         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8806                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8807                 return;
8808
8809         /*
8810          * Make sure we're not on PC8 state before disabling PC8, otherwise
8811          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8812          */
8813         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8814
8815         if (val & LCPLL_POWER_DOWN_ALLOW) {
8816                 val &= ~LCPLL_POWER_DOWN_ALLOW;
8817                 I915_WRITE(LCPLL_CTL, val);
8818                 POSTING_READ(LCPLL_CTL);
8819         }
8820
8821         val = hsw_read_dcomp(dev_priv);
8822         val |= D_COMP_COMP_FORCE;
8823         val &= ~D_COMP_COMP_DISABLE;
8824         hsw_write_dcomp(dev_priv, val);
8825
8826         val = I915_READ(LCPLL_CTL);
8827         val &= ~LCPLL_PLL_DISABLE;
8828         I915_WRITE(LCPLL_CTL, val);
8829
8830         if (intel_wait_for_register(dev_priv,
8831                                     LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
8832                                     5))
8833                 DRM_ERROR("LCPLL not locked yet\n");
8834
8835         if (val & LCPLL_CD_SOURCE_FCLK) {
8836                 val = I915_READ(LCPLL_CTL);
8837                 val &= ~LCPLL_CD_SOURCE_FCLK;
8838                 I915_WRITE(LCPLL_CTL, val);
8839
8840                 if (wait_for_us((I915_READ(LCPLL_CTL) &
8841                                  LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8842                         DRM_ERROR("Switching back to LCPLL failed\n");
8843         }
8844
8845         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8846         intel_update_cdclk(dev_priv);
8847 }
8848
8849 /*
8850  * Package states C8 and deeper are really deep PC states that can only be
8851  * reached when all the devices on the system allow it, so even if the graphics
8852  * device allows PC8+, it doesn't mean the system will actually get to these
8853  * states. Our driver only allows PC8+ when going into runtime PM.
8854  *
8855  * The requirements for PC8+ are that all the outputs are disabled, the power
8856  * well is disabled and most interrupts are disabled, and these are also
8857  * requirements for runtime PM. When these conditions are met, we manually do
8858  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8859  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8860  * hang the machine.
8861  *
8862  * When we really reach PC8 or deeper states (not just when we allow it) we lose
8863  * the state of some registers, so when we come back from PC8+ we need to
8864  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8865  * need to take care of the registers kept by RC6. Notice that this happens even
8866  * if we don't put the device in PCI D3 state (which is what currently happens
8867  * because of the runtime PM support).
8868  *
8869  * For more, read "Display Sequences for Package C8" on the hardware
8870  * documentation.
8871  */
8872 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8873 {
8874         uint32_t val;
8875
8876         DRM_DEBUG_KMS("Enabling package C8+\n");
8877
8878         if (HAS_PCH_LPT_LP(dev_priv)) {
8879                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8880                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8881                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8882         }
8883
8884         lpt_disable_clkout_dp(dev_priv);
8885         hsw_disable_lcpll(dev_priv, true, true);
8886 }
8887
8888 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8889 {
8890         uint32_t val;
8891
8892         DRM_DEBUG_KMS("Disabling package C8+\n");
8893
8894         hsw_restore_lcpll(dev_priv);
8895         lpt_init_pch_refclk(dev_priv);
8896
8897         if (HAS_PCH_LPT_LP(dev_priv)) {
8898                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8899                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8900                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8901         }
8902 }
8903
8904 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8905                                       struct intel_crtc_state *crtc_state)
8906 {
8907         if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
8908                 struct intel_encoder *encoder =
8909                         intel_ddi_get_crtc_new_encoder(crtc_state);
8910
8911                 if (!intel_get_shared_dpll(crtc, crtc_state, encoder)) {
8912                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8913                                          pipe_name(crtc->pipe));
8914                         return -EINVAL;
8915                 }
8916         }
8917
8918         return 0;
8919 }
8920
8921 static void cannonlake_get_ddi_pll(struct drm_i915_private *dev_priv,
8922                                    enum port port,
8923                                    struct intel_crtc_state *pipe_config)
8924 {
8925         enum intel_dpll_id id;
8926         u32 temp;
8927
8928         temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
8929         id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
8930
8931         if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2))
8932                 return;
8933
8934         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8935 }
8936
8937 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
8938                                 enum port port,
8939                                 struct intel_crtc_state *pipe_config)
8940 {
8941         enum intel_dpll_id id;
8942
8943         switch (port) {
8944         case PORT_A:
8945                 id = DPLL_ID_SKL_DPLL0;
8946                 break;
8947         case PORT_B:
8948                 id = DPLL_ID_SKL_DPLL1;
8949                 break;
8950         case PORT_C:
8951                 id = DPLL_ID_SKL_DPLL2;
8952                 break;
8953         default:
8954                 DRM_ERROR("Incorrect port type\n");
8955                 return;
8956         }
8957
8958         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8959 }
8960
8961 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8962                                 enum port port,
8963                                 struct intel_crtc_state *pipe_config)
8964 {
8965         enum intel_dpll_id id;
8966         u32 temp;
8967
8968         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8969         id = temp >> (port * 3 + 1);
8970
8971         if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
8972                 return;
8973
8974         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8975 }
8976
8977 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8978                                 enum port port,
8979                                 struct intel_crtc_state *pipe_config)
8980 {
8981         enum intel_dpll_id id;
8982         uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8983
8984         switch (ddi_pll_sel) {
8985         case PORT_CLK_SEL_WRPLL1:
8986                 id = DPLL_ID_WRPLL1;
8987                 break;
8988         case PORT_CLK_SEL_WRPLL2:
8989                 id = DPLL_ID_WRPLL2;
8990                 break;
8991         case PORT_CLK_SEL_SPLL:
8992                 id = DPLL_ID_SPLL;
8993                 break;
8994         case PORT_CLK_SEL_LCPLL_810:
8995                 id = DPLL_ID_LCPLL_810;
8996                 break;
8997         case PORT_CLK_SEL_LCPLL_1350:
8998                 id = DPLL_ID_LCPLL_1350;
8999                 break;
9000         case PORT_CLK_SEL_LCPLL_2700:
9001                 id = DPLL_ID_LCPLL_2700;
9002                 break;
9003         default:
9004                 MISSING_CASE(ddi_pll_sel);
9005                 /* fall through */
9006         case PORT_CLK_SEL_NONE:
9007                 return;
9008         }
9009
9010         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9011 }
9012
9013 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9014                                      struct intel_crtc_state *pipe_config,
9015                                      u64 *power_domain_mask)
9016 {
9017         struct drm_device *dev = crtc->base.dev;
9018         struct drm_i915_private *dev_priv = to_i915(dev);
9019         enum intel_display_power_domain power_domain;
9020         u32 tmp;
9021
9022         /*
9023          * The pipe->transcoder mapping is fixed with the exception of the eDP
9024          * transcoder handled below.
9025          */
9026         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9027
9028         /*
9029          * XXX: Do intel_display_power_get_if_enabled before reading this (for
9030          * consistency and less surprising code; it's in always on power).
9031          */
9032         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9033         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9034                 enum pipe trans_edp_pipe;
9035                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9036                 default:
9037                         WARN(1, "unknown pipe linked to edp transcoder\n");
9038                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9039                 case TRANS_DDI_EDP_INPUT_A_ON:
9040                         trans_edp_pipe = PIPE_A;
9041                         break;
9042                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9043                         trans_edp_pipe = PIPE_B;
9044                         break;
9045                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9046                         trans_edp_pipe = PIPE_C;
9047                         break;
9048                 }
9049
9050                 if (trans_edp_pipe == crtc->pipe)
9051                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9052         }
9053
9054         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9055         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9056                 return false;
9057         *power_domain_mask |= BIT_ULL(power_domain);
9058
9059         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9060
9061         return tmp & PIPECONF_ENABLE;
9062 }
9063
9064 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9065                                          struct intel_crtc_state *pipe_config,
9066                                          u64 *power_domain_mask)
9067 {
9068         struct drm_device *dev = crtc->base.dev;
9069         struct drm_i915_private *dev_priv = to_i915(dev);
9070         enum intel_display_power_domain power_domain;
9071         enum port port;
9072         enum transcoder cpu_transcoder;
9073         u32 tmp;
9074
9075         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9076                 if (port == PORT_A)
9077                         cpu_transcoder = TRANSCODER_DSI_A;
9078                 else
9079                         cpu_transcoder = TRANSCODER_DSI_C;
9080
9081                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9082                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9083                         continue;
9084                 *power_domain_mask |= BIT_ULL(power_domain);
9085
9086                 /*
9087                  * The PLL needs to be enabled with a valid divider
9088                  * configuration, otherwise accessing DSI registers will hang
9089                  * the machine. See BSpec North Display Engine
9090                  * registers/MIPI[BXT]. We can break out here early, since we
9091                  * need the same DSI PLL to be enabled for both DSI ports.
9092                  */
9093                 if (!intel_dsi_pll_is_enabled(dev_priv))
9094                         break;
9095
9096                 /* XXX: this works for video mode only */
9097                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9098                 if (!(tmp & DPI_ENABLE))
9099                         continue;
9100
9101                 tmp = I915_READ(MIPI_CTRL(port));
9102                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9103                         continue;
9104
9105                 pipe_config->cpu_transcoder = cpu_transcoder;
9106                 break;
9107         }
9108
9109         return transcoder_is_dsi(pipe_config->cpu_transcoder);
9110 }
9111
9112 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9113                                        struct intel_crtc_state *pipe_config)
9114 {
9115         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9116         struct intel_shared_dpll *pll;
9117         enum port port;
9118         uint32_t tmp;
9119
9120         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9121
9122         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9123
9124         if (IS_CANNONLAKE(dev_priv))
9125                 cannonlake_get_ddi_pll(dev_priv, port, pipe_config);
9126         else if (IS_GEN9_BC(dev_priv))
9127                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9128         else if (IS_GEN9_LP(dev_priv))
9129                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9130         else
9131                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9132
9133         pll = pipe_config->shared_dpll;
9134         if (pll) {
9135                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9136                                                  &pipe_config->dpll_hw_state));
9137         }
9138
9139         /*
9140          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9141          * DDI E. So just check whether this pipe is wired to DDI E and whether
9142          * the PCH transcoder is on.
9143          */
9144         if (INTEL_GEN(dev_priv) < 9 &&
9145             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9146                 pipe_config->has_pch_encoder = true;
9147
9148                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9149                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9150                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9151
9152                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9153         }
9154 }
9155
9156 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9157                                     struct intel_crtc_state *pipe_config)
9158 {
9159         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9160         enum intel_display_power_domain power_domain;
9161         u64 power_domain_mask;
9162         bool active;
9163
9164         intel_crtc_init_scalers(crtc, pipe_config);
9165
9166         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9167         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9168                 return false;
9169         power_domain_mask = BIT_ULL(power_domain);
9170
9171         pipe_config->shared_dpll = NULL;
9172
9173         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9174
9175         if (IS_GEN9_LP(dev_priv) &&
9176             bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
9177                 WARN_ON(active);
9178                 active = true;
9179         }
9180
9181         if (!active)
9182                 goto out;
9183
9184         if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9185                 haswell_get_ddi_port_state(crtc, pipe_config);
9186                 intel_get_pipe_timings(crtc, pipe_config);
9187         }
9188
9189         intel_get_pipe_src_size(crtc, pipe_config);
9190
9191         pipe_config->gamma_mode =
9192                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
9193
9194         if (IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9) {
9195                 u32 tmp = I915_READ(PIPEMISC(crtc->pipe));
9196                 bool clrspace_yuv = tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV;
9197
9198                 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
9199                         bool blend_mode_420 = tmp &
9200                                               PIPEMISC_YUV420_MODE_FULL_BLEND;
9201
9202                         pipe_config->ycbcr420 = tmp & PIPEMISC_YUV420_ENABLE;
9203                         if (pipe_config->ycbcr420 != clrspace_yuv ||
9204                             pipe_config->ycbcr420 != blend_mode_420)
9205                                 DRM_DEBUG_KMS("Bad 4:2:0 mode (%08x)\n", tmp);
9206                 } else if (clrspace_yuv) {
9207                         DRM_DEBUG_KMS("YCbCr 4:2:0 Unsupported\n");
9208                 }
9209         }
9210
9211         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9212         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9213                 power_domain_mask |= BIT_ULL(power_domain);
9214                 if (INTEL_GEN(dev_priv) >= 9)
9215                         skylake_get_pfit_config(crtc, pipe_config);
9216                 else
9217                         ironlake_get_pfit_config(crtc, pipe_config);
9218         }
9219
9220         if (IS_HASWELL(dev_priv))
9221                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9222                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9223
9224         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
9225             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9226                 pipe_config->pixel_multiplier =
9227                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9228         } else {
9229                 pipe_config->pixel_multiplier = 1;
9230         }
9231
9232 out:
9233         for_each_power_domain(power_domain, power_domain_mask)
9234                 intel_display_power_put(dev_priv, power_domain);
9235
9236         return active;
9237 }
9238
9239 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
9240 {
9241         struct drm_i915_private *dev_priv =
9242                 to_i915(plane_state->base.plane->dev);
9243         const struct drm_framebuffer *fb = plane_state->base.fb;
9244         const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9245         u32 base;
9246
9247         if (INTEL_INFO(dev_priv)->cursor_needs_physical)
9248                 base = obj->phys_handle->busaddr;
9249         else
9250                 base = intel_plane_ggtt_offset(plane_state);
9251
9252         base += plane_state->main.offset;
9253
9254         /* ILK+ do this automagically */
9255         if (HAS_GMCH_DISPLAY(dev_priv) &&
9256             plane_state->base.rotation & DRM_MODE_ROTATE_180)
9257                 base += (plane_state->base.crtc_h *
9258                          plane_state->base.crtc_w - 1) * fb->format->cpp[0];
9259
9260         return base;
9261 }
9262
9263 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
9264 {
9265         int x = plane_state->base.crtc_x;
9266         int y = plane_state->base.crtc_y;
9267         u32 pos = 0;
9268
9269         if (x < 0) {
9270                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9271                 x = -x;
9272         }
9273         pos |= x << CURSOR_X_SHIFT;
9274
9275         if (y < 0) {
9276                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9277                 y = -y;
9278         }
9279         pos |= y << CURSOR_Y_SHIFT;
9280
9281         return pos;
9282 }
9283
9284 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
9285 {
9286         const struct drm_mode_config *config =
9287                 &plane_state->base.plane->dev->mode_config;
9288         int width = plane_state->base.crtc_w;
9289         int height = plane_state->base.crtc_h;
9290
9291         return width > 0 && width <= config->cursor_width &&
9292                 height > 0 && height <= config->cursor_height;
9293 }
9294
9295 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
9296                               struct intel_plane_state *plane_state)
9297 {
9298         const struct drm_framebuffer *fb = plane_state->base.fb;
9299         int src_x, src_y;
9300         u32 offset;
9301         int ret;
9302
9303         ret = drm_plane_helper_check_state(&plane_state->base,
9304                                            &plane_state->clip,
9305                                            DRM_PLANE_HELPER_NO_SCALING,
9306                                            DRM_PLANE_HELPER_NO_SCALING,
9307                                            true, true);
9308         if (ret)
9309                 return ret;
9310
9311         if (!fb)
9312                 return 0;
9313
9314         if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
9315                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
9316                 return -EINVAL;
9317         }
9318
9319         src_x = plane_state->base.src_x >> 16;
9320         src_y = plane_state->base.src_y >> 16;
9321
9322         intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
9323         offset = intel_compute_tile_offset(&src_x, &src_y, plane_state, 0);
9324
9325         if (src_x != 0 || src_y != 0) {
9326                 DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n");
9327                 return -EINVAL;
9328         }
9329
9330         plane_state->main.offset = offset;
9331
9332         return 0;
9333 }
9334
9335 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
9336                            const struct intel_plane_state *plane_state)
9337 {
9338         const struct drm_framebuffer *fb = plane_state->base.fb;
9339
9340         return CURSOR_ENABLE |
9341                 CURSOR_GAMMA_ENABLE |
9342                 CURSOR_FORMAT_ARGB |
9343                 CURSOR_STRIDE(fb->pitches[0]);
9344 }
9345
9346 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
9347 {
9348         int width = plane_state->base.crtc_w;
9349
9350         /*
9351          * 845g/865g are only limited by the width of their cursors,
9352          * the height is arbitrary up to the precision of the register.
9353          */
9354         return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
9355 }
9356
9357 static int i845_check_cursor(struct intel_plane *plane,
9358                              struct intel_crtc_state *crtc_state,
9359                              struct intel_plane_state *plane_state)
9360 {
9361         const struct drm_framebuffer *fb = plane_state->base.fb;
9362         int ret;
9363
9364         ret = intel_check_cursor(crtc_state, plane_state);
9365         if (ret)
9366                 return ret;
9367
9368         /* if we want to turn off the cursor ignore width and height */
9369         if (!fb)
9370                 return 0;
9371
9372         /* Check for which cursor types we support */
9373         if (!i845_cursor_size_ok(plane_state)) {
9374                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9375                           plane_state->base.crtc_w,
9376                           plane_state->base.crtc_h);
9377                 return -EINVAL;
9378         }
9379
9380         switch (fb->pitches[0]) {
9381         case 256:
9382         case 512:
9383         case 1024:
9384         case 2048:
9385                 break;
9386         default:
9387                 DRM_DEBUG_KMS("Invalid cursor stride (%u)\n",
9388                               fb->pitches[0]);
9389                 return -EINVAL;
9390         }
9391
9392         plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
9393
9394         return 0;
9395 }
9396
9397 static void i845_update_cursor(struct intel_plane *plane,
9398                                const struct intel_crtc_state *crtc_state,
9399                                const struct intel_plane_state *plane_state)
9400 {
9401         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9402         u32 cntl = 0, base = 0, pos = 0, size = 0;
9403         unsigned long irqflags;
9404
9405         if (plane_state && plane_state->base.visible) {
9406                 unsigned int width = plane_state->base.crtc_w;
9407                 unsigned int height = plane_state->base.crtc_h;
9408
9409                 cntl = plane_state->ctl;
9410                 size = (height << 12) | width;
9411
9412                 base = intel_cursor_base(plane_state);
9413                 pos = intel_cursor_position(plane_state);
9414         }
9415
9416         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9417
9418         /* On these chipsets we can only modify the base/size/stride
9419          * whilst the cursor is disabled.
9420          */
9421         if (plane->cursor.base != base ||
9422             plane->cursor.size != size ||
9423             plane->cursor.cntl != cntl) {
9424                 I915_WRITE_FW(CURCNTR(PIPE_A), 0);
9425                 I915_WRITE_FW(CURBASE(PIPE_A), base);
9426                 I915_WRITE_FW(CURSIZE, size);
9427                 I915_WRITE_FW(CURPOS(PIPE_A), pos);
9428                 I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
9429
9430                 plane->cursor.base = base;
9431                 plane->cursor.size = size;
9432                 plane->cursor.cntl = cntl;
9433         } else {
9434                 I915_WRITE_FW(CURPOS(PIPE_A), pos);
9435         }
9436
9437         POSTING_READ_FW(CURCNTR(PIPE_A));
9438
9439         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9440 }
9441
9442 static void i845_disable_cursor(struct intel_plane *plane,
9443                                 struct intel_crtc *crtc)
9444 {
9445         i845_update_cursor(plane, NULL, NULL);
9446 }
9447
9448 static bool i845_cursor_get_hw_state(struct intel_plane *plane)
9449 {
9450         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9451         enum intel_display_power_domain power_domain;
9452         bool ret;
9453
9454         power_domain = POWER_DOMAIN_PIPE(PIPE_A);
9455         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9456                 return false;
9457
9458         ret = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
9459
9460         intel_display_power_put(dev_priv, power_domain);
9461
9462         return ret;
9463 }
9464
9465 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
9466                            const struct intel_plane_state *plane_state)
9467 {
9468         struct drm_i915_private *dev_priv =
9469                 to_i915(plane_state->base.plane->dev);
9470         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9471         u32 cntl;
9472
9473         cntl = MCURSOR_GAMMA_ENABLE;
9474
9475         if (HAS_DDI(dev_priv))
9476                 cntl |= CURSOR_PIPE_CSC_ENABLE;
9477
9478         cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
9479
9480         switch (plane_state->base.crtc_w) {
9481         case 64:
9482                 cntl |= CURSOR_MODE_64_ARGB_AX;
9483                 break;
9484         case 128:
9485                 cntl |= CURSOR_MODE_128_ARGB_AX;
9486                 break;
9487         case 256:
9488                 cntl |= CURSOR_MODE_256_ARGB_AX;
9489                 break;
9490         default:
9491                 MISSING_CASE(plane_state->base.crtc_w);
9492                 return 0;
9493         }
9494
9495         if (plane_state->base.rotation & DRM_MODE_ROTATE_180)
9496                 cntl |= CURSOR_ROTATE_180;
9497
9498         return cntl;
9499 }
9500
9501 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
9502 {
9503         struct drm_i915_private *dev_priv =
9504                 to_i915(plane_state->base.plane->dev);
9505         int width = plane_state->base.crtc_w;
9506         int height = plane_state->base.crtc_h;
9507
9508         if (!intel_cursor_size_ok(plane_state))
9509                 return false;
9510
9511         /* Cursor width is limited to a few power-of-two sizes */
9512         switch (width) {
9513         case 256:
9514         case 128:
9515         case 64:
9516                 break;
9517         default:
9518                 return false;
9519         }
9520
9521         /*
9522          * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
9523          * height from 8 lines up to the cursor width, when the
9524          * cursor is not rotated. Everything else requires square
9525          * cursors.
9526          */
9527         if (HAS_CUR_FBC(dev_priv) &&
9528             plane_state->base.rotation & DRM_MODE_ROTATE_0) {
9529                 if (height < 8 || height > width)
9530                         return false;
9531         } else {
9532                 if (height != width)
9533                         return false;
9534         }
9535
9536         return true;
9537 }
9538
9539 static int i9xx_check_cursor(struct intel_plane *plane,
9540                              struct intel_crtc_state *crtc_state,
9541                              struct intel_plane_state *plane_state)
9542 {
9543         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9544         const struct drm_framebuffer *fb = plane_state->base.fb;
9545         enum pipe pipe = plane->pipe;
9546         int ret;
9547
9548         ret = intel_check_cursor(crtc_state, plane_state);
9549         if (ret)
9550                 return ret;
9551
9552         /* if we want to turn off the cursor ignore width and height */
9553         if (!fb)
9554                 return 0;
9555
9556         /* Check for which cursor types we support */
9557         if (!i9xx_cursor_size_ok(plane_state)) {
9558                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9559                           plane_state->base.crtc_w,
9560                           plane_state->base.crtc_h);
9561                 return -EINVAL;
9562         }
9563
9564         if (fb->pitches[0] != plane_state->base.crtc_w * fb->format->cpp[0]) {
9565                 DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n",
9566                               fb->pitches[0], plane_state->base.crtc_w);
9567                 return -EINVAL;
9568         }
9569
9570         /*
9571          * There's something wrong with the cursor on CHV pipe C.
9572          * If it straddles the left edge of the screen then
9573          * moving it away from the edge or disabling it often
9574          * results in a pipe underrun, and often that can lead to
9575          * dead pipe (constant underrun reported, and it scans
9576          * out just a solid color). To recover from that, the
9577          * display power well must be turned off and on again.
9578          * Refuse the put the cursor into that compromised position.
9579          */
9580         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
9581             plane_state->base.visible && plane_state->base.crtc_x < 0) {
9582                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
9583                 return -EINVAL;
9584         }
9585
9586         plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
9587
9588         return 0;
9589 }
9590
9591 static void i9xx_update_cursor(struct intel_plane *plane,
9592                                const struct intel_crtc_state *crtc_state,
9593                                const struct intel_plane_state *plane_state)
9594 {
9595         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9596         enum pipe pipe = plane->pipe;
9597         u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
9598         unsigned long irqflags;
9599
9600         if (plane_state && plane_state->base.visible) {
9601                 cntl = plane_state->ctl;
9602
9603                 if (plane_state->base.crtc_h != plane_state->base.crtc_w)
9604                         fbc_ctl = CUR_FBC_CTL_EN | (plane_state->base.crtc_h - 1);
9605
9606                 base = intel_cursor_base(plane_state);
9607                 pos = intel_cursor_position(plane_state);
9608         }
9609
9610         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9611
9612         /*
9613          * On some platforms writing CURCNTR first will also
9614          * cause CURPOS to be armed by the CURBASE write.
9615          * Without the CURCNTR write the CURPOS write would
9616          * arm itself. Thus we always start the full update
9617          * with a CURCNTR write.
9618          *
9619          * On other platforms CURPOS always requires the
9620          * CURBASE write to arm the update. Additonally
9621          * a write to any of the cursor register will cancel
9622          * an already armed cursor update. Thus leaving out
9623          * the CURBASE write after CURPOS could lead to a
9624          * cursor that doesn't appear to move, or even change
9625          * shape. Thus we always write CURBASE.
9626          *
9627          * CURCNTR and CUR_FBC_CTL are always
9628          * armed by the CURBASE write only.
9629          */
9630         if (plane->cursor.base != base ||
9631             plane->cursor.size != fbc_ctl ||
9632             plane->cursor.cntl != cntl) {
9633                 I915_WRITE_FW(CURCNTR(pipe), cntl);
9634                 if (HAS_CUR_FBC(dev_priv))
9635                         I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl);
9636                 I915_WRITE_FW(CURPOS(pipe), pos);
9637                 I915_WRITE_FW(CURBASE(pipe), base);
9638
9639                 plane->cursor.base = base;
9640                 plane->cursor.size = fbc_ctl;
9641                 plane->cursor.cntl = cntl;
9642         } else {
9643                 I915_WRITE_FW(CURPOS(pipe), pos);
9644                 I915_WRITE_FW(CURBASE(pipe), base);
9645         }
9646
9647         POSTING_READ_FW(CURBASE(pipe));
9648
9649         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9650 }
9651
9652 static void i9xx_disable_cursor(struct intel_plane *plane,
9653                                 struct intel_crtc *crtc)
9654 {
9655         i9xx_update_cursor(plane, NULL, NULL);
9656 }
9657
9658 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane)
9659 {
9660         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9661         enum intel_display_power_domain power_domain;
9662         enum pipe pipe = plane->pipe;
9663         bool ret;
9664
9665         /*
9666          * Not 100% correct for planes that can move between pipes,
9667          * but that's only the case for gen2-3 which don't have any
9668          * display power wells.
9669          */
9670         power_domain = POWER_DOMAIN_PIPE(pipe);
9671         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9672                 return false;
9673
9674         ret = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
9675
9676         intel_display_power_put(dev_priv, power_domain);
9677
9678         return ret;
9679 }
9680
9681 /* VESA 640x480x72Hz mode to set on the pipe */
9682 static const struct drm_display_mode load_detect_mode = {
9683         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9684                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9685 };
9686
9687 struct drm_framebuffer *
9688 intel_framebuffer_create(struct drm_i915_gem_object *obj,
9689                          struct drm_mode_fb_cmd2 *mode_cmd)
9690 {
9691         struct intel_framebuffer *intel_fb;
9692         int ret;
9693
9694         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9695         if (!intel_fb)
9696                 return ERR_PTR(-ENOMEM);
9697
9698         ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
9699         if (ret)
9700                 goto err;
9701
9702         return &intel_fb->base;
9703
9704 err:
9705         kfree(intel_fb);
9706         return ERR_PTR(ret);
9707 }
9708
9709 static u32
9710 intel_framebuffer_pitch_for_width(int width, int bpp)
9711 {
9712         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9713         return ALIGN(pitch, 64);
9714 }
9715
9716 static u32
9717 intel_framebuffer_size_for_mode(const struct drm_display_mode *mode, int bpp)
9718 {
9719         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9720         return PAGE_ALIGN(pitch * mode->vdisplay);
9721 }
9722
9723 static struct drm_framebuffer *
9724 intel_framebuffer_create_for_mode(struct drm_device *dev,
9725                                   const struct drm_display_mode *mode,
9726                                   int depth, int bpp)
9727 {
9728         struct drm_framebuffer *fb;
9729         struct drm_i915_gem_object *obj;
9730         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9731
9732         obj = i915_gem_object_create(to_i915(dev),
9733                                     intel_framebuffer_size_for_mode(mode, bpp));
9734         if (IS_ERR(obj))
9735                 return ERR_CAST(obj);
9736
9737         mode_cmd.width = mode->hdisplay;
9738         mode_cmd.height = mode->vdisplay;
9739         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9740                                                                 bpp);
9741         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9742
9743         fb = intel_framebuffer_create(obj, &mode_cmd);
9744         if (IS_ERR(fb))
9745                 i915_gem_object_put(obj);
9746
9747         return fb;
9748 }
9749
9750 static struct drm_framebuffer *
9751 mode_fits_in_fbdev(struct drm_device *dev,
9752                    const struct drm_display_mode *mode)
9753 {
9754 #ifdef CONFIG_DRM_FBDEV_EMULATION
9755         struct drm_i915_private *dev_priv = to_i915(dev);
9756         struct drm_i915_gem_object *obj;
9757         struct drm_framebuffer *fb;
9758
9759         if (!dev_priv->fbdev)
9760                 return NULL;
9761
9762         if (!dev_priv->fbdev->fb)
9763                 return NULL;
9764
9765         obj = dev_priv->fbdev->fb->obj;
9766         BUG_ON(!obj);
9767
9768         fb = &dev_priv->fbdev->fb->base;
9769         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9770                                                                fb->format->cpp[0] * 8))
9771                 return NULL;
9772
9773         if (obj->base.size < mode->vdisplay * fb->pitches[0])
9774                 return NULL;
9775
9776         drm_framebuffer_get(fb);
9777         return fb;
9778 #else
9779         return NULL;
9780 #endif
9781 }
9782
9783 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9784                                            struct drm_crtc *crtc,
9785                                            const struct drm_display_mode *mode,
9786                                            struct drm_framebuffer *fb,
9787                                            int x, int y)
9788 {
9789         struct drm_plane_state *plane_state;
9790         int hdisplay, vdisplay;
9791         int ret;
9792
9793         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9794         if (IS_ERR(plane_state))
9795                 return PTR_ERR(plane_state);
9796
9797         if (mode)
9798                 drm_mode_get_hv_timing(mode, &hdisplay, &vdisplay);
9799         else
9800                 hdisplay = vdisplay = 0;
9801
9802         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9803         if (ret)
9804                 return ret;
9805         drm_atomic_set_fb_for_plane(plane_state, fb);
9806         plane_state->crtc_x = 0;
9807         plane_state->crtc_y = 0;
9808         plane_state->crtc_w = hdisplay;
9809         plane_state->crtc_h = vdisplay;
9810         plane_state->src_x = x << 16;
9811         plane_state->src_y = y << 16;
9812         plane_state->src_w = hdisplay << 16;
9813         plane_state->src_h = vdisplay << 16;
9814
9815         return 0;
9816 }
9817
9818 int intel_get_load_detect_pipe(struct drm_connector *connector,
9819                                const struct drm_display_mode *mode,
9820                                struct intel_load_detect_pipe *old,
9821                                struct drm_modeset_acquire_ctx *ctx)
9822 {
9823         struct intel_crtc *intel_crtc;
9824         struct intel_encoder *intel_encoder =
9825                 intel_attached_encoder(connector);
9826         struct drm_crtc *possible_crtc;
9827         struct drm_encoder *encoder = &intel_encoder->base;
9828         struct drm_crtc *crtc = NULL;
9829         struct drm_device *dev = encoder->dev;
9830         struct drm_i915_private *dev_priv = to_i915(dev);
9831         struct drm_framebuffer *fb;
9832         struct drm_mode_config *config = &dev->mode_config;
9833         struct drm_atomic_state *state = NULL, *restore_state = NULL;
9834         struct drm_connector_state *connector_state;
9835         struct intel_crtc_state *crtc_state;
9836         int ret, i = -1;
9837
9838         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9839                       connector->base.id, connector->name,
9840                       encoder->base.id, encoder->name);
9841
9842         old->restore_state = NULL;
9843
9844         WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
9845
9846         /*
9847          * Algorithm gets a little messy:
9848          *
9849          *   - if the connector already has an assigned crtc, use it (but make
9850          *     sure it's on first)
9851          *
9852          *   - try to find the first unused crtc that can drive this connector,
9853          *     and use that if we find one
9854          */
9855
9856         /* See if we already have a CRTC for this connector */
9857         if (connector->state->crtc) {
9858                 crtc = connector->state->crtc;
9859
9860                 ret = drm_modeset_lock(&crtc->mutex, ctx);
9861                 if (ret)
9862                         goto fail;
9863
9864                 /* Make sure the crtc and connector are running */
9865                 goto found;
9866         }
9867
9868         /* Find an unused one (if possible) */
9869         for_each_crtc(dev, possible_crtc) {
9870                 i++;
9871                 if (!(encoder->possible_crtcs & (1 << i)))
9872                         continue;
9873
9874                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
9875                 if (ret)
9876                         goto fail;
9877
9878                 if (possible_crtc->state->enable) {
9879                         drm_modeset_unlock(&possible_crtc->mutex);
9880                         continue;
9881                 }
9882
9883                 crtc = possible_crtc;
9884                 break;
9885         }
9886
9887         /*
9888          * If we didn't find an unused CRTC, don't use any.
9889          */
9890         if (!crtc) {
9891                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9892                 ret = -ENODEV;
9893                 goto fail;
9894         }
9895
9896 found:
9897         intel_crtc = to_intel_crtc(crtc);
9898
9899         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9900         if (ret)
9901                 goto fail;
9902
9903         state = drm_atomic_state_alloc(dev);
9904         restore_state = drm_atomic_state_alloc(dev);
9905         if (!state || !restore_state) {
9906                 ret = -ENOMEM;
9907                 goto fail;
9908         }
9909
9910         state->acquire_ctx = ctx;
9911         restore_state->acquire_ctx = ctx;
9912
9913         connector_state = drm_atomic_get_connector_state(state, connector);
9914         if (IS_ERR(connector_state)) {
9915                 ret = PTR_ERR(connector_state);
9916                 goto fail;
9917         }
9918
9919         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
9920         if (ret)
9921                 goto fail;
9922
9923         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9924         if (IS_ERR(crtc_state)) {
9925                 ret = PTR_ERR(crtc_state);
9926                 goto fail;
9927         }
9928
9929         crtc_state->base.active = crtc_state->base.enable = true;
9930
9931         if (!mode)
9932                 mode = &load_detect_mode;
9933
9934         /* We need a framebuffer large enough to accommodate all accesses
9935          * that the plane may generate whilst we perform load detection.
9936          * We can not rely on the fbcon either being present (we get called
9937          * during its initialisation to detect all boot displays, or it may
9938          * not even exist) or that it is large enough to satisfy the
9939          * requested mode.
9940          */
9941         fb = mode_fits_in_fbdev(dev, mode);
9942         if (fb == NULL) {
9943                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9944                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9945         } else
9946                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9947         if (IS_ERR(fb)) {
9948                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9949                 ret = PTR_ERR(fb);
9950                 goto fail;
9951         }
9952
9953         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
9954         drm_framebuffer_put(fb);
9955         if (ret)
9956                 goto fail;
9957
9958         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
9959         if (ret)
9960                 goto fail;
9961
9962         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
9963         if (!ret)
9964                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
9965         if (!ret)
9966                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
9967         if (ret) {
9968                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
9969                 goto fail;
9970         }
9971
9972         ret = drm_atomic_commit(state);
9973         if (ret) {
9974                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9975                 goto fail;
9976         }
9977
9978         old->restore_state = restore_state;
9979         drm_atomic_state_put(state);
9980
9981         /* let the connector get through one full cycle before testing */
9982         intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
9983         return true;
9984
9985 fail:
9986         if (state) {
9987                 drm_atomic_state_put(state);
9988                 state = NULL;
9989         }
9990         if (restore_state) {
9991                 drm_atomic_state_put(restore_state);
9992                 restore_state = NULL;
9993         }
9994
9995         if (ret == -EDEADLK)
9996                 return ret;
9997
9998         return false;
9999 }
10000
10001 void intel_release_load_detect_pipe(struct drm_connector *connector,
10002                                     struct intel_load_detect_pipe *old,
10003                                     struct drm_modeset_acquire_ctx *ctx)
10004 {
10005         struct intel_encoder *intel_encoder =
10006                 intel_attached_encoder(connector);
10007         struct drm_encoder *encoder = &intel_encoder->base;
10008         struct drm_atomic_state *state = old->restore_state;
10009         int ret;
10010
10011         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10012                       connector->base.id, connector->name,
10013                       encoder->base.id, encoder->name);
10014
10015         if (!state)
10016                 return;
10017
10018         ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
10019         if (ret)
10020                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10021         drm_atomic_state_put(state);
10022 }
10023
10024 static int i9xx_pll_refclk(struct drm_device *dev,
10025                            const struct intel_crtc_state *pipe_config)
10026 {
10027         struct drm_i915_private *dev_priv = to_i915(dev);
10028         u32 dpll = pipe_config->dpll_hw_state.dpll;
10029
10030         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10031                 return dev_priv->vbt.lvds_ssc_freq;
10032         else if (HAS_PCH_SPLIT(dev_priv))
10033                 return 120000;
10034         else if (!IS_GEN2(dev_priv))
10035                 return 96000;
10036         else
10037                 return 48000;
10038 }
10039
10040 /* Returns the clock of the currently programmed mode of the given pipe. */
10041 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10042                                 struct intel_crtc_state *pipe_config)
10043 {
10044         struct drm_device *dev = crtc->base.dev;
10045         struct drm_i915_private *dev_priv = to_i915(dev);
10046         int pipe = pipe_config->cpu_transcoder;
10047         u32 dpll = pipe_config->dpll_hw_state.dpll;
10048         u32 fp;
10049         struct dpll clock;
10050         int port_clock;
10051         int refclk = i9xx_pll_refclk(dev, pipe_config);
10052
10053         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10054                 fp = pipe_config->dpll_hw_state.fp0;
10055         else
10056                 fp = pipe_config->dpll_hw_state.fp1;
10057
10058         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10059         if (IS_PINEVIEW(dev_priv)) {
10060                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10061                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10062         } else {
10063                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10064                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10065         }
10066
10067         if (!IS_GEN2(dev_priv)) {
10068                 if (IS_PINEVIEW(dev_priv))
10069                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10070                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10071                 else
10072                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10073                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10074
10075                 switch (dpll & DPLL_MODE_MASK) {
10076                 case DPLLB_MODE_DAC_SERIAL:
10077                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10078                                 5 : 10;
10079                         break;
10080                 case DPLLB_MODE_LVDS:
10081                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10082                                 7 : 14;
10083                         break;
10084                 default:
10085                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10086                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10087                         return;
10088                 }
10089
10090                 if (IS_PINEVIEW(dev_priv))
10091                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10092                 else
10093                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10094         } else {
10095                 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
10096                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10097
10098                 if (is_lvds) {
10099                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10100                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10101
10102                         if (lvds & LVDS_CLKB_POWER_UP)
10103                                 clock.p2 = 7;
10104                         else
10105                                 clock.p2 = 14;
10106                 } else {
10107                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10108                                 clock.p1 = 2;
10109                         else {
10110                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10111                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10112                         }
10113                         if (dpll & PLL_P2_DIVIDE_BY_4)
10114                                 clock.p2 = 4;
10115                         else
10116                                 clock.p2 = 2;
10117                 }
10118
10119                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10120         }
10121
10122         /*
10123          * This value includes pixel_multiplier. We will use
10124          * port_clock to compute adjusted_mode.crtc_clock in the
10125          * encoder's get_config() function.
10126          */
10127         pipe_config->port_clock = port_clock;
10128 }
10129
10130 int intel_dotclock_calculate(int link_freq,
10131                              const struct intel_link_m_n *m_n)
10132 {
10133         /*
10134          * The calculation for the data clock is:
10135          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10136          * But we want to avoid losing precison if possible, so:
10137          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10138          *
10139          * and the link clock is simpler:
10140          * link_clock = (m * link_clock) / n
10141          */
10142
10143         if (!m_n->link_n)
10144                 return 0;
10145
10146         return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n);
10147 }
10148
10149 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10150                                    struct intel_crtc_state *pipe_config)
10151 {
10152         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10153
10154         /* read out port_clock from the DPLL */
10155         i9xx_crtc_clock_get(crtc, pipe_config);
10156
10157         /*
10158          * In case there is an active pipe without active ports,
10159          * we may need some idea for the dotclock anyway.
10160          * Calculate one based on the FDI configuration.
10161          */
10162         pipe_config->base.adjusted_mode.crtc_clock =
10163                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10164                                          &pipe_config->fdi_m_n);
10165 }
10166
10167 /* Returns the currently programmed mode of the given encoder. */
10168 struct drm_display_mode *
10169 intel_encoder_current_mode(struct intel_encoder *encoder)
10170 {
10171         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
10172         struct intel_crtc_state *crtc_state;
10173         struct drm_display_mode *mode;
10174         struct intel_crtc *crtc;
10175         enum pipe pipe;
10176
10177         if (!encoder->get_hw_state(encoder, &pipe))
10178                 return NULL;
10179
10180         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10181
10182         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10183         if (!mode)
10184                 return NULL;
10185
10186         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
10187         if (!crtc_state) {
10188                 kfree(mode);
10189                 return NULL;
10190         }
10191
10192         crtc_state->base.crtc = &crtc->base;
10193
10194         if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) {
10195                 kfree(crtc_state);
10196                 kfree(mode);
10197                 return NULL;
10198         }
10199
10200         encoder->get_config(encoder, crtc_state);
10201
10202         intel_mode_from_pipe_config(mode, crtc_state);
10203
10204         kfree(crtc_state);
10205
10206         return mode;
10207 }
10208
10209 static void intel_crtc_destroy(struct drm_crtc *crtc)
10210 {
10211         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10212
10213         drm_crtc_cleanup(crtc);
10214         kfree(intel_crtc);
10215 }
10216
10217 /**
10218  * intel_wm_need_update - Check whether watermarks need updating
10219  * @plane: drm plane
10220  * @state: new plane state
10221  *
10222  * Check current plane state versus the new one to determine whether
10223  * watermarks need to be recalculated.
10224  *
10225  * Returns true or false.
10226  */
10227 static bool intel_wm_need_update(struct drm_plane *plane,
10228                                  struct drm_plane_state *state)
10229 {
10230         struct intel_plane_state *new = to_intel_plane_state(state);
10231         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
10232
10233         /* Update watermarks on tiling or size changes. */
10234         if (new->base.visible != cur->base.visible)
10235                 return true;
10236
10237         if (!cur->base.fb || !new->base.fb)
10238                 return false;
10239
10240         if (cur->base.fb->modifier != new->base.fb->modifier ||
10241             cur->base.rotation != new->base.rotation ||
10242             drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
10243             drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
10244             drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
10245             drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
10246                 return true;
10247
10248         return false;
10249 }
10250
10251 static bool needs_scaling(const struct intel_plane_state *state)
10252 {
10253         int src_w = drm_rect_width(&state->base.src) >> 16;
10254         int src_h = drm_rect_height(&state->base.src) >> 16;
10255         int dst_w = drm_rect_width(&state->base.dst);
10256         int dst_h = drm_rect_height(&state->base.dst);
10257
10258         return (src_w != dst_w || src_h != dst_h);
10259 }
10260
10261 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
10262                                     struct drm_crtc_state *crtc_state,
10263                                     const struct intel_plane_state *old_plane_state,
10264                                     struct drm_plane_state *plane_state)
10265 {
10266         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
10267         struct drm_crtc *crtc = crtc_state->crtc;
10268         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10269         struct intel_plane *plane = to_intel_plane(plane_state->plane);
10270         struct drm_device *dev = crtc->dev;
10271         struct drm_i915_private *dev_priv = to_i915(dev);
10272         bool mode_changed = needs_modeset(crtc_state);
10273         bool was_crtc_enabled = old_crtc_state->base.active;
10274         bool is_crtc_enabled = crtc_state->active;
10275         bool turn_off, turn_on, visible, was_visible;
10276         struct drm_framebuffer *fb = plane_state->fb;
10277         int ret;
10278
10279         if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
10280                 ret = skl_update_scaler_plane(
10281                         to_intel_crtc_state(crtc_state),
10282                         to_intel_plane_state(plane_state));
10283                 if (ret)
10284                         return ret;
10285         }
10286
10287         was_visible = old_plane_state->base.visible;
10288         visible = plane_state->visible;
10289
10290         if (!was_crtc_enabled && WARN_ON(was_visible))
10291                 was_visible = false;
10292
10293         /*
10294          * Visibility is calculated as if the crtc was on, but
10295          * after scaler setup everything depends on it being off
10296          * when the crtc isn't active.
10297          *
10298          * FIXME this is wrong for watermarks. Watermarks should also
10299          * be computed as if the pipe would be active. Perhaps move
10300          * per-plane wm computation to the .check_plane() hook, and
10301          * only combine the results from all planes in the current place?
10302          */
10303         if (!is_crtc_enabled) {
10304                 plane_state->visible = visible = false;
10305                 to_intel_crtc_state(crtc_state)->active_planes &= ~BIT(plane->id);
10306         }
10307
10308         if (!was_visible && !visible)
10309                 return 0;
10310
10311         if (fb != old_plane_state->base.fb)
10312                 pipe_config->fb_changed = true;
10313
10314         turn_off = was_visible && (!visible || mode_changed);
10315         turn_on = visible && (!was_visible || mode_changed);
10316
10317         DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
10318                          intel_crtc->base.base.id, intel_crtc->base.name,
10319                          plane->base.base.id, plane->base.name,
10320                          fb ? fb->base.id : -1);
10321
10322         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
10323                          plane->base.base.id, plane->base.name,
10324                          was_visible, visible,
10325                          turn_off, turn_on, mode_changed);
10326
10327         if (turn_on) {
10328                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
10329                         pipe_config->update_wm_pre = true;
10330
10331                 /* must disable cxsr around plane enable/disable */
10332                 if (plane->id != PLANE_CURSOR)
10333                         pipe_config->disable_cxsr = true;
10334         } else if (turn_off) {
10335                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
10336                         pipe_config->update_wm_post = true;
10337
10338                 /* must disable cxsr around plane enable/disable */
10339                 if (plane->id != PLANE_CURSOR)
10340                         pipe_config->disable_cxsr = true;
10341         } else if (intel_wm_need_update(&plane->base, plane_state)) {
10342                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
10343                         /* FIXME bollocks */
10344                         pipe_config->update_wm_pre = true;
10345                         pipe_config->update_wm_post = true;
10346                 }
10347         }
10348
10349         if (visible || was_visible)
10350                 pipe_config->fb_bits |= plane->frontbuffer_bit;
10351
10352         /*
10353          * WaCxSRDisabledForSpriteScaling:ivb
10354          *
10355          * cstate->update_wm was already set above, so this flag will
10356          * take effect when we commit and program watermarks.
10357          */
10358         if (plane->id == PLANE_SPRITE0 && IS_IVYBRIDGE(dev_priv) &&
10359             needs_scaling(to_intel_plane_state(plane_state)) &&
10360             !needs_scaling(old_plane_state))
10361                 pipe_config->disable_lp_wm = true;
10362
10363         return 0;
10364 }
10365
10366 static bool encoders_cloneable(const struct intel_encoder *a,
10367                                const struct intel_encoder *b)
10368 {
10369         /* masks could be asymmetric, so check both ways */
10370         return a == b || (a->cloneable & (1 << b->type) &&
10371                           b->cloneable & (1 << a->type));
10372 }
10373
10374 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
10375                                          struct intel_crtc *crtc,
10376                                          struct intel_encoder *encoder)
10377 {
10378         struct intel_encoder *source_encoder;
10379         struct drm_connector *connector;
10380         struct drm_connector_state *connector_state;
10381         int i;
10382
10383         for_each_new_connector_in_state(state, connector, connector_state, i) {
10384                 if (connector_state->crtc != &crtc->base)
10385                         continue;
10386
10387                 source_encoder =
10388                         to_intel_encoder(connector_state->best_encoder);
10389                 if (!encoders_cloneable(encoder, source_encoder))
10390                         return false;
10391         }
10392
10393         return true;
10394 }
10395
10396 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
10397                                    struct drm_crtc_state *crtc_state)
10398 {
10399         struct drm_device *dev = crtc->dev;
10400         struct drm_i915_private *dev_priv = to_i915(dev);
10401         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10402         struct intel_crtc_state *pipe_config =
10403                 to_intel_crtc_state(crtc_state);
10404         struct drm_atomic_state *state = crtc_state->state;
10405         int ret;
10406         bool mode_changed = needs_modeset(crtc_state);
10407
10408         if (mode_changed && !crtc_state->active)
10409                 pipe_config->update_wm_post = true;
10410
10411         if (mode_changed && crtc_state->enable &&
10412             dev_priv->display.crtc_compute_clock &&
10413             !WARN_ON(pipe_config->shared_dpll)) {
10414                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
10415                                                            pipe_config);
10416                 if (ret)
10417                         return ret;
10418         }
10419
10420         if (crtc_state->color_mgmt_changed) {
10421                 ret = intel_color_check(crtc, crtc_state);
10422                 if (ret)
10423                         return ret;
10424
10425                 /*
10426                  * Changing color management on Intel hardware is
10427                  * handled as part of planes update.
10428                  */
10429                 crtc_state->planes_changed = true;
10430         }
10431
10432         ret = 0;
10433         if (dev_priv->display.compute_pipe_wm) {
10434                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
10435                 if (ret) {
10436                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
10437                         return ret;
10438                 }
10439         }
10440
10441         if (dev_priv->display.compute_intermediate_wm &&
10442             !to_intel_atomic_state(state)->skip_intermediate_wm) {
10443                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
10444                         return 0;
10445
10446                 /*
10447                  * Calculate 'intermediate' watermarks that satisfy both the
10448                  * old state and the new state.  We can program these
10449                  * immediately.
10450                  */
10451                 ret = dev_priv->display.compute_intermediate_wm(dev,
10452                                                                 intel_crtc,
10453                                                                 pipe_config);
10454                 if (ret) {
10455                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
10456                         return ret;
10457                 }
10458         } else if (dev_priv->display.compute_intermediate_wm) {
10459                 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
10460                         pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
10461         }
10462
10463         if (INTEL_GEN(dev_priv) >= 9) {
10464                 if (mode_changed)
10465                         ret = skl_update_scaler_crtc(pipe_config);
10466
10467                 if (!ret)
10468                         ret = skl_check_pipe_max_pixel_rate(intel_crtc,
10469                                                             pipe_config);
10470                 if (!ret)
10471                         ret = intel_atomic_setup_scalers(dev_priv, intel_crtc,
10472                                                          pipe_config);
10473         }
10474
10475         return ret;
10476 }
10477
10478 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
10479         .atomic_begin = intel_begin_crtc_commit,
10480         .atomic_flush = intel_finish_crtc_commit,
10481         .atomic_check = intel_crtc_atomic_check,
10482 };
10483
10484 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
10485 {
10486         struct intel_connector *connector;
10487         struct drm_connector_list_iter conn_iter;
10488
10489         drm_connector_list_iter_begin(dev, &conn_iter);
10490         for_each_intel_connector_iter(connector, &conn_iter) {
10491                 if (connector->base.state->crtc)
10492                         drm_connector_unreference(&connector->base);
10493
10494                 if (connector->base.encoder) {
10495                         connector->base.state->best_encoder =
10496                                 connector->base.encoder;
10497                         connector->base.state->crtc =
10498                                 connector->base.encoder->crtc;
10499
10500                         drm_connector_reference(&connector->base);
10501                 } else {
10502                         connector->base.state->best_encoder = NULL;
10503                         connector->base.state->crtc = NULL;
10504                 }
10505         }
10506         drm_connector_list_iter_end(&conn_iter);
10507 }
10508
10509 static void
10510 connected_sink_compute_bpp(struct intel_connector *connector,
10511                            struct intel_crtc_state *pipe_config)
10512 {
10513         const struct drm_display_info *info = &connector->base.display_info;
10514         int bpp = pipe_config->pipe_bpp;
10515
10516         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10517                       connector->base.base.id,
10518                       connector->base.name);
10519
10520         /* Don't use an invalid EDID bpc value */
10521         if (info->bpc != 0 && info->bpc * 3 < bpp) {
10522                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10523                               bpp, info->bpc * 3);
10524                 pipe_config->pipe_bpp = info->bpc * 3;
10525         }
10526
10527         /* Clamp bpp to 8 on screens without EDID 1.4 */
10528         if (info->bpc == 0 && bpp > 24) {
10529                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10530                               bpp);
10531                 pipe_config->pipe_bpp = 24;
10532         }
10533 }
10534
10535 static int
10536 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10537                           struct intel_crtc_state *pipe_config)
10538 {
10539         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10540         struct drm_atomic_state *state;
10541         struct drm_connector *connector;
10542         struct drm_connector_state *connector_state;
10543         int bpp, i;
10544
10545         if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
10546             IS_CHERRYVIEW(dev_priv)))
10547                 bpp = 10*3;
10548         else if (INTEL_GEN(dev_priv) >= 5)
10549                 bpp = 12*3;
10550         else
10551                 bpp = 8*3;
10552
10553
10554         pipe_config->pipe_bpp = bpp;
10555
10556         state = pipe_config->base.state;
10557
10558         /* Clamp display bpp to EDID value */
10559         for_each_new_connector_in_state(state, connector, connector_state, i) {
10560                 if (connector_state->crtc != &crtc->base)
10561                         continue;
10562
10563                 connected_sink_compute_bpp(to_intel_connector(connector),
10564                                            pipe_config);
10565         }
10566
10567         return bpp;
10568 }
10569
10570 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10571 {
10572         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10573                         "type: 0x%x flags: 0x%x\n",
10574                 mode->crtc_clock,
10575                 mode->crtc_hdisplay, mode->crtc_hsync_start,
10576                 mode->crtc_hsync_end, mode->crtc_htotal,
10577                 mode->crtc_vdisplay, mode->crtc_vsync_start,
10578                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10579 }
10580
10581 static inline void
10582 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
10583                       unsigned int lane_count, struct intel_link_m_n *m_n)
10584 {
10585         DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10586                       id, lane_count,
10587                       m_n->gmch_m, m_n->gmch_n,
10588                       m_n->link_m, m_n->link_n, m_n->tu);
10589 }
10590
10591 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x
10592
10593 static const char * const output_type_str[] = {
10594         OUTPUT_TYPE(UNUSED),
10595         OUTPUT_TYPE(ANALOG),
10596         OUTPUT_TYPE(DVO),
10597         OUTPUT_TYPE(SDVO),
10598         OUTPUT_TYPE(LVDS),
10599         OUTPUT_TYPE(TVOUT),
10600         OUTPUT_TYPE(HDMI),
10601         OUTPUT_TYPE(DP),
10602         OUTPUT_TYPE(EDP),
10603         OUTPUT_TYPE(DSI),
10604         OUTPUT_TYPE(UNKNOWN),
10605         OUTPUT_TYPE(DP_MST),
10606 };
10607
10608 #undef OUTPUT_TYPE
10609
10610 static void snprintf_output_types(char *buf, size_t len,
10611                                   unsigned int output_types)
10612 {
10613         char *str = buf;
10614         int i;
10615
10616         str[0] = '\0';
10617
10618         for (i = 0; i < ARRAY_SIZE(output_type_str); i++) {
10619                 int r;
10620
10621                 if ((output_types & BIT(i)) == 0)
10622                         continue;
10623
10624                 r = snprintf(str, len, "%s%s",
10625                              str != buf ? "," : "", output_type_str[i]);
10626                 if (r >= len)
10627                         break;
10628                 str += r;
10629                 len -= r;
10630
10631                 output_types &= ~BIT(i);
10632         }
10633
10634         WARN_ON_ONCE(output_types != 0);
10635 }
10636
10637 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10638                                    struct intel_crtc_state *pipe_config,
10639                                    const char *context)
10640 {
10641         struct drm_device *dev = crtc->base.dev;
10642         struct drm_i915_private *dev_priv = to_i915(dev);
10643         struct drm_plane *plane;
10644         struct intel_plane *intel_plane;
10645         struct intel_plane_state *state;
10646         struct drm_framebuffer *fb;
10647         char buf[64];
10648
10649         DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
10650                       crtc->base.base.id, crtc->base.name, context);
10651
10652         snprintf_output_types(buf, sizeof(buf), pipe_config->output_types);
10653         DRM_DEBUG_KMS("output_types: %s (0x%x)\n",
10654                       buf, pipe_config->output_types);
10655
10656         DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
10657                       transcoder_name(pipe_config->cpu_transcoder),
10658                       pipe_config->pipe_bpp, pipe_config->dither);
10659
10660         if (pipe_config->has_pch_encoder)
10661                 intel_dump_m_n_config(pipe_config, "fdi",
10662                                       pipe_config->fdi_lanes,
10663                                       &pipe_config->fdi_m_n);
10664
10665         if (pipe_config->ycbcr420)
10666                 DRM_DEBUG_KMS("YCbCr 4:2:0 output enabled\n");
10667
10668         if (intel_crtc_has_dp_encoder(pipe_config)) {
10669                 intel_dump_m_n_config(pipe_config, "dp m_n",
10670                                 pipe_config->lane_count, &pipe_config->dp_m_n);
10671                 if (pipe_config->has_drrs)
10672                         intel_dump_m_n_config(pipe_config, "dp m2_n2",
10673                                               pipe_config->lane_count,
10674                                               &pipe_config->dp_m2_n2);
10675         }
10676
10677         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10678                       pipe_config->has_audio, pipe_config->has_infoframe);
10679
10680         DRM_DEBUG_KMS("requested mode:\n");
10681         drm_mode_debug_printmodeline(&pipe_config->base.mode);
10682         DRM_DEBUG_KMS("adjusted mode:\n");
10683         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10684         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10685         DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
10686                       pipe_config->port_clock,
10687                       pipe_config->pipe_src_w, pipe_config->pipe_src_h,
10688                       pipe_config->pixel_rate);
10689
10690         if (INTEL_GEN(dev_priv) >= 9)
10691                 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
10692                               crtc->num_scalers,
10693                               pipe_config->scaler_state.scaler_users,
10694                               pipe_config->scaler_state.scaler_id);
10695
10696         if (HAS_GMCH_DISPLAY(dev_priv))
10697                 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10698                               pipe_config->gmch_pfit.control,
10699                               pipe_config->gmch_pfit.pgm_ratios,
10700                               pipe_config->gmch_pfit.lvds_border_bits);
10701         else
10702                 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10703                               pipe_config->pch_pfit.pos,
10704                               pipe_config->pch_pfit.size,
10705                               enableddisabled(pipe_config->pch_pfit.enabled));
10706
10707         DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
10708                       pipe_config->ips_enabled, pipe_config->double_wide);
10709
10710         intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
10711
10712         DRM_DEBUG_KMS("planes on this crtc\n");
10713         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
10714                 struct drm_format_name_buf format_name;
10715                 intel_plane = to_intel_plane(plane);
10716                 if (intel_plane->pipe != crtc->pipe)
10717                         continue;
10718
10719                 state = to_intel_plane_state(plane->state);
10720                 fb = state->base.fb;
10721                 if (!fb) {
10722                         DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
10723                                       plane->base.id, plane->name, state->scaler_id);
10724                         continue;
10725                 }
10726
10727                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
10728                               plane->base.id, plane->name,
10729                               fb->base.id, fb->width, fb->height,
10730                               drm_get_format_name(fb->format->format, &format_name));
10731                 if (INTEL_GEN(dev_priv) >= 9)
10732                         DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
10733                                       state->scaler_id,
10734                                       state->base.src.x1 >> 16,
10735                                       state->base.src.y1 >> 16,
10736                                       drm_rect_width(&state->base.src) >> 16,
10737                                       drm_rect_height(&state->base.src) >> 16,
10738                                       state->base.dst.x1, state->base.dst.y1,
10739                                       drm_rect_width(&state->base.dst),
10740                                       drm_rect_height(&state->base.dst));
10741         }
10742 }
10743
10744 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
10745 {
10746         struct drm_device *dev = state->dev;
10747         struct drm_connector *connector;
10748         struct drm_connector_list_iter conn_iter;
10749         unsigned int used_ports = 0;
10750         unsigned int used_mst_ports = 0;
10751
10752         /*
10753          * Walk the connector list instead of the encoder
10754          * list to detect the problem on ddi platforms
10755          * where there's just one encoder per digital port.
10756          */
10757         drm_connector_list_iter_begin(dev, &conn_iter);
10758         drm_for_each_connector_iter(connector, &conn_iter) {
10759                 struct drm_connector_state *connector_state;
10760                 struct intel_encoder *encoder;
10761
10762                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
10763                 if (!connector_state)
10764                         connector_state = connector->state;
10765
10766                 if (!connector_state->best_encoder)
10767                         continue;
10768
10769                 encoder = to_intel_encoder(connector_state->best_encoder);
10770
10771                 WARN_ON(!connector_state->crtc);
10772
10773                 switch (encoder->type) {
10774                         unsigned int port_mask;
10775                 case INTEL_OUTPUT_UNKNOWN:
10776                         if (WARN_ON(!HAS_DDI(to_i915(dev))))
10777                                 break;
10778                 case INTEL_OUTPUT_DP:
10779                 case INTEL_OUTPUT_HDMI:
10780                 case INTEL_OUTPUT_EDP:
10781                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10782
10783                         /* the same port mustn't appear more than once */
10784                         if (used_ports & port_mask)
10785                                 return false;
10786
10787                         used_ports |= port_mask;
10788                         break;
10789                 case INTEL_OUTPUT_DP_MST:
10790                         used_mst_ports |=
10791                                 1 << enc_to_mst(&encoder->base)->primary->port;
10792                         break;
10793                 default:
10794                         break;
10795                 }
10796         }
10797         drm_connector_list_iter_end(&conn_iter);
10798
10799         /* can't mix MST and SST/HDMI on the same port */
10800         if (used_ports & used_mst_ports)
10801                 return false;
10802
10803         return true;
10804 }
10805
10806 static void
10807 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
10808 {
10809         struct drm_i915_private *dev_priv =
10810                 to_i915(crtc_state->base.crtc->dev);
10811         struct intel_crtc_scaler_state scaler_state;
10812         struct intel_dpll_hw_state dpll_hw_state;
10813         struct intel_shared_dpll *shared_dpll;
10814         struct intel_crtc_wm_state wm_state;
10815         bool force_thru, ips_force_disable;
10816
10817         /* FIXME: before the switch to atomic started, a new pipe_config was
10818          * kzalloc'd. Code that depends on any field being zero should be
10819          * fixed, so that the crtc_state can be safely duplicated. For now,
10820          * only fields that are know to not cause problems are preserved. */
10821
10822         scaler_state = crtc_state->scaler_state;
10823         shared_dpll = crtc_state->shared_dpll;
10824         dpll_hw_state = crtc_state->dpll_hw_state;
10825         force_thru = crtc_state->pch_pfit.force_thru;
10826         ips_force_disable = crtc_state->ips_force_disable;
10827         if (IS_G4X(dev_priv) ||
10828             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
10829                 wm_state = crtc_state->wm;
10830
10831         /* Keep base drm_crtc_state intact, only clear our extended struct */
10832         BUILD_BUG_ON(offsetof(struct intel_crtc_state, base));
10833         memset(&crtc_state->base + 1, 0,
10834                sizeof(*crtc_state) - sizeof(crtc_state->base));
10835
10836         crtc_state->scaler_state = scaler_state;
10837         crtc_state->shared_dpll = shared_dpll;
10838         crtc_state->dpll_hw_state = dpll_hw_state;
10839         crtc_state->pch_pfit.force_thru = force_thru;
10840         crtc_state->ips_force_disable = ips_force_disable;
10841         if (IS_G4X(dev_priv) ||
10842             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
10843                 crtc_state->wm = wm_state;
10844 }
10845
10846 static int
10847 intel_modeset_pipe_config(struct drm_crtc *crtc,
10848                           struct intel_crtc_state *pipe_config)
10849 {
10850         struct drm_atomic_state *state = pipe_config->base.state;
10851         struct intel_encoder *encoder;
10852         struct drm_connector *connector;
10853         struct drm_connector_state *connector_state;
10854         int base_bpp, ret = -EINVAL;
10855         int i;
10856         bool retry = true;
10857
10858         clear_intel_crtc_state(pipe_config);
10859
10860         pipe_config->cpu_transcoder =
10861                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10862
10863         /*
10864          * Sanitize sync polarity flags based on requested ones. If neither
10865          * positive or negative polarity is requested, treat this as meaning
10866          * negative polarity.
10867          */
10868         if (!(pipe_config->base.adjusted_mode.flags &
10869               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10870                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10871
10872         if (!(pipe_config->base.adjusted_mode.flags &
10873               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10874                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10875
10876         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10877                                              pipe_config);
10878         if (base_bpp < 0)
10879                 goto fail;
10880
10881         /*
10882          * Determine the real pipe dimensions. Note that stereo modes can
10883          * increase the actual pipe size due to the frame doubling and
10884          * insertion of additional space for blanks between the frame. This
10885          * is stored in the crtc timings. We use the requested mode to do this
10886          * computation to clearly distinguish it from the adjusted mode, which
10887          * can be changed by the connectors in the below retry loop.
10888          */
10889         drm_mode_get_hv_timing(&pipe_config->base.mode,
10890                                &pipe_config->pipe_src_w,
10891                                &pipe_config->pipe_src_h);
10892
10893         for_each_new_connector_in_state(state, connector, connector_state, i) {
10894                 if (connector_state->crtc != crtc)
10895                         continue;
10896
10897                 encoder = to_intel_encoder(connector_state->best_encoder);
10898
10899                 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
10900                         DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10901                         goto fail;
10902                 }
10903
10904                 /*
10905                  * Determine output_types before calling the .compute_config()
10906                  * hooks so that the hooks can use this information safely.
10907                  */
10908                 pipe_config->output_types |= 1 << encoder->type;
10909         }
10910
10911 encoder_retry:
10912         /* Ensure the port clock defaults are reset when retrying. */
10913         pipe_config->port_clock = 0;
10914         pipe_config->pixel_multiplier = 1;
10915
10916         /* Fill in default crtc timings, allow encoders to overwrite them. */
10917         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10918                               CRTC_STEREO_DOUBLE);
10919
10920         /* Pass our mode to the connectors and the CRTC to give them a chance to
10921          * adjust it according to limitations or connector properties, and also
10922          * a chance to reject the mode entirely.
10923          */
10924         for_each_new_connector_in_state(state, connector, connector_state, i) {
10925                 if (connector_state->crtc != crtc)
10926                         continue;
10927
10928                 encoder = to_intel_encoder(connector_state->best_encoder);
10929
10930                 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
10931                         DRM_DEBUG_KMS("Encoder config failure\n");
10932                         goto fail;
10933                 }
10934         }
10935
10936         /* Set default port clock if not overwritten by the encoder. Needs to be
10937          * done afterwards in case the encoder adjusts the mode. */
10938         if (!pipe_config->port_clock)
10939                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
10940                         * pipe_config->pixel_multiplier;
10941
10942         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10943         if (ret < 0) {
10944                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10945                 goto fail;
10946         }
10947
10948         if (ret == RETRY) {
10949                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10950                         ret = -EINVAL;
10951                         goto fail;
10952                 }
10953
10954                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10955                 retry = false;
10956                 goto encoder_retry;
10957         }
10958
10959         /* Dithering seems to not pass-through bits correctly when it should, so
10960          * only enable it on 6bpc panels and when its not a compliance
10961          * test requesting 6bpc video pattern.
10962          */
10963         pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
10964                 !pipe_config->dither_force_disable;
10965         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
10966                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10967
10968 fail:
10969         return ret;
10970 }
10971
10972 static void
10973 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
10974 {
10975         struct drm_crtc *crtc;
10976         struct drm_crtc_state *new_crtc_state;
10977         int i;
10978
10979         /* Double check state. */
10980         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
10981                 to_intel_crtc(crtc)->config = to_intel_crtc_state(new_crtc_state);
10982
10983                 /*
10984                  * Update legacy state to satisfy fbc code. This can
10985                  * be removed when fbc uses the atomic state.
10986                  */
10987                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
10988                         struct drm_plane_state *plane_state = crtc->primary->state;
10989
10990                         crtc->primary->fb = plane_state->fb;
10991                         crtc->x = plane_state->src_x >> 16;
10992                         crtc->y = plane_state->src_y >> 16;
10993                 }
10994         }
10995 }
10996
10997 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10998 {
10999         int diff;
11000
11001         if (clock1 == clock2)
11002                 return true;
11003
11004         if (!clock1 || !clock2)
11005                 return false;
11006
11007         diff = abs(clock1 - clock2);
11008
11009         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11010                 return true;
11011
11012         return false;
11013 }
11014
11015 static bool
11016 intel_compare_m_n(unsigned int m, unsigned int n,
11017                   unsigned int m2, unsigned int n2,
11018                   bool exact)
11019 {
11020         if (m == m2 && n == n2)
11021                 return true;
11022
11023         if (exact || !m || !n || !m2 || !n2)
11024                 return false;
11025
11026         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
11027
11028         if (n > n2) {
11029                 while (n > n2) {
11030                         m2 <<= 1;
11031                         n2 <<= 1;
11032                 }
11033         } else if (n < n2) {
11034                 while (n < n2) {
11035                         m <<= 1;
11036                         n <<= 1;
11037                 }
11038         }
11039
11040         if (n != n2)
11041                 return false;
11042
11043         return intel_fuzzy_clock_check(m, m2);
11044 }
11045
11046 static bool
11047 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
11048                        struct intel_link_m_n *m2_n2,
11049                        bool adjust)
11050 {
11051         if (m_n->tu == m2_n2->tu &&
11052             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
11053                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
11054             intel_compare_m_n(m_n->link_m, m_n->link_n,
11055                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
11056                 if (adjust)
11057                         *m2_n2 = *m_n;
11058
11059                 return true;
11060         }
11061
11062         return false;
11063 }
11064
11065 static void __printf(3, 4)
11066 pipe_config_err(bool adjust, const char *name, const char *format, ...)
11067 {
11068         char *level;
11069         unsigned int category;
11070         struct va_format vaf;
11071         va_list args;
11072
11073         if (adjust) {
11074                 level = KERN_DEBUG;
11075                 category = DRM_UT_KMS;
11076         } else {
11077                 level = KERN_ERR;
11078                 category = DRM_UT_NONE;
11079         }
11080
11081         va_start(args, format);
11082         vaf.fmt = format;
11083         vaf.va = &args;
11084
11085         drm_printk(level, category, "mismatch in %s %pV", name, &vaf);
11086
11087         va_end(args);
11088 }
11089
11090 static bool
11091 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
11092                           struct intel_crtc_state *current_config,
11093                           struct intel_crtc_state *pipe_config,
11094                           bool adjust)
11095 {
11096         bool ret = true;
11097
11098 #define PIPE_CONF_CHECK_X(name) \
11099         if (current_config->name != pipe_config->name) { \
11100                 pipe_config_err(adjust, __stringify(name), \
11101                           "(expected 0x%08x, found 0x%08x)\n", \
11102                           current_config->name, \
11103                           pipe_config->name); \
11104                 ret = false; \
11105         }
11106
11107 #define PIPE_CONF_CHECK_I(name) \
11108         if (current_config->name != pipe_config->name) { \
11109                 pipe_config_err(adjust, __stringify(name), \
11110                           "(expected %i, found %i)\n", \
11111                           current_config->name, \
11112                           pipe_config->name); \
11113                 ret = false; \
11114         }
11115
11116 #define PIPE_CONF_CHECK_P(name) \
11117         if (current_config->name != pipe_config->name) { \
11118                 pipe_config_err(adjust, __stringify(name), \
11119                           "(expected %p, found %p)\n", \
11120                           current_config->name, \
11121                           pipe_config->name); \
11122                 ret = false; \
11123         }
11124
11125 #define PIPE_CONF_CHECK_M_N(name) \
11126         if (!intel_compare_link_m_n(&current_config->name, \
11127                                     &pipe_config->name,\
11128                                     adjust)) { \
11129                 pipe_config_err(adjust, __stringify(name), \
11130                           "(expected tu %i gmch %i/%i link %i/%i, " \
11131                           "found tu %i, gmch %i/%i link %i/%i)\n", \
11132                           current_config->name.tu, \
11133                           current_config->name.gmch_m, \
11134                           current_config->name.gmch_n, \
11135                           current_config->name.link_m, \
11136                           current_config->name.link_n, \
11137                           pipe_config->name.tu, \
11138                           pipe_config->name.gmch_m, \
11139                           pipe_config->name.gmch_n, \
11140                           pipe_config->name.link_m, \
11141                           pipe_config->name.link_n); \
11142                 ret = false; \
11143         }
11144
11145 /* This is required for BDW+ where there is only one set of registers for
11146  * switching between high and low RR.
11147  * This macro can be used whenever a comparison has to be made between one
11148  * hw state and multiple sw state variables.
11149  */
11150 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
11151         if (!intel_compare_link_m_n(&current_config->name, \
11152                                     &pipe_config->name, adjust) && \
11153             !intel_compare_link_m_n(&current_config->alt_name, \
11154                                     &pipe_config->name, adjust)) { \
11155                 pipe_config_err(adjust, __stringify(name), \
11156                           "(expected tu %i gmch %i/%i link %i/%i, " \
11157                           "or tu %i gmch %i/%i link %i/%i, " \
11158                           "found tu %i, gmch %i/%i link %i/%i)\n", \
11159                           current_config->name.tu, \
11160                           current_config->name.gmch_m, \
11161                           current_config->name.gmch_n, \
11162                           current_config->name.link_m, \
11163                           current_config->name.link_n, \
11164                           current_config->alt_name.tu, \
11165                           current_config->alt_name.gmch_m, \
11166                           current_config->alt_name.gmch_n, \
11167                           current_config->alt_name.link_m, \
11168                           current_config->alt_name.link_n, \
11169                           pipe_config->name.tu, \
11170                           pipe_config->name.gmch_m, \
11171                           pipe_config->name.gmch_n, \
11172                           pipe_config->name.link_m, \
11173                           pipe_config->name.link_n); \
11174                 ret = false; \
11175         }
11176
11177 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
11178         if ((current_config->name ^ pipe_config->name) & (mask)) { \
11179                 pipe_config_err(adjust, __stringify(name), \
11180                           "(%x) (expected %i, found %i)\n", \
11181                           (mask), \
11182                           current_config->name & (mask), \
11183                           pipe_config->name & (mask)); \
11184                 ret = false; \
11185         }
11186
11187 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11188         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11189                 pipe_config_err(adjust, __stringify(name), \
11190                           "(expected %i, found %i)\n", \
11191                           current_config->name, \
11192                           pipe_config->name); \
11193                 ret = false; \
11194         }
11195
11196 #define PIPE_CONF_QUIRK(quirk)  \
11197         ((current_config->quirks | pipe_config->quirks) & (quirk))
11198
11199         PIPE_CONF_CHECK_I(cpu_transcoder);
11200
11201         PIPE_CONF_CHECK_I(has_pch_encoder);
11202         PIPE_CONF_CHECK_I(fdi_lanes);
11203         PIPE_CONF_CHECK_M_N(fdi_m_n);
11204
11205         PIPE_CONF_CHECK_I(lane_count);
11206         PIPE_CONF_CHECK_X(lane_lat_optim_mask);
11207
11208         if (INTEL_GEN(dev_priv) < 8) {
11209                 PIPE_CONF_CHECK_M_N(dp_m_n);
11210
11211                 if (current_config->has_drrs)
11212                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
11213         } else
11214                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
11215
11216         PIPE_CONF_CHECK_X(output_types);
11217
11218         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11219         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11220         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11221         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11222         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11223         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11224
11225         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11226         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11227         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11228         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11229         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11230         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11231
11232         PIPE_CONF_CHECK_I(pixel_multiplier);
11233         PIPE_CONF_CHECK_I(has_hdmi_sink);
11234         if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
11235             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11236                 PIPE_CONF_CHECK_I(limited_color_range);
11237
11238         PIPE_CONF_CHECK_I(hdmi_scrambling);
11239         PIPE_CONF_CHECK_I(hdmi_high_tmds_clock_ratio);
11240         PIPE_CONF_CHECK_I(has_infoframe);
11241         PIPE_CONF_CHECK_I(ycbcr420);
11242
11243         PIPE_CONF_CHECK_I(has_audio);
11244
11245         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11246                               DRM_MODE_FLAG_INTERLACE);
11247
11248         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11249                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11250                                       DRM_MODE_FLAG_PHSYNC);
11251                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11252                                       DRM_MODE_FLAG_NHSYNC);
11253                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11254                                       DRM_MODE_FLAG_PVSYNC);
11255                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11256                                       DRM_MODE_FLAG_NVSYNC);
11257         }
11258
11259         PIPE_CONF_CHECK_X(gmch_pfit.control);
11260         /* pfit ratios are autocomputed by the hw on gen4+ */
11261         if (INTEL_GEN(dev_priv) < 4)
11262                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
11263         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
11264
11265         if (!adjust) {
11266                 PIPE_CONF_CHECK_I(pipe_src_w);
11267                 PIPE_CONF_CHECK_I(pipe_src_h);
11268
11269                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11270                 if (current_config->pch_pfit.enabled) {
11271                         PIPE_CONF_CHECK_X(pch_pfit.pos);
11272                         PIPE_CONF_CHECK_X(pch_pfit.size);
11273                 }
11274
11275                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11276                 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
11277         }
11278
11279         /* BDW+ don't expose a synchronous way to read the state */
11280         if (IS_HASWELL(dev_priv))
11281                 PIPE_CONF_CHECK_I(ips_enabled);
11282
11283         PIPE_CONF_CHECK_I(double_wide);
11284
11285         PIPE_CONF_CHECK_P(shared_dpll);
11286         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11287         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11288         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11289         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11290         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11291         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
11292         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11293         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11294         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11295         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
11296         PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
11297         PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
11298         PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
11299         PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
11300         PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
11301         PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
11302         PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
11303         PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
11304         PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
11305         PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
11306         PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
11307
11308         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
11309         PIPE_CONF_CHECK_X(dsi_pll.div);
11310
11311         if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
11312                 PIPE_CONF_CHECK_I(pipe_bpp);
11313
11314         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11315         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11316
11317 #undef PIPE_CONF_CHECK_X
11318 #undef PIPE_CONF_CHECK_I
11319 #undef PIPE_CONF_CHECK_P
11320 #undef PIPE_CONF_CHECK_FLAGS
11321 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11322 #undef PIPE_CONF_QUIRK
11323
11324         return ret;
11325 }
11326
11327 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
11328                                            const struct intel_crtc_state *pipe_config)
11329 {
11330         if (pipe_config->has_pch_encoder) {
11331                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11332                                                             &pipe_config->fdi_m_n);
11333                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
11334
11335                 /*
11336                  * FDI already provided one idea for the dotclock.
11337                  * Yell if the encoder disagrees.
11338                  */
11339                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
11340                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11341                      fdi_dotclock, dotclock);
11342         }
11343 }
11344
11345 static void verify_wm_state(struct drm_crtc *crtc,
11346                             struct drm_crtc_state *new_state)
11347 {
11348         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
11349         struct skl_ddb_allocation hw_ddb, *sw_ddb;
11350         struct skl_pipe_wm hw_wm, *sw_wm;
11351         struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
11352         struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
11353         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11354         const enum pipe pipe = intel_crtc->pipe;
11355         int plane, level, max_level = ilk_wm_max_level(dev_priv);
11356
11357         if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
11358                 return;
11359
11360         skl_pipe_wm_get_hw_state(crtc, &hw_wm);
11361         sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
11362
11363         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11364         sw_ddb = &dev_priv->wm.skl_hw.ddb;
11365
11366         /* planes */
11367         for_each_universal_plane(dev_priv, pipe, plane) {
11368                 hw_plane_wm = &hw_wm.planes[plane];
11369                 sw_plane_wm = &sw_wm->planes[plane];
11370
11371                 /* Watermarks */
11372                 for (level = 0; level <= max_level; level++) {
11373                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
11374                                                 &sw_plane_wm->wm[level]))
11375                                 continue;
11376
11377                         DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11378                                   pipe_name(pipe), plane + 1, level,
11379                                   sw_plane_wm->wm[level].plane_en,
11380                                   sw_plane_wm->wm[level].plane_res_b,
11381                                   sw_plane_wm->wm[level].plane_res_l,
11382                                   hw_plane_wm->wm[level].plane_en,
11383                                   hw_plane_wm->wm[level].plane_res_b,
11384                                   hw_plane_wm->wm[level].plane_res_l);
11385                 }
11386
11387                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
11388                                          &sw_plane_wm->trans_wm)) {
11389                         DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11390                                   pipe_name(pipe), plane + 1,
11391                                   sw_plane_wm->trans_wm.plane_en,
11392                                   sw_plane_wm->trans_wm.plane_res_b,
11393                                   sw_plane_wm->trans_wm.plane_res_l,
11394                                   hw_plane_wm->trans_wm.plane_en,
11395                                   hw_plane_wm->trans_wm.plane_res_b,
11396                                   hw_plane_wm->trans_wm.plane_res_l);
11397                 }
11398
11399                 /* DDB */
11400                 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
11401                 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
11402
11403                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
11404                         DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
11405                                   pipe_name(pipe), plane + 1,
11406                                   sw_ddb_entry->start, sw_ddb_entry->end,
11407                                   hw_ddb_entry->start, hw_ddb_entry->end);
11408                 }
11409         }
11410
11411         /*
11412          * cursor
11413          * If the cursor plane isn't active, we may not have updated it's ddb
11414          * allocation. In that case since the ddb allocation will be updated
11415          * once the plane becomes visible, we can skip this check
11416          */
11417         if (1) {
11418                 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
11419                 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
11420
11421                 /* Watermarks */
11422                 for (level = 0; level <= max_level; level++) {
11423                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
11424                                                 &sw_plane_wm->wm[level]))
11425                                 continue;
11426
11427                         DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11428                                   pipe_name(pipe), level,
11429                                   sw_plane_wm->wm[level].plane_en,
11430                                   sw_plane_wm->wm[level].plane_res_b,
11431                                   sw_plane_wm->wm[level].plane_res_l,
11432                                   hw_plane_wm->wm[level].plane_en,
11433                                   hw_plane_wm->wm[level].plane_res_b,
11434                                   hw_plane_wm->wm[level].plane_res_l);
11435                 }
11436
11437                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
11438                                          &sw_plane_wm->trans_wm)) {
11439                         DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11440                                   pipe_name(pipe),
11441                                   sw_plane_wm->trans_wm.plane_en,
11442                                   sw_plane_wm->trans_wm.plane_res_b,
11443                                   sw_plane_wm->trans_wm.plane_res_l,
11444                                   hw_plane_wm->trans_wm.plane_en,
11445                                   hw_plane_wm->trans_wm.plane_res_b,
11446                                   hw_plane_wm->trans_wm.plane_res_l);
11447                 }
11448
11449                 /* DDB */
11450                 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
11451                 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
11452
11453                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
11454                         DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
11455                                   pipe_name(pipe),
11456                                   sw_ddb_entry->start, sw_ddb_entry->end,
11457                                   hw_ddb_entry->start, hw_ddb_entry->end);
11458                 }
11459         }
11460 }
11461
11462 static void
11463 verify_connector_state(struct drm_device *dev,
11464                        struct drm_atomic_state *state,
11465                        struct drm_crtc *crtc)
11466 {
11467         struct drm_connector *connector;
11468         struct drm_connector_state *new_conn_state;
11469         int i;
11470
11471         for_each_new_connector_in_state(state, connector, new_conn_state, i) {
11472                 struct drm_encoder *encoder = connector->encoder;
11473                 struct drm_crtc_state *crtc_state = NULL;
11474
11475                 if (new_conn_state->crtc != crtc)
11476                         continue;
11477
11478                 if (crtc)
11479                         crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc);
11480
11481                 intel_connector_verify_state(crtc_state, new_conn_state);
11482
11483                 I915_STATE_WARN(new_conn_state->best_encoder != encoder,
11484                      "connector's atomic encoder doesn't match legacy encoder\n");
11485         }
11486 }
11487
11488 static void
11489 verify_encoder_state(struct drm_device *dev, struct drm_atomic_state *state)
11490 {
11491         struct intel_encoder *encoder;
11492         struct drm_connector *connector;
11493         struct drm_connector_state *old_conn_state, *new_conn_state;
11494         int i;
11495
11496         for_each_intel_encoder(dev, encoder) {
11497                 bool enabled = false, found = false;
11498                 enum pipe pipe;
11499
11500                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11501                               encoder->base.base.id,
11502                               encoder->base.name);
11503
11504                 for_each_oldnew_connector_in_state(state, connector, old_conn_state,
11505                                                    new_conn_state, i) {
11506                         if (old_conn_state->best_encoder == &encoder->base)
11507                                 found = true;
11508
11509                         if (new_conn_state->best_encoder != &encoder->base)
11510                                 continue;
11511                         found = enabled = true;
11512
11513                         I915_STATE_WARN(new_conn_state->crtc !=
11514                                         encoder->base.crtc,
11515                              "connector's crtc doesn't match encoder crtc\n");
11516                 }
11517
11518                 if (!found)
11519                         continue;
11520
11521                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
11522                      "encoder's enabled state mismatch "
11523                      "(expected %i, found %i)\n",
11524                      !!encoder->base.crtc, enabled);
11525
11526                 if (!encoder->base.crtc) {
11527                         bool active;
11528
11529                         active = encoder->get_hw_state(encoder, &pipe);
11530                         I915_STATE_WARN(active,
11531                              "encoder detached but still enabled on pipe %c.\n",
11532                              pipe_name(pipe));
11533                 }
11534         }
11535 }
11536
11537 static void
11538 verify_crtc_state(struct drm_crtc *crtc,
11539                   struct drm_crtc_state *old_crtc_state,
11540                   struct drm_crtc_state *new_crtc_state)
11541 {
11542         struct drm_device *dev = crtc->dev;
11543         struct drm_i915_private *dev_priv = to_i915(dev);
11544         struct intel_encoder *encoder;
11545         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11546         struct intel_crtc_state *pipe_config, *sw_config;
11547         struct drm_atomic_state *old_state;
11548         bool active;
11549
11550         old_state = old_crtc_state->state;
11551         __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
11552         pipe_config = to_intel_crtc_state(old_crtc_state);
11553         memset(pipe_config, 0, sizeof(*pipe_config));
11554         pipe_config->base.crtc = crtc;
11555         pipe_config->base.state = old_state;
11556
11557         DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
11558
11559         active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
11560
11561         /* we keep both pipes enabled on 830 */
11562         if (IS_I830(dev_priv))
11563                 active = new_crtc_state->active;
11564
11565         I915_STATE_WARN(new_crtc_state->active != active,
11566              "crtc active state doesn't match with hw state "
11567              "(expected %i, found %i)\n", new_crtc_state->active, active);
11568
11569         I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
11570              "transitional active state does not match atomic hw state "
11571              "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
11572
11573         for_each_encoder_on_crtc(dev, crtc, encoder) {
11574                 enum pipe pipe;
11575
11576                 active = encoder->get_hw_state(encoder, &pipe);
11577                 I915_STATE_WARN(active != new_crtc_state->active,
11578                         "[ENCODER:%i] active %i with crtc active %i\n",
11579                         encoder->base.base.id, active, new_crtc_state->active);
11580
11581                 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
11582                                 "Encoder connected to wrong pipe %c\n",
11583                                 pipe_name(pipe));
11584
11585                 if (active) {
11586                         pipe_config->output_types |= 1 << encoder->type;
11587                         encoder->get_config(encoder, pipe_config);
11588                 }
11589         }
11590
11591         intel_crtc_compute_pixel_rate(pipe_config);
11592
11593         if (!new_crtc_state->active)
11594                 return;
11595
11596         intel_pipe_config_sanity_check(dev_priv, pipe_config);
11597
11598         sw_config = to_intel_crtc_state(new_crtc_state);
11599         if (!intel_pipe_config_compare(dev_priv, sw_config,
11600                                        pipe_config, false)) {
11601                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
11602                 intel_dump_pipe_config(intel_crtc, pipe_config,
11603                                        "[hw state]");
11604                 intel_dump_pipe_config(intel_crtc, sw_config,
11605                                        "[sw state]");
11606         }
11607 }
11608
11609 static void
11610 verify_single_dpll_state(struct drm_i915_private *dev_priv,
11611                          struct intel_shared_dpll *pll,
11612                          struct drm_crtc *crtc,
11613                          struct drm_crtc_state *new_state)
11614 {
11615         struct intel_dpll_hw_state dpll_hw_state;
11616         unsigned crtc_mask;
11617         bool active;
11618
11619         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11620
11621         DRM_DEBUG_KMS("%s\n", pll->name);
11622
11623         active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
11624
11625         if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
11626                 I915_STATE_WARN(!pll->on && pll->active_mask,
11627                      "pll in active use but not on in sw tracking\n");
11628                 I915_STATE_WARN(pll->on && !pll->active_mask,
11629                      "pll is on but not used by any active crtc\n");
11630                 I915_STATE_WARN(pll->on != active,
11631                      "pll on state mismatch (expected %i, found %i)\n",
11632                      pll->on, active);
11633         }
11634
11635         if (!crtc) {
11636                 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
11637                                 "more active pll users than references: %x vs %x\n",
11638                                 pll->active_mask, pll->state.crtc_mask);
11639
11640                 return;
11641         }
11642
11643         crtc_mask = 1 << drm_crtc_index(crtc);
11644
11645         if (new_state->active)
11646                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
11647                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
11648                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
11649         else
11650                 I915_STATE_WARN(pll->active_mask & crtc_mask,
11651                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
11652                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
11653
11654         I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
11655                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
11656                         crtc_mask, pll->state.crtc_mask);
11657
11658         I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
11659                                           &dpll_hw_state,
11660                                           sizeof(dpll_hw_state)),
11661                         "pll hw state mismatch\n");
11662 }
11663
11664 static void
11665 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
11666                          struct drm_crtc_state *old_crtc_state,
11667                          struct drm_crtc_state *new_crtc_state)
11668 {
11669         struct drm_i915_private *dev_priv = to_i915(dev);
11670         struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
11671         struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
11672
11673         if (new_state->shared_dpll)
11674                 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
11675
11676         if (old_state->shared_dpll &&
11677             old_state->shared_dpll != new_state->shared_dpll) {
11678                 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
11679                 struct intel_shared_dpll *pll = old_state->shared_dpll;
11680
11681                 I915_STATE_WARN(pll->active_mask & crtc_mask,
11682                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
11683                                 pipe_name(drm_crtc_index(crtc)));
11684                 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
11685                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
11686                                 pipe_name(drm_crtc_index(crtc)));
11687         }
11688 }
11689
11690 static void
11691 intel_modeset_verify_crtc(struct drm_crtc *crtc,
11692                           struct drm_atomic_state *state,
11693                           struct drm_crtc_state *old_state,
11694                           struct drm_crtc_state *new_state)
11695 {
11696         if (!needs_modeset(new_state) &&
11697             !to_intel_crtc_state(new_state)->update_pipe)
11698                 return;
11699
11700         verify_wm_state(crtc, new_state);
11701         verify_connector_state(crtc->dev, state, crtc);
11702         verify_crtc_state(crtc, old_state, new_state);
11703         verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
11704 }
11705
11706 static void
11707 verify_disabled_dpll_state(struct drm_device *dev)
11708 {
11709         struct drm_i915_private *dev_priv = to_i915(dev);
11710         int i;
11711
11712         for (i = 0; i < dev_priv->num_shared_dpll; i++)
11713                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
11714 }
11715
11716 static void
11717 intel_modeset_verify_disabled(struct drm_device *dev,
11718                               struct drm_atomic_state *state)
11719 {
11720         verify_encoder_state(dev, state);
11721         verify_connector_state(dev, state, NULL);
11722         verify_disabled_dpll_state(dev);
11723 }
11724
11725 static void update_scanline_offset(struct intel_crtc *crtc)
11726 {
11727         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11728
11729         /*
11730          * The scanline counter increments at the leading edge of hsync.
11731          *
11732          * On most platforms it starts counting from vtotal-1 on the
11733          * first active line. That means the scanline counter value is
11734          * always one less than what we would expect. Ie. just after
11735          * start of vblank, which also occurs at start of hsync (on the
11736          * last active line), the scanline counter will read vblank_start-1.
11737          *
11738          * On gen2 the scanline counter starts counting from 1 instead
11739          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11740          * to keep the value positive), instead of adding one.
11741          *
11742          * On HSW+ the behaviour of the scanline counter depends on the output
11743          * type. For DP ports it behaves like most other platforms, but on HDMI
11744          * there's an extra 1 line difference. So we need to add two instead of
11745          * one to the value.
11746          *
11747          * On VLV/CHV DSI the scanline counter would appear to increment
11748          * approx. 1/3 of a scanline before start of vblank. Unfortunately
11749          * that means we can't tell whether we're in vblank or not while
11750          * we're on that particular line. We must still set scanline_offset
11751          * to 1 so that the vblank timestamps come out correct when we query
11752          * the scanline counter from within the vblank interrupt handler.
11753          * However if queried just before the start of vblank we'll get an
11754          * answer that's slightly in the future.
11755          */
11756         if (IS_GEN2(dev_priv)) {
11757                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
11758                 int vtotal;
11759
11760                 vtotal = adjusted_mode->crtc_vtotal;
11761                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
11762                         vtotal /= 2;
11763
11764                 crtc->scanline_offset = vtotal - 1;
11765         } else if (HAS_DDI(dev_priv) &&
11766                    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
11767                 crtc->scanline_offset = 2;
11768         } else
11769                 crtc->scanline_offset = 1;
11770 }
11771
11772 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
11773 {
11774         struct drm_device *dev = state->dev;
11775         struct drm_i915_private *dev_priv = to_i915(dev);
11776         struct drm_crtc *crtc;
11777         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
11778         int i;
11779
11780         if (!dev_priv->display.crtc_compute_clock)
11781                 return;
11782
11783         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
11784                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11785                 struct intel_shared_dpll *old_dpll =
11786                         to_intel_crtc_state(old_crtc_state)->shared_dpll;
11787
11788                 if (!needs_modeset(new_crtc_state))
11789                         continue;
11790
11791                 to_intel_crtc_state(new_crtc_state)->shared_dpll = NULL;
11792
11793                 if (!old_dpll)
11794                         continue;
11795
11796                 intel_release_shared_dpll(old_dpll, intel_crtc, state);
11797         }
11798 }
11799
11800 /*
11801  * This implements the workaround described in the "notes" section of the mode
11802  * set sequence documentation. When going from no pipes or single pipe to
11803  * multiple pipes, and planes are enabled after the pipe, we need to wait at
11804  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
11805  */
11806 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
11807 {
11808         struct drm_crtc_state *crtc_state;
11809         struct intel_crtc *intel_crtc;
11810         struct drm_crtc *crtc;
11811         struct intel_crtc_state *first_crtc_state = NULL;
11812         struct intel_crtc_state *other_crtc_state = NULL;
11813         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
11814         int i;
11815
11816         /* look at all crtc's that are going to be enabled in during modeset */
11817         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
11818                 intel_crtc = to_intel_crtc(crtc);
11819
11820                 if (!crtc_state->active || !needs_modeset(crtc_state))
11821                         continue;
11822
11823                 if (first_crtc_state) {
11824                         other_crtc_state = to_intel_crtc_state(crtc_state);
11825                         break;
11826                 } else {
11827                         first_crtc_state = to_intel_crtc_state(crtc_state);
11828                         first_pipe = intel_crtc->pipe;
11829                 }
11830         }
11831
11832         /* No workaround needed? */
11833         if (!first_crtc_state)
11834                 return 0;
11835
11836         /* w/a possibly needed, check how many crtc's are already enabled. */
11837         for_each_intel_crtc(state->dev, intel_crtc) {
11838                 struct intel_crtc_state *pipe_config;
11839
11840                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
11841                 if (IS_ERR(pipe_config))
11842                         return PTR_ERR(pipe_config);
11843
11844                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
11845
11846                 if (!pipe_config->base.active ||
11847                     needs_modeset(&pipe_config->base))
11848                         continue;
11849
11850                 /* 2 or more enabled crtcs means no need for w/a */
11851                 if (enabled_pipe != INVALID_PIPE)
11852                         return 0;
11853
11854                 enabled_pipe = intel_crtc->pipe;
11855         }
11856
11857         if (enabled_pipe != INVALID_PIPE)
11858                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
11859         else if (other_crtc_state)
11860                 other_crtc_state->hsw_workaround_pipe = first_pipe;
11861
11862         return 0;
11863 }
11864
11865 static int intel_lock_all_pipes(struct drm_atomic_state *state)
11866 {
11867         struct drm_crtc *crtc;
11868
11869         /* Add all pipes to the state */
11870         for_each_crtc(state->dev, crtc) {
11871                 struct drm_crtc_state *crtc_state;
11872
11873                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
11874                 if (IS_ERR(crtc_state))
11875                         return PTR_ERR(crtc_state);
11876         }
11877
11878         return 0;
11879 }
11880
11881 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
11882 {
11883         struct drm_crtc *crtc;
11884
11885         /*
11886          * Add all pipes to the state, and force
11887          * a modeset on all the active ones.
11888          */
11889         for_each_crtc(state->dev, crtc) {
11890                 struct drm_crtc_state *crtc_state;
11891                 int ret;
11892
11893                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
11894                 if (IS_ERR(crtc_state))
11895                         return PTR_ERR(crtc_state);
11896
11897                 if (!crtc_state->active || needs_modeset(crtc_state))
11898                         continue;
11899
11900                 crtc_state->mode_changed = true;
11901
11902                 ret = drm_atomic_add_affected_connectors(state, crtc);
11903                 if (ret)
11904                         return ret;
11905
11906                 ret = drm_atomic_add_affected_planes(state, crtc);
11907                 if (ret)
11908                         return ret;
11909         }
11910
11911         return 0;
11912 }
11913
11914 static int intel_modeset_checks(struct drm_atomic_state *state)
11915 {
11916         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
11917         struct drm_i915_private *dev_priv = to_i915(state->dev);
11918         struct drm_crtc *crtc;
11919         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
11920         int ret = 0, i;
11921
11922         if (!check_digital_port_conflicts(state)) {
11923                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
11924                 return -EINVAL;
11925         }
11926
11927         intel_state->modeset = true;
11928         intel_state->active_crtcs = dev_priv->active_crtcs;
11929         intel_state->cdclk.logical = dev_priv->cdclk.logical;
11930         intel_state->cdclk.actual = dev_priv->cdclk.actual;
11931
11932         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
11933                 if (new_crtc_state->active)
11934                         intel_state->active_crtcs |= 1 << i;
11935                 else
11936                         intel_state->active_crtcs &= ~(1 << i);
11937
11938                 if (old_crtc_state->active != new_crtc_state->active)
11939                         intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
11940         }
11941
11942         /*
11943          * See if the config requires any additional preparation, e.g.
11944          * to adjust global state with pipes off.  We need to do this
11945          * here so we can get the modeset_pipe updated config for the new
11946          * mode set on this crtc.  For other crtcs we need to use the
11947          * adjusted_mode bits in the crtc directly.
11948          */
11949         if (dev_priv->display.modeset_calc_cdclk) {
11950                 ret = dev_priv->display.modeset_calc_cdclk(state);
11951                 if (ret < 0)
11952                         return ret;
11953
11954                 /*
11955                  * Writes to dev_priv->cdclk.logical must protected by
11956                  * holding all the crtc locks, even if we don't end up
11957                  * touching the hardware
11958                  */
11959                 if (!intel_cdclk_state_compare(&dev_priv->cdclk.logical,
11960                                                &intel_state->cdclk.logical)) {
11961                         ret = intel_lock_all_pipes(state);
11962                         if (ret < 0)
11963                                 return ret;
11964                 }
11965
11966                 /* All pipes must be switched off while we change the cdclk. */
11967                 if (!intel_cdclk_state_compare(&dev_priv->cdclk.actual,
11968                                                &intel_state->cdclk.actual)) {
11969                         ret = intel_modeset_all_pipes(state);
11970                         if (ret < 0)
11971                                 return ret;
11972                 }
11973
11974                 DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n",
11975                               intel_state->cdclk.logical.cdclk,
11976                               intel_state->cdclk.actual.cdclk);
11977         } else {
11978                 to_intel_atomic_state(state)->cdclk.logical = dev_priv->cdclk.logical;
11979         }
11980
11981         intel_modeset_clear_plls(state);
11982
11983         if (IS_HASWELL(dev_priv))
11984                 return haswell_mode_set_planes_workaround(state);
11985
11986         return 0;
11987 }
11988
11989 /*
11990  * Handle calculation of various watermark data at the end of the atomic check
11991  * phase.  The code here should be run after the per-crtc and per-plane 'check'
11992  * handlers to ensure that all derived state has been updated.
11993  */
11994 static int calc_watermark_data(struct drm_atomic_state *state)
11995 {
11996         struct drm_device *dev = state->dev;
11997         struct drm_i915_private *dev_priv = to_i915(dev);
11998
11999         /* Is there platform-specific watermark information to calculate? */
12000         if (dev_priv->display.compute_global_watermarks)
12001                 return dev_priv->display.compute_global_watermarks(state);
12002
12003         return 0;
12004 }
12005
12006 /**
12007  * intel_atomic_check - validate state object
12008  * @dev: drm device
12009  * @state: state to validate
12010  */
12011 static int intel_atomic_check(struct drm_device *dev,
12012                               struct drm_atomic_state *state)
12013 {
12014         struct drm_i915_private *dev_priv = to_i915(dev);
12015         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12016         struct drm_crtc *crtc;
12017         struct drm_crtc_state *old_crtc_state, *crtc_state;
12018         int ret, i;
12019         bool any_ms = false;
12020
12021         ret = drm_atomic_helper_check_modeset(dev, state);
12022         if (ret)
12023                 return ret;
12024
12025         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, crtc_state, i) {
12026                 struct intel_crtc_state *pipe_config =
12027                         to_intel_crtc_state(crtc_state);
12028
12029                 /* Catch I915_MODE_FLAG_INHERITED */
12030                 if (crtc_state->mode.private_flags != old_crtc_state->mode.private_flags)
12031                         crtc_state->mode_changed = true;
12032
12033                 if (!needs_modeset(crtc_state))
12034                         continue;
12035
12036                 if (!crtc_state->enable) {
12037                         any_ms = true;
12038                         continue;
12039                 }
12040
12041                 /* FIXME: For only active_changed we shouldn't need to do any
12042                  * state recomputation at all. */
12043
12044                 ret = drm_atomic_add_affected_connectors(state, crtc);
12045                 if (ret)
12046                         return ret;
12047
12048                 ret = intel_modeset_pipe_config(crtc, pipe_config);
12049                 if (ret) {
12050                         intel_dump_pipe_config(to_intel_crtc(crtc),
12051                                                pipe_config, "[failed]");
12052                         return ret;
12053                 }
12054
12055                 if (i915_modparams.fastboot &&
12056                     intel_pipe_config_compare(dev_priv,
12057                                         to_intel_crtc_state(old_crtc_state),
12058                                         pipe_config, true)) {
12059                         crtc_state->mode_changed = false;
12060                         pipe_config->update_pipe = true;
12061                 }
12062
12063                 if (needs_modeset(crtc_state))
12064                         any_ms = true;
12065
12066                 ret = drm_atomic_add_affected_planes(state, crtc);
12067                 if (ret)
12068                         return ret;
12069
12070                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
12071                                        needs_modeset(crtc_state) ?
12072                                        "[modeset]" : "[fastset]");
12073         }
12074
12075         if (any_ms) {
12076                 ret = intel_modeset_checks(state);
12077
12078                 if (ret)
12079                         return ret;
12080         } else {
12081                 intel_state->cdclk.logical = dev_priv->cdclk.logical;
12082         }
12083
12084         ret = drm_atomic_helper_check_planes(dev, state);
12085         if (ret)
12086                 return ret;
12087
12088         intel_fbc_choose_crtc(dev_priv, state);
12089         return calc_watermark_data(state);
12090 }
12091
12092 static int intel_atomic_prepare_commit(struct drm_device *dev,
12093                                        struct drm_atomic_state *state)
12094 {
12095         return drm_atomic_helper_prepare_planes(dev, state);
12096 }
12097
12098 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
12099 {
12100         struct drm_device *dev = crtc->base.dev;
12101
12102         if (!dev->max_vblank_count)
12103                 return drm_crtc_accurate_vblank_count(&crtc->base);
12104
12105         return dev->driver->get_vblank_counter(dev, crtc->pipe);
12106 }
12107
12108 static void intel_update_crtc(struct drm_crtc *crtc,
12109                               struct drm_atomic_state *state,
12110                               struct drm_crtc_state *old_crtc_state,
12111                               struct drm_crtc_state *new_crtc_state)
12112 {
12113         struct drm_device *dev = crtc->dev;
12114         struct drm_i915_private *dev_priv = to_i915(dev);
12115         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12116         struct intel_crtc_state *pipe_config = to_intel_crtc_state(new_crtc_state);
12117         bool modeset = needs_modeset(new_crtc_state);
12118
12119         if (modeset) {
12120                 update_scanline_offset(intel_crtc);
12121                 dev_priv->display.crtc_enable(pipe_config, state);
12122         } else {
12123                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12124                                        pipe_config);
12125         }
12126
12127         if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12128                 intel_fbc_enable(
12129                     intel_crtc, pipe_config,
12130                     to_intel_plane_state(crtc->primary->state));
12131         }
12132
12133         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
12134 }
12135
12136 static void intel_update_crtcs(struct drm_atomic_state *state)
12137 {
12138         struct drm_crtc *crtc;
12139         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12140         int i;
12141
12142         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12143                 if (!new_crtc_state->active)
12144                         continue;
12145
12146                 intel_update_crtc(crtc, state, old_crtc_state,
12147                                   new_crtc_state);
12148         }
12149 }
12150
12151 static void skl_update_crtcs(struct drm_atomic_state *state)
12152 {
12153         struct drm_i915_private *dev_priv = to_i915(state->dev);
12154         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12155         struct drm_crtc *crtc;
12156         struct intel_crtc *intel_crtc;
12157         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12158         struct intel_crtc_state *cstate;
12159         unsigned int updated = 0;
12160         bool progress;
12161         enum pipe pipe;
12162         int i;
12163
12164         const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
12165
12166         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i)
12167                 /* ignore allocations for crtc's that have been turned off. */
12168                 if (new_crtc_state->active)
12169                         entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
12170
12171         /*
12172          * Whenever the number of active pipes changes, we need to make sure we
12173          * update the pipes in the right order so that their ddb allocations
12174          * never overlap with eachother inbetween CRTC updates. Otherwise we'll
12175          * cause pipe underruns and other bad stuff.
12176          */
12177         do {
12178                 progress = false;
12179
12180                 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12181                         bool vbl_wait = false;
12182                         unsigned int cmask = drm_crtc_mask(crtc);
12183
12184                         intel_crtc = to_intel_crtc(crtc);
12185                         cstate = to_intel_crtc_state(new_crtc_state);
12186                         pipe = intel_crtc->pipe;
12187
12188                         if (updated & cmask || !cstate->base.active)
12189                                 continue;
12190
12191                         if (skl_ddb_allocation_overlaps(dev_priv,
12192                                                         entries,
12193                                                         &cstate->wm.skl.ddb,
12194                                                         i))
12195                                 continue;
12196
12197                         updated |= cmask;
12198                         entries[i] = &cstate->wm.skl.ddb;
12199
12200                         /*
12201                          * If this is an already active pipe, it's DDB changed,
12202                          * and this isn't the last pipe that needs updating
12203                          * then we need to wait for a vblank to pass for the
12204                          * new ddb allocation to take effect.
12205                          */
12206                         if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
12207                                                  &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
12208                             !new_crtc_state->active_changed &&
12209                             intel_state->wm_results.dirty_pipes != updated)
12210                                 vbl_wait = true;
12211
12212                         intel_update_crtc(crtc, state, old_crtc_state,
12213                                           new_crtc_state);
12214
12215                         if (vbl_wait)
12216                                 intel_wait_for_vblank(dev_priv, pipe);
12217
12218                         progress = true;
12219                 }
12220         } while (progress);
12221 }
12222
12223 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
12224 {
12225         struct intel_atomic_state *state, *next;
12226         struct llist_node *freed;
12227
12228         freed = llist_del_all(&dev_priv->atomic_helper.free_list);
12229         llist_for_each_entry_safe(state, next, freed, freed)
12230                 drm_atomic_state_put(&state->base);
12231 }
12232
12233 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
12234 {
12235         struct drm_i915_private *dev_priv =
12236                 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
12237
12238         intel_atomic_helper_free_state(dev_priv);
12239 }
12240
12241 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
12242 {
12243         struct wait_queue_entry wait_fence, wait_reset;
12244         struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
12245
12246         init_wait_entry(&wait_fence, 0);
12247         init_wait_entry(&wait_reset, 0);
12248         for (;;) {
12249                 prepare_to_wait(&intel_state->commit_ready.wait,
12250                                 &wait_fence, TASK_UNINTERRUPTIBLE);
12251                 prepare_to_wait(&dev_priv->gpu_error.wait_queue,
12252                                 &wait_reset, TASK_UNINTERRUPTIBLE);
12253
12254
12255                 if (i915_sw_fence_done(&intel_state->commit_ready)
12256                     || test_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags))
12257                         break;
12258
12259                 schedule();
12260         }
12261         finish_wait(&intel_state->commit_ready.wait, &wait_fence);
12262         finish_wait(&dev_priv->gpu_error.wait_queue, &wait_reset);
12263 }
12264
12265 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
12266 {
12267         struct drm_device *dev = state->dev;
12268         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12269         struct drm_i915_private *dev_priv = to_i915(dev);
12270         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12271         struct drm_crtc *crtc;
12272         struct intel_crtc_state *intel_cstate;
12273         u64 put_domains[I915_MAX_PIPES] = {};
12274         int i;
12275
12276         intel_atomic_commit_fence_wait(intel_state);
12277
12278         drm_atomic_helper_wait_for_dependencies(state);
12279
12280         if (intel_state->modeset)
12281                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
12282
12283         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12284                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12285
12286                 if (needs_modeset(new_crtc_state) ||
12287                     to_intel_crtc_state(new_crtc_state)->update_pipe) {
12288
12289                         put_domains[to_intel_crtc(crtc)->pipe] =
12290                                 modeset_get_crtc_power_domains(crtc,
12291                                         to_intel_crtc_state(new_crtc_state));
12292                 }
12293
12294                 if (!needs_modeset(new_crtc_state))
12295                         continue;
12296
12297                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12298                                        to_intel_crtc_state(new_crtc_state));
12299
12300                 if (old_crtc_state->active) {
12301                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
12302                         dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
12303                         intel_crtc->active = false;
12304                         intel_fbc_disable(intel_crtc);
12305                         intel_disable_shared_dpll(intel_crtc);
12306
12307                         /*
12308                          * Underruns don't always raise
12309                          * interrupts, so check manually.
12310                          */
12311                         intel_check_cpu_fifo_underruns(dev_priv);
12312                         intel_check_pch_fifo_underruns(dev_priv);
12313
12314                         if (!new_crtc_state->active) {
12315                                 /*
12316                                  * Make sure we don't call initial_watermarks
12317                                  * for ILK-style watermark updates.
12318                                  *
12319                                  * No clue what this is supposed to achieve.
12320                                  */
12321                                 if (INTEL_GEN(dev_priv) >= 9)
12322                                         dev_priv->display.initial_watermarks(intel_state,
12323                                                                              to_intel_crtc_state(new_crtc_state));
12324                         }
12325                 }
12326         }
12327
12328         /* Only after disabling all output pipelines that will be changed can we
12329          * update the the output configuration. */
12330         intel_modeset_update_crtc_state(state);
12331
12332         if (intel_state->modeset) {
12333                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
12334
12335                 intel_set_cdclk(dev_priv, &dev_priv->cdclk.actual);
12336
12337                 /*
12338                  * SKL workaround: bspec recommends we disable the SAGV when we
12339                  * have more then one pipe enabled
12340                  */
12341                 if (!intel_can_enable_sagv(state))
12342                         intel_disable_sagv(dev_priv);
12343
12344                 intel_modeset_verify_disabled(dev, state);
12345         }
12346
12347         /* Complete the events for pipes that have now been disabled */
12348         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
12349                 bool modeset = needs_modeset(new_crtc_state);
12350
12351                 /* Complete events for now disable pipes here. */
12352                 if (modeset && !new_crtc_state->active && new_crtc_state->event) {
12353                         spin_lock_irq(&dev->event_lock);
12354                         drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
12355                         spin_unlock_irq(&dev->event_lock);
12356
12357                         new_crtc_state->event = NULL;
12358                 }
12359         }
12360
12361         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
12362         dev_priv->display.update_crtcs(state);
12363
12364         /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
12365          * already, but still need the state for the delayed optimization. To
12366          * fix this:
12367          * - wrap the optimization/post_plane_update stuff into a per-crtc work.
12368          * - schedule that vblank worker _before_ calling hw_done
12369          * - at the start of commit_tail, cancel it _synchrously
12370          * - switch over to the vblank wait helper in the core after that since
12371          *   we don't need out special handling any more.
12372          */
12373         drm_atomic_helper_wait_for_flip_done(dev, state);
12374
12375         /*
12376          * Now that the vblank has passed, we can go ahead and program the
12377          * optimal watermarks on platforms that need two-step watermark
12378          * programming.
12379          *
12380          * TODO: Move this (and other cleanup) to an async worker eventually.
12381          */
12382         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
12383                 intel_cstate = to_intel_crtc_state(new_crtc_state);
12384
12385                 if (dev_priv->display.optimize_watermarks)
12386                         dev_priv->display.optimize_watermarks(intel_state,
12387                                                               intel_cstate);
12388         }
12389
12390         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12391                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
12392
12393                 if (put_domains[i])
12394                         modeset_put_power_domains(dev_priv, put_domains[i]);
12395
12396                 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
12397         }
12398
12399         if (intel_state->modeset && intel_can_enable_sagv(state))
12400                 intel_enable_sagv(dev_priv);
12401
12402         drm_atomic_helper_commit_hw_done(state);
12403
12404         if (intel_state->modeset) {
12405                 /* As one of the primary mmio accessors, KMS has a high
12406                  * likelihood of triggering bugs in unclaimed access. After we
12407                  * finish modesetting, see if an error has been flagged, and if
12408                  * so enable debugging for the next modeset - and hope we catch
12409                  * the culprit.
12410                  */
12411                 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
12412                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
12413         }
12414
12415         drm_atomic_helper_cleanup_planes(dev, state);
12416
12417         drm_atomic_helper_commit_cleanup_done(state);
12418
12419         drm_atomic_state_put(state);
12420
12421         intel_atomic_helper_free_state(dev_priv);
12422 }
12423
12424 static void intel_atomic_commit_work(struct work_struct *work)
12425 {
12426         struct drm_atomic_state *state =
12427                 container_of(work, struct drm_atomic_state, commit_work);
12428
12429         intel_atomic_commit_tail(state);
12430 }
12431
12432 static int __i915_sw_fence_call
12433 intel_atomic_commit_ready(struct i915_sw_fence *fence,
12434                           enum i915_sw_fence_notify notify)
12435 {
12436         struct intel_atomic_state *state =
12437                 container_of(fence, struct intel_atomic_state, commit_ready);
12438
12439         switch (notify) {
12440         case FENCE_COMPLETE:
12441                 /* we do blocking waits in the worker, nothing to do here */
12442                 break;
12443         case FENCE_FREE:
12444                 {
12445                         struct intel_atomic_helper *helper =
12446                                 &to_i915(state->base.dev)->atomic_helper;
12447
12448                         if (llist_add(&state->freed, &helper->free_list))
12449                                 schedule_work(&helper->free_work);
12450                         break;
12451                 }
12452         }
12453
12454         return NOTIFY_DONE;
12455 }
12456
12457 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
12458 {
12459         struct drm_plane_state *old_plane_state, *new_plane_state;
12460         struct drm_plane *plane;
12461         int i;
12462
12463         for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i)
12464                 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
12465                                   intel_fb_obj(new_plane_state->fb),
12466                                   to_intel_plane(plane)->frontbuffer_bit);
12467 }
12468
12469 /**
12470  * intel_atomic_commit - commit validated state object
12471  * @dev: DRM device
12472  * @state: the top-level driver state object
12473  * @nonblock: nonblocking commit
12474  *
12475  * This function commits a top-level state object that has been validated
12476  * with drm_atomic_helper_check().
12477  *
12478  * RETURNS
12479  * Zero for success or -errno.
12480  */
12481 static int intel_atomic_commit(struct drm_device *dev,
12482                                struct drm_atomic_state *state,
12483                                bool nonblock)
12484 {
12485         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12486         struct drm_i915_private *dev_priv = to_i915(dev);
12487         int ret = 0;
12488
12489         drm_atomic_state_get(state);
12490         i915_sw_fence_init(&intel_state->commit_ready,
12491                            intel_atomic_commit_ready);
12492
12493         /*
12494          * The intel_legacy_cursor_update() fast path takes care
12495          * of avoiding the vblank waits for simple cursor
12496          * movement and flips. For cursor on/off and size changes,
12497          * we want to perform the vblank waits so that watermark
12498          * updates happen during the correct frames. Gen9+ have
12499          * double buffered watermarks and so shouldn't need this.
12500          *
12501          * Unset state->legacy_cursor_update before the call to
12502          * drm_atomic_helper_setup_commit() because otherwise
12503          * drm_atomic_helper_wait_for_flip_done() is a noop and
12504          * we get FIFO underruns because we didn't wait
12505          * for vblank.
12506          *
12507          * FIXME doing watermarks and fb cleanup from a vblank worker
12508          * (assuming we had any) would solve these problems.
12509          */
12510         if (INTEL_GEN(dev_priv) < 9 && state->legacy_cursor_update) {
12511                 struct intel_crtc_state *new_crtc_state;
12512                 struct intel_crtc *crtc;
12513                 int i;
12514
12515                 for_each_new_intel_crtc_in_state(intel_state, crtc, new_crtc_state, i)
12516                         if (new_crtc_state->wm.need_postvbl_update ||
12517                             new_crtc_state->update_wm_post)
12518                                 state->legacy_cursor_update = false;
12519         }
12520
12521         ret = intel_atomic_prepare_commit(dev, state);
12522         if (ret) {
12523                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
12524                 i915_sw_fence_commit(&intel_state->commit_ready);
12525                 return ret;
12526         }
12527
12528         ret = drm_atomic_helper_setup_commit(state, nonblock);
12529         if (!ret)
12530                 ret = drm_atomic_helper_swap_state(state, true);
12531
12532         if (ret) {
12533                 i915_sw_fence_commit(&intel_state->commit_ready);
12534
12535                 drm_atomic_helper_cleanup_planes(dev, state);
12536                 return ret;
12537         }
12538         dev_priv->wm.distrust_bios_wm = false;
12539         intel_shared_dpll_swap_state(state);
12540         intel_atomic_track_fbs(state);
12541
12542         if (intel_state->modeset) {
12543                 memcpy(dev_priv->min_cdclk, intel_state->min_cdclk,
12544                        sizeof(intel_state->min_cdclk));
12545                 dev_priv->active_crtcs = intel_state->active_crtcs;
12546                 dev_priv->cdclk.logical = intel_state->cdclk.logical;
12547                 dev_priv->cdclk.actual = intel_state->cdclk.actual;
12548         }
12549
12550         drm_atomic_state_get(state);
12551         INIT_WORK(&state->commit_work, intel_atomic_commit_work);
12552
12553         i915_sw_fence_commit(&intel_state->commit_ready);
12554         if (nonblock && intel_state->modeset) {
12555                 queue_work(dev_priv->modeset_wq, &state->commit_work);
12556         } else if (nonblock) {
12557                 queue_work(system_unbound_wq, &state->commit_work);
12558         } else {
12559                 if (intel_state->modeset)
12560                         flush_workqueue(dev_priv->modeset_wq);
12561                 intel_atomic_commit_tail(state);
12562         }
12563
12564         return 0;
12565 }
12566
12567 static const struct drm_crtc_funcs intel_crtc_funcs = {
12568         .gamma_set = drm_atomic_helper_legacy_gamma_set,
12569         .set_config = drm_atomic_helper_set_config,
12570         .destroy = intel_crtc_destroy,
12571         .page_flip = drm_atomic_helper_page_flip,
12572         .atomic_duplicate_state = intel_crtc_duplicate_state,
12573         .atomic_destroy_state = intel_crtc_destroy_state,
12574         .set_crc_source = intel_crtc_set_crc_source,
12575 };
12576
12577 struct wait_rps_boost {
12578         struct wait_queue_entry wait;
12579
12580         struct drm_crtc *crtc;
12581         struct drm_i915_gem_request *request;
12582 };
12583
12584 static int do_rps_boost(struct wait_queue_entry *_wait,
12585                         unsigned mode, int sync, void *key)
12586 {
12587         struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait);
12588         struct drm_i915_gem_request *rq = wait->request;
12589
12590         gen6_rps_boost(rq, NULL);
12591         i915_gem_request_put(rq);
12592
12593         drm_crtc_vblank_put(wait->crtc);
12594
12595         list_del(&wait->wait.entry);
12596         kfree(wait);
12597         return 1;
12598 }
12599
12600 static void add_rps_boost_after_vblank(struct drm_crtc *crtc,
12601                                        struct dma_fence *fence)
12602 {
12603         struct wait_rps_boost *wait;
12604
12605         if (!dma_fence_is_i915(fence))
12606                 return;
12607
12608         if (INTEL_GEN(to_i915(crtc->dev)) < 6)
12609                 return;
12610
12611         if (drm_crtc_vblank_get(crtc))
12612                 return;
12613
12614         wait = kmalloc(sizeof(*wait), GFP_KERNEL);
12615         if (!wait) {
12616                 drm_crtc_vblank_put(crtc);
12617                 return;
12618         }
12619
12620         wait->request = to_request(dma_fence_get(fence));
12621         wait->crtc = crtc;
12622
12623         wait->wait.func = do_rps_boost;
12624         wait->wait.flags = 0;
12625
12626         add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait);
12627 }
12628
12629 /**
12630  * intel_prepare_plane_fb - Prepare fb for usage on plane
12631  * @plane: drm plane to prepare for
12632  * @fb: framebuffer to prepare for presentation
12633  *
12634  * Prepares a framebuffer for usage on a display plane.  Generally this
12635  * involves pinning the underlying object and updating the frontbuffer tracking
12636  * bits.  Some older platforms need special physical address handling for
12637  * cursor planes.
12638  *
12639  * Must be called with struct_mutex held.
12640  *
12641  * Returns 0 on success, negative error code on failure.
12642  */
12643 int
12644 intel_prepare_plane_fb(struct drm_plane *plane,
12645                        struct drm_plane_state *new_state)
12646 {
12647         struct intel_atomic_state *intel_state =
12648                 to_intel_atomic_state(new_state->state);
12649         struct drm_i915_private *dev_priv = to_i915(plane->dev);
12650         struct drm_framebuffer *fb = new_state->fb;
12651         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12652         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
12653         int ret;
12654
12655         if (old_obj) {
12656                 struct drm_crtc_state *crtc_state =
12657                         drm_atomic_get_existing_crtc_state(new_state->state,
12658                                                            plane->state->crtc);
12659
12660                 /* Big Hammer, we also need to ensure that any pending
12661                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
12662                  * current scanout is retired before unpinning the old
12663                  * framebuffer. Note that we rely on userspace rendering
12664                  * into the buffer attached to the pipe they are waiting
12665                  * on. If not, userspace generates a GPU hang with IPEHR
12666                  * point to the MI_WAIT_FOR_EVENT.
12667                  *
12668                  * This should only fail upon a hung GPU, in which case we
12669                  * can safely continue.
12670                  */
12671                 if (needs_modeset(crtc_state)) {
12672                         ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
12673                                                               old_obj->resv, NULL,
12674                                                               false, 0,
12675                                                               GFP_KERNEL);
12676                         if (ret < 0)
12677                                 return ret;
12678                 }
12679         }
12680
12681         if (new_state->fence) { /* explicit fencing */
12682                 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
12683                                                     new_state->fence,
12684                                                     I915_FENCE_TIMEOUT,
12685                                                     GFP_KERNEL);
12686                 if (ret < 0)
12687                         return ret;
12688         }
12689
12690         if (!obj)
12691                 return 0;
12692
12693         ret = i915_gem_object_pin_pages(obj);
12694         if (ret)
12695                 return ret;
12696
12697         ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
12698         if (ret) {
12699                 i915_gem_object_unpin_pages(obj);
12700                 return ret;
12701         }
12702
12703         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12704             INTEL_INFO(dev_priv)->cursor_needs_physical) {
12705                 const int align = intel_cursor_alignment(dev_priv);
12706
12707                 ret = i915_gem_object_attach_phys(obj, align);
12708         } else {
12709                 struct i915_vma *vma;
12710
12711                 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
12712                 if (!IS_ERR(vma))
12713                         to_intel_plane_state(new_state)->vma = vma;
12714                 else
12715                         ret =  PTR_ERR(vma);
12716         }
12717
12718         i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
12719
12720         mutex_unlock(&dev_priv->drm.struct_mutex);
12721         i915_gem_object_unpin_pages(obj);
12722         if (ret)
12723                 return ret;
12724
12725         if (!new_state->fence) { /* implicit fencing */
12726                 struct dma_fence *fence;
12727
12728                 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
12729                                                       obj->resv, NULL,
12730                                                       false, I915_FENCE_TIMEOUT,
12731                                                       GFP_KERNEL);
12732                 if (ret < 0)
12733                         return ret;
12734
12735                 fence = reservation_object_get_excl_rcu(obj->resv);
12736                 if (fence) {
12737                         add_rps_boost_after_vblank(new_state->crtc, fence);
12738                         dma_fence_put(fence);
12739                 }
12740         } else {
12741                 add_rps_boost_after_vblank(new_state->crtc, new_state->fence);
12742         }
12743
12744         return 0;
12745 }
12746
12747 /**
12748  * intel_cleanup_plane_fb - Cleans up an fb after plane use
12749  * @plane: drm plane to clean up for
12750  * @fb: old framebuffer that was on plane
12751  *
12752  * Cleans up a framebuffer that has just been removed from a plane.
12753  *
12754  * Must be called with struct_mutex held.
12755  */
12756 void
12757 intel_cleanup_plane_fb(struct drm_plane *plane,
12758                        struct drm_plane_state *old_state)
12759 {
12760         struct i915_vma *vma;
12761
12762         /* Should only be called after a successful intel_prepare_plane_fb()! */
12763         vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
12764         if (vma) {
12765                 mutex_lock(&plane->dev->struct_mutex);
12766                 intel_unpin_fb_vma(vma);
12767                 mutex_unlock(&plane->dev->struct_mutex);
12768         }
12769 }
12770
12771 int
12772 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
12773 {
12774         struct drm_i915_private *dev_priv;
12775         int max_scale;
12776         int crtc_clock, max_dotclk;
12777
12778         if (!intel_crtc || !crtc_state->base.enable)
12779                 return DRM_PLANE_HELPER_NO_SCALING;
12780
12781         dev_priv = to_i915(intel_crtc->base.dev);
12782
12783         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
12784         max_dotclk = to_intel_atomic_state(crtc_state->base.state)->cdclk.logical.cdclk;
12785
12786         if (IS_GEMINILAKE(dev_priv))
12787                 max_dotclk *= 2;
12788
12789         if (WARN_ON_ONCE(!crtc_clock || max_dotclk < crtc_clock))
12790                 return DRM_PLANE_HELPER_NO_SCALING;
12791
12792         /*
12793          * skl max scale is lower of:
12794          *    close to 3 but not 3, -1 is for that purpose
12795          *            or
12796          *    cdclk/crtc_clock
12797          */
12798         max_scale = min((1 << 16) * 3 - 1,
12799                         (1 << 8) * ((max_dotclk << 8) / crtc_clock));
12800
12801         return max_scale;
12802 }
12803
12804 static int
12805 intel_check_primary_plane(struct intel_plane *plane,
12806                           struct intel_crtc_state *crtc_state,
12807                           struct intel_plane_state *state)
12808 {
12809         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
12810         struct drm_crtc *crtc = state->base.crtc;
12811         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
12812         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
12813         bool can_position = false;
12814         int ret;
12815
12816         if (INTEL_GEN(dev_priv) >= 9) {
12817                 /* use scaler when colorkey is not required */
12818                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
12819                         min_scale = 1;
12820                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
12821                 }
12822                 can_position = true;
12823         }
12824
12825         ret = drm_plane_helper_check_state(&state->base,
12826                                            &state->clip,
12827                                            min_scale, max_scale,
12828                                            can_position, true);
12829         if (ret)
12830                 return ret;
12831
12832         if (!state->base.fb)
12833                 return 0;
12834
12835         if (INTEL_GEN(dev_priv) >= 9) {
12836                 ret = skl_check_plane_surface(state);
12837                 if (ret)
12838                         return ret;
12839
12840                 state->ctl = skl_plane_ctl(crtc_state, state);
12841         } else {
12842                 ret = i9xx_check_plane_surface(state);
12843                 if (ret)
12844                         return ret;
12845
12846                 state->ctl = i9xx_plane_ctl(crtc_state, state);
12847         }
12848
12849         return 0;
12850 }
12851
12852 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
12853                                     struct drm_crtc_state *old_crtc_state)
12854 {
12855         struct drm_device *dev = crtc->dev;
12856         struct drm_i915_private *dev_priv = to_i915(dev);
12857         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12858         struct intel_crtc_state *old_intel_cstate =
12859                 to_intel_crtc_state(old_crtc_state);
12860         struct intel_atomic_state *old_intel_state =
12861                 to_intel_atomic_state(old_crtc_state->state);
12862         struct intel_crtc_state *intel_cstate =
12863                 intel_atomic_get_new_crtc_state(old_intel_state, intel_crtc);
12864         bool modeset = needs_modeset(&intel_cstate->base);
12865
12866         if (!modeset &&
12867             (intel_cstate->base.color_mgmt_changed ||
12868              intel_cstate->update_pipe)) {
12869                 intel_color_set_csc(&intel_cstate->base);
12870                 intel_color_load_luts(&intel_cstate->base);
12871         }
12872
12873         /* Perform vblank evasion around commit operation */
12874         intel_pipe_update_start(intel_cstate);
12875
12876         if (modeset)
12877                 goto out;
12878
12879         if (intel_cstate->update_pipe)
12880                 intel_update_pipe_config(old_intel_cstate, intel_cstate);
12881         else if (INTEL_GEN(dev_priv) >= 9)
12882                 skl_detach_scalers(intel_crtc);
12883
12884 out:
12885         if (dev_priv->display.atomic_update_watermarks)
12886                 dev_priv->display.atomic_update_watermarks(old_intel_state,
12887                                                            intel_cstate);
12888 }
12889
12890 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
12891                                      struct drm_crtc_state *old_crtc_state)
12892 {
12893         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12894         struct intel_atomic_state *old_intel_state =
12895                 to_intel_atomic_state(old_crtc_state->state);
12896         struct intel_crtc_state *new_crtc_state =
12897                 intel_atomic_get_new_crtc_state(old_intel_state, intel_crtc);
12898
12899         intel_pipe_update_end(new_crtc_state);
12900 }
12901
12902 /**
12903  * intel_plane_destroy - destroy a plane
12904  * @plane: plane to destroy
12905  *
12906  * Common destruction function for all types of planes (primary, cursor,
12907  * sprite).
12908  */
12909 void intel_plane_destroy(struct drm_plane *plane)
12910 {
12911         drm_plane_cleanup(plane);
12912         kfree(to_intel_plane(plane));
12913 }
12914
12915 static bool i8xx_mod_supported(uint32_t format, uint64_t modifier)
12916 {
12917         switch (format) {
12918         case DRM_FORMAT_C8:
12919         case DRM_FORMAT_RGB565:
12920         case DRM_FORMAT_XRGB1555:
12921         case DRM_FORMAT_XRGB8888:
12922                 return modifier == DRM_FORMAT_MOD_LINEAR ||
12923                         modifier == I915_FORMAT_MOD_X_TILED;
12924         default:
12925                 return false;
12926         }
12927 }
12928
12929 static bool i965_mod_supported(uint32_t format, uint64_t modifier)
12930 {
12931         switch (format) {
12932         case DRM_FORMAT_C8:
12933         case DRM_FORMAT_RGB565:
12934         case DRM_FORMAT_XRGB8888:
12935         case DRM_FORMAT_XBGR8888:
12936         case DRM_FORMAT_XRGB2101010:
12937         case DRM_FORMAT_XBGR2101010:
12938                 return modifier == DRM_FORMAT_MOD_LINEAR ||
12939                         modifier == I915_FORMAT_MOD_X_TILED;
12940         default:
12941                 return false;
12942         }
12943 }
12944
12945 static bool skl_mod_supported(uint32_t format, uint64_t modifier)
12946 {
12947         switch (format) {
12948         case DRM_FORMAT_XRGB8888:
12949         case DRM_FORMAT_XBGR8888:
12950         case DRM_FORMAT_ARGB8888:
12951         case DRM_FORMAT_ABGR8888:
12952                 if (modifier == I915_FORMAT_MOD_Yf_TILED_CCS ||
12953                     modifier == I915_FORMAT_MOD_Y_TILED_CCS)
12954                         return true;
12955                 /* fall through */
12956         case DRM_FORMAT_RGB565:
12957         case DRM_FORMAT_XRGB2101010:
12958         case DRM_FORMAT_XBGR2101010:
12959         case DRM_FORMAT_YUYV:
12960         case DRM_FORMAT_YVYU:
12961         case DRM_FORMAT_UYVY:
12962         case DRM_FORMAT_VYUY:
12963                 if (modifier == I915_FORMAT_MOD_Yf_TILED)
12964                         return true;
12965                 /* fall through */
12966         case DRM_FORMAT_C8:
12967                 if (modifier == DRM_FORMAT_MOD_LINEAR ||
12968                     modifier == I915_FORMAT_MOD_X_TILED ||
12969                     modifier == I915_FORMAT_MOD_Y_TILED)
12970                         return true;
12971                 /* fall through */
12972         default:
12973                 return false;
12974         }
12975 }
12976
12977 static bool intel_primary_plane_format_mod_supported(struct drm_plane *plane,
12978                                                      uint32_t format,
12979                                                      uint64_t modifier)
12980 {
12981         struct drm_i915_private *dev_priv = to_i915(plane->dev);
12982
12983         if (WARN_ON(modifier == DRM_FORMAT_MOD_INVALID))
12984                 return false;
12985
12986         if ((modifier >> 56) != DRM_FORMAT_MOD_VENDOR_INTEL &&
12987             modifier != DRM_FORMAT_MOD_LINEAR)
12988                 return false;
12989
12990         if (INTEL_GEN(dev_priv) >= 9)
12991                 return skl_mod_supported(format, modifier);
12992         else if (INTEL_GEN(dev_priv) >= 4)
12993                 return i965_mod_supported(format, modifier);
12994         else
12995                 return i8xx_mod_supported(format, modifier);
12996
12997         unreachable();
12998 }
12999
13000 static bool intel_cursor_plane_format_mod_supported(struct drm_plane *plane,
13001                                                     uint32_t format,
13002                                                     uint64_t modifier)
13003 {
13004         if (WARN_ON(modifier == DRM_FORMAT_MOD_INVALID))
13005                 return false;
13006
13007         return modifier == DRM_FORMAT_MOD_LINEAR && format == DRM_FORMAT_ARGB8888;
13008 }
13009
13010 static struct drm_plane_funcs intel_plane_funcs = {
13011         .update_plane = drm_atomic_helper_update_plane,
13012         .disable_plane = drm_atomic_helper_disable_plane,
13013         .destroy = intel_plane_destroy,
13014         .atomic_get_property = intel_plane_atomic_get_property,
13015         .atomic_set_property = intel_plane_atomic_set_property,
13016         .atomic_duplicate_state = intel_plane_duplicate_state,
13017         .atomic_destroy_state = intel_plane_destroy_state,
13018         .format_mod_supported = intel_primary_plane_format_mod_supported,
13019 };
13020
13021 static int
13022 intel_legacy_cursor_update(struct drm_plane *plane,
13023                            struct drm_crtc *crtc,
13024                            struct drm_framebuffer *fb,
13025                            int crtc_x, int crtc_y,
13026                            unsigned int crtc_w, unsigned int crtc_h,
13027                            uint32_t src_x, uint32_t src_y,
13028                            uint32_t src_w, uint32_t src_h,
13029                            struct drm_modeset_acquire_ctx *ctx)
13030 {
13031         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13032         int ret;
13033         struct drm_plane_state *old_plane_state, *new_plane_state;
13034         struct intel_plane *intel_plane = to_intel_plane(plane);
13035         struct drm_framebuffer *old_fb;
13036         struct drm_crtc_state *crtc_state = crtc->state;
13037         struct i915_vma *old_vma, *vma;
13038
13039         /*
13040          * When crtc is inactive or there is a modeset pending,
13041          * wait for it to complete in the slowpath
13042          */
13043         if (!crtc_state->active || needs_modeset(crtc_state) ||
13044             to_intel_crtc_state(crtc_state)->update_pipe)
13045                 goto slow;
13046
13047         old_plane_state = plane->state;
13048         /*
13049          * Don't do an async update if there is an outstanding commit modifying
13050          * the plane.  This prevents our async update's changes from getting
13051          * overridden by a previous synchronous update's state.
13052          */
13053         if (old_plane_state->commit &&
13054             !try_wait_for_completion(&old_plane_state->commit->hw_done))
13055                 goto slow;
13056
13057         /*
13058          * If any parameters change that may affect watermarks,
13059          * take the slowpath. Only changing fb or position should be
13060          * in the fastpath.
13061          */
13062         if (old_plane_state->crtc != crtc ||
13063             old_plane_state->src_w != src_w ||
13064             old_plane_state->src_h != src_h ||
13065             old_plane_state->crtc_w != crtc_w ||
13066             old_plane_state->crtc_h != crtc_h ||
13067             !old_plane_state->fb != !fb)
13068                 goto slow;
13069
13070         new_plane_state = intel_plane_duplicate_state(plane);
13071         if (!new_plane_state)
13072                 return -ENOMEM;
13073
13074         drm_atomic_set_fb_for_plane(new_plane_state, fb);
13075
13076         new_plane_state->src_x = src_x;
13077         new_plane_state->src_y = src_y;
13078         new_plane_state->src_w = src_w;
13079         new_plane_state->src_h = src_h;
13080         new_plane_state->crtc_x = crtc_x;
13081         new_plane_state->crtc_y = crtc_y;
13082         new_plane_state->crtc_w = crtc_w;
13083         new_plane_state->crtc_h = crtc_h;
13084
13085         ret = intel_plane_atomic_check_with_state(to_intel_crtc_state(crtc->state),
13086                                                   to_intel_crtc_state(crtc->state), /* FIXME need a new crtc state? */
13087                                                   to_intel_plane_state(plane->state),
13088                                                   to_intel_plane_state(new_plane_state));
13089         if (ret)
13090                 goto out_free;
13091
13092         ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
13093         if (ret)
13094                 goto out_free;
13095
13096         if (INTEL_INFO(dev_priv)->cursor_needs_physical) {
13097                 int align = intel_cursor_alignment(dev_priv);
13098
13099                 ret = i915_gem_object_attach_phys(intel_fb_obj(fb), align);
13100                 if (ret) {
13101                         DRM_DEBUG_KMS("failed to attach phys object\n");
13102                         goto out_unlock;
13103                 }
13104         } else {
13105                 vma = intel_pin_and_fence_fb_obj(fb, new_plane_state->rotation);
13106                 if (IS_ERR(vma)) {
13107                         DRM_DEBUG_KMS("failed to pin object\n");
13108
13109                         ret = PTR_ERR(vma);
13110                         goto out_unlock;
13111                 }
13112
13113                 to_intel_plane_state(new_plane_state)->vma = vma;
13114         }
13115
13116         old_fb = old_plane_state->fb;
13117
13118         i915_gem_track_fb(intel_fb_obj(old_fb), intel_fb_obj(fb),
13119                           intel_plane->frontbuffer_bit);
13120
13121         /* Swap plane state */
13122         plane->state = new_plane_state;
13123
13124         if (plane->state->visible) {
13125                 trace_intel_update_plane(plane, to_intel_crtc(crtc));
13126                 intel_plane->update_plane(intel_plane,
13127                                           to_intel_crtc_state(crtc->state),
13128                                           to_intel_plane_state(plane->state));
13129         } else {
13130                 trace_intel_disable_plane(plane, to_intel_crtc(crtc));
13131                 intel_plane->disable_plane(intel_plane, to_intel_crtc(crtc));
13132         }
13133
13134         old_vma = fetch_and_zero(&to_intel_plane_state(old_plane_state)->vma);
13135         if (old_vma)
13136                 intel_unpin_fb_vma(old_vma);
13137
13138 out_unlock:
13139         mutex_unlock(&dev_priv->drm.struct_mutex);
13140 out_free:
13141         if (ret)
13142                 intel_plane_destroy_state(plane, new_plane_state);
13143         else
13144                 intel_plane_destroy_state(plane, old_plane_state);
13145         return ret;
13146
13147 slow:
13148         return drm_atomic_helper_update_plane(plane, crtc, fb,
13149                                               crtc_x, crtc_y, crtc_w, crtc_h,
13150                                               src_x, src_y, src_w, src_h, ctx);
13151 }
13152
13153 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
13154         .update_plane = intel_legacy_cursor_update,
13155         .disable_plane = drm_atomic_helper_disable_plane,
13156         .destroy = intel_plane_destroy,
13157         .atomic_get_property = intel_plane_atomic_get_property,
13158         .atomic_set_property = intel_plane_atomic_set_property,
13159         .atomic_duplicate_state = intel_plane_duplicate_state,
13160         .atomic_destroy_state = intel_plane_destroy_state,
13161         .format_mod_supported = intel_cursor_plane_format_mod_supported,
13162 };
13163
13164 static struct intel_plane *
13165 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
13166 {
13167         struct intel_plane *primary = NULL;
13168         struct intel_plane_state *state = NULL;
13169         const uint32_t *intel_primary_formats;
13170         unsigned int supported_rotations;
13171         unsigned int num_formats;
13172         const uint64_t *modifiers;
13173         int ret;
13174
13175         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13176         if (!primary) {
13177                 ret = -ENOMEM;
13178                 goto fail;
13179         }
13180
13181         state = intel_create_plane_state(&primary->base);
13182         if (!state) {
13183                 ret = -ENOMEM;
13184                 goto fail;
13185         }
13186
13187         primary->base.state = &state->base;
13188
13189         primary->can_scale = false;
13190         primary->max_downscale = 1;
13191         if (INTEL_GEN(dev_priv) >= 9) {
13192                 primary->can_scale = true;
13193                 state->scaler_id = -1;
13194         }
13195         primary->pipe = pipe;
13196         /*
13197          * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
13198          * port is hooked to pipe B. Hence we want plane A feeding pipe B.
13199          */
13200         if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
13201                 primary->plane = (enum plane) !pipe;
13202         else
13203                 primary->plane = (enum plane) pipe;
13204         primary->id = PLANE_PRIMARY;
13205         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13206         primary->check_plane = intel_check_primary_plane;
13207
13208         if (INTEL_GEN(dev_priv) >= 10) {
13209                 intel_primary_formats = skl_primary_formats;
13210                 num_formats = ARRAY_SIZE(skl_primary_formats);
13211                 modifiers = skl_format_modifiers_ccs;
13212
13213                 primary->update_plane = skl_update_plane;
13214                 primary->disable_plane = skl_disable_plane;
13215                 primary->get_hw_state = skl_plane_get_hw_state;
13216         } else if (INTEL_GEN(dev_priv) >= 9) {
13217                 intel_primary_formats = skl_primary_formats;
13218                 num_formats = ARRAY_SIZE(skl_primary_formats);
13219                 if (pipe < PIPE_C)
13220                         modifiers = skl_format_modifiers_ccs;
13221                 else
13222                         modifiers = skl_format_modifiers_noccs;
13223
13224                 primary->update_plane = skl_update_plane;
13225                 primary->disable_plane = skl_disable_plane;
13226                 primary->get_hw_state = skl_plane_get_hw_state;
13227         } else if (INTEL_GEN(dev_priv) >= 4) {
13228                 intel_primary_formats = i965_primary_formats;
13229                 num_formats = ARRAY_SIZE(i965_primary_formats);
13230                 modifiers = i9xx_format_modifiers;
13231
13232                 primary->update_plane = i9xx_update_primary_plane;
13233                 primary->disable_plane = i9xx_disable_primary_plane;
13234                 primary->get_hw_state = i9xx_plane_get_hw_state;
13235         } else {
13236                 intel_primary_formats = i8xx_primary_formats;
13237                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13238                 modifiers = i9xx_format_modifiers;
13239
13240                 primary->update_plane = i9xx_update_primary_plane;
13241                 primary->disable_plane = i9xx_disable_primary_plane;
13242                 primary->get_hw_state = i9xx_plane_get_hw_state;
13243         }
13244
13245         if (INTEL_GEN(dev_priv) >= 9)
13246                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13247                                                0, &intel_plane_funcs,
13248                                                intel_primary_formats, num_formats,
13249                                                modifiers,
13250                                                DRM_PLANE_TYPE_PRIMARY,
13251                                                "plane 1%c", pipe_name(pipe));
13252         else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
13253                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13254                                                0, &intel_plane_funcs,
13255                                                intel_primary_formats, num_formats,
13256                                                modifiers,
13257                                                DRM_PLANE_TYPE_PRIMARY,
13258                                                "primary %c", pipe_name(pipe));
13259         else
13260                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13261                                                0, &intel_plane_funcs,
13262                                                intel_primary_formats, num_formats,
13263                                                modifiers,
13264                                                DRM_PLANE_TYPE_PRIMARY,
13265                                                "plane %c", plane_name(primary->plane));
13266         if (ret)
13267                 goto fail;
13268
13269         if (INTEL_GEN(dev_priv) >= 9) {
13270                 supported_rotations =
13271                         DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_90 |
13272                         DRM_MODE_ROTATE_180 | DRM_MODE_ROTATE_270;
13273         } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
13274                 supported_rotations =
13275                         DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
13276                         DRM_MODE_REFLECT_X;
13277         } else if (INTEL_GEN(dev_priv) >= 4) {
13278                 supported_rotations =
13279                         DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
13280         } else {
13281                 supported_rotations = DRM_MODE_ROTATE_0;
13282         }
13283
13284         if (INTEL_GEN(dev_priv) >= 4)
13285                 drm_plane_create_rotation_property(&primary->base,
13286                                                    DRM_MODE_ROTATE_0,
13287                                                    supported_rotations);
13288
13289         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13290
13291         return primary;
13292
13293 fail:
13294         kfree(state);
13295         kfree(primary);
13296
13297         return ERR_PTR(ret);
13298 }
13299
13300 static struct intel_plane *
13301 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
13302                           enum pipe pipe)
13303 {
13304         struct intel_plane *cursor = NULL;
13305         struct intel_plane_state *state = NULL;
13306         int ret;
13307
13308         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13309         if (!cursor) {
13310                 ret = -ENOMEM;
13311                 goto fail;
13312         }
13313
13314         state = intel_create_plane_state(&cursor->base);
13315         if (!state) {
13316                 ret = -ENOMEM;
13317                 goto fail;
13318         }
13319
13320         cursor->base.state = &state->base;
13321
13322         cursor->can_scale = false;
13323         cursor->max_downscale = 1;
13324         cursor->pipe = pipe;
13325         cursor->plane = pipe;
13326         cursor->id = PLANE_CURSOR;
13327         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13328
13329         if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
13330                 cursor->update_plane = i845_update_cursor;
13331                 cursor->disable_plane = i845_disable_cursor;
13332                 cursor->get_hw_state = i845_cursor_get_hw_state;
13333                 cursor->check_plane = i845_check_cursor;
13334         } else {
13335                 cursor->update_plane = i9xx_update_cursor;
13336                 cursor->disable_plane = i9xx_disable_cursor;
13337                 cursor->get_hw_state = i9xx_cursor_get_hw_state;
13338                 cursor->check_plane = i9xx_check_cursor;
13339         }
13340
13341         cursor->cursor.base = ~0;
13342         cursor->cursor.cntl = ~0;
13343
13344         if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
13345                 cursor->cursor.size = ~0;
13346
13347         ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
13348                                        0, &intel_cursor_plane_funcs,
13349                                        intel_cursor_formats,
13350                                        ARRAY_SIZE(intel_cursor_formats),
13351                                        cursor_format_modifiers,
13352                                        DRM_PLANE_TYPE_CURSOR,
13353                                        "cursor %c", pipe_name(pipe));
13354         if (ret)
13355                 goto fail;
13356
13357         if (INTEL_GEN(dev_priv) >= 4)
13358                 drm_plane_create_rotation_property(&cursor->base,
13359                                                    DRM_MODE_ROTATE_0,
13360                                                    DRM_MODE_ROTATE_0 |
13361                                                    DRM_MODE_ROTATE_180);
13362
13363         if (INTEL_GEN(dev_priv) >= 9)
13364                 state->scaler_id = -1;
13365
13366         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13367
13368         return cursor;
13369
13370 fail:
13371         kfree(state);
13372         kfree(cursor);
13373
13374         return ERR_PTR(ret);
13375 }
13376
13377 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
13378                                     struct intel_crtc_state *crtc_state)
13379 {
13380         struct intel_crtc_scaler_state *scaler_state =
13381                 &crtc_state->scaler_state;
13382         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13383         int i;
13384
13385         crtc->num_scalers = dev_priv->info.num_scalers[crtc->pipe];
13386         if (!crtc->num_scalers)
13387                 return;
13388
13389         for (i = 0; i < crtc->num_scalers; i++) {
13390                 struct intel_scaler *scaler = &scaler_state->scalers[i];
13391
13392                 scaler->in_use = 0;
13393                 scaler->mode = PS_SCALER_MODE_DYN;
13394         }
13395
13396         scaler_state->scaler_id = -1;
13397 }
13398
13399 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
13400 {
13401         struct intel_crtc *intel_crtc;
13402         struct intel_crtc_state *crtc_state = NULL;
13403         struct intel_plane *primary = NULL;
13404         struct intel_plane *cursor = NULL;
13405         int sprite, ret;
13406
13407         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13408         if (!intel_crtc)
13409                 return -ENOMEM;
13410
13411         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13412         if (!crtc_state) {
13413                 ret = -ENOMEM;
13414                 goto fail;
13415         }
13416         intel_crtc->config = crtc_state;
13417         intel_crtc->base.state = &crtc_state->base;
13418         crtc_state->base.crtc = &intel_crtc->base;
13419
13420         primary = intel_primary_plane_create(dev_priv, pipe);
13421         if (IS_ERR(primary)) {
13422                 ret = PTR_ERR(primary);
13423                 goto fail;
13424         }
13425         intel_crtc->plane_ids_mask |= BIT(primary->id);
13426
13427         for_each_sprite(dev_priv, pipe, sprite) {
13428                 struct intel_plane *plane;
13429
13430                 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
13431                 if (IS_ERR(plane)) {
13432                         ret = PTR_ERR(plane);
13433                         goto fail;
13434                 }
13435                 intel_crtc->plane_ids_mask |= BIT(plane->id);
13436         }
13437
13438         cursor = intel_cursor_plane_create(dev_priv, pipe);
13439         if (IS_ERR(cursor)) {
13440                 ret = PTR_ERR(cursor);
13441                 goto fail;
13442         }
13443         intel_crtc->plane_ids_mask |= BIT(cursor->id);
13444
13445         ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
13446                                         &primary->base, &cursor->base,
13447                                         &intel_crtc_funcs,
13448                                         "pipe %c", pipe_name(pipe));
13449         if (ret)
13450                 goto fail;
13451
13452         intel_crtc->pipe = pipe;
13453         intel_crtc->plane = primary->plane;
13454
13455         /* initialize shared scalers */
13456         intel_crtc_init_scalers(intel_crtc, crtc_state);
13457
13458         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13459                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13460         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
13461         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
13462
13463         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13464
13465         intel_color_init(&intel_crtc->base);
13466
13467         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13468
13469         return 0;
13470
13471 fail:
13472         /*
13473          * drm_mode_config_cleanup() will free up any
13474          * crtcs/planes already initialized.
13475          */
13476         kfree(crtc_state);
13477         kfree(intel_crtc);
13478
13479         return ret;
13480 }
13481
13482 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13483 {
13484         struct drm_device *dev = connector->base.dev;
13485
13486         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13487
13488         if (!connector->base.state->crtc)
13489                 return INVALID_PIPE;
13490
13491         return to_intel_crtc(connector->base.state->crtc)->pipe;
13492 }
13493
13494 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13495                                 struct drm_file *file)
13496 {
13497         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13498         struct drm_crtc *drmmode_crtc;
13499         struct intel_crtc *crtc;
13500
13501         drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
13502         if (!drmmode_crtc)
13503                 return -ENOENT;
13504
13505         crtc = to_intel_crtc(drmmode_crtc);
13506         pipe_from_crtc_id->pipe = crtc->pipe;
13507
13508         return 0;
13509 }
13510
13511 static int intel_encoder_clones(struct intel_encoder *encoder)
13512 {
13513         struct drm_device *dev = encoder->base.dev;
13514         struct intel_encoder *source_encoder;
13515         int index_mask = 0;
13516         int entry = 0;
13517
13518         for_each_intel_encoder(dev, source_encoder) {
13519                 if (encoders_cloneable(encoder, source_encoder))
13520                         index_mask |= (1 << entry);
13521
13522                 entry++;
13523         }
13524
13525         return index_mask;
13526 }
13527
13528 static bool has_edp_a(struct drm_i915_private *dev_priv)
13529 {
13530         if (!IS_MOBILE(dev_priv))
13531                 return false;
13532
13533         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13534                 return false;
13535
13536         if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13537                 return false;
13538
13539         return true;
13540 }
13541
13542 static bool intel_crt_present(struct drm_i915_private *dev_priv)
13543 {
13544         if (INTEL_GEN(dev_priv) >= 9)
13545                 return false;
13546
13547         if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
13548                 return false;
13549
13550         if (IS_CHERRYVIEW(dev_priv))
13551                 return false;
13552
13553         if (HAS_PCH_LPT_H(dev_priv) &&
13554             I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
13555                 return false;
13556
13557         /* DDI E can't be used if DDI A requires 4 lanes */
13558         if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
13559                 return false;
13560
13561         if (!dev_priv->vbt.int_crt_support)
13562                 return false;
13563
13564         return true;
13565 }
13566
13567 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
13568 {
13569         int pps_num;
13570         int pps_idx;
13571
13572         if (HAS_DDI(dev_priv))
13573                 return;
13574         /*
13575          * This w/a is needed at least on CPT/PPT, but to be sure apply it
13576          * everywhere where registers can be write protected.
13577          */
13578         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13579                 pps_num = 2;
13580         else
13581                 pps_num = 1;
13582
13583         for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
13584                 u32 val = I915_READ(PP_CONTROL(pps_idx));
13585
13586                 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
13587                 I915_WRITE(PP_CONTROL(pps_idx), val);
13588         }
13589 }
13590
13591 static void intel_pps_init(struct drm_i915_private *dev_priv)
13592 {
13593         if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
13594                 dev_priv->pps_mmio_base = PCH_PPS_BASE;
13595         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13596                 dev_priv->pps_mmio_base = VLV_PPS_BASE;
13597         else
13598                 dev_priv->pps_mmio_base = PPS_BASE;
13599
13600         intel_pps_unlock_regs_wa(dev_priv);
13601 }
13602
13603 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
13604 {
13605         struct intel_encoder *encoder;
13606         bool dpd_is_edp = false;
13607
13608         intel_pps_init(dev_priv);
13609
13610         /*
13611          * intel_edp_init_connector() depends on this completing first, to
13612          * prevent the registeration of both eDP and LVDS and the incorrect
13613          * sharing of the PPS.
13614          */
13615         intel_lvds_init(dev_priv);
13616
13617         if (intel_crt_present(dev_priv))
13618                 intel_crt_init(dev_priv);
13619
13620         if (IS_GEN9_LP(dev_priv)) {
13621                 /*
13622                  * FIXME: Broxton doesn't support port detection via the
13623                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13624                  * detect the ports.
13625                  */
13626                 intel_ddi_init(dev_priv, PORT_A);
13627                 intel_ddi_init(dev_priv, PORT_B);
13628                 intel_ddi_init(dev_priv, PORT_C);
13629
13630                 intel_dsi_init(dev_priv);
13631         } else if (HAS_DDI(dev_priv)) {
13632                 int found;
13633
13634                 /*
13635                  * Haswell uses DDI functions to detect digital outputs.
13636                  * On SKL pre-D0 the strap isn't connected, so we assume
13637                  * it's there.
13638                  */
13639                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
13640                 /* WaIgnoreDDIAStrap: skl */
13641                 if (found || IS_GEN9_BC(dev_priv))
13642                         intel_ddi_init(dev_priv, PORT_A);
13643
13644                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13645                  * register */
13646                 found = I915_READ(SFUSE_STRAP);
13647
13648                 if (found & SFUSE_STRAP_DDIB_DETECTED)
13649                         intel_ddi_init(dev_priv, PORT_B);
13650                 if (found & SFUSE_STRAP_DDIC_DETECTED)
13651                         intel_ddi_init(dev_priv, PORT_C);
13652                 if (found & SFUSE_STRAP_DDID_DETECTED)
13653                         intel_ddi_init(dev_priv, PORT_D);
13654                 /*
13655                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
13656                  */
13657                 if (IS_GEN9_BC(dev_priv) &&
13658                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
13659                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
13660                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
13661                         intel_ddi_init(dev_priv, PORT_E);
13662
13663         } else if (HAS_PCH_SPLIT(dev_priv)) {
13664                 int found;
13665                 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
13666
13667                 if (has_edp_a(dev_priv))
13668                         intel_dp_init(dev_priv, DP_A, PORT_A);
13669
13670                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13671                         /* PCH SDVOB multiplex with HDMIB */
13672                         found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
13673                         if (!found)
13674                                 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
13675                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13676                                 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
13677                 }
13678
13679                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13680                         intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
13681
13682                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13683                         intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
13684
13685                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
13686                         intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
13687
13688                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
13689                         intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
13690         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
13691                 bool has_edp, has_port;
13692
13693                 /*
13694                  * The DP_DETECTED bit is the latched state of the DDC
13695                  * SDA pin at boot. However since eDP doesn't require DDC
13696                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
13697                  * eDP ports may have been muxed to an alternate function.
13698                  * Thus we can't rely on the DP_DETECTED bit alone to detect
13699                  * eDP ports. Consult the VBT as well as DP_DETECTED to
13700                  * detect eDP ports.
13701                  *
13702                  * Sadly the straps seem to be missing sometimes even for HDMI
13703                  * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
13704                  * and VBT for the presence of the port. Additionally we can't
13705                  * trust the port type the VBT declares as we've seen at least
13706                  * HDMI ports that the VBT claim are DP or eDP.
13707                  */
13708                 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
13709                 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
13710                 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
13711                         has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
13712                 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
13713                         intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
13714
13715                 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
13716                 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
13717                 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
13718                         has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
13719                 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
13720                         intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
13721
13722                 if (IS_CHERRYVIEW(dev_priv)) {
13723                         /*
13724                          * eDP not supported on port D,
13725                          * so no need to worry about it
13726                          */
13727                         has_port = intel_bios_is_port_present(dev_priv, PORT_D);
13728                         if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
13729                                 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
13730                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
13731                                 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
13732                 }
13733
13734                 intel_dsi_init(dev_priv);
13735         } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
13736                 bool found = false;
13737
13738                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13739                         DRM_DEBUG_KMS("probing SDVOB\n");
13740                         found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
13741                         if (!found && IS_G4X(dev_priv)) {
13742                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
13743                                 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
13744                         }
13745
13746                         if (!found && IS_G4X(dev_priv))
13747                                 intel_dp_init(dev_priv, DP_B, PORT_B);
13748                 }
13749
13750                 /* Before G4X SDVOC doesn't have its own detect register */
13751
13752                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13753                         DRM_DEBUG_KMS("probing SDVOC\n");
13754                         found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
13755                 }
13756
13757                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
13758
13759                         if (IS_G4X(dev_priv)) {
13760                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
13761                                 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
13762                         }
13763                         if (IS_G4X(dev_priv))
13764                                 intel_dp_init(dev_priv, DP_C, PORT_C);
13765                 }
13766
13767                 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
13768                         intel_dp_init(dev_priv, DP_D, PORT_D);
13769         } else if (IS_GEN2(dev_priv))
13770                 intel_dvo_init(dev_priv);
13771
13772         if (SUPPORTS_TV(dev_priv))
13773                 intel_tv_init(dev_priv);
13774
13775         intel_psr_init(dev_priv);
13776
13777         for_each_intel_encoder(&dev_priv->drm, encoder) {
13778                 encoder->base.possible_crtcs = encoder->crtc_mask;
13779                 encoder->base.possible_clones =
13780                         intel_encoder_clones(encoder);
13781         }
13782
13783         intel_init_pch_refclk(dev_priv);
13784
13785         drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
13786 }
13787
13788 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
13789 {
13790         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13791
13792         drm_framebuffer_cleanup(fb);
13793
13794         i915_gem_object_lock(intel_fb->obj);
13795         WARN_ON(!intel_fb->obj->framebuffer_references--);
13796         i915_gem_object_unlock(intel_fb->obj);
13797
13798         i915_gem_object_put(intel_fb->obj);
13799
13800         kfree(intel_fb);
13801 }
13802
13803 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
13804                                                 struct drm_file *file,
13805                                                 unsigned int *handle)
13806 {
13807         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13808         struct drm_i915_gem_object *obj = intel_fb->obj;
13809
13810         if (obj->userptr.mm) {
13811                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
13812                 return -EINVAL;
13813         }
13814
13815         return drm_gem_handle_create(file, &obj->base, handle);
13816 }
13817
13818 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
13819                                         struct drm_file *file,
13820                                         unsigned flags, unsigned color,
13821                                         struct drm_clip_rect *clips,
13822                                         unsigned num_clips)
13823 {
13824         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13825
13826         i915_gem_object_flush_if_display(obj);
13827         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
13828
13829         return 0;
13830 }
13831
13832 static const struct drm_framebuffer_funcs intel_fb_funcs = {
13833         .destroy = intel_user_framebuffer_destroy,
13834         .create_handle = intel_user_framebuffer_create_handle,
13835         .dirty = intel_user_framebuffer_dirty,
13836 };
13837
13838 static
13839 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
13840                          uint64_t fb_modifier, uint32_t pixel_format)
13841 {
13842         u32 gen = INTEL_GEN(dev_priv);
13843
13844         if (gen >= 9) {
13845                 int cpp = drm_format_plane_cpp(pixel_format, 0);
13846
13847                 /* "The stride in bytes must not exceed the of the size of 8K
13848                  *  pixels and 32K bytes."
13849                  */
13850                 return min(8192 * cpp, 32768);
13851         } else if (gen >= 5 && !HAS_GMCH_DISPLAY(dev_priv)) {
13852                 return 32*1024;
13853         } else if (gen >= 4) {
13854                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13855                         return 16*1024;
13856                 else
13857                         return 32*1024;
13858         } else if (gen >= 3) {
13859                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13860                         return 8*1024;
13861                 else
13862                         return 16*1024;
13863         } else {
13864                 /* XXX DSPC is limited to 4k tiled */
13865                 return 8*1024;
13866         }
13867 }
13868
13869 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
13870                                   struct drm_i915_gem_object *obj,
13871                                   struct drm_mode_fb_cmd2 *mode_cmd)
13872 {
13873         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
13874         struct drm_framebuffer *fb = &intel_fb->base;
13875         struct drm_format_name_buf format_name;
13876         u32 pitch_limit;
13877         unsigned int tiling, stride;
13878         int ret = -EINVAL;
13879         int i;
13880
13881         i915_gem_object_lock(obj);
13882         obj->framebuffer_references++;
13883         tiling = i915_gem_object_get_tiling(obj);
13884         stride = i915_gem_object_get_stride(obj);
13885         i915_gem_object_unlock(obj);
13886
13887         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
13888                 /*
13889                  * If there's a fence, enforce that
13890                  * the fb modifier and tiling mode match.
13891                  */
13892                 if (tiling != I915_TILING_NONE &&
13893                     tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
13894                         DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
13895                         goto err;
13896                 }
13897         } else {
13898                 if (tiling == I915_TILING_X) {
13899                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
13900                 } else if (tiling == I915_TILING_Y) {
13901                         DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
13902                         goto err;
13903                 }
13904         }
13905
13906         /* Passed in modifier sanity checking. */
13907         switch (mode_cmd->modifier[0]) {
13908         case I915_FORMAT_MOD_Y_TILED_CCS:
13909         case I915_FORMAT_MOD_Yf_TILED_CCS:
13910                 switch (mode_cmd->pixel_format) {
13911                 case DRM_FORMAT_XBGR8888:
13912                 case DRM_FORMAT_ABGR8888:
13913                 case DRM_FORMAT_XRGB8888:
13914                 case DRM_FORMAT_ARGB8888:
13915                         break;
13916                 default:
13917                         DRM_DEBUG_KMS("RC supported only with RGB8888 formats\n");
13918                         goto err;
13919                 }
13920                 /* fall through */
13921         case I915_FORMAT_MOD_Y_TILED:
13922         case I915_FORMAT_MOD_Yf_TILED:
13923                 if (INTEL_GEN(dev_priv) < 9) {
13924                         DRM_DEBUG_KMS("Unsupported tiling 0x%llx!\n",
13925                                       mode_cmd->modifier[0]);
13926                         goto err;
13927                 }
13928         case DRM_FORMAT_MOD_LINEAR:
13929         case I915_FORMAT_MOD_X_TILED:
13930                 break;
13931         default:
13932                 DRM_DEBUG_KMS("Unsupported fb modifier 0x%llx!\n",
13933                               mode_cmd->modifier[0]);
13934                 goto err;
13935         }
13936
13937         /*
13938          * gen2/3 display engine uses the fence if present,
13939          * so the tiling mode must match the fb modifier exactly.
13940          */
13941         if (INTEL_INFO(dev_priv)->gen < 4 &&
13942             tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
13943                 DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
13944                 goto err;
13945         }
13946
13947         pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
13948                                            mode_cmd->pixel_format);
13949         if (mode_cmd->pitches[0] > pitch_limit) {
13950                 DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
13951                               mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
13952                               "tiled" : "linear",
13953                               mode_cmd->pitches[0], pitch_limit);
13954                 goto err;
13955         }
13956
13957         /*
13958          * If there's a fence, enforce that
13959          * the fb pitch and fence stride match.
13960          */
13961         if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
13962                 DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
13963                               mode_cmd->pitches[0], stride);
13964                 goto err;
13965         }
13966
13967         /* Reject formats not supported by any plane early. */
13968         switch (mode_cmd->pixel_format) {
13969         case DRM_FORMAT_C8:
13970         case DRM_FORMAT_RGB565:
13971         case DRM_FORMAT_XRGB8888:
13972         case DRM_FORMAT_ARGB8888:
13973                 break;
13974         case DRM_FORMAT_XRGB1555:
13975                 if (INTEL_GEN(dev_priv) > 3) {
13976                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
13977                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
13978                         goto err;
13979                 }
13980                 break;
13981         case DRM_FORMAT_ABGR8888:
13982                 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
13983                     INTEL_GEN(dev_priv) < 9) {
13984                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
13985                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
13986                         goto err;
13987                 }
13988                 break;
13989         case DRM_FORMAT_XBGR8888:
13990         case DRM_FORMAT_XRGB2101010:
13991         case DRM_FORMAT_XBGR2101010:
13992                 if (INTEL_GEN(dev_priv) < 4) {
13993                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
13994                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
13995                         goto err;
13996                 }
13997                 break;
13998         case DRM_FORMAT_ABGR2101010:
13999                 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
14000                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14001                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14002                         goto err;
14003                 }
14004                 break;
14005         case DRM_FORMAT_YUYV:
14006         case DRM_FORMAT_UYVY:
14007         case DRM_FORMAT_YVYU:
14008         case DRM_FORMAT_VYUY:
14009                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
14010                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14011                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14012                         goto err;
14013                 }
14014                 break;
14015         default:
14016                 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14017                               drm_get_format_name(mode_cmd->pixel_format, &format_name));
14018                 goto err;
14019         }
14020
14021         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14022         if (mode_cmd->offsets[0] != 0)
14023                 goto err;
14024
14025         drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
14026
14027         for (i = 0; i < fb->format->num_planes; i++) {
14028                 u32 stride_alignment;
14029
14030                 if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
14031                         DRM_DEBUG_KMS("bad plane %d handle\n", i);
14032                         goto err;
14033                 }
14034
14035                 stride_alignment = intel_fb_stride_alignment(fb, i);
14036
14037                 /*
14038                  * Display WA #0531: skl,bxt,kbl,glk
14039                  *
14040                  * Render decompression and plane width > 3840
14041                  * combined with horizontal panning requires the
14042                  * plane stride to be a multiple of 4. We'll just
14043                  * require the entire fb to accommodate that to avoid
14044                  * potential runtime errors at plane configuration time.
14045                  */
14046                 if (IS_GEN9(dev_priv) && i == 0 && fb->width > 3840 &&
14047                     (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
14048                      fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS))
14049                         stride_alignment *= 4;
14050
14051                 if (fb->pitches[i] & (stride_alignment - 1)) {
14052                         DRM_DEBUG_KMS("plane %d pitch (%d) must be at least %u byte aligned\n",
14053                                       i, fb->pitches[i], stride_alignment);
14054                         goto err;
14055                 }
14056         }
14057
14058         intel_fb->obj = obj;
14059
14060         ret = intel_fill_fb_info(dev_priv, fb);
14061         if (ret)
14062                 goto err;
14063
14064         ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
14065         if (ret) {
14066                 DRM_ERROR("framebuffer init failed %d\n", ret);
14067                 goto err;
14068         }
14069
14070         return 0;
14071
14072 err:
14073         i915_gem_object_lock(obj);
14074         obj->framebuffer_references--;
14075         i915_gem_object_unlock(obj);
14076         return ret;
14077 }
14078
14079 static struct drm_framebuffer *
14080 intel_user_framebuffer_create(struct drm_device *dev,
14081                               struct drm_file *filp,
14082                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14083 {
14084         struct drm_framebuffer *fb;
14085         struct drm_i915_gem_object *obj;
14086         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14087
14088         obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
14089         if (!obj)
14090                 return ERR_PTR(-ENOENT);
14091
14092         fb = intel_framebuffer_create(obj, &mode_cmd);
14093         if (IS_ERR(fb))
14094                 i915_gem_object_put(obj);
14095
14096         return fb;
14097 }
14098
14099 static void intel_atomic_state_free(struct drm_atomic_state *state)
14100 {
14101         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14102
14103         drm_atomic_state_default_release(state);
14104
14105         i915_sw_fence_fini(&intel_state->commit_ready);
14106
14107         kfree(state);
14108 }
14109
14110 static const struct drm_mode_config_funcs intel_mode_funcs = {
14111         .fb_create = intel_user_framebuffer_create,
14112         .get_format_info = intel_get_format_info,
14113         .output_poll_changed = intel_fbdev_output_poll_changed,
14114         .atomic_check = intel_atomic_check,
14115         .atomic_commit = intel_atomic_commit,
14116         .atomic_state_alloc = intel_atomic_state_alloc,
14117         .atomic_state_clear = intel_atomic_state_clear,
14118         .atomic_state_free = intel_atomic_state_free,
14119 };
14120
14121 /**
14122  * intel_init_display_hooks - initialize the display modesetting hooks
14123  * @dev_priv: device private
14124  */
14125 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14126 {
14127         intel_init_cdclk_hooks(dev_priv);
14128
14129         if (INTEL_INFO(dev_priv)->gen >= 9) {
14130                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14131                 dev_priv->display.get_initial_plane_config =
14132                         skylake_get_initial_plane_config;
14133                 dev_priv->display.crtc_compute_clock =
14134                         haswell_crtc_compute_clock;
14135                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14136                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14137         } else if (HAS_DDI(dev_priv)) {
14138                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14139                 dev_priv->display.get_initial_plane_config =
14140                         ironlake_get_initial_plane_config;
14141                 dev_priv->display.crtc_compute_clock =
14142                         haswell_crtc_compute_clock;
14143                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14144                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14145         } else if (HAS_PCH_SPLIT(dev_priv)) {
14146                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14147                 dev_priv->display.get_initial_plane_config =
14148                         ironlake_get_initial_plane_config;
14149                 dev_priv->display.crtc_compute_clock =
14150                         ironlake_crtc_compute_clock;
14151                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14152                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14153         } else if (IS_CHERRYVIEW(dev_priv)) {
14154                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14155                 dev_priv->display.get_initial_plane_config =
14156                         i9xx_get_initial_plane_config;
14157                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14158                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14159                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14160         } else if (IS_VALLEYVIEW(dev_priv)) {
14161                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14162                 dev_priv->display.get_initial_plane_config =
14163                         i9xx_get_initial_plane_config;
14164                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14165                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14166                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14167         } else if (IS_G4X(dev_priv)) {
14168                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14169                 dev_priv->display.get_initial_plane_config =
14170                         i9xx_get_initial_plane_config;
14171                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14172                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14173                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14174         } else if (IS_PINEVIEW(dev_priv)) {
14175                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14176                 dev_priv->display.get_initial_plane_config =
14177                         i9xx_get_initial_plane_config;
14178                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14179                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14180                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14181         } else if (!IS_GEN2(dev_priv)) {
14182                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14183                 dev_priv->display.get_initial_plane_config =
14184                         i9xx_get_initial_plane_config;
14185                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14186                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14187                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14188         } else {
14189                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14190                 dev_priv->display.get_initial_plane_config =
14191                         i9xx_get_initial_plane_config;
14192                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14193                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14194                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14195         }
14196
14197         if (IS_GEN5(dev_priv)) {
14198                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14199         } else if (IS_GEN6(dev_priv)) {
14200                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14201         } else if (IS_IVYBRIDGE(dev_priv)) {
14202                 /* FIXME: detect B0+ stepping and use auto training */
14203                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14204         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
14205                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14206         }
14207
14208         if (INTEL_GEN(dev_priv) >= 9)
14209                 dev_priv->display.update_crtcs = skl_update_crtcs;
14210         else
14211                 dev_priv->display.update_crtcs = intel_update_crtcs;
14212 }
14213
14214 /*
14215  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14216  */
14217 static void quirk_ssc_force_disable(struct drm_device *dev)
14218 {
14219         struct drm_i915_private *dev_priv = to_i915(dev);
14220         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14221         DRM_INFO("applying lvds SSC disable quirk\n");
14222 }
14223
14224 /*
14225  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14226  * brightness value
14227  */
14228 static void quirk_invert_brightness(struct drm_device *dev)
14229 {
14230         struct drm_i915_private *dev_priv = to_i915(dev);
14231         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14232         DRM_INFO("applying inverted panel brightness quirk\n");
14233 }
14234
14235 /* Some VBT's incorrectly indicate no backlight is present */
14236 static void quirk_backlight_present(struct drm_device *dev)
14237 {
14238         struct drm_i915_private *dev_priv = to_i915(dev);
14239         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14240         DRM_INFO("applying backlight present quirk\n");
14241 }
14242
14243 /* Toshiba Satellite P50-C-18C requires T12 delay to be min 800ms
14244  * which is 300 ms greater than eDP spec T12 min.
14245  */
14246 static void quirk_increase_t12_delay(struct drm_device *dev)
14247 {
14248         struct drm_i915_private *dev_priv = to_i915(dev);
14249
14250         dev_priv->quirks |= QUIRK_INCREASE_T12_DELAY;
14251         DRM_INFO("Applying T12 delay quirk\n");
14252 }
14253
14254 struct intel_quirk {
14255         int device;
14256         int subsystem_vendor;
14257         int subsystem_device;
14258         void (*hook)(struct drm_device *dev);
14259 };
14260
14261 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14262 struct intel_dmi_quirk {
14263         void (*hook)(struct drm_device *dev);
14264         const struct dmi_system_id (*dmi_id_list)[];
14265 };
14266
14267 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14268 {
14269         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14270         return 1;
14271 }
14272
14273 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14274         {
14275                 .dmi_id_list = &(const struct dmi_system_id[]) {
14276                         {
14277                                 .callback = intel_dmi_reverse_brightness,
14278                                 .ident = "NCR Corporation",
14279                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14280                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14281                                 },
14282                         },
14283                         { }  /* terminating entry */
14284                 },
14285                 .hook = quirk_invert_brightness,
14286         },
14287 };
14288
14289 static struct intel_quirk intel_quirks[] = {
14290         /* Lenovo U160 cannot use SSC on LVDS */
14291         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14292
14293         /* Sony Vaio Y cannot use SSC on LVDS */
14294         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14295
14296         /* Acer Aspire 5734Z must invert backlight brightness */
14297         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14298
14299         /* Acer/eMachines G725 */
14300         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14301
14302         /* Acer/eMachines e725 */
14303         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14304
14305         /* Acer/Packard Bell NCL20 */
14306         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14307
14308         /* Acer Aspire 4736Z */
14309         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14310
14311         /* Acer Aspire 5336 */
14312         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14313
14314         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14315         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14316
14317         /* Acer C720 Chromebook (Core i3 4005U) */
14318         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14319
14320         /* Apple Macbook 2,1 (Core 2 T7400) */
14321         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14322
14323         /* Apple Macbook 4,1 */
14324         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14325
14326         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14327         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14328
14329         /* HP Chromebook 14 (Celeron 2955U) */
14330         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14331
14332         /* Dell Chromebook 11 */
14333         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14334
14335         /* Dell Chromebook 11 (2015 version) */
14336         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14337
14338         /* Toshiba Satellite P50-C-18C */
14339         { 0x191B, 0x1179, 0xF840, quirk_increase_t12_delay },
14340 };
14341
14342 static void intel_init_quirks(struct drm_device *dev)
14343 {
14344         struct pci_dev *d = dev->pdev;
14345         int i;
14346
14347         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14348                 struct intel_quirk *q = &intel_quirks[i];
14349
14350                 if (d->device == q->device &&
14351                     (d->subsystem_vendor == q->subsystem_vendor ||
14352                      q->subsystem_vendor == PCI_ANY_ID) &&
14353                     (d->subsystem_device == q->subsystem_device ||
14354                      q->subsystem_device == PCI_ANY_ID))
14355                         q->hook(dev);
14356         }
14357         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14358                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14359                         intel_dmi_quirks[i].hook(dev);
14360         }
14361 }
14362
14363 /* Disable the VGA plane that we never use */
14364 static void i915_disable_vga(struct drm_i915_private *dev_priv)
14365 {
14366         struct pci_dev *pdev = dev_priv->drm.pdev;
14367         u8 sr1;
14368         i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
14369
14370         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14371         vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
14372         outb(SR01, VGA_SR_INDEX);
14373         sr1 = inb(VGA_SR_DATA);
14374         outb(sr1 | 1<<5, VGA_SR_DATA);
14375         vga_put(pdev, VGA_RSRC_LEGACY_IO);
14376         udelay(300);
14377
14378         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14379         POSTING_READ(vga_reg);
14380 }
14381
14382 void intel_modeset_init_hw(struct drm_device *dev)
14383 {
14384         struct drm_i915_private *dev_priv = to_i915(dev);
14385
14386         intel_update_cdclk(dev_priv);
14387         dev_priv->cdclk.logical = dev_priv->cdclk.actual = dev_priv->cdclk.hw;
14388 }
14389
14390 /*
14391  * Calculate what we think the watermarks should be for the state we've read
14392  * out of the hardware and then immediately program those watermarks so that
14393  * we ensure the hardware settings match our internal state.
14394  *
14395  * We can calculate what we think WM's should be by creating a duplicate of the
14396  * current state (which was constructed during hardware readout) and running it
14397  * through the atomic check code to calculate new watermark values in the
14398  * state object.
14399  */
14400 static void sanitize_watermarks(struct drm_device *dev)
14401 {
14402         struct drm_i915_private *dev_priv = to_i915(dev);
14403         struct drm_atomic_state *state;
14404         struct intel_atomic_state *intel_state;
14405         struct drm_crtc *crtc;
14406         struct drm_crtc_state *cstate;
14407         struct drm_modeset_acquire_ctx ctx;
14408         int ret;
14409         int i;
14410
14411         /* Only supported on platforms that use atomic watermark design */
14412         if (!dev_priv->display.optimize_watermarks)
14413                 return;
14414
14415         /*
14416          * We need to hold connection_mutex before calling duplicate_state so
14417          * that the connector loop is protected.
14418          */
14419         drm_modeset_acquire_init(&ctx, 0);
14420 retry:
14421         ret = drm_modeset_lock_all_ctx(dev, &ctx);
14422         if (ret == -EDEADLK) {
14423                 drm_modeset_backoff(&ctx);
14424                 goto retry;
14425         } else if (WARN_ON(ret)) {
14426                 goto fail;
14427         }
14428
14429         state = drm_atomic_helper_duplicate_state(dev, &ctx);
14430         if (WARN_ON(IS_ERR(state)))
14431                 goto fail;
14432
14433         intel_state = to_intel_atomic_state(state);
14434
14435         /*
14436          * Hardware readout is the only time we don't want to calculate
14437          * intermediate watermarks (since we don't trust the current
14438          * watermarks).
14439          */
14440         if (!HAS_GMCH_DISPLAY(dev_priv))
14441                 intel_state->skip_intermediate_wm = true;
14442
14443         ret = intel_atomic_check(dev, state);
14444         if (ret) {
14445                 /*
14446                  * If we fail here, it means that the hardware appears to be
14447                  * programmed in a way that shouldn't be possible, given our
14448                  * understanding of watermark requirements.  This might mean a
14449                  * mistake in the hardware readout code or a mistake in the
14450                  * watermark calculations for a given platform.  Raise a WARN
14451                  * so that this is noticeable.
14452                  *
14453                  * If this actually happens, we'll have to just leave the
14454                  * BIOS-programmed watermarks untouched and hope for the best.
14455                  */
14456                 WARN(true, "Could not determine valid watermarks for inherited state\n");
14457                 goto put_state;
14458         }
14459
14460         /* Write calculated watermark values back */
14461         for_each_new_crtc_in_state(state, crtc, cstate, i) {
14462                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
14463
14464                 cs->wm.need_postvbl_update = true;
14465                 dev_priv->display.optimize_watermarks(intel_state, cs);
14466         }
14467
14468 put_state:
14469         drm_atomic_state_put(state);
14470 fail:
14471         drm_modeset_drop_locks(&ctx);
14472         drm_modeset_acquire_fini(&ctx);
14473 }
14474
14475 int intel_modeset_init(struct drm_device *dev)
14476 {
14477         struct drm_i915_private *dev_priv = to_i915(dev);
14478         struct i915_ggtt *ggtt = &dev_priv->ggtt;
14479         enum pipe pipe;
14480         struct intel_crtc *crtc;
14481
14482         dev_priv->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0);
14483
14484         drm_mode_config_init(dev);
14485
14486         dev->mode_config.min_width = 0;
14487         dev->mode_config.min_height = 0;
14488
14489         dev->mode_config.preferred_depth = 24;
14490         dev->mode_config.prefer_shadow = 1;
14491
14492         dev->mode_config.allow_fb_modifiers = true;
14493
14494         dev->mode_config.funcs = &intel_mode_funcs;
14495
14496         init_llist_head(&dev_priv->atomic_helper.free_list);
14497         INIT_WORK(&dev_priv->atomic_helper.free_work,
14498                   intel_atomic_helper_free_state_worker);
14499
14500         intel_init_quirks(dev);
14501
14502         intel_init_pm(dev_priv);
14503
14504         if (INTEL_INFO(dev_priv)->num_pipes == 0)
14505                 return 0;
14506
14507         /*
14508          * There may be no VBT; and if the BIOS enabled SSC we can
14509          * just keep using it to avoid unnecessary flicker.  Whereas if the
14510          * BIOS isn't using it, don't assume it will work even if the VBT
14511          * indicates as much.
14512          */
14513         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
14514                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14515                                             DREF_SSC1_ENABLE);
14516
14517                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14518                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14519                                      bios_lvds_use_ssc ? "en" : "dis",
14520                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14521                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14522                 }
14523         }
14524
14525         if (IS_GEN2(dev_priv)) {
14526                 dev->mode_config.max_width = 2048;
14527                 dev->mode_config.max_height = 2048;
14528         } else if (IS_GEN3(dev_priv)) {
14529                 dev->mode_config.max_width = 4096;
14530                 dev->mode_config.max_height = 4096;
14531         } else {
14532                 dev->mode_config.max_width = 8192;
14533                 dev->mode_config.max_height = 8192;
14534         }
14535
14536         if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
14537                 dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
14538                 dev->mode_config.cursor_height = 1023;
14539         } else if (IS_GEN2(dev_priv)) {
14540                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14541                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14542         } else {
14543                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14544                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14545         }
14546
14547         dev->mode_config.fb_base = ggtt->mappable_base;
14548
14549         DRM_DEBUG_KMS("%d display pipe%s available.\n",
14550                       INTEL_INFO(dev_priv)->num_pipes,
14551                       INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
14552
14553         for_each_pipe(dev_priv, pipe) {
14554                 int ret;
14555
14556                 ret = intel_crtc_init(dev_priv, pipe);
14557                 if (ret) {
14558                         drm_mode_config_cleanup(dev);
14559                         return ret;
14560                 }
14561         }
14562
14563         intel_shared_dpll_init(dev);
14564
14565         intel_update_czclk(dev_priv);
14566         intel_modeset_init_hw(dev);
14567
14568         if (dev_priv->max_cdclk_freq == 0)
14569                 intel_update_max_cdclk(dev_priv);
14570
14571         /* Just disable it once at startup */
14572         i915_disable_vga(dev_priv);
14573         intel_setup_outputs(dev_priv);
14574
14575         drm_modeset_lock_all(dev);
14576         intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
14577         drm_modeset_unlock_all(dev);
14578
14579         for_each_intel_crtc(dev, crtc) {
14580                 struct intel_initial_plane_config plane_config = {};
14581
14582                 if (!crtc->active)
14583                         continue;
14584
14585                 /*
14586                  * Note that reserving the BIOS fb up front prevents us
14587                  * from stuffing other stolen allocations like the ring
14588                  * on top.  This prevents some ugliness at boot time, and
14589                  * can even allow for smooth boot transitions if the BIOS
14590                  * fb is large enough for the active pipe configuration.
14591                  */
14592                 dev_priv->display.get_initial_plane_config(crtc,
14593                                                            &plane_config);
14594
14595                 /*
14596                  * If the fb is shared between multiple heads, we'll
14597                  * just get the first one.
14598                  */
14599                 intel_find_initial_plane_obj(crtc, &plane_config);
14600         }
14601
14602         /*
14603          * Make sure hardware watermarks really match the state we read out.
14604          * Note that we need to do this after reconstructing the BIOS fb's
14605          * since the watermark calculation done here will use pstate->fb.
14606          */
14607         if (!HAS_GMCH_DISPLAY(dev_priv))
14608                 sanitize_watermarks(dev);
14609
14610         return 0;
14611 }
14612
14613 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
14614 {
14615         /* 640x480@60Hz, ~25175 kHz */
14616         struct dpll clock = {
14617                 .m1 = 18,
14618                 .m2 = 7,
14619                 .p1 = 13,
14620                 .p2 = 4,
14621                 .n = 2,
14622         };
14623         u32 dpll, fp;
14624         int i;
14625
14626         WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154);
14627
14628         DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
14629                       pipe_name(pipe), clock.vco, clock.dot);
14630
14631         fp = i9xx_dpll_compute_fp(&clock);
14632         dpll = (I915_READ(DPLL(pipe)) & DPLL_DVO_2X_MODE) |
14633                 DPLL_VGA_MODE_DIS |
14634                 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
14635                 PLL_P2_DIVIDE_BY_4 |
14636                 PLL_REF_INPUT_DREFCLK |
14637                 DPLL_VCO_ENABLE;
14638
14639         I915_WRITE(FP0(pipe), fp);
14640         I915_WRITE(FP1(pipe), fp);
14641
14642         I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
14643         I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
14644         I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
14645         I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
14646         I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
14647         I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
14648         I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
14649
14650         /*
14651          * Apparently we need to have VGA mode enabled prior to changing
14652          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
14653          * dividers, even though the register value does change.
14654          */
14655         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
14656         I915_WRITE(DPLL(pipe), dpll);
14657
14658         /* Wait for the clocks to stabilize. */
14659         POSTING_READ(DPLL(pipe));
14660         udelay(150);
14661
14662         /* The pixel multiplier can only be updated once the
14663          * DPLL is enabled and the clocks are stable.
14664          *
14665          * So write it again.
14666          */
14667         I915_WRITE(DPLL(pipe), dpll);
14668
14669         /* We do this three times for luck */
14670         for (i = 0; i < 3 ; i++) {
14671                 I915_WRITE(DPLL(pipe), dpll);
14672                 POSTING_READ(DPLL(pipe));
14673                 udelay(150); /* wait for warmup */
14674         }
14675
14676         I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
14677         POSTING_READ(PIPECONF(pipe));
14678 }
14679
14680 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
14681 {
14682         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
14683
14684         DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n",
14685                       pipe_name(pipe));
14686
14687         WARN_ON(I915_READ(DSPCNTR(PLANE_A)) & DISPLAY_PLANE_ENABLE);
14688         WARN_ON(I915_READ(DSPCNTR(PLANE_B)) & DISPLAY_PLANE_ENABLE);
14689         WARN_ON(I915_READ(DSPCNTR(PLANE_C)) & DISPLAY_PLANE_ENABLE);
14690         WARN_ON(I915_READ(CURCNTR(PIPE_A)) & CURSOR_MODE);
14691         WARN_ON(I915_READ(CURCNTR(PIPE_B)) & CURSOR_MODE);
14692
14693         I915_WRITE(PIPECONF(pipe), 0);
14694         POSTING_READ(PIPECONF(pipe));
14695
14696         intel_wait_for_pipe_scanline_stopped(crtc);
14697
14698         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
14699         POSTING_READ(DPLL(pipe));
14700 }
14701
14702 static bool intel_plane_mapping_ok(struct intel_crtc *crtc,
14703                                    struct intel_plane *primary)
14704 {
14705         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14706         enum plane plane = primary->plane;
14707         u32 val = I915_READ(DSPCNTR(plane));
14708
14709         return (val & DISPLAY_PLANE_ENABLE) == 0 ||
14710                 (val & DISPPLANE_SEL_PIPE_MASK) == DISPPLANE_SEL_PIPE(crtc->pipe);
14711 }
14712
14713 static void
14714 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
14715 {
14716         struct intel_crtc *crtc;
14717
14718         if (INTEL_GEN(dev_priv) >= 4)
14719                 return;
14720
14721         for_each_intel_crtc(&dev_priv->drm, crtc) {
14722                 struct intel_plane *plane =
14723                         to_intel_plane(crtc->base.primary);
14724
14725                 if (intel_plane_mapping_ok(crtc, plane))
14726                         continue;
14727
14728                 DRM_DEBUG_KMS("%s attached to the wrong pipe, disabling plane\n",
14729                               plane->base.name);
14730                 intel_plane_disable_noatomic(crtc, plane);
14731         }
14732 }
14733
14734 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
14735 {
14736         struct drm_device *dev = crtc->base.dev;
14737         struct intel_encoder *encoder;
14738
14739         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
14740                 return true;
14741
14742         return false;
14743 }
14744
14745 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
14746 {
14747         struct drm_device *dev = encoder->base.dev;
14748         struct intel_connector *connector;
14749
14750         for_each_connector_on_encoder(dev, &encoder->base, connector)
14751                 return connector;
14752
14753         return NULL;
14754 }
14755
14756 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
14757                               enum pipe pch_transcoder)
14758 {
14759         return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
14760                 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A);
14761 }
14762
14763 static void intel_sanitize_crtc(struct intel_crtc *crtc,
14764                                 struct drm_modeset_acquire_ctx *ctx)
14765 {
14766         struct drm_device *dev = crtc->base.dev;
14767         struct drm_i915_private *dev_priv = to_i915(dev);
14768         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
14769
14770         /* Clear any frame start delays used for debugging left by the BIOS */
14771         if (!transcoder_is_dsi(cpu_transcoder)) {
14772                 i915_reg_t reg = PIPECONF(cpu_transcoder);
14773
14774                 I915_WRITE(reg,
14775                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14776         }
14777
14778         /* restore vblank interrupts to correct state */
14779         drm_crtc_vblank_reset(&crtc->base);
14780         if (crtc->active) {
14781                 struct intel_plane *plane;
14782
14783                 drm_crtc_vblank_on(&crtc->base);
14784
14785                 /* Disable everything but the primary plane */
14786                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
14787                         const struct intel_plane_state *plane_state =
14788                                 to_intel_plane_state(plane->base.state);
14789
14790                         if (plane_state->base.visible &&
14791                             plane->base.type != DRM_PLANE_TYPE_PRIMARY)
14792                                 intel_plane_disable_noatomic(crtc, plane);
14793                 }
14794         }
14795
14796         /* Adjust the state of the output pipe according to whether we
14797          * have active connectors/encoders. */
14798         if (crtc->active && !intel_crtc_has_encoders(crtc))
14799                 intel_crtc_disable_noatomic(&crtc->base, ctx);
14800
14801         if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
14802                 /*
14803                  * We start out with underrun reporting disabled to avoid races.
14804                  * For correct bookkeeping mark this on active crtcs.
14805                  *
14806                  * Also on gmch platforms we dont have any hardware bits to
14807                  * disable the underrun reporting. Which means we need to start
14808                  * out with underrun reporting disabled also on inactive pipes,
14809                  * since otherwise we'll complain about the garbage we read when
14810                  * e.g. coming up after runtime pm.
14811                  *
14812                  * No protection against concurrent access is required - at
14813                  * worst a fifo underrun happens which also sets this to false.
14814                  */
14815                 crtc->cpu_fifo_underrun_disabled = true;
14816                 /*
14817                  * We track the PCH trancoder underrun reporting state
14818                  * within the crtc. With crtc for pipe A housing the underrun
14819                  * reporting state for PCH transcoder A, crtc for pipe B housing
14820                  * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
14821                  * and marking underrun reporting as disabled for the non-existing
14822                  * PCH transcoders B and C would prevent enabling the south
14823                  * error interrupt (see cpt_can_enable_serr_int()).
14824                  */
14825                 if (has_pch_trancoder(dev_priv, crtc->pipe))
14826                         crtc->pch_fifo_underrun_disabled = true;
14827         }
14828 }
14829
14830 static void intel_sanitize_encoder(struct intel_encoder *encoder)
14831 {
14832         struct intel_connector *connector;
14833
14834         /* We need to check both for a crtc link (meaning that the
14835          * encoder is active and trying to read from a pipe) and the
14836          * pipe itself being active. */
14837         bool has_active_crtc = encoder->base.crtc &&
14838                 to_intel_crtc(encoder->base.crtc)->active;
14839
14840         connector = intel_encoder_find_connector(encoder);
14841         if (connector && !has_active_crtc) {
14842                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14843                               encoder->base.base.id,
14844                               encoder->base.name);
14845
14846                 /* Connector is active, but has no active pipe. This is
14847                  * fallout from our resume register restoring. Disable
14848                  * the encoder manually again. */
14849                 if (encoder->base.crtc) {
14850                         struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
14851
14852                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14853                                       encoder->base.base.id,
14854                                       encoder->base.name);
14855                         encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
14856                         if (encoder->post_disable)
14857                                 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
14858                 }
14859                 encoder->base.crtc = NULL;
14860
14861                 /* Inconsistent output/port/pipe state happens presumably due to
14862                  * a bug in one of the get_hw_state functions. Or someplace else
14863                  * in our code, like the register restore mess on resume. Clamp
14864                  * things to off as a safer default. */
14865
14866                 connector->base.dpms = DRM_MODE_DPMS_OFF;
14867                 connector->base.encoder = NULL;
14868         }
14869         /* Enabled encoders without active connectors will be fixed in
14870          * the crtc fixup. */
14871 }
14872
14873 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
14874 {
14875         i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
14876
14877         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14878                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14879                 i915_disable_vga(dev_priv);
14880         }
14881 }
14882
14883 void i915_redisable_vga(struct drm_i915_private *dev_priv)
14884 {
14885         /* This function can be called both from intel_modeset_setup_hw_state or
14886          * at a very early point in our resume sequence, where the power well
14887          * structures are not yet restored. Since this function is at a very
14888          * paranoid "someone might have enabled VGA while we were not looking"
14889          * level, just check if the power well is enabled instead of trying to
14890          * follow the "don't touch the power well if we don't need it" policy
14891          * the rest of the driver uses. */
14892         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
14893                 return;
14894
14895         i915_redisable_vga_power_on(dev_priv);
14896
14897         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
14898 }
14899
14900 /* FIXME read out full plane state for all planes */
14901 static void readout_plane_state(struct intel_crtc *crtc)
14902 {
14903         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14904         struct intel_crtc_state *crtc_state =
14905                 to_intel_crtc_state(crtc->base.state);
14906         struct intel_plane *plane;
14907
14908         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
14909                 struct intel_plane_state *plane_state =
14910                         to_intel_plane_state(plane->base.state);
14911                 bool visible = plane->get_hw_state(plane);
14912
14913                 intel_set_plane_visible(crtc_state, plane_state, visible);
14914         }
14915 }
14916
14917 static void intel_modeset_readout_hw_state(struct drm_device *dev)
14918 {
14919         struct drm_i915_private *dev_priv = to_i915(dev);
14920         enum pipe pipe;
14921         struct intel_crtc *crtc;
14922         struct intel_encoder *encoder;
14923         struct intel_connector *connector;
14924         struct drm_connector_list_iter conn_iter;
14925         int i;
14926
14927         dev_priv->active_crtcs = 0;
14928
14929         for_each_intel_crtc(dev, crtc) {
14930                 struct intel_crtc_state *crtc_state =
14931                         to_intel_crtc_state(crtc->base.state);
14932
14933                 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
14934                 memset(crtc_state, 0, sizeof(*crtc_state));
14935                 crtc_state->base.crtc = &crtc->base;
14936
14937                 crtc_state->base.active = crtc_state->base.enable =
14938                         dev_priv->display.get_pipe_config(crtc, crtc_state);
14939
14940                 crtc->base.enabled = crtc_state->base.enable;
14941                 crtc->active = crtc_state->base.active;
14942
14943                 if (crtc_state->base.active)
14944                         dev_priv->active_crtcs |= 1 << crtc->pipe;
14945
14946                 readout_plane_state(crtc);
14947
14948                 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
14949                               crtc->base.base.id, crtc->base.name,
14950                               enableddisabled(crtc_state->base.active));
14951         }
14952
14953         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14954                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14955
14956                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
14957                                                   &pll->state.hw_state);
14958                 pll->state.crtc_mask = 0;
14959                 for_each_intel_crtc(dev, crtc) {
14960                         struct intel_crtc_state *crtc_state =
14961                                 to_intel_crtc_state(crtc->base.state);
14962
14963                         if (crtc_state->base.active &&
14964                             crtc_state->shared_dpll == pll)
14965                                 pll->state.crtc_mask |= 1 << crtc->pipe;
14966                 }
14967                 pll->active_mask = pll->state.crtc_mask;
14968
14969                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
14970                               pll->name, pll->state.crtc_mask, pll->on);
14971         }
14972
14973         for_each_intel_encoder(dev, encoder) {
14974                 pipe = 0;
14975
14976                 if (encoder->get_hw_state(encoder, &pipe)) {
14977                         struct intel_crtc_state *crtc_state;
14978
14979                         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
14980                         crtc_state = to_intel_crtc_state(crtc->base.state);
14981
14982                         encoder->base.crtc = &crtc->base;
14983                         crtc_state->output_types |= 1 << encoder->type;
14984                         encoder->get_config(encoder, crtc_state);
14985                 } else {
14986                         encoder->base.crtc = NULL;
14987                 }
14988
14989                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
14990                               encoder->base.base.id, encoder->base.name,
14991                               enableddisabled(encoder->base.crtc),
14992                               pipe_name(pipe));
14993         }
14994
14995         drm_connector_list_iter_begin(dev, &conn_iter);
14996         for_each_intel_connector_iter(connector, &conn_iter) {
14997                 if (connector->get_hw_state(connector)) {
14998                         connector->base.dpms = DRM_MODE_DPMS_ON;
14999
15000                         encoder = connector->encoder;
15001                         connector->base.encoder = &encoder->base;
15002
15003                         if (encoder->base.crtc &&
15004                             encoder->base.crtc->state->active) {
15005                                 /*
15006                                  * This has to be done during hardware readout
15007                                  * because anything calling .crtc_disable may
15008                                  * rely on the connector_mask being accurate.
15009                                  */
15010                                 encoder->base.crtc->state->connector_mask |=
15011                                         1 << drm_connector_index(&connector->base);
15012                                 encoder->base.crtc->state->encoder_mask |=
15013                                         1 << drm_encoder_index(&encoder->base);
15014                         }
15015
15016                 } else {
15017                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15018                         connector->base.encoder = NULL;
15019                 }
15020                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15021                               connector->base.base.id, connector->base.name,
15022                               enableddisabled(connector->base.encoder));
15023         }
15024         drm_connector_list_iter_end(&conn_iter);
15025
15026         for_each_intel_crtc(dev, crtc) {
15027                 struct intel_crtc_state *crtc_state =
15028                         to_intel_crtc_state(crtc->base.state);
15029                 int min_cdclk = 0;
15030
15031                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15032                 if (crtc_state->base.active) {
15033                         intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
15034                         intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
15035                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15036
15037                         /*
15038                          * The initial mode needs to be set in order to keep
15039                          * the atomic core happy. It wants a valid mode if the
15040                          * crtc's enabled, so we do the above call.
15041                          *
15042                          * But we don't set all the derived state fully, hence
15043                          * set a flag to indicate that a full recalculation is
15044                          * needed on the next commit.
15045                          */
15046                         crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
15047
15048                         intel_crtc_compute_pixel_rate(crtc_state);
15049
15050                         if (dev_priv->display.modeset_calc_cdclk) {
15051                                 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
15052                                 if (WARN_ON(min_cdclk < 0))
15053                                         min_cdclk = 0;
15054                         }
15055
15056                         drm_calc_timestamping_constants(&crtc->base,
15057                                                         &crtc_state->base.adjusted_mode);
15058                         update_scanline_offset(crtc);
15059                 }
15060
15061                 dev_priv->min_cdclk[crtc->pipe] = min_cdclk;
15062
15063                 intel_pipe_config_sanity_check(dev_priv, crtc_state);
15064         }
15065 }
15066
15067 static void
15068 get_encoder_power_domains(struct drm_i915_private *dev_priv)
15069 {
15070         struct intel_encoder *encoder;
15071
15072         for_each_intel_encoder(&dev_priv->drm, encoder) {
15073                 u64 get_domains;
15074                 enum intel_display_power_domain domain;
15075
15076                 if (!encoder->get_power_domains)
15077                         continue;
15078
15079                 get_domains = encoder->get_power_domains(encoder);
15080                 for_each_power_domain(domain, get_domains)
15081                         intel_display_power_get(dev_priv, domain);
15082         }
15083 }
15084
15085 /* Scan out the current hw modeset state,
15086  * and sanitizes it to the current state
15087  */
15088 static void
15089 intel_modeset_setup_hw_state(struct drm_device *dev,
15090                              struct drm_modeset_acquire_ctx *ctx)
15091 {
15092         struct drm_i915_private *dev_priv = to_i915(dev);
15093         enum pipe pipe;
15094         struct intel_crtc *crtc;
15095         struct intel_encoder *encoder;
15096         int i;
15097
15098         if (IS_HASWELL(dev_priv)) {
15099                 /*
15100                  * WaRsPkgCStateDisplayPMReq:hsw
15101                  * System hang if this isn't done before disabling all planes!
15102                  */
15103                 I915_WRITE(CHICKEN_PAR1_1,
15104                            I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
15105         }
15106
15107         intel_modeset_readout_hw_state(dev);
15108
15109         /* HW state is read out, now we need to sanitize this mess. */
15110         get_encoder_power_domains(dev_priv);
15111
15112         intel_sanitize_plane_mapping(dev_priv);
15113
15114         for_each_intel_encoder(dev, encoder) {
15115                 intel_sanitize_encoder(encoder);
15116         }
15117
15118         for_each_pipe(dev_priv, pipe) {
15119                 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15120
15121                 intel_sanitize_crtc(crtc, ctx);
15122                 intel_dump_pipe_config(crtc, crtc->config,
15123                                        "[setup_hw_state]");
15124         }
15125
15126         intel_modeset_update_connector_atomic_state(dev);
15127
15128         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15129                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15130
15131                 if (!pll->on || pll->active_mask)
15132                         continue;
15133
15134                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15135
15136                 pll->funcs.disable(dev_priv, pll);
15137                 pll->on = false;
15138         }
15139
15140         if (IS_G4X(dev_priv)) {
15141                 g4x_wm_get_hw_state(dev);
15142                 g4x_wm_sanitize(dev_priv);
15143         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15144                 vlv_wm_get_hw_state(dev);
15145                 vlv_wm_sanitize(dev_priv);
15146         } else if (INTEL_GEN(dev_priv) >= 9) {
15147                 skl_wm_get_hw_state(dev);
15148         } else if (HAS_PCH_SPLIT(dev_priv)) {
15149                 ilk_wm_get_hw_state(dev);
15150         }
15151
15152         for_each_intel_crtc(dev, crtc) {
15153                 u64 put_domains;
15154
15155                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15156                 if (WARN_ON(put_domains))
15157                         modeset_put_power_domains(dev_priv, put_domains);
15158         }
15159         intel_display_set_init_power(dev_priv, false);
15160
15161         intel_power_domains_verify_state(dev_priv);
15162
15163         intel_fbc_init_pipe_state(dev_priv);
15164 }
15165
15166 void intel_display_resume(struct drm_device *dev)
15167 {
15168         struct drm_i915_private *dev_priv = to_i915(dev);
15169         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15170         struct drm_modeset_acquire_ctx ctx;
15171         int ret;
15172
15173         dev_priv->modeset_restore_state = NULL;
15174         if (state)
15175                 state->acquire_ctx = &ctx;
15176
15177         drm_modeset_acquire_init(&ctx, 0);
15178
15179         while (1) {
15180                 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15181                 if (ret != -EDEADLK)
15182                         break;
15183
15184                 drm_modeset_backoff(&ctx);
15185         }
15186
15187         if (!ret)
15188                 ret = __intel_display_resume(dev, state, &ctx);
15189
15190         intel_enable_ipc(dev_priv);
15191         drm_modeset_drop_locks(&ctx);
15192         drm_modeset_acquire_fini(&ctx);
15193
15194         if (ret)
15195                 DRM_ERROR("Restoring old state failed with %i\n", ret);
15196         if (state)
15197                 drm_atomic_state_put(state);
15198 }
15199
15200 void intel_modeset_gem_init(struct drm_device *dev)
15201 {
15202         struct drm_i915_private *dev_priv = to_i915(dev);
15203
15204         intel_init_gt_powersave(dev_priv);
15205
15206         intel_init_clock_gating(dev_priv);
15207
15208         intel_setup_overlay(dev_priv);
15209 }
15210
15211 int intel_connector_register(struct drm_connector *connector)
15212 {
15213         struct intel_connector *intel_connector = to_intel_connector(connector);
15214         int ret;
15215
15216         ret = intel_backlight_device_register(intel_connector);
15217         if (ret)
15218                 goto err;
15219
15220         return 0;
15221
15222 err:
15223         return ret;
15224 }
15225
15226 void intel_connector_unregister(struct drm_connector *connector)
15227 {
15228         struct intel_connector *intel_connector = to_intel_connector(connector);
15229
15230         intel_backlight_device_unregister(intel_connector);
15231         intel_panel_destroy_backlight(connector);
15232 }
15233
15234 static void intel_hpd_poll_fini(struct drm_device *dev)
15235 {
15236         struct intel_connector *connector;
15237         struct drm_connector_list_iter conn_iter;
15238
15239         /* First disable polling... */
15240         drm_kms_helper_poll_fini(dev);
15241
15242         /* Then kill the work that may have been queued by hpd. */
15243         drm_connector_list_iter_begin(dev, &conn_iter);
15244         for_each_intel_connector_iter(connector, &conn_iter) {
15245                 if (connector->modeset_retry_work.func)
15246                         cancel_work_sync(&connector->modeset_retry_work);
15247         }
15248         drm_connector_list_iter_end(&conn_iter);
15249 }
15250
15251 void intel_modeset_cleanup(struct drm_device *dev)
15252 {
15253         struct drm_i915_private *dev_priv = to_i915(dev);
15254
15255         flush_work(&dev_priv->atomic_helper.free_work);
15256         WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
15257
15258         intel_disable_gt_powersave(dev_priv);
15259
15260         /*
15261          * Interrupts and polling as the first thing to avoid creating havoc.
15262          * Too much stuff here (turning of connectors, ...) would
15263          * experience fancy races otherwise.
15264          */
15265         intel_irq_uninstall(dev_priv);
15266
15267         /*
15268          * Due to the hpd irq storm handling the hotplug work can re-arm the
15269          * poll handlers. Hence disable polling after hpd handling is shut down.
15270          */
15271         intel_hpd_poll_fini(dev);
15272
15273         /* poll work can call into fbdev, hence clean that up afterwards */
15274         intel_fbdev_fini(dev_priv);
15275
15276         intel_unregister_dsm_handler();
15277
15278         intel_fbc_global_disable(dev_priv);
15279
15280         /* flush any delayed tasks or pending work */
15281         flush_scheduled_work();
15282
15283         drm_mode_config_cleanup(dev);
15284
15285         intel_cleanup_overlay(dev_priv);
15286
15287         intel_cleanup_gt_powersave(dev_priv);
15288
15289         intel_teardown_gmbus(dev_priv);
15290
15291         destroy_workqueue(dev_priv->modeset_wq);
15292 }
15293
15294 void intel_connector_attach_encoder(struct intel_connector *connector,
15295                                     struct intel_encoder *encoder)
15296 {
15297         connector->encoder = encoder;
15298         drm_mode_connector_attach_encoder(&connector->base,
15299                                           &encoder->base);
15300 }
15301
15302 /*
15303  * set vga decode state - true == enable VGA decode
15304  */
15305 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
15306 {
15307         unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15308         u16 gmch_ctrl;
15309
15310         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15311                 DRM_ERROR("failed to read control word\n");
15312                 return -EIO;
15313         }
15314
15315         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15316                 return 0;
15317
15318         if (state)
15319                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15320         else
15321                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15322
15323         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15324                 DRM_ERROR("failed to write control word\n");
15325                 return -EIO;
15326         }
15327
15328         return 0;
15329 }
15330
15331 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
15332
15333 struct intel_display_error_state {
15334
15335         u32 power_well_driver;
15336
15337         int num_transcoders;
15338
15339         struct intel_cursor_error_state {
15340                 u32 control;
15341                 u32 position;
15342                 u32 base;
15343                 u32 size;
15344         } cursor[I915_MAX_PIPES];
15345
15346         struct intel_pipe_error_state {
15347                 bool power_domain_on;
15348                 u32 source;
15349                 u32 stat;
15350         } pipe[I915_MAX_PIPES];
15351
15352         struct intel_plane_error_state {
15353                 u32 control;
15354                 u32 stride;
15355                 u32 size;
15356                 u32 pos;
15357                 u32 addr;
15358                 u32 surface;
15359                 u32 tile_offset;
15360         } plane[I915_MAX_PIPES];
15361
15362         struct intel_transcoder_error_state {
15363                 bool power_domain_on;
15364                 enum transcoder cpu_transcoder;
15365
15366                 u32 conf;
15367
15368                 u32 htotal;
15369                 u32 hblank;
15370                 u32 hsync;
15371                 u32 vtotal;
15372                 u32 vblank;
15373                 u32 vsync;
15374         } transcoder[4];
15375 };
15376
15377 struct intel_display_error_state *
15378 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
15379 {
15380         struct intel_display_error_state *error;
15381         int transcoders[] = {
15382                 TRANSCODER_A,
15383                 TRANSCODER_B,
15384                 TRANSCODER_C,
15385                 TRANSCODER_EDP,
15386         };
15387         int i;
15388
15389         if (INTEL_INFO(dev_priv)->num_pipes == 0)
15390                 return NULL;
15391
15392         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15393         if (error == NULL)
15394                 return NULL;
15395
15396         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15397                 error->power_well_driver =
15398                         I915_READ(HSW_PWR_WELL_CTL_DRIVER(HSW_DISP_PW_GLOBAL));
15399
15400         for_each_pipe(dev_priv, i) {
15401                 error->pipe[i].power_domain_on =
15402                         __intel_display_power_is_enabled(dev_priv,
15403                                                          POWER_DOMAIN_PIPE(i));
15404                 if (!error->pipe[i].power_domain_on)
15405                         continue;
15406
15407                 error->cursor[i].control = I915_READ(CURCNTR(i));
15408                 error->cursor[i].position = I915_READ(CURPOS(i));
15409                 error->cursor[i].base = I915_READ(CURBASE(i));
15410
15411                 error->plane[i].control = I915_READ(DSPCNTR(i));
15412                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15413                 if (INTEL_GEN(dev_priv) <= 3) {
15414                         error->plane[i].size = I915_READ(DSPSIZE(i));
15415                         error->plane[i].pos = I915_READ(DSPPOS(i));
15416                 }
15417                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15418                         error->plane[i].addr = I915_READ(DSPADDR(i));
15419                 if (INTEL_GEN(dev_priv) >= 4) {
15420                         error->plane[i].surface = I915_READ(DSPSURF(i));
15421                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15422                 }
15423
15424                 error->pipe[i].source = I915_READ(PIPESRC(i));
15425
15426                 if (HAS_GMCH_DISPLAY(dev_priv))
15427                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15428         }
15429
15430         /* Note: this does not include DSI transcoders. */
15431         error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
15432         if (HAS_DDI(dev_priv))
15433                 error->num_transcoders++; /* Account for eDP. */
15434
15435         for (i = 0; i < error->num_transcoders; i++) {
15436                 enum transcoder cpu_transcoder = transcoders[i];
15437
15438                 error->transcoder[i].power_domain_on =
15439                         __intel_display_power_is_enabled(dev_priv,
15440                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15441                 if (!error->transcoder[i].power_domain_on)
15442                         continue;
15443
15444                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15445
15446                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15447                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15448                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15449                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15450                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15451                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15452                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15453         }
15454
15455         return error;
15456 }
15457
15458 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15459
15460 void
15461 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15462                                 struct intel_display_error_state *error)
15463 {
15464         struct drm_i915_private *dev_priv = m->i915;
15465         int i;
15466
15467         if (!error)
15468                 return;
15469
15470         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
15471         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15472                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15473                            error->power_well_driver);
15474         for_each_pipe(dev_priv, i) {
15475                 err_printf(m, "Pipe [%d]:\n", i);
15476                 err_printf(m, "  Power: %s\n",
15477                            onoff(error->pipe[i].power_domain_on));
15478                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15479                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15480
15481                 err_printf(m, "Plane [%d]:\n", i);
15482                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15483                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15484                 if (INTEL_GEN(dev_priv) <= 3) {
15485                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15486                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15487                 }
15488                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15489                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15490                 if (INTEL_GEN(dev_priv) >= 4) {
15491                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15492                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15493                 }
15494
15495                 err_printf(m, "Cursor [%d]:\n", i);
15496                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15497                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15498                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15499         }
15500
15501         for (i = 0; i < error->num_transcoders; i++) {
15502                 err_printf(m, "CPU transcoder: %s\n",
15503                            transcoder_name(error->transcoder[i].cpu_transcoder));
15504                 err_printf(m, "  Power: %s\n",
15505                            onoff(error->transcoder[i].power_domain_on));
15506                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15507                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15508                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15509                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15510                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15511                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15512                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15513         }
15514 }
15515
15516 #endif