Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85                     int target, int refclk, intel_clock_t *match_clock,
86                     intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89                         int target, int refclk, intel_clock_t *match_clock,
90                         intel_clock_t *best_clock);
91
92 static bool
93 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
94                       int target, int refclk, intel_clock_t *match_clock,
95                       intel_clock_t *best_clock);
96 static bool
97 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
98                            int target, int refclk, intel_clock_t *match_clock,
99                            intel_clock_t *best_clock);
100
101 static bool
102 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
103                         int target, int refclk, intel_clock_t *match_clock,
104                         intel_clock_t *best_clock);
105
106 static inline u32 /* units of 100MHz */
107 intel_fdi_link_freq(struct drm_device *dev)
108 {
109         if (IS_GEN5(dev)) {
110                 struct drm_i915_private *dev_priv = dev->dev_private;
111                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
112         } else
113                 return 27;
114 }
115
116 static const intel_limit_t intel_limits_i8xx_dvo = {
117         .dot = { .min = 25000, .max = 350000 },
118         .vco = { .min = 930000, .max = 1400000 },
119         .n = { .min = 3, .max = 16 },
120         .m = { .min = 96, .max = 140 },
121         .m1 = { .min = 18, .max = 26 },
122         .m2 = { .min = 6, .max = 16 },
123         .p = { .min = 4, .max = 128 },
124         .p1 = { .min = 2, .max = 33 },
125         .p2 = { .dot_limit = 165000,
126                 .p2_slow = 4, .p2_fast = 2 },
127         .find_pll = intel_find_best_PLL,
128 };
129
130 static const intel_limit_t intel_limits_i8xx_lvds = {
131         .dot = { .min = 25000, .max = 350000 },
132         .vco = { .min = 930000, .max = 1400000 },
133         .n = { .min = 3, .max = 16 },
134         .m = { .min = 96, .max = 140 },
135         .m1 = { .min = 18, .max = 26 },
136         .m2 = { .min = 6, .max = 16 },
137         .p = { .min = 4, .max = 128 },
138         .p1 = { .min = 1, .max = 6 },
139         .p2 = { .dot_limit = 165000,
140                 .p2_slow = 14, .p2_fast = 7 },
141         .find_pll = intel_find_best_PLL,
142 };
143
144 static const intel_limit_t intel_limits_i9xx_sdvo = {
145         .dot = { .min = 20000, .max = 400000 },
146         .vco = { .min = 1400000, .max = 2800000 },
147         .n = { .min = 1, .max = 6 },
148         .m = { .min = 70, .max = 120 },
149         .m1 = { .min = 10, .max = 22 },
150         .m2 = { .min = 5, .max = 9 },
151         .p = { .min = 5, .max = 80 },
152         .p1 = { .min = 1, .max = 8 },
153         .p2 = { .dot_limit = 200000,
154                 .p2_slow = 10, .p2_fast = 5 },
155         .find_pll = intel_find_best_PLL,
156 };
157
158 static const intel_limit_t intel_limits_i9xx_lvds = {
159         .dot = { .min = 20000, .max = 400000 },
160         .vco = { .min = 1400000, .max = 2800000 },
161         .n = { .min = 1, .max = 6 },
162         .m = { .min = 70, .max = 120 },
163         .m1 = { .min = 10, .max = 22 },
164         .m2 = { .min = 5, .max = 9 },
165         .p = { .min = 7, .max = 98 },
166         .p1 = { .min = 1, .max = 8 },
167         .p2 = { .dot_limit = 112000,
168                 .p2_slow = 14, .p2_fast = 7 },
169         .find_pll = intel_find_best_PLL,
170 };
171
172
173 static const intel_limit_t intel_limits_g4x_sdvo = {
174         .dot = { .min = 25000, .max = 270000 },
175         .vco = { .min = 1750000, .max = 3500000},
176         .n = { .min = 1, .max = 4 },
177         .m = { .min = 104, .max = 138 },
178         .m1 = { .min = 17, .max = 23 },
179         .m2 = { .min = 5, .max = 11 },
180         .p = { .min = 10, .max = 30 },
181         .p1 = { .min = 1, .max = 3},
182         .p2 = { .dot_limit = 270000,
183                 .p2_slow = 10,
184                 .p2_fast = 10
185         },
186         .find_pll = intel_g4x_find_best_PLL,
187 };
188
189 static const intel_limit_t intel_limits_g4x_hdmi = {
190         .dot = { .min = 22000, .max = 400000 },
191         .vco = { .min = 1750000, .max = 3500000},
192         .n = { .min = 1, .max = 4 },
193         .m = { .min = 104, .max = 138 },
194         .m1 = { .min = 16, .max = 23 },
195         .m2 = { .min = 5, .max = 11 },
196         .p = { .min = 5, .max = 80 },
197         .p1 = { .min = 1, .max = 8},
198         .p2 = { .dot_limit = 165000,
199                 .p2_slow = 10, .p2_fast = 5 },
200         .find_pll = intel_g4x_find_best_PLL,
201 };
202
203 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
204         .dot = { .min = 20000, .max = 115000 },
205         .vco = { .min = 1750000, .max = 3500000 },
206         .n = { .min = 1, .max = 3 },
207         .m = { .min = 104, .max = 138 },
208         .m1 = { .min = 17, .max = 23 },
209         .m2 = { .min = 5, .max = 11 },
210         .p = { .min = 28, .max = 112 },
211         .p1 = { .min = 2, .max = 8 },
212         .p2 = { .dot_limit = 0,
213                 .p2_slow = 14, .p2_fast = 14
214         },
215         .find_pll = intel_g4x_find_best_PLL,
216 };
217
218 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
219         .dot = { .min = 80000, .max = 224000 },
220         .vco = { .min = 1750000, .max = 3500000 },
221         .n = { .min = 1, .max = 3 },
222         .m = { .min = 104, .max = 138 },
223         .m1 = { .min = 17, .max = 23 },
224         .m2 = { .min = 5, .max = 11 },
225         .p = { .min = 14, .max = 42 },
226         .p1 = { .min = 2, .max = 6 },
227         .p2 = { .dot_limit = 0,
228                 .p2_slow = 7, .p2_fast = 7
229         },
230         .find_pll = intel_g4x_find_best_PLL,
231 };
232
233 static const intel_limit_t intel_limits_g4x_display_port = {
234         .dot = { .min = 161670, .max = 227000 },
235         .vco = { .min = 1750000, .max = 3500000},
236         .n = { .min = 1, .max = 2 },
237         .m = { .min = 97, .max = 108 },
238         .m1 = { .min = 0x10, .max = 0x12 },
239         .m2 = { .min = 0x05, .max = 0x06 },
240         .p = { .min = 10, .max = 20 },
241         .p1 = { .min = 1, .max = 2},
242         .p2 = { .dot_limit = 0,
243                 .p2_slow = 10, .p2_fast = 10 },
244         .find_pll = intel_find_pll_g4x_dp,
245 };
246
247 static const intel_limit_t intel_limits_pineview_sdvo = {
248         .dot = { .min = 20000, .max = 400000},
249         .vco = { .min = 1700000, .max = 3500000 },
250         /* Pineview's Ncounter is a ring counter */
251         .n = { .min = 3, .max = 6 },
252         .m = { .min = 2, .max = 256 },
253         /* Pineview only has one combined m divider, which we treat as m2. */
254         .m1 = { .min = 0, .max = 0 },
255         .m2 = { .min = 0, .max = 254 },
256         .p = { .min = 5, .max = 80 },
257         .p1 = { .min = 1, .max = 8 },
258         .p2 = { .dot_limit = 200000,
259                 .p2_slow = 10, .p2_fast = 5 },
260         .find_pll = intel_find_best_PLL,
261 };
262
263 static const intel_limit_t intel_limits_pineview_lvds = {
264         .dot = { .min = 20000, .max = 400000 },
265         .vco = { .min = 1700000, .max = 3500000 },
266         .n = { .min = 3, .max = 6 },
267         .m = { .min = 2, .max = 256 },
268         .m1 = { .min = 0, .max = 0 },
269         .m2 = { .min = 0, .max = 254 },
270         .p = { .min = 7, .max = 112 },
271         .p1 = { .min = 1, .max = 8 },
272         .p2 = { .dot_limit = 112000,
273                 .p2_slow = 14, .p2_fast = 14 },
274         .find_pll = intel_find_best_PLL,
275 };
276
277 /* Ironlake / Sandybridge
278  *
279  * We calculate clock using (register_value + 2) for N/M1/M2, so here
280  * the range value for them is (actual_value - 2).
281  */
282 static const intel_limit_t intel_limits_ironlake_dac = {
283         .dot = { .min = 25000, .max = 350000 },
284         .vco = { .min = 1760000, .max = 3510000 },
285         .n = { .min = 1, .max = 5 },
286         .m = { .min = 79, .max = 127 },
287         .m1 = { .min = 12, .max = 22 },
288         .m2 = { .min = 5, .max = 9 },
289         .p = { .min = 5, .max = 80 },
290         .p1 = { .min = 1, .max = 8 },
291         .p2 = { .dot_limit = 225000,
292                 .p2_slow = 10, .p2_fast = 5 },
293         .find_pll = intel_g4x_find_best_PLL,
294 };
295
296 static const intel_limit_t intel_limits_ironlake_single_lvds = {
297         .dot = { .min = 25000, .max = 350000 },
298         .vco = { .min = 1760000, .max = 3510000 },
299         .n = { .min = 1, .max = 3 },
300         .m = { .min = 79, .max = 118 },
301         .m1 = { .min = 12, .max = 22 },
302         .m2 = { .min = 5, .max = 9 },
303         .p = { .min = 28, .max = 112 },
304         .p1 = { .min = 2, .max = 8 },
305         .p2 = { .dot_limit = 225000,
306                 .p2_slow = 14, .p2_fast = 14 },
307         .find_pll = intel_g4x_find_best_PLL,
308 };
309
310 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
311         .dot = { .min = 25000, .max = 350000 },
312         .vco = { .min = 1760000, .max = 3510000 },
313         .n = { .min = 1, .max = 3 },
314         .m = { .min = 79, .max = 127 },
315         .m1 = { .min = 12, .max = 22 },
316         .m2 = { .min = 5, .max = 9 },
317         .p = { .min = 14, .max = 56 },
318         .p1 = { .min = 2, .max = 8 },
319         .p2 = { .dot_limit = 225000,
320                 .p2_slow = 7, .p2_fast = 7 },
321         .find_pll = intel_g4x_find_best_PLL,
322 };
323
324 /* LVDS 100mhz refclk limits. */
325 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
326         .dot = { .min = 25000, .max = 350000 },
327         .vco = { .min = 1760000, .max = 3510000 },
328         .n = { .min = 1, .max = 2 },
329         .m = { .min = 79, .max = 126 },
330         .m1 = { .min = 12, .max = 22 },
331         .m2 = { .min = 5, .max = 9 },
332         .p = { .min = 28, .max = 112 },
333         .p1 = { .min = 2, .max = 8 },
334         .p2 = { .dot_limit = 225000,
335                 .p2_slow = 14, .p2_fast = 14 },
336         .find_pll = intel_g4x_find_best_PLL,
337 };
338
339 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
340         .dot = { .min = 25000, .max = 350000 },
341         .vco = { .min = 1760000, .max = 3510000 },
342         .n = { .min = 1, .max = 3 },
343         .m = { .min = 79, .max = 126 },
344         .m1 = { .min = 12, .max = 22 },
345         .m2 = { .min = 5, .max = 9 },
346         .p = { .min = 14, .max = 42 },
347         .p1 = { .min = 2, .max = 6 },
348         .p2 = { .dot_limit = 225000,
349                 .p2_slow = 7, .p2_fast = 7 },
350         .find_pll = intel_g4x_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_ironlake_display_port = {
354         .dot = { .min = 25000, .max = 350000 },
355         .vco = { .min = 1760000, .max = 3510000},
356         .n = { .min = 1, .max = 2 },
357         .m = { .min = 81, .max = 90 },
358         .m1 = { .min = 12, .max = 22 },
359         .m2 = { .min = 5, .max = 9 },
360         .p = { .min = 10, .max = 20 },
361         .p1 = { .min = 1, .max = 2},
362         .p2 = { .dot_limit = 0,
363                 .p2_slow = 10, .p2_fast = 10 },
364         .find_pll = intel_find_pll_ironlake_dp,
365 };
366
367 static const intel_limit_t intel_limits_vlv_dac = {
368         .dot = { .min = 25000, .max = 270000 },
369         .vco = { .min = 4000000, .max = 6000000 },
370         .n = { .min = 1, .max = 7 },
371         .m = { .min = 22, .max = 450 }, /* guess */
372         .m1 = { .min = 2, .max = 3 },
373         .m2 = { .min = 11, .max = 156 },
374         .p = { .min = 10, .max = 30 },
375         .p1 = { .min = 2, .max = 3 },
376         .p2 = { .dot_limit = 270000,
377                 .p2_slow = 2, .p2_fast = 20 },
378         .find_pll = intel_vlv_find_best_pll,
379 };
380
381 static const intel_limit_t intel_limits_vlv_hdmi = {
382         .dot = { .min = 20000, .max = 165000 },
383         .vco = { .min = 5994000, .max = 4000000 },
384         .n = { .min = 1, .max = 7 },
385         .m = { .min = 60, .max = 300 }, /* guess */
386         .m1 = { .min = 2, .max = 3 },
387         .m2 = { .min = 11, .max = 156 },
388         .p = { .min = 10, .max = 30 },
389         .p1 = { .min = 2, .max = 3 },
390         .p2 = { .dot_limit = 270000,
391                 .p2_slow = 2, .p2_fast = 20 },
392         .find_pll = intel_vlv_find_best_pll,
393 };
394
395 static const intel_limit_t intel_limits_vlv_dp = {
396         .dot = { .min = 162000, .max = 270000 },
397         .vco = { .min = 5994000, .max = 4000000 },
398         .n = { .min = 1, .max = 7 },
399         .m = { .min = 60, .max = 300 }, /* guess */
400         .m1 = { .min = 2, .max = 3 },
401         .m2 = { .min = 11, .max = 156 },
402         .p = { .min = 10, .max = 30 },
403         .p1 = { .min = 2, .max = 3 },
404         .p2 = { .dot_limit = 270000,
405                 .p2_slow = 2, .p2_fast = 20 },
406         .find_pll = intel_vlv_find_best_pll,
407 };
408
409 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
410 {
411         unsigned long flags;
412         u32 val = 0;
413
414         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
415         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
416                 DRM_ERROR("DPIO idle wait timed out\n");
417                 goto out_unlock;
418         }
419
420         I915_WRITE(DPIO_REG, reg);
421         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
422                    DPIO_BYTE);
423         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424                 DRM_ERROR("DPIO read wait timed out\n");
425                 goto out_unlock;
426         }
427         val = I915_READ(DPIO_DATA);
428
429 out_unlock:
430         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
431         return val;
432 }
433
434 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
435                              u32 val)
436 {
437         unsigned long flags;
438
439         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
440         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
441                 DRM_ERROR("DPIO idle wait timed out\n");
442                 goto out_unlock;
443         }
444
445         I915_WRITE(DPIO_DATA, val);
446         I915_WRITE(DPIO_REG, reg);
447         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
448                    DPIO_BYTE);
449         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
450                 DRM_ERROR("DPIO write wait timed out\n");
451
452 out_unlock:
453        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
454 }
455
456 static void vlv_init_dpio(struct drm_device *dev)
457 {
458         struct drm_i915_private *dev_priv = dev->dev_private;
459
460         /* Reset the DPIO config */
461         I915_WRITE(DPIO_CTL, 0);
462         POSTING_READ(DPIO_CTL);
463         I915_WRITE(DPIO_CTL, 1);
464         POSTING_READ(DPIO_CTL);
465 }
466
467 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
468 {
469         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
470         return 1;
471 }
472
473 static const struct dmi_system_id intel_dual_link_lvds[] = {
474         {
475                 .callback = intel_dual_link_lvds_callback,
476                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
477                 .matches = {
478                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
479                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
480                 },
481         },
482         { }     /* terminating entry */
483 };
484
485 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
486                               unsigned int reg)
487 {
488         unsigned int val;
489
490         /* use the module option value if specified */
491         if (i915_lvds_channel_mode > 0)
492                 return i915_lvds_channel_mode == 2;
493
494         if (dmi_check_system(intel_dual_link_lvds))
495                 return true;
496
497         if (dev_priv->lvds_val)
498                 val = dev_priv->lvds_val;
499         else {
500                 /* BIOS should set the proper LVDS register value at boot, but
501                  * in reality, it doesn't set the value when the lid is closed;
502                  * we need to check "the value to be set" in VBT when LVDS
503                  * register is uninitialized.
504                  */
505                 val = I915_READ(reg);
506                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
507                         val = dev_priv->bios_lvds_val;
508                 dev_priv->lvds_val = val;
509         }
510         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
511 }
512
513 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
514                                                 int refclk)
515 {
516         struct drm_device *dev = crtc->dev;
517         struct drm_i915_private *dev_priv = dev->dev_private;
518         const intel_limit_t *limit;
519
520         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
521                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
522                         /* LVDS dual channel */
523                         if (refclk == 100000)
524                                 limit = &intel_limits_ironlake_dual_lvds_100m;
525                         else
526                                 limit = &intel_limits_ironlake_dual_lvds;
527                 } else {
528                         if (refclk == 100000)
529                                 limit = &intel_limits_ironlake_single_lvds_100m;
530                         else
531                                 limit = &intel_limits_ironlake_single_lvds;
532                 }
533         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
534                         HAS_eDP)
535                 limit = &intel_limits_ironlake_display_port;
536         else
537                 limit = &intel_limits_ironlake_dac;
538
539         return limit;
540 }
541
542 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
543 {
544         struct drm_device *dev = crtc->dev;
545         struct drm_i915_private *dev_priv = dev->dev_private;
546         const intel_limit_t *limit;
547
548         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
549                 if (is_dual_link_lvds(dev_priv, LVDS))
550                         /* LVDS with dual channel */
551                         limit = &intel_limits_g4x_dual_channel_lvds;
552                 else
553                         /* LVDS with dual channel */
554                         limit = &intel_limits_g4x_single_channel_lvds;
555         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
556                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
557                 limit = &intel_limits_g4x_hdmi;
558         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
559                 limit = &intel_limits_g4x_sdvo;
560         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
561                 limit = &intel_limits_g4x_display_port;
562         } else /* The option is for other outputs */
563                 limit = &intel_limits_i9xx_sdvo;
564
565         return limit;
566 }
567
568 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
569 {
570         struct drm_device *dev = crtc->dev;
571         const intel_limit_t *limit;
572
573         if (HAS_PCH_SPLIT(dev))
574                 limit = intel_ironlake_limit(crtc, refclk);
575         else if (IS_G4X(dev)) {
576                 limit = intel_g4x_limit(crtc);
577         } else if (IS_PINEVIEW(dev)) {
578                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
579                         limit = &intel_limits_pineview_lvds;
580                 else
581                         limit = &intel_limits_pineview_sdvo;
582         } else if (IS_VALLEYVIEW(dev)) {
583                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
584                         limit = &intel_limits_vlv_dac;
585                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
586                         limit = &intel_limits_vlv_hdmi;
587                 else
588                         limit = &intel_limits_vlv_dp;
589         } else if (!IS_GEN2(dev)) {
590                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
591                         limit = &intel_limits_i9xx_lvds;
592                 else
593                         limit = &intel_limits_i9xx_sdvo;
594         } else {
595                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
596                         limit = &intel_limits_i8xx_lvds;
597                 else
598                         limit = &intel_limits_i8xx_dvo;
599         }
600         return limit;
601 }
602
603 /* m1 is reserved as 0 in Pineview, n is a ring counter */
604 static void pineview_clock(int refclk, intel_clock_t *clock)
605 {
606         clock->m = clock->m2 + 2;
607         clock->p = clock->p1 * clock->p2;
608         clock->vco = refclk * clock->m / clock->n;
609         clock->dot = clock->vco / clock->p;
610 }
611
612 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
613 {
614         if (IS_PINEVIEW(dev)) {
615                 pineview_clock(refclk, clock);
616                 return;
617         }
618         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
619         clock->p = clock->p1 * clock->p2;
620         clock->vco = refclk * clock->m / (clock->n + 2);
621         clock->dot = clock->vco / clock->p;
622 }
623
624 /**
625  * Returns whether any output on the specified pipe is of the specified type
626  */
627 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
628 {
629         struct drm_device *dev = crtc->dev;
630         struct intel_encoder *encoder;
631
632         for_each_encoder_on_crtc(dev, crtc, encoder)
633                 if (encoder->type == type)
634                         return true;
635
636         return false;
637 }
638
639 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
640 /**
641  * Returns whether the given set of divisors are valid for a given refclk with
642  * the given connectors.
643  */
644
645 static bool intel_PLL_is_valid(struct drm_device *dev,
646                                const intel_limit_t *limit,
647                                const intel_clock_t *clock)
648 {
649         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
650                 INTELPllInvalid("p1 out of range\n");
651         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
652                 INTELPllInvalid("p out of range\n");
653         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
654                 INTELPllInvalid("m2 out of range\n");
655         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
656                 INTELPllInvalid("m1 out of range\n");
657         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
658                 INTELPllInvalid("m1 <= m2\n");
659         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
660                 INTELPllInvalid("m out of range\n");
661         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
662                 INTELPllInvalid("n out of range\n");
663         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
664                 INTELPllInvalid("vco out of range\n");
665         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
666          * connector, etc., rather than just a single range.
667          */
668         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
669                 INTELPllInvalid("dot out of range\n");
670
671         return true;
672 }
673
674 static bool
675 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
676                     int target, int refclk, intel_clock_t *match_clock,
677                     intel_clock_t *best_clock)
678
679 {
680         struct drm_device *dev = crtc->dev;
681         struct drm_i915_private *dev_priv = dev->dev_private;
682         intel_clock_t clock;
683         int err = target;
684
685         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
686             (I915_READ(LVDS)) != 0) {
687                 /*
688                  * For LVDS, if the panel is on, just rely on its current
689                  * settings for dual-channel.  We haven't figured out how to
690                  * reliably set up different single/dual channel state, if we
691                  * even can.
692                  */
693                 if (is_dual_link_lvds(dev_priv, LVDS))
694                         clock.p2 = limit->p2.p2_fast;
695                 else
696                         clock.p2 = limit->p2.p2_slow;
697         } else {
698                 if (target < limit->p2.dot_limit)
699                         clock.p2 = limit->p2.p2_slow;
700                 else
701                         clock.p2 = limit->p2.p2_fast;
702         }
703
704         memset(best_clock, 0, sizeof(*best_clock));
705
706         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
707              clock.m1++) {
708                 for (clock.m2 = limit->m2.min;
709                      clock.m2 <= limit->m2.max; clock.m2++) {
710                         /* m1 is always 0 in Pineview */
711                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
712                                 break;
713                         for (clock.n = limit->n.min;
714                              clock.n <= limit->n.max; clock.n++) {
715                                 for (clock.p1 = limit->p1.min;
716                                         clock.p1 <= limit->p1.max; clock.p1++) {
717                                         int this_err;
718
719                                         intel_clock(dev, refclk, &clock);
720                                         if (!intel_PLL_is_valid(dev, limit,
721                                                                 &clock))
722                                                 continue;
723                                         if (match_clock &&
724                                             clock.p != match_clock->p)
725                                                 continue;
726
727                                         this_err = abs(clock.dot - target);
728                                         if (this_err < err) {
729                                                 *best_clock = clock;
730                                                 err = this_err;
731                                         }
732                                 }
733                         }
734                 }
735         }
736
737         return (err != target);
738 }
739
740 static bool
741 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742                         int target, int refclk, intel_clock_t *match_clock,
743                         intel_clock_t *best_clock)
744 {
745         struct drm_device *dev = crtc->dev;
746         struct drm_i915_private *dev_priv = dev->dev_private;
747         intel_clock_t clock;
748         int max_n;
749         bool found;
750         /* approximately equals target * 0.00585 */
751         int err_most = (target >> 8) + (target >> 9);
752         found = false;
753
754         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
755                 int lvds_reg;
756
757                 if (HAS_PCH_SPLIT(dev))
758                         lvds_reg = PCH_LVDS;
759                 else
760                         lvds_reg = LVDS;
761                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
762                     LVDS_CLKB_POWER_UP)
763                         clock.p2 = limit->p2.p2_fast;
764                 else
765                         clock.p2 = limit->p2.p2_slow;
766         } else {
767                 if (target < limit->p2.dot_limit)
768                         clock.p2 = limit->p2.p2_slow;
769                 else
770                         clock.p2 = limit->p2.p2_fast;
771         }
772
773         memset(best_clock, 0, sizeof(*best_clock));
774         max_n = limit->n.max;
775         /* based on hardware requirement, prefer smaller n to precision */
776         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
777                 /* based on hardware requirement, prefere larger m1,m2 */
778                 for (clock.m1 = limit->m1.max;
779                      clock.m1 >= limit->m1.min; clock.m1--) {
780                         for (clock.m2 = limit->m2.max;
781                              clock.m2 >= limit->m2.min; clock.m2--) {
782                                 for (clock.p1 = limit->p1.max;
783                                      clock.p1 >= limit->p1.min; clock.p1--) {
784                                         int this_err;
785
786                                         intel_clock(dev, refclk, &clock);
787                                         if (!intel_PLL_is_valid(dev, limit,
788                                                                 &clock))
789                                                 continue;
790                                         if (match_clock &&
791                                             clock.p != match_clock->p)
792                                                 continue;
793
794                                         this_err = abs(clock.dot - target);
795                                         if (this_err < err_most) {
796                                                 *best_clock = clock;
797                                                 err_most = this_err;
798                                                 max_n = clock.n;
799                                                 found = true;
800                                         }
801                                 }
802                         }
803                 }
804         }
805         return found;
806 }
807
808 static bool
809 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
810                            int target, int refclk, intel_clock_t *match_clock,
811                            intel_clock_t *best_clock)
812 {
813         struct drm_device *dev = crtc->dev;
814         intel_clock_t clock;
815
816         if (target < 200000) {
817                 clock.n = 1;
818                 clock.p1 = 2;
819                 clock.p2 = 10;
820                 clock.m1 = 12;
821                 clock.m2 = 9;
822         } else {
823                 clock.n = 2;
824                 clock.p1 = 1;
825                 clock.p2 = 10;
826                 clock.m1 = 14;
827                 clock.m2 = 8;
828         }
829         intel_clock(dev, refclk, &clock);
830         memcpy(best_clock, &clock, sizeof(intel_clock_t));
831         return true;
832 }
833
834 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
835 static bool
836 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837                       int target, int refclk, intel_clock_t *match_clock,
838                       intel_clock_t *best_clock)
839 {
840         intel_clock_t clock;
841         if (target < 200000) {
842                 clock.p1 = 2;
843                 clock.p2 = 10;
844                 clock.n = 2;
845                 clock.m1 = 23;
846                 clock.m2 = 8;
847         } else {
848                 clock.p1 = 1;
849                 clock.p2 = 10;
850                 clock.n = 1;
851                 clock.m1 = 14;
852                 clock.m2 = 2;
853         }
854         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
855         clock.p = (clock.p1 * clock.p2);
856         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
857         clock.vco = 0;
858         memcpy(best_clock, &clock, sizeof(intel_clock_t));
859         return true;
860 }
861 static bool
862 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
863                         int target, int refclk, intel_clock_t *match_clock,
864                         intel_clock_t *best_clock)
865 {
866         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
867         u32 m, n, fastclk;
868         u32 updrate, minupdate, fracbits, p;
869         unsigned long bestppm, ppm, absppm;
870         int dotclk, flag;
871
872         flag = 0;
873         dotclk = target * 1000;
874         bestppm = 1000000;
875         ppm = absppm = 0;
876         fastclk = dotclk / (2*100);
877         updrate = 0;
878         minupdate = 19200;
879         fracbits = 1;
880         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
881         bestm1 = bestm2 = bestp1 = bestp2 = 0;
882
883         /* based on hardware requirement, prefer smaller n to precision */
884         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
885                 updrate = refclk / n;
886                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
887                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
888                                 if (p2 > 10)
889                                         p2 = p2 - 1;
890                                 p = p1 * p2;
891                                 /* based on hardware requirement, prefer bigger m1,m2 values */
892                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
893                                         m2 = (((2*(fastclk * p * n / m1 )) +
894                                                refclk) / (2*refclk));
895                                         m = m1 * m2;
896                                         vco = updrate * m;
897                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
898                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
899                                                 absppm = (ppm > 0) ? ppm : (-ppm);
900                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
901                                                         bestppm = 0;
902                                                         flag = 1;
903                                                 }
904                                                 if (absppm < bestppm - 10) {
905                                                         bestppm = absppm;
906                                                         flag = 1;
907                                                 }
908                                                 if (flag) {
909                                                         bestn = n;
910                                                         bestm1 = m1;
911                                                         bestm2 = m2;
912                                                         bestp1 = p1;
913                                                         bestp2 = p2;
914                                                         flag = 0;
915                                                 }
916                                         }
917                                 }
918                         }
919                 }
920         }
921         best_clock->n = bestn;
922         best_clock->m1 = bestm1;
923         best_clock->m2 = bestm2;
924         best_clock->p1 = bestp1;
925         best_clock->p2 = bestp2;
926
927         return true;
928 }
929
930 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
931 {
932         struct drm_i915_private *dev_priv = dev->dev_private;
933         u32 frame, frame_reg = PIPEFRAME(pipe);
934
935         frame = I915_READ(frame_reg);
936
937         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
938                 DRM_DEBUG_KMS("vblank wait timed out\n");
939 }
940
941 /**
942  * intel_wait_for_vblank - wait for vblank on a given pipe
943  * @dev: drm device
944  * @pipe: pipe to wait for
945  *
946  * Wait for vblank to occur on a given pipe.  Needed for various bits of
947  * mode setting code.
948  */
949 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         int pipestat_reg = PIPESTAT(pipe);
953
954         if (INTEL_INFO(dev)->gen >= 5) {
955                 ironlake_wait_for_vblank(dev, pipe);
956                 return;
957         }
958
959         /* Clear existing vblank status. Note this will clear any other
960          * sticky status fields as well.
961          *
962          * This races with i915_driver_irq_handler() with the result
963          * that either function could miss a vblank event.  Here it is not
964          * fatal, as we will either wait upon the next vblank interrupt or
965          * timeout.  Generally speaking intel_wait_for_vblank() is only
966          * called during modeset at which time the GPU should be idle and
967          * should *not* be performing page flips and thus not waiting on
968          * vblanks...
969          * Currently, the result of us stealing a vblank from the irq
970          * handler is that a single frame will be skipped during swapbuffers.
971          */
972         I915_WRITE(pipestat_reg,
973                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
974
975         /* Wait for vblank interrupt bit to set */
976         if (wait_for(I915_READ(pipestat_reg) &
977                      PIPE_VBLANK_INTERRUPT_STATUS,
978                      50))
979                 DRM_DEBUG_KMS("vblank wait timed out\n");
980 }
981
982 /*
983  * intel_wait_for_pipe_off - wait for pipe to turn off
984  * @dev: drm device
985  * @pipe: pipe to wait for
986  *
987  * After disabling a pipe, we can't wait for vblank in the usual way,
988  * spinning on the vblank interrupt status bit, since we won't actually
989  * see an interrupt when the pipe is disabled.
990  *
991  * On Gen4 and above:
992  *   wait for the pipe register state bit to turn off
993  *
994  * Otherwise:
995  *   wait for the display line value to settle (it usually
996  *   ends up stopping at the start of the next frame).
997  *
998  */
999 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1000 {
1001         struct drm_i915_private *dev_priv = dev->dev_private;
1002
1003         if (INTEL_INFO(dev)->gen >= 4) {
1004                 int reg = PIPECONF(pipe);
1005
1006                 /* Wait for the Pipe State to go off */
1007                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1008                              100))
1009                         WARN(1, "pipe_off wait timed out\n");
1010         } else {
1011                 u32 last_line, line_mask;
1012                 int reg = PIPEDSL(pipe);
1013                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1014
1015                 if (IS_GEN2(dev))
1016                         line_mask = DSL_LINEMASK_GEN2;
1017                 else
1018                         line_mask = DSL_LINEMASK_GEN3;
1019
1020                 /* Wait for the display line to settle */
1021                 do {
1022                         last_line = I915_READ(reg) & line_mask;
1023                         mdelay(5);
1024                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1025                          time_after(timeout, jiffies));
1026                 if (time_after(jiffies, timeout))
1027                         WARN(1, "pipe_off wait timed out\n");
1028         }
1029 }
1030
1031 static const char *state_string(bool enabled)
1032 {
1033         return enabled ? "on" : "off";
1034 }
1035
1036 /* Only for pre-ILK configs */
1037 static void assert_pll(struct drm_i915_private *dev_priv,
1038                        enum pipe pipe, bool state)
1039 {
1040         int reg;
1041         u32 val;
1042         bool cur_state;
1043
1044         reg = DPLL(pipe);
1045         val = I915_READ(reg);
1046         cur_state = !!(val & DPLL_VCO_ENABLE);
1047         WARN(cur_state != state,
1048              "PLL state assertion failure (expected %s, current %s)\n",
1049              state_string(state), state_string(cur_state));
1050 }
1051 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1052 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1053
1054 /* For ILK+ */
1055 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1056                            struct intel_pch_pll *pll,
1057                            struct intel_crtc *crtc,
1058                            bool state)
1059 {
1060         u32 val;
1061         bool cur_state;
1062
1063         if (HAS_PCH_LPT(dev_priv->dev)) {
1064                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1065                 return;
1066         }
1067
1068         if (WARN (!pll,
1069                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1070                 return;
1071
1072         val = I915_READ(pll->pll_reg);
1073         cur_state = !!(val & DPLL_VCO_ENABLE);
1074         WARN(cur_state != state,
1075              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1076              pll->pll_reg, state_string(state), state_string(cur_state), val);
1077
1078         /* Make sure the selected PLL is correctly attached to the transcoder */
1079         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1080                 u32 pch_dpll;
1081
1082                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1083                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1084                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1085                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1086                           cur_state, crtc->pipe, pch_dpll)) {
1087                         cur_state = !!(val >> (4*crtc->pipe + 3));
1088                         WARN(cur_state != state,
1089                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1090                              pll->pll_reg == _PCH_DPLL_B,
1091                              state_string(state),
1092                              crtc->pipe,
1093                              val);
1094                 }
1095         }
1096 }
1097 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1098 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1099
1100 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1101                           enum pipe pipe, bool state)
1102 {
1103         int reg;
1104         u32 val;
1105         bool cur_state;
1106
1107         if (IS_HASWELL(dev_priv->dev)) {
1108                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1109                 reg = DDI_FUNC_CTL(pipe);
1110                 val = I915_READ(reg);
1111                 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1112         } else {
1113                 reg = FDI_TX_CTL(pipe);
1114                 val = I915_READ(reg);
1115                 cur_state = !!(val & FDI_TX_ENABLE);
1116         }
1117         WARN(cur_state != state,
1118              "FDI TX state assertion failure (expected %s, current %s)\n",
1119              state_string(state), state_string(cur_state));
1120 }
1121 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1122 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1123
1124 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1125                           enum pipe pipe, bool state)
1126 {
1127         int reg;
1128         u32 val;
1129         bool cur_state;
1130
1131         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1132                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1133                         return;
1134         } else {
1135                 reg = FDI_RX_CTL(pipe);
1136                 val = I915_READ(reg);
1137                 cur_state = !!(val & FDI_RX_ENABLE);
1138         }
1139         WARN(cur_state != state,
1140              "FDI RX state assertion failure (expected %s, current %s)\n",
1141              state_string(state), state_string(cur_state));
1142 }
1143 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1144 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1145
1146 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1147                                       enum pipe pipe)
1148 {
1149         int reg;
1150         u32 val;
1151
1152         /* ILK FDI PLL is always enabled */
1153         if (dev_priv->info->gen == 5)
1154                 return;
1155
1156         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1157         if (IS_HASWELL(dev_priv->dev))
1158                 return;
1159
1160         reg = FDI_TX_CTL(pipe);
1161         val = I915_READ(reg);
1162         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1163 }
1164
1165 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1166                                       enum pipe pipe)
1167 {
1168         int reg;
1169         u32 val;
1170
1171         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1172                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1173                 return;
1174         }
1175         reg = FDI_RX_CTL(pipe);
1176         val = I915_READ(reg);
1177         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1178 }
1179
1180 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1181                                   enum pipe pipe)
1182 {
1183         int pp_reg, lvds_reg;
1184         u32 val;
1185         enum pipe panel_pipe = PIPE_A;
1186         bool locked = true;
1187
1188         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1189                 pp_reg = PCH_PP_CONTROL;
1190                 lvds_reg = PCH_LVDS;
1191         } else {
1192                 pp_reg = PP_CONTROL;
1193                 lvds_reg = LVDS;
1194         }
1195
1196         val = I915_READ(pp_reg);
1197         if (!(val & PANEL_POWER_ON) ||
1198             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1199                 locked = false;
1200
1201         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1202                 panel_pipe = PIPE_B;
1203
1204         WARN(panel_pipe == pipe && locked,
1205              "panel assertion failure, pipe %c regs locked\n",
1206              pipe_name(pipe));
1207 }
1208
1209 void assert_pipe(struct drm_i915_private *dev_priv,
1210                  enum pipe pipe, bool state)
1211 {
1212         int reg;
1213         u32 val;
1214         bool cur_state;
1215
1216         /* if we need the pipe A quirk it must be always on */
1217         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1218                 state = true;
1219
1220         reg = PIPECONF(pipe);
1221         val = I915_READ(reg);
1222         cur_state = !!(val & PIPECONF_ENABLE);
1223         WARN(cur_state != state,
1224              "pipe %c assertion failure (expected %s, current %s)\n",
1225              pipe_name(pipe), state_string(state), state_string(cur_state));
1226 }
1227
1228 static void assert_plane(struct drm_i915_private *dev_priv,
1229                          enum plane plane, bool state)
1230 {
1231         int reg;
1232         u32 val;
1233         bool cur_state;
1234
1235         reg = DSPCNTR(plane);
1236         val = I915_READ(reg);
1237         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1238         WARN(cur_state != state,
1239              "plane %c assertion failure (expected %s, current %s)\n",
1240              plane_name(plane), state_string(state), state_string(cur_state));
1241 }
1242
1243 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1244 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1245
1246 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1247                                    enum pipe pipe)
1248 {
1249         int reg, i;
1250         u32 val;
1251         int cur_pipe;
1252
1253         /* Planes are fixed to pipes on ILK+ */
1254         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1255                 reg = DSPCNTR(pipe);
1256                 val = I915_READ(reg);
1257                 WARN((val & DISPLAY_PLANE_ENABLE),
1258                      "plane %c assertion failure, should be disabled but not\n",
1259                      plane_name(pipe));
1260                 return;
1261         }
1262
1263         /* Need to check both planes against the pipe */
1264         for (i = 0; i < 2; i++) {
1265                 reg = DSPCNTR(i);
1266                 val = I915_READ(reg);
1267                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1268                         DISPPLANE_SEL_PIPE_SHIFT;
1269                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1270                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1271                      plane_name(i), pipe_name(pipe));
1272         }
1273 }
1274
1275 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1276 {
1277         u32 val;
1278         bool enabled;
1279
1280         if (HAS_PCH_LPT(dev_priv->dev)) {
1281                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1282                 return;
1283         }
1284
1285         val = I915_READ(PCH_DREF_CONTROL);
1286         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1287                             DREF_SUPERSPREAD_SOURCE_MASK));
1288         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1289 }
1290
1291 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1292                                        enum pipe pipe)
1293 {
1294         int reg;
1295         u32 val;
1296         bool enabled;
1297
1298         reg = TRANSCONF(pipe);
1299         val = I915_READ(reg);
1300         enabled = !!(val & TRANS_ENABLE);
1301         WARN(enabled,
1302              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1303              pipe_name(pipe));
1304 }
1305
1306 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1307                             enum pipe pipe, u32 port_sel, u32 val)
1308 {
1309         if ((val & DP_PORT_EN) == 0)
1310                 return false;
1311
1312         if (HAS_PCH_CPT(dev_priv->dev)) {
1313                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1314                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1315                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316                         return false;
1317         } else {
1318                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1319                         return false;
1320         }
1321         return true;
1322 }
1323
1324 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1325                               enum pipe pipe, u32 val)
1326 {
1327         if ((val & PORT_ENABLE) == 0)
1328                 return false;
1329
1330         if (HAS_PCH_CPT(dev_priv->dev)) {
1331                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1332                         return false;
1333         } else {
1334                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1335                         return false;
1336         }
1337         return true;
1338 }
1339
1340 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1341                               enum pipe pipe, u32 val)
1342 {
1343         if ((val & LVDS_PORT_EN) == 0)
1344                 return false;
1345
1346         if (HAS_PCH_CPT(dev_priv->dev)) {
1347                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1348                         return false;
1349         } else {
1350                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1351                         return false;
1352         }
1353         return true;
1354 }
1355
1356 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1357                               enum pipe pipe, u32 val)
1358 {
1359         if ((val & ADPA_DAC_ENABLE) == 0)
1360                 return false;
1361         if (HAS_PCH_CPT(dev_priv->dev)) {
1362                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1363                         return false;
1364         } else {
1365                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1366                         return false;
1367         }
1368         return true;
1369 }
1370
1371 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1372                                    enum pipe pipe, int reg, u32 port_sel)
1373 {
1374         u32 val = I915_READ(reg);
1375         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1376              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1377              reg, pipe_name(pipe));
1378
1379         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1380              && (val & DP_PIPEB_SELECT),
1381              "IBX PCH dp port still using transcoder B\n");
1382 }
1383
1384 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1385                                      enum pipe pipe, int reg)
1386 {
1387         u32 val = I915_READ(reg);
1388         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1389              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1390              reg, pipe_name(pipe));
1391
1392         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1393              && (val & SDVO_PIPE_B_SELECT),
1394              "IBX PCH hdmi port still using transcoder B\n");
1395 }
1396
1397 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1398                                       enum pipe pipe)
1399 {
1400         int reg;
1401         u32 val;
1402
1403         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1404         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1405         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1406
1407         reg = PCH_ADPA;
1408         val = I915_READ(reg);
1409         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1410              "PCH VGA enabled on transcoder %c, should be disabled\n",
1411              pipe_name(pipe));
1412
1413         reg = PCH_LVDS;
1414         val = I915_READ(reg);
1415         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1416              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1417              pipe_name(pipe));
1418
1419         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1420         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1421         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1422 }
1423
1424 /**
1425  * intel_enable_pll - enable a PLL
1426  * @dev_priv: i915 private structure
1427  * @pipe: pipe PLL to enable
1428  *
1429  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1430  * make sure the PLL reg is writable first though, since the panel write
1431  * protect mechanism may be enabled.
1432  *
1433  * Note!  This is for pre-ILK only.
1434  *
1435  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1436  */
1437 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1438 {
1439         int reg;
1440         u32 val;
1441
1442         /* No really, not for ILK+ */
1443         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1444
1445         /* PLL is protected by panel, make sure we can write it */
1446         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1447                 assert_panel_unlocked(dev_priv, pipe);
1448
1449         reg = DPLL(pipe);
1450         val = I915_READ(reg);
1451         val |= DPLL_VCO_ENABLE;
1452
1453         /* We do this three times for luck */
1454         I915_WRITE(reg, val);
1455         POSTING_READ(reg);
1456         udelay(150); /* wait for warmup */
1457         I915_WRITE(reg, val);
1458         POSTING_READ(reg);
1459         udelay(150); /* wait for warmup */
1460         I915_WRITE(reg, val);
1461         POSTING_READ(reg);
1462         udelay(150); /* wait for warmup */
1463 }
1464
1465 /**
1466  * intel_disable_pll - disable a PLL
1467  * @dev_priv: i915 private structure
1468  * @pipe: pipe PLL to disable
1469  *
1470  * Disable the PLL for @pipe, making sure the pipe is off first.
1471  *
1472  * Note!  This is for pre-ILK only.
1473  */
1474 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1475 {
1476         int reg;
1477         u32 val;
1478
1479         /* Don't disable pipe A or pipe A PLLs if needed */
1480         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1481                 return;
1482
1483         /* Make sure the pipe isn't still relying on us */
1484         assert_pipe_disabled(dev_priv, pipe);
1485
1486         reg = DPLL(pipe);
1487         val = I915_READ(reg);
1488         val &= ~DPLL_VCO_ENABLE;
1489         I915_WRITE(reg, val);
1490         POSTING_READ(reg);
1491 }
1492
1493 /* SBI access */
1494 static void
1495 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1496 {
1497         unsigned long flags;
1498
1499         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1500         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1501                                 100)) {
1502                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1503                 goto out_unlock;
1504         }
1505
1506         I915_WRITE(SBI_ADDR,
1507                         (reg << 16));
1508         I915_WRITE(SBI_DATA,
1509                         value);
1510         I915_WRITE(SBI_CTL_STAT,
1511                         SBI_BUSY |
1512                         SBI_CTL_OP_CRWR);
1513
1514         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1515                                 100)) {
1516                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1517                 goto out_unlock;
1518         }
1519
1520 out_unlock:
1521         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1522 }
1523
1524 static u32
1525 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1526 {
1527         unsigned long flags;
1528         u32 value = 0;
1529
1530         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1531         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1532                                 100)) {
1533                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1534                 goto out_unlock;
1535         }
1536
1537         I915_WRITE(SBI_ADDR,
1538                         (reg << 16));
1539         I915_WRITE(SBI_CTL_STAT,
1540                         SBI_BUSY |
1541                         SBI_CTL_OP_CRRD);
1542
1543         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1544                                 100)) {
1545                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1546                 goto out_unlock;
1547         }
1548
1549         value = I915_READ(SBI_DATA);
1550
1551 out_unlock:
1552         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1553         return value;
1554 }
1555
1556 /**
1557  * intel_enable_pch_pll - enable PCH PLL
1558  * @dev_priv: i915 private structure
1559  * @pipe: pipe PLL to enable
1560  *
1561  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1562  * drives the transcoder clock.
1563  */
1564 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1565 {
1566         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1567         struct intel_pch_pll *pll;
1568         int reg;
1569         u32 val;
1570
1571         /* PCH PLLs only available on ILK, SNB and IVB */
1572         BUG_ON(dev_priv->info->gen < 5);
1573         pll = intel_crtc->pch_pll;
1574         if (pll == NULL)
1575                 return;
1576
1577         if (WARN_ON(pll->refcount == 0))
1578                 return;
1579
1580         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1581                       pll->pll_reg, pll->active, pll->on,
1582                       intel_crtc->base.base.id);
1583
1584         /* PCH refclock must be enabled first */
1585         assert_pch_refclk_enabled(dev_priv);
1586
1587         if (pll->active++ && pll->on) {
1588                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1589                 return;
1590         }
1591
1592         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1593
1594         reg = pll->pll_reg;
1595         val = I915_READ(reg);
1596         val |= DPLL_VCO_ENABLE;
1597         I915_WRITE(reg, val);
1598         POSTING_READ(reg);
1599         udelay(200);
1600
1601         pll->on = true;
1602 }
1603
1604 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1605 {
1606         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1607         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1608         int reg;
1609         u32 val;
1610
1611         /* PCH only available on ILK+ */
1612         BUG_ON(dev_priv->info->gen < 5);
1613         if (pll == NULL)
1614                return;
1615
1616         if (WARN_ON(pll->refcount == 0))
1617                 return;
1618
1619         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1620                       pll->pll_reg, pll->active, pll->on,
1621                       intel_crtc->base.base.id);
1622
1623         if (WARN_ON(pll->active == 0)) {
1624                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1625                 return;
1626         }
1627
1628         if (--pll->active) {
1629                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1630                 return;
1631         }
1632
1633         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1634
1635         /* Make sure transcoder isn't still depending on us */
1636         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1637
1638         reg = pll->pll_reg;
1639         val = I915_READ(reg);
1640         val &= ~DPLL_VCO_ENABLE;
1641         I915_WRITE(reg, val);
1642         POSTING_READ(reg);
1643         udelay(200);
1644
1645         pll->on = false;
1646 }
1647
1648 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1649                                     enum pipe pipe)
1650 {
1651         int reg;
1652         u32 val, pipeconf_val;
1653         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1654
1655         /* PCH only available on ILK+ */
1656         BUG_ON(dev_priv->info->gen < 5);
1657
1658         /* Make sure PCH DPLL is enabled */
1659         assert_pch_pll_enabled(dev_priv,
1660                                to_intel_crtc(crtc)->pch_pll,
1661                                to_intel_crtc(crtc));
1662
1663         /* FDI must be feeding us bits for PCH ports */
1664         assert_fdi_tx_enabled(dev_priv, pipe);
1665         assert_fdi_rx_enabled(dev_priv, pipe);
1666
1667         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1668                 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1669                 return;
1670         }
1671         reg = TRANSCONF(pipe);
1672         val = I915_READ(reg);
1673         pipeconf_val = I915_READ(PIPECONF(pipe));
1674
1675         if (HAS_PCH_IBX(dev_priv->dev)) {
1676                 /*
1677                  * make the BPC in transcoder be consistent with
1678                  * that in pipeconf reg.
1679                  */
1680                 val &= ~PIPE_BPC_MASK;
1681                 val |= pipeconf_val & PIPE_BPC_MASK;
1682         }
1683
1684         val &= ~TRANS_INTERLACE_MASK;
1685         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1686                 if (HAS_PCH_IBX(dev_priv->dev) &&
1687                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1688                         val |= TRANS_LEGACY_INTERLACED_ILK;
1689                 else
1690                         val |= TRANS_INTERLACED;
1691         else
1692                 val |= TRANS_PROGRESSIVE;
1693
1694         I915_WRITE(reg, val | TRANS_ENABLE);
1695         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1696                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1697 }
1698
1699 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1700                                      enum pipe pipe)
1701 {
1702         int reg;
1703         u32 val;
1704
1705         /* FDI relies on the transcoder */
1706         assert_fdi_tx_disabled(dev_priv, pipe);
1707         assert_fdi_rx_disabled(dev_priv, pipe);
1708
1709         /* Ports must be off as well */
1710         assert_pch_ports_disabled(dev_priv, pipe);
1711
1712         reg = TRANSCONF(pipe);
1713         val = I915_READ(reg);
1714         val &= ~TRANS_ENABLE;
1715         I915_WRITE(reg, val);
1716         /* wait for PCH transcoder off, transcoder state */
1717         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1718                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1719 }
1720
1721 /**
1722  * intel_enable_pipe - enable a pipe, asserting requirements
1723  * @dev_priv: i915 private structure
1724  * @pipe: pipe to enable
1725  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1726  *
1727  * Enable @pipe, making sure that various hardware specific requirements
1728  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1729  *
1730  * @pipe should be %PIPE_A or %PIPE_B.
1731  *
1732  * Will wait until the pipe is actually running (i.e. first vblank) before
1733  * returning.
1734  */
1735 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1736                               bool pch_port)
1737 {
1738         int reg;
1739         u32 val;
1740
1741         /*
1742          * A pipe without a PLL won't actually be able to drive bits from
1743          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1744          * need the check.
1745          */
1746         if (!HAS_PCH_SPLIT(dev_priv->dev))
1747                 assert_pll_enabled(dev_priv, pipe);
1748         else {
1749                 if (pch_port) {
1750                         /* if driving the PCH, we need FDI enabled */
1751                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1752                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1753                 }
1754                 /* FIXME: assert CPU port conditions for SNB+ */
1755         }
1756
1757         reg = PIPECONF(pipe);
1758         val = I915_READ(reg);
1759         if (val & PIPECONF_ENABLE)
1760                 return;
1761
1762         I915_WRITE(reg, val | PIPECONF_ENABLE);
1763         intel_wait_for_vblank(dev_priv->dev, pipe);
1764 }
1765
1766 /**
1767  * intel_disable_pipe - disable a pipe, asserting requirements
1768  * @dev_priv: i915 private structure
1769  * @pipe: pipe to disable
1770  *
1771  * Disable @pipe, making sure that various hardware specific requirements
1772  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1773  *
1774  * @pipe should be %PIPE_A or %PIPE_B.
1775  *
1776  * Will wait until the pipe has shut down before returning.
1777  */
1778 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1779                                enum pipe pipe)
1780 {
1781         int reg;
1782         u32 val;
1783
1784         /*
1785          * Make sure planes won't keep trying to pump pixels to us,
1786          * or we might hang the display.
1787          */
1788         assert_planes_disabled(dev_priv, pipe);
1789
1790         /* Don't disable pipe A or pipe A PLLs if needed */
1791         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1792                 return;
1793
1794         reg = PIPECONF(pipe);
1795         val = I915_READ(reg);
1796         if ((val & PIPECONF_ENABLE) == 0)
1797                 return;
1798
1799         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1800         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1801 }
1802
1803 /*
1804  * Plane regs are double buffered, going from enabled->disabled needs a
1805  * trigger in order to latch.  The display address reg provides this.
1806  */
1807 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1808                                       enum plane plane)
1809 {
1810         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1811         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1812 }
1813
1814 /**
1815  * intel_enable_plane - enable a display plane on a given pipe
1816  * @dev_priv: i915 private structure
1817  * @plane: plane to enable
1818  * @pipe: pipe being fed
1819  *
1820  * Enable @plane on @pipe, making sure that @pipe is running first.
1821  */
1822 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1823                                enum plane plane, enum pipe pipe)
1824 {
1825         int reg;
1826         u32 val;
1827
1828         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1829         assert_pipe_enabled(dev_priv, pipe);
1830
1831         reg = DSPCNTR(plane);
1832         val = I915_READ(reg);
1833         if (val & DISPLAY_PLANE_ENABLE)
1834                 return;
1835
1836         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1837         intel_flush_display_plane(dev_priv, plane);
1838         intel_wait_for_vblank(dev_priv->dev, pipe);
1839 }
1840
1841 /**
1842  * intel_disable_plane - disable a display plane
1843  * @dev_priv: i915 private structure
1844  * @plane: plane to disable
1845  * @pipe: pipe consuming the data
1846  *
1847  * Disable @plane; should be an independent operation.
1848  */
1849 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1850                                 enum plane plane, enum pipe pipe)
1851 {
1852         int reg;
1853         u32 val;
1854
1855         reg = DSPCNTR(plane);
1856         val = I915_READ(reg);
1857         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1858                 return;
1859
1860         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1861         intel_flush_display_plane(dev_priv, plane);
1862         intel_wait_for_vblank(dev_priv->dev, pipe);
1863 }
1864
1865 int
1866 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1867                            struct drm_i915_gem_object *obj,
1868                            struct intel_ring_buffer *pipelined)
1869 {
1870         struct drm_i915_private *dev_priv = dev->dev_private;
1871         u32 alignment;
1872         int ret;
1873
1874         switch (obj->tiling_mode) {
1875         case I915_TILING_NONE:
1876                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1877                         alignment = 128 * 1024;
1878                 else if (INTEL_INFO(dev)->gen >= 4)
1879                         alignment = 4 * 1024;
1880                 else
1881                         alignment = 64 * 1024;
1882                 break;
1883         case I915_TILING_X:
1884                 /* pin() will align the object as required by fence */
1885                 alignment = 0;
1886                 break;
1887         case I915_TILING_Y:
1888                 /* FIXME: Is this true? */
1889                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1890                 return -EINVAL;
1891         default:
1892                 BUG();
1893         }
1894
1895         dev_priv->mm.interruptible = false;
1896         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1897         if (ret)
1898                 goto err_interruptible;
1899
1900         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1901          * fence, whereas 965+ only requires a fence if using
1902          * framebuffer compression.  For simplicity, we always install
1903          * a fence as the cost is not that onerous.
1904          */
1905         ret = i915_gem_object_get_fence(obj);
1906         if (ret)
1907                 goto err_unpin;
1908
1909         i915_gem_object_pin_fence(obj);
1910
1911         dev_priv->mm.interruptible = true;
1912         return 0;
1913
1914 err_unpin:
1915         i915_gem_object_unpin(obj);
1916 err_interruptible:
1917         dev_priv->mm.interruptible = true;
1918         return ret;
1919 }
1920
1921 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1922 {
1923         i915_gem_object_unpin_fence(obj);
1924         i915_gem_object_unpin(obj);
1925 }
1926
1927 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1928  * is assumed to be a power-of-two. */
1929 static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1930                                                         unsigned int bpp,
1931                                                         unsigned int pitch)
1932 {
1933         int tile_rows, tiles;
1934
1935         tile_rows = *y / 8;
1936         *y %= 8;
1937         tiles = *x / (512/bpp);
1938         *x %= 512/bpp;
1939
1940         return tile_rows * pitch * 8 + tiles * 4096;
1941 }
1942
1943 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1944                              int x, int y)
1945 {
1946         struct drm_device *dev = crtc->dev;
1947         struct drm_i915_private *dev_priv = dev->dev_private;
1948         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1949         struct intel_framebuffer *intel_fb;
1950         struct drm_i915_gem_object *obj;
1951         int plane = intel_crtc->plane;
1952         unsigned long linear_offset;
1953         u32 dspcntr;
1954         u32 reg;
1955
1956         switch (plane) {
1957         case 0:
1958         case 1:
1959                 break;
1960         default:
1961                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1962                 return -EINVAL;
1963         }
1964
1965         intel_fb = to_intel_framebuffer(fb);
1966         obj = intel_fb->obj;
1967
1968         reg = DSPCNTR(plane);
1969         dspcntr = I915_READ(reg);
1970         /* Mask out pixel format bits in case we change it */
1971         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1972         switch (fb->bits_per_pixel) {
1973         case 8:
1974                 dspcntr |= DISPPLANE_8BPP;
1975                 break;
1976         case 16:
1977                 if (fb->depth == 15)
1978                         dspcntr |= DISPPLANE_15_16BPP;
1979                 else
1980                         dspcntr |= DISPPLANE_16BPP;
1981                 break;
1982         case 24:
1983         case 32:
1984                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1985                 break;
1986         default:
1987                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1988                 return -EINVAL;
1989         }
1990         if (INTEL_INFO(dev)->gen >= 4) {
1991                 if (obj->tiling_mode != I915_TILING_NONE)
1992                         dspcntr |= DISPPLANE_TILED;
1993                 else
1994                         dspcntr &= ~DISPPLANE_TILED;
1995         }
1996
1997         I915_WRITE(reg, dspcntr);
1998
1999         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2000
2001         if (INTEL_INFO(dev)->gen >= 4) {
2002                 intel_crtc->dspaddr_offset =
2003                         gen4_compute_dspaddr_offset_xtiled(&x, &y,
2004                                                            fb->bits_per_pixel / 8,
2005                                                            fb->pitches[0]);
2006                 linear_offset -= intel_crtc->dspaddr_offset;
2007         } else {
2008                 intel_crtc->dspaddr_offset = linear_offset;
2009         }
2010
2011         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2012                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2013         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2014         if (INTEL_INFO(dev)->gen >= 4) {
2015                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2016                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2017                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2018                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2019         } else
2020                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2021         POSTING_READ(reg);
2022
2023         return 0;
2024 }
2025
2026 static int ironlake_update_plane(struct drm_crtc *crtc,
2027                                  struct drm_framebuffer *fb, int x, int y)
2028 {
2029         struct drm_device *dev = crtc->dev;
2030         struct drm_i915_private *dev_priv = dev->dev_private;
2031         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2032         struct intel_framebuffer *intel_fb;
2033         struct drm_i915_gem_object *obj;
2034         int plane = intel_crtc->plane;
2035         unsigned long linear_offset;
2036         u32 dspcntr;
2037         u32 reg;
2038
2039         switch (plane) {
2040         case 0:
2041         case 1:
2042         case 2:
2043                 break;
2044         default:
2045                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2046                 return -EINVAL;
2047         }
2048
2049         intel_fb = to_intel_framebuffer(fb);
2050         obj = intel_fb->obj;
2051
2052         reg = DSPCNTR(plane);
2053         dspcntr = I915_READ(reg);
2054         /* Mask out pixel format bits in case we change it */
2055         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2056         switch (fb->bits_per_pixel) {
2057         case 8:
2058                 dspcntr |= DISPPLANE_8BPP;
2059                 break;
2060         case 16:
2061                 if (fb->depth != 16)
2062                         return -EINVAL;
2063
2064                 dspcntr |= DISPPLANE_16BPP;
2065                 break;
2066         case 24:
2067         case 32:
2068                 if (fb->depth == 24)
2069                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2070                 else if (fb->depth == 30)
2071                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2072                 else
2073                         return -EINVAL;
2074                 break;
2075         default:
2076                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2077                 return -EINVAL;
2078         }
2079
2080         if (obj->tiling_mode != I915_TILING_NONE)
2081                 dspcntr |= DISPPLANE_TILED;
2082         else
2083                 dspcntr &= ~DISPPLANE_TILED;
2084
2085         /* must disable */
2086         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2087
2088         I915_WRITE(reg, dspcntr);
2089
2090         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2091         intel_crtc->dspaddr_offset =
2092                 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2093                                                    fb->bits_per_pixel / 8,
2094                                                    fb->pitches[0]);
2095         linear_offset -= intel_crtc->dspaddr_offset;
2096
2097         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2098                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2099         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2100         I915_MODIFY_DISPBASE(DSPSURF(plane),
2101                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2102         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2103         I915_WRITE(DSPLINOFF(plane), linear_offset);
2104         POSTING_READ(reg);
2105
2106         return 0;
2107 }
2108
2109 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2110 static int
2111 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2112                            int x, int y, enum mode_set_atomic state)
2113 {
2114         struct drm_device *dev = crtc->dev;
2115         struct drm_i915_private *dev_priv = dev->dev_private;
2116
2117         if (dev_priv->display.disable_fbc)
2118                 dev_priv->display.disable_fbc(dev);
2119         intel_increase_pllclock(crtc);
2120
2121         return dev_priv->display.update_plane(crtc, fb, x, y);
2122 }
2123
2124 static int
2125 intel_finish_fb(struct drm_framebuffer *old_fb)
2126 {
2127         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2128         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2129         bool was_interruptible = dev_priv->mm.interruptible;
2130         int ret;
2131
2132         wait_event(dev_priv->pending_flip_queue,
2133                    atomic_read(&dev_priv->mm.wedged) ||
2134                    atomic_read(&obj->pending_flip) == 0);
2135
2136         /* Big Hammer, we also need to ensure that any pending
2137          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2138          * current scanout is retired before unpinning the old
2139          * framebuffer.
2140          *
2141          * This should only fail upon a hung GPU, in which case we
2142          * can safely continue.
2143          */
2144         dev_priv->mm.interruptible = false;
2145         ret = i915_gem_object_finish_gpu(obj);
2146         dev_priv->mm.interruptible = was_interruptible;
2147
2148         return ret;
2149 }
2150
2151 static int
2152 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2153                     struct drm_framebuffer *fb)
2154 {
2155         struct drm_device *dev = crtc->dev;
2156         struct drm_i915_private *dev_priv = dev->dev_private;
2157         struct drm_i915_master_private *master_priv;
2158         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2159         struct drm_framebuffer *old_fb;
2160         int ret;
2161
2162         /* no fb bound */
2163         if (!fb) {
2164                 DRM_ERROR("No FB bound\n");
2165                 return 0;
2166         }
2167
2168         if(intel_crtc->plane > dev_priv->num_pipe) {
2169                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2170                                 intel_crtc->plane,
2171                                 dev_priv->num_pipe);
2172                 return -EINVAL;
2173         }
2174
2175         mutex_lock(&dev->struct_mutex);
2176         ret = intel_pin_and_fence_fb_obj(dev,
2177                                          to_intel_framebuffer(fb)->obj,
2178                                          NULL);
2179         if (ret != 0) {
2180                 mutex_unlock(&dev->struct_mutex);
2181                 DRM_ERROR("pin & fence failed\n");
2182                 return ret;
2183         }
2184
2185         if (crtc->fb)
2186                 intel_finish_fb(crtc->fb);
2187
2188         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2189         if (ret) {
2190                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2191                 mutex_unlock(&dev->struct_mutex);
2192                 DRM_ERROR("failed to update base address\n");
2193                 return ret;
2194         }
2195
2196         old_fb = crtc->fb;
2197         crtc->fb = fb;
2198         crtc->x = x;
2199         crtc->y = y;
2200
2201         if (old_fb) {
2202                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2203                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2204         }
2205
2206         intel_update_fbc(dev);
2207         mutex_unlock(&dev->struct_mutex);
2208
2209         if (!dev->primary->master)
2210                 return 0;
2211
2212         master_priv = dev->primary->master->driver_priv;
2213         if (!master_priv->sarea_priv)
2214                 return 0;
2215
2216         if (intel_crtc->pipe) {
2217                 master_priv->sarea_priv->pipeB_x = x;
2218                 master_priv->sarea_priv->pipeB_y = y;
2219         } else {
2220                 master_priv->sarea_priv->pipeA_x = x;
2221                 master_priv->sarea_priv->pipeA_y = y;
2222         }
2223
2224         return 0;
2225 }
2226
2227 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2228 {
2229         struct drm_device *dev = crtc->dev;
2230         struct drm_i915_private *dev_priv = dev->dev_private;
2231         u32 dpa_ctl;
2232
2233         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2234         dpa_ctl = I915_READ(DP_A);
2235         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2236
2237         if (clock < 200000) {
2238                 u32 temp;
2239                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2240                 /* workaround for 160Mhz:
2241                    1) program 0x4600c bits 15:0 = 0x8124
2242                    2) program 0x46010 bit 0 = 1
2243                    3) program 0x46034 bit 24 = 1
2244                    4) program 0x64000 bit 14 = 1
2245                    */
2246                 temp = I915_READ(0x4600c);
2247                 temp &= 0xffff0000;
2248                 I915_WRITE(0x4600c, temp | 0x8124);
2249
2250                 temp = I915_READ(0x46010);
2251                 I915_WRITE(0x46010, temp | 1);
2252
2253                 temp = I915_READ(0x46034);
2254                 I915_WRITE(0x46034, temp | (1 << 24));
2255         } else {
2256                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2257         }
2258         I915_WRITE(DP_A, dpa_ctl);
2259
2260         POSTING_READ(DP_A);
2261         udelay(500);
2262 }
2263
2264 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2265 {
2266         struct drm_device *dev = crtc->dev;
2267         struct drm_i915_private *dev_priv = dev->dev_private;
2268         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2269         int pipe = intel_crtc->pipe;
2270         u32 reg, temp;
2271
2272         /* enable normal train */
2273         reg = FDI_TX_CTL(pipe);
2274         temp = I915_READ(reg);
2275         if (IS_IVYBRIDGE(dev)) {
2276                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2277                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2278         } else {
2279                 temp &= ~FDI_LINK_TRAIN_NONE;
2280                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2281         }
2282         I915_WRITE(reg, temp);
2283
2284         reg = FDI_RX_CTL(pipe);
2285         temp = I915_READ(reg);
2286         if (HAS_PCH_CPT(dev)) {
2287                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2288                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2289         } else {
2290                 temp &= ~FDI_LINK_TRAIN_NONE;
2291                 temp |= FDI_LINK_TRAIN_NONE;
2292         }
2293         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2294
2295         /* wait one idle pattern time */
2296         POSTING_READ(reg);
2297         udelay(1000);
2298
2299         /* IVB wants error correction enabled */
2300         if (IS_IVYBRIDGE(dev))
2301                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2302                            FDI_FE_ERRC_ENABLE);
2303 }
2304
2305 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2306 {
2307         struct drm_i915_private *dev_priv = dev->dev_private;
2308         u32 flags = I915_READ(SOUTH_CHICKEN1);
2309
2310         flags |= FDI_PHASE_SYNC_OVR(pipe);
2311         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2312         flags |= FDI_PHASE_SYNC_EN(pipe);
2313         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2314         POSTING_READ(SOUTH_CHICKEN1);
2315 }
2316
2317 /* The FDI link training functions for ILK/Ibexpeak. */
2318 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2319 {
2320         struct drm_device *dev = crtc->dev;
2321         struct drm_i915_private *dev_priv = dev->dev_private;
2322         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2323         int pipe = intel_crtc->pipe;
2324         int plane = intel_crtc->plane;
2325         u32 reg, temp, tries;
2326
2327         /* FDI needs bits from pipe & plane first */
2328         assert_pipe_enabled(dev_priv, pipe);
2329         assert_plane_enabled(dev_priv, plane);
2330
2331         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2332            for train result */
2333         reg = FDI_RX_IMR(pipe);
2334         temp = I915_READ(reg);
2335         temp &= ~FDI_RX_SYMBOL_LOCK;
2336         temp &= ~FDI_RX_BIT_LOCK;
2337         I915_WRITE(reg, temp);
2338         I915_READ(reg);
2339         udelay(150);
2340
2341         /* enable CPU FDI TX and PCH FDI RX */
2342         reg = FDI_TX_CTL(pipe);
2343         temp = I915_READ(reg);
2344         temp &= ~(7 << 19);
2345         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2346         temp &= ~FDI_LINK_TRAIN_NONE;
2347         temp |= FDI_LINK_TRAIN_PATTERN_1;
2348         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2349
2350         reg = FDI_RX_CTL(pipe);
2351         temp = I915_READ(reg);
2352         temp &= ~FDI_LINK_TRAIN_NONE;
2353         temp |= FDI_LINK_TRAIN_PATTERN_1;
2354         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2355
2356         POSTING_READ(reg);
2357         udelay(150);
2358
2359         /* Ironlake workaround, enable clock pointer after FDI enable*/
2360         if (HAS_PCH_IBX(dev)) {
2361                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2362                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2363                            FDI_RX_PHASE_SYNC_POINTER_EN);
2364         }
2365
2366         reg = FDI_RX_IIR(pipe);
2367         for (tries = 0; tries < 5; tries++) {
2368                 temp = I915_READ(reg);
2369                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2370
2371                 if ((temp & FDI_RX_BIT_LOCK)) {
2372                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2373                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2374                         break;
2375                 }
2376         }
2377         if (tries == 5)
2378                 DRM_ERROR("FDI train 1 fail!\n");
2379
2380         /* Train 2 */
2381         reg = FDI_TX_CTL(pipe);
2382         temp = I915_READ(reg);
2383         temp &= ~FDI_LINK_TRAIN_NONE;
2384         temp |= FDI_LINK_TRAIN_PATTERN_2;
2385         I915_WRITE(reg, temp);
2386
2387         reg = FDI_RX_CTL(pipe);
2388         temp = I915_READ(reg);
2389         temp &= ~FDI_LINK_TRAIN_NONE;
2390         temp |= FDI_LINK_TRAIN_PATTERN_2;
2391         I915_WRITE(reg, temp);
2392
2393         POSTING_READ(reg);
2394         udelay(150);
2395
2396         reg = FDI_RX_IIR(pipe);
2397         for (tries = 0; tries < 5; tries++) {
2398                 temp = I915_READ(reg);
2399                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2400
2401                 if (temp & FDI_RX_SYMBOL_LOCK) {
2402                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2403                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2404                         break;
2405                 }
2406         }
2407         if (tries == 5)
2408                 DRM_ERROR("FDI train 2 fail!\n");
2409
2410         DRM_DEBUG_KMS("FDI train done\n");
2411
2412 }
2413
2414 static const int snb_b_fdi_train_param[] = {
2415         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2416         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2417         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2418         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2419 };
2420
2421 /* The FDI link training functions for SNB/Cougarpoint. */
2422 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2423 {
2424         struct drm_device *dev = crtc->dev;
2425         struct drm_i915_private *dev_priv = dev->dev_private;
2426         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2427         int pipe = intel_crtc->pipe;
2428         u32 reg, temp, i, retry;
2429
2430         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2431            for train result */
2432         reg = FDI_RX_IMR(pipe);
2433         temp = I915_READ(reg);
2434         temp &= ~FDI_RX_SYMBOL_LOCK;
2435         temp &= ~FDI_RX_BIT_LOCK;
2436         I915_WRITE(reg, temp);
2437
2438         POSTING_READ(reg);
2439         udelay(150);
2440
2441         /* enable CPU FDI TX and PCH FDI RX */
2442         reg = FDI_TX_CTL(pipe);
2443         temp = I915_READ(reg);
2444         temp &= ~(7 << 19);
2445         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2446         temp &= ~FDI_LINK_TRAIN_NONE;
2447         temp |= FDI_LINK_TRAIN_PATTERN_1;
2448         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2449         /* SNB-B */
2450         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2451         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2452
2453         reg = FDI_RX_CTL(pipe);
2454         temp = I915_READ(reg);
2455         if (HAS_PCH_CPT(dev)) {
2456                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2457                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2458         } else {
2459                 temp &= ~FDI_LINK_TRAIN_NONE;
2460                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2461         }
2462         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2463
2464         POSTING_READ(reg);
2465         udelay(150);
2466
2467         if (HAS_PCH_CPT(dev))
2468                 cpt_phase_pointer_enable(dev, pipe);
2469
2470         for (i = 0; i < 4; i++) {
2471                 reg = FDI_TX_CTL(pipe);
2472                 temp = I915_READ(reg);
2473                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2474                 temp |= snb_b_fdi_train_param[i];
2475                 I915_WRITE(reg, temp);
2476
2477                 POSTING_READ(reg);
2478                 udelay(500);
2479
2480                 for (retry = 0; retry < 5; retry++) {
2481                         reg = FDI_RX_IIR(pipe);
2482                         temp = I915_READ(reg);
2483                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2484                         if (temp & FDI_RX_BIT_LOCK) {
2485                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2486                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2487                                 break;
2488                         }
2489                         udelay(50);
2490                 }
2491                 if (retry < 5)
2492                         break;
2493         }
2494         if (i == 4)
2495                 DRM_ERROR("FDI train 1 fail!\n");
2496
2497         /* Train 2 */
2498         reg = FDI_TX_CTL(pipe);
2499         temp = I915_READ(reg);
2500         temp &= ~FDI_LINK_TRAIN_NONE;
2501         temp |= FDI_LINK_TRAIN_PATTERN_2;
2502         if (IS_GEN6(dev)) {
2503                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2504                 /* SNB-B */
2505                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2506         }
2507         I915_WRITE(reg, temp);
2508
2509         reg = FDI_RX_CTL(pipe);
2510         temp = I915_READ(reg);
2511         if (HAS_PCH_CPT(dev)) {
2512                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2513                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2514         } else {
2515                 temp &= ~FDI_LINK_TRAIN_NONE;
2516                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2517         }
2518         I915_WRITE(reg, temp);
2519
2520         POSTING_READ(reg);
2521         udelay(150);
2522
2523         for (i = 0; i < 4; i++) {
2524                 reg = FDI_TX_CTL(pipe);
2525                 temp = I915_READ(reg);
2526                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2527                 temp |= snb_b_fdi_train_param[i];
2528                 I915_WRITE(reg, temp);
2529
2530                 POSTING_READ(reg);
2531                 udelay(500);
2532
2533                 for (retry = 0; retry < 5; retry++) {
2534                         reg = FDI_RX_IIR(pipe);
2535                         temp = I915_READ(reg);
2536                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537                         if (temp & FDI_RX_SYMBOL_LOCK) {
2538                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2539                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2540                                 break;
2541                         }
2542                         udelay(50);
2543                 }
2544                 if (retry < 5)
2545                         break;
2546         }
2547         if (i == 4)
2548                 DRM_ERROR("FDI train 2 fail!\n");
2549
2550         DRM_DEBUG_KMS("FDI train done.\n");
2551 }
2552
2553 /* Manual link training for Ivy Bridge A0 parts */
2554 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2555 {
2556         struct drm_device *dev = crtc->dev;
2557         struct drm_i915_private *dev_priv = dev->dev_private;
2558         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2559         int pipe = intel_crtc->pipe;
2560         u32 reg, temp, i;
2561
2562         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2563            for train result */
2564         reg = FDI_RX_IMR(pipe);
2565         temp = I915_READ(reg);
2566         temp &= ~FDI_RX_SYMBOL_LOCK;
2567         temp &= ~FDI_RX_BIT_LOCK;
2568         I915_WRITE(reg, temp);
2569
2570         POSTING_READ(reg);
2571         udelay(150);
2572
2573         /* enable CPU FDI TX and PCH FDI RX */
2574         reg = FDI_TX_CTL(pipe);
2575         temp = I915_READ(reg);
2576         temp &= ~(7 << 19);
2577         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2578         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2579         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2580         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2581         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2582         temp |= FDI_COMPOSITE_SYNC;
2583         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2584
2585         reg = FDI_RX_CTL(pipe);
2586         temp = I915_READ(reg);
2587         temp &= ~FDI_LINK_TRAIN_AUTO;
2588         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2589         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2590         temp |= FDI_COMPOSITE_SYNC;
2591         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2592
2593         POSTING_READ(reg);
2594         udelay(150);
2595
2596         if (HAS_PCH_CPT(dev))
2597                 cpt_phase_pointer_enable(dev, pipe);
2598
2599         for (i = 0; i < 4; i++) {
2600                 reg = FDI_TX_CTL(pipe);
2601                 temp = I915_READ(reg);
2602                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2603                 temp |= snb_b_fdi_train_param[i];
2604                 I915_WRITE(reg, temp);
2605
2606                 POSTING_READ(reg);
2607                 udelay(500);
2608
2609                 reg = FDI_RX_IIR(pipe);
2610                 temp = I915_READ(reg);
2611                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2612
2613                 if (temp & FDI_RX_BIT_LOCK ||
2614                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2615                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2616                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2617                         break;
2618                 }
2619         }
2620         if (i == 4)
2621                 DRM_ERROR("FDI train 1 fail!\n");
2622
2623         /* Train 2 */
2624         reg = FDI_TX_CTL(pipe);
2625         temp = I915_READ(reg);
2626         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2627         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2628         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2629         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2630         I915_WRITE(reg, temp);
2631
2632         reg = FDI_RX_CTL(pipe);
2633         temp = I915_READ(reg);
2634         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2635         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2636         I915_WRITE(reg, temp);
2637
2638         POSTING_READ(reg);
2639         udelay(150);
2640
2641         for (i = 0; i < 4; i++) {
2642                 reg = FDI_TX_CTL(pipe);
2643                 temp = I915_READ(reg);
2644                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2645                 temp |= snb_b_fdi_train_param[i];
2646                 I915_WRITE(reg, temp);
2647
2648                 POSTING_READ(reg);
2649                 udelay(500);
2650
2651                 reg = FDI_RX_IIR(pipe);
2652                 temp = I915_READ(reg);
2653                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2654
2655                 if (temp & FDI_RX_SYMBOL_LOCK) {
2656                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2657                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2658                         break;
2659                 }
2660         }
2661         if (i == 4)
2662                 DRM_ERROR("FDI train 2 fail!\n");
2663
2664         DRM_DEBUG_KMS("FDI train done.\n");
2665 }
2666
2667 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2668 {
2669         struct drm_device *dev = intel_crtc->base.dev;
2670         struct drm_i915_private *dev_priv = dev->dev_private;
2671         int pipe = intel_crtc->pipe;
2672         u32 reg, temp;
2673
2674         /* Write the TU size bits so error detection works */
2675         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2676                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2677
2678         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2679         reg = FDI_RX_CTL(pipe);
2680         temp = I915_READ(reg);
2681         temp &= ~((0x7 << 19) | (0x7 << 16));
2682         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2683         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2684         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2685
2686         POSTING_READ(reg);
2687         udelay(200);
2688
2689         /* Switch from Rawclk to PCDclk */
2690         temp = I915_READ(reg);
2691         I915_WRITE(reg, temp | FDI_PCDCLK);
2692
2693         POSTING_READ(reg);
2694         udelay(200);
2695
2696         /* On Haswell, the PLL configuration for ports and pipes is handled
2697          * separately, as part of DDI setup */
2698         if (!IS_HASWELL(dev)) {
2699                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2700                 reg = FDI_TX_CTL(pipe);
2701                 temp = I915_READ(reg);
2702                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2703                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2704
2705                         POSTING_READ(reg);
2706                         udelay(100);
2707                 }
2708         }
2709 }
2710
2711 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2712 {
2713         struct drm_device *dev = intel_crtc->base.dev;
2714         struct drm_i915_private *dev_priv = dev->dev_private;
2715         int pipe = intel_crtc->pipe;
2716         u32 reg, temp;
2717
2718         /* Switch from PCDclk to Rawclk */
2719         reg = FDI_RX_CTL(pipe);
2720         temp = I915_READ(reg);
2721         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2722
2723         /* Disable CPU FDI TX PLL */
2724         reg = FDI_TX_CTL(pipe);
2725         temp = I915_READ(reg);
2726         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2727
2728         POSTING_READ(reg);
2729         udelay(100);
2730
2731         reg = FDI_RX_CTL(pipe);
2732         temp = I915_READ(reg);
2733         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2734
2735         /* Wait for the clocks to turn off. */
2736         POSTING_READ(reg);
2737         udelay(100);
2738 }
2739
2740 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2741 {
2742         struct drm_i915_private *dev_priv = dev->dev_private;
2743         u32 flags = I915_READ(SOUTH_CHICKEN1);
2744
2745         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2746         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2747         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2748         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2749         POSTING_READ(SOUTH_CHICKEN1);
2750 }
2751 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2752 {
2753         struct drm_device *dev = crtc->dev;
2754         struct drm_i915_private *dev_priv = dev->dev_private;
2755         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2756         int pipe = intel_crtc->pipe;
2757         u32 reg, temp;
2758
2759         /* disable CPU FDI tx and PCH FDI rx */
2760         reg = FDI_TX_CTL(pipe);
2761         temp = I915_READ(reg);
2762         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2763         POSTING_READ(reg);
2764
2765         reg = FDI_RX_CTL(pipe);
2766         temp = I915_READ(reg);
2767         temp &= ~(0x7 << 16);
2768         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2769         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2770
2771         POSTING_READ(reg);
2772         udelay(100);
2773
2774         /* Ironlake workaround, disable clock pointer after downing FDI */
2775         if (HAS_PCH_IBX(dev)) {
2776                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2777                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2778                            I915_READ(FDI_RX_CHICKEN(pipe) &
2779                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2780         } else if (HAS_PCH_CPT(dev)) {
2781                 cpt_phase_pointer_disable(dev, pipe);
2782         }
2783
2784         /* still set train pattern 1 */
2785         reg = FDI_TX_CTL(pipe);
2786         temp = I915_READ(reg);
2787         temp &= ~FDI_LINK_TRAIN_NONE;
2788         temp |= FDI_LINK_TRAIN_PATTERN_1;
2789         I915_WRITE(reg, temp);
2790
2791         reg = FDI_RX_CTL(pipe);
2792         temp = I915_READ(reg);
2793         if (HAS_PCH_CPT(dev)) {
2794                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2795                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2796         } else {
2797                 temp &= ~FDI_LINK_TRAIN_NONE;
2798                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2799         }
2800         /* BPC in FDI rx is consistent with that in PIPECONF */
2801         temp &= ~(0x07 << 16);
2802         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2803         I915_WRITE(reg, temp);
2804
2805         POSTING_READ(reg);
2806         udelay(100);
2807 }
2808
2809 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2810 {
2811         struct drm_device *dev = crtc->dev;
2812         struct drm_i915_private *dev_priv = dev->dev_private;
2813         unsigned long flags;
2814         bool pending;
2815
2816         if (atomic_read(&dev_priv->mm.wedged))
2817                 return false;
2818
2819         spin_lock_irqsave(&dev->event_lock, flags);
2820         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2821         spin_unlock_irqrestore(&dev->event_lock, flags);
2822
2823         return pending;
2824 }
2825
2826 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2827 {
2828         struct drm_device *dev = crtc->dev;
2829         struct drm_i915_private *dev_priv = dev->dev_private;
2830
2831         if (crtc->fb == NULL)
2832                 return;
2833
2834         wait_event(dev_priv->pending_flip_queue,
2835                    !intel_crtc_has_pending_flip(crtc));
2836
2837         mutex_lock(&dev->struct_mutex);
2838         intel_finish_fb(crtc->fb);
2839         mutex_unlock(&dev->struct_mutex);
2840 }
2841
2842 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2843 {
2844         struct drm_device *dev = crtc->dev;
2845         struct intel_encoder *intel_encoder;
2846
2847         /*
2848          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2849          * must be driven by its own crtc; no sharing is possible.
2850          */
2851         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2852
2853                 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2854                  * CPU handles all others */
2855                 if (IS_HASWELL(dev)) {
2856                         /* It is still unclear how this will work on PPT, so throw up a warning */
2857                         WARN_ON(!HAS_PCH_LPT(dev));
2858
2859                         if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
2860                                 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2861                                 return true;
2862                         } else {
2863                                 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
2864                                               intel_encoder->type);
2865                                 return false;
2866                         }
2867                 }
2868
2869                 switch (intel_encoder->type) {
2870                 case INTEL_OUTPUT_EDP:
2871                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2872                                 return false;
2873                         continue;
2874                 }
2875         }
2876
2877         return true;
2878 }
2879
2880 /* Program iCLKIP clock to the desired frequency */
2881 static void lpt_program_iclkip(struct drm_crtc *crtc)
2882 {
2883         struct drm_device *dev = crtc->dev;
2884         struct drm_i915_private *dev_priv = dev->dev_private;
2885         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2886         u32 temp;
2887
2888         /* It is necessary to ungate the pixclk gate prior to programming
2889          * the divisors, and gate it back when it is done.
2890          */
2891         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2892
2893         /* Disable SSCCTL */
2894         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2895                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2896                                         SBI_SSCCTL_DISABLE);
2897
2898         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2899         if (crtc->mode.clock == 20000) {
2900                 auxdiv = 1;
2901                 divsel = 0x41;
2902                 phaseinc = 0x20;
2903         } else {
2904                 /* The iCLK virtual clock root frequency is in MHz,
2905                  * but the crtc->mode.clock in in KHz. To get the divisors,
2906                  * it is necessary to divide one by another, so we
2907                  * convert the virtual clock precision to KHz here for higher
2908                  * precision.
2909                  */
2910                 u32 iclk_virtual_root_freq = 172800 * 1000;
2911                 u32 iclk_pi_range = 64;
2912                 u32 desired_divisor, msb_divisor_value, pi_value;
2913
2914                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2915                 msb_divisor_value = desired_divisor / iclk_pi_range;
2916                 pi_value = desired_divisor % iclk_pi_range;
2917
2918                 auxdiv = 0;
2919                 divsel = msb_divisor_value - 2;
2920                 phaseinc = pi_value;
2921         }
2922
2923         /* This should not happen with any sane values */
2924         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2925                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2926         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2927                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2928
2929         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2930                         crtc->mode.clock,
2931                         auxdiv,
2932                         divsel,
2933                         phasedir,
2934                         phaseinc);
2935
2936         /* Program SSCDIVINTPHASE6 */
2937         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2938         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2939         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2940         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2941         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2942         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2943         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2944
2945         intel_sbi_write(dev_priv,
2946                         SBI_SSCDIVINTPHASE6,
2947                         temp);
2948
2949         /* Program SSCAUXDIV */
2950         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2951         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2952         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2953         intel_sbi_write(dev_priv,
2954                         SBI_SSCAUXDIV6,
2955                         temp);
2956
2957
2958         /* Enable modulator and associated divider */
2959         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2960         temp &= ~SBI_SSCCTL_DISABLE;
2961         intel_sbi_write(dev_priv,
2962                         SBI_SSCCTL6,
2963                         temp);
2964
2965         /* Wait for initialization time */
2966         udelay(24);
2967
2968         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2969 }
2970
2971 /*
2972  * Enable PCH resources required for PCH ports:
2973  *   - PCH PLLs
2974  *   - FDI training & RX/TX
2975  *   - update transcoder timings
2976  *   - DP transcoding bits
2977  *   - transcoder
2978  */
2979 static void ironlake_pch_enable(struct drm_crtc *crtc)
2980 {
2981         struct drm_device *dev = crtc->dev;
2982         struct drm_i915_private *dev_priv = dev->dev_private;
2983         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2984         int pipe = intel_crtc->pipe;
2985         u32 reg, temp;
2986
2987         assert_transcoder_disabled(dev_priv, pipe);
2988
2989         /* For PCH output, training FDI link */
2990         dev_priv->display.fdi_link_train(crtc);
2991
2992         intel_enable_pch_pll(intel_crtc);
2993
2994         if (HAS_PCH_LPT(dev)) {
2995                 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
2996                 lpt_program_iclkip(crtc);
2997         } else if (HAS_PCH_CPT(dev)) {
2998                 u32 sel;
2999
3000                 temp = I915_READ(PCH_DPLL_SEL);
3001                 switch (pipe) {
3002                 default:
3003                 case 0:
3004                         temp |= TRANSA_DPLL_ENABLE;
3005                         sel = TRANSA_DPLLB_SEL;
3006                         break;
3007                 case 1:
3008                         temp |= TRANSB_DPLL_ENABLE;
3009                         sel = TRANSB_DPLLB_SEL;
3010                         break;
3011                 case 2:
3012                         temp |= TRANSC_DPLL_ENABLE;
3013                         sel = TRANSC_DPLLB_SEL;
3014                         break;
3015                 }
3016                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3017                         temp |= sel;
3018                 else
3019                         temp &= ~sel;
3020                 I915_WRITE(PCH_DPLL_SEL, temp);
3021         }
3022
3023         /* set transcoder timing, panel must allow it */
3024         assert_panel_unlocked(dev_priv, pipe);
3025         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3026         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3027         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3028
3029         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3030         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3031         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3032         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3033
3034         if (!IS_HASWELL(dev))
3035                 intel_fdi_normal_train(crtc);
3036
3037         /* For PCH DP, enable TRANS_DP_CTL */
3038         if (HAS_PCH_CPT(dev) &&
3039             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3040              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3041                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3042                 reg = TRANS_DP_CTL(pipe);
3043                 temp = I915_READ(reg);
3044                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3045                           TRANS_DP_SYNC_MASK |
3046                           TRANS_DP_BPC_MASK);
3047                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3048                          TRANS_DP_ENH_FRAMING);
3049                 temp |= bpc << 9; /* same format but at 11:9 */
3050
3051                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3052                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3053                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3054                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3055
3056                 switch (intel_trans_dp_port_sel(crtc)) {
3057                 case PCH_DP_B:
3058                         temp |= TRANS_DP_PORT_SEL_B;
3059                         break;
3060                 case PCH_DP_C:
3061                         temp |= TRANS_DP_PORT_SEL_C;
3062                         break;
3063                 case PCH_DP_D:
3064                         temp |= TRANS_DP_PORT_SEL_D;
3065                         break;
3066                 default:
3067                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3068                         temp |= TRANS_DP_PORT_SEL_B;
3069                         break;
3070                 }
3071
3072                 I915_WRITE(reg, temp);
3073         }
3074
3075         intel_enable_transcoder(dev_priv, pipe);
3076 }
3077
3078 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3079 {
3080         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3081
3082         if (pll == NULL)
3083                 return;
3084
3085         if (pll->refcount == 0) {
3086                 WARN(1, "bad PCH PLL refcount\n");
3087                 return;
3088         }
3089
3090         --pll->refcount;
3091         intel_crtc->pch_pll = NULL;
3092 }
3093
3094 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3095 {
3096         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3097         struct intel_pch_pll *pll;
3098         int i;
3099
3100         pll = intel_crtc->pch_pll;
3101         if (pll) {
3102                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3103                               intel_crtc->base.base.id, pll->pll_reg);
3104                 goto prepare;
3105         }
3106
3107         if (HAS_PCH_IBX(dev_priv->dev)) {
3108                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3109                 i = intel_crtc->pipe;
3110                 pll = &dev_priv->pch_plls[i];
3111
3112                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3113                               intel_crtc->base.base.id, pll->pll_reg);
3114
3115                 goto found;
3116         }
3117
3118         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3119                 pll = &dev_priv->pch_plls[i];
3120
3121                 /* Only want to check enabled timings first */
3122                 if (pll->refcount == 0)
3123                         continue;
3124
3125                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3126                     fp == I915_READ(pll->fp0_reg)) {
3127                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3128                                       intel_crtc->base.base.id,
3129                                       pll->pll_reg, pll->refcount, pll->active);
3130
3131                         goto found;
3132                 }
3133         }
3134
3135         /* Ok no matching timings, maybe there's a free one? */
3136         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3137                 pll = &dev_priv->pch_plls[i];
3138                 if (pll->refcount == 0) {
3139                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3140                                       intel_crtc->base.base.id, pll->pll_reg);
3141                         goto found;
3142                 }
3143         }
3144
3145         return NULL;
3146
3147 found:
3148         intel_crtc->pch_pll = pll;
3149         pll->refcount++;
3150         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3151 prepare: /* separate function? */
3152         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3153
3154         /* Wait for the clocks to stabilize before rewriting the regs */
3155         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3156         POSTING_READ(pll->pll_reg);
3157         udelay(150);
3158
3159         I915_WRITE(pll->fp0_reg, fp);
3160         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3161         pll->on = false;
3162         return pll;
3163 }
3164
3165 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3166 {
3167         struct drm_i915_private *dev_priv = dev->dev_private;
3168         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3169         u32 temp;
3170
3171         temp = I915_READ(dslreg);
3172         udelay(500);
3173         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3174                 /* Without this, mode sets may fail silently on FDI */
3175                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3176                 udelay(250);
3177                 I915_WRITE(tc2reg, 0);
3178                 if (wait_for(I915_READ(dslreg) != temp, 5))
3179                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3180         }
3181 }
3182
3183 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3184 {
3185         struct drm_device *dev = crtc->dev;
3186         struct drm_i915_private *dev_priv = dev->dev_private;
3187         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3188         struct intel_encoder *encoder;
3189         int pipe = intel_crtc->pipe;
3190         int plane = intel_crtc->plane;
3191         u32 temp;
3192         bool is_pch_port;
3193
3194         WARN_ON(!crtc->enabled);
3195
3196         if (intel_crtc->active)
3197                 return;
3198
3199         intel_crtc->active = true;
3200         intel_update_watermarks(dev);
3201
3202         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3203                 temp = I915_READ(PCH_LVDS);
3204                 if ((temp & LVDS_PORT_EN) == 0)
3205                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3206         }
3207
3208         is_pch_port = intel_crtc_driving_pch(crtc);
3209
3210         if (is_pch_port) {
3211                 ironlake_fdi_pll_enable(intel_crtc);
3212         } else {
3213                 assert_fdi_tx_disabled(dev_priv, pipe);
3214                 assert_fdi_rx_disabled(dev_priv, pipe);
3215         }
3216
3217         for_each_encoder_on_crtc(dev, crtc, encoder)
3218                 if (encoder->pre_enable)
3219                         encoder->pre_enable(encoder);
3220
3221         /* Enable panel fitting for LVDS */
3222         if (dev_priv->pch_pf_size &&
3223             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3224                 /* Force use of hard-coded filter coefficients
3225                  * as some pre-programmed values are broken,
3226                  * e.g. x201.
3227                  */
3228                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3229                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3230                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3231         }
3232
3233         /*
3234          * On ILK+ LUT must be loaded before the pipe is running but with
3235          * clocks enabled
3236          */
3237         intel_crtc_load_lut(crtc);
3238
3239         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3240         intel_enable_plane(dev_priv, plane, pipe);
3241
3242         if (is_pch_port)
3243                 ironlake_pch_enable(crtc);
3244
3245         mutex_lock(&dev->struct_mutex);
3246         intel_update_fbc(dev);
3247         mutex_unlock(&dev->struct_mutex);
3248
3249         intel_crtc_update_cursor(crtc, true);
3250
3251         for_each_encoder_on_crtc(dev, crtc, encoder)
3252                 encoder->enable(encoder);
3253
3254         if (HAS_PCH_CPT(dev))
3255                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3256
3257         /*
3258          * There seems to be a race in PCH platform hw (at least on some
3259          * outputs) where an enabled pipe still completes any pageflip right
3260          * away (as if the pipe is off) instead of waiting for vblank. As soon
3261          * as the first vblank happend, everything works as expected. Hence just
3262          * wait for one vblank before returning to avoid strange things
3263          * happening.
3264          */
3265         intel_wait_for_vblank(dev, intel_crtc->pipe);
3266 }
3267
3268 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3269 {
3270         struct drm_device *dev = crtc->dev;
3271         struct drm_i915_private *dev_priv = dev->dev_private;
3272         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3273         struct intel_encoder *encoder;
3274         int pipe = intel_crtc->pipe;
3275         int plane = intel_crtc->plane;
3276         u32 reg, temp;
3277
3278
3279         if (!intel_crtc->active)
3280                 return;
3281
3282         for_each_encoder_on_crtc(dev, crtc, encoder)
3283                 encoder->disable(encoder);
3284
3285         intel_crtc_wait_for_pending_flips(crtc);
3286         drm_vblank_off(dev, pipe);
3287         intel_crtc_update_cursor(crtc, false);
3288
3289         intel_disable_plane(dev_priv, plane, pipe);
3290
3291         if (dev_priv->cfb_plane == plane)
3292                 intel_disable_fbc(dev);
3293
3294         intel_disable_pipe(dev_priv, pipe);
3295
3296         /* Disable PF */
3297         I915_WRITE(PF_CTL(pipe), 0);
3298         I915_WRITE(PF_WIN_SZ(pipe), 0);
3299
3300         for_each_encoder_on_crtc(dev, crtc, encoder)
3301                 if (encoder->post_disable)
3302                         encoder->post_disable(encoder);
3303
3304         ironlake_fdi_disable(crtc);
3305
3306         intel_disable_transcoder(dev_priv, pipe);
3307
3308         if (HAS_PCH_CPT(dev)) {
3309                 /* disable TRANS_DP_CTL */
3310                 reg = TRANS_DP_CTL(pipe);
3311                 temp = I915_READ(reg);
3312                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3313                 temp |= TRANS_DP_PORT_SEL_NONE;
3314                 I915_WRITE(reg, temp);
3315
3316                 /* disable DPLL_SEL */
3317                 temp = I915_READ(PCH_DPLL_SEL);
3318                 switch (pipe) {
3319                 case 0:
3320                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3321                         break;
3322                 case 1:
3323                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3324                         break;
3325                 case 2:
3326                         /* C shares PLL A or B */
3327                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3328                         break;
3329                 default:
3330                         BUG(); /* wtf */
3331                 }
3332                 I915_WRITE(PCH_DPLL_SEL, temp);
3333         }
3334
3335         /* disable PCH DPLL */
3336         intel_disable_pch_pll(intel_crtc);
3337
3338         ironlake_fdi_pll_disable(intel_crtc);
3339
3340         intel_crtc->active = false;
3341         intel_update_watermarks(dev);
3342
3343         mutex_lock(&dev->struct_mutex);
3344         intel_update_fbc(dev);
3345         mutex_unlock(&dev->struct_mutex);
3346 }
3347
3348 static void ironlake_crtc_off(struct drm_crtc *crtc)
3349 {
3350         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3351         intel_put_pch_pll(intel_crtc);
3352 }
3353
3354 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3355 {
3356         if (!enable && intel_crtc->overlay) {
3357                 struct drm_device *dev = intel_crtc->base.dev;
3358                 struct drm_i915_private *dev_priv = dev->dev_private;
3359
3360                 mutex_lock(&dev->struct_mutex);
3361                 dev_priv->mm.interruptible = false;
3362                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3363                 dev_priv->mm.interruptible = true;
3364                 mutex_unlock(&dev->struct_mutex);
3365         }
3366
3367         /* Let userspace switch the overlay on again. In most cases userspace
3368          * has to recompute where to put it anyway.
3369          */
3370 }
3371
3372 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3373 {
3374         struct drm_device *dev = crtc->dev;
3375         struct drm_i915_private *dev_priv = dev->dev_private;
3376         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3377         struct intel_encoder *encoder;
3378         int pipe = intel_crtc->pipe;
3379         int plane = intel_crtc->plane;
3380
3381         WARN_ON(!crtc->enabled);
3382
3383         if (intel_crtc->active)
3384                 return;
3385
3386         intel_crtc->active = true;
3387         intel_update_watermarks(dev);
3388
3389         intel_enable_pll(dev_priv, pipe);
3390         intel_enable_pipe(dev_priv, pipe, false);
3391         intel_enable_plane(dev_priv, plane, pipe);
3392
3393         intel_crtc_load_lut(crtc);
3394         intel_update_fbc(dev);
3395
3396         /* Give the overlay scaler a chance to enable if it's on this pipe */
3397         intel_crtc_dpms_overlay(intel_crtc, true);
3398         intel_crtc_update_cursor(crtc, true);
3399
3400         for_each_encoder_on_crtc(dev, crtc, encoder)
3401                 encoder->enable(encoder);
3402 }
3403
3404 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3405 {
3406         struct drm_device *dev = crtc->dev;
3407         struct drm_i915_private *dev_priv = dev->dev_private;
3408         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3409         struct intel_encoder *encoder;
3410         int pipe = intel_crtc->pipe;
3411         int plane = intel_crtc->plane;
3412
3413
3414         if (!intel_crtc->active)
3415                 return;
3416
3417         for_each_encoder_on_crtc(dev, crtc, encoder)
3418                 encoder->disable(encoder);
3419
3420         /* Give the overlay scaler a chance to disable if it's on this pipe */
3421         intel_crtc_wait_for_pending_flips(crtc);
3422         drm_vblank_off(dev, pipe);
3423         intel_crtc_dpms_overlay(intel_crtc, false);
3424         intel_crtc_update_cursor(crtc, false);
3425
3426         if (dev_priv->cfb_plane == plane)
3427                 intel_disable_fbc(dev);
3428
3429         intel_disable_plane(dev_priv, plane, pipe);
3430         intel_disable_pipe(dev_priv, pipe);
3431         intel_disable_pll(dev_priv, pipe);
3432
3433         intel_crtc->active = false;
3434         intel_update_fbc(dev);
3435         intel_update_watermarks(dev);
3436 }
3437
3438 static void i9xx_crtc_off(struct drm_crtc *crtc)
3439 {
3440 }
3441
3442 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3443                                     bool enabled)
3444 {
3445         struct drm_device *dev = crtc->dev;
3446         struct drm_i915_master_private *master_priv;
3447         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3448         int pipe = intel_crtc->pipe;
3449
3450         if (!dev->primary->master)
3451                 return;
3452
3453         master_priv = dev->primary->master->driver_priv;
3454         if (!master_priv->sarea_priv)
3455                 return;
3456
3457         switch (pipe) {
3458         case 0:
3459                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3460                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3461                 break;
3462         case 1:
3463                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3464                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3465                 break;
3466         default:
3467                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3468                 break;
3469         }
3470 }
3471
3472 /**
3473  * Sets the power management mode of the pipe and plane.
3474  */
3475 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3476 {
3477         struct drm_device *dev = crtc->dev;
3478         struct drm_i915_private *dev_priv = dev->dev_private;
3479         struct intel_encoder *intel_encoder;
3480         bool enable = false;
3481
3482         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3483                 enable |= intel_encoder->connectors_active;
3484
3485         if (enable)
3486                 dev_priv->display.crtc_enable(crtc);
3487         else
3488                 dev_priv->display.crtc_disable(crtc);
3489
3490         intel_crtc_update_sarea(crtc, enable);
3491 }
3492
3493 static void intel_crtc_noop(struct drm_crtc *crtc)
3494 {
3495 }
3496
3497 static void intel_crtc_disable(struct drm_crtc *crtc)
3498 {
3499         struct drm_device *dev = crtc->dev;
3500         struct drm_connector *connector;
3501         struct drm_i915_private *dev_priv = dev->dev_private;
3502
3503         /* crtc should still be enabled when we disable it. */
3504         WARN_ON(!crtc->enabled);
3505
3506         dev_priv->display.crtc_disable(crtc);
3507         intel_crtc_update_sarea(crtc, false);
3508         dev_priv->display.off(crtc);
3509
3510         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3511         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3512
3513         if (crtc->fb) {
3514                 mutex_lock(&dev->struct_mutex);
3515                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3516                 mutex_unlock(&dev->struct_mutex);
3517                 crtc->fb = NULL;
3518         }
3519
3520         /* Update computed state. */
3521         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3522                 if (!connector->encoder || !connector->encoder->crtc)
3523                         continue;
3524
3525                 if (connector->encoder->crtc != crtc)
3526                         continue;
3527
3528                 connector->dpms = DRM_MODE_DPMS_OFF;
3529                 to_intel_encoder(connector->encoder)->connectors_active = false;
3530         }
3531 }
3532
3533 void intel_modeset_disable(struct drm_device *dev)
3534 {
3535         struct drm_crtc *crtc;
3536
3537         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3538                 if (crtc->enabled)
3539                         intel_crtc_disable(crtc);
3540         }
3541 }
3542
3543 void intel_encoder_noop(struct drm_encoder *encoder)
3544 {
3545 }
3546
3547 void intel_encoder_destroy(struct drm_encoder *encoder)
3548 {
3549         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3550
3551         drm_encoder_cleanup(encoder);
3552         kfree(intel_encoder);
3553 }
3554
3555 /* Simple dpms helper for encodres with just one connector, no cloning and only
3556  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3557  * state of the entire output pipe. */
3558 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3559 {
3560         if (mode == DRM_MODE_DPMS_ON) {
3561                 encoder->connectors_active = true;
3562
3563                 intel_crtc_update_dpms(encoder->base.crtc);
3564         } else {
3565                 encoder->connectors_active = false;
3566
3567                 intel_crtc_update_dpms(encoder->base.crtc);
3568         }
3569 }
3570
3571 /* Cross check the actual hw state with our own modeset state tracking (and it's
3572  * internal consistency). */
3573 static void intel_connector_check_state(struct intel_connector *connector)
3574 {
3575         if (connector->get_hw_state(connector)) {
3576                 struct intel_encoder *encoder = connector->encoder;
3577                 struct drm_crtc *crtc;
3578                 bool encoder_enabled;
3579                 enum pipe pipe;
3580
3581                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3582                               connector->base.base.id,
3583                               drm_get_connector_name(&connector->base));
3584
3585                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3586                      "wrong connector dpms state\n");
3587                 WARN(connector->base.encoder != &encoder->base,
3588                      "active connector not linked to encoder\n");
3589                 WARN(!encoder->connectors_active,
3590                      "encoder->connectors_active not set\n");
3591
3592                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3593                 WARN(!encoder_enabled, "encoder not enabled\n");
3594                 if (WARN_ON(!encoder->base.crtc))
3595                         return;
3596
3597                 crtc = encoder->base.crtc;
3598
3599                 WARN(!crtc->enabled, "crtc not enabled\n");
3600                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3601                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3602                      "encoder active on the wrong pipe\n");
3603         }
3604 }
3605
3606 /* Even simpler default implementation, if there's really no special case to
3607  * consider. */
3608 void intel_connector_dpms(struct drm_connector *connector, int mode)
3609 {
3610         struct intel_encoder *encoder = intel_attached_encoder(connector);
3611
3612         /* All the simple cases only support two dpms states. */
3613         if (mode != DRM_MODE_DPMS_ON)
3614                 mode = DRM_MODE_DPMS_OFF;
3615
3616         if (mode == connector->dpms)
3617                 return;
3618
3619         connector->dpms = mode;
3620
3621         /* Only need to change hw state when actually enabled */
3622         if (encoder->base.crtc)
3623                 intel_encoder_dpms(encoder, mode);
3624         else
3625                 WARN_ON(encoder->connectors_active != false);
3626
3627         intel_modeset_check_state(connector->dev);
3628 }
3629
3630 /* Simple connector->get_hw_state implementation for encoders that support only
3631  * one connector and no cloning and hence the encoder state determines the state
3632  * of the connector. */
3633 bool intel_connector_get_hw_state(struct intel_connector *connector)
3634 {
3635         enum pipe pipe = 0;
3636         struct intel_encoder *encoder = connector->encoder;
3637
3638         return encoder->get_hw_state(encoder, &pipe);
3639 }
3640
3641 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3642                                   const struct drm_display_mode *mode,
3643                                   struct drm_display_mode *adjusted_mode)
3644 {
3645         struct drm_device *dev = crtc->dev;
3646
3647         if (HAS_PCH_SPLIT(dev)) {
3648                 /* FDI link clock is fixed at 2.7G */
3649                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3650                         return false;
3651         }
3652
3653         /* All interlaced capable intel hw wants timings in frames. Note though
3654          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3655          * timings, so we need to be careful not to clobber these.*/
3656         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3657                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3658
3659         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3660          * with a hsync front porch of 0.
3661          */
3662         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3663                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3664                 return false;
3665
3666         return true;
3667 }
3668
3669 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3670 {
3671         return 400000; /* FIXME */
3672 }
3673
3674 static int i945_get_display_clock_speed(struct drm_device *dev)
3675 {
3676         return 400000;
3677 }
3678
3679 static int i915_get_display_clock_speed(struct drm_device *dev)
3680 {
3681         return 333000;
3682 }
3683
3684 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3685 {
3686         return 200000;
3687 }
3688
3689 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3690 {
3691         u16 gcfgc = 0;
3692
3693         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3694
3695         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3696                 return 133000;
3697         else {
3698                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3699                 case GC_DISPLAY_CLOCK_333_MHZ:
3700                         return 333000;
3701                 default:
3702                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3703                         return 190000;
3704                 }
3705         }
3706 }
3707
3708 static int i865_get_display_clock_speed(struct drm_device *dev)
3709 {
3710         return 266000;
3711 }
3712
3713 static int i855_get_display_clock_speed(struct drm_device *dev)
3714 {
3715         u16 hpllcc = 0;
3716         /* Assume that the hardware is in the high speed state.  This
3717          * should be the default.
3718          */
3719         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3720         case GC_CLOCK_133_200:
3721         case GC_CLOCK_100_200:
3722                 return 200000;
3723         case GC_CLOCK_166_250:
3724                 return 250000;
3725         case GC_CLOCK_100_133:
3726                 return 133000;
3727         }
3728
3729         /* Shouldn't happen */
3730         return 0;
3731 }
3732
3733 static int i830_get_display_clock_speed(struct drm_device *dev)
3734 {
3735         return 133000;
3736 }
3737
3738 struct fdi_m_n {
3739         u32        tu;
3740         u32        gmch_m;
3741         u32        gmch_n;
3742         u32        link_m;
3743         u32        link_n;
3744 };
3745
3746 static void
3747 fdi_reduce_ratio(u32 *num, u32 *den)
3748 {
3749         while (*num > 0xffffff || *den > 0xffffff) {
3750                 *num >>= 1;
3751                 *den >>= 1;
3752         }
3753 }
3754
3755 static void
3756 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3757                      int link_clock, struct fdi_m_n *m_n)
3758 {
3759         m_n->tu = 64; /* default size */
3760
3761         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3762         m_n->gmch_m = bits_per_pixel * pixel_clock;
3763         m_n->gmch_n = link_clock * nlanes * 8;
3764         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3765
3766         m_n->link_m = pixel_clock;
3767         m_n->link_n = link_clock;
3768         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3769 }
3770
3771 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3772 {
3773         if (i915_panel_use_ssc >= 0)
3774                 return i915_panel_use_ssc != 0;
3775         return dev_priv->lvds_use_ssc
3776                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3777 }
3778
3779 /**
3780  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3781  * @crtc: CRTC structure
3782  * @mode: requested mode
3783  *
3784  * A pipe may be connected to one or more outputs.  Based on the depth of the
3785  * attached framebuffer, choose a good color depth to use on the pipe.
3786  *
3787  * If possible, match the pipe depth to the fb depth.  In some cases, this
3788  * isn't ideal, because the connected output supports a lesser or restricted
3789  * set of depths.  Resolve that here:
3790  *    LVDS typically supports only 6bpc, so clamp down in that case
3791  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3792  *    Displays may support a restricted set as well, check EDID and clamp as
3793  *      appropriate.
3794  *    DP may want to dither down to 6bpc to fit larger modes
3795  *
3796  * RETURNS:
3797  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3798  * true if they don't match).
3799  */
3800 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3801                                          struct drm_framebuffer *fb,
3802                                          unsigned int *pipe_bpp,
3803                                          struct drm_display_mode *mode)
3804 {
3805         struct drm_device *dev = crtc->dev;
3806         struct drm_i915_private *dev_priv = dev->dev_private;
3807         struct drm_connector *connector;
3808         struct intel_encoder *intel_encoder;
3809         unsigned int display_bpc = UINT_MAX, bpc;
3810
3811         /* Walk the encoders & connectors on this crtc, get min bpc */
3812         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3813
3814                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3815                         unsigned int lvds_bpc;
3816
3817                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3818                             LVDS_A3_POWER_UP)
3819                                 lvds_bpc = 8;
3820                         else
3821                                 lvds_bpc = 6;
3822
3823                         if (lvds_bpc < display_bpc) {
3824                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3825                                 display_bpc = lvds_bpc;
3826                         }
3827                         continue;
3828                 }
3829
3830                 /* Not one of the known troublemakers, check the EDID */
3831                 list_for_each_entry(connector, &dev->mode_config.connector_list,
3832                                     head) {
3833                         if (connector->encoder != &intel_encoder->base)
3834                                 continue;
3835
3836                         /* Don't use an invalid EDID bpc value */
3837                         if (connector->display_info.bpc &&
3838                             connector->display_info.bpc < display_bpc) {
3839                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3840                                 display_bpc = connector->display_info.bpc;
3841                         }
3842                 }
3843
3844                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
3845                         /* Use VBT settings if we have an eDP panel */
3846                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
3847
3848                         if (edp_bpc < display_bpc) {
3849                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
3850                                 display_bpc = edp_bpc;
3851                         }
3852                         continue;
3853                 }
3854
3855                 /*
3856                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3857                  * through, clamp it down.  (Note: >12bpc will be caught below.)
3858                  */
3859                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3860                         if (display_bpc > 8 && display_bpc < 12) {
3861                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3862                                 display_bpc = 12;
3863                         } else {
3864                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3865                                 display_bpc = 8;
3866                         }
3867                 }
3868         }
3869
3870         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3871                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3872                 display_bpc = 6;
3873         }
3874
3875         /*
3876          * We could just drive the pipe at the highest bpc all the time and
3877          * enable dithering as needed, but that costs bandwidth.  So choose
3878          * the minimum value that expresses the full color range of the fb but
3879          * also stays within the max display bpc discovered above.
3880          */
3881
3882         switch (fb->depth) {
3883         case 8:
3884                 bpc = 8; /* since we go through a colormap */
3885                 break;
3886         case 15:
3887         case 16:
3888                 bpc = 6; /* min is 18bpp */
3889                 break;
3890         case 24:
3891                 bpc = 8;
3892                 break;
3893         case 30:
3894                 bpc = 10;
3895                 break;
3896         case 48:
3897                 bpc = 12;
3898                 break;
3899         default:
3900                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3901                 bpc = min((unsigned int)8, display_bpc);
3902                 break;
3903         }
3904
3905         display_bpc = min(display_bpc, bpc);
3906
3907         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3908                       bpc, display_bpc);
3909
3910         *pipe_bpp = display_bpc * 3;
3911
3912         return display_bpc != bpc;
3913 }
3914
3915 static int vlv_get_refclk(struct drm_crtc *crtc)
3916 {
3917         struct drm_device *dev = crtc->dev;
3918         struct drm_i915_private *dev_priv = dev->dev_private;
3919         int refclk = 27000; /* for DP & HDMI */
3920
3921         return 100000; /* only one validated so far */
3922
3923         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
3924                 refclk = 96000;
3925         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3926                 if (intel_panel_use_ssc(dev_priv))
3927                         refclk = 100000;
3928                 else
3929                         refclk = 96000;
3930         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3931                 refclk = 100000;
3932         }
3933
3934         return refclk;
3935 }
3936
3937 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3938 {
3939         struct drm_device *dev = crtc->dev;
3940         struct drm_i915_private *dev_priv = dev->dev_private;
3941         int refclk;
3942
3943         if (IS_VALLEYVIEW(dev)) {
3944                 refclk = vlv_get_refclk(crtc);
3945         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3946             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3947                 refclk = dev_priv->lvds_ssc_freq * 1000;
3948                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3949                               refclk / 1000);
3950         } else if (!IS_GEN2(dev)) {
3951                 refclk = 96000;
3952         } else {
3953                 refclk = 48000;
3954         }
3955
3956         return refclk;
3957 }
3958
3959 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3960                                       intel_clock_t *clock)
3961 {
3962         /* SDVO TV has fixed PLL values depend on its clock range,
3963            this mirrors vbios setting. */
3964         if (adjusted_mode->clock >= 100000
3965             && adjusted_mode->clock < 140500) {
3966                 clock->p1 = 2;
3967                 clock->p2 = 10;
3968                 clock->n = 3;
3969                 clock->m1 = 16;
3970                 clock->m2 = 8;
3971         } else if (adjusted_mode->clock >= 140500
3972                    && adjusted_mode->clock <= 200000) {
3973                 clock->p1 = 1;
3974                 clock->p2 = 10;
3975                 clock->n = 6;
3976                 clock->m1 = 12;
3977                 clock->m2 = 8;
3978         }
3979 }
3980
3981 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3982                                      intel_clock_t *clock,
3983                                      intel_clock_t *reduced_clock)
3984 {
3985         struct drm_device *dev = crtc->dev;
3986         struct drm_i915_private *dev_priv = dev->dev_private;
3987         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3988         int pipe = intel_crtc->pipe;
3989         u32 fp, fp2 = 0;
3990
3991         if (IS_PINEVIEW(dev)) {
3992                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3993                 if (reduced_clock)
3994                         fp2 = (1 << reduced_clock->n) << 16 |
3995                                 reduced_clock->m1 << 8 | reduced_clock->m2;
3996         } else {
3997                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3998                 if (reduced_clock)
3999                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4000                                 reduced_clock->m2;
4001         }
4002
4003         I915_WRITE(FP0(pipe), fp);
4004
4005         intel_crtc->lowfreq_avail = false;
4006         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4007             reduced_clock && i915_powersave) {
4008                 I915_WRITE(FP1(pipe), fp2);
4009                 intel_crtc->lowfreq_avail = true;
4010         } else {
4011                 I915_WRITE(FP1(pipe), fp);
4012         }
4013 }
4014
4015 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4016                               struct drm_display_mode *adjusted_mode)
4017 {
4018         struct drm_device *dev = crtc->dev;
4019         struct drm_i915_private *dev_priv = dev->dev_private;
4020         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4021         int pipe = intel_crtc->pipe;
4022         u32 temp;
4023
4024         temp = I915_READ(LVDS);
4025         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4026         if (pipe == 1) {
4027                 temp |= LVDS_PIPEB_SELECT;
4028         } else {
4029                 temp &= ~LVDS_PIPEB_SELECT;
4030         }
4031         /* set the corresponsding LVDS_BORDER bit */
4032         temp |= dev_priv->lvds_border_bits;
4033         /* Set the B0-B3 data pairs corresponding to whether we're going to
4034          * set the DPLLs for dual-channel mode or not.
4035          */
4036         if (clock->p2 == 7)
4037                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4038         else
4039                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4040
4041         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4042          * appropriately here, but we need to look more thoroughly into how
4043          * panels behave in the two modes.
4044          */
4045         /* set the dithering flag on LVDS as needed */
4046         if (INTEL_INFO(dev)->gen >= 4) {
4047                 if (dev_priv->lvds_dither)
4048                         temp |= LVDS_ENABLE_DITHER;
4049                 else
4050                         temp &= ~LVDS_ENABLE_DITHER;
4051         }
4052         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4053         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4054                 temp |= LVDS_HSYNC_POLARITY;
4055         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4056                 temp |= LVDS_VSYNC_POLARITY;
4057         I915_WRITE(LVDS, temp);
4058 }
4059
4060 static void vlv_update_pll(struct drm_crtc *crtc,
4061                            struct drm_display_mode *mode,
4062                            struct drm_display_mode *adjusted_mode,
4063                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4064                            int refclk, int num_connectors)
4065 {
4066         struct drm_device *dev = crtc->dev;
4067         struct drm_i915_private *dev_priv = dev->dev_private;
4068         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4069         int pipe = intel_crtc->pipe;
4070         u32 dpll, mdiv, pdiv;
4071         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4072         bool is_hdmi;
4073
4074         is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4075
4076         bestn = clock->n;
4077         bestm1 = clock->m1;
4078         bestm2 = clock->m2;
4079         bestp1 = clock->p1;
4080         bestp2 = clock->p2;
4081
4082         /* Enable DPIO clock input */
4083         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4084                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4085         I915_WRITE(DPLL(pipe), dpll);
4086         POSTING_READ(DPLL(pipe));
4087
4088         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4089         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4090         mdiv |= ((bestn << DPIO_N_SHIFT));
4091         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4092         mdiv |= (1 << DPIO_K_SHIFT);
4093         mdiv |= DPIO_ENABLE_CALIBRATION;
4094         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4095
4096         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4097
4098         pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) |
4099                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4100                 (8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4101         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4102
4103         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051);
4104
4105         dpll |= DPLL_VCO_ENABLE;
4106         I915_WRITE(DPLL(pipe), dpll);
4107         POSTING_READ(DPLL(pipe));
4108         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4109                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4110
4111         if (is_hdmi) {
4112                 u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4113
4114                 if (temp > 1)
4115                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4116                 else
4117                         temp = 0;
4118
4119                 I915_WRITE(DPLL_MD(pipe), temp);
4120                 POSTING_READ(DPLL_MD(pipe));
4121         }
4122
4123         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */
4124 }
4125
4126 static void i9xx_update_pll(struct drm_crtc *crtc,
4127                             struct drm_display_mode *mode,
4128                             struct drm_display_mode *adjusted_mode,
4129                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4130                             int num_connectors)
4131 {
4132         struct drm_device *dev = crtc->dev;
4133         struct drm_i915_private *dev_priv = dev->dev_private;
4134         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4135         int pipe = intel_crtc->pipe;
4136         u32 dpll;
4137         bool is_sdvo;
4138
4139         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4140                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4141
4142         dpll = DPLL_VGA_MODE_DIS;
4143
4144         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4145                 dpll |= DPLLB_MODE_LVDS;
4146         else
4147                 dpll |= DPLLB_MODE_DAC_SERIAL;
4148         if (is_sdvo) {
4149                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4150                 if (pixel_multiplier > 1) {
4151                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4152                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4153                 }
4154                 dpll |= DPLL_DVO_HIGH_SPEED;
4155         }
4156         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4157                 dpll |= DPLL_DVO_HIGH_SPEED;
4158
4159         /* compute bitmask from p1 value */
4160         if (IS_PINEVIEW(dev))
4161                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4162         else {
4163                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4164                 if (IS_G4X(dev) && reduced_clock)
4165                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4166         }
4167         switch (clock->p2) {
4168         case 5:
4169                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4170                 break;
4171         case 7:
4172                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4173                 break;
4174         case 10:
4175                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4176                 break;
4177         case 14:
4178                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4179                 break;
4180         }
4181         if (INTEL_INFO(dev)->gen >= 4)
4182                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4183
4184         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4185                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4186         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4187                 /* XXX: just matching BIOS for now */
4188                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4189                 dpll |= 3;
4190         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4191                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4192                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4193         else
4194                 dpll |= PLL_REF_INPUT_DREFCLK;
4195
4196         dpll |= DPLL_VCO_ENABLE;
4197         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4198         POSTING_READ(DPLL(pipe));
4199         udelay(150);
4200
4201         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4202          * This is an exception to the general rule that mode_set doesn't turn
4203          * things on.
4204          */
4205         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4206                 intel_update_lvds(crtc, clock, adjusted_mode);
4207
4208         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4209                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4210
4211         I915_WRITE(DPLL(pipe), dpll);
4212
4213         /* Wait for the clocks to stabilize. */
4214         POSTING_READ(DPLL(pipe));
4215         udelay(150);
4216
4217         if (INTEL_INFO(dev)->gen >= 4) {
4218                 u32 temp = 0;
4219                 if (is_sdvo) {
4220                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4221                         if (temp > 1)
4222                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4223                         else
4224                                 temp = 0;
4225                 }
4226                 I915_WRITE(DPLL_MD(pipe), temp);
4227         } else {
4228                 /* The pixel multiplier can only be updated once the
4229                  * DPLL is enabled and the clocks are stable.
4230                  *
4231                  * So write it again.
4232                  */
4233                 I915_WRITE(DPLL(pipe), dpll);
4234         }
4235 }
4236
4237 static void i8xx_update_pll(struct drm_crtc *crtc,
4238                             struct drm_display_mode *adjusted_mode,
4239                             intel_clock_t *clock,
4240                             int num_connectors)
4241 {
4242         struct drm_device *dev = crtc->dev;
4243         struct drm_i915_private *dev_priv = dev->dev_private;
4244         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4245         int pipe = intel_crtc->pipe;
4246         u32 dpll;
4247
4248         dpll = DPLL_VGA_MODE_DIS;
4249
4250         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4251                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4252         } else {
4253                 if (clock->p1 == 2)
4254                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4255                 else
4256                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4257                 if (clock->p2 == 4)
4258                         dpll |= PLL_P2_DIVIDE_BY_4;
4259         }
4260
4261         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4262                 /* XXX: just matching BIOS for now */
4263                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4264                 dpll |= 3;
4265         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4266                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4267                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4268         else
4269                 dpll |= PLL_REF_INPUT_DREFCLK;
4270
4271         dpll |= DPLL_VCO_ENABLE;
4272         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4273         POSTING_READ(DPLL(pipe));
4274         udelay(150);
4275
4276         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4277          * This is an exception to the general rule that mode_set doesn't turn
4278          * things on.
4279          */
4280         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4281                 intel_update_lvds(crtc, clock, adjusted_mode);
4282
4283         I915_WRITE(DPLL(pipe), dpll);
4284
4285         /* Wait for the clocks to stabilize. */
4286         POSTING_READ(DPLL(pipe));
4287         udelay(150);
4288
4289         /* The pixel multiplier can only be updated once the
4290          * DPLL is enabled and the clocks are stable.
4291          *
4292          * So write it again.
4293          */
4294         I915_WRITE(DPLL(pipe), dpll);
4295 }
4296
4297 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4298                               struct drm_display_mode *mode,
4299                               struct drm_display_mode *adjusted_mode,
4300                               int x, int y,
4301                               struct drm_framebuffer *fb)
4302 {
4303         struct drm_device *dev = crtc->dev;
4304         struct drm_i915_private *dev_priv = dev->dev_private;
4305         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4306         int pipe = intel_crtc->pipe;
4307         int plane = intel_crtc->plane;
4308         int refclk, num_connectors = 0;
4309         intel_clock_t clock, reduced_clock;
4310         u32 dspcntr, pipeconf, vsyncshift;
4311         bool ok, has_reduced_clock = false, is_sdvo = false;
4312         bool is_lvds = false, is_tv = false, is_dp = false;
4313         struct intel_encoder *encoder;
4314         const intel_limit_t *limit;
4315         int ret;
4316
4317         for_each_encoder_on_crtc(dev, crtc, encoder) {
4318                 switch (encoder->type) {
4319                 case INTEL_OUTPUT_LVDS:
4320                         is_lvds = true;
4321                         break;
4322                 case INTEL_OUTPUT_SDVO:
4323                 case INTEL_OUTPUT_HDMI:
4324                         is_sdvo = true;
4325                         if (encoder->needs_tv_clock)
4326                                 is_tv = true;
4327                         break;
4328                 case INTEL_OUTPUT_TVOUT:
4329                         is_tv = true;
4330                         break;
4331                 case INTEL_OUTPUT_DISPLAYPORT:
4332                         is_dp = true;
4333                         break;
4334                 }
4335
4336                 num_connectors++;
4337         }
4338
4339         refclk = i9xx_get_refclk(crtc, num_connectors);
4340
4341         /*
4342          * Returns a set of divisors for the desired target clock with the given
4343          * refclk, or FALSE.  The returned values represent the clock equation:
4344          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4345          */
4346         limit = intel_limit(crtc, refclk);
4347         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4348                              &clock);
4349         if (!ok) {
4350                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4351                 return -EINVAL;
4352         }
4353
4354         /* Ensure that the cursor is valid for the new mode before changing... */
4355         intel_crtc_update_cursor(crtc, true);
4356
4357         if (is_lvds && dev_priv->lvds_downclock_avail) {
4358                 /*
4359                  * Ensure we match the reduced clock's P to the target clock.
4360                  * If the clocks don't match, we can't switch the display clock
4361                  * by using the FP0/FP1. In such case we will disable the LVDS
4362                  * downclock feature.
4363                 */
4364                 has_reduced_clock = limit->find_pll(limit, crtc,
4365                                                     dev_priv->lvds_downclock,
4366                                                     refclk,
4367                                                     &clock,
4368                                                     &reduced_clock);
4369         }
4370
4371         if (is_sdvo && is_tv)
4372                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4373
4374         i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
4375                                  &reduced_clock : NULL);
4376
4377         if (IS_GEN2(dev))
4378                 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
4379         else if (IS_VALLEYVIEW(dev))
4380                 vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL,
4381                                refclk, num_connectors);
4382         else
4383                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4384                                 has_reduced_clock ? &reduced_clock : NULL,
4385                                 num_connectors);
4386
4387         /* setup pipeconf */
4388         pipeconf = I915_READ(PIPECONF(pipe));
4389
4390         /* Set up the display plane register */
4391         dspcntr = DISPPLANE_GAMMA_ENABLE;
4392
4393         if (pipe == 0)
4394                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4395         else
4396                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4397
4398         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4399                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4400                  * core speed.
4401                  *
4402                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4403                  * pipe == 0 check?
4404                  */
4405                 if (mode->clock >
4406                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4407                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4408                 else
4409                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4410         }
4411
4412         /* default to 8bpc */
4413         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4414         if (is_dp) {
4415                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4416                         pipeconf |= PIPECONF_BPP_6 |
4417                                     PIPECONF_DITHER_EN |
4418                                     PIPECONF_DITHER_TYPE_SP;
4419                 }
4420         }
4421
4422         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4423         drm_mode_debug_printmodeline(mode);
4424
4425         if (HAS_PIPE_CXSR(dev)) {
4426                 if (intel_crtc->lowfreq_avail) {
4427                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4428                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4429                 } else {
4430                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4431                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4432                 }
4433         }
4434
4435         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4436         if (!IS_GEN2(dev) &&
4437             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4438                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4439                 /* the chip adds 2 halflines automatically */
4440                 adjusted_mode->crtc_vtotal -= 1;
4441                 adjusted_mode->crtc_vblank_end -= 1;
4442                 vsyncshift = adjusted_mode->crtc_hsync_start
4443                              - adjusted_mode->crtc_htotal/2;
4444         } else {
4445                 pipeconf |= PIPECONF_PROGRESSIVE;
4446                 vsyncshift = 0;
4447         }
4448
4449         if (!IS_GEN3(dev))
4450                 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4451
4452         I915_WRITE(HTOTAL(pipe),
4453                    (adjusted_mode->crtc_hdisplay - 1) |
4454                    ((adjusted_mode->crtc_htotal - 1) << 16));
4455         I915_WRITE(HBLANK(pipe),
4456                    (adjusted_mode->crtc_hblank_start - 1) |
4457                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4458         I915_WRITE(HSYNC(pipe),
4459                    (adjusted_mode->crtc_hsync_start - 1) |
4460                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4461
4462         I915_WRITE(VTOTAL(pipe),
4463                    (adjusted_mode->crtc_vdisplay - 1) |
4464                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4465         I915_WRITE(VBLANK(pipe),
4466                    (adjusted_mode->crtc_vblank_start - 1) |
4467                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4468         I915_WRITE(VSYNC(pipe),
4469                    (adjusted_mode->crtc_vsync_start - 1) |
4470                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4471
4472         /* pipesrc and dspsize control the size that is scaled from,
4473          * which should always be the user's requested size.
4474          */
4475         I915_WRITE(DSPSIZE(plane),
4476                    ((mode->vdisplay - 1) << 16) |
4477                    (mode->hdisplay - 1));
4478         I915_WRITE(DSPPOS(plane), 0);
4479         I915_WRITE(PIPESRC(pipe),
4480                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4481
4482         I915_WRITE(PIPECONF(pipe), pipeconf);
4483         POSTING_READ(PIPECONF(pipe));
4484         intel_enable_pipe(dev_priv, pipe, false);
4485
4486         intel_wait_for_vblank(dev, pipe);
4487
4488         I915_WRITE(DSPCNTR(plane), dspcntr);
4489         POSTING_READ(DSPCNTR(plane));
4490
4491         ret = intel_pipe_set_base(crtc, x, y, fb);
4492
4493         intel_update_watermarks(dev);
4494
4495         return ret;
4496 }
4497
4498 /*
4499  * Initialize reference clocks when the driver loads
4500  */
4501 void ironlake_init_pch_refclk(struct drm_device *dev)
4502 {
4503         struct drm_i915_private *dev_priv = dev->dev_private;
4504         struct drm_mode_config *mode_config = &dev->mode_config;
4505         struct intel_encoder *encoder;
4506         u32 temp;
4507         bool has_lvds = false;
4508         bool has_cpu_edp = false;
4509         bool has_pch_edp = false;
4510         bool has_panel = false;
4511         bool has_ck505 = false;
4512         bool can_ssc = false;
4513
4514         /* We need to take the global config into account */
4515         list_for_each_entry(encoder, &mode_config->encoder_list,
4516                             base.head) {
4517                 switch (encoder->type) {
4518                 case INTEL_OUTPUT_LVDS:
4519                         has_panel = true;
4520                         has_lvds = true;
4521                         break;
4522                 case INTEL_OUTPUT_EDP:
4523                         has_panel = true;
4524                         if (intel_encoder_is_pch_edp(&encoder->base))
4525                                 has_pch_edp = true;
4526                         else
4527                                 has_cpu_edp = true;
4528                         break;
4529                 }
4530         }
4531
4532         if (HAS_PCH_IBX(dev)) {
4533                 has_ck505 = dev_priv->display_clock_mode;
4534                 can_ssc = has_ck505;
4535         } else {
4536                 has_ck505 = false;
4537                 can_ssc = true;
4538         }
4539
4540         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4541                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4542                       has_ck505);
4543
4544         /* Ironlake: try to setup display ref clock before DPLL
4545          * enabling. This is only under driver's control after
4546          * PCH B stepping, previous chipset stepping should be
4547          * ignoring this setting.
4548          */
4549         temp = I915_READ(PCH_DREF_CONTROL);
4550         /* Always enable nonspread source */
4551         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4552
4553         if (has_ck505)
4554                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4555         else
4556                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4557
4558         if (has_panel) {
4559                 temp &= ~DREF_SSC_SOURCE_MASK;
4560                 temp |= DREF_SSC_SOURCE_ENABLE;
4561
4562                 /* SSC must be turned on before enabling the CPU output  */
4563                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4564                         DRM_DEBUG_KMS("Using SSC on panel\n");
4565                         temp |= DREF_SSC1_ENABLE;
4566                 } else
4567                         temp &= ~DREF_SSC1_ENABLE;
4568
4569                 /* Get SSC going before enabling the outputs */
4570                 I915_WRITE(PCH_DREF_CONTROL, temp);
4571                 POSTING_READ(PCH_DREF_CONTROL);
4572                 udelay(200);
4573
4574                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4575
4576                 /* Enable CPU source on CPU attached eDP */
4577                 if (has_cpu_edp) {
4578                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4579                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4580                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4581                         }
4582                         else
4583                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4584                 } else
4585                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4586
4587                 I915_WRITE(PCH_DREF_CONTROL, temp);
4588                 POSTING_READ(PCH_DREF_CONTROL);
4589                 udelay(200);
4590         } else {
4591                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4592
4593                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4594
4595                 /* Turn off CPU output */
4596                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4597
4598                 I915_WRITE(PCH_DREF_CONTROL, temp);
4599                 POSTING_READ(PCH_DREF_CONTROL);
4600                 udelay(200);
4601
4602                 /* Turn off the SSC source */
4603                 temp &= ~DREF_SSC_SOURCE_MASK;
4604                 temp |= DREF_SSC_SOURCE_DISABLE;
4605
4606                 /* Turn off SSC1 */
4607                 temp &= ~ DREF_SSC1_ENABLE;
4608
4609                 I915_WRITE(PCH_DREF_CONTROL, temp);
4610                 POSTING_READ(PCH_DREF_CONTROL);
4611                 udelay(200);
4612         }
4613 }
4614
4615 static int ironlake_get_refclk(struct drm_crtc *crtc)
4616 {
4617         struct drm_device *dev = crtc->dev;
4618         struct drm_i915_private *dev_priv = dev->dev_private;
4619         struct intel_encoder *encoder;
4620         struct intel_encoder *edp_encoder = NULL;
4621         int num_connectors = 0;
4622         bool is_lvds = false;
4623
4624         for_each_encoder_on_crtc(dev, crtc, encoder) {
4625                 switch (encoder->type) {
4626                 case INTEL_OUTPUT_LVDS:
4627                         is_lvds = true;
4628                         break;
4629                 case INTEL_OUTPUT_EDP:
4630                         edp_encoder = encoder;
4631                         break;
4632                 }
4633                 num_connectors++;
4634         }
4635
4636         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4637                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4638                               dev_priv->lvds_ssc_freq);
4639                 return dev_priv->lvds_ssc_freq * 1000;
4640         }
4641
4642         return 120000;
4643 }
4644
4645 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4646                                   struct drm_display_mode *adjusted_mode,
4647                                   bool dither)
4648 {
4649         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4650         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4651         int pipe = intel_crtc->pipe;
4652         uint32_t val;
4653
4654         val = I915_READ(PIPECONF(pipe));
4655
4656         val &= ~PIPE_BPC_MASK;
4657         switch (intel_crtc->bpp) {
4658         case 18:
4659                 val |= PIPE_6BPC;
4660                 break;
4661         case 24:
4662                 val |= PIPE_8BPC;
4663                 break;
4664         case 30:
4665                 val |= PIPE_10BPC;
4666                 break;
4667         case 36:
4668                 val |= PIPE_12BPC;
4669                 break;
4670         default:
4671                 val |= PIPE_8BPC;
4672                 break;
4673         }
4674
4675         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4676         if (dither)
4677                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4678
4679         val &= ~PIPECONF_INTERLACE_MASK;
4680         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4681                 val |= PIPECONF_INTERLACED_ILK;
4682         else
4683                 val |= PIPECONF_PROGRESSIVE;
4684
4685         I915_WRITE(PIPECONF(pipe), val);
4686         POSTING_READ(PIPECONF(pipe));
4687 }
4688
4689 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4690                                     struct drm_display_mode *adjusted_mode,
4691                                     intel_clock_t *clock,
4692                                     bool *has_reduced_clock,
4693                                     intel_clock_t *reduced_clock)
4694 {
4695         struct drm_device *dev = crtc->dev;
4696         struct drm_i915_private *dev_priv = dev->dev_private;
4697         struct intel_encoder *intel_encoder;
4698         int refclk;
4699         const intel_limit_t *limit;
4700         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4701
4702         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4703                 switch (intel_encoder->type) {
4704                 case INTEL_OUTPUT_LVDS:
4705                         is_lvds = true;
4706                         break;
4707                 case INTEL_OUTPUT_SDVO:
4708                 case INTEL_OUTPUT_HDMI:
4709                         is_sdvo = true;
4710                         if (intel_encoder->needs_tv_clock)
4711                                 is_tv = true;
4712                         break;
4713                 case INTEL_OUTPUT_TVOUT:
4714                         is_tv = true;
4715                         break;
4716                 }
4717         }
4718
4719         refclk = ironlake_get_refclk(crtc);
4720
4721         /*
4722          * Returns a set of divisors for the desired target clock with the given
4723          * refclk, or FALSE.  The returned values represent the clock equation:
4724          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4725          */
4726         limit = intel_limit(crtc, refclk);
4727         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4728                               clock);
4729         if (!ret)
4730                 return false;
4731
4732         if (is_lvds && dev_priv->lvds_downclock_avail) {
4733                 /*
4734                  * Ensure we match the reduced clock's P to the target clock.
4735                  * If the clocks don't match, we can't switch the display clock
4736                  * by using the FP0/FP1. In such case we will disable the LVDS
4737                  * downclock feature.
4738                 */
4739                 *has_reduced_clock = limit->find_pll(limit, crtc,
4740                                                      dev_priv->lvds_downclock,
4741                                                      refclk,
4742                                                      clock,
4743                                                      reduced_clock);
4744         }
4745
4746         if (is_sdvo && is_tv)
4747                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
4748
4749         return true;
4750 }
4751
4752 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4753                                   struct drm_display_mode *mode,
4754                                   struct drm_display_mode *adjusted_mode,
4755                                   int x, int y,
4756                                   struct drm_framebuffer *fb)
4757 {
4758         struct drm_device *dev = crtc->dev;
4759         struct drm_i915_private *dev_priv = dev->dev_private;
4760         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4761         int pipe = intel_crtc->pipe;
4762         int plane = intel_crtc->plane;
4763         int num_connectors = 0;
4764         intel_clock_t clock, reduced_clock;
4765         u32 dpll, fp = 0, fp2 = 0;
4766         bool ok, has_reduced_clock = false, is_sdvo = false;
4767         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4768         struct intel_encoder *encoder, *edp_encoder = NULL;
4769         int ret;
4770         struct fdi_m_n m_n = {0};
4771         u32 temp;
4772         int target_clock, pixel_multiplier, lane, link_bw, factor;
4773         unsigned int pipe_bpp;
4774         bool dither;
4775         bool is_cpu_edp = false, is_pch_edp = false;
4776
4777         for_each_encoder_on_crtc(dev, crtc, encoder) {
4778                 switch (encoder->type) {
4779                 case INTEL_OUTPUT_LVDS:
4780                         is_lvds = true;
4781                         break;
4782                 case INTEL_OUTPUT_SDVO:
4783                 case INTEL_OUTPUT_HDMI:
4784                         is_sdvo = true;
4785                         if (encoder->needs_tv_clock)
4786                                 is_tv = true;
4787                         break;
4788                 case INTEL_OUTPUT_TVOUT:
4789                         is_tv = true;
4790                         break;
4791                 case INTEL_OUTPUT_ANALOG:
4792                         is_crt = true;
4793                         break;
4794                 case INTEL_OUTPUT_DISPLAYPORT:
4795                         is_dp = true;
4796                         break;
4797                 case INTEL_OUTPUT_EDP:
4798                         is_dp = true;
4799                         if (intel_encoder_is_pch_edp(&encoder->base))
4800                                 is_pch_edp = true;
4801                         else
4802                                 is_cpu_edp = true;
4803                         edp_encoder = encoder;
4804                         break;
4805                 }
4806
4807                 num_connectors++;
4808         }
4809
4810         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
4811                                      &has_reduced_clock, &reduced_clock);
4812         if (!ok) {
4813                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4814                 return -EINVAL;
4815         }
4816
4817         /* Ensure that the cursor is valid for the new mode before changing... */
4818         intel_crtc_update_cursor(crtc, true);
4819
4820         /* FDI link */
4821         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4822         lane = 0;
4823         /* CPU eDP doesn't require FDI link, so just set DP M/N
4824            according to current link config */
4825         if (is_cpu_edp) {
4826                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4827         } else {
4828                 /* FDI is a binary signal running at ~2.7GHz, encoding
4829                  * each output octet as 10 bits. The actual frequency
4830                  * is stored as a divider into a 100MHz clock, and the
4831                  * mode pixel clock is stored in units of 1KHz.
4832                  * Hence the bw of each lane in terms of the mode signal
4833                  * is:
4834                  */
4835                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4836         }
4837
4838         /* [e]DP over FDI requires target mode clock instead of link clock. */
4839         if (edp_encoder)
4840                 target_clock = intel_edp_target_clock(edp_encoder, mode);
4841         else if (is_dp)
4842                 target_clock = mode->clock;
4843         else
4844                 target_clock = adjusted_mode->clock;
4845
4846         /* determine panel color depth */
4847         dither = intel_choose_pipe_bpp_dither(crtc, fb, &pipe_bpp,
4848                                               adjusted_mode);
4849         if (is_lvds && dev_priv->lvds_dither)
4850                 dither = true;
4851
4852         if (pipe_bpp != 18 && pipe_bpp != 24 && pipe_bpp != 30 &&
4853             pipe_bpp != 36) {
4854                 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
4855                      pipe_bpp);
4856                 pipe_bpp = 24;
4857         }
4858         intel_crtc->bpp = pipe_bpp;
4859
4860         if (!lane) {
4861                 /*
4862                  * Account for spread spectrum to avoid
4863                  * oversubscribing the link. Max center spread
4864                  * is 2.5%; use 5% for safety's sake.
4865                  */
4866                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4867                 lane = bps / (link_bw * 8) + 1;
4868         }
4869
4870         intel_crtc->fdi_lanes = lane;
4871
4872         if (pixel_multiplier > 1)
4873                 link_bw *= pixel_multiplier;
4874         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4875                              &m_n);
4876
4877         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4878         if (has_reduced_clock)
4879                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4880                         reduced_clock.m2;
4881
4882         /* Enable autotuning of the PLL clock (if permissible) */
4883         factor = 21;
4884         if (is_lvds) {
4885                 if ((intel_panel_use_ssc(dev_priv) &&
4886                      dev_priv->lvds_ssc_freq == 100) ||
4887                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4888                         factor = 25;
4889         } else if (is_sdvo && is_tv)
4890                 factor = 20;
4891
4892         if (clock.m < factor * clock.n)
4893                 fp |= FP_CB_TUNE;
4894
4895         dpll = 0;
4896
4897         if (is_lvds)
4898                 dpll |= DPLLB_MODE_LVDS;
4899         else
4900                 dpll |= DPLLB_MODE_DAC_SERIAL;
4901         if (is_sdvo) {
4902                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4903                 if (pixel_multiplier > 1) {
4904                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4905                 }
4906                 dpll |= DPLL_DVO_HIGH_SPEED;
4907         }
4908         if (is_dp && !is_cpu_edp)
4909                 dpll |= DPLL_DVO_HIGH_SPEED;
4910
4911         /* compute bitmask from p1 value */
4912         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4913         /* also FPA1 */
4914         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4915
4916         switch (clock.p2) {
4917         case 5:
4918                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4919                 break;
4920         case 7:
4921                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4922                 break;
4923         case 10:
4924                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4925                 break;
4926         case 14:
4927                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4928                 break;
4929         }
4930
4931         if (is_sdvo && is_tv)
4932                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4933         else if (is_tv)
4934                 /* XXX: just matching BIOS for now */
4935                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4936                 dpll |= 3;
4937         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4938                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4939         else
4940                 dpll |= PLL_REF_INPUT_DREFCLK;
4941
4942         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4943         drm_mode_debug_printmodeline(mode);
4944
4945         /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
4946          * pre-Haswell/LPT generation */
4947         if (HAS_PCH_LPT(dev)) {
4948                 DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
4949                                 pipe);
4950         } else if (!is_cpu_edp) {
4951                 struct intel_pch_pll *pll;
4952
4953                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
4954                 if (pll == NULL) {
4955                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
4956                                          pipe);
4957                         return -EINVAL;
4958                 }
4959         } else
4960                 intel_put_pch_pll(intel_crtc);
4961
4962         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4963          * This is an exception to the general rule that mode_set doesn't turn
4964          * things on.
4965          */
4966         if (is_lvds) {
4967                 temp = I915_READ(PCH_LVDS);
4968                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4969                 if (HAS_PCH_CPT(dev)) {
4970                         temp &= ~PORT_TRANS_SEL_MASK;
4971                         temp |= PORT_TRANS_SEL_CPT(pipe);
4972                 } else {
4973                         if (pipe == 1)
4974                                 temp |= LVDS_PIPEB_SELECT;
4975                         else
4976                                 temp &= ~LVDS_PIPEB_SELECT;
4977                 }
4978
4979                 /* set the corresponsding LVDS_BORDER bit */
4980                 temp |= dev_priv->lvds_border_bits;
4981                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4982                  * set the DPLLs for dual-channel mode or not.
4983                  */
4984                 if (clock.p2 == 7)
4985                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4986                 else
4987                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4988
4989                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4990                  * appropriately here, but we need to look more thoroughly into how
4991                  * panels behave in the two modes.
4992                  */
4993                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4994                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4995                         temp |= LVDS_HSYNC_POLARITY;
4996                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4997                         temp |= LVDS_VSYNC_POLARITY;
4998                 I915_WRITE(PCH_LVDS, temp);
4999         }
5000
5001         if (is_dp && !is_cpu_edp) {
5002                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5003         } else {
5004                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5005                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5006                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5007                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5008                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5009         }
5010
5011         if (intel_crtc->pch_pll) {
5012                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5013
5014                 /* Wait for the clocks to stabilize. */
5015                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5016                 udelay(150);
5017
5018                 /* The pixel multiplier can only be updated once the
5019                  * DPLL is enabled and the clocks are stable.
5020                  *
5021                  * So write it again.
5022                  */
5023                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5024         }
5025
5026         intel_crtc->lowfreq_avail = false;
5027         if (intel_crtc->pch_pll) {
5028                 if (is_lvds && has_reduced_clock && i915_powersave) {
5029                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5030                         intel_crtc->lowfreq_avail = true;
5031                 } else {
5032                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5033                 }
5034         }
5035
5036         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5037                 /* the chip adds 2 halflines automatically */
5038                 adjusted_mode->crtc_vtotal -= 1;
5039                 adjusted_mode->crtc_vblank_end -= 1;
5040                 I915_WRITE(VSYNCSHIFT(pipe),
5041                            adjusted_mode->crtc_hsync_start
5042                            - adjusted_mode->crtc_htotal/2);
5043         } else {
5044                 I915_WRITE(VSYNCSHIFT(pipe), 0);
5045         }
5046
5047         I915_WRITE(HTOTAL(pipe),
5048                    (adjusted_mode->crtc_hdisplay - 1) |
5049                    ((adjusted_mode->crtc_htotal - 1) << 16));
5050         I915_WRITE(HBLANK(pipe),
5051                    (adjusted_mode->crtc_hblank_start - 1) |
5052                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5053         I915_WRITE(HSYNC(pipe),
5054                    (adjusted_mode->crtc_hsync_start - 1) |
5055                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5056
5057         I915_WRITE(VTOTAL(pipe),
5058                    (adjusted_mode->crtc_vdisplay - 1) |
5059                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5060         I915_WRITE(VBLANK(pipe),
5061                    (adjusted_mode->crtc_vblank_start - 1) |
5062                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5063         I915_WRITE(VSYNC(pipe),
5064                    (adjusted_mode->crtc_vsync_start - 1) |
5065                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5066
5067         /* pipesrc controls the size that is scaled from, which should
5068          * always be the user's requested size.
5069          */
5070         I915_WRITE(PIPESRC(pipe),
5071                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5072
5073         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5074         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5075         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5076         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5077
5078         if (is_cpu_edp)
5079                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5080
5081         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5082
5083         intel_wait_for_vblank(dev, pipe);
5084
5085         /* Set up the display plane register */
5086         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5087         POSTING_READ(DSPCNTR(plane));
5088
5089         ret = intel_pipe_set_base(crtc, x, y, fb);
5090
5091         intel_update_watermarks(dev);
5092
5093         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5094
5095         return ret;
5096 }
5097
5098 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5099                                struct drm_display_mode *mode,
5100                                struct drm_display_mode *adjusted_mode,
5101                                int x, int y,
5102                                struct drm_framebuffer *fb)
5103 {
5104         struct drm_device *dev = crtc->dev;
5105         struct drm_i915_private *dev_priv = dev->dev_private;
5106         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5107         int pipe = intel_crtc->pipe;
5108         int ret;
5109
5110         drm_vblank_pre_modeset(dev, pipe);
5111
5112         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5113                                               x, y, fb);
5114         drm_vblank_post_modeset(dev, pipe);
5115
5116         return ret;
5117 }
5118
5119 static bool intel_eld_uptodate(struct drm_connector *connector,
5120                                int reg_eldv, uint32_t bits_eldv,
5121                                int reg_elda, uint32_t bits_elda,
5122                                int reg_edid)
5123 {
5124         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5125         uint8_t *eld = connector->eld;
5126         uint32_t i;
5127
5128         i = I915_READ(reg_eldv);
5129         i &= bits_eldv;
5130
5131         if (!eld[0])
5132                 return !i;
5133
5134         if (!i)
5135                 return false;
5136
5137         i = I915_READ(reg_elda);
5138         i &= ~bits_elda;
5139         I915_WRITE(reg_elda, i);
5140
5141         for (i = 0; i < eld[2]; i++)
5142                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5143                         return false;
5144
5145         return true;
5146 }
5147
5148 static void g4x_write_eld(struct drm_connector *connector,
5149                           struct drm_crtc *crtc)
5150 {
5151         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5152         uint8_t *eld = connector->eld;
5153         uint32_t eldv;
5154         uint32_t len;
5155         uint32_t i;
5156
5157         i = I915_READ(G4X_AUD_VID_DID);
5158
5159         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5160                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5161         else
5162                 eldv = G4X_ELDV_DEVCTG;
5163
5164         if (intel_eld_uptodate(connector,
5165                                G4X_AUD_CNTL_ST, eldv,
5166                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5167                                G4X_HDMIW_HDMIEDID))
5168                 return;
5169
5170         i = I915_READ(G4X_AUD_CNTL_ST);
5171         i &= ~(eldv | G4X_ELD_ADDR);
5172         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5173         I915_WRITE(G4X_AUD_CNTL_ST, i);
5174
5175         if (!eld[0])
5176                 return;
5177
5178         len = min_t(uint8_t, eld[2], len);
5179         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5180         for (i = 0; i < len; i++)
5181                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5182
5183         i = I915_READ(G4X_AUD_CNTL_ST);
5184         i |= eldv;
5185         I915_WRITE(G4X_AUD_CNTL_ST, i);
5186 }
5187
5188 static void haswell_write_eld(struct drm_connector *connector,
5189                                      struct drm_crtc *crtc)
5190 {
5191         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5192         uint8_t *eld = connector->eld;
5193         struct drm_device *dev = crtc->dev;
5194         uint32_t eldv;
5195         uint32_t i;
5196         int len;
5197         int pipe = to_intel_crtc(crtc)->pipe;
5198         int tmp;
5199
5200         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5201         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5202         int aud_config = HSW_AUD_CFG(pipe);
5203         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5204
5205
5206         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5207
5208         /* Audio output enable */
5209         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5210         tmp = I915_READ(aud_cntrl_st2);
5211         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5212         I915_WRITE(aud_cntrl_st2, tmp);
5213
5214         /* Wait for 1 vertical blank */
5215         intel_wait_for_vblank(dev, pipe);
5216
5217         /* Set ELD valid state */
5218         tmp = I915_READ(aud_cntrl_st2);
5219         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5220         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5221         I915_WRITE(aud_cntrl_st2, tmp);
5222         tmp = I915_READ(aud_cntrl_st2);
5223         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5224
5225         /* Enable HDMI mode */
5226         tmp = I915_READ(aud_config);
5227         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5228         /* clear N_programing_enable and N_value_index */
5229         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5230         I915_WRITE(aud_config, tmp);
5231
5232         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5233
5234         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5235
5236         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5237                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5238                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5239                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5240         } else
5241                 I915_WRITE(aud_config, 0);
5242
5243         if (intel_eld_uptodate(connector,
5244                                aud_cntrl_st2, eldv,
5245                                aud_cntl_st, IBX_ELD_ADDRESS,
5246                                hdmiw_hdmiedid))
5247                 return;
5248
5249         i = I915_READ(aud_cntrl_st2);
5250         i &= ~eldv;
5251         I915_WRITE(aud_cntrl_st2, i);
5252
5253         if (!eld[0])
5254                 return;
5255
5256         i = I915_READ(aud_cntl_st);
5257         i &= ~IBX_ELD_ADDRESS;
5258         I915_WRITE(aud_cntl_st, i);
5259         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5260         DRM_DEBUG_DRIVER("port num:%d\n", i);
5261
5262         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5263         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5264         for (i = 0; i < len; i++)
5265                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5266
5267         i = I915_READ(aud_cntrl_st2);
5268         i |= eldv;
5269         I915_WRITE(aud_cntrl_st2, i);
5270
5271 }
5272
5273 static void ironlake_write_eld(struct drm_connector *connector,
5274                                      struct drm_crtc *crtc)
5275 {
5276         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5277         uint8_t *eld = connector->eld;
5278         uint32_t eldv;
5279         uint32_t i;
5280         int len;
5281         int hdmiw_hdmiedid;
5282         int aud_config;
5283         int aud_cntl_st;
5284         int aud_cntrl_st2;
5285         int pipe = to_intel_crtc(crtc)->pipe;
5286
5287         if (HAS_PCH_IBX(connector->dev)) {
5288                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5289                 aud_config = IBX_AUD_CFG(pipe);
5290                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5291                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5292         } else {
5293                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5294                 aud_config = CPT_AUD_CFG(pipe);
5295                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5296                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5297         }
5298
5299         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5300
5301         i = I915_READ(aud_cntl_st);
5302         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5303         if (!i) {
5304                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5305                 /* operate blindly on all ports */
5306                 eldv = IBX_ELD_VALIDB;
5307                 eldv |= IBX_ELD_VALIDB << 4;
5308                 eldv |= IBX_ELD_VALIDB << 8;
5309         } else {
5310                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5311                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5312         }
5313
5314         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5315                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5316                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5317                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5318         } else
5319                 I915_WRITE(aud_config, 0);
5320
5321         if (intel_eld_uptodate(connector,
5322                                aud_cntrl_st2, eldv,
5323                                aud_cntl_st, IBX_ELD_ADDRESS,
5324                                hdmiw_hdmiedid))
5325                 return;
5326
5327         i = I915_READ(aud_cntrl_st2);
5328         i &= ~eldv;
5329         I915_WRITE(aud_cntrl_st2, i);
5330
5331         if (!eld[0])
5332                 return;
5333
5334         i = I915_READ(aud_cntl_st);
5335         i &= ~IBX_ELD_ADDRESS;
5336         I915_WRITE(aud_cntl_st, i);
5337
5338         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5339         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5340         for (i = 0; i < len; i++)
5341                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5342
5343         i = I915_READ(aud_cntrl_st2);
5344         i |= eldv;
5345         I915_WRITE(aud_cntrl_st2, i);
5346 }
5347
5348 void intel_write_eld(struct drm_encoder *encoder,
5349                      struct drm_display_mode *mode)
5350 {
5351         struct drm_crtc *crtc = encoder->crtc;
5352         struct drm_connector *connector;
5353         struct drm_device *dev = encoder->dev;
5354         struct drm_i915_private *dev_priv = dev->dev_private;
5355
5356         connector = drm_select_eld(encoder, mode);
5357         if (!connector)
5358                 return;
5359
5360         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5361                          connector->base.id,
5362                          drm_get_connector_name(connector),
5363                          connector->encoder->base.id,
5364                          drm_get_encoder_name(connector->encoder));
5365
5366         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5367
5368         if (dev_priv->display.write_eld)
5369                 dev_priv->display.write_eld(connector, crtc);
5370 }
5371
5372 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5373 void intel_crtc_load_lut(struct drm_crtc *crtc)
5374 {
5375         struct drm_device *dev = crtc->dev;
5376         struct drm_i915_private *dev_priv = dev->dev_private;
5377         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5378         int palreg = PALETTE(intel_crtc->pipe);
5379         int i;
5380
5381         /* The clocks have to be on to load the palette. */
5382         if (!crtc->enabled || !intel_crtc->active)
5383                 return;
5384
5385         /* use legacy palette for Ironlake */
5386         if (HAS_PCH_SPLIT(dev))
5387                 palreg = LGC_PALETTE(intel_crtc->pipe);
5388
5389         for (i = 0; i < 256; i++) {
5390                 I915_WRITE(palreg + 4 * i,
5391                            (intel_crtc->lut_r[i] << 16) |
5392                            (intel_crtc->lut_g[i] << 8) |
5393                            intel_crtc->lut_b[i]);
5394         }
5395 }
5396
5397 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5398 {
5399         struct drm_device *dev = crtc->dev;
5400         struct drm_i915_private *dev_priv = dev->dev_private;
5401         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5402         bool visible = base != 0;
5403         u32 cntl;
5404
5405         if (intel_crtc->cursor_visible == visible)
5406                 return;
5407
5408         cntl = I915_READ(_CURACNTR);
5409         if (visible) {
5410                 /* On these chipsets we can only modify the base whilst
5411                  * the cursor is disabled.
5412                  */
5413                 I915_WRITE(_CURABASE, base);
5414
5415                 cntl &= ~(CURSOR_FORMAT_MASK);
5416                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5417                 cntl |= CURSOR_ENABLE |
5418                         CURSOR_GAMMA_ENABLE |
5419                         CURSOR_FORMAT_ARGB;
5420         } else
5421                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5422         I915_WRITE(_CURACNTR, cntl);
5423
5424         intel_crtc->cursor_visible = visible;
5425 }
5426
5427 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5428 {
5429         struct drm_device *dev = crtc->dev;
5430         struct drm_i915_private *dev_priv = dev->dev_private;
5431         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5432         int pipe = intel_crtc->pipe;
5433         bool visible = base != 0;
5434
5435         if (intel_crtc->cursor_visible != visible) {
5436                 uint32_t cntl = I915_READ(CURCNTR(pipe));
5437                 if (base) {
5438                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5439                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5440                         cntl |= pipe << 28; /* Connect to correct pipe */
5441                 } else {
5442                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5443                         cntl |= CURSOR_MODE_DISABLE;
5444                 }
5445                 I915_WRITE(CURCNTR(pipe), cntl);
5446
5447                 intel_crtc->cursor_visible = visible;
5448         }
5449         /* and commit changes on next vblank */
5450         I915_WRITE(CURBASE(pipe), base);
5451 }
5452
5453 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5454 {
5455         struct drm_device *dev = crtc->dev;
5456         struct drm_i915_private *dev_priv = dev->dev_private;
5457         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5458         int pipe = intel_crtc->pipe;
5459         bool visible = base != 0;
5460
5461         if (intel_crtc->cursor_visible != visible) {
5462                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5463                 if (base) {
5464                         cntl &= ~CURSOR_MODE;
5465                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5466                 } else {
5467                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5468                         cntl |= CURSOR_MODE_DISABLE;
5469                 }
5470                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5471
5472                 intel_crtc->cursor_visible = visible;
5473         }
5474         /* and commit changes on next vblank */
5475         I915_WRITE(CURBASE_IVB(pipe), base);
5476 }
5477
5478 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5479 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5480                                      bool on)
5481 {
5482         struct drm_device *dev = crtc->dev;
5483         struct drm_i915_private *dev_priv = dev->dev_private;
5484         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5485         int pipe = intel_crtc->pipe;
5486         int x = intel_crtc->cursor_x;
5487         int y = intel_crtc->cursor_y;
5488         u32 base, pos;
5489         bool visible;
5490
5491         pos = 0;
5492
5493         if (on && crtc->enabled && crtc->fb) {
5494                 base = intel_crtc->cursor_addr;
5495                 if (x > (int) crtc->fb->width)
5496                         base = 0;
5497
5498                 if (y > (int) crtc->fb->height)
5499                         base = 0;
5500         } else
5501                 base = 0;
5502
5503         if (x < 0) {
5504                 if (x + intel_crtc->cursor_width < 0)
5505                         base = 0;
5506
5507                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5508                 x = -x;
5509         }
5510         pos |= x << CURSOR_X_SHIFT;
5511
5512         if (y < 0) {
5513                 if (y + intel_crtc->cursor_height < 0)
5514                         base = 0;
5515
5516                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5517                 y = -y;
5518         }
5519         pos |= y << CURSOR_Y_SHIFT;
5520
5521         visible = base != 0;
5522         if (!visible && !intel_crtc->cursor_visible)
5523                 return;
5524
5525         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5526                 I915_WRITE(CURPOS_IVB(pipe), pos);
5527                 ivb_update_cursor(crtc, base);
5528         } else {
5529                 I915_WRITE(CURPOS(pipe), pos);
5530                 if (IS_845G(dev) || IS_I865G(dev))
5531                         i845_update_cursor(crtc, base);
5532                 else
5533                         i9xx_update_cursor(crtc, base);
5534         }
5535 }
5536
5537 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5538                                  struct drm_file *file,
5539                                  uint32_t handle,
5540                                  uint32_t width, uint32_t height)
5541 {
5542         struct drm_device *dev = crtc->dev;
5543         struct drm_i915_private *dev_priv = dev->dev_private;
5544         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5545         struct drm_i915_gem_object *obj;
5546         uint32_t addr;
5547         int ret;
5548
5549         /* if we want to turn off the cursor ignore width and height */
5550         if (!handle) {
5551                 DRM_DEBUG_KMS("cursor off\n");
5552                 addr = 0;
5553                 obj = NULL;
5554                 mutex_lock(&dev->struct_mutex);
5555                 goto finish;
5556         }
5557
5558         /* Currently we only support 64x64 cursors */
5559         if (width != 64 || height != 64) {
5560                 DRM_ERROR("we currently only support 64x64 cursors\n");
5561                 return -EINVAL;
5562         }
5563
5564         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5565         if (&obj->base == NULL)
5566                 return -ENOENT;
5567
5568         if (obj->base.size < width * height * 4) {
5569                 DRM_ERROR("buffer is to small\n");
5570                 ret = -ENOMEM;
5571                 goto fail;
5572         }
5573
5574         /* we only need to pin inside GTT if cursor is non-phy */
5575         mutex_lock(&dev->struct_mutex);
5576         if (!dev_priv->info->cursor_needs_physical) {
5577                 if (obj->tiling_mode) {
5578                         DRM_ERROR("cursor cannot be tiled\n");
5579                         ret = -EINVAL;
5580                         goto fail_locked;
5581                 }
5582
5583                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5584                 if (ret) {
5585                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5586                         goto fail_locked;
5587                 }
5588
5589                 ret = i915_gem_object_put_fence(obj);
5590                 if (ret) {
5591                         DRM_ERROR("failed to release fence for cursor");
5592                         goto fail_unpin;
5593                 }
5594
5595                 addr = obj->gtt_offset;
5596         } else {
5597                 int align = IS_I830(dev) ? 16 * 1024 : 256;
5598                 ret = i915_gem_attach_phys_object(dev, obj,
5599                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5600                                                   align);
5601                 if (ret) {
5602                         DRM_ERROR("failed to attach phys object\n");
5603                         goto fail_locked;
5604                 }
5605                 addr = obj->phys_obj->handle->busaddr;
5606         }
5607
5608         if (IS_GEN2(dev))
5609                 I915_WRITE(CURSIZE, (height << 12) | width);
5610
5611  finish:
5612         if (intel_crtc->cursor_bo) {
5613                 if (dev_priv->info->cursor_needs_physical) {
5614                         if (intel_crtc->cursor_bo != obj)
5615                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5616                 } else
5617                         i915_gem_object_unpin(intel_crtc->cursor_bo);
5618                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5619         }
5620
5621         mutex_unlock(&dev->struct_mutex);
5622
5623         intel_crtc->cursor_addr = addr;
5624         intel_crtc->cursor_bo = obj;
5625         intel_crtc->cursor_width = width;
5626         intel_crtc->cursor_height = height;
5627
5628         intel_crtc_update_cursor(crtc, true);
5629
5630         return 0;
5631 fail_unpin:
5632         i915_gem_object_unpin(obj);
5633 fail_locked:
5634         mutex_unlock(&dev->struct_mutex);
5635 fail:
5636         drm_gem_object_unreference_unlocked(&obj->base);
5637         return ret;
5638 }
5639
5640 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5641 {
5642         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5643
5644         intel_crtc->cursor_x = x;
5645         intel_crtc->cursor_y = y;
5646
5647         intel_crtc_update_cursor(crtc, true);
5648
5649         return 0;
5650 }
5651
5652 /** Sets the color ramps on behalf of RandR */
5653 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5654                                  u16 blue, int regno)
5655 {
5656         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5657
5658         intel_crtc->lut_r[regno] = red >> 8;
5659         intel_crtc->lut_g[regno] = green >> 8;
5660         intel_crtc->lut_b[regno] = blue >> 8;
5661 }
5662
5663 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5664                              u16 *blue, int regno)
5665 {
5666         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5667
5668         *red = intel_crtc->lut_r[regno] << 8;
5669         *green = intel_crtc->lut_g[regno] << 8;
5670         *blue = intel_crtc->lut_b[regno] << 8;
5671 }
5672
5673 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5674                                  u16 *blue, uint32_t start, uint32_t size)
5675 {
5676         int end = (start + size > 256) ? 256 : start + size, i;
5677         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5678
5679         for (i = start; i < end; i++) {
5680                 intel_crtc->lut_r[i] = red[i] >> 8;
5681                 intel_crtc->lut_g[i] = green[i] >> 8;
5682                 intel_crtc->lut_b[i] = blue[i] >> 8;
5683         }
5684
5685         intel_crtc_load_lut(crtc);
5686 }
5687
5688 /**
5689  * Get a pipe with a simple mode set on it for doing load-based monitor
5690  * detection.
5691  *
5692  * It will be up to the load-detect code to adjust the pipe as appropriate for
5693  * its requirements.  The pipe will be connected to no other encoders.
5694  *
5695  * Currently this code will only succeed if there is a pipe with no encoders
5696  * configured for it.  In the future, it could choose to temporarily disable
5697  * some outputs to free up a pipe for its use.
5698  *
5699  * \return crtc, or NULL if no pipes are available.
5700  */
5701
5702 /* VESA 640x480x72Hz mode to set on the pipe */
5703 static struct drm_display_mode load_detect_mode = {
5704         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5705                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5706 };
5707
5708 static struct drm_framebuffer *
5709 intel_framebuffer_create(struct drm_device *dev,
5710                          struct drm_mode_fb_cmd2 *mode_cmd,
5711                          struct drm_i915_gem_object *obj)
5712 {
5713         struct intel_framebuffer *intel_fb;
5714         int ret;
5715
5716         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5717         if (!intel_fb) {
5718                 drm_gem_object_unreference_unlocked(&obj->base);
5719                 return ERR_PTR(-ENOMEM);
5720         }
5721
5722         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5723         if (ret) {
5724                 drm_gem_object_unreference_unlocked(&obj->base);
5725                 kfree(intel_fb);
5726                 return ERR_PTR(ret);
5727         }
5728
5729         return &intel_fb->base;
5730 }
5731
5732 static u32
5733 intel_framebuffer_pitch_for_width(int width, int bpp)
5734 {
5735         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5736         return ALIGN(pitch, 64);
5737 }
5738
5739 static u32
5740 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5741 {
5742         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5743         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5744 }
5745
5746 static struct drm_framebuffer *
5747 intel_framebuffer_create_for_mode(struct drm_device *dev,
5748                                   struct drm_display_mode *mode,
5749                                   int depth, int bpp)
5750 {
5751         struct drm_i915_gem_object *obj;
5752         struct drm_mode_fb_cmd2 mode_cmd;
5753
5754         obj = i915_gem_alloc_object(dev,
5755                                     intel_framebuffer_size_for_mode(mode, bpp));
5756         if (obj == NULL)
5757                 return ERR_PTR(-ENOMEM);
5758
5759         mode_cmd.width = mode->hdisplay;
5760         mode_cmd.height = mode->vdisplay;
5761         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5762                                                                 bpp);
5763         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
5764
5765         return intel_framebuffer_create(dev, &mode_cmd, obj);
5766 }
5767
5768 static struct drm_framebuffer *
5769 mode_fits_in_fbdev(struct drm_device *dev,
5770                    struct drm_display_mode *mode)
5771 {
5772         struct drm_i915_private *dev_priv = dev->dev_private;
5773         struct drm_i915_gem_object *obj;
5774         struct drm_framebuffer *fb;
5775
5776         if (dev_priv->fbdev == NULL)
5777                 return NULL;
5778
5779         obj = dev_priv->fbdev->ifb.obj;
5780         if (obj == NULL)
5781                 return NULL;
5782
5783         fb = &dev_priv->fbdev->ifb.base;
5784         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5785                                                                fb->bits_per_pixel))
5786                 return NULL;
5787
5788         if (obj->base.size < mode->vdisplay * fb->pitches[0])
5789                 return NULL;
5790
5791         return fb;
5792 }
5793
5794 bool intel_get_load_detect_pipe(struct drm_connector *connector,
5795                                 struct drm_display_mode *mode,
5796                                 struct intel_load_detect_pipe *old)
5797 {
5798         struct intel_crtc *intel_crtc;
5799         struct intel_encoder *intel_encoder =
5800                 intel_attached_encoder(connector);
5801         struct drm_crtc *possible_crtc;
5802         struct drm_encoder *encoder = &intel_encoder->base;
5803         struct drm_crtc *crtc = NULL;
5804         struct drm_device *dev = encoder->dev;
5805         struct drm_framebuffer *fb;
5806         int i = -1;
5807
5808         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5809                       connector->base.id, drm_get_connector_name(connector),
5810                       encoder->base.id, drm_get_encoder_name(encoder));
5811
5812         /*
5813          * Algorithm gets a little messy:
5814          *
5815          *   - if the connector already has an assigned crtc, use it (but make
5816          *     sure it's on first)
5817          *
5818          *   - try to find the first unused crtc that can drive this connector,
5819          *     and use that if we find one
5820          */
5821
5822         /* See if we already have a CRTC for this connector */
5823         if (encoder->crtc) {
5824                 crtc = encoder->crtc;
5825
5826                 old->dpms_mode = connector->dpms;
5827                 old->load_detect_temp = false;
5828
5829                 /* Make sure the crtc and connector are running */
5830                 if (connector->dpms != DRM_MODE_DPMS_ON)
5831                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
5832
5833                 return true;
5834         }
5835
5836         /* Find an unused one (if possible) */
5837         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5838                 i++;
5839                 if (!(encoder->possible_crtcs & (1 << i)))
5840                         continue;
5841                 if (!possible_crtc->enabled) {
5842                         crtc = possible_crtc;
5843                         break;
5844                 }
5845         }
5846
5847         /*
5848          * If we didn't find an unused CRTC, don't use any.
5849          */
5850         if (!crtc) {
5851                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5852                 return false;
5853         }
5854
5855         intel_encoder->new_crtc = to_intel_crtc(crtc);
5856         to_intel_connector(connector)->new_encoder = intel_encoder;
5857
5858         intel_crtc = to_intel_crtc(crtc);
5859         old->dpms_mode = connector->dpms;
5860         old->load_detect_temp = true;
5861         old->release_fb = NULL;
5862
5863         if (!mode)
5864                 mode = &load_detect_mode;
5865
5866         /* We need a framebuffer large enough to accommodate all accesses
5867          * that the plane may generate whilst we perform load detection.
5868          * We can not rely on the fbcon either being present (we get called
5869          * during its initialisation to detect all boot displays, or it may
5870          * not even exist) or that it is large enough to satisfy the
5871          * requested mode.
5872          */
5873         fb = mode_fits_in_fbdev(dev, mode);
5874         if (fb == NULL) {
5875                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5876                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5877                 old->release_fb = fb;
5878         } else
5879                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5880         if (IS_ERR(fb)) {
5881                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5882                 goto fail;
5883         }
5884
5885         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
5886                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5887                 if (old->release_fb)
5888                         old->release_fb->funcs->destroy(old->release_fb);
5889                 goto fail;
5890         }
5891
5892         /* let the connector get through one full cycle before testing */
5893         intel_wait_for_vblank(dev, intel_crtc->pipe);
5894
5895         return true;
5896 fail:
5897         connector->encoder = NULL;
5898         encoder->crtc = NULL;
5899         return false;
5900 }
5901
5902 void intel_release_load_detect_pipe(struct drm_connector *connector,
5903                                     struct intel_load_detect_pipe *old)
5904 {
5905         struct intel_encoder *intel_encoder =
5906                 intel_attached_encoder(connector);
5907         struct drm_encoder *encoder = &intel_encoder->base;
5908
5909         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5910                       connector->base.id, drm_get_connector_name(connector),
5911                       encoder->base.id, drm_get_encoder_name(encoder));
5912
5913         if (old->load_detect_temp) {
5914                 struct drm_crtc *crtc = encoder->crtc;
5915
5916                 to_intel_connector(connector)->new_encoder = NULL;
5917                 intel_encoder->new_crtc = NULL;
5918                 intel_set_mode(crtc, NULL, 0, 0, NULL);
5919
5920                 if (old->release_fb)
5921                         old->release_fb->funcs->destroy(old->release_fb);
5922
5923                 return;
5924         }
5925
5926         /* Switch crtc and encoder back off if necessary */
5927         if (old->dpms_mode != DRM_MODE_DPMS_ON)
5928                 connector->funcs->dpms(connector, old->dpms_mode);
5929 }
5930
5931 /* Returns the clock of the currently programmed mode of the given pipe. */
5932 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5933 {
5934         struct drm_i915_private *dev_priv = dev->dev_private;
5935         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5936         int pipe = intel_crtc->pipe;
5937         u32 dpll = I915_READ(DPLL(pipe));
5938         u32 fp;
5939         intel_clock_t clock;
5940
5941         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5942                 fp = I915_READ(FP0(pipe));
5943         else
5944                 fp = I915_READ(FP1(pipe));
5945
5946         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5947         if (IS_PINEVIEW(dev)) {
5948                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5949                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5950         } else {
5951                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5952                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5953         }
5954
5955         if (!IS_GEN2(dev)) {
5956                 if (IS_PINEVIEW(dev))
5957                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5958                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5959                 else
5960                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5961                                DPLL_FPA01_P1_POST_DIV_SHIFT);
5962
5963                 switch (dpll & DPLL_MODE_MASK) {
5964                 case DPLLB_MODE_DAC_SERIAL:
5965                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5966                                 5 : 10;
5967                         break;
5968                 case DPLLB_MODE_LVDS:
5969                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5970                                 7 : 14;
5971                         break;
5972                 default:
5973                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5974                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
5975                         return 0;
5976                 }
5977
5978                 /* XXX: Handle the 100Mhz refclk */
5979                 intel_clock(dev, 96000, &clock);
5980         } else {
5981                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5982
5983                 if (is_lvds) {
5984                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5985                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
5986                         clock.p2 = 14;
5987
5988                         if ((dpll & PLL_REF_INPUT_MASK) ==
5989                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5990                                 /* XXX: might not be 66MHz */
5991                                 intel_clock(dev, 66000, &clock);
5992                         } else
5993                                 intel_clock(dev, 48000, &clock);
5994                 } else {
5995                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
5996                                 clock.p1 = 2;
5997                         else {
5998                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5999                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6000                         }
6001                         if (dpll & PLL_P2_DIVIDE_BY_4)
6002                                 clock.p2 = 4;
6003                         else
6004                                 clock.p2 = 2;
6005
6006                         intel_clock(dev, 48000, &clock);
6007                 }
6008         }
6009
6010         /* XXX: It would be nice to validate the clocks, but we can't reuse
6011          * i830PllIsValid() because it relies on the xf86_config connector
6012          * configuration being accurate, which it isn't necessarily.
6013          */
6014
6015         return clock.dot;
6016 }
6017
6018 /** Returns the currently programmed mode of the given pipe. */
6019 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6020                                              struct drm_crtc *crtc)
6021 {
6022         struct drm_i915_private *dev_priv = dev->dev_private;
6023         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6024         int pipe = intel_crtc->pipe;
6025         struct drm_display_mode *mode;
6026         int htot = I915_READ(HTOTAL(pipe));
6027         int hsync = I915_READ(HSYNC(pipe));
6028         int vtot = I915_READ(VTOTAL(pipe));
6029         int vsync = I915_READ(VSYNC(pipe));
6030
6031         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6032         if (!mode)
6033                 return NULL;
6034
6035         mode->clock = intel_crtc_clock_get(dev, crtc);
6036         mode->hdisplay = (htot & 0xffff) + 1;
6037         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6038         mode->hsync_start = (hsync & 0xffff) + 1;
6039         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6040         mode->vdisplay = (vtot & 0xffff) + 1;
6041         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6042         mode->vsync_start = (vsync & 0xffff) + 1;
6043         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6044
6045         drm_mode_set_name(mode);
6046
6047         return mode;
6048 }
6049
6050 static void intel_increase_pllclock(struct drm_crtc *crtc)
6051 {
6052         struct drm_device *dev = crtc->dev;
6053         drm_i915_private_t *dev_priv = dev->dev_private;
6054         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6055         int pipe = intel_crtc->pipe;
6056         int dpll_reg = DPLL(pipe);
6057         int dpll;
6058
6059         if (HAS_PCH_SPLIT(dev))
6060                 return;
6061
6062         if (!dev_priv->lvds_downclock_avail)
6063                 return;
6064
6065         dpll = I915_READ(dpll_reg);
6066         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6067                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6068
6069                 assert_panel_unlocked(dev_priv, pipe);
6070
6071                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6072                 I915_WRITE(dpll_reg, dpll);
6073                 intel_wait_for_vblank(dev, pipe);
6074
6075                 dpll = I915_READ(dpll_reg);
6076                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6077                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6078         }
6079 }
6080
6081 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6082 {
6083         struct drm_device *dev = crtc->dev;
6084         drm_i915_private_t *dev_priv = dev->dev_private;
6085         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6086
6087         if (HAS_PCH_SPLIT(dev))
6088                 return;
6089
6090         if (!dev_priv->lvds_downclock_avail)
6091                 return;
6092
6093         /*
6094          * Since this is called by a timer, we should never get here in
6095          * the manual case.
6096          */
6097         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6098                 int pipe = intel_crtc->pipe;
6099                 int dpll_reg = DPLL(pipe);
6100                 int dpll;
6101
6102                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6103
6104                 assert_panel_unlocked(dev_priv, pipe);
6105
6106                 dpll = I915_READ(dpll_reg);
6107                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6108                 I915_WRITE(dpll_reg, dpll);
6109                 intel_wait_for_vblank(dev, pipe);
6110                 dpll = I915_READ(dpll_reg);
6111                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6112                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6113         }
6114
6115 }
6116
6117 void intel_mark_busy(struct drm_device *dev)
6118 {
6119         i915_update_gfx_val(dev->dev_private);
6120 }
6121
6122 void intel_mark_idle(struct drm_device *dev)
6123 {
6124 }
6125
6126 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6127 {
6128         struct drm_device *dev = obj->base.dev;
6129         struct drm_crtc *crtc;
6130
6131         if (!i915_powersave)
6132                 return;
6133
6134         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6135                 if (!crtc->fb)
6136                         continue;
6137
6138                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6139                         intel_increase_pllclock(crtc);
6140         }
6141 }
6142
6143 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6144 {
6145         struct drm_device *dev = obj->base.dev;
6146         struct drm_crtc *crtc;
6147
6148         if (!i915_powersave)
6149                 return;
6150
6151         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6152                 if (!crtc->fb)
6153                         continue;
6154
6155                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6156                         intel_decrease_pllclock(crtc);
6157         }
6158 }
6159
6160 static void intel_crtc_destroy(struct drm_crtc *crtc)
6161 {
6162         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6163         struct drm_device *dev = crtc->dev;
6164         struct intel_unpin_work *work;
6165         unsigned long flags;
6166
6167         spin_lock_irqsave(&dev->event_lock, flags);
6168         work = intel_crtc->unpin_work;
6169         intel_crtc->unpin_work = NULL;
6170         spin_unlock_irqrestore(&dev->event_lock, flags);
6171
6172         if (work) {
6173                 cancel_work_sync(&work->work);
6174                 kfree(work);
6175         }
6176
6177         drm_crtc_cleanup(crtc);
6178
6179         kfree(intel_crtc);
6180 }
6181
6182 static void intel_unpin_work_fn(struct work_struct *__work)
6183 {
6184         struct intel_unpin_work *work =
6185                 container_of(__work, struct intel_unpin_work, work);
6186
6187         mutex_lock(&work->dev->struct_mutex);
6188         intel_unpin_fb_obj(work->old_fb_obj);
6189         drm_gem_object_unreference(&work->pending_flip_obj->base);
6190         drm_gem_object_unreference(&work->old_fb_obj->base);
6191
6192         intel_update_fbc(work->dev);
6193         mutex_unlock(&work->dev->struct_mutex);
6194         kfree(work);
6195 }
6196
6197 static void do_intel_finish_page_flip(struct drm_device *dev,
6198                                       struct drm_crtc *crtc)
6199 {
6200         drm_i915_private_t *dev_priv = dev->dev_private;
6201         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6202         struct intel_unpin_work *work;
6203         struct drm_i915_gem_object *obj;
6204         struct drm_pending_vblank_event *e;
6205         struct timeval tvbl;
6206         unsigned long flags;
6207
6208         /* Ignore early vblank irqs */
6209         if (intel_crtc == NULL)
6210                 return;
6211
6212         spin_lock_irqsave(&dev->event_lock, flags);
6213         work = intel_crtc->unpin_work;
6214         if (work == NULL || !work->pending) {
6215                 spin_unlock_irqrestore(&dev->event_lock, flags);
6216                 return;
6217         }
6218
6219         intel_crtc->unpin_work = NULL;
6220
6221         if (work->event) {
6222                 e = work->event;
6223                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6224
6225                 e->event.tv_sec = tvbl.tv_sec;
6226                 e->event.tv_usec = tvbl.tv_usec;
6227
6228                 list_add_tail(&e->base.link,
6229                               &e->base.file_priv->event_list);
6230                 wake_up_interruptible(&e->base.file_priv->event_wait);
6231         }
6232
6233         drm_vblank_put(dev, intel_crtc->pipe);
6234
6235         spin_unlock_irqrestore(&dev->event_lock, flags);
6236
6237         obj = work->old_fb_obj;
6238
6239         atomic_clear_mask(1 << intel_crtc->plane,
6240                           &obj->pending_flip.counter);
6241
6242         wake_up(&dev_priv->pending_flip_queue);
6243         schedule_work(&work->work);
6244
6245         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6246 }
6247
6248 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6249 {
6250         drm_i915_private_t *dev_priv = dev->dev_private;
6251         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6252
6253         do_intel_finish_page_flip(dev, crtc);
6254 }
6255
6256 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6257 {
6258         drm_i915_private_t *dev_priv = dev->dev_private;
6259         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6260
6261         do_intel_finish_page_flip(dev, crtc);
6262 }
6263
6264 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6265 {
6266         drm_i915_private_t *dev_priv = dev->dev_private;
6267         struct intel_crtc *intel_crtc =
6268                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6269         unsigned long flags;
6270
6271         spin_lock_irqsave(&dev->event_lock, flags);
6272         if (intel_crtc->unpin_work) {
6273                 if ((++intel_crtc->unpin_work->pending) > 1)
6274                         DRM_ERROR("Prepared flip multiple times\n");
6275         } else {
6276                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6277         }
6278         spin_unlock_irqrestore(&dev->event_lock, flags);
6279 }
6280
6281 static int intel_gen2_queue_flip(struct drm_device *dev,
6282                                  struct drm_crtc *crtc,
6283                                  struct drm_framebuffer *fb,
6284                                  struct drm_i915_gem_object *obj)
6285 {
6286         struct drm_i915_private *dev_priv = dev->dev_private;
6287         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6288         u32 flip_mask;
6289         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6290         int ret;
6291
6292         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6293         if (ret)
6294                 goto err;
6295
6296         ret = intel_ring_begin(ring, 6);
6297         if (ret)
6298                 goto err_unpin;
6299
6300         /* Can't queue multiple flips, so wait for the previous
6301          * one to finish before executing the next.
6302          */
6303         if (intel_crtc->plane)
6304                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6305         else
6306                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6307         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6308         intel_ring_emit(ring, MI_NOOP);
6309         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6310                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6311         intel_ring_emit(ring, fb->pitches[0]);
6312         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6313         intel_ring_emit(ring, 0); /* aux display base address, unused */
6314         intel_ring_advance(ring);
6315         return 0;
6316
6317 err_unpin:
6318         intel_unpin_fb_obj(obj);
6319 err:
6320         return ret;
6321 }
6322
6323 static int intel_gen3_queue_flip(struct drm_device *dev,
6324                                  struct drm_crtc *crtc,
6325                                  struct drm_framebuffer *fb,
6326                                  struct drm_i915_gem_object *obj)
6327 {
6328         struct drm_i915_private *dev_priv = dev->dev_private;
6329         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6330         u32 flip_mask;
6331         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6332         int ret;
6333
6334         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6335         if (ret)
6336                 goto err;
6337
6338         ret = intel_ring_begin(ring, 6);
6339         if (ret)
6340                 goto err_unpin;
6341
6342         if (intel_crtc->plane)
6343                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6344         else
6345                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6346         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6347         intel_ring_emit(ring, MI_NOOP);
6348         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6349                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6350         intel_ring_emit(ring, fb->pitches[0]);
6351         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6352         intel_ring_emit(ring, MI_NOOP);
6353
6354         intel_ring_advance(ring);
6355         return 0;
6356
6357 err_unpin:
6358         intel_unpin_fb_obj(obj);
6359 err:
6360         return ret;
6361 }
6362
6363 static int intel_gen4_queue_flip(struct drm_device *dev,
6364                                  struct drm_crtc *crtc,
6365                                  struct drm_framebuffer *fb,
6366                                  struct drm_i915_gem_object *obj)
6367 {
6368         struct drm_i915_private *dev_priv = dev->dev_private;
6369         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6370         uint32_t pf, pipesrc;
6371         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6372         int ret;
6373
6374         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6375         if (ret)
6376                 goto err;
6377
6378         ret = intel_ring_begin(ring, 4);
6379         if (ret)
6380                 goto err_unpin;
6381
6382         /* i965+ uses the linear or tiled offsets from the
6383          * Display Registers (which do not change across a page-flip)
6384          * so we need only reprogram the base address.
6385          */
6386         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6387                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6388         intel_ring_emit(ring, fb->pitches[0]);
6389         intel_ring_emit(ring,
6390                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6391                         obj->tiling_mode);
6392
6393         /* XXX Enabling the panel-fitter across page-flip is so far
6394          * untested on non-native modes, so ignore it for now.
6395          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6396          */
6397         pf = 0;
6398         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6399         intel_ring_emit(ring, pf | pipesrc);
6400         intel_ring_advance(ring);
6401         return 0;
6402
6403 err_unpin:
6404         intel_unpin_fb_obj(obj);
6405 err:
6406         return ret;
6407 }
6408
6409 static int intel_gen6_queue_flip(struct drm_device *dev,
6410                                  struct drm_crtc *crtc,
6411                                  struct drm_framebuffer *fb,
6412                                  struct drm_i915_gem_object *obj)
6413 {
6414         struct drm_i915_private *dev_priv = dev->dev_private;
6415         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6416         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6417         uint32_t pf, pipesrc;
6418         int ret;
6419
6420         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6421         if (ret)
6422                 goto err;
6423
6424         ret = intel_ring_begin(ring, 4);
6425         if (ret)
6426                 goto err_unpin;
6427
6428         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6429                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6430         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6431         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6432
6433         /* Contrary to the suggestions in the documentation,
6434          * "Enable Panel Fitter" does not seem to be required when page
6435          * flipping with a non-native mode, and worse causes a normal
6436          * modeset to fail.
6437          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6438          */
6439         pf = 0;
6440         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6441         intel_ring_emit(ring, pf | pipesrc);
6442         intel_ring_advance(ring);
6443         return 0;
6444
6445 err_unpin:
6446         intel_unpin_fb_obj(obj);
6447 err:
6448         return ret;
6449 }
6450
6451 /*
6452  * On gen7 we currently use the blit ring because (in early silicon at least)
6453  * the render ring doesn't give us interrpts for page flip completion, which
6454  * means clients will hang after the first flip is queued.  Fortunately the
6455  * blit ring generates interrupts properly, so use it instead.
6456  */
6457 static int intel_gen7_queue_flip(struct drm_device *dev,
6458                                  struct drm_crtc *crtc,
6459                                  struct drm_framebuffer *fb,
6460                                  struct drm_i915_gem_object *obj)
6461 {
6462         struct drm_i915_private *dev_priv = dev->dev_private;
6463         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6464         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6465         uint32_t plane_bit = 0;
6466         int ret;
6467
6468         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6469         if (ret)
6470                 goto err;
6471
6472         switch(intel_crtc->plane) {
6473         case PLANE_A:
6474                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6475                 break;
6476         case PLANE_B:
6477                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6478                 break;
6479         case PLANE_C:
6480                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6481                 break;
6482         default:
6483                 WARN_ONCE(1, "unknown plane in flip command\n");
6484                 ret = -ENODEV;
6485                 goto err_unpin;
6486         }
6487
6488         ret = intel_ring_begin(ring, 4);
6489         if (ret)
6490                 goto err_unpin;
6491
6492         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6493         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6494         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6495         intel_ring_emit(ring, (MI_NOOP));
6496         intel_ring_advance(ring);
6497         return 0;
6498
6499 err_unpin:
6500         intel_unpin_fb_obj(obj);
6501 err:
6502         return ret;
6503 }
6504
6505 static int intel_default_queue_flip(struct drm_device *dev,
6506                                     struct drm_crtc *crtc,
6507                                     struct drm_framebuffer *fb,
6508                                     struct drm_i915_gem_object *obj)
6509 {
6510         return -ENODEV;
6511 }
6512
6513 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6514                                 struct drm_framebuffer *fb,
6515                                 struct drm_pending_vblank_event *event)
6516 {
6517         struct drm_device *dev = crtc->dev;
6518         struct drm_i915_private *dev_priv = dev->dev_private;
6519         struct intel_framebuffer *intel_fb;
6520         struct drm_i915_gem_object *obj;
6521         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6522         struct intel_unpin_work *work;
6523         unsigned long flags;
6524         int ret;
6525
6526         /* Can't change pixel format via MI display flips. */
6527         if (fb->pixel_format != crtc->fb->pixel_format)
6528                 return -EINVAL;
6529
6530         /*
6531          * TILEOFF/LINOFF registers can't be changed via MI display flips.
6532          * Note that pitch changes could also affect these register.
6533          */
6534         if (INTEL_INFO(dev)->gen > 3 &&
6535             (fb->offsets[0] != crtc->fb->offsets[0] ||
6536              fb->pitches[0] != crtc->fb->pitches[0]))
6537                 return -EINVAL;
6538
6539         work = kzalloc(sizeof *work, GFP_KERNEL);
6540         if (work == NULL)
6541                 return -ENOMEM;
6542
6543         work->event = event;
6544         work->dev = crtc->dev;
6545         intel_fb = to_intel_framebuffer(crtc->fb);
6546         work->old_fb_obj = intel_fb->obj;
6547         INIT_WORK(&work->work, intel_unpin_work_fn);
6548
6549         ret = drm_vblank_get(dev, intel_crtc->pipe);
6550         if (ret)
6551                 goto free_work;
6552
6553         /* We borrow the event spin lock for protecting unpin_work */
6554         spin_lock_irqsave(&dev->event_lock, flags);
6555         if (intel_crtc->unpin_work) {
6556                 spin_unlock_irqrestore(&dev->event_lock, flags);
6557                 kfree(work);
6558                 drm_vblank_put(dev, intel_crtc->pipe);
6559
6560                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6561                 return -EBUSY;
6562         }
6563         intel_crtc->unpin_work = work;
6564         spin_unlock_irqrestore(&dev->event_lock, flags);
6565
6566         intel_fb = to_intel_framebuffer(fb);
6567         obj = intel_fb->obj;
6568
6569         ret = i915_mutex_lock_interruptible(dev);
6570         if (ret)
6571                 goto cleanup;
6572
6573         /* Reference the objects for the scheduled work. */
6574         drm_gem_object_reference(&work->old_fb_obj->base);
6575         drm_gem_object_reference(&obj->base);
6576
6577         crtc->fb = fb;
6578
6579         work->pending_flip_obj = obj;
6580
6581         work->enable_stall_check = true;
6582
6583         /* Block clients from rendering to the new back buffer until
6584          * the flip occurs and the object is no longer visible.
6585          */
6586         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6587
6588         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6589         if (ret)
6590                 goto cleanup_pending;
6591
6592         intel_disable_fbc(dev);
6593         intel_mark_fb_busy(obj);
6594         mutex_unlock(&dev->struct_mutex);
6595
6596         trace_i915_flip_request(intel_crtc->plane, obj);
6597
6598         return 0;
6599
6600 cleanup_pending:
6601         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6602         drm_gem_object_unreference(&work->old_fb_obj->base);
6603         drm_gem_object_unreference(&obj->base);
6604         mutex_unlock(&dev->struct_mutex);
6605
6606 cleanup:
6607         spin_lock_irqsave(&dev->event_lock, flags);
6608         intel_crtc->unpin_work = NULL;
6609         spin_unlock_irqrestore(&dev->event_lock, flags);
6610
6611         drm_vblank_put(dev, intel_crtc->pipe);
6612 free_work:
6613         kfree(work);
6614
6615         return ret;
6616 }
6617
6618 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6619         .mode_set_base_atomic = intel_pipe_set_base_atomic,
6620         .load_lut = intel_crtc_load_lut,
6621         .disable = intel_crtc_noop,
6622 };
6623
6624 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
6625 {
6626         struct intel_encoder *other_encoder;
6627         struct drm_crtc *crtc = &encoder->new_crtc->base;
6628
6629         if (WARN_ON(!crtc))
6630                 return false;
6631
6632         list_for_each_entry(other_encoder,
6633                             &crtc->dev->mode_config.encoder_list,
6634                             base.head) {
6635
6636                 if (&other_encoder->new_crtc->base != crtc ||
6637                     encoder == other_encoder)
6638                         continue;
6639                 else
6640                         return true;
6641         }
6642
6643         return false;
6644 }
6645
6646 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
6647                                   struct drm_crtc *crtc)
6648 {
6649         struct drm_device *dev;
6650         struct drm_crtc *tmp;
6651         int crtc_mask = 1;
6652
6653         WARN(!crtc, "checking null crtc?\n");
6654
6655         dev = crtc->dev;
6656
6657         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
6658                 if (tmp == crtc)
6659                         break;
6660                 crtc_mask <<= 1;
6661         }
6662
6663         if (encoder->possible_crtcs & crtc_mask)
6664                 return true;
6665         return false;
6666 }
6667
6668 /**
6669  * intel_modeset_update_staged_output_state
6670  *
6671  * Updates the staged output configuration state, e.g. after we've read out the
6672  * current hw state.
6673  */
6674 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
6675 {
6676         struct intel_encoder *encoder;
6677         struct intel_connector *connector;
6678
6679         list_for_each_entry(connector, &dev->mode_config.connector_list,
6680                             base.head) {
6681                 connector->new_encoder =
6682                         to_intel_encoder(connector->base.encoder);
6683         }
6684
6685         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6686                             base.head) {
6687                 encoder->new_crtc =
6688                         to_intel_crtc(encoder->base.crtc);
6689         }
6690 }
6691
6692 /**
6693  * intel_modeset_commit_output_state
6694  *
6695  * This function copies the stage display pipe configuration to the real one.
6696  */
6697 static void intel_modeset_commit_output_state(struct drm_device *dev)
6698 {
6699         struct intel_encoder *encoder;
6700         struct intel_connector *connector;
6701
6702         list_for_each_entry(connector, &dev->mode_config.connector_list,
6703                             base.head) {
6704                 connector->base.encoder = &connector->new_encoder->base;
6705         }
6706
6707         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6708                             base.head) {
6709                 encoder->base.crtc = &encoder->new_crtc->base;
6710         }
6711 }
6712
6713 static struct drm_display_mode *
6714 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
6715                             struct drm_display_mode *mode)
6716 {
6717         struct drm_device *dev = crtc->dev;
6718         struct drm_display_mode *adjusted_mode;
6719         struct drm_encoder_helper_funcs *encoder_funcs;
6720         struct intel_encoder *encoder;
6721
6722         adjusted_mode = drm_mode_duplicate(dev, mode);
6723         if (!adjusted_mode)
6724                 return ERR_PTR(-ENOMEM);
6725
6726         /* Pass our mode to the connectors and the CRTC to give them a chance to
6727          * adjust it according to limitations or connector properties, and also
6728          * a chance to reject the mode entirely.
6729          */
6730         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6731                             base.head) {
6732
6733                 if (&encoder->new_crtc->base != crtc)
6734                         continue;
6735                 encoder_funcs = encoder->base.helper_private;
6736                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
6737                                                 adjusted_mode))) {
6738                         DRM_DEBUG_KMS("Encoder fixup failed\n");
6739                         goto fail;
6740                 }
6741         }
6742
6743         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
6744                 DRM_DEBUG_KMS("CRTC fixup failed\n");
6745                 goto fail;
6746         }
6747         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
6748
6749         return adjusted_mode;
6750 fail:
6751         drm_mode_destroy(dev, adjusted_mode);
6752         return ERR_PTR(-EINVAL);
6753 }
6754
6755 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
6756  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
6757 static void
6758 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
6759                              unsigned *prepare_pipes, unsigned *disable_pipes)
6760 {
6761         struct intel_crtc *intel_crtc;
6762         struct drm_device *dev = crtc->dev;
6763         struct intel_encoder *encoder;
6764         struct intel_connector *connector;
6765         struct drm_crtc *tmp_crtc;
6766
6767         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
6768
6769         /* Check which crtcs have changed outputs connected to them, these need
6770          * to be part of the prepare_pipes mask. We don't (yet) support global
6771          * modeset across multiple crtcs, so modeset_pipes will only have one
6772          * bit set at most. */
6773         list_for_each_entry(connector, &dev->mode_config.connector_list,
6774                             base.head) {
6775                 if (connector->base.encoder == &connector->new_encoder->base)
6776                         continue;
6777
6778                 if (connector->base.encoder) {
6779                         tmp_crtc = connector->base.encoder->crtc;
6780
6781                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
6782                 }
6783
6784                 if (connector->new_encoder)
6785                         *prepare_pipes |=
6786                                 1 << connector->new_encoder->new_crtc->pipe;
6787         }
6788
6789         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6790                             base.head) {
6791                 if (encoder->base.crtc == &encoder->new_crtc->base)
6792                         continue;
6793
6794                 if (encoder->base.crtc) {
6795                         tmp_crtc = encoder->base.crtc;
6796
6797                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
6798                 }
6799
6800                 if (encoder->new_crtc)
6801                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
6802         }
6803
6804         /* Check for any pipes that will be fully disabled ... */
6805         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
6806                             base.head) {
6807                 bool used = false;
6808
6809                 /* Don't try to disable disabled crtcs. */
6810                 if (!intel_crtc->base.enabled)
6811                         continue;
6812
6813                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6814                                     base.head) {
6815                         if (encoder->new_crtc == intel_crtc)
6816                                 used = true;
6817                 }
6818
6819                 if (!used)
6820                         *disable_pipes |= 1 << intel_crtc->pipe;
6821         }
6822
6823
6824         /* set_mode is also used to update properties on life display pipes. */
6825         intel_crtc = to_intel_crtc(crtc);
6826         if (crtc->enabled)
6827                 *prepare_pipes |= 1 << intel_crtc->pipe;
6828
6829         /* We only support modeset on one single crtc, hence we need to do that
6830          * only for the passed in crtc iff we change anything else than just
6831          * disable crtcs.
6832          *
6833          * This is actually not true, to be fully compatible with the old crtc
6834          * helper we automatically disable _any_ output (i.e. doesn't need to be
6835          * connected to the crtc we're modesetting on) if it's disconnected.
6836          * Which is a rather nutty api (since changed the output configuration
6837          * without userspace's explicit request can lead to confusion), but
6838          * alas. Hence we currently need to modeset on all pipes we prepare. */
6839         if (*prepare_pipes)
6840                 *modeset_pipes = *prepare_pipes;
6841
6842         /* ... and mask these out. */
6843         *modeset_pipes &= ~(*disable_pipes);
6844         *prepare_pipes &= ~(*disable_pipes);
6845 }
6846
6847 static bool intel_crtc_in_use(struct drm_crtc *crtc)
6848 {
6849         struct drm_encoder *encoder;
6850         struct drm_device *dev = crtc->dev;
6851
6852         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
6853                 if (encoder->crtc == crtc)
6854                         return true;
6855
6856         return false;
6857 }
6858
6859 static void
6860 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
6861 {
6862         struct intel_encoder *intel_encoder;
6863         struct intel_crtc *intel_crtc;
6864         struct drm_connector *connector;
6865
6866         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
6867                             base.head) {
6868                 if (!intel_encoder->base.crtc)
6869                         continue;
6870
6871                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
6872
6873                 if (prepare_pipes & (1 << intel_crtc->pipe))
6874                         intel_encoder->connectors_active = false;
6875         }
6876
6877         intel_modeset_commit_output_state(dev);
6878
6879         /* Update computed state. */
6880         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
6881                             base.head) {
6882                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
6883         }
6884
6885         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6886                 if (!connector->encoder || !connector->encoder->crtc)
6887                         continue;
6888
6889                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
6890
6891                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
6892                         struct drm_property *dpms_property =
6893                                 dev->mode_config.dpms_property;
6894
6895                         connector->dpms = DRM_MODE_DPMS_ON;
6896                         drm_connector_property_set_value(connector,
6897                                                          dpms_property,
6898                                                          DRM_MODE_DPMS_ON);
6899
6900                         intel_encoder = to_intel_encoder(connector->encoder);
6901                         intel_encoder->connectors_active = true;
6902                 }
6903         }
6904
6905 }
6906
6907 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
6908         list_for_each_entry((intel_crtc), \
6909                             &(dev)->mode_config.crtc_list, \
6910                             base.head) \
6911                 if (mask & (1 <<(intel_crtc)->pipe)) \
6912
6913 void
6914 intel_modeset_check_state(struct drm_device *dev)
6915 {
6916         struct intel_crtc *crtc;
6917         struct intel_encoder *encoder;
6918         struct intel_connector *connector;
6919
6920         list_for_each_entry(connector, &dev->mode_config.connector_list,
6921                             base.head) {
6922                 /* This also checks the encoder/connector hw state with the
6923                  * ->get_hw_state callbacks. */
6924                 intel_connector_check_state(connector);
6925
6926                 WARN(&connector->new_encoder->base != connector->base.encoder,
6927                      "connector's staged encoder doesn't match current encoder\n");
6928         }
6929
6930         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6931                             base.head) {
6932                 bool enabled = false;
6933                 bool active = false;
6934                 enum pipe pipe, tracked_pipe;
6935
6936                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
6937                               encoder->base.base.id,
6938                               drm_get_encoder_name(&encoder->base));
6939
6940                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
6941                      "encoder's stage crtc doesn't match current crtc\n");
6942                 WARN(encoder->connectors_active && !encoder->base.crtc,
6943                      "encoder's active_connectors set, but no crtc\n");
6944
6945                 list_for_each_entry(connector, &dev->mode_config.connector_list,
6946                                     base.head) {
6947                         if (connector->base.encoder != &encoder->base)
6948                                 continue;
6949                         enabled = true;
6950                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
6951                                 active = true;
6952                 }
6953                 WARN(!!encoder->base.crtc != enabled,
6954                      "encoder's enabled state mismatch "
6955                      "(expected %i, found %i)\n",
6956                      !!encoder->base.crtc, enabled);
6957                 WARN(active && !encoder->base.crtc,
6958                      "active encoder with no crtc\n");
6959
6960                 WARN(encoder->connectors_active != active,
6961                      "encoder's computed active state doesn't match tracked active state "
6962                      "(expected %i, found %i)\n", active, encoder->connectors_active);
6963
6964                 active = encoder->get_hw_state(encoder, &pipe);
6965                 WARN(active != encoder->connectors_active,
6966                      "encoder's hw state doesn't match sw tracking "
6967                      "(expected %i, found %i)\n",
6968                      encoder->connectors_active, active);
6969
6970                 if (!encoder->base.crtc)
6971                         continue;
6972
6973                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
6974                 WARN(active && pipe != tracked_pipe,
6975                      "active encoder's pipe doesn't match"
6976                      "(expected %i, found %i)\n",
6977                      tracked_pipe, pipe);
6978
6979         }
6980
6981         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
6982                             base.head) {
6983                 bool enabled = false;
6984                 bool active = false;
6985
6986                 DRM_DEBUG_KMS("[CRTC:%d]\n",
6987                               crtc->base.base.id);
6988
6989                 WARN(crtc->active && !crtc->base.enabled,
6990                      "active crtc, but not enabled in sw tracking\n");
6991
6992                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6993                                     base.head) {
6994                         if (encoder->base.crtc != &crtc->base)
6995                                 continue;
6996                         enabled = true;
6997                         if (encoder->connectors_active)
6998                                 active = true;
6999                 }
7000                 WARN(active != crtc->active,
7001                      "crtc's computed active state doesn't match tracked active state "
7002                      "(expected %i, found %i)\n", active, crtc->active);
7003                 WARN(enabled != crtc->base.enabled,
7004                      "crtc's computed enabled state doesn't match tracked enabled state "
7005                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7006
7007                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7008         }
7009 }
7010
7011 bool intel_set_mode(struct drm_crtc *crtc,
7012                     struct drm_display_mode *mode,
7013                     int x, int y, struct drm_framebuffer *fb)
7014 {
7015         struct drm_device *dev = crtc->dev;
7016         drm_i915_private_t *dev_priv = dev->dev_private;
7017         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7018         struct drm_encoder_helper_funcs *encoder_funcs;
7019         struct drm_encoder *encoder;
7020         struct intel_crtc *intel_crtc;
7021         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7022         bool ret = true;
7023
7024         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7025                                      &prepare_pipes, &disable_pipes);
7026
7027         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7028                       modeset_pipes, prepare_pipes, disable_pipes);
7029
7030         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7031                 intel_crtc_disable(&intel_crtc->base);
7032
7033         saved_hwmode = crtc->hwmode;
7034         saved_mode = crtc->mode;
7035
7036         /* Hack: Because we don't (yet) support global modeset on multiple
7037          * crtcs, we don't keep track of the new mode for more than one crtc.
7038          * Hence simply check whether any bit is set in modeset_pipes in all the
7039          * pieces of code that are not yet converted to deal with mutliple crtcs
7040          * changing their mode at the same time. */
7041         adjusted_mode = NULL;
7042         if (modeset_pipes) {
7043                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7044                 if (IS_ERR(adjusted_mode)) {
7045                         return false;
7046                 }
7047         }
7048
7049         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7050                 if (intel_crtc->base.enabled)
7051                         dev_priv->display.crtc_disable(&intel_crtc->base);
7052         }
7053
7054         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7055          * to set it here already despite that we pass it down the callchain.
7056          */
7057         if (modeset_pipes)
7058                 crtc->mode = *mode;
7059
7060         /* Only after disabling all output pipelines that will be changed can we
7061          * update the the output configuration. */
7062         intel_modeset_update_state(dev, prepare_pipes);
7063
7064         /* Set up the DPLL and any encoders state that needs to adjust or depend
7065          * on the DPLL.
7066          */
7067         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7068                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7069                                            mode, adjusted_mode,
7070                                            x, y, fb);
7071                 if (!ret)
7072                     goto done;
7073
7074                 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7075
7076                         if (encoder->crtc != &intel_crtc->base)
7077                                 continue;
7078
7079                         DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7080                                 encoder->base.id, drm_get_encoder_name(encoder),
7081                                 mode->base.id, mode->name);
7082                         encoder_funcs = encoder->helper_private;
7083                         encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7084                 }
7085         }
7086
7087         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7088         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7089                 dev_priv->display.crtc_enable(&intel_crtc->base);
7090
7091         if (modeset_pipes) {
7092                 /* Store real post-adjustment hardware mode. */
7093                 crtc->hwmode = *adjusted_mode;
7094
7095                 /* Calculate and store various constants which
7096                  * are later needed by vblank and swap-completion
7097                  * timestamping. They are derived from true hwmode.
7098                  */
7099                 drm_calc_timestamping_constants(crtc);
7100         }
7101
7102         /* FIXME: add subpixel order */
7103 done:
7104         drm_mode_destroy(dev, adjusted_mode);
7105         if (!ret && crtc->enabled) {
7106                 crtc->hwmode = saved_hwmode;
7107                 crtc->mode = saved_mode;
7108         } else {
7109                 intel_modeset_check_state(dev);
7110         }
7111
7112         return ret;
7113 }
7114
7115 #undef for_each_intel_crtc_masked
7116
7117 static void intel_set_config_free(struct intel_set_config *config)
7118 {
7119         if (!config)
7120                 return;
7121
7122         kfree(config->save_connector_encoders);
7123         kfree(config->save_encoder_crtcs);
7124         kfree(config);
7125 }
7126
7127 static int intel_set_config_save_state(struct drm_device *dev,
7128                                        struct intel_set_config *config)
7129 {
7130         struct drm_encoder *encoder;
7131         struct drm_connector *connector;
7132         int count;
7133
7134         config->save_encoder_crtcs =
7135                 kcalloc(dev->mode_config.num_encoder,
7136                         sizeof(struct drm_crtc *), GFP_KERNEL);
7137         if (!config->save_encoder_crtcs)
7138                 return -ENOMEM;
7139
7140         config->save_connector_encoders =
7141                 kcalloc(dev->mode_config.num_connector,
7142                         sizeof(struct drm_encoder *), GFP_KERNEL);
7143         if (!config->save_connector_encoders)
7144                 return -ENOMEM;
7145
7146         /* Copy data. Note that driver private data is not affected.
7147          * Should anything bad happen only the expected state is
7148          * restored, not the drivers personal bookkeeping.
7149          */
7150         count = 0;
7151         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7152                 config->save_encoder_crtcs[count++] = encoder->crtc;
7153         }
7154
7155         count = 0;
7156         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7157                 config->save_connector_encoders[count++] = connector->encoder;
7158         }
7159
7160         return 0;
7161 }
7162
7163 static void intel_set_config_restore_state(struct drm_device *dev,
7164                                            struct intel_set_config *config)
7165 {
7166         struct intel_encoder *encoder;
7167         struct intel_connector *connector;
7168         int count;
7169
7170         count = 0;
7171         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7172                 encoder->new_crtc =
7173                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7174         }
7175
7176         count = 0;
7177         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7178                 connector->new_encoder =
7179                         to_intel_encoder(config->save_connector_encoders[count++]);
7180         }
7181 }
7182
7183 static void
7184 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7185                                       struct intel_set_config *config)
7186 {
7187
7188         /* We should be able to check here if the fb has the same properties
7189          * and then just flip_or_move it */
7190         if (set->crtc->fb != set->fb) {
7191                 /* If we have no fb then treat it as a full mode set */
7192                 if (set->crtc->fb == NULL) {
7193                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7194                         config->mode_changed = true;
7195                 } else if (set->fb == NULL) {
7196                         config->mode_changed = true;
7197                 } else if (set->fb->depth != set->crtc->fb->depth) {
7198                         config->mode_changed = true;
7199                 } else if (set->fb->bits_per_pixel !=
7200                            set->crtc->fb->bits_per_pixel) {
7201                         config->mode_changed = true;
7202                 } else
7203                         config->fb_changed = true;
7204         }
7205
7206         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7207                 config->fb_changed = true;
7208
7209         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7210                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7211                 drm_mode_debug_printmodeline(&set->crtc->mode);
7212                 drm_mode_debug_printmodeline(set->mode);
7213                 config->mode_changed = true;
7214         }
7215 }
7216
7217 static int
7218 intel_modeset_stage_output_state(struct drm_device *dev,
7219                                  struct drm_mode_set *set,
7220                                  struct intel_set_config *config)
7221 {
7222         struct drm_crtc *new_crtc;
7223         struct intel_connector *connector;
7224         struct intel_encoder *encoder;
7225         int count, ro;
7226
7227         /* The upper layers ensure that we either disabl a crtc or have a list
7228          * of connectors. For paranoia, double-check this. */
7229         WARN_ON(!set->fb && (set->num_connectors != 0));
7230         WARN_ON(set->fb && (set->num_connectors == 0));
7231
7232         count = 0;
7233         list_for_each_entry(connector, &dev->mode_config.connector_list,
7234                             base.head) {
7235                 /* Otherwise traverse passed in connector list and get encoders
7236                  * for them. */
7237                 for (ro = 0; ro < set->num_connectors; ro++) {
7238                         if (set->connectors[ro] == &connector->base) {
7239                                 connector->new_encoder = connector->encoder;
7240                                 break;
7241                         }
7242                 }
7243
7244                 /* If we disable the crtc, disable all its connectors. Also, if
7245                  * the connector is on the changing crtc but not on the new
7246                  * connector list, disable it. */
7247                 if ((!set->fb || ro == set->num_connectors) &&
7248                     connector->base.encoder &&
7249                     connector->base.encoder->crtc == set->crtc) {
7250                         connector->new_encoder = NULL;
7251
7252                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7253                                 connector->base.base.id,
7254                                 drm_get_connector_name(&connector->base));
7255                 }
7256
7257
7258                 if (&connector->new_encoder->base != connector->base.encoder) {
7259                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7260                         config->mode_changed = true;
7261                 }
7262
7263                 /* Disable all disconnected encoders. */
7264                 if (connector->base.status == connector_status_disconnected)
7265                         connector->new_encoder = NULL;
7266         }
7267         /* connector->new_encoder is now updated for all connectors. */
7268
7269         /* Update crtc of enabled connectors. */
7270         count = 0;
7271         list_for_each_entry(connector, &dev->mode_config.connector_list,
7272                             base.head) {
7273                 if (!connector->new_encoder)
7274                         continue;
7275
7276                 new_crtc = connector->new_encoder->base.crtc;
7277
7278                 for (ro = 0; ro < set->num_connectors; ro++) {
7279                         if (set->connectors[ro] == &connector->base)
7280                                 new_crtc = set->crtc;
7281                 }
7282
7283                 /* Make sure the new CRTC will work with the encoder */
7284                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7285                                            new_crtc)) {
7286                         return -EINVAL;
7287                 }
7288                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7289
7290                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7291                         connector->base.base.id,
7292                         drm_get_connector_name(&connector->base),
7293                         new_crtc->base.id);
7294         }
7295
7296         /* Check for any encoders that needs to be disabled. */
7297         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7298                             base.head) {
7299                 list_for_each_entry(connector,
7300                                     &dev->mode_config.connector_list,
7301                                     base.head) {
7302                         if (connector->new_encoder == encoder) {
7303                                 WARN_ON(!connector->new_encoder->new_crtc);
7304
7305                                 goto next_encoder;
7306                         }
7307                 }
7308                 encoder->new_crtc = NULL;
7309 next_encoder:
7310                 /* Only now check for crtc changes so we don't miss encoders
7311                  * that will be disabled. */
7312                 if (&encoder->new_crtc->base != encoder->base.crtc) {
7313                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7314                         config->mode_changed = true;
7315                 }
7316         }
7317         /* Now we've also updated encoder->new_crtc for all encoders. */
7318
7319         return 0;
7320 }
7321
7322 static int intel_crtc_set_config(struct drm_mode_set *set)
7323 {
7324         struct drm_device *dev;
7325         struct drm_mode_set save_set;
7326         struct intel_set_config *config;
7327         int ret;
7328
7329         BUG_ON(!set);
7330         BUG_ON(!set->crtc);
7331         BUG_ON(!set->crtc->helper_private);
7332
7333         if (!set->mode)
7334                 set->fb = NULL;
7335
7336         /* The fb helper likes to play gross jokes with ->mode_set_config.
7337          * Unfortunately the crtc helper doesn't do much at all for this case,
7338          * so we have to cope with this madness until the fb helper is fixed up. */
7339         if (set->fb && set->num_connectors == 0)
7340                 return 0;
7341
7342         if (set->fb) {
7343                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7344                                 set->crtc->base.id, set->fb->base.id,
7345                                 (int)set->num_connectors, set->x, set->y);
7346         } else {
7347                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
7348         }
7349
7350         dev = set->crtc->dev;
7351
7352         ret = -ENOMEM;
7353         config = kzalloc(sizeof(*config), GFP_KERNEL);
7354         if (!config)
7355                 goto out_config;
7356
7357         ret = intel_set_config_save_state(dev, config);
7358         if (ret)
7359                 goto out_config;
7360
7361         save_set.crtc = set->crtc;
7362         save_set.mode = &set->crtc->mode;
7363         save_set.x = set->crtc->x;
7364         save_set.y = set->crtc->y;
7365         save_set.fb = set->crtc->fb;
7366
7367         /* Compute whether we need a full modeset, only an fb base update or no
7368          * change at all. In the future we might also check whether only the
7369          * mode changed, e.g. for LVDS where we only change the panel fitter in
7370          * such cases. */
7371         intel_set_config_compute_mode_changes(set, config);
7372
7373         ret = intel_modeset_stage_output_state(dev, set, config);
7374         if (ret)
7375                 goto fail;
7376
7377         if (config->mode_changed) {
7378                 if (set->mode) {
7379                         DRM_DEBUG_KMS("attempting to set mode from"
7380                                         " userspace\n");
7381                         drm_mode_debug_printmodeline(set->mode);
7382                 }
7383
7384                 if (!intel_set_mode(set->crtc, set->mode,
7385                                     set->x, set->y, set->fb)) {
7386                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7387                                   set->crtc->base.id);
7388                         ret = -EINVAL;
7389                         goto fail;
7390                 }
7391         } else if (config->fb_changed) {
7392                 ret = intel_pipe_set_base(set->crtc,
7393                                           set->x, set->y, set->fb);
7394         }
7395
7396         intel_set_config_free(config);
7397
7398         return 0;
7399
7400 fail:
7401         intel_set_config_restore_state(dev, config);
7402
7403         /* Try to restore the config */
7404         if (config->mode_changed &&
7405             !intel_set_mode(save_set.crtc, save_set.mode,
7406                             save_set.x, save_set.y, save_set.fb))
7407                 DRM_ERROR("failed to restore config after modeset failure\n");
7408
7409 out_config:
7410         intel_set_config_free(config);
7411         return ret;
7412 }
7413
7414 static const struct drm_crtc_funcs intel_crtc_funcs = {
7415         .cursor_set = intel_crtc_cursor_set,
7416         .cursor_move = intel_crtc_cursor_move,
7417         .gamma_set = intel_crtc_gamma_set,
7418         .set_config = intel_crtc_set_config,
7419         .destroy = intel_crtc_destroy,
7420         .page_flip = intel_crtc_page_flip,
7421 };
7422
7423 static void intel_pch_pll_init(struct drm_device *dev)
7424 {
7425         drm_i915_private_t *dev_priv = dev->dev_private;
7426         int i;
7427
7428         if (dev_priv->num_pch_pll == 0) {
7429                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7430                 return;
7431         }
7432
7433         for (i = 0; i < dev_priv->num_pch_pll; i++) {
7434                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7435                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7436                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7437         }
7438 }
7439
7440 static void intel_crtc_init(struct drm_device *dev, int pipe)
7441 {
7442         drm_i915_private_t *dev_priv = dev->dev_private;
7443         struct intel_crtc *intel_crtc;
7444         int i;
7445
7446         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7447         if (intel_crtc == NULL)
7448                 return;
7449
7450         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7451
7452         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7453         for (i = 0; i < 256; i++) {
7454                 intel_crtc->lut_r[i] = i;
7455                 intel_crtc->lut_g[i] = i;
7456                 intel_crtc->lut_b[i] = i;
7457         }
7458
7459         /* Swap pipes & planes for FBC on pre-965 */
7460         intel_crtc->pipe = pipe;
7461         intel_crtc->plane = pipe;
7462         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7463                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7464                 intel_crtc->plane = !pipe;
7465         }
7466
7467         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7468                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7469         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7470         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7471
7472         intel_crtc->bpp = 24; /* default for pre-Ironlake */
7473
7474         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7475 }
7476
7477 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7478                                 struct drm_file *file)
7479 {
7480         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7481         struct drm_mode_object *drmmode_obj;
7482         struct intel_crtc *crtc;
7483
7484         if (!drm_core_check_feature(dev, DRIVER_MODESET))
7485                 return -ENODEV;
7486
7487         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7488                         DRM_MODE_OBJECT_CRTC);
7489
7490         if (!drmmode_obj) {
7491                 DRM_ERROR("no such CRTC id\n");
7492                 return -EINVAL;
7493         }
7494
7495         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7496         pipe_from_crtc_id->pipe = crtc->pipe;
7497
7498         return 0;
7499 }
7500
7501 static int intel_encoder_clones(struct intel_encoder *encoder)
7502 {
7503         struct drm_device *dev = encoder->base.dev;
7504         struct intel_encoder *source_encoder;
7505         int index_mask = 0;
7506         int entry = 0;
7507
7508         list_for_each_entry(source_encoder,
7509                             &dev->mode_config.encoder_list, base.head) {
7510
7511                 if (encoder == source_encoder)
7512                         index_mask |= (1 << entry);
7513
7514                 /* Intel hw has only one MUX where enocoders could be cloned. */
7515                 if (encoder->cloneable && source_encoder->cloneable)
7516                         index_mask |= (1 << entry);
7517
7518                 entry++;
7519         }
7520
7521         return index_mask;
7522 }
7523
7524 static bool has_edp_a(struct drm_device *dev)
7525 {
7526         struct drm_i915_private *dev_priv = dev->dev_private;
7527
7528         if (!IS_MOBILE(dev))
7529                 return false;
7530
7531         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7532                 return false;
7533
7534         if (IS_GEN5(dev) &&
7535             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7536                 return false;
7537
7538         return true;
7539 }
7540
7541 static void intel_setup_outputs(struct drm_device *dev)
7542 {
7543         struct drm_i915_private *dev_priv = dev->dev_private;
7544         struct intel_encoder *encoder;
7545         bool dpd_is_edp = false;
7546         bool has_lvds;
7547
7548         has_lvds = intel_lvds_init(dev);
7549         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7550                 /* disable the panel fitter on everything but LVDS */
7551                 I915_WRITE(PFIT_CONTROL, 0);
7552         }
7553
7554         if (HAS_PCH_SPLIT(dev)) {
7555                 dpd_is_edp = intel_dpd_is_edp(dev);
7556
7557                 if (has_edp_a(dev))
7558                         intel_dp_init(dev, DP_A, PORT_A);
7559
7560                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7561                         intel_dp_init(dev, PCH_DP_D, PORT_D);
7562         }
7563
7564         intel_crt_init(dev);
7565
7566         if (IS_HASWELL(dev)) {
7567                 int found;
7568
7569                 /* Haswell uses DDI functions to detect digital outputs */
7570                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
7571                 /* DDI A only supports eDP */
7572                 if (found)
7573                         intel_ddi_init(dev, PORT_A);
7574
7575                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
7576                  * register */
7577                 found = I915_READ(SFUSE_STRAP);
7578
7579                 if (found & SFUSE_STRAP_DDIB_DETECTED)
7580                         intel_ddi_init(dev, PORT_B);
7581                 if (found & SFUSE_STRAP_DDIC_DETECTED)
7582                         intel_ddi_init(dev, PORT_C);
7583                 if (found & SFUSE_STRAP_DDID_DETECTED)
7584                         intel_ddi_init(dev, PORT_D);
7585         } else if (HAS_PCH_SPLIT(dev)) {
7586                 int found;
7587
7588                 if (I915_READ(HDMIB) & PORT_DETECTED) {
7589                         /* PCH SDVOB multiplex with HDMIB */
7590                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
7591                         if (!found)
7592                                 intel_hdmi_init(dev, HDMIB, PORT_B);
7593                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7594                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
7595                 }
7596
7597                 if (I915_READ(HDMIC) & PORT_DETECTED)
7598                         intel_hdmi_init(dev, HDMIC, PORT_C);
7599
7600                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
7601                         intel_hdmi_init(dev, HDMID, PORT_D);
7602
7603                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7604                         intel_dp_init(dev, PCH_DP_C, PORT_C);
7605
7606                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7607                         intel_dp_init(dev, PCH_DP_D, PORT_D);
7608         } else if (IS_VALLEYVIEW(dev)) {
7609                 int found;
7610
7611                 if (I915_READ(SDVOB) & PORT_DETECTED) {
7612                         /* SDVOB multiplex with HDMIB */
7613                         found = intel_sdvo_init(dev, SDVOB, true);
7614                         if (!found)
7615                                 intel_hdmi_init(dev, SDVOB, PORT_B);
7616                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
7617                                 intel_dp_init(dev, DP_B, PORT_B);
7618                 }
7619
7620                 if (I915_READ(SDVOC) & PORT_DETECTED)
7621                         intel_hdmi_init(dev, SDVOC, PORT_C);
7622
7623                 /* Shares lanes with HDMI on SDVOC */
7624                 if (I915_READ(DP_C) & DP_DETECTED)
7625                         intel_dp_init(dev, DP_C, PORT_C);
7626         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7627                 bool found = false;
7628
7629                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7630                         DRM_DEBUG_KMS("probing SDVOB\n");
7631                         found = intel_sdvo_init(dev, SDVOB, true);
7632                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7633                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7634                                 intel_hdmi_init(dev, SDVOB, PORT_B);
7635                         }
7636
7637                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7638                                 DRM_DEBUG_KMS("probing DP_B\n");
7639                                 intel_dp_init(dev, DP_B, PORT_B);
7640                         }
7641                 }
7642
7643                 /* Before G4X SDVOC doesn't have its own detect register */
7644
7645                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7646                         DRM_DEBUG_KMS("probing SDVOC\n");
7647                         found = intel_sdvo_init(dev, SDVOC, false);
7648                 }
7649
7650                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7651
7652                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7653                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7654                                 intel_hdmi_init(dev, SDVOC, PORT_C);
7655                         }
7656                         if (SUPPORTS_INTEGRATED_DP(dev)) {
7657                                 DRM_DEBUG_KMS("probing DP_C\n");
7658                                 intel_dp_init(dev, DP_C, PORT_C);
7659                         }
7660                 }
7661
7662                 if (SUPPORTS_INTEGRATED_DP(dev) &&
7663                     (I915_READ(DP_D) & DP_DETECTED)) {
7664                         DRM_DEBUG_KMS("probing DP_D\n");
7665                         intel_dp_init(dev, DP_D, PORT_D);
7666                 }
7667         } else if (IS_GEN2(dev))
7668                 intel_dvo_init(dev);
7669
7670         if (SUPPORTS_TV(dev))
7671                 intel_tv_init(dev);
7672
7673         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7674                 encoder->base.possible_crtcs = encoder->crtc_mask;
7675                 encoder->base.possible_clones =
7676                         intel_encoder_clones(encoder);
7677         }
7678
7679         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7680                 ironlake_init_pch_refclk(dev);
7681 }
7682
7683 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7684 {
7685         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7686
7687         drm_framebuffer_cleanup(fb);
7688         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7689
7690         kfree(intel_fb);
7691 }
7692
7693 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7694                                                 struct drm_file *file,
7695                                                 unsigned int *handle)
7696 {
7697         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7698         struct drm_i915_gem_object *obj = intel_fb->obj;
7699
7700         return drm_gem_handle_create(file, &obj->base, handle);
7701 }
7702
7703 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7704         .destroy = intel_user_framebuffer_destroy,
7705         .create_handle = intel_user_framebuffer_create_handle,
7706 };
7707
7708 int intel_framebuffer_init(struct drm_device *dev,
7709                            struct intel_framebuffer *intel_fb,
7710                            struct drm_mode_fb_cmd2 *mode_cmd,
7711                            struct drm_i915_gem_object *obj)
7712 {
7713         int ret;
7714
7715         if (obj->tiling_mode == I915_TILING_Y)
7716                 return -EINVAL;
7717
7718         if (mode_cmd->pitches[0] & 63)
7719                 return -EINVAL;
7720
7721         switch (mode_cmd->pixel_format) {
7722         case DRM_FORMAT_RGB332:
7723         case DRM_FORMAT_RGB565:
7724         case DRM_FORMAT_XRGB8888:
7725         case DRM_FORMAT_XBGR8888:
7726         case DRM_FORMAT_ARGB8888:
7727         case DRM_FORMAT_XRGB2101010:
7728         case DRM_FORMAT_ARGB2101010:
7729                 /* RGB formats are common across chipsets */
7730                 break;
7731         case DRM_FORMAT_YUYV:
7732         case DRM_FORMAT_UYVY:
7733         case DRM_FORMAT_YVYU:
7734         case DRM_FORMAT_VYUY:
7735                 break;
7736         default:
7737                 DRM_DEBUG_KMS("unsupported pixel format %u\n",
7738                                 mode_cmd->pixel_format);
7739                 return -EINVAL;
7740         }
7741
7742         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7743         if (ret) {
7744                 DRM_ERROR("framebuffer init failed %d\n", ret);
7745                 return ret;
7746         }
7747
7748         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7749         intel_fb->obj = obj;
7750         return 0;
7751 }
7752
7753 static struct drm_framebuffer *
7754 intel_user_framebuffer_create(struct drm_device *dev,
7755                               struct drm_file *filp,
7756                               struct drm_mode_fb_cmd2 *mode_cmd)
7757 {
7758         struct drm_i915_gem_object *obj;
7759
7760         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7761                                                 mode_cmd->handles[0]));
7762         if (&obj->base == NULL)
7763                 return ERR_PTR(-ENOENT);
7764
7765         return intel_framebuffer_create(dev, mode_cmd, obj);
7766 }
7767
7768 static const struct drm_mode_config_funcs intel_mode_funcs = {
7769         .fb_create = intel_user_framebuffer_create,
7770         .output_poll_changed = intel_fb_output_poll_changed,
7771 };
7772
7773 /* Set up chip specific display functions */
7774 static void intel_init_display(struct drm_device *dev)
7775 {
7776         struct drm_i915_private *dev_priv = dev->dev_private;
7777
7778         /* We always want a DPMS function */
7779         if (HAS_PCH_SPLIT(dev)) {
7780                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7781                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
7782                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
7783                 dev_priv->display.off = ironlake_crtc_off;
7784                 dev_priv->display.update_plane = ironlake_update_plane;
7785         } else {
7786                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7787                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
7788                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
7789                 dev_priv->display.off = i9xx_crtc_off;
7790                 dev_priv->display.update_plane = i9xx_update_plane;
7791         }
7792
7793         /* Returns the core display clock speed */
7794         if (IS_VALLEYVIEW(dev))
7795                 dev_priv->display.get_display_clock_speed =
7796                         valleyview_get_display_clock_speed;
7797         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
7798                 dev_priv->display.get_display_clock_speed =
7799                         i945_get_display_clock_speed;
7800         else if (IS_I915G(dev))
7801                 dev_priv->display.get_display_clock_speed =
7802                         i915_get_display_clock_speed;
7803         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7804                 dev_priv->display.get_display_clock_speed =
7805                         i9xx_misc_get_display_clock_speed;
7806         else if (IS_I915GM(dev))
7807                 dev_priv->display.get_display_clock_speed =
7808                         i915gm_get_display_clock_speed;
7809         else if (IS_I865G(dev))
7810                 dev_priv->display.get_display_clock_speed =
7811                         i865_get_display_clock_speed;
7812         else if (IS_I85X(dev))
7813                 dev_priv->display.get_display_clock_speed =
7814                         i855_get_display_clock_speed;
7815         else /* 852, 830 */
7816                 dev_priv->display.get_display_clock_speed =
7817                         i830_get_display_clock_speed;
7818
7819         if (HAS_PCH_SPLIT(dev)) {
7820                 if (IS_GEN5(dev)) {
7821                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7822                         dev_priv->display.write_eld = ironlake_write_eld;
7823                 } else if (IS_GEN6(dev)) {
7824                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7825                         dev_priv->display.write_eld = ironlake_write_eld;
7826                 } else if (IS_IVYBRIDGE(dev)) {
7827                         /* FIXME: detect B0+ stepping and use auto training */
7828                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
7829                         dev_priv->display.write_eld = ironlake_write_eld;
7830                 } else if (IS_HASWELL(dev)) {
7831                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
7832                         dev_priv->display.write_eld = haswell_write_eld;
7833                 } else
7834                         dev_priv->display.update_wm = NULL;
7835         } else if (IS_G4X(dev)) {
7836                 dev_priv->display.write_eld = g4x_write_eld;
7837         }
7838
7839         /* Default just returns -ENODEV to indicate unsupported */
7840         dev_priv->display.queue_flip = intel_default_queue_flip;
7841
7842         switch (INTEL_INFO(dev)->gen) {
7843         case 2:
7844                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
7845                 break;
7846
7847         case 3:
7848                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
7849                 break;
7850
7851         case 4:
7852         case 5:
7853                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
7854                 break;
7855
7856         case 6:
7857                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
7858                 break;
7859         case 7:
7860                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
7861                 break;
7862         }
7863 }
7864
7865 /*
7866  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7867  * resume, or other times.  This quirk makes sure that's the case for
7868  * affected systems.
7869  */
7870 static void quirk_pipea_force(struct drm_device *dev)
7871 {
7872         struct drm_i915_private *dev_priv = dev->dev_private;
7873
7874         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7875         DRM_INFO("applying pipe a force quirk\n");
7876 }
7877
7878 /*
7879  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
7880  */
7881 static void quirk_ssc_force_disable(struct drm_device *dev)
7882 {
7883         struct drm_i915_private *dev_priv = dev->dev_private;
7884         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
7885         DRM_INFO("applying lvds SSC disable quirk\n");
7886 }
7887
7888 /*
7889  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
7890  * brightness value
7891  */
7892 static void quirk_invert_brightness(struct drm_device *dev)
7893 {
7894         struct drm_i915_private *dev_priv = dev->dev_private;
7895         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
7896         DRM_INFO("applying inverted panel brightness quirk\n");
7897 }
7898
7899 struct intel_quirk {
7900         int device;
7901         int subsystem_vendor;
7902         int subsystem_device;
7903         void (*hook)(struct drm_device *dev);
7904 };
7905
7906 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
7907 struct intel_dmi_quirk {
7908         void (*hook)(struct drm_device *dev);
7909         const struct dmi_system_id (*dmi_id_list)[];
7910 };
7911
7912 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
7913 {
7914         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
7915         return 1;
7916 }
7917
7918 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
7919         {
7920                 .dmi_id_list = &(const struct dmi_system_id[]) {
7921                         {
7922                                 .callback = intel_dmi_reverse_brightness,
7923                                 .ident = "NCR Corporation",
7924                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
7925                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
7926                                 },
7927                         },
7928                         { }  /* terminating entry */
7929                 },
7930                 .hook = quirk_invert_brightness,
7931         },
7932 };
7933
7934 static struct intel_quirk intel_quirks[] = {
7935         /* HP Mini needs pipe A force quirk (LP: #322104) */
7936         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
7937
7938         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7939         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7940
7941         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7942         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7943
7944         /* 830/845 need to leave pipe A & dpll A up */
7945         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7946         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7947
7948         /* Lenovo U160 cannot use SSC on LVDS */
7949         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
7950
7951         /* Sony Vaio Y cannot use SSC on LVDS */
7952         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
7953
7954         /* Acer Aspire 5734Z must invert backlight brightness */
7955         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
7956 };
7957
7958 static void intel_init_quirks(struct drm_device *dev)
7959 {
7960         struct pci_dev *d = dev->pdev;
7961         int i;
7962
7963         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7964                 struct intel_quirk *q = &intel_quirks[i];
7965
7966                 if (d->device == q->device &&
7967                     (d->subsystem_vendor == q->subsystem_vendor ||
7968                      q->subsystem_vendor == PCI_ANY_ID) &&
7969                     (d->subsystem_device == q->subsystem_device ||
7970                      q->subsystem_device == PCI_ANY_ID))
7971                         q->hook(dev);
7972         }
7973         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
7974                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
7975                         intel_dmi_quirks[i].hook(dev);
7976         }
7977 }
7978
7979 /* Disable the VGA plane that we never use */
7980 static void i915_disable_vga(struct drm_device *dev)
7981 {
7982         struct drm_i915_private *dev_priv = dev->dev_private;
7983         u8 sr1;
7984         u32 vga_reg;
7985
7986         if (HAS_PCH_SPLIT(dev))
7987                 vga_reg = CPU_VGACNTRL;
7988         else
7989                 vga_reg = VGACNTRL;
7990
7991         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7992         outb(SR01, VGA_SR_INDEX);
7993         sr1 = inb(VGA_SR_DATA);
7994         outb(sr1 | 1<<5, VGA_SR_DATA);
7995         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7996         udelay(300);
7997
7998         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7999         POSTING_READ(vga_reg);
8000 }
8001
8002 void intel_modeset_init_hw(struct drm_device *dev)
8003 {
8004         /* We attempt to init the necessary power wells early in the initialization
8005          * time, so the subsystems that expect power to be enabled can work.
8006          */
8007         intel_init_power_wells(dev);
8008
8009         intel_prepare_ddi(dev);
8010
8011         intel_init_clock_gating(dev);
8012
8013         mutex_lock(&dev->struct_mutex);
8014         intel_enable_gt_powersave(dev);
8015         mutex_unlock(&dev->struct_mutex);
8016 }
8017
8018 void intel_modeset_init(struct drm_device *dev)
8019 {
8020         struct drm_i915_private *dev_priv = dev->dev_private;
8021         int i, ret;
8022
8023         drm_mode_config_init(dev);
8024
8025         dev->mode_config.min_width = 0;
8026         dev->mode_config.min_height = 0;
8027
8028         dev->mode_config.preferred_depth = 24;
8029         dev->mode_config.prefer_shadow = 1;
8030
8031         dev->mode_config.funcs = &intel_mode_funcs;
8032
8033         intel_init_quirks(dev);
8034
8035         intel_init_pm(dev);
8036
8037         intel_init_display(dev);
8038
8039         if (IS_GEN2(dev)) {
8040                 dev->mode_config.max_width = 2048;
8041                 dev->mode_config.max_height = 2048;
8042         } else if (IS_GEN3(dev)) {
8043                 dev->mode_config.max_width = 4096;
8044                 dev->mode_config.max_height = 4096;
8045         } else {
8046                 dev->mode_config.max_width = 8192;
8047                 dev->mode_config.max_height = 8192;
8048         }
8049         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8050
8051         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8052                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8053
8054         for (i = 0; i < dev_priv->num_pipe; i++) {
8055                 intel_crtc_init(dev, i);
8056                 ret = intel_plane_init(dev, i);
8057                 if (ret)
8058                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8059         }
8060
8061         intel_pch_pll_init(dev);
8062
8063         /* Just disable it once at startup */
8064         i915_disable_vga(dev);
8065         intel_setup_outputs(dev);
8066 }
8067
8068 static void
8069 intel_connector_break_all_links(struct intel_connector *connector)
8070 {
8071         connector->base.dpms = DRM_MODE_DPMS_OFF;
8072         connector->base.encoder = NULL;
8073         connector->encoder->connectors_active = false;
8074         connector->encoder->base.crtc = NULL;
8075 }
8076
8077 static void intel_enable_pipe_a(struct drm_device *dev)
8078 {
8079         struct intel_connector *connector;
8080         struct drm_connector *crt = NULL;
8081         struct intel_load_detect_pipe load_detect_temp;
8082
8083         /* We can't just switch on the pipe A, we need to set things up with a
8084          * proper mode and output configuration. As a gross hack, enable pipe A
8085          * by enabling the load detect pipe once. */
8086         list_for_each_entry(connector,
8087                             &dev->mode_config.connector_list,
8088                             base.head) {
8089                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8090                         crt = &connector->base;
8091                         break;
8092                 }
8093         }
8094
8095         if (!crt)
8096                 return;
8097
8098         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8099                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8100
8101
8102 }
8103
8104 static bool
8105 intel_check_plane_mapping(struct intel_crtc *crtc)
8106 {
8107         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8108         u32 reg, val;
8109
8110         if (dev_priv->num_pipe == 1)
8111                 return true;
8112
8113         reg = DSPCNTR(!crtc->plane);
8114         val = I915_READ(reg);
8115
8116         if ((val & DISPLAY_PLANE_ENABLE) &&
8117             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8118                 return false;
8119
8120         return true;
8121 }
8122
8123 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8124 {
8125         struct drm_device *dev = crtc->base.dev;
8126         struct drm_i915_private *dev_priv = dev->dev_private;
8127         u32 reg;
8128
8129         /* Clear any frame start delays used for debugging left by the BIOS */
8130         reg = PIPECONF(crtc->pipe);
8131         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8132
8133         /* We need to sanitize the plane -> pipe mapping first because this will
8134          * disable the crtc (and hence change the state) if it is wrong. Note
8135          * that gen4+ has a fixed plane -> pipe mapping.  */
8136         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8137                 struct intel_connector *connector;
8138                 bool plane;
8139
8140                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8141                               crtc->base.base.id);
8142
8143                 /* Pipe has the wrong plane attached and the plane is active.
8144                  * Temporarily change the plane mapping and disable everything
8145                  * ...  */
8146                 plane = crtc->plane;
8147                 crtc->plane = !plane;
8148                 dev_priv->display.crtc_disable(&crtc->base);
8149                 crtc->plane = plane;
8150
8151                 /* ... and break all links. */
8152                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8153                                     base.head) {
8154                         if (connector->encoder->base.crtc != &crtc->base)
8155                                 continue;
8156
8157                         intel_connector_break_all_links(connector);
8158                 }
8159
8160                 WARN_ON(crtc->active);
8161                 crtc->base.enabled = false;
8162         }
8163
8164         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8165             crtc->pipe == PIPE_A && !crtc->active) {
8166                 /* BIOS forgot to enable pipe A, this mostly happens after
8167                  * resume. Force-enable the pipe to fix this, the update_dpms
8168                  * call below we restore the pipe to the right state, but leave
8169                  * the required bits on. */
8170                 intel_enable_pipe_a(dev);
8171         }
8172
8173         /* Adjust the state of the output pipe according to whether we
8174          * have active connectors/encoders. */
8175         intel_crtc_update_dpms(&crtc->base);
8176
8177         if (crtc->active != crtc->base.enabled) {
8178                 struct intel_encoder *encoder;
8179
8180                 /* This can happen either due to bugs in the get_hw_state
8181                  * functions or because the pipe is force-enabled due to the
8182                  * pipe A quirk. */
8183                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8184                               crtc->base.base.id,
8185                               crtc->base.enabled ? "enabled" : "disabled",
8186                               crtc->active ? "enabled" : "disabled");
8187
8188                 crtc->base.enabled = crtc->active;
8189
8190                 /* Because we only establish the connector -> encoder ->
8191                  * crtc links if something is active, this means the
8192                  * crtc is now deactivated. Break the links. connector
8193                  * -> encoder links are only establish when things are
8194                  *  actually up, hence no need to break them. */
8195                 WARN_ON(crtc->active);
8196
8197                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8198                         WARN_ON(encoder->connectors_active);
8199                         encoder->base.crtc = NULL;
8200                 }
8201         }
8202 }
8203
8204 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8205 {
8206         struct intel_connector *connector;
8207         struct drm_device *dev = encoder->base.dev;
8208
8209         /* We need to check both for a crtc link (meaning that the
8210          * encoder is active and trying to read from a pipe) and the
8211          * pipe itself being active. */
8212         bool has_active_crtc = encoder->base.crtc &&
8213                 to_intel_crtc(encoder->base.crtc)->active;
8214
8215         if (encoder->connectors_active && !has_active_crtc) {
8216                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8217                               encoder->base.base.id,
8218                               drm_get_encoder_name(&encoder->base));
8219
8220                 /* Connector is active, but has no active pipe. This is
8221                  * fallout from our resume register restoring. Disable
8222                  * the encoder manually again. */
8223                 if (encoder->base.crtc) {
8224                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8225                                       encoder->base.base.id,
8226                                       drm_get_encoder_name(&encoder->base));
8227                         encoder->disable(encoder);
8228                 }
8229
8230                 /* Inconsistent output/port/pipe state happens presumably due to
8231                  * a bug in one of the get_hw_state functions. Or someplace else
8232                  * in our code, like the register restore mess on resume. Clamp
8233                  * things to off as a safer default. */
8234                 list_for_each_entry(connector,
8235                                     &dev->mode_config.connector_list,
8236                                     base.head) {
8237                         if (connector->encoder != encoder)
8238                                 continue;
8239
8240                         intel_connector_break_all_links(connector);
8241                 }
8242         }
8243         /* Enabled encoders without active connectors will be fixed in
8244          * the crtc fixup. */
8245 }
8246
8247 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8248  * and i915 state tracking structures. */
8249 void intel_modeset_setup_hw_state(struct drm_device *dev)
8250 {
8251         struct drm_i915_private *dev_priv = dev->dev_private;
8252         enum pipe pipe;
8253         u32 tmp;
8254         struct intel_crtc *crtc;
8255         struct intel_encoder *encoder;
8256         struct intel_connector *connector;
8257
8258         for_each_pipe(pipe) {
8259                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8260
8261                 tmp = I915_READ(PIPECONF(pipe));
8262                 if (tmp & PIPECONF_ENABLE)
8263                         crtc->active = true;
8264                 else
8265                         crtc->active = false;
8266
8267                 crtc->base.enabled = crtc->active;
8268
8269                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8270                               crtc->base.base.id,
8271                               crtc->active ? "enabled" : "disabled");
8272         }
8273
8274         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8275                             base.head) {
8276                 pipe = 0;
8277
8278                 if (encoder->get_hw_state(encoder, &pipe)) {
8279                         encoder->base.crtc =
8280                                 dev_priv->pipe_to_crtc_mapping[pipe];
8281                 } else {
8282                         encoder->base.crtc = NULL;
8283                 }
8284
8285                 encoder->connectors_active = false;
8286                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8287                               encoder->base.base.id,
8288                               drm_get_encoder_name(&encoder->base),
8289                               encoder->base.crtc ? "enabled" : "disabled",
8290                               pipe);
8291         }
8292
8293         list_for_each_entry(connector, &dev->mode_config.connector_list,
8294                             base.head) {
8295                 if (connector->get_hw_state(connector)) {
8296                         connector->base.dpms = DRM_MODE_DPMS_ON;
8297                         connector->encoder->connectors_active = true;
8298                         connector->base.encoder = &connector->encoder->base;
8299                 } else {
8300                         connector->base.dpms = DRM_MODE_DPMS_OFF;
8301                         connector->base.encoder = NULL;
8302                 }
8303                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8304                               connector->base.base.id,
8305                               drm_get_connector_name(&connector->base),
8306                               connector->base.encoder ? "enabled" : "disabled");
8307         }
8308
8309         /* HW state is read out, now we need to sanitize this mess. */
8310         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8311                             base.head) {
8312                 intel_sanitize_encoder(encoder);
8313         }
8314
8315         for_each_pipe(pipe) {
8316                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8317                 intel_sanitize_crtc(crtc);
8318         }
8319
8320         intel_modeset_update_staged_output_state(dev);
8321
8322         intel_modeset_check_state(dev);
8323 }
8324
8325 void intel_modeset_gem_init(struct drm_device *dev)
8326 {
8327         intel_modeset_init_hw(dev);
8328
8329         intel_setup_overlay(dev);
8330
8331         intel_modeset_setup_hw_state(dev);
8332 }
8333
8334 void intel_modeset_cleanup(struct drm_device *dev)
8335 {
8336         struct drm_i915_private *dev_priv = dev->dev_private;
8337         struct drm_crtc *crtc;
8338         struct intel_crtc *intel_crtc;
8339
8340         drm_kms_helper_poll_fini(dev);
8341         mutex_lock(&dev->struct_mutex);
8342
8343         intel_unregister_dsm_handler();
8344
8345
8346         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8347                 /* Skip inactive CRTCs */
8348                 if (!crtc->fb)
8349                         continue;
8350
8351                 intel_crtc = to_intel_crtc(crtc);
8352                 intel_increase_pllclock(crtc);
8353         }
8354
8355         intel_disable_fbc(dev);
8356
8357         intel_disable_gt_powersave(dev);
8358
8359         ironlake_teardown_rc6(dev);
8360
8361         if (IS_VALLEYVIEW(dev))
8362                 vlv_init_dpio(dev);
8363
8364         mutex_unlock(&dev->struct_mutex);
8365
8366         /* Disable the irq before mode object teardown, for the irq might
8367          * enqueue unpin/hotplug work. */
8368         drm_irq_uninstall(dev);
8369         cancel_work_sync(&dev_priv->hotplug_work);
8370         cancel_work_sync(&dev_priv->rps.work);
8371
8372         /* flush any delayed tasks or pending work */
8373         flush_scheduled_work();
8374
8375         drm_mode_config_cleanup(dev);
8376 }
8377
8378 /*
8379  * Return which encoder is currently attached for connector.
8380  */
8381 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8382 {
8383         return &intel_attached_encoder(connector)->base;
8384 }
8385
8386 void intel_connector_attach_encoder(struct intel_connector *connector,
8387                                     struct intel_encoder *encoder)
8388 {
8389         connector->encoder = encoder;
8390         drm_mode_connector_attach_encoder(&connector->base,
8391                                           &encoder->base);
8392 }
8393
8394 /*
8395  * set vga decode state - true == enable VGA decode
8396  */
8397 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8398 {
8399         struct drm_i915_private *dev_priv = dev->dev_private;
8400         u16 gmch_ctrl;
8401
8402         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8403         if (state)
8404                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8405         else
8406                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8407         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8408         return 0;
8409 }
8410
8411 #ifdef CONFIG_DEBUG_FS
8412 #include <linux/seq_file.h>
8413
8414 struct intel_display_error_state {
8415         struct intel_cursor_error_state {
8416                 u32 control;
8417                 u32 position;
8418                 u32 base;
8419                 u32 size;
8420         } cursor[I915_MAX_PIPES];
8421
8422         struct intel_pipe_error_state {
8423                 u32 conf;
8424                 u32 source;
8425
8426                 u32 htotal;
8427                 u32 hblank;
8428                 u32 hsync;
8429                 u32 vtotal;
8430                 u32 vblank;
8431                 u32 vsync;
8432         } pipe[I915_MAX_PIPES];
8433
8434         struct intel_plane_error_state {
8435                 u32 control;
8436                 u32 stride;
8437                 u32 size;
8438                 u32 pos;
8439                 u32 addr;
8440                 u32 surface;
8441                 u32 tile_offset;
8442         } plane[I915_MAX_PIPES];
8443 };
8444
8445 struct intel_display_error_state *
8446 intel_display_capture_error_state(struct drm_device *dev)
8447 {
8448         drm_i915_private_t *dev_priv = dev->dev_private;
8449         struct intel_display_error_state *error;
8450         int i;
8451
8452         error = kmalloc(sizeof(*error), GFP_ATOMIC);
8453         if (error == NULL)
8454                 return NULL;
8455
8456         for_each_pipe(i) {
8457                 error->cursor[i].control = I915_READ(CURCNTR(i));
8458                 error->cursor[i].position = I915_READ(CURPOS(i));
8459                 error->cursor[i].base = I915_READ(CURBASE(i));
8460
8461                 error->plane[i].control = I915_READ(DSPCNTR(i));
8462                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8463                 error->plane[i].size = I915_READ(DSPSIZE(i));
8464                 error->plane[i].pos = I915_READ(DSPPOS(i));
8465                 error->plane[i].addr = I915_READ(DSPADDR(i));
8466                 if (INTEL_INFO(dev)->gen >= 4) {
8467                         error->plane[i].surface = I915_READ(DSPSURF(i));
8468                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8469                 }
8470
8471                 error->pipe[i].conf = I915_READ(PIPECONF(i));
8472                 error->pipe[i].source = I915_READ(PIPESRC(i));
8473                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8474                 error->pipe[i].hblank = I915_READ(HBLANK(i));
8475                 error->pipe[i].hsync = I915_READ(HSYNC(i));
8476                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8477                 error->pipe[i].vblank = I915_READ(VBLANK(i));
8478                 error->pipe[i].vsync = I915_READ(VSYNC(i));
8479         }
8480
8481         return error;
8482 }
8483
8484 void
8485 intel_display_print_error_state(struct seq_file *m,
8486                                 struct drm_device *dev,
8487                                 struct intel_display_error_state *error)
8488 {
8489         drm_i915_private_t *dev_priv = dev->dev_private;
8490         int i;
8491
8492         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
8493         for_each_pipe(i) {
8494                 seq_printf(m, "Pipe [%d]:\n", i);
8495                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
8496                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
8497                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
8498                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
8499                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
8500                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
8501                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
8502                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
8503
8504                 seq_printf(m, "Plane [%d]:\n", i);
8505                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
8506                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
8507                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
8508                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
8509                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
8510                 if (INTEL_INFO(dev)->gen >= 4) {
8511                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
8512                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
8513                 }
8514
8515                 seq_printf(m, "Cursor [%d]:\n", i);
8516                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
8517                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
8518                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
8519         }
8520 }
8521 #endif