Merge remote-tracking branches 'asoc/topic/ab8500', 'asoc/topic/arizona', 'asoc/topic...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_dmabuf.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51
52 static bool is_mmio_work(struct intel_flip_work *work)
53 {
54         return work->mmio_work.func;
55 }
56
57 /* Primary plane formats for gen <= 3 */
58 static const uint32_t i8xx_primary_formats[] = {
59         DRM_FORMAT_C8,
60         DRM_FORMAT_RGB565,
61         DRM_FORMAT_XRGB1555,
62         DRM_FORMAT_XRGB8888,
63 };
64
65 /* Primary plane formats for gen >= 4 */
66 static const uint32_t i965_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_XRGB2101010,
72         DRM_FORMAT_XBGR2101010,
73 };
74
75 static const uint32_t skl_primary_formats[] = {
76         DRM_FORMAT_C8,
77         DRM_FORMAT_RGB565,
78         DRM_FORMAT_XRGB8888,
79         DRM_FORMAT_XBGR8888,
80         DRM_FORMAT_ARGB8888,
81         DRM_FORMAT_ABGR8888,
82         DRM_FORMAT_XRGB2101010,
83         DRM_FORMAT_XBGR2101010,
84         DRM_FORMAT_YUYV,
85         DRM_FORMAT_YVYU,
86         DRM_FORMAT_UYVY,
87         DRM_FORMAT_VYUY,
88 };
89
90 /* Cursor formats */
91 static const uint32_t intel_cursor_formats[] = {
92         DRM_FORMAT_ARGB8888,
93 };
94
95 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
96                                 struct intel_crtc_state *pipe_config);
97 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
98                                    struct intel_crtc_state *pipe_config);
99
100 static int intel_framebuffer_init(struct drm_device *dev,
101                                   struct intel_framebuffer *ifb,
102                                   struct drm_mode_fb_cmd2 *mode_cmd,
103                                   struct drm_i915_gem_object *obj);
104 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
106 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
107 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
108                                          struct intel_link_m_n *m_n,
109                                          struct intel_link_m_n *m2_n2);
110 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipeconf(struct drm_crtc *crtc);
112 static void haswell_set_pipemisc(struct drm_crtc *crtc);
113 static void vlv_prepare_pll(struct intel_crtc *crtc,
114                             const struct intel_crtc_state *pipe_config);
115 static void chv_prepare_pll(struct intel_crtc *crtc,
116                             const struct intel_crtc_state *pipe_config);
117 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
119 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
120         struct intel_crtc_state *crtc_state);
121 static void skylake_pfit_enable(struct intel_crtc *crtc);
122 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
123 static void ironlake_pfit_enable(struct intel_crtc *crtc);
124 static void intel_modeset_setup_hw_state(struct drm_device *dev);
125 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
127 static int bxt_calc_cdclk(int max_pixclk);
128
129 struct intel_limit {
130         struct {
131                 int min, max;
132         } dot, vco, n, m, m1, m2, p, p1;
133
134         struct {
135                 int dot_limit;
136                 int p2_slow, p2_fast;
137         } p2;
138 };
139
140 /* returns HPLL frequency in kHz */
141 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
142 {
143         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
144
145         /* Obtain SKU information */
146         mutex_lock(&dev_priv->sb_lock);
147         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
148                 CCK_FUSE_HPLL_FREQ_MASK;
149         mutex_unlock(&dev_priv->sb_lock);
150
151         return vco_freq[hpll_freq] * 1000;
152 }
153
154 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
155                       const char *name, u32 reg, int ref_freq)
156 {
157         u32 val;
158         int divider;
159
160         mutex_lock(&dev_priv->sb_lock);
161         val = vlv_cck_read(dev_priv, reg);
162         mutex_unlock(&dev_priv->sb_lock);
163
164         divider = val & CCK_FREQUENCY_VALUES;
165
166         WARN((val & CCK_FREQUENCY_STATUS) !=
167              (divider << CCK_FREQUENCY_STATUS_SHIFT),
168              "%s change in progress\n", name);
169
170         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
171 }
172
173 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
174                                   const char *name, u32 reg)
175 {
176         if (dev_priv->hpll_freq == 0)
177                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
178
179         return vlv_get_cck_clock(dev_priv, name, reg,
180                                  dev_priv->hpll_freq);
181 }
182
183 static int
184 intel_pch_rawclk(struct drm_i915_private *dev_priv)
185 {
186         return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
187 }
188
189 static int
190 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
191 {
192         /* RAWCLK_FREQ_VLV register updated from power well code */
193         return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
194                                       CCK_DISPLAY_REF_CLOCK_CONTROL);
195 }
196
197 static int
198 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
199 {
200         uint32_t clkcfg;
201
202         /* hrawclock is 1/4 the FSB frequency */
203         clkcfg = I915_READ(CLKCFG);
204         switch (clkcfg & CLKCFG_FSB_MASK) {
205         case CLKCFG_FSB_400:
206                 return 100000;
207         case CLKCFG_FSB_533:
208                 return 133333;
209         case CLKCFG_FSB_667:
210                 return 166667;
211         case CLKCFG_FSB_800:
212                 return 200000;
213         case CLKCFG_FSB_1067:
214                 return 266667;
215         case CLKCFG_FSB_1333:
216                 return 333333;
217         /* these two are just a guess; one of them might be right */
218         case CLKCFG_FSB_1600:
219         case CLKCFG_FSB_1600_ALT:
220                 return 400000;
221         default:
222                 return 133333;
223         }
224 }
225
226 void intel_update_rawclk(struct drm_i915_private *dev_priv)
227 {
228         if (HAS_PCH_SPLIT(dev_priv))
229                 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
230         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
231                 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
232         else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
233                 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
234         else
235                 return; /* no rawclk on other platforms, or no need to know it */
236
237         DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
238 }
239
240 static void intel_update_czclk(struct drm_i915_private *dev_priv)
241 {
242         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
243                 return;
244
245         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
246                                                       CCK_CZ_CLOCK_CONTROL);
247
248         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
249 }
250
251 static inline u32 /* units of 100MHz */
252 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
253                     const struct intel_crtc_state *pipe_config)
254 {
255         if (HAS_DDI(dev_priv))
256                 return pipe_config->port_clock; /* SPLL */
257         else if (IS_GEN5(dev_priv))
258                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
259         else
260                 return 270000;
261 }
262
263 static const struct intel_limit intel_limits_i8xx_dac = {
264         .dot = { .min = 25000, .max = 350000 },
265         .vco = { .min = 908000, .max = 1512000 },
266         .n = { .min = 2, .max = 16 },
267         .m = { .min = 96, .max = 140 },
268         .m1 = { .min = 18, .max = 26 },
269         .m2 = { .min = 6, .max = 16 },
270         .p = { .min = 4, .max = 128 },
271         .p1 = { .min = 2, .max = 33 },
272         .p2 = { .dot_limit = 165000,
273                 .p2_slow = 4, .p2_fast = 2 },
274 };
275
276 static const struct intel_limit intel_limits_i8xx_dvo = {
277         .dot = { .min = 25000, .max = 350000 },
278         .vco = { .min = 908000, .max = 1512000 },
279         .n = { .min = 2, .max = 16 },
280         .m = { .min = 96, .max = 140 },
281         .m1 = { .min = 18, .max = 26 },
282         .m2 = { .min = 6, .max = 16 },
283         .p = { .min = 4, .max = 128 },
284         .p1 = { .min = 2, .max = 33 },
285         .p2 = { .dot_limit = 165000,
286                 .p2_slow = 4, .p2_fast = 4 },
287 };
288
289 static const struct intel_limit intel_limits_i8xx_lvds = {
290         .dot = { .min = 25000, .max = 350000 },
291         .vco = { .min = 908000, .max = 1512000 },
292         .n = { .min = 2, .max = 16 },
293         .m = { .min = 96, .max = 140 },
294         .m1 = { .min = 18, .max = 26 },
295         .m2 = { .min = 6, .max = 16 },
296         .p = { .min = 4, .max = 128 },
297         .p1 = { .min = 1, .max = 6 },
298         .p2 = { .dot_limit = 165000,
299                 .p2_slow = 14, .p2_fast = 7 },
300 };
301
302 static const struct intel_limit intel_limits_i9xx_sdvo = {
303         .dot = { .min = 20000, .max = 400000 },
304         .vco = { .min = 1400000, .max = 2800000 },
305         .n = { .min = 1, .max = 6 },
306         .m = { .min = 70, .max = 120 },
307         .m1 = { .min = 8, .max = 18 },
308         .m2 = { .min = 3, .max = 7 },
309         .p = { .min = 5, .max = 80 },
310         .p1 = { .min = 1, .max = 8 },
311         .p2 = { .dot_limit = 200000,
312                 .p2_slow = 10, .p2_fast = 5 },
313 };
314
315 static const struct intel_limit intel_limits_i9xx_lvds = {
316         .dot = { .min = 20000, .max = 400000 },
317         .vco = { .min = 1400000, .max = 2800000 },
318         .n = { .min = 1, .max = 6 },
319         .m = { .min = 70, .max = 120 },
320         .m1 = { .min = 8, .max = 18 },
321         .m2 = { .min = 3, .max = 7 },
322         .p = { .min = 7, .max = 98 },
323         .p1 = { .min = 1, .max = 8 },
324         .p2 = { .dot_limit = 112000,
325                 .p2_slow = 14, .p2_fast = 7 },
326 };
327
328
329 static const struct intel_limit intel_limits_g4x_sdvo = {
330         .dot = { .min = 25000, .max = 270000 },
331         .vco = { .min = 1750000, .max = 3500000},
332         .n = { .min = 1, .max = 4 },
333         .m = { .min = 104, .max = 138 },
334         .m1 = { .min = 17, .max = 23 },
335         .m2 = { .min = 5, .max = 11 },
336         .p = { .min = 10, .max = 30 },
337         .p1 = { .min = 1, .max = 3},
338         .p2 = { .dot_limit = 270000,
339                 .p2_slow = 10,
340                 .p2_fast = 10
341         },
342 };
343
344 static const struct intel_limit intel_limits_g4x_hdmi = {
345         .dot = { .min = 22000, .max = 400000 },
346         .vco = { .min = 1750000, .max = 3500000},
347         .n = { .min = 1, .max = 4 },
348         .m = { .min = 104, .max = 138 },
349         .m1 = { .min = 16, .max = 23 },
350         .m2 = { .min = 5, .max = 11 },
351         .p = { .min = 5, .max = 80 },
352         .p1 = { .min = 1, .max = 8},
353         .p2 = { .dot_limit = 165000,
354                 .p2_slow = 10, .p2_fast = 5 },
355 };
356
357 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
358         .dot = { .min = 20000, .max = 115000 },
359         .vco = { .min = 1750000, .max = 3500000 },
360         .n = { .min = 1, .max = 3 },
361         .m = { .min = 104, .max = 138 },
362         .m1 = { .min = 17, .max = 23 },
363         .m2 = { .min = 5, .max = 11 },
364         .p = { .min = 28, .max = 112 },
365         .p1 = { .min = 2, .max = 8 },
366         .p2 = { .dot_limit = 0,
367                 .p2_slow = 14, .p2_fast = 14
368         },
369 };
370
371 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
372         .dot = { .min = 80000, .max = 224000 },
373         .vco = { .min = 1750000, .max = 3500000 },
374         .n = { .min = 1, .max = 3 },
375         .m = { .min = 104, .max = 138 },
376         .m1 = { .min = 17, .max = 23 },
377         .m2 = { .min = 5, .max = 11 },
378         .p = { .min = 14, .max = 42 },
379         .p1 = { .min = 2, .max = 6 },
380         .p2 = { .dot_limit = 0,
381                 .p2_slow = 7, .p2_fast = 7
382         },
383 };
384
385 static const struct intel_limit intel_limits_pineview_sdvo = {
386         .dot = { .min = 20000, .max = 400000},
387         .vco = { .min = 1700000, .max = 3500000 },
388         /* Pineview's Ncounter is a ring counter */
389         .n = { .min = 3, .max = 6 },
390         .m = { .min = 2, .max = 256 },
391         /* Pineview only has one combined m divider, which we treat as m2. */
392         .m1 = { .min = 0, .max = 0 },
393         .m2 = { .min = 0, .max = 254 },
394         .p = { .min = 5, .max = 80 },
395         .p1 = { .min = 1, .max = 8 },
396         .p2 = { .dot_limit = 200000,
397                 .p2_slow = 10, .p2_fast = 5 },
398 };
399
400 static const struct intel_limit intel_limits_pineview_lvds = {
401         .dot = { .min = 20000, .max = 400000 },
402         .vco = { .min = 1700000, .max = 3500000 },
403         .n = { .min = 3, .max = 6 },
404         .m = { .min = 2, .max = 256 },
405         .m1 = { .min = 0, .max = 0 },
406         .m2 = { .min = 0, .max = 254 },
407         .p = { .min = 7, .max = 112 },
408         .p1 = { .min = 1, .max = 8 },
409         .p2 = { .dot_limit = 112000,
410                 .p2_slow = 14, .p2_fast = 14 },
411 };
412
413 /* Ironlake / Sandybridge
414  *
415  * We calculate clock using (register_value + 2) for N/M1/M2, so here
416  * the range value for them is (actual_value - 2).
417  */
418 static const struct intel_limit intel_limits_ironlake_dac = {
419         .dot = { .min = 25000, .max = 350000 },
420         .vco = { .min = 1760000, .max = 3510000 },
421         .n = { .min = 1, .max = 5 },
422         .m = { .min = 79, .max = 127 },
423         .m1 = { .min = 12, .max = 22 },
424         .m2 = { .min = 5, .max = 9 },
425         .p = { .min = 5, .max = 80 },
426         .p1 = { .min = 1, .max = 8 },
427         .p2 = { .dot_limit = 225000,
428                 .p2_slow = 10, .p2_fast = 5 },
429 };
430
431 static const struct intel_limit intel_limits_ironlake_single_lvds = {
432         .dot = { .min = 25000, .max = 350000 },
433         .vco = { .min = 1760000, .max = 3510000 },
434         .n = { .min = 1, .max = 3 },
435         .m = { .min = 79, .max = 118 },
436         .m1 = { .min = 12, .max = 22 },
437         .m2 = { .min = 5, .max = 9 },
438         .p = { .min = 28, .max = 112 },
439         .p1 = { .min = 2, .max = 8 },
440         .p2 = { .dot_limit = 225000,
441                 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
445         .dot = { .min = 25000, .max = 350000 },
446         .vco = { .min = 1760000, .max = 3510000 },
447         .n = { .min = 1, .max = 3 },
448         .m = { .min = 79, .max = 127 },
449         .m1 = { .min = 12, .max = 22 },
450         .m2 = { .min = 5, .max = 9 },
451         .p = { .min = 14, .max = 56 },
452         .p1 = { .min = 2, .max = 8 },
453         .p2 = { .dot_limit = 225000,
454                 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 /* LVDS 100mhz refclk limits. */
458 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
459         .dot = { .min = 25000, .max = 350000 },
460         .vco = { .min = 1760000, .max = 3510000 },
461         .n = { .min = 1, .max = 2 },
462         .m = { .min = 79, .max = 126 },
463         .m1 = { .min = 12, .max = 22 },
464         .m2 = { .min = 5, .max = 9 },
465         .p = { .min = 28, .max = 112 },
466         .p1 = { .min = 2, .max = 8 },
467         .p2 = { .dot_limit = 225000,
468                 .p2_slow = 14, .p2_fast = 14 },
469 };
470
471 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
472         .dot = { .min = 25000, .max = 350000 },
473         .vco = { .min = 1760000, .max = 3510000 },
474         .n = { .min = 1, .max = 3 },
475         .m = { .min = 79, .max = 126 },
476         .m1 = { .min = 12, .max = 22 },
477         .m2 = { .min = 5, .max = 9 },
478         .p = { .min = 14, .max = 42 },
479         .p1 = { .min = 2, .max = 6 },
480         .p2 = { .dot_limit = 225000,
481                 .p2_slow = 7, .p2_fast = 7 },
482 };
483
484 static const struct intel_limit intel_limits_vlv = {
485          /*
486           * These are the data rate limits (measured in fast clocks)
487           * since those are the strictest limits we have. The fast
488           * clock and actual rate limits are more relaxed, so checking
489           * them would make no difference.
490           */
491         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
492         .vco = { .min = 4000000, .max = 6000000 },
493         .n = { .min = 1, .max = 7 },
494         .m1 = { .min = 2, .max = 3 },
495         .m2 = { .min = 11, .max = 156 },
496         .p1 = { .min = 2, .max = 3 },
497         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
498 };
499
500 static const struct intel_limit intel_limits_chv = {
501         /*
502          * These are the data rate limits (measured in fast clocks)
503          * since those are the strictest limits we have.  The fast
504          * clock and actual rate limits are more relaxed, so checking
505          * them would make no difference.
506          */
507         .dot = { .min = 25000 * 5, .max = 540000 * 5},
508         .vco = { .min = 4800000, .max = 6480000 },
509         .n = { .min = 1, .max = 1 },
510         .m1 = { .min = 2, .max = 2 },
511         .m2 = { .min = 24 << 22, .max = 175 << 22 },
512         .p1 = { .min = 2, .max = 4 },
513         .p2 = { .p2_slow = 1, .p2_fast = 14 },
514 };
515
516 static const struct intel_limit intel_limits_bxt = {
517         /* FIXME: find real dot limits */
518         .dot = { .min = 0, .max = INT_MAX },
519         .vco = { .min = 4800000, .max = 6700000 },
520         .n = { .min = 1, .max = 1 },
521         .m1 = { .min = 2, .max = 2 },
522         /* FIXME: find real m2 limits */
523         .m2 = { .min = 2 << 22, .max = 255 << 22 },
524         .p1 = { .min = 2, .max = 4 },
525         .p2 = { .p2_slow = 1, .p2_fast = 20 },
526 };
527
528 static bool
529 needs_modeset(struct drm_crtc_state *state)
530 {
531         return drm_atomic_crtc_needs_modeset(state);
532 }
533
534 /*
535  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538  * The helpers' return value is the rate of the clock that is fed to the
539  * display engine's pipe which can be the above fast dot clock rate or a
540  * divided-down version of it.
541  */
542 /* m1 is reserved as 0 in Pineview, n is a ring counter */
543 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
544 {
545         clock->m = clock->m2 + 2;
546         clock->p = clock->p1 * clock->p2;
547         if (WARN_ON(clock->n == 0 || clock->p == 0))
548                 return 0;
549         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
550         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
551
552         return clock->dot;
553 }
554
555 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
556 {
557         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
558 }
559
560 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
561 {
562         clock->m = i9xx_dpll_compute_m(clock);
563         clock->p = clock->p1 * clock->p2;
564         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
565                 return 0;
566         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
567         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
568
569         return clock->dot;
570 }
571
572 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
573 {
574         clock->m = clock->m1 * clock->m2;
575         clock->p = clock->p1 * clock->p2;
576         if (WARN_ON(clock->n == 0 || clock->p == 0))
577                 return 0;
578         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
579         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
580
581         return clock->dot / 5;
582 }
583
584 int chv_calc_dpll_params(int refclk, struct dpll *clock)
585 {
586         clock->m = clock->m1 * clock->m2;
587         clock->p = clock->p1 * clock->p2;
588         if (WARN_ON(clock->n == 0 || clock->p == 0))
589                 return 0;
590         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
591                         clock->n << 22);
592         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
593
594         return clock->dot / 5;
595 }
596
597 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
598 /**
599  * Returns whether the given set of divisors are valid for a given refclk with
600  * the given connectors.
601  */
602
603 static bool intel_PLL_is_valid(struct drm_device *dev,
604                                const struct intel_limit *limit,
605                                const struct dpll *clock)
606 {
607         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
608                 INTELPllInvalid("n out of range\n");
609         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
610                 INTELPllInvalid("p1 out of range\n");
611         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
612                 INTELPllInvalid("m2 out of range\n");
613         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
614                 INTELPllInvalid("m1 out of range\n");
615
616         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
617             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
618                 if (clock->m1 <= clock->m2)
619                         INTELPllInvalid("m1 <= m2\n");
620
621         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
622                 if (clock->p < limit->p.min || limit->p.max < clock->p)
623                         INTELPllInvalid("p out of range\n");
624                 if (clock->m < limit->m.min || limit->m.max < clock->m)
625                         INTELPllInvalid("m out of range\n");
626         }
627
628         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
629                 INTELPllInvalid("vco out of range\n");
630         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
631          * connector, etc., rather than just a single range.
632          */
633         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
634                 INTELPllInvalid("dot out of range\n");
635
636         return true;
637 }
638
639 static int
640 i9xx_select_p2_div(const struct intel_limit *limit,
641                    const struct intel_crtc_state *crtc_state,
642                    int target)
643 {
644         struct drm_device *dev = crtc_state->base.crtc->dev;
645
646         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
647                 /*
648                  * For LVDS just rely on its current settings for dual-channel.
649                  * We haven't figured out how to reliably set up different
650                  * single/dual channel state, if we even can.
651                  */
652                 if (intel_is_dual_link_lvds(dev))
653                         return limit->p2.p2_fast;
654                 else
655                         return limit->p2.p2_slow;
656         } else {
657                 if (target < limit->p2.dot_limit)
658                         return limit->p2.p2_slow;
659                 else
660                         return limit->p2.p2_fast;
661         }
662 }
663
664 /*
665  * Returns a set of divisors for the desired target clock with the given
666  * refclk, or FALSE.  The returned values represent the clock equation:
667  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
668  *
669  * Target and reference clocks are specified in kHz.
670  *
671  * If match_clock is provided, then best_clock P divider must match the P
672  * divider from @match_clock used for LVDS downclocking.
673  */
674 static bool
675 i9xx_find_best_dpll(const struct intel_limit *limit,
676                     struct intel_crtc_state *crtc_state,
677                     int target, int refclk, struct dpll *match_clock,
678                     struct dpll *best_clock)
679 {
680         struct drm_device *dev = crtc_state->base.crtc->dev;
681         struct dpll clock;
682         int err = target;
683
684         memset(best_clock, 0, sizeof(*best_clock));
685
686         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
687
688         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
689              clock.m1++) {
690                 for (clock.m2 = limit->m2.min;
691                      clock.m2 <= limit->m2.max; clock.m2++) {
692                         if (clock.m2 >= clock.m1)
693                                 break;
694                         for (clock.n = limit->n.min;
695                              clock.n <= limit->n.max; clock.n++) {
696                                 for (clock.p1 = limit->p1.min;
697                                         clock.p1 <= limit->p1.max; clock.p1++) {
698                                         int this_err;
699
700                                         i9xx_calc_dpll_params(refclk, &clock);
701                                         if (!intel_PLL_is_valid(dev, limit,
702                                                                 &clock))
703                                                 continue;
704                                         if (match_clock &&
705                                             clock.p != match_clock->p)
706                                                 continue;
707
708                                         this_err = abs(clock.dot - target);
709                                         if (this_err < err) {
710                                                 *best_clock = clock;
711                                                 err = this_err;
712                                         }
713                                 }
714                         }
715                 }
716         }
717
718         return (err != target);
719 }
720
721 /*
722  * Returns a set of divisors for the desired target clock with the given
723  * refclk, or FALSE.  The returned values represent the clock equation:
724  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
725  *
726  * Target and reference clocks are specified in kHz.
727  *
728  * If match_clock is provided, then best_clock P divider must match the P
729  * divider from @match_clock used for LVDS downclocking.
730  */
731 static bool
732 pnv_find_best_dpll(const struct intel_limit *limit,
733                    struct intel_crtc_state *crtc_state,
734                    int target, int refclk, struct dpll *match_clock,
735                    struct dpll *best_clock)
736 {
737         struct drm_device *dev = crtc_state->base.crtc->dev;
738         struct dpll clock;
739         int err = target;
740
741         memset(best_clock, 0, sizeof(*best_clock));
742
743         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
744
745         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
746              clock.m1++) {
747                 for (clock.m2 = limit->m2.min;
748                      clock.m2 <= limit->m2.max; clock.m2++) {
749                         for (clock.n = limit->n.min;
750                              clock.n <= limit->n.max; clock.n++) {
751                                 for (clock.p1 = limit->p1.min;
752                                         clock.p1 <= limit->p1.max; clock.p1++) {
753                                         int this_err;
754
755                                         pnv_calc_dpll_params(refclk, &clock);
756                                         if (!intel_PLL_is_valid(dev, limit,
757                                                                 &clock))
758                                                 continue;
759                                         if (match_clock &&
760                                             clock.p != match_clock->p)
761                                                 continue;
762
763                                         this_err = abs(clock.dot - target);
764                                         if (this_err < err) {
765                                                 *best_clock = clock;
766                                                 err = this_err;
767                                         }
768                                 }
769                         }
770                 }
771         }
772
773         return (err != target);
774 }
775
776 /*
777  * Returns a set of divisors for the desired target clock with the given
778  * refclk, or FALSE.  The returned values represent the clock equation:
779  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
780  *
781  * Target and reference clocks are specified in kHz.
782  *
783  * If match_clock is provided, then best_clock P divider must match the P
784  * divider from @match_clock used for LVDS downclocking.
785  */
786 static bool
787 g4x_find_best_dpll(const struct intel_limit *limit,
788                    struct intel_crtc_state *crtc_state,
789                    int target, int refclk, struct dpll *match_clock,
790                    struct dpll *best_clock)
791 {
792         struct drm_device *dev = crtc_state->base.crtc->dev;
793         struct dpll clock;
794         int max_n;
795         bool found = false;
796         /* approximately equals target * 0.00585 */
797         int err_most = (target >> 8) + (target >> 9);
798
799         memset(best_clock, 0, sizeof(*best_clock));
800
801         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
802
803         max_n = limit->n.max;
804         /* based on hardware requirement, prefer smaller n to precision */
805         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
806                 /* based on hardware requirement, prefere larger m1,m2 */
807                 for (clock.m1 = limit->m1.max;
808                      clock.m1 >= limit->m1.min; clock.m1--) {
809                         for (clock.m2 = limit->m2.max;
810                              clock.m2 >= limit->m2.min; clock.m2--) {
811                                 for (clock.p1 = limit->p1.max;
812                                      clock.p1 >= limit->p1.min; clock.p1--) {
813                                         int this_err;
814
815                                         i9xx_calc_dpll_params(refclk, &clock);
816                                         if (!intel_PLL_is_valid(dev, limit,
817                                                                 &clock))
818                                                 continue;
819
820                                         this_err = abs(clock.dot - target);
821                                         if (this_err < err_most) {
822                                                 *best_clock = clock;
823                                                 err_most = this_err;
824                                                 max_n = clock.n;
825                                                 found = true;
826                                         }
827                                 }
828                         }
829                 }
830         }
831         return found;
832 }
833
834 /*
835  * Check if the calculated PLL configuration is more optimal compared to the
836  * best configuration and error found so far. Return the calculated error.
837  */
838 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
839                                const struct dpll *calculated_clock,
840                                const struct dpll *best_clock,
841                                unsigned int best_error_ppm,
842                                unsigned int *error_ppm)
843 {
844         /*
845          * For CHV ignore the error and consider only the P value.
846          * Prefer a bigger P value based on HW requirements.
847          */
848         if (IS_CHERRYVIEW(dev)) {
849                 *error_ppm = 0;
850
851                 return calculated_clock->p > best_clock->p;
852         }
853
854         if (WARN_ON_ONCE(!target_freq))
855                 return false;
856
857         *error_ppm = div_u64(1000000ULL *
858                                 abs(target_freq - calculated_clock->dot),
859                              target_freq);
860         /*
861          * Prefer a better P value over a better (smaller) error if the error
862          * is small. Ensure this preference for future configurations too by
863          * setting the error to 0.
864          */
865         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
866                 *error_ppm = 0;
867
868                 return true;
869         }
870
871         return *error_ppm + 10 < best_error_ppm;
872 }
873
874 /*
875  * Returns a set of divisors for the desired target clock with the given
876  * refclk, or FALSE.  The returned values represent the clock equation:
877  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
878  */
879 static bool
880 vlv_find_best_dpll(const struct intel_limit *limit,
881                    struct intel_crtc_state *crtc_state,
882                    int target, int refclk, struct dpll *match_clock,
883                    struct dpll *best_clock)
884 {
885         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
886         struct drm_device *dev = crtc->base.dev;
887         struct dpll clock;
888         unsigned int bestppm = 1000000;
889         /* min update 19.2 MHz */
890         int max_n = min(limit->n.max, refclk / 19200);
891         bool found = false;
892
893         target *= 5; /* fast clock */
894
895         memset(best_clock, 0, sizeof(*best_clock));
896
897         /* based on hardware requirement, prefer smaller n to precision */
898         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
899                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
900                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
901                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
902                                 clock.p = clock.p1 * clock.p2;
903                                 /* based on hardware requirement, prefer bigger m1,m2 values */
904                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
905                                         unsigned int ppm;
906
907                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
908                                                                      refclk * clock.m1);
909
910                                         vlv_calc_dpll_params(refclk, &clock);
911
912                                         if (!intel_PLL_is_valid(dev, limit,
913                                                                 &clock))
914                                                 continue;
915
916                                         if (!vlv_PLL_is_optimal(dev, target,
917                                                                 &clock,
918                                                                 best_clock,
919                                                                 bestppm, &ppm))
920                                                 continue;
921
922                                         *best_clock = clock;
923                                         bestppm = ppm;
924                                         found = true;
925                                 }
926                         }
927                 }
928         }
929
930         return found;
931 }
932
933 /*
934  * Returns a set of divisors for the desired target clock with the given
935  * refclk, or FALSE.  The returned values represent the clock equation:
936  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
937  */
938 static bool
939 chv_find_best_dpll(const struct intel_limit *limit,
940                    struct intel_crtc_state *crtc_state,
941                    int target, int refclk, struct dpll *match_clock,
942                    struct dpll *best_clock)
943 {
944         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
945         struct drm_device *dev = crtc->base.dev;
946         unsigned int best_error_ppm;
947         struct dpll clock;
948         uint64_t m2;
949         int found = false;
950
951         memset(best_clock, 0, sizeof(*best_clock));
952         best_error_ppm = 1000000;
953
954         /*
955          * Based on hardware doc, the n always set to 1, and m1 always
956          * set to 2.  If requires to support 200Mhz refclk, we need to
957          * revisit this because n may not 1 anymore.
958          */
959         clock.n = 1, clock.m1 = 2;
960         target *= 5;    /* fast clock */
961
962         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
963                 for (clock.p2 = limit->p2.p2_fast;
964                                 clock.p2 >= limit->p2.p2_slow;
965                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
966                         unsigned int error_ppm;
967
968                         clock.p = clock.p1 * clock.p2;
969
970                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
971                                         clock.n) << 22, refclk * clock.m1);
972
973                         if (m2 > INT_MAX/clock.m1)
974                                 continue;
975
976                         clock.m2 = m2;
977
978                         chv_calc_dpll_params(refclk, &clock);
979
980                         if (!intel_PLL_is_valid(dev, limit, &clock))
981                                 continue;
982
983                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
984                                                 best_error_ppm, &error_ppm))
985                                 continue;
986
987                         *best_clock = clock;
988                         best_error_ppm = error_ppm;
989                         found = true;
990                 }
991         }
992
993         return found;
994 }
995
996 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
997                         struct dpll *best_clock)
998 {
999         int refclk = 100000;
1000         const struct intel_limit *limit = &intel_limits_bxt;
1001
1002         return chv_find_best_dpll(limit, crtc_state,
1003                                   target_clock, refclk, NULL, best_clock);
1004 }
1005
1006 bool intel_crtc_active(struct drm_crtc *crtc)
1007 {
1008         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1009
1010         /* Be paranoid as we can arrive here with only partial
1011          * state retrieved from the hardware during setup.
1012          *
1013          * We can ditch the adjusted_mode.crtc_clock check as soon
1014          * as Haswell has gained clock readout/fastboot support.
1015          *
1016          * We can ditch the crtc->primary->fb check as soon as we can
1017          * properly reconstruct framebuffers.
1018          *
1019          * FIXME: The intel_crtc->active here should be switched to
1020          * crtc->state->active once we have proper CRTC states wired up
1021          * for atomic.
1022          */
1023         return intel_crtc->active && crtc->primary->state->fb &&
1024                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1025 }
1026
1027 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1028                                              enum pipe pipe)
1029 {
1030         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1031         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1032
1033         return intel_crtc->config->cpu_transcoder;
1034 }
1035
1036 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1037 {
1038         struct drm_i915_private *dev_priv = to_i915(dev);
1039         i915_reg_t reg = PIPEDSL(pipe);
1040         u32 line1, line2;
1041         u32 line_mask;
1042
1043         if (IS_GEN2(dev))
1044                 line_mask = DSL_LINEMASK_GEN2;
1045         else
1046                 line_mask = DSL_LINEMASK_GEN3;
1047
1048         line1 = I915_READ(reg) & line_mask;
1049         msleep(5);
1050         line2 = I915_READ(reg) & line_mask;
1051
1052         return line1 == line2;
1053 }
1054
1055 /*
1056  * intel_wait_for_pipe_off - wait for pipe to turn off
1057  * @crtc: crtc whose pipe to wait for
1058  *
1059  * After disabling a pipe, we can't wait for vblank in the usual way,
1060  * spinning on the vblank interrupt status bit, since we won't actually
1061  * see an interrupt when the pipe is disabled.
1062  *
1063  * On Gen4 and above:
1064  *   wait for the pipe register state bit to turn off
1065  *
1066  * Otherwise:
1067  *   wait for the display line value to settle (it usually
1068  *   ends up stopping at the start of the next frame).
1069  *
1070  */
1071 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1072 {
1073         struct drm_device *dev = crtc->base.dev;
1074         struct drm_i915_private *dev_priv = to_i915(dev);
1075         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1076         enum pipe pipe = crtc->pipe;
1077
1078         if (INTEL_INFO(dev)->gen >= 4) {
1079                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1080
1081                 /* Wait for the Pipe State to go off */
1082                 if (intel_wait_for_register(dev_priv,
1083                                             reg, I965_PIPECONF_ACTIVE, 0,
1084                                             100))
1085                         WARN(1, "pipe_off wait timed out\n");
1086         } else {
1087                 /* Wait for the display line to settle */
1088                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1089                         WARN(1, "pipe_off wait timed out\n");
1090         }
1091 }
1092
1093 /* Only for pre-ILK configs */
1094 void assert_pll(struct drm_i915_private *dev_priv,
1095                 enum pipe pipe, bool state)
1096 {
1097         u32 val;
1098         bool cur_state;
1099
1100         val = I915_READ(DPLL(pipe));
1101         cur_state = !!(val & DPLL_VCO_ENABLE);
1102         I915_STATE_WARN(cur_state != state,
1103              "PLL state assertion failure (expected %s, current %s)\n",
1104                         onoff(state), onoff(cur_state));
1105 }
1106
1107 /* XXX: the dsi pll is shared between MIPI DSI ports */
1108 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1109 {
1110         u32 val;
1111         bool cur_state;
1112
1113         mutex_lock(&dev_priv->sb_lock);
1114         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1115         mutex_unlock(&dev_priv->sb_lock);
1116
1117         cur_state = val & DSI_PLL_VCO_EN;
1118         I915_STATE_WARN(cur_state != state,
1119              "DSI PLL state assertion failure (expected %s, current %s)\n",
1120                         onoff(state), onoff(cur_state));
1121 }
1122
1123 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1124                           enum pipe pipe, bool state)
1125 {
1126         bool cur_state;
1127         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128                                                                       pipe);
1129
1130         if (HAS_DDI(dev_priv)) {
1131                 /* DDI does not have a specific FDI_TX register */
1132                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1133                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1134         } else {
1135                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1136                 cur_state = !!(val & FDI_TX_ENABLE);
1137         }
1138         I915_STATE_WARN(cur_state != state,
1139              "FDI TX state assertion failure (expected %s, current %s)\n",
1140                         onoff(state), onoff(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146                           enum pipe pipe, bool state)
1147 {
1148         u32 val;
1149         bool cur_state;
1150
1151         val = I915_READ(FDI_RX_CTL(pipe));
1152         cur_state = !!(val & FDI_RX_ENABLE);
1153         I915_STATE_WARN(cur_state != state,
1154              "FDI RX state assertion failure (expected %s, current %s)\n",
1155                         onoff(state), onoff(cur_state));
1156 }
1157 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1158 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1159
1160 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1161                                       enum pipe pipe)
1162 {
1163         u32 val;
1164
1165         /* ILK FDI PLL is always enabled */
1166         if (IS_GEN5(dev_priv))
1167                 return;
1168
1169         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1170         if (HAS_DDI(dev_priv))
1171                 return;
1172
1173         val = I915_READ(FDI_TX_CTL(pipe));
1174         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178                        enum pipe pipe, bool state)
1179 {
1180         u32 val;
1181         bool cur_state;
1182
1183         val = I915_READ(FDI_RX_CTL(pipe));
1184         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1185         I915_STATE_WARN(cur_state != state,
1186              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1187                         onoff(state), onoff(cur_state));
1188 }
1189
1190 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1191                            enum pipe pipe)
1192 {
1193         struct drm_device *dev = &dev_priv->drm;
1194         i915_reg_t pp_reg;
1195         u32 val;
1196         enum pipe panel_pipe = PIPE_A;
1197         bool locked = true;
1198
1199         if (WARN_ON(HAS_DDI(dev)))
1200                 return;
1201
1202         if (HAS_PCH_SPLIT(dev)) {
1203                 u32 port_sel;
1204
1205                 pp_reg = PP_CONTROL(0);
1206                 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1207
1208                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1209                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1210                         panel_pipe = PIPE_B;
1211                 /* XXX: else fix for eDP */
1212         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1213                 /* presumably write lock depends on pipe, not port select */
1214                 pp_reg = PP_CONTROL(pipe);
1215                 panel_pipe = pipe;
1216         } else {
1217                 pp_reg = PP_CONTROL(0);
1218                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1219                         panel_pipe = PIPE_B;
1220         }
1221
1222         val = I915_READ(pp_reg);
1223         if (!(val & PANEL_POWER_ON) ||
1224             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1225                 locked = false;
1226
1227         I915_STATE_WARN(panel_pipe == pipe && locked,
1228              "panel assertion failure, pipe %c regs locked\n",
1229              pipe_name(pipe));
1230 }
1231
1232 static void assert_cursor(struct drm_i915_private *dev_priv,
1233                           enum pipe pipe, bool state)
1234 {
1235         struct drm_device *dev = &dev_priv->drm;
1236         bool cur_state;
1237
1238         if (IS_845G(dev) || IS_I865G(dev))
1239                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1240         else
1241                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1242
1243         I915_STATE_WARN(cur_state != state,
1244              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1245                         pipe_name(pipe), onoff(state), onoff(cur_state));
1246 }
1247 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1248 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1249
1250 void assert_pipe(struct drm_i915_private *dev_priv,
1251                  enum pipe pipe, bool state)
1252 {
1253         bool cur_state;
1254         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1255                                                                       pipe);
1256         enum intel_display_power_domain power_domain;
1257
1258         /* if we need the pipe quirk it must be always on */
1259         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1260             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1261                 state = true;
1262
1263         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1264         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1265                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1266                 cur_state = !!(val & PIPECONF_ENABLE);
1267
1268                 intel_display_power_put(dev_priv, power_domain);
1269         } else {
1270                 cur_state = false;
1271         }
1272
1273         I915_STATE_WARN(cur_state != state,
1274              "pipe %c assertion failure (expected %s, current %s)\n",
1275                         pipe_name(pipe), onoff(state), onoff(cur_state));
1276 }
1277
1278 static void assert_plane(struct drm_i915_private *dev_priv,
1279                          enum plane plane, bool state)
1280 {
1281         u32 val;
1282         bool cur_state;
1283
1284         val = I915_READ(DSPCNTR(plane));
1285         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1286         I915_STATE_WARN(cur_state != state,
1287              "plane %c assertion failure (expected %s, current %s)\n",
1288                         plane_name(plane), onoff(state), onoff(cur_state));
1289 }
1290
1291 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1292 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1293
1294 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1295                                    enum pipe pipe)
1296 {
1297         struct drm_device *dev = &dev_priv->drm;
1298         int i;
1299
1300         /* Primary planes are fixed to pipes on gen4+ */
1301         if (INTEL_INFO(dev)->gen >= 4) {
1302                 u32 val = I915_READ(DSPCNTR(pipe));
1303                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1304                      "plane %c assertion failure, should be disabled but not\n",
1305                      plane_name(pipe));
1306                 return;
1307         }
1308
1309         /* Need to check both planes against the pipe */
1310         for_each_pipe(dev_priv, i) {
1311                 u32 val = I915_READ(DSPCNTR(i));
1312                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1313                         DISPPLANE_SEL_PIPE_SHIFT;
1314                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1315                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1316                      plane_name(i), pipe_name(pipe));
1317         }
1318 }
1319
1320 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1321                                     enum pipe pipe)
1322 {
1323         struct drm_device *dev = &dev_priv->drm;
1324         int sprite;
1325
1326         if (INTEL_INFO(dev)->gen >= 9) {
1327                 for_each_sprite(dev_priv, pipe, sprite) {
1328                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1329                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1330                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1331                              sprite, pipe_name(pipe));
1332                 }
1333         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1334                 for_each_sprite(dev_priv, pipe, sprite) {
1335                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1336                         I915_STATE_WARN(val & SP_ENABLE,
1337                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1338                              sprite_name(pipe, sprite), pipe_name(pipe));
1339                 }
1340         } else if (INTEL_INFO(dev)->gen >= 7) {
1341                 u32 val = I915_READ(SPRCTL(pipe));
1342                 I915_STATE_WARN(val & SPRITE_ENABLE,
1343                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344                      plane_name(pipe), pipe_name(pipe));
1345         } else if (INTEL_INFO(dev)->gen >= 5) {
1346                 u32 val = I915_READ(DVSCNTR(pipe));
1347                 I915_STATE_WARN(val & DVS_ENABLE,
1348                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1349                      plane_name(pipe), pipe_name(pipe));
1350         }
1351 }
1352
1353 static void assert_vblank_disabled(struct drm_crtc *crtc)
1354 {
1355         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1356                 drm_crtc_vblank_put(crtc);
1357 }
1358
1359 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1360                                     enum pipe pipe)
1361 {
1362         u32 val;
1363         bool enabled;
1364
1365         val = I915_READ(PCH_TRANSCONF(pipe));
1366         enabled = !!(val & TRANS_ENABLE);
1367         I915_STATE_WARN(enabled,
1368              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1369              pipe_name(pipe));
1370 }
1371
1372 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1373                             enum pipe pipe, u32 port_sel, u32 val)
1374 {
1375         if ((val & DP_PORT_EN) == 0)
1376                 return false;
1377
1378         if (HAS_PCH_CPT(dev_priv)) {
1379                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1380                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1381                         return false;
1382         } else if (IS_CHERRYVIEW(dev_priv)) {
1383                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1384                         return false;
1385         } else {
1386                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1387                         return false;
1388         }
1389         return true;
1390 }
1391
1392 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1393                               enum pipe pipe, u32 val)
1394 {
1395         if ((val & SDVO_ENABLE) == 0)
1396                 return false;
1397
1398         if (HAS_PCH_CPT(dev_priv)) {
1399                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1400                         return false;
1401         } else if (IS_CHERRYVIEW(dev_priv)) {
1402                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1403                         return false;
1404         } else {
1405                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1406                         return false;
1407         }
1408         return true;
1409 }
1410
1411 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1412                               enum pipe pipe, u32 val)
1413 {
1414         if ((val & LVDS_PORT_EN) == 0)
1415                 return false;
1416
1417         if (HAS_PCH_CPT(dev_priv)) {
1418                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1419                         return false;
1420         } else {
1421                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1422                         return false;
1423         }
1424         return true;
1425 }
1426
1427 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1428                               enum pipe pipe, u32 val)
1429 {
1430         if ((val & ADPA_DAC_ENABLE) == 0)
1431                 return false;
1432         if (HAS_PCH_CPT(dev_priv)) {
1433                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1434                         return false;
1435         } else {
1436                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1437                         return false;
1438         }
1439         return true;
1440 }
1441
1442 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1443                                    enum pipe pipe, i915_reg_t reg,
1444                                    u32 port_sel)
1445 {
1446         u32 val = I915_READ(reg);
1447         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1448              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1449              i915_mmio_reg_offset(reg), pipe_name(pipe));
1450
1451         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1452              && (val & DP_PIPEB_SELECT),
1453              "IBX PCH dp port still using transcoder B\n");
1454 }
1455
1456 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1457                                      enum pipe pipe, i915_reg_t reg)
1458 {
1459         u32 val = I915_READ(reg);
1460         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1461              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1462              i915_mmio_reg_offset(reg), pipe_name(pipe));
1463
1464         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1465              && (val & SDVO_PIPE_B_SELECT),
1466              "IBX PCH hdmi port still using transcoder B\n");
1467 }
1468
1469 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1470                                       enum pipe pipe)
1471 {
1472         u32 val;
1473
1474         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1475         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1476         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1477
1478         val = I915_READ(PCH_ADPA);
1479         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1480              "PCH VGA enabled on transcoder %c, should be disabled\n",
1481              pipe_name(pipe));
1482
1483         val = I915_READ(PCH_LVDS);
1484         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1485              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1486              pipe_name(pipe));
1487
1488         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1489         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1490         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1491 }
1492
1493 static void _vlv_enable_pll(struct intel_crtc *crtc,
1494                             const struct intel_crtc_state *pipe_config)
1495 {
1496         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1497         enum pipe pipe = crtc->pipe;
1498
1499         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1500         POSTING_READ(DPLL(pipe));
1501         udelay(150);
1502
1503         if (intel_wait_for_register(dev_priv,
1504                                     DPLL(pipe),
1505                                     DPLL_LOCK_VLV,
1506                                     DPLL_LOCK_VLV,
1507                                     1))
1508                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1509 }
1510
1511 static void vlv_enable_pll(struct intel_crtc *crtc,
1512                            const struct intel_crtc_state *pipe_config)
1513 {
1514         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1515         enum pipe pipe = crtc->pipe;
1516
1517         assert_pipe_disabled(dev_priv, pipe);
1518
1519         /* PLL is protected by panel, make sure we can write it */
1520         assert_panel_unlocked(dev_priv, pipe);
1521
1522         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1523                 _vlv_enable_pll(crtc, pipe_config);
1524
1525         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1526         POSTING_READ(DPLL_MD(pipe));
1527 }
1528
1529
1530 static void _chv_enable_pll(struct intel_crtc *crtc,
1531                             const struct intel_crtc_state *pipe_config)
1532 {
1533         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1534         enum pipe pipe = crtc->pipe;
1535         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1536         u32 tmp;
1537
1538         mutex_lock(&dev_priv->sb_lock);
1539
1540         /* Enable back the 10bit clock to display controller */
1541         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1542         tmp |= DPIO_DCLKP_EN;
1543         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1544
1545         mutex_unlock(&dev_priv->sb_lock);
1546
1547         /*
1548          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1549          */
1550         udelay(1);
1551
1552         /* Enable PLL */
1553         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1554
1555         /* Check PLL is locked */
1556         if (intel_wait_for_register(dev_priv,
1557                                     DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1558                                     1))
1559                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1560 }
1561
1562 static void chv_enable_pll(struct intel_crtc *crtc,
1563                            const struct intel_crtc_state *pipe_config)
1564 {
1565         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1566         enum pipe pipe = crtc->pipe;
1567
1568         assert_pipe_disabled(dev_priv, pipe);
1569
1570         /* PLL is protected by panel, make sure we can write it */
1571         assert_panel_unlocked(dev_priv, pipe);
1572
1573         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1574                 _chv_enable_pll(crtc, pipe_config);
1575
1576         if (pipe != PIPE_A) {
1577                 /*
1578                  * WaPixelRepeatModeFixForC0:chv
1579                  *
1580                  * DPLLCMD is AWOL. Use chicken bits to propagate
1581                  * the value from DPLLBMD to either pipe B or C.
1582                  */
1583                 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1584                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1585                 I915_WRITE(CBR4_VLV, 0);
1586                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1587
1588                 /*
1589                  * DPLLB VGA mode also seems to cause problems.
1590                  * We should always have it disabled.
1591                  */
1592                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1593         } else {
1594                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1595                 POSTING_READ(DPLL_MD(pipe));
1596         }
1597 }
1598
1599 static int intel_num_dvo_pipes(struct drm_device *dev)
1600 {
1601         struct intel_crtc *crtc;
1602         int count = 0;
1603
1604         for_each_intel_crtc(dev, crtc) {
1605                 count += crtc->base.state->active &&
1606                         intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1607         }
1608
1609         return count;
1610 }
1611
1612 static void i9xx_enable_pll(struct intel_crtc *crtc)
1613 {
1614         struct drm_device *dev = crtc->base.dev;
1615         struct drm_i915_private *dev_priv = to_i915(dev);
1616         i915_reg_t reg = DPLL(crtc->pipe);
1617         u32 dpll = crtc->config->dpll_hw_state.dpll;
1618
1619         assert_pipe_disabled(dev_priv, crtc->pipe);
1620
1621         /* PLL is protected by panel, make sure we can write it */
1622         if (IS_MOBILE(dev) && !IS_I830(dev))
1623                 assert_panel_unlocked(dev_priv, crtc->pipe);
1624
1625         /* Enable DVO 2x clock on both PLLs if necessary */
1626         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1627                 /*
1628                  * It appears to be important that we don't enable this
1629                  * for the current pipe before otherwise configuring the
1630                  * PLL. No idea how this should be handled if multiple
1631                  * DVO outputs are enabled simultaneosly.
1632                  */
1633                 dpll |= DPLL_DVO_2X_MODE;
1634                 I915_WRITE(DPLL(!crtc->pipe),
1635                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1636         }
1637
1638         /*
1639          * Apparently we need to have VGA mode enabled prior to changing
1640          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1641          * dividers, even though the register value does change.
1642          */
1643         I915_WRITE(reg, 0);
1644
1645         I915_WRITE(reg, dpll);
1646
1647         /* Wait for the clocks to stabilize. */
1648         POSTING_READ(reg);
1649         udelay(150);
1650
1651         if (INTEL_INFO(dev)->gen >= 4) {
1652                 I915_WRITE(DPLL_MD(crtc->pipe),
1653                            crtc->config->dpll_hw_state.dpll_md);
1654         } else {
1655                 /* The pixel multiplier can only be updated once the
1656                  * DPLL is enabled and the clocks are stable.
1657                  *
1658                  * So write it again.
1659                  */
1660                 I915_WRITE(reg, dpll);
1661         }
1662
1663         /* We do this three times for luck */
1664         I915_WRITE(reg, dpll);
1665         POSTING_READ(reg);
1666         udelay(150); /* wait for warmup */
1667         I915_WRITE(reg, dpll);
1668         POSTING_READ(reg);
1669         udelay(150); /* wait for warmup */
1670         I915_WRITE(reg, dpll);
1671         POSTING_READ(reg);
1672         udelay(150); /* wait for warmup */
1673 }
1674
1675 /**
1676  * i9xx_disable_pll - disable a PLL
1677  * @dev_priv: i915 private structure
1678  * @pipe: pipe PLL to disable
1679  *
1680  * Disable the PLL for @pipe, making sure the pipe is off first.
1681  *
1682  * Note!  This is for pre-ILK only.
1683  */
1684 static void i9xx_disable_pll(struct intel_crtc *crtc)
1685 {
1686         struct drm_device *dev = crtc->base.dev;
1687         struct drm_i915_private *dev_priv = to_i915(dev);
1688         enum pipe pipe = crtc->pipe;
1689
1690         /* Disable DVO 2x clock on both PLLs if necessary */
1691         if (IS_I830(dev) &&
1692             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1693             !intel_num_dvo_pipes(dev)) {
1694                 I915_WRITE(DPLL(PIPE_B),
1695                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1696                 I915_WRITE(DPLL(PIPE_A),
1697                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1698         }
1699
1700         /* Don't disable pipe or pipe PLLs if needed */
1701         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1702             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1703                 return;
1704
1705         /* Make sure the pipe isn't still relying on us */
1706         assert_pipe_disabled(dev_priv, pipe);
1707
1708         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1709         POSTING_READ(DPLL(pipe));
1710 }
1711
1712 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1713 {
1714         u32 val;
1715
1716         /* Make sure the pipe isn't still relying on us */
1717         assert_pipe_disabled(dev_priv, pipe);
1718
1719         val = DPLL_INTEGRATED_REF_CLK_VLV |
1720                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1721         if (pipe != PIPE_A)
1722                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1723
1724         I915_WRITE(DPLL(pipe), val);
1725         POSTING_READ(DPLL(pipe));
1726 }
1727
1728 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1729 {
1730         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1731         u32 val;
1732
1733         /* Make sure the pipe isn't still relying on us */
1734         assert_pipe_disabled(dev_priv, pipe);
1735
1736         val = DPLL_SSC_REF_CLK_CHV |
1737                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1738         if (pipe != PIPE_A)
1739                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1740
1741         I915_WRITE(DPLL(pipe), val);
1742         POSTING_READ(DPLL(pipe));
1743
1744         mutex_lock(&dev_priv->sb_lock);
1745
1746         /* Disable 10bit clock to display controller */
1747         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1748         val &= ~DPIO_DCLKP_EN;
1749         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1750
1751         mutex_unlock(&dev_priv->sb_lock);
1752 }
1753
1754 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1755                          struct intel_digital_port *dport,
1756                          unsigned int expected_mask)
1757 {
1758         u32 port_mask;
1759         i915_reg_t dpll_reg;
1760
1761         switch (dport->port) {
1762         case PORT_B:
1763                 port_mask = DPLL_PORTB_READY_MASK;
1764                 dpll_reg = DPLL(0);
1765                 break;
1766         case PORT_C:
1767                 port_mask = DPLL_PORTC_READY_MASK;
1768                 dpll_reg = DPLL(0);
1769                 expected_mask <<= 4;
1770                 break;
1771         case PORT_D:
1772                 port_mask = DPLL_PORTD_READY_MASK;
1773                 dpll_reg = DPIO_PHY_STATUS;
1774                 break;
1775         default:
1776                 BUG();
1777         }
1778
1779         if (intel_wait_for_register(dev_priv,
1780                                     dpll_reg, port_mask, expected_mask,
1781                                     1000))
1782                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1783                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1784 }
1785
1786 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1787                                            enum pipe pipe)
1788 {
1789         struct drm_device *dev = &dev_priv->drm;
1790         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1791         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1792         i915_reg_t reg;
1793         uint32_t val, pipeconf_val;
1794
1795         /* Make sure PCH DPLL is enabled */
1796         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1797
1798         /* FDI must be feeding us bits for PCH ports */
1799         assert_fdi_tx_enabled(dev_priv, pipe);
1800         assert_fdi_rx_enabled(dev_priv, pipe);
1801
1802         if (HAS_PCH_CPT(dev)) {
1803                 /* Workaround: Set the timing override bit before enabling the
1804                  * pch transcoder. */
1805                 reg = TRANS_CHICKEN2(pipe);
1806                 val = I915_READ(reg);
1807                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1808                 I915_WRITE(reg, val);
1809         }
1810
1811         reg = PCH_TRANSCONF(pipe);
1812         val = I915_READ(reg);
1813         pipeconf_val = I915_READ(PIPECONF(pipe));
1814
1815         if (HAS_PCH_IBX(dev_priv)) {
1816                 /*
1817                  * Make the BPC in transcoder be consistent with
1818                  * that in pipeconf reg. For HDMI we must use 8bpc
1819                  * here for both 8bpc and 12bpc.
1820                  */
1821                 val &= ~PIPECONF_BPC_MASK;
1822                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1823                         val |= PIPECONF_8BPC;
1824                 else
1825                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1826         }
1827
1828         val &= ~TRANS_INTERLACE_MASK;
1829         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1830                 if (HAS_PCH_IBX(dev_priv) &&
1831                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1832                         val |= TRANS_LEGACY_INTERLACED_ILK;
1833                 else
1834                         val |= TRANS_INTERLACED;
1835         else
1836                 val |= TRANS_PROGRESSIVE;
1837
1838         I915_WRITE(reg, val | TRANS_ENABLE);
1839         if (intel_wait_for_register(dev_priv,
1840                                     reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1841                                     100))
1842                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1843 }
1844
1845 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1846                                       enum transcoder cpu_transcoder)
1847 {
1848         u32 val, pipeconf_val;
1849
1850         /* FDI must be feeding us bits for PCH ports */
1851         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1852         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1853
1854         /* Workaround: set timing override bit. */
1855         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1856         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1857         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1858
1859         val = TRANS_ENABLE;
1860         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1861
1862         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1863             PIPECONF_INTERLACED_ILK)
1864                 val |= TRANS_INTERLACED;
1865         else
1866                 val |= TRANS_PROGRESSIVE;
1867
1868         I915_WRITE(LPT_TRANSCONF, val);
1869         if (intel_wait_for_register(dev_priv,
1870                                     LPT_TRANSCONF,
1871                                     TRANS_STATE_ENABLE,
1872                                     TRANS_STATE_ENABLE,
1873                                     100))
1874                 DRM_ERROR("Failed to enable PCH transcoder\n");
1875 }
1876
1877 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1878                                             enum pipe pipe)
1879 {
1880         struct drm_device *dev = &dev_priv->drm;
1881         i915_reg_t reg;
1882         uint32_t val;
1883
1884         /* FDI relies on the transcoder */
1885         assert_fdi_tx_disabled(dev_priv, pipe);
1886         assert_fdi_rx_disabled(dev_priv, pipe);
1887
1888         /* Ports must be off as well */
1889         assert_pch_ports_disabled(dev_priv, pipe);
1890
1891         reg = PCH_TRANSCONF(pipe);
1892         val = I915_READ(reg);
1893         val &= ~TRANS_ENABLE;
1894         I915_WRITE(reg, val);
1895         /* wait for PCH transcoder off, transcoder state */
1896         if (intel_wait_for_register(dev_priv,
1897                                     reg, TRANS_STATE_ENABLE, 0,
1898                                     50))
1899                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1900
1901         if (HAS_PCH_CPT(dev)) {
1902                 /* Workaround: Clear the timing override chicken bit again. */
1903                 reg = TRANS_CHICKEN2(pipe);
1904                 val = I915_READ(reg);
1905                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1906                 I915_WRITE(reg, val);
1907         }
1908 }
1909
1910 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1911 {
1912         u32 val;
1913
1914         val = I915_READ(LPT_TRANSCONF);
1915         val &= ~TRANS_ENABLE;
1916         I915_WRITE(LPT_TRANSCONF, val);
1917         /* wait for PCH transcoder off, transcoder state */
1918         if (intel_wait_for_register(dev_priv,
1919                                     LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1920                                     50))
1921                 DRM_ERROR("Failed to disable PCH transcoder\n");
1922
1923         /* Workaround: clear timing override bit. */
1924         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1925         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1926         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1927 }
1928
1929 /**
1930  * intel_enable_pipe - enable a pipe, asserting requirements
1931  * @crtc: crtc responsible for the pipe
1932  *
1933  * Enable @crtc's pipe, making sure that various hardware specific requirements
1934  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1935  */
1936 static void intel_enable_pipe(struct intel_crtc *crtc)
1937 {
1938         struct drm_device *dev = crtc->base.dev;
1939         struct drm_i915_private *dev_priv = to_i915(dev);
1940         enum pipe pipe = crtc->pipe;
1941         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1942         enum pipe pch_transcoder;
1943         i915_reg_t reg;
1944         u32 val;
1945
1946         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1947
1948         assert_planes_disabled(dev_priv, pipe);
1949         assert_cursor_disabled(dev_priv, pipe);
1950         assert_sprites_disabled(dev_priv, pipe);
1951
1952         if (HAS_PCH_LPT(dev_priv))
1953                 pch_transcoder = TRANSCODER_A;
1954         else
1955                 pch_transcoder = pipe;
1956
1957         /*
1958          * A pipe without a PLL won't actually be able to drive bits from
1959          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1960          * need the check.
1961          */
1962         if (HAS_GMCH_DISPLAY(dev_priv)) {
1963                 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1964                         assert_dsi_pll_enabled(dev_priv);
1965                 else
1966                         assert_pll_enabled(dev_priv, pipe);
1967         } else {
1968                 if (crtc->config->has_pch_encoder) {
1969                         /* if driving the PCH, we need FDI enabled */
1970                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1971                         assert_fdi_tx_pll_enabled(dev_priv,
1972                                                   (enum pipe) cpu_transcoder);
1973                 }
1974                 /* FIXME: assert CPU port conditions for SNB+ */
1975         }
1976
1977         reg = PIPECONF(cpu_transcoder);
1978         val = I915_READ(reg);
1979         if (val & PIPECONF_ENABLE) {
1980                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1981                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1982                 return;
1983         }
1984
1985         I915_WRITE(reg, val | PIPECONF_ENABLE);
1986         POSTING_READ(reg);
1987
1988         /*
1989          * Until the pipe starts DSL will read as 0, which would cause
1990          * an apparent vblank timestamp jump, which messes up also the
1991          * frame count when it's derived from the timestamps. So let's
1992          * wait for the pipe to start properly before we call
1993          * drm_crtc_vblank_on()
1994          */
1995         if (dev->max_vblank_count == 0 &&
1996             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1997                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1998 }
1999
2000 /**
2001  * intel_disable_pipe - disable a pipe, asserting requirements
2002  * @crtc: crtc whose pipes is to be disabled
2003  *
2004  * Disable the pipe of @crtc, making sure that various hardware
2005  * specific requirements are met, if applicable, e.g. plane
2006  * disabled, panel fitter off, etc.
2007  *
2008  * Will wait until the pipe has shut down before returning.
2009  */
2010 static void intel_disable_pipe(struct intel_crtc *crtc)
2011 {
2012         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2013         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2014         enum pipe pipe = crtc->pipe;
2015         i915_reg_t reg;
2016         u32 val;
2017
2018         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2019
2020         /*
2021          * Make sure planes won't keep trying to pump pixels to us,
2022          * or we might hang the display.
2023          */
2024         assert_planes_disabled(dev_priv, pipe);
2025         assert_cursor_disabled(dev_priv, pipe);
2026         assert_sprites_disabled(dev_priv, pipe);
2027
2028         reg = PIPECONF(cpu_transcoder);
2029         val = I915_READ(reg);
2030         if ((val & PIPECONF_ENABLE) == 0)
2031                 return;
2032
2033         /*
2034          * Double wide has implications for planes
2035          * so best keep it disabled when not needed.
2036          */
2037         if (crtc->config->double_wide)
2038                 val &= ~PIPECONF_DOUBLE_WIDE;
2039
2040         /* Don't disable pipe or pipe PLLs if needed */
2041         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2042             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2043                 val &= ~PIPECONF_ENABLE;
2044
2045         I915_WRITE(reg, val);
2046         if ((val & PIPECONF_ENABLE) == 0)
2047                 intel_wait_for_pipe_off(crtc);
2048 }
2049
2050 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2051 {
2052         return IS_GEN2(dev_priv) ? 2048 : 4096;
2053 }
2054
2055 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2056                                            uint64_t fb_modifier, unsigned int cpp)
2057 {
2058         switch (fb_modifier) {
2059         case DRM_FORMAT_MOD_NONE:
2060                 return cpp;
2061         case I915_FORMAT_MOD_X_TILED:
2062                 if (IS_GEN2(dev_priv))
2063                         return 128;
2064                 else
2065                         return 512;
2066         case I915_FORMAT_MOD_Y_TILED:
2067                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2068                         return 128;
2069                 else
2070                         return 512;
2071         case I915_FORMAT_MOD_Yf_TILED:
2072                 switch (cpp) {
2073                 case 1:
2074                         return 64;
2075                 case 2:
2076                 case 4:
2077                         return 128;
2078                 case 8:
2079                 case 16:
2080                         return 256;
2081                 default:
2082                         MISSING_CASE(cpp);
2083                         return cpp;
2084                 }
2085                 break;
2086         default:
2087                 MISSING_CASE(fb_modifier);
2088                 return cpp;
2089         }
2090 }
2091
2092 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2093                                uint64_t fb_modifier, unsigned int cpp)
2094 {
2095         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2096                 return 1;
2097         else
2098                 return intel_tile_size(dev_priv) /
2099                         intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2100 }
2101
2102 /* Return the tile dimensions in pixel units */
2103 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2104                             unsigned int *tile_width,
2105                             unsigned int *tile_height,
2106                             uint64_t fb_modifier,
2107                             unsigned int cpp)
2108 {
2109         unsigned int tile_width_bytes =
2110                 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2111
2112         *tile_width = tile_width_bytes / cpp;
2113         *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2114 }
2115
2116 unsigned int
2117 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2118                       uint32_t pixel_format, uint64_t fb_modifier)
2119 {
2120         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2121         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2122
2123         return ALIGN(height, tile_height);
2124 }
2125
2126 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2127 {
2128         unsigned int size = 0;
2129         int i;
2130
2131         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2132                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2133
2134         return size;
2135 }
2136
2137 static void
2138 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2139                         const struct drm_framebuffer *fb,
2140                         unsigned int rotation)
2141 {
2142         if (intel_rotation_90_or_270(rotation)) {
2143                 *view = i915_ggtt_view_rotated;
2144                 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2145         } else {
2146                 *view = i915_ggtt_view_normal;
2147         }
2148 }
2149
2150 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2151 {
2152         if (INTEL_INFO(dev_priv)->gen >= 9)
2153                 return 256 * 1024;
2154         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2155                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2156                 return 128 * 1024;
2157         else if (INTEL_INFO(dev_priv)->gen >= 4)
2158                 return 4 * 1024;
2159         else
2160                 return 0;
2161 }
2162
2163 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2164                                          uint64_t fb_modifier)
2165 {
2166         switch (fb_modifier) {
2167         case DRM_FORMAT_MOD_NONE:
2168                 return intel_linear_alignment(dev_priv);
2169         case I915_FORMAT_MOD_X_TILED:
2170                 if (INTEL_INFO(dev_priv)->gen >= 9)
2171                         return 256 * 1024;
2172                 return 0;
2173         case I915_FORMAT_MOD_Y_TILED:
2174         case I915_FORMAT_MOD_Yf_TILED:
2175                 return 1 * 1024 * 1024;
2176         default:
2177                 MISSING_CASE(fb_modifier);
2178                 return 0;
2179         }
2180 }
2181
2182 struct i915_vma *
2183 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2184 {
2185         struct drm_device *dev = fb->dev;
2186         struct drm_i915_private *dev_priv = to_i915(dev);
2187         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2188         struct i915_ggtt_view view;
2189         struct i915_vma *vma;
2190         u32 alignment;
2191
2192         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2193
2194         alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2195
2196         intel_fill_fb_ggtt_view(&view, fb, rotation);
2197
2198         /* Note that the w/a also requires 64 PTE of padding following the
2199          * bo. We currently fill all unused PTE with the shadow page and so
2200          * we should always have valid PTE following the scanout preventing
2201          * the VT-d warning.
2202          */
2203         if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2204                 alignment = 256 * 1024;
2205
2206         /*
2207          * Global gtt pte registers are special registers which actually forward
2208          * writes to a chunk of system memory. Which means that there is no risk
2209          * that the register values disappear as soon as we call
2210          * intel_runtime_pm_put(), so it is correct to wrap only the
2211          * pin/unpin/fence and not more.
2212          */
2213         intel_runtime_pm_get(dev_priv);
2214
2215         vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2216         if (IS_ERR(vma))
2217                 goto err;
2218
2219         if (i915_vma_is_map_and_fenceable(vma)) {
2220                 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2221                  * fence, whereas 965+ only requires a fence if using
2222                  * framebuffer compression.  For simplicity, we always, when
2223                  * possible, install a fence as the cost is not that onerous.
2224                  *
2225                  * If we fail to fence the tiled scanout, then either the
2226                  * modeset will reject the change (which is highly unlikely as
2227                  * the affected systems, all but one, do not have unmappable
2228                  * space) or we will not be able to enable full powersaving
2229                  * techniques (also likely not to apply due to various limits
2230                  * FBC and the like impose on the size of the buffer, which
2231                  * presumably we violated anyway with this unmappable buffer).
2232                  * Anyway, it is presumably better to stumble onwards with
2233                  * something and try to run the system in a "less than optimal"
2234                  * mode that matches the user configuration.
2235                  */
2236                 if (i915_vma_get_fence(vma) == 0)
2237                         i915_vma_pin_fence(vma);
2238         }
2239
2240 err:
2241         intel_runtime_pm_put(dev_priv);
2242         return vma;
2243 }
2244
2245 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2246 {
2247         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2248         struct i915_ggtt_view view;
2249         struct i915_vma *vma;
2250
2251         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2252
2253         intel_fill_fb_ggtt_view(&view, fb, rotation);
2254         vma = i915_gem_object_to_ggtt(obj, &view);
2255
2256         i915_vma_unpin_fence(vma);
2257         i915_gem_object_unpin_from_display_plane(vma);
2258 }
2259
2260 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2261                           unsigned int rotation)
2262 {
2263         if (intel_rotation_90_or_270(rotation))
2264                 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2265         else
2266                 return fb->pitches[plane];
2267 }
2268
2269 /*
2270  * Convert the x/y offsets into a linear offset.
2271  * Only valid with 0/180 degree rotation, which is fine since linear
2272  * offset is only used with linear buffers on pre-hsw and tiled buffers
2273  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2274  */
2275 u32 intel_fb_xy_to_linear(int x, int y,
2276                           const struct intel_plane_state *state,
2277                           int plane)
2278 {
2279         const struct drm_framebuffer *fb = state->base.fb;
2280         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2281         unsigned int pitch = fb->pitches[plane];
2282
2283         return y * pitch + x * cpp;
2284 }
2285
2286 /*
2287  * Add the x/y offsets derived from fb->offsets[] to the user
2288  * specified plane src x/y offsets. The resulting x/y offsets
2289  * specify the start of scanout from the beginning of the gtt mapping.
2290  */
2291 void intel_add_fb_offsets(int *x, int *y,
2292                           const struct intel_plane_state *state,
2293                           int plane)
2294
2295 {
2296         const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2297         unsigned int rotation = state->base.rotation;
2298
2299         if (intel_rotation_90_or_270(rotation)) {
2300                 *x += intel_fb->rotated[plane].x;
2301                 *y += intel_fb->rotated[plane].y;
2302         } else {
2303                 *x += intel_fb->normal[plane].x;
2304                 *y += intel_fb->normal[plane].y;
2305         }
2306 }
2307
2308 /*
2309  * Input tile dimensions and pitch must already be
2310  * rotated to match x and y, and in pixel units.
2311  */
2312 static u32 _intel_adjust_tile_offset(int *x, int *y,
2313                                      unsigned int tile_width,
2314                                      unsigned int tile_height,
2315                                      unsigned int tile_size,
2316                                      unsigned int pitch_tiles,
2317                                      u32 old_offset,
2318                                      u32 new_offset)
2319 {
2320         unsigned int pitch_pixels = pitch_tiles * tile_width;
2321         unsigned int tiles;
2322
2323         WARN_ON(old_offset & (tile_size - 1));
2324         WARN_ON(new_offset & (tile_size - 1));
2325         WARN_ON(new_offset > old_offset);
2326
2327         tiles = (old_offset - new_offset) / tile_size;
2328
2329         *y += tiles / pitch_tiles * tile_height;
2330         *x += tiles % pitch_tiles * tile_width;
2331
2332         /* minimize x in case it got needlessly big */
2333         *y += *x / pitch_pixels * tile_height;
2334         *x %= pitch_pixels;
2335
2336         return new_offset;
2337 }
2338
2339 /*
2340  * Adjust the tile offset by moving the difference into
2341  * the x/y offsets.
2342  */
2343 static u32 intel_adjust_tile_offset(int *x, int *y,
2344                                     const struct intel_plane_state *state, int plane,
2345                                     u32 old_offset, u32 new_offset)
2346 {
2347         const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2348         const struct drm_framebuffer *fb = state->base.fb;
2349         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2350         unsigned int rotation = state->base.rotation;
2351         unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2352
2353         WARN_ON(new_offset > old_offset);
2354
2355         if (fb->modifier[plane] != DRM_FORMAT_MOD_NONE) {
2356                 unsigned int tile_size, tile_width, tile_height;
2357                 unsigned int pitch_tiles;
2358
2359                 tile_size = intel_tile_size(dev_priv);
2360                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2361                                 fb->modifier[plane], cpp);
2362
2363                 if (intel_rotation_90_or_270(rotation)) {
2364                         pitch_tiles = pitch / tile_height;
2365                         swap(tile_width, tile_height);
2366                 } else {
2367                         pitch_tiles = pitch / (tile_width * cpp);
2368                 }
2369
2370                 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2371                                           tile_size, pitch_tiles,
2372                                           old_offset, new_offset);
2373         } else {
2374                 old_offset += *y * pitch + *x * cpp;
2375
2376                 *y = (old_offset - new_offset) / pitch;
2377                 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2378         }
2379
2380         return new_offset;
2381 }
2382
2383 /*
2384  * Computes the linear offset to the base tile and adjusts
2385  * x, y. bytes per pixel is assumed to be a power-of-two.
2386  *
2387  * In the 90/270 rotated case, x and y are assumed
2388  * to be already rotated to match the rotated GTT view, and
2389  * pitch is the tile_height aligned framebuffer height.
2390  *
2391  * This function is used when computing the derived information
2392  * under intel_framebuffer, so using any of that information
2393  * here is not allowed. Anything under drm_framebuffer can be
2394  * used. This is why the user has to pass in the pitch since it
2395  * is specified in the rotated orientation.
2396  */
2397 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2398                                       int *x, int *y,
2399                                       const struct drm_framebuffer *fb, int plane,
2400                                       unsigned int pitch,
2401                                       unsigned int rotation,
2402                                       u32 alignment)
2403 {
2404         uint64_t fb_modifier = fb->modifier[plane];
2405         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2406         u32 offset, offset_aligned;
2407
2408         if (alignment)
2409                 alignment--;
2410
2411         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2412                 unsigned int tile_size, tile_width, tile_height;
2413                 unsigned int tile_rows, tiles, pitch_tiles;
2414
2415                 tile_size = intel_tile_size(dev_priv);
2416                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2417                                 fb_modifier, cpp);
2418
2419                 if (intel_rotation_90_or_270(rotation)) {
2420                         pitch_tiles = pitch / tile_height;
2421                         swap(tile_width, tile_height);
2422                 } else {
2423                         pitch_tiles = pitch / (tile_width * cpp);
2424                 }
2425
2426                 tile_rows = *y / tile_height;
2427                 *y %= tile_height;
2428
2429                 tiles = *x / tile_width;
2430                 *x %= tile_width;
2431
2432                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2433                 offset_aligned = offset & ~alignment;
2434
2435                 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2436                                           tile_size, pitch_tiles,
2437                                           offset, offset_aligned);
2438         } else {
2439                 offset = *y * pitch + *x * cpp;
2440                 offset_aligned = offset & ~alignment;
2441
2442                 *y = (offset & alignment) / pitch;
2443                 *x = ((offset & alignment) - *y * pitch) / cpp;
2444         }
2445
2446         return offset_aligned;
2447 }
2448
2449 u32 intel_compute_tile_offset(int *x, int *y,
2450                               const struct intel_plane_state *state,
2451                               int plane)
2452 {
2453         const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2454         const struct drm_framebuffer *fb = state->base.fb;
2455         unsigned int rotation = state->base.rotation;
2456         int pitch = intel_fb_pitch(fb, plane, rotation);
2457         u32 alignment;
2458
2459         /* AUX_DIST needs only 4K alignment */
2460         if (fb->pixel_format == DRM_FORMAT_NV12 && plane == 1)
2461                 alignment = 4096;
2462         else
2463                 alignment = intel_surf_alignment(dev_priv, fb->modifier[plane]);
2464
2465         return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2466                                           rotation, alignment);
2467 }
2468
2469 /* Convert the fb->offset[] linear offset into x/y offsets */
2470 static void intel_fb_offset_to_xy(int *x, int *y,
2471                                   const struct drm_framebuffer *fb, int plane)
2472 {
2473         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2474         unsigned int pitch = fb->pitches[plane];
2475         u32 linear_offset = fb->offsets[plane];
2476
2477         *y = linear_offset / pitch;
2478         *x = linear_offset % pitch / cpp;
2479 }
2480
2481 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2482 {
2483         switch (fb_modifier) {
2484         case I915_FORMAT_MOD_X_TILED:
2485                 return I915_TILING_X;
2486         case I915_FORMAT_MOD_Y_TILED:
2487                 return I915_TILING_Y;
2488         default:
2489                 return I915_TILING_NONE;
2490         }
2491 }
2492
2493 static int
2494 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2495                    struct drm_framebuffer *fb)
2496 {
2497         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2498         struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2499         u32 gtt_offset_rotated = 0;
2500         unsigned int max_size = 0;
2501         uint32_t format = fb->pixel_format;
2502         int i, num_planes = drm_format_num_planes(format);
2503         unsigned int tile_size = intel_tile_size(dev_priv);
2504
2505         for (i = 0; i < num_planes; i++) {
2506                 unsigned int width, height;
2507                 unsigned int cpp, size;
2508                 u32 offset;
2509                 int x, y;
2510
2511                 cpp = drm_format_plane_cpp(format, i);
2512                 width = drm_format_plane_width(fb->width, format, i);
2513                 height = drm_format_plane_height(fb->height, format, i);
2514
2515                 intel_fb_offset_to_xy(&x, &y, fb, i);
2516
2517                 /*
2518                  * The fence (if used) is aligned to the start of the object
2519                  * so having the framebuffer wrap around across the edge of the
2520                  * fenced region doesn't really work. We have no API to configure
2521                  * the fence start offset within the object (nor could we probably
2522                  * on gen2/3). So it's just easier if we just require that the
2523                  * fb layout agrees with the fence layout. We already check that the
2524                  * fb stride matches the fence stride elsewhere.
2525                  */
2526                 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2527                     (x + width) * cpp > fb->pitches[i]) {
2528                         DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2529                                   i, fb->offsets[i]);
2530                         return -EINVAL;
2531                 }
2532
2533                 /*
2534                  * First pixel of the framebuffer from
2535                  * the start of the normal gtt mapping.
2536                  */
2537                 intel_fb->normal[i].x = x;
2538                 intel_fb->normal[i].y = y;
2539
2540                 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2541                                                     fb, 0, fb->pitches[i],
2542                                                     DRM_ROTATE_0, tile_size);
2543                 offset /= tile_size;
2544
2545                 if (fb->modifier[i] != DRM_FORMAT_MOD_NONE) {
2546                         unsigned int tile_width, tile_height;
2547                         unsigned int pitch_tiles;
2548                         struct drm_rect r;
2549
2550                         intel_tile_dims(dev_priv, &tile_width, &tile_height,
2551                                         fb->modifier[i], cpp);
2552
2553                         rot_info->plane[i].offset = offset;
2554                         rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2555                         rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2556                         rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2557
2558                         intel_fb->rotated[i].pitch =
2559                                 rot_info->plane[i].height * tile_height;
2560
2561                         /* how many tiles does this plane need */
2562                         size = rot_info->plane[i].stride * rot_info->plane[i].height;
2563                         /*
2564                          * If the plane isn't horizontally tile aligned,
2565                          * we need one more tile.
2566                          */
2567                         if (x != 0)
2568                                 size++;
2569
2570                         /* rotate the x/y offsets to match the GTT view */
2571                         r.x1 = x;
2572                         r.y1 = y;
2573                         r.x2 = x + width;
2574                         r.y2 = y + height;
2575                         drm_rect_rotate(&r,
2576                                         rot_info->plane[i].width * tile_width,
2577                                         rot_info->plane[i].height * tile_height,
2578                                         DRM_ROTATE_270);
2579                         x = r.x1;
2580                         y = r.y1;
2581
2582                         /* rotate the tile dimensions to match the GTT view */
2583                         pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2584                         swap(tile_width, tile_height);
2585
2586                         /*
2587                          * We only keep the x/y offsets, so push all of the
2588                          * gtt offset into the x/y offsets.
2589                          */
2590                         _intel_adjust_tile_offset(&x, &y, tile_size,
2591                                                   tile_width, tile_height, pitch_tiles,
2592                                                   gtt_offset_rotated * tile_size, 0);
2593
2594                         gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2595
2596                         /*
2597                          * First pixel of the framebuffer from
2598                          * the start of the rotated gtt mapping.
2599                          */
2600                         intel_fb->rotated[i].x = x;
2601                         intel_fb->rotated[i].y = y;
2602                 } else {
2603                         size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2604                                             x * cpp, tile_size);
2605                 }
2606
2607                 /* how many tiles in total needed in the bo */
2608                 max_size = max(max_size, offset + size);
2609         }
2610
2611         if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
2612                 DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2613                           max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
2614                 return -EINVAL;
2615         }
2616
2617         return 0;
2618 }
2619
2620 static int i9xx_format_to_fourcc(int format)
2621 {
2622         switch (format) {
2623         case DISPPLANE_8BPP:
2624                 return DRM_FORMAT_C8;
2625         case DISPPLANE_BGRX555:
2626                 return DRM_FORMAT_XRGB1555;
2627         case DISPPLANE_BGRX565:
2628                 return DRM_FORMAT_RGB565;
2629         default:
2630         case DISPPLANE_BGRX888:
2631                 return DRM_FORMAT_XRGB8888;
2632         case DISPPLANE_RGBX888:
2633                 return DRM_FORMAT_XBGR8888;
2634         case DISPPLANE_BGRX101010:
2635                 return DRM_FORMAT_XRGB2101010;
2636         case DISPPLANE_RGBX101010:
2637                 return DRM_FORMAT_XBGR2101010;
2638         }
2639 }
2640
2641 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2642 {
2643         switch (format) {
2644         case PLANE_CTL_FORMAT_RGB_565:
2645                 return DRM_FORMAT_RGB565;
2646         default:
2647         case PLANE_CTL_FORMAT_XRGB_8888:
2648                 if (rgb_order) {
2649                         if (alpha)
2650                                 return DRM_FORMAT_ABGR8888;
2651                         else
2652                                 return DRM_FORMAT_XBGR8888;
2653                 } else {
2654                         if (alpha)
2655                                 return DRM_FORMAT_ARGB8888;
2656                         else
2657                                 return DRM_FORMAT_XRGB8888;
2658                 }
2659         case PLANE_CTL_FORMAT_XRGB_2101010:
2660                 if (rgb_order)
2661                         return DRM_FORMAT_XBGR2101010;
2662                 else
2663                         return DRM_FORMAT_XRGB2101010;
2664         }
2665 }
2666
2667 static bool
2668 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2669                               struct intel_initial_plane_config *plane_config)
2670 {
2671         struct drm_device *dev = crtc->base.dev;
2672         struct drm_i915_private *dev_priv = to_i915(dev);
2673         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2674         struct drm_i915_gem_object *obj = NULL;
2675         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2676         struct drm_framebuffer *fb = &plane_config->fb->base;
2677         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2678         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2679                                     PAGE_SIZE);
2680
2681         size_aligned -= base_aligned;
2682
2683         if (plane_config->size == 0)
2684                 return false;
2685
2686         /* If the FB is too big, just don't use it since fbdev is not very
2687          * important and we should probably use that space with FBC or other
2688          * features. */
2689         if (size_aligned * 2 > ggtt->stolen_usable_size)
2690                 return false;
2691
2692         mutex_lock(&dev->struct_mutex);
2693
2694         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2695                                                              base_aligned,
2696                                                              base_aligned,
2697                                                              size_aligned);
2698         if (!obj) {
2699                 mutex_unlock(&dev->struct_mutex);
2700                 return false;
2701         }
2702
2703         if (plane_config->tiling == I915_TILING_X)
2704                 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2705
2706         mode_cmd.pixel_format = fb->pixel_format;
2707         mode_cmd.width = fb->width;
2708         mode_cmd.height = fb->height;
2709         mode_cmd.pitches[0] = fb->pitches[0];
2710         mode_cmd.modifier[0] = fb->modifier[0];
2711         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2712
2713         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2714                                    &mode_cmd, obj)) {
2715                 DRM_DEBUG_KMS("intel fb init failed\n");
2716                 goto out_unref_obj;
2717         }
2718
2719         mutex_unlock(&dev->struct_mutex);
2720
2721         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2722         return true;
2723
2724 out_unref_obj:
2725         i915_gem_object_put(obj);
2726         mutex_unlock(&dev->struct_mutex);
2727         return false;
2728 }
2729
2730 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2731 static void
2732 update_state_fb(struct drm_plane *plane)
2733 {
2734         if (plane->fb == plane->state->fb)
2735                 return;
2736
2737         if (plane->state->fb)
2738                 drm_framebuffer_unreference(plane->state->fb);
2739         plane->state->fb = plane->fb;
2740         if (plane->state->fb)
2741                 drm_framebuffer_reference(plane->state->fb);
2742 }
2743
2744 static void
2745 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2746                              struct intel_initial_plane_config *plane_config)
2747 {
2748         struct drm_device *dev = intel_crtc->base.dev;
2749         struct drm_i915_private *dev_priv = to_i915(dev);
2750         struct drm_crtc *c;
2751         struct intel_crtc *i;
2752         struct drm_i915_gem_object *obj;
2753         struct drm_plane *primary = intel_crtc->base.primary;
2754         struct drm_plane_state *plane_state = primary->state;
2755         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2756         struct intel_plane *intel_plane = to_intel_plane(primary);
2757         struct intel_plane_state *intel_state =
2758                 to_intel_plane_state(plane_state);
2759         struct drm_framebuffer *fb;
2760
2761         if (!plane_config->fb)
2762                 return;
2763
2764         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2765                 fb = &plane_config->fb->base;
2766                 goto valid_fb;
2767         }
2768
2769         kfree(plane_config->fb);
2770
2771         /*
2772          * Failed to alloc the obj, check to see if we should share
2773          * an fb with another CRTC instead
2774          */
2775         for_each_crtc(dev, c) {
2776                 i = to_intel_crtc(c);
2777
2778                 if (c == &intel_crtc->base)
2779                         continue;
2780
2781                 if (!i->active)
2782                         continue;
2783
2784                 fb = c->primary->fb;
2785                 if (!fb)
2786                         continue;
2787
2788                 obj = intel_fb_obj(fb);
2789                 if (i915_gem_object_ggtt_offset(obj, NULL) == plane_config->base) {
2790                         drm_framebuffer_reference(fb);
2791                         goto valid_fb;
2792                 }
2793         }
2794
2795         /*
2796          * We've failed to reconstruct the BIOS FB.  Current display state
2797          * indicates that the primary plane is visible, but has a NULL FB,
2798          * which will lead to problems later if we don't fix it up.  The
2799          * simplest solution is to just disable the primary plane now and
2800          * pretend the BIOS never had it enabled.
2801          */
2802         to_intel_plane_state(plane_state)->base.visible = false;
2803         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2804         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2805         intel_plane->disable_plane(primary, &intel_crtc->base);
2806
2807         return;
2808
2809 valid_fb:
2810         plane_state->src_x = 0;
2811         plane_state->src_y = 0;
2812         plane_state->src_w = fb->width << 16;
2813         plane_state->src_h = fb->height << 16;
2814
2815         plane_state->crtc_x = 0;
2816         plane_state->crtc_y = 0;
2817         plane_state->crtc_w = fb->width;
2818         plane_state->crtc_h = fb->height;
2819
2820         intel_state->base.src.x1 = plane_state->src_x;
2821         intel_state->base.src.y1 = plane_state->src_y;
2822         intel_state->base.src.x2 = plane_state->src_x + plane_state->src_w;
2823         intel_state->base.src.y2 = plane_state->src_y + plane_state->src_h;
2824         intel_state->base.dst.x1 = plane_state->crtc_x;
2825         intel_state->base.dst.y1 = plane_state->crtc_y;
2826         intel_state->base.dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2827         intel_state->base.dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2828
2829         obj = intel_fb_obj(fb);
2830         if (i915_gem_object_is_tiled(obj))
2831                 dev_priv->preserve_bios_swizzle = true;
2832
2833         drm_framebuffer_reference(fb);
2834         primary->fb = primary->state->fb = fb;
2835         primary->crtc = primary->state->crtc = &intel_crtc->base;
2836         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2837         atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2838                   &obj->frontbuffer_bits);
2839 }
2840
2841 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2842                                unsigned int rotation)
2843 {
2844         int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2845
2846         switch (fb->modifier[plane]) {
2847         case DRM_FORMAT_MOD_NONE:
2848         case I915_FORMAT_MOD_X_TILED:
2849                 switch (cpp) {
2850                 case 8:
2851                         return 4096;
2852                 case 4:
2853                 case 2:
2854                 case 1:
2855                         return 8192;
2856                 default:
2857                         MISSING_CASE(cpp);
2858                         break;
2859                 }
2860                 break;
2861         case I915_FORMAT_MOD_Y_TILED:
2862         case I915_FORMAT_MOD_Yf_TILED:
2863                 switch (cpp) {
2864                 case 8:
2865                         return 2048;
2866                 case 4:
2867                         return 4096;
2868                 case 2:
2869                 case 1:
2870                         return 8192;
2871                 default:
2872                         MISSING_CASE(cpp);
2873                         break;
2874                 }
2875                 break;
2876         default:
2877                 MISSING_CASE(fb->modifier[plane]);
2878         }
2879
2880         return 2048;
2881 }
2882
2883 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2884 {
2885         const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
2886         const struct drm_framebuffer *fb = plane_state->base.fb;
2887         unsigned int rotation = plane_state->base.rotation;
2888         int x = plane_state->base.src.x1 >> 16;
2889         int y = plane_state->base.src.y1 >> 16;
2890         int w = drm_rect_width(&plane_state->base.src) >> 16;
2891         int h = drm_rect_height(&plane_state->base.src) >> 16;
2892         int max_width = skl_max_plane_width(fb, 0, rotation);
2893         int max_height = 4096;
2894         u32 alignment, offset, aux_offset = plane_state->aux.offset;
2895
2896         if (w > max_width || h > max_height) {
2897                 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2898                               w, h, max_width, max_height);
2899                 return -EINVAL;
2900         }
2901
2902         intel_add_fb_offsets(&x, &y, plane_state, 0);
2903         offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2904
2905         alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2906
2907         /*
2908          * AUX surface offset is specified as the distance from the
2909          * main surface offset, and it must be non-negative. Make
2910          * sure that is what we will get.
2911          */
2912         if (offset > aux_offset)
2913                 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2914                                                   offset, aux_offset & ~(alignment - 1));
2915
2916         /*
2917          * When using an X-tiled surface, the plane blows up
2918          * if the x offset + width exceed the stride.
2919          *
2920          * TODO: linear and Y-tiled seem fine, Yf untested,
2921          */
2922         if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED) {
2923                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2924
2925                 while ((x + w) * cpp > fb->pitches[0]) {
2926                         if (offset == 0) {
2927                                 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2928                                 return -EINVAL;
2929                         }
2930
2931                         offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2932                                                           offset, offset - alignment);
2933                 }
2934         }
2935
2936         plane_state->main.offset = offset;
2937         plane_state->main.x = x;
2938         plane_state->main.y = y;
2939
2940         return 0;
2941 }
2942
2943 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2944 {
2945         const struct drm_framebuffer *fb = plane_state->base.fb;
2946         unsigned int rotation = plane_state->base.rotation;
2947         int max_width = skl_max_plane_width(fb, 1, rotation);
2948         int max_height = 4096;
2949         int x = plane_state->base.src.x1 >> 17;
2950         int y = plane_state->base.src.y1 >> 17;
2951         int w = drm_rect_width(&plane_state->base.src) >> 17;
2952         int h = drm_rect_height(&plane_state->base.src) >> 17;
2953         u32 offset;
2954
2955         intel_add_fb_offsets(&x, &y, plane_state, 1);
2956         offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2957
2958         /* FIXME not quite sure how/if these apply to the chroma plane */
2959         if (w > max_width || h > max_height) {
2960                 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2961                               w, h, max_width, max_height);
2962                 return -EINVAL;
2963         }
2964
2965         plane_state->aux.offset = offset;
2966         plane_state->aux.x = x;
2967         plane_state->aux.y = y;
2968
2969         return 0;
2970 }
2971
2972 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2973 {
2974         const struct drm_framebuffer *fb = plane_state->base.fb;
2975         unsigned int rotation = plane_state->base.rotation;
2976         int ret;
2977
2978         /* Rotate src coordinates to match rotated GTT view */
2979         if (intel_rotation_90_or_270(rotation))
2980                 drm_rect_rotate(&plane_state->base.src,
2981                                 fb->width << 16, fb->height << 16,
2982                                 DRM_ROTATE_270);
2983
2984         /*
2985          * Handle the AUX surface first since
2986          * the main surface setup depends on it.
2987          */
2988         if (fb->pixel_format == DRM_FORMAT_NV12) {
2989                 ret = skl_check_nv12_aux_surface(plane_state);
2990                 if (ret)
2991                         return ret;
2992         } else {
2993                 plane_state->aux.offset = ~0xfff;
2994                 plane_state->aux.x = 0;
2995                 plane_state->aux.y = 0;
2996         }
2997
2998         ret = skl_check_main_surface(plane_state);
2999         if (ret)
3000                 return ret;
3001
3002         return 0;
3003 }
3004
3005 static void i9xx_update_primary_plane(struct drm_plane *primary,
3006                                       const struct intel_crtc_state *crtc_state,
3007                                       const struct intel_plane_state *plane_state)
3008 {
3009         struct drm_device *dev = primary->dev;
3010         struct drm_i915_private *dev_priv = to_i915(dev);
3011         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3012         struct drm_framebuffer *fb = plane_state->base.fb;
3013         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3014         int plane = intel_crtc->plane;
3015         u32 linear_offset;
3016         u32 dspcntr;
3017         i915_reg_t reg = DSPCNTR(plane);
3018         unsigned int rotation = plane_state->base.rotation;
3019         int x = plane_state->base.src.x1 >> 16;
3020         int y = plane_state->base.src.y1 >> 16;
3021
3022         dspcntr = DISPPLANE_GAMMA_ENABLE;
3023
3024         dspcntr |= DISPLAY_PLANE_ENABLE;
3025
3026         if (INTEL_INFO(dev)->gen < 4) {
3027                 if (intel_crtc->pipe == PIPE_B)
3028                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3029
3030                 /* pipesrc and dspsize control the size that is scaled from,
3031                  * which should always be the user's requested size.
3032                  */
3033                 I915_WRITE(DSPSIZE(plane),
3034                            ((crtc_state->pipe_src_h - 1) << 16) |
3035                            (crtc_state->pipe_src_w - 1));
3036                 I915_WRITE(DSPPOS(plane), 0);
3037         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
3038                 I915_WRITE(PRIMSIZE(plane),
3039                            ((crtc_state->pipe_src_h - 1) << 16) |
3040                            (crtc_state->pipe_src_w - 1));
3041                 I915_WRITE(PRIMPOS(plane), 0);
3042                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
3043         }
3044
3045         switch (fb->pixel_format) {
3046         case DRM_FORMAT_C8:
3047                 dspcntr |= DISPPLANE_8BPP;
3048                 break;
3049         case DRM_FORMAT_XRGB1555:
3050                 dspcntr |= DISPPLANE_BGRX555;
3051                 break;
3052         case DRM_FORMAT_RGB565:
3053                 dspcntr |= DISPPLANE_BGRX565;
3054                 break;
3055         case DRM_FORMAT_XRGB8888:
3056                 dspcntr |= DISPPLANE_BGRX888;
3057                 break;
3058         case DRM_FORMAT_XBGR8888:
3059                 dspcntr |= DISPPLANE_RGBX888;
3060                 break;
3061         case DRM_FORMAT_XRGB2101010:
3062                 dspcntr |= DISPPLANE_BGRX101010;
3063                 break;
3064         case DRM_FORMAT_XBGR2101010:
3065                 dspcntr |= DISPPLANE_RGBX101010;
3066                 break;
3067         default:
3068                 BUG();
3069         }
3070
3071         if (INTEL_GEN(dev_priv) >= 4 &&
3072             fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
3073                 dspcntr |= DISPPLANE_TILED;
3074
3075         if (IS_G4X(dev))
3076                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3077
3078         intel_add_fb_offsets(&x, &y, plane_state, 0);
3079
3080         if (INTEL_INFO(dev)->gen >= 4)
3081                 intel_crtc->dspaddr_offset =
3082                         intel_compute_tile_offset(&x, &y, plane_state, 0);
3083
3084         if (rotation == DRM_ROTATE_180) {
3085                 dspcntr |= DISPPLANE_ROTATE_180;
3086
3087                 x += (crtc_state->pipe_src_w - 1);
3088                 y += (crtc_state->pipe_src_h - 1);
3089         }
3090
3091         linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3092
3093         if (INTEL_INFO(dev)->gen < 4)
3094                 intel_crtc->dspaddr_offset = linear_offset;
3095
3096         intel_crtc->adjusted_x = x;
3097         intel_crtc->adjusted_y = y;
3098
3099         I915_WRITE(reg, dspcntr);
3100
3101         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3102         if (INTEL_INFO(dev)->gen >= 4) {
3103                 I915_WRITE(DSPSURF(plane),
3104                            intel_fb_gtt_offset(fb, rotation) +
3105                            intel_crtc->dspaddr_offset);
3106                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3107                 I915_WRITE(DSPLINOFF(plane), linear_offset);
3108         } else
3109                 I915_WRITE(DSPADDR(plane), i915_gem_object_ggtt_offset(obj, NULL) + linear_offset);
3110         POSTING_READ(reg);
3111 }
3112
3113 static void i9xx_disable_primary_plane(struct drm_plane *primary,
3114                                        struct drm_crtc *crtc)
3115 {
3116         struct drm_device *dev = crtc->dev;
3117         struct drm_i915_private *dev_priv = to_i915(dev);
3118         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3119         int plane = intel_crtc->plane;
3120
3121         I915_WRITE(DSPCNTR(plane), 0);
3122         if (INTEL_INFO(dev_priv)->gen >= 4)
3123                 I915_WRITE(DSPSURF(plane), 0);
3124         else
3125                 I915_WRITE(DSPADDR(plane), 0);
3126         POSTING_READ(DSPCNTR(plane));
3127 }
3128
3129 static void ironlake_update_primary_plane(struct drm_plane *primary,
3130                                           const struct intel_crtc_state *crtc_state,
3131                                           const struct intel_plane_state *plane_state)
3132 {
3133         struct drm_device *dev = primary->dev;
3134         struct drm_i915_private *dev_priv = to_i915(dev);
3135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3136         struct drm_framebuffer *fb = plane_state->base.fb;
3137         int plane = intel_crtc->plane;
3138         u32 linear_offset;
3139         u32 dspcntr;
3140         i915_reg_t reg = DSPCNTR(plane);
3141         unsigned int rotation = plane_state->base.rotation;
3142         int x = plane_state->base.src.x1 >> 16;
3143         int y = plane_state->base.src.y1 >> 16;
3144
3145         dspcntr = DISPPLANE_GAMMA_ENABLE;
3146         dspcntr |= DISPLAY_PLANE_ENABLE;
3147
3148         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3149                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3150
3151         switch (fb->pixel_format) {
3152         case DRM_FORMAT_C8:
3153                 dspcntr |= DISPPLANE_8BPP;
3154                 break;
3155         case DRM_FORMAT_RGB565:
3156                 dspcntr |= DISPPLANE_BGRX565;
3157                 break;
3158         case DRM_FORMAT_XRGB8888:
3159                 dspcntr |= DISPPLANE_BGRX888;
3160                 break;
3161         case DRM_FORMAT_XBGR8888:
3162                 dspcntr |= DISPPLANE_RGBX888;
3163                 break;
3164         case DRM_FORMAT_XRGB2101010:
3165                 dspcntr |= DISPPLANE_BGRX101010;
3166                 break;
3167         case DRM_FORMAT_XBGR2101010:
3168                 dspcntr |= DISPPLANE_RGBX101010;
3169                 break;
3170         default:
3171                 BUG();
3172         }
3173
3174         if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
3175                 dspcntr |= DISPPLANE_TILED;
3176
3177         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
3178                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3179
3180         intel_add_fb_offsets(&x, &y, plane_state, 0);
3181
3182         intel_crtc->dspaddr_offset =
3183                 intel_compute_tile_offset(&x, &y, plane_state, 0);
3184
3185         if (rotation == DRM_ROTATE_180) {
3186                 dspcntr |= DISPPLANE_ROTATE_180;
3187
3188                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
3189                         x += (crtc_state->pipe_src_w - 1);
3190                         y += (crtc_state->pipe_src_h - 1);
3191                 }
3192         }
3193
3194         linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3195
3196         intel_crtc->adjusted_x = x;
3197         intel_crtc->adjusted_y = y;
3198
3199         I915_WRITE(reg, dspcntr);
3200
3201         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3202         I915_WRITE(DSPSURF(plane),
3203                    intel_fb_gtt_offset(fb, rotation) +
3204                    intel_crtc->dspaddr_offset);
3205         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3206                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
3207         } else {
3208                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3209                 I915_WRITE(DSPLINOFF(plane), linear_offset);
3210         }
3211         POSTING_READ(reg);
3212 }
3213
3214 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
3215                               uint64_t fb_modifier, uint32_t pixel_format)
3216 {
3217         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
3218                 return 64;
3219         } else {
3220                 int cpp = drm_format_plane_cpp(pixel_format, 0);
3221
3222                 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
3223         }
3224 }
3225
3226 u32 intel_fb_gtt_offset(struct drm_framebuffer *fb,
3227                         unsigned int rotation)
3228 {
3229         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3230         struct i915_ggtt_view view;
3231         struct i915_vma *vma;
3232
3233         intel_fill_fb_ggtt_view(&view, fb, rotation);
3234
3235         vma = i915_gem_object_to_ggtt(obj, &view);
3236         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
3237                  view.type))
3238                 return -1;
3239
3240         return i915_ggtt_offset(vma);
3241 }
3242
3243 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3244 {
3245         struct drm_device *dev = intel_crtc->base.dev;
3246         struct drm_i915_private *dev_priv = to_i915(dev);
3247
3248         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3249         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3250         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3251 }
3252
3253 /*
3254  * This function detaches (aka. unbinds) unused scalers in hardware
3255  */
3256 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3257 {
3258         struct intel_crtc_scaler_state *scaler_state;
3259         int i;
3260
3261         scaler_state = &intel_crtc->config->scaler_state;
3262
3263         /* loop through and disable scalers that aren't in use */
3264         for (i = 0; i < intel_crtc->num_scalers; i++) {
3265                 if (!scaler_state->scalers[i].in_use)
3266                         skl_detach_scaler(intel_crtc, i);
3267         }
3268 }
3269
3270 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3271                      unsigned int rotation)
3272 {
3273         const struct drm_i915_private *dev_priv = to_i915(fb->dev);
3274         u32 stride = intel_fb_pitch(fb, plane, rotation);
3275
3276         /*
3277          * The stride is either expressed as a multiple of 64 bytes chunks for
3278          * linear buffers or in number of tiles for tiled buffers.
3279          */
3280         if (intel_rotation_90_or_270(rotation)) {
3281                 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
3282
3283                 stride /= intel_tile_height(dev_priv, fb->modifier[0], cpp);
3284         } else {
3285                 stride /= intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3286                                                     fb->pixel_format);
3287         }
3288
3289         return stride;
3290 }
3291
3292 u32 skl_plane_ctl_format(uint32_t pixel_format)
3293 {
3294         switch (pixel_format) {
3295         case DRM_FORMAT_C8:
3296                 return PLANE_CTL_FORMAT_INDEXED;
3297         case DRM_FORMAT_RGB565:
3298                 return PLANE_CTL_FORMAT_RGB_565;
3299         case DRM_FORMAT_XBGR8888:
3300                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3301         case DRM_FORMAT_XRGB8888:
3302                 return PLANE_CTL_FORMAT_XRGB_8888;
3303         /*
3304          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3305          * to be already pre-multiplied. We need to add a knob (or a different
3306          * DRM_FORMAT) for user-space to configure that.
3307          */
3308         case DRM_FORMAT_ABGR8888:
3309                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3310                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3311         case DRM_FORMAT_ARGB8888:
3312                 return PLANE_CTL_FORMAT_XRGB_8888 |
3313                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3314         case DRM_FORMAT_XRGB2101010:
3315                 return PLANE_CTL_FORMAT_XRGB_2101010;
3316         case DRM_FORMAT_XBGR2101010:
3317                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3318         case DRM_FORMAT_YUYV:
3319                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3320         case DRM_FORMAT_YVYU:
3321                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3322         case DRM_FORMAT_UYVY:
3323                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3324         case DRM_FORMAT_VYUY:
3325                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3326         default:
3327                 MISSING_CASE(pixel_format);
3328         }
3329
3330         return 0;
3331 }
3332
3333 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3334 {
3335         switch (fb_modifier) {
3336         case DRM_FORMAT_MOD_NONE:
3337                 break;
3338         case I915_FORMAT_MOD_X_TILED:
3339                 return PLANE_CTL_TILED_X;
3340         case I915_FORMAT_MOD_Y_TILED:
3341                 return PLANE_CTL_TILED_Y;
3342         case I915_FORMAT_MOD_Yf_TILED:
3343                 return PLANE_CTL_TILED_YF;
3344         default:
3345                 MISSING_CASE(fb_modifier);
3346         }
3347
3348         return 0;
3349 }
3350
3351 u32 skl_plane_ctl_rotation(unsigned int rotation)
3352 {
3353         switch (rotation) {
3354         case DRM_ROTATE_0:
3355                 break;
3356         /*
3357          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3358          * while i915 HW rotation is clockwise, thats why this swapping.
3359          */
3360         case DRM_ROTATE_90:
3361                 return PLANE_CTL_ROTATE_270;
3362         case DRM_ROTATE_180:
3363                 return PLANE_CTL_ROTATE_180;
3364         case DRM_ROTATE_270:
3365                 return PLANE_CTL_ROTATE_90;
3366         default:
3367                 MISSING_CASE(rotation);
3368         }
3369
3370         return 0;
3371 }
3372
3373 static void skylake_update_primary_plane(struct drm_plane *plane,
3374                                          const struct intel_crtc_state *crtc_state,
3375                                          const struct intel_plane_state *plane_state)
3376 {
3377         struct drm_device *dev = plane->dev;
3378         struct drm_i915_private *dev_priv = to_i915(dev);
3379         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3380         struct drm_framebuffer *fb = plane_state->base.fb;
3381         const struct skl_wm_values *wm = &dev_priv->wm.skl_results;
3382         int pipe = intel_crtc->pipe;
3383         u32 plane_ctl;
3384         unsigned int rotation = plane_state->base.rotation;
3385         u32 stride = skl_plane_stride(fb, 0, rotation);
3386         u32 surf_addr = plane_state->main.offset;
3387         int scaler_id = plane_state->scaler_id;
3388         int src_x = plane_state->main.x;
3389         int src_y = plane_state->main.y;
3390         int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3391         int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3392         int dst_x = plane_state->base.dst.x1;
3393         int dst_y = plane_state->base.dst.y1;
3394         int dst_w = drm_rect_width(&plane_state->base.dst);
3395         int dst_h = drm_rect_height(&plane_state->base.dst);
3396
3397         plane_ctl = PLANE_CTL_ENABLE |
3398                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3399                     PLANE_CTL_PIPE_CSC_ENABLE;
3400
3401         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3402         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3403         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3404         plane_ctl |= skl_plane_ctl_rotation(rotation);
3405
3406         /* Sizes are 0 based */
3407         src_w--;
3408         src_h--;
3409         dst_w--;
3410         dst_h--;
3411
3412         intel_crtc->dspaddr_offset = surf_addr;
3413
3414         intel_crtc->adjusted_x = src_x;
3415         intel_crtc->adjusted_y = src_y;
3416
3417         if (wm->dirty_pipes & drm_crtc_mask(&intel_crtc->base))
3418                 skl_write_plane_wm(intel_crtc, wm, 0);
3419
3420         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3421         I915_WRITE(PLANE_OFFSET(pipe, 0), (src_y << 16) | src_x);
3422         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3423         I915_WRITE(PLANE_SIZE(pipe, 0), (src_h << 16) | src_w);
3424
3425         if (scaler_id >= 0) {
3426                 uint32_t ps_ctrl = 0;
3427
3428                 WARN_ON(!dst_w || !dst_h);
3429                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3430                         crtc_state->scaler_state.scalers[scaler_id].mode;
3431                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3432                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3433                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3434                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3435                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3436         } else {
3437                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3438         }
3439
3440         I915_WRITE(PLANE_SURF(pipe, 0),
3441                    intel_fb_gtt_offset(fb, rotation) + surf_addr);
3442
3443         POSTING_READ(PLANE_SURF(pipe, 0));
3444 }
3445
3446 static void skylake_disable_primary_plane(struct drm_plane *primary,
3447                                           struct drm_crtc *crtc)
3448 {
3449         struct drm_device *dev = crtc->dev;
3450         struct drm_i915_private *dev_priv = to_i915(dev);
3451         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3452         int pipe = intel_crtc->pipe;
3453
3454         /*
3455          * We only populate skl_results on watermark updates, and if the
3456          * plane's visiblity isn't actually changing neither is its watermarks.
3457          */
3458         if (!crtc->primary->state->visible)
3459                 skl_write_plane_wm(intel_crtc, &dev_priv->wm.skl_results, 0);
3460
3461         I915_WRITE(PLANE_CTL(pipe, 0), 0);
3462         I915_WRITE(PLANE_SURF(pipe, 0), 0);
3463         POSTING_READ(PLANE_SURF(pipe, 0));
3464 }
3465
3466 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3467 static int
3468 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3469                            int x, int y, enum mode_set_atomic state)
3470 {
3471         /* Support for kgdboc is disabled, this needs a major rework. */
3472         DRM_ERROR("legacy panic handler not supported any more.\n");
3473
3474         return -ENODEV;
3475 }
3476
3477 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3478 {
3479         struct intel_crtc *crtc;
3480
3481         for_each_intel_crtc(&dev_priv->drm, crtc)
3482                 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3483 }
3484
3485 static void intel_update_primary_planes(struct drm_device *dev)
3486 {
3487         struct drm_crtc *crtc;
3488
3489         for_each_crtc(dev, crtc) {
3490                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3491                 struct intel_plane_state *plane_state =
3492                         to_intel_plane_state(plane->base.state);
3493
3494                 if (plane_state->base.visible)
3495                         plane->update_plane(&plane->base,
3496                                             to_intel_crtc_state(crtc->state),
3497                                             plane_state);
3498         }
3499 }
3500
3501 static int
3502 __intel_display_resume(struct drm_device *dev,
3503                        struct drm_atomic_state *state)
3504 {
3505         struct drm_crtc_state *crtc_state;
3506         struct drm_crtc *crtc;
3507         int i, ret;
3508
3509         intel_modeset_setup_hw_state(dev);
3510         i915_redisable_vga(dev);
3511
3512         if (!state)
3513                 return 0;
3514
3515         for_each_crtc_in_state(state, crtc, crtc_state, i) {
3516                 /*
3517                  * Force recalculation even if we restore
3518                  * current state. With fast modeset this may not result
3519                  * in a modeset when the state is compatible.
3520                  */
3521                 crtc_state->mode_changed = true;
3522         }
3523
3524         /* ignore any reset values/BIOS leftovers in the WM registers */
3525         to_intel_atomic_state(state)->skip_intermediate_wm = true;
3526
3527         ret = drm_atomic_commit(state);
3528
3529         WARN_ON(ret == -EDEADLK);
3530         return ret;
3531 }
3532
3533 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3534 {
3535         return intel_has_gpu_reset(dev_priv) &&
3536                 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3537 }
3538
3539 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3540 {
3541         struct drm_device *dev = &dev_priv->drm;
3542         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3543         struct drm_atomic_state *state;
3544         int ret;
3545
3546         /*
3547          * Need mode_config.mutex so that we don't
3548          * trample ongoing ->detect() and whatnot.
3549          */
3550         mutex_lock(&dev->mode_config.mutex);
3551         drm_modeset_acquire_init(ctx, 0);
3552         while (1) {
3553                 ret = drm_modeset_lock_all_ctx(dev, ctx);
3554                 if (ret != -EDEADLK)
3555                         break;
3556
3557                 drm_modeset_backoff(ctx);
3558         }
3559
3560         /* reset doesn't touch the display, but flips might get nuked anyway, */
3561         if (!i915.force_reset_modeset_test &&
3562             !gpu_reset_clobbers_display(dev_priv))
3563                 return;
3564
3565         /*
3566          * Disabling the crtcs gracefully seems nicer. Also the
3567          * g33 docs say we should at least disable all the planes.
3568          */
3569         state = drm_atomic_helper_duplicate_state(dev, ctx);
3570         if (IS_ERR(state)) {
3571                 ret = PTR_ERR(state);
3572                 state = NULL;
3573                 DRM_ERROR("Duplicating state failed with %i\n", ret);
3574                 goto err;
3575         }
3576
3577         ret = drm_atomic_helper_disable_all(dev, ctx);
3578         if (ret) {
3579                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3580                 goto err;
3581         }
3582
3583         dev_priv->modeset_restore_state = state;
3584         state->acquire_ctx = ctx;
3585         return;
3586
3587 err:
3588         drm_atomic_state_free(state);
3589 }
3590
3591 void intel_finish_reset(struct drm_i915_private *dev_priv)
3592 {
3593         struct drm_device *dev = &dev_priv->drm;
3594         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3595         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3596         int ret;
3597
3598         /*
3599          * Flips in the rings will be nuked by the reset,
3600          * so complete all pending flips so that user space
3601          * will get its events and not get stuck.
3602          */
3603         intel_complete_page_flips(dev_priv);
3604
3605         dev_priv->modeset_restore_state = NULL;
3606
3607         dev_priv->modeset_restore_state = NULL;
3608
3609         /* reset doesn't touch the display */
3610         if (!gpu_reset_clobbers_display(dev_priv)) {
3611                 if (!state) {
3612                         /*
3613                          * Flips in the rings have been nuked by the reset,
3614                          * so update the base address of all primary
3615                          * planes to the the last fb to make sure we're
3616                          * showing the correct fb after a reset.
3617                          *
3618                          * FIXME: Atomic will make this obsolete since we won't schedule
3619                          * CS-based flips (which might get lost in gpu resets) any more.
3620                          */
3621                         intel_update_primary_planes(dev);
3622                 } else {
3623                         ret = __intel_display_resume(dev, state);
3624                         if (ret)
3625                                 DRM_ERROR("Restoring old state failed with %i\n", ret);
3626                 }
3627         } else {
3628                 /*
3629                  * The display has been reset as well,
3630                  * so need a full re-initialization.
3631                  */
3632                 intel_runtime_pm_disable_interrupts(dev_priv);
3633                 intel_runtime_pm_enable_interrupts(dev_priv);
3634
3635                 intel_pps_unlock_regs_wa(dev_priv);
3636                 intel_modeset_init_hw(dev);
3637
3638                 spin_lock_irq(&dev_priv->irq_lock);
3639                 if (dev_priv->display.hpd_irq_setup)
3640                         dev_priv->display.hpd_irq_setup(dev_priv);
3641                 spin_unlock_irq(&dev_priv->irq_lock);
3642
3643                 ret = __intel_display_resume(dev, state);
3644                 if (ret)
3645                         DRM_ERROR("Restoring old state failed with %i\n", ret);
3646
3647                 intel_hpd_init(dev_priv);
3648         }
3649
3650         drm_modeset_drop_locks(ctx);
3651         drm_modeset_acquire_fini(ctx);
3652         mutex_unlock(&dev->mode_config.mutex);
3653 }
3654
3655 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3656 {
3657         struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3658
3659         if (i915_reset_in_progress(error))
3660                 return true;
3661
3662         if (crtc->reset_count != i915_reset_count(error))
3663                 return true;
3664
3665         return false;
3666 }
3667
3668 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3669 {
3670         struct drm_device *dev = crtc->dev;
3671         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3672         bool pending;
3673
3674         if (abort_flip_on_reset(intel_crtc))
3675                 return false;
3676
3677         spin_lock_irq(&dev->event_lock);
3678         pending = to_intel_crtc(crtc)->flip_work != NULL;
3679         spin_unlock_irq(&dev->event_lock);
3680
3681         return pending;
3682 }
3683
3684 static void intel_update_pipe_config(struct intel_crtc *crtc,
3685                                      struct intel_crtc_state *old_crtc_state)
3686 {
3687         struct drm_device *dev = crtc->base.dev;
3688         struct drm_i915_private *dev_priv = to_i915(dev);
3689         struct intel_crtc_state *pipe_config =
3690                 to_intel_crtc_state(crtc->base.state);
3691
3692         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3693         crtc->base.mode = crtc->base.state->mode;
3694
3695         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3696                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3697                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3698
3699         /*
3700          * Update pipe size and adjust fitter if needed: the reason for this is
3701          * that in compute_mode_changes we check the native mode (not the pfit
3702          * mode) to see if we can flip rather than do a full mode set. In the
3703          * fastboot case, we'll flip, but if we don't update the pipesrc and
3704          * pfit state, we'll end up with a big fb scanned out into the wrong
3705          * sized surface.
3706          */
3707
3708         I915_WRITE(PIPESRC(crtc->pipe),
3709                    ((pipe_config->pipe_src_w - 1) << 16) |
3710                    (pipe_config->pipe_src_h - 1));
3711
3712         /* on skylake this is done by detaching scalers */
3713         if (INTEL_INFO(dev)->gen >= 9) {
3714                 skl_detach_scalers(crtc);
3715
3716                 if (pipe_config->pch_pfit.enabled)
3717                         skylake_pfit_enable(crtc);
3718         } else if (HAS_PCH_SPLIT(dev)) {
3719                 if (pipe_config->pch_pfit.enabled)
3720                         ironlake_pfit_enable(crtc);
3721                 else if (old_crtc_state->pch_pfit.enabled)
3722                         ironlake_pfit_disable(crtc, true);
3723         }
3724 }
3725
3726 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3727 {
3728         struct drm_device *dev = crtc->dev;
3729         struct drm_i915_private *dev_priv = to_i915(dev);
3730         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3731         int pipe = intel_crtc->pipe;
3732         i915_reg_t reg;
3733         u32 temp;
3734
3735         /* enable normal train */
3736         reg = FDI_TX_CTL(pipe);
3737         temp = I915_READ(reg);
3738         if (IS_IVYBRIDGE(dev)) {
3739                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3740                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3741         } else {
3742                 temp &= ~FDI_LINK_TRAIN_NONE;
3743                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3744         }
3745         I915_WRITE(reg, temp);
3746
3747         reg = FDI_RX_CTL(pipe);
3748         temp = I915_READ(reg);
3749         if (HAS_PCH_CPT(dev)) {
3750                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3751                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3752         } else {
3753                 temp &= ~FDI_LINK_TRAIN_NONE;
3754                 temp |= FDI_LINK_TRAIN_NONE;
3755         }
3756         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3757
3758         /* wait one idle pattern time */
3759         POSTING_READ(reg);
3760         udelay(1000);
3761
3762         /* IVB wants error correction enabled */
3763         if (IS_IVYBRIDGE(dev))
3764                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3765                            FDI_FE_ERRC_ENABLE);
3766 }
3767
3768 /* The FDI link training functions for ILK/Ibexpeak. */
3769 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3770 {
3771         struct drm_device *dev = crtc->dev;
3772         struct drm_i915_private *dev_priv = to_i915(dev);
3773         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3774         int pipe = intel_crtc->pipe;
3775         i915_reg_t reg;
3776         u32 temp, tries;
3777
3778         /* FDI needs bits from pipe first */
3779         assert_pipe_enabled(dev_priv, pipe);
3780
3781         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3782            for train result */
3783         reg = FDI_RX_IMR(pipe);
3784         temp = I915_READ(reg);
3785         temp &= ~FDI_RX_SYMBOL_LOCK;
3786         temp &= ~FDI_RX_BIT_LOCK;
3787         I915_WRITE(reg, temp);
3788         I915_READ(reg);
3789         udelay(150);
3790
3791         /* enable CPU FDI TX and PCH FDI RX */
3792         reg = FDI_TX_CTL(pipe);
3793         temp = I915_READ(reg);
3794         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3795         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3796         temp &= ~FDI_LINK_TRAIN_NONE;
3797         temp |= FDI_LINK_TRAIN_PATTERN_1;
3798         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3799
3800         reg = FDI_RX_CTL(pipe);
3801         temp = I915_READ(reg);
3802         temp &= ~FDI_LINK_TRAIN_NONE;
3803         temp |= FDI_LINK_TRAIN_PATTERN_1;
3804         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3805
3806         POSTING_READ(reg);
3807         udelay(150);
3808
3809         /* Ironlake workaround, enable clock pointer after FDI enable*/
3810         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3811         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3812                    FDI_RX_PHASE_SYNC_POINTER_EN);
3813
3814         reg = FDI_RX_IIR(pipe);
3815         for (tries = 0; tries < 5; tries++) {
3816                 temp = I915_READ(reg);
3817                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3818
3819                 if ((temp & FDI_RX_BIT_LOCK)) {
3820                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3821                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3822                         break;
3823                 }
3824         }
3825         if (tries == 5)
3826                 DRM_ERROR("FDI train 1 fail!\n");
3827
3828         /* Train 2 */
3829         reg = FDI_TX_CTL(pipe);
3830         temp = I915_READ(reg);
3831         temp &= ~FDI_LINK_TRAIN_NONE;
3832         temp |= FDI_LINK_TRAIN_PATTERN_2;
3833         I915_WRITE(reg, temp);
3834
3835         reg = FDI_RX_CTL(pipe);
3836         temp = I915_READ(reg);
3837         temp &= ~FDI_LINK_TRAIN_NONE;
3838         temp |= FDI_LINK_TRAIN_PATTERN_2;
3839         I915_WRITE(reg, temp);
3840
3841         POSTING_READ(reg);
3842         udelay(150);
3843
3844         reg = FDI_RX_IIR(pipe);
3845         for (tries = 0; tries < 5; tries++) {
3846                 temp = I915_READ(reg);
3847                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3848
3849                 if (temp & FDI_RX_SYMBOL_LOCK) {
3850                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3851                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3852                         break;
3853                 }
3854         }
3855         if (tries == 5)
3856                 DRM_ERROR("FDI train 2 fail!\n");
3857
3858         DRM_DEBUG_KMS("FDI train done\n");
3859
3860 }
3861
3862 static const int snb_b_fdi_train_param[] = {
3863         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3864         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3865         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3866         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3867 };
3868
3869 /* The FDI link training functions for SNB/Cougarpoint. */
3870 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3871 {
3872         struct drm_device *dev = crtc->dev;
3873         struct drm_i915_private *dev_priv = to_i915(dev);
3874         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3875         int pipe = intel_crtc->pipe;
3876         i915_reg_t reg;
3877         u32 temp, i, retry;
3878
3879         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3880            for train result */
3881         reg = FDI_RX_IMR(pipe);
3882         temp = I915_READ(reg);
3883         temp &= ~FDI_RX_SYMBOL_LOCK;
3884         temp &= ~FDI_RX_BIT_LOCK;
3885         I915_WRITE(reg, temp);
3886
3887         POSTING_READ(reg);
3888         udelay(150);
3889
3890         /* enable CPU FDI TX and PCH FDI RX */
3891         reg = FDI_TX_CTL(pipe);
3892         temp = I915_READ(reg);
3893         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3894         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3895         temp &= ~FDI_LINK_TRAIN_NONE;
3896         temp |= FDI_LINK_TRAIN_PATTERN_1;
3897         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3898         /* SNB-B */
3899         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3900         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3901
3902         I915_WRITE(FDI_RX_MISC(pipe),
3903                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3904
3905         reg = FDI_RX_CTL(pipe);
3906         temp = I915_READ(reg);
3907         if (HAS_PCH_CPT(dev)) {
3908                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3909                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3910         } else {
3911                 temp &= ~FDI_LINK_TRAIN_NONE;
3912                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3913         }
3914         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3915
3916         POSTING_READ(reg);
3917         udelay(150);
3918
3919         for (i = 0; i < 4; i++) {
3920                 reg = FDI_TX_CTL(pipe);
3921                 temp = I915_READ(reg);
3922                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3923                 temp |= snb_b_fdi_train_param[i];
3924                 I915_WRITE(reg, temp);
3925
3926                 POSTING_READ(reg);
3927                 udelay(500);
3928
3929                 for (retry = 0; retry < 5; retry++) {
3930                         reg = FDI_RX_IIR(pipe);
3931                         temp = I915_READ(reg);
3932                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3933                         if (temp & FDI_RX_BIT_LOCK) {
3934                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3935                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3936                                 break;
3937                         }
3938                         udelay(50);
3939                 }
3940                 if (retry < 5)
3941                         break;
3942         }
3943         if (i == 4)
3944                 DRM_ERROR("FDI train 1 fail!\n");
3945
3946         /* Train 2 */
3947         reg = FDI_TX_CTL(pipe);
3948         temp = I915_READ(reg);
3949         temp &= ~FDI_LINK_TRAIN_NONE;
3950         temp |= FDI_LINK_TRAIN_PATTERN_2;
3951         if (IS_GEN6(dev)) {
3952                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3953                 /* SNB-B */
3954                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3955         }
3956         I915_WRITE(reg, temp);
3957
3958         reg = FDI_RX_CTL(pipe);
3959         temp = I915_READ(reg);
3960         if (HAS_PCH_CPT(dev)) {
3961                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3962                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3963         } else {
3964                 temp &= ~FDI_LINK_TRAIN_NONE;
3965                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3966         }
3967         I915_WRITE(reg, temp);
3968
3969         POSTING_READ(reg);
3970         udelay(150);
3971
3972         for (i = 0; i < 4; i++) {
3973                 reg = FDI_TX_CTL(pipe);
3974                 temp = I915_READ(reg);
3975                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3976                 temp |= snb_b_fdi_train_param[i];
3977                 I915_WRITE(reg, temp);
3978
3979                 POSTING_READ(reg);
3980                 udelay(500);
3981
3982                 for (retry = 0; retry < 5; retry++) {
3983                         reg = FDI_RX_IIR(pipe);
3984                         temp = I915_READ(reg);
3985                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3986                         if (temp & FDI_RX_SYMBOL_LOCK) {
3987                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3988                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3989                                 break;
3990                         }
3991                         udelay(50);
3992                 }
3993                 if (retry < 5)
3994                         break;
3995         }
3996         if (i == 4)
3997                 DRM_ERROR("FDI train 2 fail!\n");
3998
3999         DRM_DEBUG_KMS("FDI train done.\n");
4000 }
4001
4002 /* Manual link training for Ivy Bridge A0 parts */
4003 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
4004 {
4005         struct drm_device *dev = crtc->dev;
4006         struct drm_i915_private *dev_priv = to_i915(dev);
4007         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4008         int pipe = intel_crtc->pipe;
4009         i915_reg_t reg;
4010         u32 temp, i, j;
4011
4012         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4013            for train result */
4014         reg = FDI_RX_IMR(pipe);
4015         temp = I915_READ(reg);
4016         temp &= ~FDI_RX_SYMBOL_LOCK;
4017         temp &= ~FDI_RX_BIT_LOCK;
4018         I915_WRITE(reg, temp);
4019
4020         POSTING_READ(reg);
4021         udelay(150);
4022
4023         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4024                       I915_READ(FDI_RX_IIR(pipe)));
4025
4026         /* Try each vswing and preemphasis setting twice before moving on */
4027         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4028                 /* disable first in case we need to retry */
4029                 reg = FDI_TX_CTL(pipe);
4030                 temp = I915_READ(reg);
4031                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4032                 temp &= ~FDI_TX_ENABLE;
4033                 I915_WRITE(reg, temp);
4034
4035                 reg = FDI_RX_CTL(pipe);
4036                 temp = I915_READ(reg);
4037                 temp &= ~FDI_LINK_TRAIN_AUTO;
4038                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4039                 temp &= ~FDI_RX_ENABLE;
4040                 I915_WRITE(reg, temp);
4041
4042                 /* enable CPU FDI TX and PCH FDI RX */
4043                 reg = FDI_TX_CTL(pipe);
4044                 temp = I915_READ(reg);
4045                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4046                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4047                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4048                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4049                 temp |= snb_b_fdi_train_param[j/2];
4050                 temp |= FDI_COMPOSITE_SYNC;
4051                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4052
4053                 I915_WRITE(FDI_RX_MISC(pipe),
4054                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4055
4056                 reg = FDI_RX_CTL(pipe);
4057                 temp = I915_READ(reg);
4058                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4059                 temp |= FDI_COMPOSITE_SYNC;
4060                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4061
4062                 POSTING_READ(reg);
4063                 udelay(1); /* should be 0.5us */
4064
4065                 for (i = 0; i < 4; i++) {
4066                         reg = FDI_RX_IIR(pipe);
4067                         temp = I915_READ(reg);
4068                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4069
4070                         if (temp & FDI_RX_BIT_LOCK ||
4071                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4072                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4073                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4074                                               i);
4075                                 break;
4076                         }
4077                         udelay(1); /* should be 0.5us */
4078                 }
4079                 if (i == 4) {
4080                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4081                         continue;
4082                 }
4083
4084                 /* Train 2 */
4085                 reg = FDI_TX_CTL(pipe);
4086                 temp = I915_READ(reg);
4087                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4088                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4089                 I915_WRITE(reg, temp);
4090
4091                 reg = FDI_RX_CTL(pipe);
4092                 temp = I915_READ(reg);
4093                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4094                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4095                 I915_WRITE(reg, temp);
4096
4097                 POSTING_READ(reg);
4098                 udelay(2); /* should be 1.5us */
4099
4100                 for (i = 0; i < 4; i++) {
4101                         reg = FDI_RX_IIR(pipe);
4102                         temp = I915_READ(reg);
4103                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4104
4105                         if (temp & FDI_RX_SYMBOL_LOCK ||
4106                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4107                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4108                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4109                                               i);
4110                                 goto train_done;
4111                         }
4112                         udelay(2); /* should be 1.5us */
4113                 }
4114                 if (i == 4)
4115                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4116         }
4117
4118 train_done:
4119         DRM_DEBUG_KMS("FDI train done.\n");
4120 }
4121
4122 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4123 {
4124         struct drm_device *dev = intel_crtc->base.dev;
4125         struct drm_i915_private *dev_priv = to_i915(dev);
4126         int pipe = intel_crtc->pipe;
4127         i915_reg_t reg;
4128         u32 temp;
4129
4130         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4131         reg = FDI_RX_CTL(pipe);
4132         temp = I915_READ(reg);
4133         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4134         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4135         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4136         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4137
4138         POSTING_READ(reg);
4139         udelay(200);
4140
4141         /* Switch from Rawclk to PCDclk */
4142         temp = I915_READ(reg);
4143         I915_WRITE(reg, temp | FDI_PCDCLK);
4144
4145         POSTING_READ(reg);
4146         udelay(200);
4147
4148         /* Enable CPU FDI TX PLL, always on for Ironlake */
4149         reg = FDI_TX_CTL(pipe);
4150         temp = I915_READ(reg);
4151         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4152                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4153
4154                 POSTING_READ(reg);
4155                 udelay(100);
4156         }
4157 }
4158
4159 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4160 {
4161         struct drm_device *dev = intel_crtc->base.dev;
4162         struct drm_i915_private *dev_priv = to_i915(dev);
4163         int pipe = intel_crtc->pipe;
4164         i915_reg_t reg;
4165         u32 temp;
4166
4167         /* Switch from PCDclk to Rawclk */
4168         reg = FDI_RX_CTL(pipe);
4169         temp = I915_READ(reg);
4170         I915_WRITE(reg, temp & ~FDI_PCDCLK);
4171
4172         /* Disable CPU FDI TX PLL */
4173         reg = FDI_TX_CTL(pipe);
4174         temp = I915_READ(reg);
4175         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4176
4177         POSTING_READ(reg);
4178         udelay(100);
4179
4180         reg = FDI_RX_CTL(pipe);
4181         temp = I915_READ(reg);
4182         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4183
4184         /* Wait for the clocks to turn off. */
4185         POSTING_READ(reg);
4186         udelay(100);
4187 }
4188
4189 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4190 {
4191         struct drm_device *dev = crtc->dev;
4192         struct drm_i915_private *dev_priv = to_i915(dev);
4193         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4194         int pipe = intel_crtc->pipe;
4195         i915_reg_t reg;
4196         u32 temp;
4197
4198         /* disable CPU FDI tx and PCH FDI rx */
4199         reg = FDI_TX_CTL(pipe);
4200         temp = I915_READ(reg);
4201         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4202         POSTING_READ(reg);
4203
4204         reg = FDI_RX_CTL(pipe);
4205         temp = I915_READ(reg);
4206         temp &= ~(0x7 << 16);
4207         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4208         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4209
4210         POSTING_READ(reg);
4211         udelay(100);
4212
4213         /* Ironlake workaround, disable clock pointer after downing FDI */
4214         if (HAS_PCH_IBX(dev))
4215                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4216
4217         /* still set train pattern 1 */
4218         reg = FDI_TX_CTL(pipe);
4219         temp = I915_READ(reg);
4220         temp &= ~FDI_LINK_TRAIN_NONE;
4221         temp |= FDI_LINK_TRAIN_PATTERN_1;
4222         I915_WRITE(reg, temp);
4223
4224         reg = FDI_RX_CTL(pipe);
4225         temp = I915_READ(reg);
4226         if (HAS_PCH_CPT(dev)) {
4227                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4228                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4229         } else {
4230                 temp &= ~FDI_LINK_TRAIN_NONE;
4231                 temp |= FDI_LINK_TRAIN_PATTERN_1;
4232         }
4233         /* BPC in FDI rx is consistent with that in PIPECONF */
4234         temp &= ~(0x07 << 16);
4235         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4236         I915_WRITE(reg, temp);
4237
4238         POSTING_READ(reg);
4239         udelay(100);
4240 }
4241
4242 bool intel_has_pending_fb_unpin(struct drm_device *dev)
4243 {
4244         struct intel_crtc *crtc;
4245
4246         /* Note that we don't need to be called with mode_config.lock here
4247          * as our list of CRTC objects is static for the lifetime of the
4248          * device and so cannot disappear as we iterate. Similarly, we can
4249          * happily treat the predicates as racy, atomic checks as userspace
4250          * cannot claim and pin a new fb without at least acquring the
4251          * struct_mutex and so serialising with us.
4252          */
4253         for_each_intel_crtc(dev, crtc) {
4254                 if (atomic_read(&crtc->unpin_work_count) == 0)
4255                         continue;
4256
4257                 if (crtc->flip_work)
4258                         intel_wait_for_vblank(dev, crtc->pipe);
4259
4260                 return true;
4261         }
4262
4263         return false;
4264 }
4265
4266 static void page_flip_completed(struct intel_crtc *intel_crtc)
4267 {
4268         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4269         struct intel_flip_work *work = intel_crtc->flip_work;
4270
4271         intel_crtc->flip_work = NULL;
4272
4273         if (work->event)
4274                 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4275
4276         drm_crtc_vblank_put(&intel_crtc->base);
4277
4278         wake_up_all(&dev_priv->pending_flip_queue);
4279         queue_work(dev_priv->wq, &work->unpin_work);
4280
4281         trace_i915_flip_complete(intel_crtc->plane,
4282                                  work->pending_flip_obj);
4283 }
4284
4285 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4286 {
4287         struct drm_device *dev = crtc->dev;
4288         struct drm_i915_private *dev_priv = to_i915(dev);
4289         long ret;
4290
4291         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4292
4293         ret = wait_event_interruptible_timeout(
4294                                         dev_priv->pending_flip_queue,
4295                                         !intel_crtc_has_pending_flip(crtc),
4296                                         60*HZ);
4297
4298         if (ret < 0)
4299                 return ret;
4300
4301         if (ret == 0) {
4302                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4303                 struct intel_flip_work *work;
4304
4305                 spin_lock_irq(&dev->event_lock);
4306                 work = intel_crtc->flip_work;
4307                 if (work && !is_mmio_work(work)) {
4308                         WARN_ONCE(1, "Removing stuck page flip\n");
4309                         page_flip_completed(intel_crtc);
4310                 }
4311                 spin_unlock_irq(&dev->event_lock);
4312         }
4313
4314         return 0;
4315 }
4316
4317 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4318 {
4319         u32 temp;
4320
4321         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4322
4323         mutex_lock(&dev_priv->sb_lock);
4324
4325         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4326         temp |= SBI_SSCCTL_DISABLE;
4327         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4328
4329         mutex_unlock(&dev_priv->sb_lock);
4330 }
4331
4332 /* Program iCLKIP clock to the desired frequency */
4333 static void lpt_program_iclkip(struct drm_crtc *crtc)
4334 {
4335         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4336         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
4337         u32 divsel, phaseinc, auxdiv, phasedir = 0;
4338         u32 temp;
4339
4340         lpt_disable_iclkip(dev_priv);
4341
4342         /* The iCLK virtual clock root frequency is in MHz,
4343          * but the adjusted_mode->crtc_clock in in KHz. To get the
4344          * divisors, it is necessary to divide one by another, so we
4345          * convert the virtual clock precision to KHz here for higher
4346          * precision.
4347          */
4348         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4349                 u32 iclk_virtual_root_freq = 172800 * 1000;
4350                 u32 iclk_pi_range = 64;
4351                 u32 desired_divisor;
4352
4353                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4354                                                     clock << auxdiv);
4355                 divsel = (desired_divisor / iclk_pi_range) - 2;
4356                 phaseinc = desired_divisor % iclk_pi_range;
4357
4358                 /*
4359                  * Near 20MHz is a corner case which is
4360                  * out of range for the 7-bit divisor
4361                  */
4362                 if (divsel <= 0x7f)
4363                         break;
4364         }
4365
4366         /* This should not happen with any sane values */
4367         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4368                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4369         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4370                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4371
4372         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4373                         clock,
4374                         auxdiv,
4375                         divsel,
4376                         phasedir,
4377                         phaseinc);
4378
4379         mutex_lock(&dev_priv->sb_lock);
4380
4381         /* Program SSCDIVINTPHASE6 */
4382         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4383         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4384         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4385         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4386         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4387         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4388         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4389         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4390
4391         /* Program SSCAUXDIV */
4392         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4393         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4394         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4395         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4396
4397         /* Enable modulator and associated divider */
4398         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4399         temp &= ~SBI_SSCCTL_DISABLE;
4400         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4401
4402         mutex_unlock(&dev_priv->sb_lock);
4403
4404         /* Wait for initialization time */
4405         udelay(24);
4406
4407         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4408 }
4409
4410 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4411 {
4412         u32 divsel, phaseinc, auxdiv;
4413         u32 iclk_virtual_root_freq = 172800 * 1000;
4414         u32 iclk_pi_range = 64;
4415         u32 desired_divisor;
4416         u32 temp;
4417
4418         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4419                 return 0;
4420
4421         mutex_lock(&dev_priv->sb_lock);
4422
4423         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4424         if (temp & SBI_SSCCTL_DISABLE) {
4425                 mutex_unlock(&dev_priv->sb_lock);
4426                 return 0;
4427         }
4428
4429         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4430         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4431                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4432         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4433                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4434
4435         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4436         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4437                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4438
4439         mutex_unlock(&dev_priv->sb_lock);
4440
4441         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4442
4443         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4444                                  desired_divisor << auxdiv);
4445 }
4446
4447 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4448                                                 enum pipe pch_transcoder)
4449 {
4450         struct drm_device *dev = crtc->base.dev;
4451         struct drm_i915_private *dev_priv = to_i915(dev);
4452         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4453
4454         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4455                    I915_READ(HTOTAL(cpu_transcoder)));
4456         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4457                    I915_READ(HBLANK(cpu_transcoder)));
4458         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4459                    I915_READ(HSYNC(cpu_transcoder)));
4460
4461         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4462                    I915_READ(VTOTAL(cpu_transcoder)));
4463         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4464                    I915_READ(VBLANK(cpu_transcoder)));
4465         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4466                    I915_READ(VSYNC(cpu_transcoder)));
4467         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4468                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4469 }
4470
4471 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4472 {
4473         struct drm_i915_private *dev_priv = to_i915(dev);
4474         uint32_t temp;
4475
4476         temp = I915_READ(SOUTH_CHICKEN1);
4477         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4478                 return;
4479
4480         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4481         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4482
4483         temp &= ~FDI_BC_BIFURCATION_SELECT;
4484         if (enable)
4485                 temp |= FDI_BC_BIFURCATION_SELECT;
4486
4487         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4488         I915_WRITE(SOUTH_CHICKEN1, temp);
4489         POSTING_READ(SOUTH_CHICKEN1);
4490 }
4491
4492 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4493 {
4494         struct drm_device *dev = intel_crtc->base.dev;
4495
4496         switch (intel_crtc->pipe) {
4497         case PIPE_A:
4498                 break;
4499         case PIPE_B:
4500                 if (intel_crtc->config->fdi_lanes > 2)
4501                         cpt_set_fdi_bc_bifurcation(dev, false);
4502                 else
4503                         cpt_set_fdi_bc_bifurcation(dev, true);
4504
4505                 break;
4506         case PIPE_C:
4507                 cpt_set_fdi_bc_bifurcation(dev, true);
4508
4509                 break;
4510         default:
4511                 BUG();
4512         }
4513 }
4514
4515 /* Return which DP Port should be selected for Transcoder DP control */
4516 static enum port
4517 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4518 {
4519         struct drm_device *dev = crtc->dev;
4520         struct intel_encoder *encoder;
4521
4522         for_each_encoder_on_crtc(dev, crtc, encoder) {
4523                 if (encoder->type == INTEL_OUTPUT_DP ||
4524                     encoder->type == INTEL_OUTPUT_EDP)
4525                         return enc_to_dig_port(&encoder->base)->port;
4526         }
4527
4528         return -1;
4529 }
4530
4531 /*
4532  * Enable PCH resources required for PCH ports:
4533  *   - PCH PLLs
4534  *   - FDI training & RX/TX
4535  *   - update transcoder timings
4536  *   - DP transcoding bits
4537  *   - transcoder
4538  */
4539 static void ironlake_pch_enable(struct drm_crtc *crtc)
4540 {
4541         struct drm_device *dev = crtc->dev;
4542         struct drm_i915_private *dev_priv = to_i915(dev);
4543         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4544         int pipe = intel_crtc->pipe;
4545         u32 temp;
4546
4547         assert_pch_transcoder_disabled(dev_priv, pipe);
4548
4549         if (IS_IVYBRIDGE(dev))
4550                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4551
4552         /* Write the TU size bits before fdi link training, so that error
4553          * detection works. */
4554         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4555                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4556
4557         /* For PCH output, training FDI link */
4558         dev_priv->display.fdi_link_train(crtc);
4559
4560         /* We need to program the right clock selection before writing the pixel
4561          * mutliplier into the DPLL. */
4562         if (HAS_PCH_CPT(dev)) {
4563                 u32 sel;
4564
4565                 temp = I915_READ(PCH_DPLL_SEL);
4566                 temp |= TRANS_DPLL_ENABLE(pipe);
4567                 sel = TRANS_DPLLB_SEL(pipe);
4568                 if (intel_crtc->config->shared_dpll ==
4569                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4570                         temp |= sel;
4571                 else
4572                         temp &= ~sel;
4573                 I915_WRITE(PCH_DPLL_SEL, temp);
4574         }
4575
4576         /* XXX: pch pll's can be enabled any time before we enable the PCH
4577          * transcoder, and we actually should do this to not upset any PCH
4578          * transcoder that already use the clock when we share it.
4579          *
4580          * Note that enable_shared_dpll tries to do the right thing, but
4581          * get_shared_dpll unconditionally resets the pll - we need that to have
4582          * the right LVDS enable sequence. */
4583         intel_enable_shared_dpll(intel_crtc);
4584
4585         /* set transcoder timing, panel must allow it */
4586         assert_panel_unlocked(dev_priv, pipe);
4587         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4588
4589         intel_fdi_normal_train(crtc);
4590
4591         /* For PCH DP, enable TRANS_DP_CTL */
4592         if (HAS_PCH_CPT(dev) && intel_crtc_has_dp_encoder(intel_crtc->config)) {
4593                 const struct drm_display_mode *adjusted_mode =
4594                         &intel_crtc->config->base.adjusted_mode;
4595                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4596                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4597                 temp = I915_READ(reg);
4598                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4599                           TRANS_DP_SYNC_MASK |
4600                           TRANS_DP_BPC_MASK);
4601                 temp |= TRANS_DP_OUTPUT_ENABLE;
4602                 temp |= bpc << 9; /* same format but at 11:9 */
4603
4604                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4605                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4606                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4607                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4608
4609                 switch (intel_trans_dp_port_sel(crtc)) {
4610                 case PORT_B:
4611                         temp |= TRANS_DP_PORT_SEL_B;
4612                         break;
4613                 case PORT_C:
4614                         temp |= TRANS_DP_PORT_SEL_C;
4615                         break;
4616                 case PORT_D:
4617                         temp |= TRANS_DP_PORT_SEL_D;
4618                         break;
4619                 default:
4620                         BUG();
4621                 }
4622
4623                 I915_WRITE(reg, temp);
4624         }
4625
4626         ironlake_enable_pch_transcoder(dev_priv, pipe);
4627 }
4628
4629 static void lpt_pch_enable(struct drm_crtc *crtc)
4630 {
4631         struct drm_device *dev = crtc->dev;
4632         struct drm_i915_private *dev_priv = to_i915(dev);
4633         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4634         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4635
4636         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4637
4638         lpt_program_iclkip(crtc);
4639
4640         /* Set transcoder timing. */
4641         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4642
4643         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4644 }
4645
4646 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4647 {
4648         struct drm_i915_private *dev_priv = to_i915(dev);
4649         i915_reg_t dslreg = PIPEDSL(pipe);
4650         u32 temp;
4651
4652         temp = I915_READ(dslreg);
4653         udelay(500);
4654         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4655                 if (wait_for(I915_READ(dslreg) != temp, 5))
4656                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4657         }
4658 }
4659
4660 static int
4661 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4662                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4663                   int src_w, int src_h, int dst_w, int dst_h)
4664 {
4665         struct intel_crtc_scaler_state *scaler_state =
4666                 &crtc_state->scaler_state;
4667         struct intel_crtc *intel_crtc =
4668                 to_intel_crtc(crtc_state->base.crtc);
4669         int need_scaling;
4670
4671         need_scaling = intel_rotation_90_or_270(rotation) ?
4672                 (src_h != dst_w || src_w != dst_h):
4673                 (src_w != dst_w || src_h != dst_h);
4674
4675         /*
4676          * if plane is being disabled or scaler is no more required or force detach
4677          *  - free scaler binded to this plane/crtc
4678          *  - in order to do this, update crtc->scaler_usage
4679          *
4680          * Here scaler state in crtc_state is set free so that
4681          * scaler can be assigned to other user. Actual register
4682          * update to free the scaler is done in plane/panel-fit programming.
4683          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4684          */
4685         if (force_detach || !need_scaling) {
4686                 if (*scaler_id >= 0) {
4687                         scaler_state->scaler_users &= ~(1 << scaler_user);
4688                         scaler_state->scalers[*scaler_id].in_use = 0;
4689
4690                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4691                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4692                                 intel_crtc->pipe, scaler_user, *scaler_id,
4693                                 scaler_state->scaler_users);
4694                         *scaler_id = -1;
4695                 }
4696                 return 0;
4697         }
4698
4699         /* range checks */
4700         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4701                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4702
4703                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4704                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4705                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4706                         "size is out of scaler range\n",
4707                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4708                 return -EINVAL;
4709         }
4710
4711         /* mark this plane as a scaler user in crtc_state */
4712         scaler_state->scaler_users |= (1 << scaler_user);
4713         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4714                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4715                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4716                 scaler_state->scaler_users);
4717
4718         return 0;
4719 }
4720
4721 /**
4722  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4723  *
4724  * @state: crtc's scaler state
4725  *
4726  * Return
4727  *     0 - scaler_usage updated successfully
4728  *    error - requested scaling cannot be supported or other error condition
4729  */
4730 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4731 {
4732         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4733         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4734
4735         DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
4736                       intel_crtc->base.base.id, intel_crtc->base.name,
4737                       intel_crtc->pipe, SKL_CRTC_INDEX);
4738
4739         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4740                 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4741                 state->pipe_src_w, state->pipe_src_h,
4742                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4743 }
4744
4745 /**
4746  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4747  *
4748  * @state: crtc's scaler state
4749  * @plane_state: atomic plane state to update
4750  *
4751  * Return
4752  *     0 - scaler_usage updated successfully
4753  *    error - requested scaling cannot be supported or other error condition
4754  */
4755 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4756                                    struct intel_plane_state *plane_state)
4757 {
4758
4759         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4760         struct intel_plane *intel_plane =
4761                 to_intel_plane(plane_state->base.plane);
4762         struct drm_framebuffer *fb = plane_state->base.fb;
4763         int ret;
4764
4765         bool force_detach = !fb || !plane_state->base.visible;
4766
4767         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
4768                       intel_plane->base.base.id, intel_plane->base.name,
4769                       intel_crtc->pipe, drm_plane_index(&intel_plane->base));
4770
4771         ret = skl_update_scaler(crtc_state, force_detach,
4772                                 drm_plane_index(&intel_plane->base),
4773                                 &plane_state->scaler_id,
4774                                 plane_state->base.rotation,
4775                                 drm_rect_width(&plane_state->base.src) >> 16,
4776                                 drm_rect_height(&plane_state->base.src) >> 16,
4777                                 drm_rect_width(&plane_state->base.dst),
4778                                 drm_rect_height(&plane_state->base.dst));
4779
4780         if (ret || plane_state->scaler_id < 0)
4781                 return ret;
4782
4783         /* check colorkey */
4784         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4785                 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4786                               intel_plane->base.base.id,
4787                               intel_plane->base.name);
4788                 return -EINVAL;
4789         }
4790
4791         /* Check src format */
4792         switch (fb->pixel_format) {
4793         case DRM_FORMAT_RGB565:
4794         case DRM_FORMAT_XBGR8888:
4795         case DRM_FORMAT_XRGB8888:
4796         case DRM_FORMAT_ABGR8888:
4797         case DRM_FORMAT_ARGB8888:
4798         case DRM_FORMAT_XRGB2101010:
4799         case DRM_FORMAT_XBGR2101010:
4800         case DRM_FORMAT_YUYV:
4801         case DRM_FORMAT_YVYU:
4802         case DRM_FORMAT_UYVY:
4803         case DRM_FORMAT_VYUY:
4804                 break;
4805         default:
4806                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4807                               intel_plane->base.base.id, intel_plane->base.name,
4808                               fb->base.id, fb->pixel_format);
4809                 return -EINVAL;
4810         }
4811
4812         return 0;
4813 }
4814
4815 static void skylake_scaler_disable(struct intel_crtc *crtc)
4816 {
4817         int i;
4818
4819         for (i = 0; i < crtc->num_scalers; i++)
4820                 skl_detach_scaler(crtc, i);
4821 }
4822
4823 static void skylake_pfit_enable(struct intel_crtc *crtc)
4824 {
4825         struct drm_device *dev = crtc->base.dev;
4826         struct drm_i915_private *dev_priv = to_i915(dev);
4827         int pipe = crtc->pipe;
4828         struct intel_crtc_scaler_state *scaler_state =
4829                 &crtc->config->scaler_state;
4830
4831         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4832
4833         if (crtc->config->pch_pfit.enabled) {
4834                 int id;
4835
4836                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4837                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4838                         return;
4839                 }
4840
4841                 id = scaler_state->scaler_id;
4842                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4843                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4844                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4845                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4846
4847                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4848         }
4849 }
4850
4851 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4852 {
4853         struct drm_device *dev = crtc->base.dev;
4854         struct drm_i915_private *dev_priv = to_i915(dev);
4855         int pipe = crtc->pipe;
4856
4857         if (crtc->config->pch_pfit.enabled) {
4858                 /* Force use of hard-coded filter coefficients
4859                  * as some pre-programmed values are broken,
4860                  * e.g. x201.
4861                  */
4862                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4863                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4864                                                  PF_PIPE_SEL_IVB(pipe));
4865                 else
4866                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4867                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4868                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4869         }
4870 }
4871
4872 void hsw_enable_ips(struct intel_crtc *crtc)
4873 {
4874         struct drm_device *dev = crtc->base.dev;
4875         struct drm_i915_private *dev_priv = to_i915(dev);
4876
4877         if (!crtc->config->ips_enabled)
4878                 return;
4879
4880         /*
4881          * We can only enable IPS after we enable a plane and wait for a vblank
4882          * This function is called from post_plane_update, which is run after
4883          * a vblank wait.
4884          */
4885
4886         assert_plane_enabled(dev_priv, crtc->plane);
4887         if (IS_BROADWELL(dev)) {
4888                 mutex_lock(&dev_priv->rps.hw_lock);
4889                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4890                 mutex_unlock(&dev_priv->rps.hw_lock);
4891                 /* Quoting Art Runyan: "its not safe to expect any particular
4892                  * value in IPS_CTL bit 31 after enabling IPS through the
4893                  * mailbox." Moreover, the mailbox may return a bogus state,
4894                  * so we need to just enable it and continue on.
4895                  */
4896         } else {
4897                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4898                 /* The bit only becomes 1 in the next vblank, so this wait here
4899                  * is essentially intel_wait_for_vblank. If we don't have this
4900                  * and don't wait for vblanks until the end of crtc_enable, then
4901                  * the HW state readout code will complain that the expected
4902                  * IPS_CTL value is not the one we read. */
4903                 if (intel_wait_for_register(dev_priv,
4904                                             IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4905                                             50))
4906                         DRM_ERROR("Timed out waiting for IPS enable\n");
4907         }
4908 }
4909
4910 void hsw_disable_ips(struct intel_crtc *crtc)
4911 {
4912         struct drm_device *dev = crtc->base.dev;
4913         struct drm_i915_private *dev_priv = to_i915(dev);
4914
4915         if (!crtc->config->ips_enabled)
4916                 return;
4917
4918         assert_plane_enabled(dev_priv, crtc->plane);
4919         if (IS_BROADWELL(dev)) {
4920                 mutex_lock(&dev_priv->rps.hw_lock);
4921                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4922                 mutex_unlock(&dev_priv->rps.hw_lock);
4923                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4924                 if (intel_wait_for_register(dev_priv,
4925                                             IPS_CTL, IPS_ENABLE, 0,
4926                                             42))
4927                         DRM_ERROR("Timed out waiting for IPS disable\n");
4928         } else {
4929                 I915_WRITE(IPS_CTL, 0);
4930                 POSTING_READ(IPS_CTL);
4931         }
4932
4933         /* We need to wait for a vblank before we can disable the plane. */
4934         intel_wait_for_vblank(dev, crtc->pipe);
4935 }
4936
4937 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4938 {
4939         if (intel_crtc->overlay) {
4940                 struct drm_device *dev = intel_crtc->base.dev;
4941                 struct drm_i915_private *dev_priv = to_i915(dev);
4942
4943                 mutex_lock(&dev->struct_mutex);
4944                 dev_priv->mm.interruptible = false;
4945                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4946                 dev_priv->mm.interruptible = true;
4947                 mutex_unlock(&dev->struct_mutex);
4948         }
4949
4950         /* Let userspace switch the overlay on again. In most cases userspace
4951          * has to recompute where to put it anyway.
4952          */
4953 }
4954
4955 /**
4956  * intel_post_enable_primary - Perform operations after enabling primary plane
4957  * @crtc: the CRTC whose primary plane was just enabled
4958  *
4959  * Performs potentially sleeping operations that must be done after the primary
4960  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4961  * called due to an explicit primary plane update, or due to an implicit
4962  * re-enable that is caused when a sprite plane is updated to no longer
4963  * completely hide the primary plane.
4964  */
4965 static void
4966 intel_post_enable_primary(struct drm_crtc *crtc)
4967 {
4968         struct drm_device *dev = crtc->dev;
4969         struct drm_i915_private *dev_priv = to_i915(dev);
4970         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4971         int pipe = intel_crtc->pipe;
4972
4973         /*
4974          * FIXME IPS should be fine as long as one plane is
4975          * enabled, but in practice it seems to have problems
4976          * when going from primary only to sprite only and vice
4977          * versa.
4978          */
4979         hsw_enable_ips(intel_crtc);
4980
4981         /*
4982          * Gen2 reports pipe underruns whenever all planes are disabled.
4983          * So don't enable underrun reporting before at least some planes
4984          * are enabled.
4985          * FIXME: Need to fix the logic to work when we turn off all planes
4986          * but leave the pipe running.
4987          */
4988         if (IS_GEN2(dev))
4989                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4990
4991         /* Underruns don't always raise interrupts, so check manually. */
4992         intel_check_cpu_fifo_underruns(dev_priv);
4993         intel_check_pch_fifo_underruns(dev_priv);
4994 }
4995
4996 /* FIXME move all this to pre_plane_update() with proper state tracking */
4997 static void
4998 intel_pre_disable_primary(struct drm_crtc *crtc)
4999 {
5000         struct drm_device *dev = crtc->dev;
5001         struct drm_i915_private *dev_priv = to_i915(dev);
5002         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5003         int pipe = intel_crtc->pipe;
5004
5005         /*
5006          * Gen2 reports pipe underruns whenever all planes are disabled.
5007          * So diasble underrun reporting before all the planes get disabled.
5008          * FIXME: Need to fix the logic to work when we turn off all planes
5009          * but leave the pipe running.
5010          */
5011         if (IS_GEN2(dev))
5012                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5013
5014         /*
5015          * FIXME IPS should be fine as long as one plane is
5016          * enabled, but in practice it seems to have problems
5017          * when going from primary only to sprite only and vice
5018          * versa.
5019          */
5020         hsw_disable_ips(intel_crtc);
5021 }
5022
5023 /* FIXME get rid of this and use pre_plane_update */
5024 static void
5025 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
5026 {
5027         struct drm_device *dev = crtc->dev;
5028         struct drm_i915_private *dev_priv = to_i915(dev);
5029         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5030         int pipe = intel_crtc->pipe;
5031
5032         intel_pre_disable_primary(crtc);
5033
5034         /*
5035          * Vblank time updates from the shadow to live plane control register
5036          * are blocked if the memory self-refresh mode is active at that
5037          * moment. So to make sure the plane gets truly disabled, disable
5038          * first the self-refresh mode. The self-refresh enable bit in turn
5039          * will be checked/applied by the HW only at the next frame start
5040          * event which is after the vblank start event, so we need to have a
5041          * wait-for-vblank between disabling the plane and the pipe.
5042          */
5043         if (HAS_GMCH_DISPLAY(dev)) {
5044                 intel_set_memory_cxsr(dev_priv, false);
5045                 dev_priv->wm.vlv.cxsr = false;
5046                 intel_wait_for_vblank(dev, pipe);
5047         }
5048 }
5049
5050 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5051 {
5052         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5053         struct drm_atomic_state *old_state = old_crtc_state->base.state;
5054         struct intel_crtc_state *pipe_config =
5055                 to_intel_crtc_state(crtc->base.state);
5056         struct drm_plane *primary = crtc->base.primary;
5057         struct drm_plane_state *old_pri_state =
5058                 drm_atomic_get_existing_plane_state(old_state, primary);
5059
5060         intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5061
5062         crtc->wm.cxsr_allowed = true;
5063
5064         if (pipe_config->update_wm_post && pipe_config->base.active)
5065                 intel_update_watermarks(&crtc->base);
5066
5067         if (old_pri_state) {
5068                 struct intel_plane_state *primary_state =
5069                         to_intel_plane_state(primary->state);
5070                 struct intel_plane_state *old_primary_state =
5071                         to_intel_plane_state(old_pri_state);
5072
5073                 intel_fbc_post_update(crtc);
5074
5075                 if (primary_state->base.visible &&
5076                     (needs_modeset(&pipe_config->base) ||
5077                      !old_primary_state->base.visible))
5078                         intel_post_enable_primary(&crtc->base);
5079         }
5080 }
5081
5082 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
5083 {
5084         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5085         struct drm_device *dev = crtc->base.dev;
5086         struct drm_i915_private *dev_priv = to_i915(dev);
5087         struct intel_crtc_state *pipe_config =
5088                 to_intel_crtc_state(crtc->base.state);
5089         struct drm_atomic_state *old_state = old_crtc_state->base.state;
5090         struct drm_plane *primary = crtc->base.primary;
5091         struct drm_plane_state *old_pri_state =
5092                 drm_atomic_get_existing_plane_state(old_state, primary);
5093         bool modeset = needs_modeset(&pipe_config->base);
5094
5095         if (old_pri_state) {
5096                 struct intel_plane_state *primary_state =
5097                         to_intel_plane_state(primary->state);
5098                 struct intel_plane_state *old_primary_state =
5099                         to_intel_plane_state(old_pri_state);
5100
5101                 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5102
5103                 if (old_primary_state->base.visible &&
5104                     (modeset || !primary_state->base.visible))
5105                         intel_pre_disable_primary(&crtc->base);
5106         }
5107
5108         if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev)) {
5109                 crtc->wm.cxsr_allowed = false;
5110
5111                 /*
5112                  * Vblank time updates from the shadow to live plane control register
5113                  * are blocked if the memory self-refresh mode is active at that
5114                  * moment. So to make sure the plane gets truly disabled, disable
5115                  * first the self-refresh mode. The self-refresh enable bit in turn
5116                  * will be checked/applied by the HW only at the next frame start
5117                  * event which is after the vblank start event, so we need to have a
5118                  * wait-for-vblank between disabling the plane and the pipe.
5119                  */
5120                 if (old_crtc_state->base.active) {
5121                         intel_set_memory_cxsr(dev_priv, false);
5122                         dev_priv->wm.vlv.cxsr = false;
5123                         intel_wait_for_vblank(dev, crtc->pipe);
5124                 }
5125         }
5126
5127         /*
5128          * IVB workaround: must disable low power watermarks for at least
5129          * one frame before enabling scaling.  LP watermarks can be re-enabled
5130          * when scaling is disabled.
5131          *
5132          * WaCxSRDisabledForSpriteScaling:ivb
5133          */
5134         if (pipe_config->disable_lp_wm) {
5135                 ilk_disable_lp_wm(dev);
5136                 intel_wait_for_vblank(dev, crtc->pipe);
5137         }
5138
5139         /*
5140          * If we're doing a modeset, we're done.  No need to do any pre-vblank
5141          * watermark programming here.
5142          */
5143         if (needs_modeset(&pipe_config->base))
5144                 return;
5145
5146         /*
5147          * For platforms that support atomic watermarks, program the
5148          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
5149          * will be the intermediate values that are safe for both pre- and
5150          * post- vblank; when vblank happens, the 'active' values will be set
5151          * to the final 'target' values and we'll do this again to get the
5152          * optimal watermarks.  For gen9+ platforms, the values we program here
5153          * will be the final target values which will get automatically latched
5154          * at vblank time; no further programming will be necessary.
5155          *
5156          * If a platform hasn't been transitioned to atomic watermarks yet,
5157          * we'll continue to update watermarks the old way, if flags tell
5158          * us to.
5159          */
5160         if (dev_priv->display.initial_watermarks != NULL)
5161                 dev_priv->display.initial_watermarks(pipe_config);
5162         else if (pipe_config->update_wm_pre)
5163                 intel_update_watermarks(&crtc->base);
5164 }
5165
5166 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5167 {
5168         struct drm_device *dev = crtc->dev;
5169         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5170         struct drm_plane *p;
5171         int pipe = intel_crtc->pipe;
5172
5173         intel_crtc_dpms_overlay_disable(intel_crtc);
5174
5175         drm_for_each_plane_mask(p, dev, plane_mask)
5176                 to_intel_plane(p)->disable_plane(p, crtc);
5177
5178         /*
5179          * FIXME: Once we grow proper nuclear flip support out of this we need
5180          * to compute the mask of flip planes precisely. For the time being
5181          * consider this a flip to a NULL plane.
5182          */
5183         intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5184 }
5185
5186 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5187                                           struct intel_crtc_state *crtc_state,
5188                                           struct drm_atomic_state *old_state)
5189 {
5190         struct drm_connector_state *old_conn_state;
5191         struct drm_connector *conn;
5192         int i;
5193
5194         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5195                 struct drm_connector_state *conn_state = conn->state;
5196                 struct intel_encoder *encoder =
5197                         to_intel_encoder(conn_state->best_encoder);
5198
5199                 if (conn_state->crtc != crtc)
5200                         continue;
5201
5202                 if (encoder->pre_pll_enable)
5203                         encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5204         }
5205 }
5206
5207 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5208                                       struct intel_crtc_state *crtc_state,
5209                                       struct drm_atomic_state *old_state)
5210 {
5211         struct drm_connector_state *old_conn_state;
5212         struct drm_connector *conn;
5213         int i;
5214
5215         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5216                 struct drm_connector_state *conn_state = conn->state;
5217                 struct intel_encoder *encoder =
5218                         to_intel_encoder(conn_state->best_encoder);
5219
5220                 if (conn_state->crtc != crtc)
5221                         continue;
5222
5223                 if (encoder->pre_enable)
5224                         encoder->pre_enable(encoder, crtc_state, conn_state);
5225         }
5226 }
5227
5228 static void intel_encoders_enable(struct drm_crtc *crtc,
5229                                   struct intel_crtc_state *crtc_state,
5230                                   struct drm_atomic_state *old_state)
5231 {
5232         struct drm_connector_state *old_conn_state;
5233         struct drm_connector *conn;
5234         int i;
5235
5236         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5237                 struct drm_connector_state *conn_state = conn->state;
5238                 struct intel_encoder *encoder =
5239                         to_intel_encoder(conn_state->best_encoder);
5240
5241                 if (conn_state->crtc != crtc)
5242                         continue;
5243
5244                 encoder->enable(encoder, crtc_state, conn_state);
5245                 intel_opregion_notify_encoder(encoder, true);
5246         }
5247 }
5248
5249 static void intel_encoders_disable(struct drm_crtc *crtc,
5250                                    struct intel_crtc_state *old_crtc_state,
5251                                    struct drm_atomic_state *old_state)
5252 {
5253         struct drm_connector_state *old_conn_state;
5254         struct drm_connector *conn;
5255         int i;
5256
5257         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5258                 struct intel_encoder *encoder =
5259                         to_intel_encoder(old_conn_state->best_encoder);
5260
5261                 if (old_conn_state->crtc != crtc)
5262                         continue;
5263
5264                 intel_opregion_notify_encoder(encoder, false);
5265                 encoder->disable(encoder, old_crtc_state, old_conn_state);
5266         }
5267 }
5268
5269 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5270                                         struct intel_crtc_state *old_crtc_state,
5271                                         struct drm_atomic_state *old_state)
5272 {
5273         struct drm_connector_state *old_conn_state;
5274         struct drm_connector *conn;
5275         int i;
5276
5277         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5278                 struct intel_encoder *encoder =
5279                         to_intel_encoder(old_conn_state->best_encoder);
5280
5281                 if (old_conn_state->crtc != crtc)
5282                         continue;
5283
5284                 if (encoder->post_disable)
5285                         encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5286         }
5287 }
5288
5289 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5290                                             struct intel_crtc_state *old_crtc_state,
5291                                             struct drm_atomic_state *old_state)
5292 {
5293         struct drm_connector_state *old_conn_state;
5294         struct drm_connector *conn;
5295         int i;
5296
5297         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5298                 struct intel_encoder *encoder =
5299                         to_intel_encoder(old_conn_state->best_encoder);
5300
5301                 if (old_conn_state->crtc != crtc)
5302                         continue;
5303
5304                 if (encoder->post_pll_disable)
5305                         encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5306         }
5307 }
5308
5309 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5310                                  struct drm_atomic_state *old_state)
5311 {
5312         struct drm_crtc *crtc = pipe_config->base.crtc;
5313         struct drm_device *dev = crtc->dev;
5314         struct drm_i915_private *dev_priv = to_i915(dev);
5315         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5316         int pipe = intel_crtc->pipe;
5317
5318         if (WARN_ON(intel_crtc->active))
5319                 return;
5320
5321         /*
5322          * Sometimes spurious CPU pipe underruns happen during FDI
5323          * training, at least with VGA+HDMI cloning. Suppress them.
5324          *
5325          * On ILK we get an occasional spurious CPU pipe underruns
5326          * between eDP port A enable and vdd enable. Also PCH port
5327          * enable seems to result in the occasional CPU pipe underrun.
5328          *
5329          * Spurious PCH underruns also occur during PCH enabling.
5330          */
5331         if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5332                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5333         if (intel_crtc->config->has_pch_encoder)
5334                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5335
5336         if (intel_crtc->config->has_pch_encoder)
5337                 intel_prepare_shared_dpll(intel_crtc);
5338
5339         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5340                 intel_dp_set_m_n(intel_crtc, M1_N1);
5341
5342         intel_set_pipe_timings(intel_crtc);
5343         intel_set_pipe_src_size(intel_crtc);
5344
5345         if (intel_crtc->config->has_pch_encoder) {
5346                 intel_cpu_transcoder_set_m_n(intel_crtc,
5347                                      &intel_crtc->config->fdi_m_n, NULL);
5348         }
5349
5350         ironlake_set_pipeconf(crtc);
5351
5352         intel_crtc->active = true;
5353
5354         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5355
5356         if (intel_crtc->config->has_pch_encoder) {
5357                 /* Note: FDI PLL enabling _must_ be done before we enable the
5358                  * cpu pipes, hence this is separate from all the other fdi/pch
5359                  * enabling. */
5360                 ironlake_fdi_pll_enable(intel_crtc);
5361         } else {
5362                 assert_fdi_tx_disabled(dev_priv, pipe);
5363                 assert_fdi_rx_disabled(dev_priv, pipe);
5364         }
5365
5366         ironlake_pfit_enable(intel_crtc);
5367
5368         /*
5369          * On ILK+ LUT must be loaded before the pipe is running but with
5370          * clocks enabled
5371          */
5372         intel_color_load_luts(&pipe_config->base);
5373
5374         if (dev_priv->display.initial_watermarks != NULL)
5375                 dev_priv->display.initial_watermarks(intel_crtc->config);
5376         intel_enable_pipe(intel_crtc);
5377
5378         if (intel_crtc->config->has_pch_encoder)
5379                 ironlake_pch_enable(crtc);
5380
5381         assert_vblank_disabled(crtc);
5382         drm_crtc_vblank_on(crtc);
5383
5384         intel_encoders_enable(crtc, pipe_config, old_state);
5385
5386         if (HAS_PCH_CPT(dev))
5387                 cpt_verify_modeset(dev, intel_crtc->pipe);
5388
5389         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5390         if (intel_crtc->config->has_pch_encoder)
5391                 intel_wait_for_vblank(dev, pipe);
5392         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5393         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5394 }
5395
5396 /* IPS only exists on ULT machines and is tied to pipe A. */
5397 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5398 {
5399         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
5400 }
5401
5402 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5403                                 struct drm_atomic_state *old_state)
5404 {
5405         struct drm_crtc *crtc = pipe_config->base.crtc;
5406         struct drm_device *dev = crtc->dev;
5407         struct drm_i915_private *dev_priv = to_i915(dev);
5408         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5409         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5410         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5411
5412         if (WARN_ON(intel_crtc->active))
5413                 return;
5414
5415         if (intel_crtc->config->has_pch_encoder)
5416                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5417                                                       false);
5418
5419         intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5420
5421         if (intel_crtc->config->shared_dpll)
5422                 intel_enable_shared_dpll(intel_crtc);
5423
5424         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5425                 intel_dp_set_m_n(intel_crtc, M1_N1);
5426
5427         if (!transcoder_is_dsi(cpu_transcoder))
5428                 intel_set_pipe_timings(intel_crtc);
5429
5430         intel_set_pipe_src_size(intel_crtc);
5431
5432         if (cpu_transcoder != TRANSCODER_EDP &&
5433             !transcoder_is_dsi(cpu_transcoder)) {
5434                 I915_WRITE(PIPE_MULT(cpu_transcoder),
5435                            intel_crtc->config->pixel_multiplier - 1);
5436         }
5437
5438         if (intel_crtc->config->has_pch_encoder) {
5439                 intel_cpu_transcoder_set_m_n(intel_crtc,
5440                                      &intel_crtc->config->fdi_m_n, NULL);
5441         }
5442
5443         if (!transcoder_is_dsi(cpu_transcoder))
5444                 haswell_set_pipeconf(crtc);
5445
5446         haswell_set_pipemisc(crtc);
5447
5448         intel_color_set_csc(&pipe_config->base);
5449
5450         intel_crtc->active = true;
5451
5452         if (intel_crtc->config->has_pch_encoder)
5453                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5454         else
5455                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5456
5457         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5458
5459         if (intel_crtc->config->has_pch_encoder)
5460                 dev_priv->display.fdi_link_train(crtc);
5461
5462         if (!transcoder_is_dsi(cpu_transcoder))
5463                 intel_ddi_enable_pipe_clock(intel_crtc);
5464
5465         if (INTEL_INFO(dev)->gen >= 9)
5466                 skylake_pfit_enable(intel_crtc);
5467         else
5468                 ironlake_pfit_enable(intel_crtc);
5469
5470         /*
5471          * On ILK+ LUT must be loaded before the pipe is running but with
5472          * clocks enabled
5473          */
5474         intel_color_load_luts(&pipe_config->base);
5475
5476         intel_ddi_set_pipe_settings(crtc);
5477         if (!transcoder_is_dsi(cpu_transcoder))
5478                 intel_ddi_enable_transcoder_func(crtc);
5479
5480         if (dev_priv->display.initial_watermarks != NULL)
5481                 dev_priv->display.initial_watermarks(pipe_config);
5482         else
5483                 intel_update_watermarks(crtc);
5484
5485         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5486         if (!transcoder_is_dsi(cpu_transcoder))
5487                 intel_enable_pipe(intel_crtc);
5488
5489         if (intel_crtc->config->has_pch_encoder)
5490                 lpt_pch_enable(crtc);
5491
5492         if (intel_crtc->config->dp_encoder_is_mst)
5493                 intel_ddi_set_vc_payload_alloc(crtc, true);
5494
5495         assert_vblank_disabled(crtc);
5496         drm_crtc_vblank_on(crtc);
5497
5498         intel_encoders_enable(crtc, pipe_config, old_state);
5499
5500         if (intel_crtc->config->has_pch_encoder) {
5501                 intel_wait_for_vblank(dev, pipe);
5502                 intel_wait_for_vblank(dev, pipe);
5503                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5504                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5505                                                       true);
5506         }
5507
5508         /* If we change the relative order between pipe/planes enabling, we need
5509          * to change the workaround. */
5510         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5511         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5512                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5513                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5514         }
5515 }
5516
5517 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5518 {
5519         struct drm_device *dev = crtc->base.dev;
5520         struct drm_i915_private *dev_priv = to_i915(dev);
5521         int pipe = crtc->pipe;
5522
5523         /* To avoid upsetting the power well on haswell only disable the pfit if
5524          * it's in use. The hw state code will make sure we get this right. */
5525         if (force || crtc->config->pch_pfit.enabled) {
5526                 I915_WRITE(PF_CTL(pipe), 0);
5527                 I915_WRITE(PF_WIN_POS(pipe), 0);
5528                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5529         }
5530 }
5531
5532 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5533                                   struct drm_atomic_state *old_state)
5534 {
5535         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5536         struct drm_device *dev = crtc->dev;
5537         struct drm_i915_private *dev_priv = to_i915(dev);
5538         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5539         int pipe = intel_crtc->pipe;
5540
5541         /*
5542          * Sometimes spurious CPU pipe underruns happen when the
5543          * pipe is already disabled, but FDI RX/TX is still enabled.
5544          * Happens at least with VGA+HDMI cloning. Suppress them.
5545          */
5546         if (intel_crtc->config->has_pch_encoder) {
5547                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5548                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5549         }
5550
5551         intel_encoders_disable(crtc, old_crtc_state, old_state);
5552
5553         drm_crtc_vblank_off(crtc);
5554         assert_vblank_disabled(crtc);
5555
5556         intel_disable_pipe(intel_crtc);
5557
5558         ironlake_pfit_disable(intel_crtc, false);
5559
5560         if (intel_crtc->config->has_pch_encoder)
5561                 ironlake_fdi_disable(crtc);
5562
5563         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5564
5565         if (intel_crtc->config->has_pch_encoder) {
5566                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5567
5568                 if (HAS_PCH_CPT(dev)) {
5569                         i915_reg_t reg;
5570                         u32 temp;
5571
5572                         /* disable TRANS_DP_CTL */
5573                         reg = TRANS_DP_CTL(pipe);
5574                         temp = I915_READ(reg);
5575                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5576                                   TRANS_DP_PORT_SEL_MASK);
5577                         temp |= TRANS_DP_PORT_SEL_NONE;
5578                         I915_WRITE(reg, temp);
5579
5580                         /* disable DPLL_SEL */
5581                         temp = I915_READ(PCH_DPLL_SEL);
5582                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5583                         I915_WRITE(PCH_DPLL_SEL, temp);
5584                 }
5585
5586                 ironlake_fdi_pll_disable(intel_crtc);
5587         }
5588
5589         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5590         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5591 }
5592
5593 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5594                                  struct drm_atomic_state *old_state)
5595 {
5596         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5597         struct drm_device *dev = crtc->dev;
5598         struct drm_i915_private *dev_priv = to_i915(dev);
5599         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5600         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5601
5602         if (intel_crtc->config->has_pch_encoder)
5603                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5604                                                       false);
5605
5606         intel_encoders_disable(crtc, old_crtc_state, old_state);
5607
5608         drm_crtc_vblank_off(crtc);
5609         assert_vblank_disabled(crtc);
5610
5611         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5612         if (!transcoder_is_dsi(cpu_transcoder))
5613                 intel_disable_pipe(intel_crtc);
5614
5615         if (intel_crtc->config->dp_encoder_is_mst)
5616                 intel_ddi_set_vc_payload_alloc(crtc, false);
5617
5618         if (!transcoder_is_dsi(cpu_transcoder))
5619                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5620
5621         if (INTEL_INFO(dev)->gen >= 9)
5622                 skylake_scaler_disable(intel_crtc);
5623         else
5624                 ironlake_pfit_disable(intel_crtc, false);
5625
5626         if (!transcoder_is_dsi(cpu_transcoder))
5627                 intel_ddi_disable_pipe_clock(intel_crtc);
5628
5629         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5630
5631         if (old_crtc_state->has_pch_encoder)
5632                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5633                                                       true);
5634 }
5635
5636 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5637 {
5638         struct drm_device *dev = crtc->base.dev;
5639         struct drm_i915_private *dev_priv = to_i915(dev);
5640         struct intel_crtc_state *pipe_config = crtc->config;
5641
5642         if (!pipe_config->gmch_pfit.control)
5643                 return;
5644
5645         /*
5646          * The panel fitter should only be adjusted whilst the pipe is disabled,
5647          * according to register description and PRM.
5648          */
5649         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5650         assert_pipe_disabled(dev_priv, crtc->pipe);
5651
5652         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5653         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5654
5655         /* Border color in case we don't scale up to the full screen. Black by
5656          * default, change to something else for debugging. */
5657         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5658 }
5659
5660 static enum intel_display_power_domain port_to_power_domain(enum port port)
5661 {
5662         switch (port) {
5663         case PORT_A:
5664                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5665         case PORT_B:
5666                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5667         case PORT_C:
5668                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5669         case PORT_D:
5670                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5671         case PORT_E:
5672                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5673         default:
5674                 MISSING_CASE(port);
5675                 return POWER_DOMAIN_PORT_OTHER;
5676         }
5677 }
5678
5679 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5680 {
5681         switch (port) {
5682         case PORT_A:
5683                 return POWER_DOMAIN_AUX_A;
5684         case PORT_B:
5685                 return POWER_DOMAIN_AUX_B;
5686         case PORT_C:
5687                 return POWER_DOMAIN_AUX_C;
5688         case PORT_D:
5689                 return POWER_DOMAIN_AUX_D;
5690         case PORT_E:
5691                 /* FIXME: Check VBT for actual wiring of PORT E */
5692                 return POWER_DOMAIN_AUX_D;
5693         default:
5694                 MISSING_CASE(port);
5695                 return POWER_DOMAIN_AUX_A;
5696         }
5697 }
5698
5699 enum intel_display_power_domain
5700 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5701 {
5702         struct drm_device *dev = intel_encoder->base.dev;
5703         struct intel_digital_port *intel_dig_port;
5704
5705         switch (intel_encoder->type) {
5706         case INTEL_OUTPUT_UNKNOWN:
5707                 /* Only DDI platforms should ever use this output type */
5708                 WARN_ON_ONCE(!HAS_DDI(dev));
5709         case INTEL_OUTPUT_DP:
5710         case INTEL_OUTPUT_HDMI:
5711         case INTEL_OUTPUT_EDP:
5712                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5713                 return port_to_power_domain(intel_dig_port->port);
5714         case INTEL_OUTPUT_DP_MST:
5715                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5716                 return port_to_power_domain(intel_dig_port->port);
5717         case INTEL_OUTPUT_ANALOG:
5718                 return POWER_DOMAIN_PORT_CRT;
5719         case INTEL_OUTPUT_DSI:
5720                 return POWER_DOMAIN_PORT_DSI;
5721         default:
5722                 return POWER_DOMAIN_PORT_OTHER;
5723         }
5724 }
5725
5726 enum intel_display_power_domain
5727 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5728 {
5729         struct drm_device *dev = intel_encoder->base.dev;
5730         struct intel_digital_port *intel_dig_port;
5731
5732         switch (intel_encoder->type) {
5733         case INTEL_OUTPUT_UNKNOWN:
5734         case INTEL_OUTPUT_HDMI:
5735                 /*
5736                  * Only DDI platforms should ever use these output types.
5737                  * We can get here after the HDMI detect code has already set
5738                  * the type of the shared encoder. Since we can't be sure
5739                  * what's the status of the given connectors, play safe and
5740                  * run the DP detection too.
5741                  */
5742                 WARN_ON_ONCE(!HAS_DDI(dev));
5743         case INTEL_OUTPUT_DP:
5744         case INTEL_OUTPUT_EDP:
5745                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5746                 return port_to_aux_power_domain(intel_dig_port->port);
5747         case INTEL_OUTPUT_DP_MST:
5748                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5749                 return port_to_aux_power_domain(intel_dig_port->port);
5750         default:
5751                 MISSING_CASE(intel_encoder->type);
5752                 return POWER_DOMAIN_AUX_A;
5753         }
5754 }
5755
5756 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5757                                             struct intel_crtc_state *crtc_state)
5758 {
5759         struct drm_device *dev = crtc->dev;
5760         struct drm_encoder *encoder;
5761         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5762         enum pipe pipe = intel_crtc->pipe;
5763         unsigned long mask;
5764         enum transcoder transcoder = crtc_state->cpu_transcoder;
5765
5766         if (!crtc_state->base.active)
5767                 return 0;
5768
5769         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5770         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5771         if (crtc_state->pch_pfit.enabled ||
5772             crtc_state->pch_pfit.force_thru)
5773                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5774
5775         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5776                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5777
5778                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5779         }
5780
5781         if (crtc_state->shared_dpll)
5782                 mask |= BIT(POWER_DOMAIN_PLLS);
5783
5784         return mask;
5785 }
5786
5787 static unsigned long
5788 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5789                                struct intel_crtc_state *crtc_state)
5790 {
5791         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5792         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5793         enum intel_display_power_domain domain;
5794         unsigned long domains, new_domains, old_domains;
5795
5796         old_domains = intel_crtc->enabled_power_domains;
5797         intel_crtc->enabled_power_domains = new_domains =
5798                 get_crtc_power_domains(crtc, crtc_state);
5799
5800         domains = new_domains & ~old_domains;
5801
5802         for_each_power_domain(domain, domains)
5803                 intel_display_power_get(dev_priv, domain);
5804
5805         return old_domains & ~new_domains;
5806 }
5807
5808 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5809                                       unsigned long domains)
5810 {
5811         enum intel_display_power_domain domain;
5812
5813         for_each_power_domain(domain, domains)
5814                 intel_display_power_put(dev_priv, domain);
5815 }
5816
5817 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5818 {
5819         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5820
5821         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5822             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5823                 return max_cdclk_freq;
5824         else if (IS_CHERRYVIEW(dev_priv))
5825                 return max_cdclk_freq*95/100;
5826         else if (INTEL_INFO(dev_priv)->gen < 4)
5827                 return 2*max_cdclk_freq*90/100;
5828         else
5829                 return max_cdclk_freq*90/100;
5830 }
5831
5832 static int skl_calc_cdclk(int max_pixclk, int vco);
5833
5834 static void intel_update_max_cdclk(struct drm_device *dev)
5835 {
5836         struct drm_i915_private *dev_priv = to_i915(dev);
5837
5838         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5839                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5840                 int max_cdclk, vco;
5841
5842                 vco = dev_priv->skl_preferred_vco_freq;
5843                 WARN_ON(vco != 8100000 && vco != 8640000);
5844
5845                 /*
5846                  * Use the lower (vco 8640) cdclk values as a
5847                  * first guess. skl_calc_cdclk() will correct it
5848                  * if the preferred vco is 8100 instead.
5849                  */
5850                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5851                         max_cdclk = 617143;
5852                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5853                         max_cdclk = 540000;
5854                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5855                         max_cdclk = 432000;
5856                 else
5857                         max_cdclk = 308571;
5858
5859                 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5860         } else if (IS_BROXTON(dev)) {
5861                 dev_priv->max_cdclk_freq = 624000;
5862         } else if (IS_BROADWELL(dev))  {
5863                 /*
5864                  * FIXME with extra cooling we can allow
5865                  * 540 MHz for ULX and 675 Mhz for ULT.
5866                  * How can we know if extra cooling is
5867                  * available? PCI ID, VTB, something else?
5868                  */
5869                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5870                         dev_priv->max_cdclk_freq = 450000;
5871                 else if (IS_BDW_ULX(dev))
5872                         dev_priv->max_cdclk_freq = 450000;
5873                 else if (IS_BDW_ULT(dev))
5874                         dev_priv->max_cdclk_freq = 540000;
5875                 else
5876                         dev_priv->max_cdclk_freq = 675000;
5877         } else if (IS_CHERRYVIEW(dev)) {
5878                 dev_priv->max_cdclk_freq = 320000;
5879         } else if (IS_VALLEYVIEW(dev)) {
5880                 dev_priv->max_cdclk_freq = 400000;
5881         } else {
5882                 /* otherwise assume cdclk is fixed */
5883                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5884         }
5885
5886         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5887
5888         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5889                          dev_priv->max_cdclk_freq);
5890
5891         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5892                          dev_priv->max_dotclk_freq);
5893 }
5894
5895 static void intel_update_cdclk(struct drm_device *dev)
5896 {
5897         struct drm_i915_private *dev_priv = to_i915(dev);
5898
5899         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5900
5901         if (INTEL_GEN(dev_priv) >= 9)
5902                 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5903                                  dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5904                                  dev_priv->cdclk_pll.ref);
5905         else
5906                 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5907                                  dev_priv->cdclk_freq);
5908
5909         /*
5910          * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5911          * Programmng [sic] note: bit[9:2] should be programmed to the number
5912          * of cdclk that generates 4MHz reference clock freq which is used to
5913          * generate GMBus clock. This will vary with the cdclk freq.
5914          */
5915         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5916                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5917 }
5918
5919 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5920 static int skl_cdclk_decimal(int cdclk)
5921 {
5922         return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5923 }
5924
5925 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5926 {
5927         int ratio;
5928
5929         if (cdclk == dev_priv->cdclk_pll.ref)
5930                 return 0;
5931
5932         switch (cdclk) {
5933         default:
5934                 MISSING_CASE(cdclk);
5935         case 144000:
5936         case 288000:
5937         case 384000:
5938         case 576000:
5939                 ratio = 60;
5940                 break;
5941         case 624000:
5942                 ratio = 65;
5943                 break;
5944         }
5945
5946         return dev_priv->cdclk_pll.ref * ratio;
5947 }
5948
5949 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5950 {
5951         I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5952
5953         /* Timeout 200us */
5954         if (intel_wait_for_register(dev_priv,
5955                                     BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5956                                     1))
5957                 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5958
5959         dev_priv->cdclk_pll.vco = 0;
5960 }
5961
5962 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5963 {
5964         int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5965         u32 val;
5966
5967         val = I915_READ(BXT_DE_PLL_CTL);
5968         val &= ~BXT_DE_PLL_RATIO_MASK;
5969         val |= BXT_DE_PLL_RATIO(ratio);
5970         I915_WRITE(BXT_DE_PLL_CTL, val);
5971
5972         I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5973
5974         /* Timeout 200us */
5975         if (intel_wait_for_register(dev_priv,
5976                                     BXT_DE_PLL_ENABLE,
5977                                     BXT_DE_PLL_LOCK,
5978                                     BXT_DE_PLL_LOCK,
5979                                     1))
5980                 DRM_ERROR("timeout waiting for DE PLL lock\n");
5981
5982         dev_priv->cdclk_pll.vco = vco;
5983 }
5984
5985 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5986 {
5987         u32 val, divider;
5988         int vco, ret;
5989
5990         vco = bxt_de_pll_vco(dev_priv, cdclk);
5991
5992         DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5993
5994         /* cdclk = vco / 2 / div{1,1.5,2,4} */
5995         switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5996         case 8:
5997                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5998                 break;
5999         case 4:
6000                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
6001                 break;
6002         case 3:
6003                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
6004                 break;
6005         case 2:
6006                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
6007                 break;
6008         default:
6009                 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
6010                 WARN_ON(vco != 0);
6011
6012                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
6013                 break;
6014         }
6015
6016         /* Inform power controller of upcoming frequency change */
6017         mutex_lock(&dev_priv->rps.hw_lock);
6018         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6019                                       0x80000000);
6020         mutex_unlock(&dev_priv->rps.hw_lock);
6021
6022         if (ret) {
6023                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
6024                           ret, cdclk);
6025                 return;
6026         }
6027
6028         if (dev_priv->cdclk_pll.vco != 0 &&
6029             dev_priv->cdclk_pll.vco != vco)
6030                 bxt_de_pll_disable(dev_priv);
6031
6032         if (dev_priv->cdclk_pll.vco != vco)
6033                 bxt_de_pll_enable(dev_priv, vco);
6034
6035         val = divider | skl_cdclk_decimal(cdclk);
6036         /*
6037          * FIXME if only the cd2x divider needs changing, it could be done
6038          * without shutting off the pipe (if only one pipe is active).
6039          */
6040         val |= BXT_CDCLK_CD2X_PIPE_NONE;
6041         /*
6042          * Disable SSA Precharge when CD clock frequency < 500 MHz,
6043          * enable otherwise.
6044          */
6045         if (cdclk >= 500000)
6046                 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6047         I915_WRITE(CDCLK_CTL, val);
6048
6049         mutex_lock(&dev_priv->rps.hw_lock);
6050         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6051                                       DIV_ROUND_UP(cdclk, 25000));
6052         mutex_unlock(&dev_priv->rps.hw_lock);
6053
6054         if (ret) {
6055                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
6056                           ret, cdclk);
6057                 return;
6058         }
6059
6060         intel_update_cdclk(&dev_priv->drm);
6061 }
6062
6063 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
6064 {
6065         u32 cdctl, expected;
6066
6067         intel_update_cdclk(&dev_priv->drm);
6068
6069         if (dev_priv->cdclk_pll.vco == 0 ||
6070             dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6071                 goto sanitize;
6072
6073         /* DPLL okay; verify the cdclock
6074          *
6075          * Some BIOS versions leave an incorrect decimal frequency value and
6076          * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
6077          * so sanitize this register.
6078          */
6079         cdctl = I915_READ(CDCLK_CTL);
6080         /*
6081          * Let's ignore the pipe field, since BIOS could have configured the
6082          * dividers both synching to an active pipe, or asynchronously
6083          * (PIPE_NONE).
6084          */
6085         cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
6086
6087         expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
6088                    skl_cdclk_decimal(dev_priv->cdclk_freq);
6089         /*
6090          * Disable SSA Precharge when CD clock frequency < 500 MHz,
6091          * enable otherwise.
6092          */
6093         if (dev_priv->cdclk_freq >= 500000)
6094                 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6095
6096         if (cdctl == expected)
6097                 /* All well; nothing to sanitize */
6098                 return;
6099
6100 sanitize:
6101         DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6102
6103         /* force cdclk programming */
6104         dev_priv->cdclk_freq = 0;
6105
6106         /* force full PLL disable + enable */
6107         dev_priv->cdclk_pll.vco = -1;
6108 }
6109
6110 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
6111 {
6112         bxt_sanitize_cdclk(dev_priv);
6113
6114         if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
6115                 return;
6116
6117         /*
6118          * FIXME:
6119          * - The initial CDCLK needs to be read from VBT.
6120          *   Need to make this change after VBT has changes for BXT.
6121          */
6122         bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
6123 }
6124
6125 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
6126 {
6127         bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
6128 }
6129
6130 static int skl_calc_cdclk(int max_pixclk, int vco)
6131 {
6132         if (vco == 8640000) {
6133                 if (max_pixclk > 540000)
6134                         return 617143;
6135                 else if (max_pixclk > 432000)
6136                         return 540000;
6137                 else if (max_pixclk > 308571)
6138                         return 432000;
6139                 else
6140                         return 308571;
6141         } else {
6142                 if (max_pixclk > 540000)
6143                         return 675000;
6144                 else if (max_pixclk > 450000)
6145                         return 540000;
6146                 else if (max_pixclk > 337500)
6147                         return 450000;
6148                 else
6149                         return 337500;
6150         }
6151 }
6152
6153 static void
6154 skl_dpll0_update(struct drm_i915_private *dev_priv)
6155 {
6156         u32 val;
6157
6158         dev_priv->cdclk_pll.ref = 24000;
6159         dev_priv->cdclk_pll.vco = 0;
6160
6161         val = I915_READ(LCPLL1_CTL);
6162         if ((val & LCPLL_PLL_ENABLE) == 0)
6163                 return;
6164
6165         if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
6166                 return;
6167
6168         val = I915_READ(DPLL_CTRL1);
6169
6170         if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
6171                             DPLL_CTRL1_SSC(SKL_DPLL0) |
6172                             DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
6173                     DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
6174                 return;
6175
6176         switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
6177         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
6178         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
6179         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
6180         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
6181                 dev_priv->cdclk_pll.vco = 8100000;
6182                 break;
6183         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
6184         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
6185                 dev_priv->cdclk_pll.vco = 8640000;
6186                 break;
6187         default:
6188                 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6189                 break;
6190         }
6191 }
6192
6193 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
6194 {
6195         bool changed = dev_priv->skl_preferred_vco_freq != vco;
6196
6197         dev_priv->skl_preferred_vco_freq = vco;
6198
6199         if (changed)
6200                 intel_update_max_cdclk(&dev_priv->drm);
6201 }
6202
6203 static void
6204 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
6205 {
6206         int min_cdclk = skl_calc_cdclk(0, vco);
6207         u32 val;
6208
6209         WARN_ON(vco != 8100000 && vco != 8640000);
6210
6211         /* select the minimum CDCLK before enabling DPLL 0 */
6212         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
6213         I915_WRITE(CDCLK_CTL, val);
6214         POSTING_READ(CDCLK_CTL);
6215
6216         /*
6217          * We always enable DPLL0 with the lowest link rate possible, but still
6218          * taking into account the VCO required to operate the eDP panel at the
6219          * desired frequency. The usual DP link rates operate with a VCO of
6220          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
6221          * The modeset code is responsible for the selection of the exact link
6222          * rate later on, with the constraint of choosing a frequency that
6223          * works with vco.
6224          */
6225         val = I915_READ(DPLL_CTRL1);
6226
6227         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
6228                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6229         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
6230         if (vco == 8640000)
6231                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
6232                                             SKL_DPLL0);
6233         else
6234                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
6235                                             SKL_DPLL0);
6236
6237         I915_WRITE(DPLL_CTRL1, val);
6238         POSTING_READ(DPLL_CTRL1);
6239
6240         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
6241
6242         if (intel_wait_for_register(dev_priv,
6243                                     LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
6244                                     5))
6245                 DRM_ERROR("DPLL0 not locked\n");
6246
6247         dev_priv->cdclk_pll.vco = vco;
6248
6249         /* We'll want to keep using the current vco from now on. */
6250         skl_set_preferred_cdclk_vco(dev_priv, vco);
6251 }
6252
6253 static void
6254 skl_dpll0_disable(struct drm_i915_private *dev_priv)
6255 {
6256         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
6257         if (intel_wait_for_register(dev_priv,
6258                                    LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
6259                                    1))
6260                 DRM_ERROR("Couldn't disable DPLL0\n");
6261
6262         dev_priv->cdclk_pll.vco = 0;
6263 }
6264
6265 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
6266 {
6267         int ret;
6268         u32 val;
6269
6270         /* inform PCU we want to change CDCLK */
6271         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
6272         mutex_lock(&dev_priv->rps.hw_lock);
6273         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
6274         mutex_unlock(&dev_priv->rps.hw_lock);
6275
6276         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
6277 }
6278
6279 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
6280 {
6281         return _wait_for(skl_cdclk_pcu_ready(dev_priv), 3000, 10) == 0;
6282 }
6283
6284 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
6285 {
6286         struct drm_device *dev = &dev_priv->drm;
6287         u32 freq_select, pcu_ack;
6288
6289         WARN_ON((cdclk == 24000) != (vco == 0));
6290
6291         DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
6292
6293         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
6294                 DRM_ERROR("failed to inform PCU about cdclk change\n");
6295                 return;
6296         }
6297
6298         /* set CDCLK_CTL */
6299         switch (cdclk) {
6300         case 450000:
6301         case 432000:
6302                 freq_select = CDCLK_FREQ_450_432;
6303                 pcu_ack = 1;
6304                 break;
6305         case 540000:
6306                 freq_select = CDCLK_FREQ_540;
6307                 pcu_ack = 2;
6308                 break;
6309         case 308571:
6310         case 337500:
6311         default:
6312                 freq_select = CDCLK_FREQ_337_308;
6313                 pcu_ack = 0;
6314                 break;
6315         case 617143:
6316         case 675000:
6317                 freq_select = CDCLK_FREQ_675_617;
6318                 pcu_ack = 3;
6319                 break;
6320         }
6321
6322         if (dev_priv->cdclk_pll.vco != 0 &&
6323             dev_priv->cdclk_pll.vco != vco)
6324                 skl_dpll0_disable(dev_priv);
6325
6326         if (dev_priv->cdclk_pll.vco != vco)
6327                 skl_dpll0_enable(dev_priv, vco);
6328
6329         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
6330         POSTING_READ(CDCLK_CTL);
6331
6332         /* inform PCU of the change */
6333         mutex_lock(&dev_priv->rps.hw_lock);
6334         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
6335         mutex_unlock(&dev_priv->rps.hw_lock);
6336
6337         intel_update_cdclk(dev);
6338 }
6339
6340 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
6341
6342 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
6343 {
6344         skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
6345 }
6346
6347 void skl_init_cdclk(struct drm_i915_private *dev_priv)
6348 {
6349         int cdclk, vco;
6350
6351         skl_sanitize_cdclk(dev_priv);
6352
6353         if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
6354                 /*
6355                  * Use the current vco as our initial
6356                  * guess as to what the preferred vco is.
6357                  */
6358                 if (dev_priv->skl_preferred_vco_freq == 0)
6359                         skl_set_preferred_cdclk_vco(dev_priv,
6360                                                     dev_priv->cdclk_pll.vco);
6361                 return;
6362         }
6363
6364         vco = dev_priv->skl_preferred_vco_freq;
6365         if (vco == 0)
6366                 vco = 8100000;
6367         cdclk = skl_calc_cdclk(0, vco);
6368
6369         skl_set_cdclk(dev_priv, cdclk, vco);
6370 }
6371
6372 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
6373 {
6374         uint32_t cdctl, expected;
6375
6376         /*
6377          * check if the pre-os intialized the display
6378          * There is SWF18 scratchpad register defined which is set by the
6379          * pre-os which can be used by the OS drivers to check the status
6380          */
6381         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
6382                 goto sanitize;
6383
6384         intel_update_cdclk(&dev_priv->drm);
6385         /* Is PLL enabled and locked ? */
6386         if (dev_priv->cdclk_pll.vco == 0 ||
6387             dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6388                 goto sanitize;
6389
6390         /* DPLL okay; verify the cdclock
6391          *
6392          * Noticed in some instances that the freq selection is correct but
6393          * decimal part is programmed wrong from BIOS where pre-os does not
6394          * enable display. Verify the same as well.
6395          */
6396         cdctl = I915_READ(CDCLK_CTL);
6397         expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
6398                 skl_cdclk_decimal(dev_priv->cdclk_freq);
6399         if (cdctl == expected)
6400                 /* All well; nothing to sanitize */
6401                 return;
6402
6403 sanitize:
6404         DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6405
6406         /* force cdclk programming */
6407         dev_priv->cdclk_freq = 0;
6408         /* force full PLL disable + enable */
6409         dev_priv->cdclk_pll.vco = -1;
6410 }
6411
6412 /* Adjust CDclk dividers to allow high res or save power if possible */
6413 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
6414 {
6415         struct drm_i915_private *dev_priv = to_i915(dev);
6416         u32 val, cmd;
6417
6418         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
6419                                         != dev_priv->cdclk_freq);
6420
6421         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
6422                 cmd = 2;
6423         else if (cdclk == 266667)
6424                 cmd = 1;
6425         else
6426                 cmd = 0;
6427
6428         mutex_lock(&dev_priv->rps.hw_lock);
6429         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6430         val &= ~DSPFREQGUAR_MASK;
6431         val |= (cmd << DSPFREQGUAR_SHIFT);
6432         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6433         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6434                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
6435                      50)) {
6436                 DRM_ERROR("timed out waiting for CDclk change\n");
6437         }
6438         mutex_unlock(&dev_priv->rps.hw_lock);
6439
6440         mutex_lock(&dev_priv->sb_lock);
6441
6442         if (cdclk == 400000) {
6443                 u32 divider;
6444
6445                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6446
6447                 /* adjust cdclk divider */
6448                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6449                 val &= ~CCK_FREQUENCY_VALUES;
6450                 val |= divider;
6451                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
6452
6453                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
6454                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
6455                              50))
6456                         DRM_ERROR("timed out waiting for CDclk change\n");
6457         }
6458
6459         /* adjust self-refresh exit latency value */
6460         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
6461         val &= ~0x7f;
6462
6463         /*
6464          * For high bandwidth configs, we set a higher latency in the bunit
6465          * so that the core display fetch happens in time to avoid underruns.
6466          */
6467         if (cdclk == 400000)
6468                 val |= 4500 / 250; /* 4.5 usec */
6469         else
6470                 val |= 3000 / 250; /* 3.0 usec */
6471         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
6472
6473         mutex_unlock(&dev_priv->sb_lock);
6474
6475         intel_update_cdclk(dev);
6476 }
6477
6478 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
6479 {
6480         struct drm_i915_private *dev_priv = to_i915(dev);
6481         u32 val, cmd;
6482
6483         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
6484                                                 != dev_priv->cdclk_freq);
6485
6486         switch (cdclk) {
6487         case 333333:
6488         case 320000:
6489         case 266667:
6490         case 200000:
6491                 break;
6492         default:
6493                 MISSING_CASE(cdclk);
6494                 return;
6495         }
6496
6497         /*
6498          * Specs are full of misinformation, but testing on actual
6499          * hardware has shown that we just need to write the desired
6500          * CCK divider into the Punit register.
6501          */
6502         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6503
6504         mutex_lock(&dev_priv->rps.hw_lock);
6505         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6506         val &= ~DSPFREQGUAR_MASK_CHV;
6507         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6508         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6509         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6510                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6511                      50)) {
6512                 DRM_ERROR("timed out waiting for CDclk change\n");
6513         }
6514         mutex_unlock(&dev_priv->rps.hw_lock);
6515
6516         intel_update_cdclk(dev);
6517 }
6518
6519 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6520                                  int max_pixclk)
6521 {
6522         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
6523         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6524
6525         /*
6526          * Really only a few cases to deal with, as only 4 CDclks are supported:
6527          *   200MHz
6528          *   267MHz
6529          *   320/333MHz (depends on HPLL freq)
6530          *   400MHz (VLV only)
6531          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6532          * of the lower bin and adjust if needed.
6533          *
6534          * We seem to get an unstable or solid color picture at 200MHz.
6535          * Not sure what's wrong. For now use 200MHz only when all pipes
6536          * are off.
6537          */
6538         if (!IS_CHERRYVIEW(dev_priv) &&
6539             max_pixclk > freq_320*limit/100)
6540                 return 400000;
6541         else if (max_pixclk > 266667*limit/100)
6542                 return freq_320;
6543         else if (max_pixclk > 0)
6544                 return 266667;
6545         else
6546                 return 200000;
6547 }
6548
6549 static int bxt_calc_cdclk(int max_pixclk)
6550 {
6551         if (max_pixclk > 576000)
6552                 return 624000;
6553         else if (max_pixclk > 384000)
6554                 return 576000;
6555         else if (max_pixclk > 288000)
6556                 return 384000;
6557         else if (max_pixclk > 144000)
6558                 return 288000;
6559         else
6560                 return 144000;
6561 }
6562
6563 /* Compute the max pixel clock for new configuration. */
6564 static int intel_mode_max_pixclk(struct drm_device *dev,
6565                                  struct drm_atomic_state *state)
6566 {
6567         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6568         struct drm_i915_private *dev_priv = to_i915(dev);
6569         struct drm_crtc *crtc;
6570         struct drm_crtc_state *crtc_state;
6571         unsigned max_pixclk = 0, i;
6572         enum pipe pipe;
6573
6574         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6575                sizeof(intel_state->min_pixclk));
6576
6577         for_each_crtc_in_state(state, crtc, crtc_state, i) {
6578                 int pixclk = 0;
6579
6580                 if (crtc_state->enable)
6581                         pixclk = crtc_state->adjusted_mode.crtc_clock;
6582
6583                 intel_state->min_pixclk[i] = pixclk;
6584         }
6585
6586         for_each_pipe(dev_priv, pipe)
6587                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6588
6589         return max_pixclk;
6590 }
6591
6592 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6593 {
6594         struct drm_device *dev = state->dev;
6595         struct drm_i915_private *dev_priv = to_i915(dev);
6596         int max_pixclk = intel_mode_max_pixclk(dev, state);
6597         struct intel_atomic_state *intel_state =
6598                 to_intel_atomic_state(state);
6599
6600         intel_state->cdclk = intel_state->dev_cdclk =
6601                 valleyview_calc_cdclk(dev_priv, max_pixclk);
6602
6603         if (!intel_state->active_crtcs)
6604                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6605
6606         return 0;
6607 }
6608
6609 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6610 {
6611         int max_pixclk = ilk_max_pixel_rate(state);
6612         struct intel_atomic_state *intel_state =
6613                 to_intel_atomic_state(state);
6614
6615         intel_state->cdclk = intel_state->dev_cdclk =
6616                 bxt_calc_cdclk(max_pixclk);
6617
6618         if (!intel_state->active_crtcs)
6619                 intel_state->dev_cdclk = bxt_calc_cdclk(0);
6620
6621         return 0;
6622 }
6623
6624 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6625 {
6626         unsigned int credits, default_credits;
6627
6628         if (IS_CHERRYVIEW(dev_priv))
6629                 default_credits = PFI_CREDIT(12);
6630         else
6631                 default_credits = PFI_CREDIT(8);
6632
6633         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6634                 /* CHV suggested value is 31 or 63 */
6635                 if (IS_CHERRYVIEW(dev_priv))
6636                         credits = PFI_CREDIT_63;
6637                 else
6638                         credits = PFI_CREDIT(15);
6639         } else {
6640                 credits = default_credits;
6641         }
6642
6643         /*
6644          * WA - write default credits before re-programming
6645          * FIXME: should we also set the resend bit here?
6646          */
6647         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6648                    default_credits);
6649
6650         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6651                    credits | PFI_CREDIT_RESEND);
6652
6653         /*
6654          * FIXME is this guaranteed to clear
6655          * immediately or should we poll for it?
6656          */
6657         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6658 }
6659
6660 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6661 {
6662         struct drm_device *dev = old_state->dev;
6663         struct drm_i915_private *dev_priv = to_i915(dev);
6664         struct intel_atomic_state *old_intel_state =
6665                 to_intel_atomic_state(old_state);
6666         unsigned req_cdclk = old_intel_state->dev_cdclk;
6667
6668         /*
6669          * FIXME: We can end up here with all power domains off, yet
6670          * with a CDCLK frequency other than the minimum. To account
6671          * for this take the PIPE-A power domain, which covers the HW
6672          * blocks needed for the following programming. This can be
6673          * removed once it's guaranteed that we get here either with
6674          * the minimum CDCLK set, or the required power domains
6675          * enabled.
6676          */
6677         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6678
6679         if (IS_CHERRYVIEW(dev))
6680                 cherryview_set_cdclk(dev, req_cdclk);
6681         else
6682                 valleyview_set_cdclk(dev, req_cdclk);
6683
6684         vlv_program_pfi_credits(dev_priv);
6685
6686         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6687 }
6688
6689 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6690                                    struct drm_atomic_state *old_state)
6691 {
6692         struct drm_crtc *crtc = pipe_config->base.crtc;
6693         struct drm_device *dev = crtc->dev;
6694         struct drm_i915_private *dev_priv = to_i915(dev);
6695         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6696         int pipe = intel_crtc->pipe;
6697
6698         if (WARN_ON(intel_crtc->active))
6699                 return;
6700
6701         if (intel_crtc_has_dp_encoder(intel_crtc->config))
6702                 intel_dp_set_m_n(intel_crtc, M1_N1);
6703
6704         intel_set_pipe_timings(intel_crtc);
6705         intel_set_pipe_src_size(intel_crtc);
6706
6707         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6708                 struct drm_i915_private *dev_priv = to_i915(dev);
6709
6710                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6711                 I915_WRITE(CHV_CANVAS(pipe), 0);
6712         }
6713
6714         i9xx_set_pipeconf(intel_crtc);
6715
6716         intel_crtc->active = true;
6717
6718         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6719
6720         intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
6721
6722         if (IS_CHERRYVIEW(dev)) {
6723                 chv_prepare_pll(intel_crtc, intel_crtc->config);
6724                 chv_enable_pll(intel_crtc, intel_crtc->config);
6725         } else {
6726                 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6727                 vlv_enable_pll(intel_crtc, intel_crtc->config);
6728         }
6729
6730         intel_encoders_pre_enable(crtc, pipe_config, old_state);
6731
6732         i9xx_pfit_enable(intel_crtc);
6733
6734         intel_color_load_luts(&pipe_config->base);
6735
6736         intel_update_watermarks(crtc);
6737         intel_enable_pipe(intel_crtc);
6738
6739         assert_vblank_disabled(crtc);
6740         drm_crtc_vblank_on(crtc);
6741
6742         intel_encoders_enable(crtc, pipe_config, old_state);
6743 }
6744
6745 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6746 {
6747         struct drm_device *dev = crtc->base.dev;
6748         struct drm_i915_private *dev_priv = to_i915(dev);
6749
6750         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6751         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6752 }
6753
6754 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
6755                              struct drm_atomic_state *old_state)
6756 {
6757         struct drm_crtc *crtc = pipe_config->base.crtc;
6758         struct drm_device *dev = crtc->dev;
6759         struct drm_i915_private *dev_priv = to_i915(dev);
6760         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6761         enum pipe pipe = intel_crtc->pipe;
6762
6763         if (WARN_ON(intel_crtc->active))
6764                 return;
6765
6766         i9xx_set_pll_dividers(intel_crtc);
6767
6768         if (intel_crtc_has_dp_encoder(intel_crtc->config))
6769                 intel_dp_set_m_n(intel_crtc, M1_N1);
6770
6771         intel_set_pipe_timings(intel_crtc);
6772         intel_set_pipe_src_size(intel_crtc);
6773
6774         i9xx_set_pipeconf(intel_crtc);
6775
6776         intel_crtc->active = true;
6777
6778         if (!IS_GEN2(dev))
6779                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6780
6781         intel_encoders_pre_enable(crtc, pipe_config, old_state);
6782
6783         i9xx_enable_pll(intel_crtc);
6784
6785         i9xx_pfit_enable(intel_crtc);
6786
6787         intel_color_load_luts(&pipe_config->base);
6788
6789         intel_update_watermarks(crtc);
6790         intel_enable_pipe(intel_crtc);
6791
6792         assert_vblank_disabled(crtc);
6793         drm_crtc_vblank_on(crtc);
6794
6795         intel_encoders_enable(crtc, pipe_config, old_state);
6796 }
6797
6798 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6799 {
6800         struct drm_device *dev = crtc->base.dev;
6801         struct drm_i915_private *dev_priv = to_i915(dev);
6802
6803         if (!crtc->config->gmch_pfit.control)
6804                 return;
6805
6806         assert_pipe_disabled(dev_priv, crtc->pipe);
6807
6808         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6809                          I915_READ(PFIT_CONTROL));
6810         I915_WRITE(PFIT_CONTROL, 0);
6811 }
6812
6813 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
6814                               struct drm_atomic_state *old_state)
6815 {
6816         struct drm_crtc *crtc = old_crtc_state->base.crtc;
6817         struct drm_device *dev = crtc->dev;
6818         struct drm_i915_private *dev_priv = to_i915(dev);
6819         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6820         int pipe = intel_crtc->pipe;
6821
6822         /*
6823          * On gen2 planes are double buffered but the pipe isn't, so we must
6824          * wait for planes to fully turn off before disabling the pipe.
6825          */
6826         if (IS_GEN2(dev))
6827                 intel_wait_for_vblank(dev, pipe);
6828
6829         intel_encoders_disable(crtc, old_crtc_state, old_state);
6830
6831         drm_crtc_vblank_off(crtc);
6832         assert_vblank_disabled(crtc);
6833
6834         intel_disable_pipe(intel_crtc);
6835
6836         i9xx_pfit_disable(intel_crtc);
6837
6838         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
6839
6840         if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6841                 if (IS_CHERRYVIEW(dev))
6842                         chv_disable_pll(dev_priv, pipe);
6843                 else if (IS_VALLEYVIEW(dev))
6844                         vlv_disable_pll(dev_priv, pipe);
6845                 else
6846                         i9xx_disable_pll(intel_crtc);
6847         }
6848
6849         intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
6850
6851         if (!IS_GEN2(dev))
6852                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6853 }
6854
6855 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6856 {
6857         struct intel_encoder *encoder;
6858         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6859         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6860         enum intel_display_power_domain domain;
6861         unsigned long domains;
6862         struct drm_atomic_state *state;
6863         struct intel_crtc_state *crtc_state;
6864         int ret;
6865
6866         if (!intel_crtc->active)
6867                 return;
6868
6869         if (to_intel_plane_state(crtc->primary->state)->base.visible) {
6870                 WARN_ON(intel_crtc->flip_work);
6871
6872                 intel_pre_disable_primary_noatomic(crtc);
6873
6874                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6875                 to_intel_plane_state(crtc->primary->state)->base.visible = false;
6876         }
6877
6878         state = drm_atomic_state_alloc(crtc->dev);
6879         state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
6880
6881         /* Everything's already locked, -EDEADLK can't happen. */
6882         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6883         ret = drm_atomic_add_affected_connectors(state, crtc);
6884
6885         WARN_ON(IS_ERR(crtc_state) || ret);
6886
6887         dev_priv->display.crtc_disable(crtc_state, state);
6888
6889         drm_atomic_state_free(state);
6890
6891         DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6892                       crtc->base.id, crtc->name);
6893
6894         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6895         crtc->state->active = false;
6896         intel_crtc->active = false;
6897         crtc->enabled = false;
6898         crtc->state->connector_mask = 0;
6899         crtc->state->encoder_mask = 0;
6900
6901         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6902                 encoder->base.crtc = NULL;
6903
6904         intel_fbc_disable(intel_crtc);
6905         intel_update_watermarks(crtc);
6906         intel_disable_shared_dpll(intel_crtc);
6907
6908         domains = intel_crtc->enabled_power_domains;
6909         for_each_power_domain(domain, domains)
6910                 intel_display_power_put(dev_priv, domain);
6911         intel_crtc->enabled_power_domains = 0;
6912
6913         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6914         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6915 }
6916
6917 /*
6918  * turn all crtc's off, but do not adjust state
6919  * This has to be paired with a call to intel_modeset_setup_hw_state.
6920  */
6921 int intel_display_suspend(struct drm_device *dev)
6922 {
6923         struct drm_i915_private *dev_priv = to_i915(dev);
6924         struct drm_atomic_state *state;
6925         int ret;
6926
6927         state = drm_atomic_helper_suspend(dev);
6928         ret = PTR_ERR_OR_ZERO(state);
6929         if (ret)
6930                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6931         else
6932                 dev_priv->modeset_restore_state = state;
6933         return ret;
6934 }
6935
6936 void intel_encoder_destroy(struct drm_encoder *encoder)
6937 {
6938         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6939
6940         drm_encoder_cleanup(encoder);
6941         kfree(intel_encoder);
6942 }
6943
6944 /* Cross check the actual hw state with our own modeset state tracking (and it's
6945  * internal consistency). */
6946 static void intel_connector_verify_state(struct intel_connector *connector)
6947 {
6948         struct drm_crtc *crtc = connector->base.state->crtc;
6949
6950         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6951                       connector->base.base.id,
6952                       connector->base.name);
6953
6954         if (connector->get_hw_state(connector)) {
6955                 struct intel_encoder *encoder = connector->encoder;
6956                 struct drm_connector_state *conn_state = connector->base.state;
6957
6958                 I915_STATE_WARN(!crtc,
6959                          "connector enabled without attached crtc\n");
6960
6961                 if (!crtc)
6962                         return;
6963
6964                 I915_STATE_WARN(!crtc->state->active,
6965                       "connector is active, but attached crtc isn't\n");
6966
6967                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6968                         return;
6969
6970                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6971                         "atomic encoder doesn't match attached encoder\n");
6972
6973                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6974                         "attached encoder crtc differs from connector crtc\n");
6975         } else {
6976                 I915_STATE_WARN(crtc && crtc->state->active,
6977                         "attached crtc is active, but connector isn't\n");
6978                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6979                         "best encoder set without crtc!\n");
6980         }
6981 }
6982
6983 int intel_connector_init(struct intel_connector *connector)
6984 {
6985         drm_atomic_helper_connector_reset(&connector->base);
6986
6987         if (!connector->base.state)
6988                 return -ENOMEM;
6989
6990         return 0;
6991 }
6992
6993 struct intel_connector *intel_connector_alloc(void)
6994 {
6995         struct intel_connector *connector;
6996
6997         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6998         if (!connector)
6999                 return NULL;
7000
7001         if (intel_connector_init(connector) < 0) {
7002                 kfree(connector);
7003                 return NULL;
7004         }
7005
7006         return connector;
7007 }
7008
7009 /* Simple connector->get_hw_state implementation for encoders that support only
7010  * one connector and no cloning and hence the encoder state determines the state
7011  * of the connector. */
7012 bool intel_connector_get_hw_state(struct intel_connector *connector)
7013 {
7014         enum pipe pipe = 0;
7015         struct intel_encoder *encoder = connector->encoder;
7016
7017         return encoder->get_hw_state(encoder, &pipe);
7018 }
7019
7020 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7021 {
7022         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
7023                 return crtc_state->fdi_lanes;
7024
7025         return 0;
7026 }
7027
7028 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7029                                      struct intel_crtc_state *pipe_config)
7030 {
7031         struct drm_atomic_state *state = pipe_config->base.state;
7032         struct intel_crtc *other_crtc;
7033         struct intel_crtc_state *other_crtc_state;
7034
7035         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7036                       pipe_name(pipe), pipe_config->fdi_lanes);
7037         if (pipe_config->fdi_lanes > 4) {
7038                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7039                               pipe_name(pipe), pipe_config->fdi_lanes);
7040                 return -EINVAL;
7041         }
7042
7043         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7044                 if (pipe_config->fdi_lanes > 2) {
7045                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7046                                       pipe_config->fdi_lanes);
7047                         return -EINVAL;
7048                 } else {
7049                         return 0;
7050                 }
7051         }
7052
7053         if (INTEL_INFO(dev)->num_pipes == 2)
7054                 return 0;
7055
7056         /* Ivybridge 3 pipe is really complicated */
7057         switch (pipe) {
7058         case PIPE_A:
7059                 return 0;
7060         case PIPE_B:
7061                 if (pipe_config->fdi_lanes <= 2)
7062                         return 0;
7063
7064                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
7065                 other_crtc_state =
7066                         intel_atomic_get_crtc_state(state, other_crtc);
7067                 if (IS_ERR(other_crtc_state))
7068                         return PTR_ERR(other_crtc_state);
7069
7070                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7071                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7072                                       pipe_name(pipe), pipe_config->fdi_lanes);
7073                         return -EINVAL;
7074                 }
7075                 return 0;
7076         case PIPE_C:
7077                 if (pipe_config->fdi_lanes > 2) {
7078                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7079                                       pipe_name(pipe), pipe_config->fdi_lanes);
7080                         return -EINVAL;
7081                 }
7082
7083                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
7084                 other_crtc_state =
7085                         intel_atomic_get_crtc_state(state, other_crtc);
7086                 if (IS_ERR(other_crtc_state))
7087                         return PTR_ERR(other_crtc_state);
7088
7089                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7090                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7091                         return -EINVAL;
7092                 }
7093                 return 0;
7094         default:
7095                 BUG();
7096         }
7097 }
7098
7099 #define RETRY 1
7100 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7101                                        struct intel_crtc_state *pipe_config)
7102 {
7103         struct drm_device *dev = intel_crtc->base.dev;
7104         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7105         int lane, link_bw, fdi_dotclock, ret;
7106         bool needs_recompute = false;
7107
7108 retry:
7109         /* FDI is a binary signal running at ~2.7GHz, encoding
7110          * each output octet as 10 bits. The actual frequency
7111          * is stored as a divider into a 100MHz clock, and the
7112          * mode pixel clock is stored in units of 1KHz.
7113          * Hence the bw of each lane in terms of the mode signal
7114          * is:
7115          */
7116         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7117
7118         fdi_dotclock = adjusted_mode->crtc_clock;
7119
7120         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7121                                            pipe_config->pipe_bpp);
7122
7123         pipe_config->fdi_lanes = lane;
7124
7125         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7126                                link_bw, &pipe_config->fdi_m_n);
7127
7128         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7129         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7130                 pipe_config->pipe_bpp -= 2*3;
7131                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7132                               pipe_config->pipe_bpp);
7133                 needs_recompute = true;
7134                 pipe_config->bw_constrained = true;
7135
7136                 goto retry;
7137         }
7138
7139         if (needs_recompute)
7140                 return RETRY;
7141
7142         return ret;
7143 }
7144
7145 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
7146                                      struct intel_crtc_state *pipe_config)
7147 {
7148         if (pipe_config->pipe_bpp > 24)
7149                 return false;
7150
7151         /* HSW can handle pixel rate up to cdclk? */
7152         if (IS_HASWELL(dev_priv))
7153                 return true;
7154
7155         /*
7156          * We compare against max which means we must take
7157          * the increased cdclk requirement into account when
7158          * calculating the new cdclk.
7159          *
7160          * Should measure whether using a lower cdclk w/o IPS
7161          */
7162         return ilk_pipe_pixel_rate(pipe_config) <=
7163                 dev_priv->max_cdclk_freq * 95 / 100;
7164 }
7165
7166 static void hsw_compute_ips_config(struct intel_crtc *crtc,
7167                                    struct intel_crtc_state *pipe_config)
7168 {
7169         struct drm_device *dev = crtc->base.dev;
7170         struct drm_i915_private *dev_priv = to_i915(dev);
7171
7172         pipe_config->ips_enabled = i915.enable_ips &&
7173                 hsw_crtc_supports_ips(crtc) &&
7174                 pipe_config_supports_ips(dev_priv, pipe_config);
7175 }
7176
7177 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7178 {
7179         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7180
7181         /* GDG double wide on either pipe, otherwise pipe A only */
7182         return INTEL_INFO(dev_priv)->gen < 4 &&
7183                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7184 }
7185
7186 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7187                                      struct intel_crtc_state *pipe_config)
7188 {
7189         struct drm_device *dev = crtc->base.dev;
7190         struct drm_i915_private *dev_priv = to_i915(dev);
7191         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7192         int clock_limit = dev_priv->max_dotclk_freq;
7193
7194         if (INTEL_INFO(dev)->gen < 4) {
7195                 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7196
7197                 /*
7198                  * Enable double wide mode when the dot clock
7199                  * is > 90% of the (display) core speed.
7200                  */
7201                 if (intel_crtc_supports_double_wide(crtc) &&
7202                     adjusted_mode->crtc_clock > clock_limit) {
7203                         clock_limit = dev_priv->max_dotclk_freq;
7204                         pipe_config->double_wide = true;
7205                 }
7206         }
7207
7208         if (adjusted_mode->crtc_clock > clock_limit) {
7209                 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7210                               adjusted_mode->crtc_clock, clock_limit,
7211                               yesno(pipe_config->double_wide));
7212                 return -EINVAL;
7213         }
7214
7215         /*
7216          * Pipe horizontal size must be even in:
7217          * - DVO ganged mode
7218          * - LVDS dual channel mode
7219          * - Double wide pipe
7220          */
7221         if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7222              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
7223                 pipe_config->pipe_src_w &= ~1;
7224
7225         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7226          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7227          */
7228         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
7229                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7230                 return -EINVAL;
7231
7232         if (HAS_IPS(dev))
7233                 hsw_compute_ips_config(crtc, pipe_config);
7234
7235         if (pipe_config->has_pch_encoder)
7236                 return ironlake_fdi_compute_config(crtc, pipe_config);
7237
7238         return 0;
7239 }
7240
7241 static int skylake_get_display_clock_speed(struct drm_device *dev)
7242 {
7243         struct drm_i915_private *dev_priv = to_i915(dev);
7244         uint32_t cdctl;
7245
7246         skl_dpll0_update(dev_priv);
7247
7248         if (dev_priv->cdclk_pll.vco == 0)
7249                 return dev_priv->cdclk_pll.ref;
7250
7251         cdctl = I915_READ(CDCLK_CTL);
7252
7253         if (dev_priv->cdclk_pll.vco == 8640000) {
7254                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7255                 case CDCLK_FREQ_450_432:
7256                         return 432000;
7257                 case CDCLK_FREQ_337_308:
7258                         return 308571;
7259                 case CDCLK_FREQ_540:
7260                         return 540000;
7261                 case CDCLK_FREQ_675_617:
7262                         return 617143;
7263                 default:
7264                         MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7265                 }
7266         } else {
7267                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7268                 case CDCLK_FREQ_450_432:
7269                         return 450000;
7270                 case CDCLK_FREQ_337_308:
7271                         return 337500;
7272                 case CDCLK_FREQ_540:
7273                         return 540000;
7274                 case CDCLK_FREQ_675_617:
7275                         return 675000;
7276                 default:
7277                         MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7278                 }
7279         }
7280
7281         return dev_priv->cdclk_pll.ref;
7282 }
7283
7284 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
7285 {
7286         u32 val;
7287
7288         dev_priv->cdclk_pll.ref = 19200;
7289         dev_priv->cdclk_pll.vco = 0;
7290
7291         val = I915_READ(BXT_DE_PLL_ENABLE);
7292         if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
7293                 return;
7294
7295         if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
7296                 return;
7297
7298         val = I915_READ(BXT_DE_PLL_CTL);
7299         dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
7300                 dev_priv->cdclk_pll.ref;
7301 }
7302
7303 static int broxton_get_display_clock_speed(struct drm_device *dev)
7304 {
7305         struct drm_i915_private *dev_priv = to_i915(dev);
7306         u32 divider;
7307         int div, vco;
7308
7309         bxt_de_pll_update(dev_priv);
7310
7311         vco = dev_priv->cdclk_pll.vco;
7312         if (vco == 0)
7313                 return dev_priv->cdclk_pll.ref;
7314
7315         divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
7316
7317         switch (divider) {
7318         case BXT_CDCLK_CD2X_DIV_SEL_1:
7319                 div = 2;
7320                 break;
7321         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
7322                 div = 3;
7323                 break;
7324         case BXT_CDCLK_CD2X_DIV_SEL_2:
7325                 div = 4;
7326                 break;
7327         case BXT_CDCLK_CD2X_DIV_SEL_4:
7328                 div = 8;
7329                 break;
7330         default:
7331                 MISSING_CASE(divider);
7332                 return dev_priv->cdclk_pll.ref;
7333         }
7334
7335         return DIV_ROUND_CLOSEST(vco, div);
7336 }
7337
7338 static int broadwell_get_display_clock_speed(struct drm_device *dev)
7339 {
7340         struct drm_i915_private *dev_priv = to_i915(dev);
7341         uint32_t lcpll = I915_READ(LCPLL_CTL);
7342         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7343
7344         if (lcpll & LCPLL_CD_SOURCE_FCLK)
7345                 return 800000;
7346         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7347                 return 450000;
7348         else if (freq == LCPLL_CLK_FREQ_450)
7349                 return 450000;
7350         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
7351                 return 540000;
7352         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
7353                 return 337500;
7354         else
7355                 return 675000;
7356 }
7357
7358 static int haswell_get_display_clock_speed(struct drm_device *dev)
7359 {
7360         struct drm_i915_private *dev_priv = to_i915(dev);
7361         uint32_t lcpll = I915_READ(LCPLL_CTL);
7362         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7363
7364         if (lcpll & LCPLL_CD_SOURCE_FCLK)
7365                 return 800000;
7366         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7367                 return 450000;
7368         else if (freq == LCPLL_CLK_FREQ_450)
7369                 return 450000;
7370         else if (IS_HSW_ULT(dev))
7371                 return 337500;
7372         else
7373                 return 540000;
7374 }
7375
7376 static int valleyview_get_display_clock_speed(struct drm_device *dev)
7377 {
7378         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
7379                                       CCK_DISPLAY_CLOCK_CONTROL);
7380 }
7381
7382 static int ilk_get_display_clock_speed(struct drm_device *dev)
7383 {
7384         return 450000;
7385 }
7386
7387 static int i945_get_display_clock_speed(struct drm_device *dev)
7388 {
7389         return 400000;
7390 }
7391
7392 static int i915_get_display_clock_speed(struct drm_device *dev)
7393 {
7394         return 333333;
7395 }
7396
7397 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
7398 {
7399         return 200000;
7400 }
7401
7402 static int pnv_get_display_clock_speed(struct drm_device *dev)
7403 {
7404         struct pci_dev *pdev = dev->pdev;
7405         u16 gcfgc = 0;
7406
7407         pci_read_config_word(pdev, GCFGC, &gcfgc);
7408
7409         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7410         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
7411                 return 266667;
7412         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
7413                 return 333333;
7414         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
7415                 return 444444;
7416         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
7417                 return 200000;
7418         default:
7419                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
7420         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
7421                 return 133333;
7422         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
7423                 return 166667;
7424         }
7425 }
7426
7427 static int i915gm_get_display_clock_speed(struct drm_device *dev)
7428 {
7429         struct pci_dev *pdev = dev->pdev;
7430         u16 gcfgc = 0;
7431
7432         pci_read_config_word(pdev, GCFGC, &gcfgc);
7433
7434         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
7435                 return 133333;
7436         else {
7437                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7438                 case GC_DISPLAY_CLOCK_333_MHZ:
7439                         return 333333;
7440                 default:
7441                 case GC_DISPLAY_CLOCK_190_200_MHZ:
7442                         return 190000;
7443                 }
7444         }
7445 }
7446
7447 static int i865_get_display_clock_speed(struct drm_device *dev)
7448 {
7449         return 266667;
7450 }
7451
7452 static int i85x_get_display_clock_speed(struct drm_device *dev)
7453 {
7454         struct pci_dev *pdev = dev->pdev;
7455         u16 hpllcc = 0;
7456
7457         /*
7458          * 852GM/852GMV only supports 133 MHz and the HPLLCC
7459          * encoding is different :(
7460          * FIXME is this the right way to detect 852GM/852GMV?
7461          */
7462         if (pdev->revision == 0x1)
7463                 return 133333;
7464
7465         pci_bus_read_config_word(pdev->bus,
7466                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
7467
7468         /* Assume that the hardware is in the high speed state.  This
7469          * should be the default.
7470          */
7471         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
7472         case GC_CLOCK_133_200:
7473         case GC_CLOCK_133_200_2:
7474         case GC_CLOCK_100_200:
7475                 return 200000;
7476         case GC_CLOCK_166_250:
7477                 return 250000;
7478         case GC_CLOCK_100_133:
7479                 return 133333;
7480         case GC_CLOCK_133_266:
7481         case GC_CLOCK_133_266_2:
7482         case GC_CLOCK_166_266:
7483                 return 266667;
7484         }
7485
7486         /* Shouldn't happen */
7487         return 0;
7488 }
7489
7490 static int i830_get_display_clock_speed(struct drm_device *dev)
7491 {
7492         return 133333;
7493 }
7494
7495 static unsigned int intel_hpll_vco(struct drm_device *dev)
7496 {
7497         struct drm_i915_private *dev_priv = to_i915(dev);
7498         static const unsigned int blb_vco[8] = {
7499                 [0] = 3200000,
7500                 [1] = 4000000,
7501                 [2] = 5333333,
7502                 [3] = 4800000,
7503                 [4] = 6400000,
7504         };
7505         static const unsigned int pnv_vco[8] = {
7506                 [0] = 3200000,
7507                 [1] = 4000000,
7508                 [2] = 5333333,
7509                 [3] = 4800000,
7510                 [4] = 2666667,
7511         };
7512         static const unsigned int cl_vco[8] = {
7513                 [0] = 3200000,
7514                 [1] = 4000000,
7515                 [2] = 5333333,
7516                 [3] = 6400000,
7517                 [4] = 3333333,
7518                 [5] = 3566667,
7519                 [6] = 4266667,
7520         };
7521         static const unsigned int elk_vco[8] = {
7522                 [0] = 3200000,
7523                 [1] = 4000000,
7524                 [2] = 5333333,
7525                 [3] = 4800000,
7526         };
7527         static const unsigned int ctg_vco[8] = {
7528                 [0] = 3200000,
7529                 [1] = 4000000,
7530                 [2] = 5333333,
7531                 [3] = 6400000,
7532                 [4] = 2666667,
7533                 [5] = 4266667,
7534         };
7535         const unsigned int *vco_table;
7536         unsigned int vco;
7537         uint8_t tmp = 0;
7538
7539         /* FIXME other chipsets? */
7540         if (IS_GM45(dev))
7541                 vco_table = ctg_vco;
7542         else if (IS_G4X(dev))
7543                 vco_table = elk_vco;
7544         else if (IS_CRESTLINE(dev))
7545                 vco_table = cl_vco;
7546         else if (IS_PINEVIEW(dev))
7547                 vco_table = pnv_vco;
7548         else if (IS_G33(dev))
7549                 vco_table = blb_vco;
7550         else
7551                 return 0;
7552
7553         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7554
7555         vco = vco_table[tmp & 0x7];
7556         if (vco == 0)
7557                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7558         else
7559                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7560
7561         return vco;
7562 }
7563
7564 static int gm45_get_display_clock_speed(struct drm_device *dev)
7565 {
7566         struct pci_dev *pdev = dev->pdev;
7567         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7568         uint16_t tmp = 0;
7569
7570         pci_read_config_word(pdev, GCFGC, &tmp);
7571
7572         cdclk_sel = (tmp >> 12) & 0x1;
7573
7574         switch (vco) {
7575         case 2666667:
7576         case 4000000:
7577         case 5333333:
7578                 return cdclk_sel ? 333333 : 222222;
7579         case 3200000:
7580                 return cdclk_sel ? 320000 : 228571;
7581         default:
7582                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7583                 return 222222;
7584         }
7585 }
7586
7587 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7588 {
7589         struct pci_dev *pdev = dev->pdev;
7590         static const uint8_t div_3200[] = { 16, 10,  8 };
7591         static const uint8_t div_4000[] = { 20, 12, 10 };
7592         static const uint8_t div_5333[] = { 24, 16, 14 };
7593         const uint8_t *div_table;
7594         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7595         uint16_t tmp = 0;
7596
7597         pci_read_config_word(pdev, GCFGC, &tmp);
7598
7599         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7600
7601         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7602                 goto fail;
7603
7604         switch (vco) {
7605         case 3200000:
7606                 div_table = div_3200;
7607                 break;
7608         case 4000000:
7609                 div_table = div_4000;
7610                 break;
7611         case 5333333:
7612                 div_table = div_5333;
7613                 break;
7614         default:
7615                 goto fail;
7616         }
7617
7618         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7619
7620 fail:
7621         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7622         return 200000;
7623 }
7624
7625 static int g33_get_display_clock_speed(struct drm_device *dev)
7626 {
7627         struct pci_dev *pdev = dev->pdev;
7628         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7629         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7630         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7631         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7632         const uint8_t *div_table;
7633         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7634         uint16_t tmp = 0;
7635
7636         pci_read_config_word(pdev, GCFGC, &tmp);
7637
7638         cdclk_sel = (tmp >> 4) & 0x7;
7639
7640         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7641                 goto fail;
7642
7643         switch (vco) {
7644         case 3200000:
7645                 div_table = div_3200;
7646                 break;
7647         case 4000000:
7648                 div_table = div_4000;
7649                 break;
7650         case 4800000:
7651                 div_table = div_4800;
7652                 break;
7653         case 5333333:
7654                 div_table = div_5333;
7655                 break;
7656         default:
7657                 goto fail;
7658         }
7659
7660         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7661
7662 fail:
7663         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7664         return 190476;
7665 }
7666
7667 static void
7668 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7669 {
7670         while (*num > DATA_LINK_M_N_MASK ||
7671                *den > DATA_LINK_M_N_MASK) {
7672                 *num >>= 1;
7673                 *den >>= 1;
7674         }
7675 }
7676
7677 static void compute_m_n(unsigned int m, unsigned int n,
7678                         uint32_t *ret_m, uint32_t *ret_n)
7679 {
7680         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7681         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7682         intel_reduce_m_n_ratio(ret_m, ret_n);
7683 }
7684
7685 void
7686 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7687                        int pixel_clock, int link_clock,
7688                        struct intel_link_m_n *m_n)
7689 {
7690         m_n->tu = 64;
7691
7692         compute_m_n(bits_per_pixel * pixel_clock,
7693                     link_clock * nlanes * 8,
7694                     &m_n->gmch_m, &m_n->gmch_n);
7695
7696         compute_m_n(pixel_clock, link_clock,
7697                     &m_n->link_m, &m_n->link_n);
7698 }
7699
7700 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7701 {
7702         if (i915.panel_use_ssc >= 0)
7703                 return i915.panel_use_ssc != 0;
7704         return dev_priv->vbt.lvds_use_ssc
7705                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7706 }
7707
7708 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7709 {
7710         return (1 << dpll->n) << 16 | dpll->m2;
7711 }
7712
7713 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7714 {
7715         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7716 }
7717
7718 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7719                                      struct intel_crtc_state *crtc_state,
7720                                      struct dpll *reduced_clock)
7721 {
7722         struct drm_device *dev = crtc->base.dev;
7723         u32 fp, fp2 = 0;
7724
7725         if (IS_PINEVIEW(dev)) {
7726                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7727                 if (reduced_clock)
7728                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7729         } else {
7730                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7731                 if (reduced_clock)
7732                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7733         }
7734
7735         crtc_state->dpll_hw_state.fp0 = fp;
7736
7737         crtc->lowfreq_avail = false;
7738         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7739             reduced_clock) {
7740                 crtc_state->dpll_hw_state.fp1 = fp2;
7741                 crtc->lowfreq_avail = true;
7742         } else {
7743                 crtc_state->dpll_hw_state.fp1 = fp;
7744         }
7745 }
7746
7747 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7748                 pipe)
7749 {
7750         u32 reg_val;
7751
7752         /*
7753          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7754          * and set it to a reasonable value instead.
7755          */
7756         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7757         reg_val &= 0xffffff00;
7758         reg_val |= 0x00000030;
7759         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7760
7761         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7762         reg_val &= 0x8cffffff;
7763         reg_val = 0x8c000000;
7764         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7765
7766         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7767         reg_val &= 0xffffff00;
7768         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7769
7770         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7771         reg_val &= 0x00ffffff;
7772         reg_val |= 0xb0000000;
7773         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7774 }
7775
7776 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7777                                          struct intel_link_m_n *m_n)
7778 {
7779         struct drm_device *dev = crtc->base.dev;
7780         struct drm_i915_private *dev_priv = to_i915(dev);
7781         int pipe = crtc->pipe;
7782
7783         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7784         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7785         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7786         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7787 }
7788
7789 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7790                                          struct intel_link_m_n *m_n,
7791                                          struct intel_link_m_n *m2_n2)
7792 {
7793         struct drm_device *dev = crtc->base.dev;
7794         struct drm_i915_private *dev_priv = to_i915(dev);
7795         int pipe = crtc->pipe;
7796         enum transcoder transcoder = crtc->config->cpu_transcoder;
7797
7798         if (INTEL_INFO(dev)->gen >= 5) {
7799                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7800                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7801                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7802                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7803                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7804                  * for gen < 8) and if DRRS is supported (to make sure the
7805                  * registers are not unnecessarily accessed).
7806                  */
7807                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7808                         crtc->config->has_drrs) {
7809                         I915_WRITE(PIPE_DATA_M2(transcoder),
7810                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7811                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7812                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7813                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7814                 }
7815         } else {
7816                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7817                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7818                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7819                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7820         }
7821 }
7822
7823 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7824 {
7825         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7826
7827         if (m_n == M1_N1) {
7828                 dp_m_n = &crtc->config->dp_m_n;
7829                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7830         } else if (m_n == M2_N2) {
7831
7832                 /*
7833                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7834                  * needs to be programmed into M1_N1.
7835                  */
7836                 dp_m_n = &crtc->config->dp_m2_n2;
7837         } else {
7838                 DRM_ERROR("Unsupported divider value\n");
7839                 return;
7840         }
7841
7842         if (crtc->config->has_pch_encoder)
7843                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7844         else
7845                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7846 }
7847
7848 static void vlv_compute_dpll(struct intel_crtc *crtc,
7849                              struct intel_crtc_state *pipe_config)
7850 {
7851         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7852                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7853         if (crtc->pipe != PIPE_A)
7854                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7855
7856         /* DPLL not used with DSI, but still need the rest set up */
7857         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7858                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7859                         DPLL_EXT_BUFFER_ENABLE_VLV;
7860
7861         pipe_config->dpll_hw_state.dpll_md =
7862                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7863 }
7864
7865 static void chv_compute_dpll(struct intel_crtc *crtc,
7866                              struct intel_crtc_state *pipe_config)
7867 {
7868         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7869                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7870         if (crtc->pipe != PIPE_A)
7871                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7872
7873         /* DPLL not used with DSI, but still need the rest set up */
7874         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7875                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7876
7877         pipe_config->dpll_hw_state.dpll_md =
7878                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7879 }
7880
7881 static void vlv_prepare_pll(struct intel_crtc *crtc,
7882                             const struct intel_crtc_state *pipe_config)
7883 {
7884         struct drm_device *dev = crtc->base.dev;
7885         struct drm_i915_private *dev_priv = to_i915(dev);
7886         enum pipe pipe = crtc->pipe;
7887         u32 mdiv;
7888         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7889         u32 coreclk, reg_val;
7890
7891         /* Enable Refclk */
7892         I915_WRITE(DPLL(pipe),
7893                    pipe_config->dpll_hw_state.dpll &
7894                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7895
7896         /* No need to actually set up the DPLL with DSI */
7897         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7898                 return;
7899
7900         mutex_lock(&dev_priv->sb_lock);
7901
7902         bestn = pipe_config->dpll.n;
7903         bestm1 = pipe_config->dpll.m1;
7904         bestm2 = pipe_config->dpll.m2;
7905         bestp1 = pipe_config->dpll.p1;
7906         bestp2 = pipe_config->dpll.p2;
7907
7908         /* See eDP HDMI DPIO driver vbios notes doc */
7909
7910         /* PLL B needs special handling */
7911         if (pipe == PIPE_B)
7912                 vlv_pllb_recal_opamp(dev_priv, pipe);
7913
7914         /* Set up Tx target for periodic Rcomp update */
7915         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7916
7917         /* Disable target IRef on PLL */
7918         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7919         reg_val &= 0x00ffffff;
7920         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7921
7922         /* Disable fast lock */
7923         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7924
7925         /* Set idtafcrecal before PLL is enabled */
7926         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7927         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7928         mdiv |= ((bestn << DPIO_N_SHIFT));
7929         mdiv |= (1 << DPIO_K_SHIFT);
7930
7931         /*
7932          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7933          * but we don't support that).
7934          * Note: don't use the DAC post divider as it seems unstable.
7935          */
7936         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7937         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7938
7939         mdiv |= DPIO_ENABLE_CALIBRATION;
7940         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7941
7942         /* Set HBR and RBR LPF coefficients */
7943         if (pipe_config->port_clock == 162000 ||
7944             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7945             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7946                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7947                                  0x009f0003);
7948         else
7949                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7950                                  0x00d0000f);
7951
7952         if (intel_crtc_has_dp_encoder(pipe_config)) {
7953                 /* Use SSC source */
7954                 if (pipe == PIPE_A)
7955                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7956                                          0x0df40000);
7957                 else
7958                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7959                                          0x0df70000);
7960         } else { /* HDMI or VGA */
7961                 /* Use bend source */
7962                 if (pipe == PIPE_A)
7963                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7964                                          0x0df70000);
7965                 else
7966                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7967                                          0x0df40000);
7968         }
7969
7970         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7971         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7972         if (intel_crtc_has_dp_encoder(crtc->config))
7973                 coreclk |= 0x01000000;
7974         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7975
7976         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7977         mutex_unlock(&dev_priv->sb_lock);
7978 }
7979
7980 static void chv_prepare_pll(struct intel_crtc *crtc,
7981                             const struct intel_crtc_state *pipe_config)
7982 {
7983         struct drm_device *dev = crtc->base.dev;
7984         struct drm_i915_private *dev_priv = to_i915(dev);
7985         enum pipe pipe = crtc->pipe;
7986         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7987         u32 loopfilter, tribuf_calcntr;
7988         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7989         u32 dpio_val;
7990         int vco;
7991
7992         /* Enable Refclk and SSC */
7993         I915_WRITE(DPLL(pipe),
7994                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7995
7996         /* No need to actually set up the DPLL with DSI */
7997         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7998                 return;
7999
8000         bestn = pipe_config->dpll.n;
8001         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
8002         bestm1 = pipe_config->dpll.m1;
8003         bestm2 = pipe_config->dpll.m2 >> 22;
8004         bestp1 = pipe_config->dpll.p1;
8005         bestp2 = pipe_config->dpll.p2;
8006         vco = pipe_config->dpll.vco;
8007         dpio_val = 0;
8008         loopfilter = 0;
8009
8010         mutex_lock(&dev_priv->sb_lock);
8011
8012         /* p1 and p2 divider */
8013         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8014                         5 << DPIO_CHV_S1_DIV_SHIFT |
8015                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8016                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8017                         1 << DPIO_CHV_K_DIV_SHIFT);
8018
8019         /* Feedback post-divider - m2 */
8020         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8021
8022         /* Feedback refclk divider - n and m1 */
8023         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8024                         DPIO_CHV_M1_DIV_BY_2 |
8025                         1 << DPIO_CHV_N_DIV_SHIFT);
8026
8027         /* M2 fraction division */
8028         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8029
8030         /* M2 fraction division enable */
8031         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8032         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8033         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8034         if (bestm2_frac)
8035                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8036         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8037
8038         /* Program digital lock detect threshold */
8039         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8040         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8041                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8042         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8043         if (!bestm2_frac)
8044                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8045         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8046
8047         /* Loop filter */
8048         if (vco == 5400000) {
8049                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8050                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8051                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8052                 tribuf_calcntr = 0x9;
8053         } else if (vco <= 6200000) {
8054                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8055                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8056                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8057                 tribuf_calcntr = 0x9;
8058         } else if (vco <= 6480000) {
8059                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8060                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8061                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8062                 tribuf_calcntr = 0x8;
8063         } else {
8064                 /* Not supported. Apply the same limits as in the max case */
8065                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8066                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8067                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8068                 tribuf_calcntr = 0;
8069         }
8070         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8071
8072         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8073         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8074         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8075         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8076
8077         /* AFC Recal */
8078         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8079                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8080                         DPIO_AFC_RECAL);
8081
8082         mutex_unlock(&dev_priv->sb_lock);
8083 }
8084
8085 /**
8086  * vlv_force_pll_on - forcibly enable just the PLL
8087  * @dev_priv: i915 private structure
8088  * @pipe: pipe PLL to enable
8089  * @dpll: PLL configuration
8090  *
8091  * Enable the PLL for @pipe using the supplied @dpll config. To be used
8092  * in cases where we need the PLL enabled even when @pipe is not going to
8093  * be enabled.
8094  */
8095 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
8096                      const struct dpll *dpll)
8097 {
8098         struct intel_crtc *crtc =
8099                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
8100         struct intel_crtc_state *pipe_config;
8101
8102         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8103         if (!pipe_config)
8104                 return -ENOMEM;
8105
8106         pipe_config->base.crtc = &crtc->base;
8107         pipe_config->pixel_multiplier = 1;
8108         pipe_config->dpll = *dpll;
8109
8110         if (IS_CHERRYVIEW(dev)) {
8111                 chv_compute_dpll(crtc, pipe_config);
8112                 chv_prepare_pll(crtc, pipe_config);
8113                 chv_enable_pll(crtc, pipe_config);
8114         } else {
8115                 vlv_compute_dpll(crtc, pipe_config);
8116                 vlv_prepare_pll(crtc, pipe_config);
8117                 vlv_enable_pll(crtc, pipe_config);
8118         }
8119
8120         kfree(pipe_config);
8121
8122         return 0;
8123 }
8124
8125 /**
8126  * vlv_force_pll_off - forcibly disable just the PLL
8127  * @dev_priv: i915 private structure
8128  * @pipe: pipe PLL to disable
8129  *
8130  * Disable the PLL for @pipe. To be used in cases where we need
8131  * the PLL enabled even when @pipe is not going to be enabled.
8132  */
8133 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
8134 {
8135         if (IS_CHERRYVIEW(dev))
8136                 chv_disable_pll(to_i915(dev), pipe);
8137         else
8138                 vlv_disable_pll(to_i915(dev), pipe);
8139 }
8140
8141 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8142                               struct intel_crtc_state *crtc_state,
8143                               struct dpll *reduced_clock)
8144 {
8145         struct drm_device *dev = crtc->base.dev;
8146         struct drm_i915_private *dev_priv = to_i915(dev);
8147         u32 dpll;
8148         struct dpll *clock = &crtc_state->dpll;
8149
8150         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8151
8152         dpll = DPLL_VGA_MODE_DIS;
8153
8154         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8155                 dpll |= DPLLB_MODE_LVDS;
8156         else
8157                 dpll |= DPLLB_MODE_DAC_SERIAL;
8158
8159         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8160                 dpll |= (crtc_state->pixel_multiplier - 1)
8161                         << SDVO_MULTIPLIER_SHIFT_HIRES;
8162         }
8163
8164         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8165             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8166                 dpll |= DPLL_SDVO_HIGH_SPEED;
8167
8168         if (intel_crtc_has_dp_encoder(crtc_state))
8169                 dpll |= DPLL_SDVO_HIGH_SPEED;
8170
8171         /* compute bitmask from p1 value */
8172         if (IS_PINEVIEW(dev))
8173                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8174         else {
8175                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8176                 if (IS_G4X(dev) && reduced_clock)
8177                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8178         }
8179         switch (clock->p2) {
8180         case 5:
8181                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8182                 break;
8183         case 7:
8184                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8185                 break;
8186         case 10:
8187                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8188                 break;
8189         case 14:
8190                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8191                 break;
8192         }
8193         if (INTEL_INFO(dev)->gen >= 4)
8194                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8195
8196         if (crtc_state->sdvo_tv_clock)
8197                 dpll |= PLL_REF_INPUT_TVCLKINBC;
8198         else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8199                  intel_panel_use_ssc(dev_priv))
8200                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8201         else
8202                 dpll |= PLL_REF_INPUT_DREFCLK;
8203
8204         dpll |= DPLL_VCO_ENABLE;
8205         crtc_state->dpll_hw_state.dpll = dpll;
8206
8207         if (INTEL_INFO(dev)->gen >= 4) {
8208                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8209                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8210                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8211         }
8212 }
8213
8214 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8215                               struct intel_crtc_state *crtc_state,
8216                               struct dpll *reduced_clock)
8217 {
8218         struct drm_device *dev = crtc->base.dev;
8219         struct drm_i915_private *dev_priv = to_i915(dev);
8220         u32 dpll;
8221         struct dpll *clock = &crtc_state->dpll;
8222
8223         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8224
8225         dpll = DPLL_VGA_MODE_DIS;
8226
8227         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8228                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8229         } else {
8230                 if (clock->p1 == 2)
8231                         dpll |= PLL_P1_DIVIDE_BY_TWO;
8232                 else
8233                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8234                 if (clock->p2 == 4)
8235                         dpll |= PLL_P2_DIVIDE_BY_4;
8236         }
8237
8238         if (!IS_I830(dev) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8239                 dpll |= DPLL_DVO_2X_MODE;
8240
8241         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8242             intel_panel_use_ssc(dev_priv))
8243                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8244         else
8245                 dpll |= PLL_REF_INPUT_DREFCLK;
8246
8247         dpll |= DPLL_VCO_ENABLE;
8248         crtc_state->dpll_hw_state.dpll = dpll;
8249 }
8250
8251 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
8252 {
8253         struct drm_device *dev = intel_crtc->base.dev;
8254         struct drm_i915_private *dev_priv = to_i915(dev);
8255         enum pipe pipe = intel_crtc->pipe;
8256         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8257         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
8258         uint32_t crtc_vtotal, crtc_vblank_end;
8259         int vsyncshift = 0;
8260
8261         /* We need to be careful not to changed the adjusted mode, for otherwise
8262          * the hw state checker will get angry at the mismatch. */
8263         crtc_vtotal = adjusted_mode->crtc_vtotal;
8264         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8265
8266         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8267                 /* the chip adds 2 halflines automatically */
8268                 crtc_vtotal -= 1;
8269                 crtc_vblank_end -= 1;
8270
8271                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8272                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8273                 else
8274                         vsyncshift = adjusted_mode->crtc_hsync_start -
8275                                 adjusted_mode->crtc_htotal / 2;
8276                 if (vsyncshift < 0)
8277                         vsyncshift += adjusted_mode->crtc_htotal;
8278         }
8279
8280         if (INTEL_INFO(dev)->gen > 3)
8281                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8282
8283         I915_WRITE(HTOTAL(cpu_transcoder),
8284                    (adjusted_mode->crtc_hdisplay - 1) |
8285                    ((adjusted_mode->crtc_htotal - 1) << 16));
8286         I915_WRITE(HBLANK(cpu_transcoder),
8287                    (adjusted_mode->crtc_hblank_start - 1) |
8288                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
8289         I915_WRITE(HSYNC(cpu_transcoder),
8290                    (adjusted_mode->crtc_hsync_start - 1) |
8291                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
8292
8293         I915_WRITE(VTOTAL(cpu_transcoder),
8294                    (adjusted_mode->crtc_vdisplay - 1) |
8295                    ((crtc_vtotal - 1) << 16));
8296         I915_WRITE(VBLANK(cpu_transcoder),
8297                    (adjusted_mode->crtc_vblank_start - 1) |
8298                    ((crtc_vblank_end - 1) << 16));
8299         I915_WRITE(VSYNC(cpu_transcoder),
8300                    (adjusted_mode->crtc_vsync_start - 1) |
8301                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
8302
8303         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8304          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8305          * documented on the DDI_FUNC_CTL register description, EDP Input Select
8306          * bits. */
8307         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
8308             (pipe == PIPE_B || pipe == PIPE_C))
8309                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8310
8311 }
8312
8313 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
8314 {
8315         struct drm_device *dev = intel_crtc->base.dev;
8316         struct drm_i915_private *dev_priv = to_i915(dev);
8317         enum pipe pipe = intel_crtc->pipe;
8318
8319         /* pipesrc controls the size that is scaled from, which should
8320          * always be the user's requested size.
8321          */
8322         I915_WRITE(PIPESRC(pipe),
8323                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
8324                    (intel_crtc->config->pipe_src_h - 1));
8325 }
8326
8327 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8328                                    struct intel_crtc_state *pipe_config)
8329 {
8330         struct drm_device *dev = crtc->base.dev;
8331         struct drm_i915_private *dev_priv = to_i915(dev);
8332         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8333         uint32_t tmp;
8334
8335         tmp = I915_READ(HTOTAL(cpu_transcoder));
8336         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8337         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8338         tmp = I915_READ(HBLANK(cpu_transcoder));
8339         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
8340         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
8341         tmp = I915_READ(HSYNC(cpu_transcoder));
8342         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8343         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8344
8345         tmp = I915_READ(VTOTAL(cpu_transcoder));
8346         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8347         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8348         tmp = I915_READ(VBLANK(cpu_transcoder));
8349         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
8350         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
8351         tmp = I915_READ(VSYNC(cpu_transcoder));
8352         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8353         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8354
8355         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
8356                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8357                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8358                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8359         }
8360 }
8361
8362 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8363                                     struct intel_crtc_state *pipe_config)
8364 {
8365         struct drm_device *dev = crtc->base.dev;
8366         struct drm_i915_private *dev_priv = to_i915(dev);
8367         u32 tmp;
8368
8369         tmp = I915_READ(PIPESRC(crtc->pipe));
8370         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8371         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8372
8373         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8374         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8375 }
8376
8377 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8378                                  struct intel_crtc_state *pipe_config)
8379 {
8380         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8381         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8382         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8383         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8384
8385         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8386         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8387         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8388         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8389
8390         mode->flags = pipe_config->base.adjusted_mode.flags;
8391         mode->type = DRM_MODE_TYPE_DRIVER;
8392
8393         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8394         mode->flags |= pipe_config->base.adjusted_mode.flags;
8395
8396         mode->hsync = drm_mode_hsync(mode);
8397         mode->vrefresh = drm_mode_vrefresh(mode);
8398         drm_mode_set_name(mode);
8399 }
8400
8401 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
8402 {
8403         struct drm_device *dev = intel_crtc->base.dev;
8404         struct drm_i915_private *dev_priv = to_i915(dev);
8405         uint32_t pipeconf;
8406
8407         pipeconf = 0;
8408
8409         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
8410             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8411                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
8412
8413         if (intel_crtc->config->double_wide)
8414                 pipeconf |= PIPECONF_DOUBLE_WIDE;
8415
8416         /* only g4x and later have fancy bpc/dither controls */
8417         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8418                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8419                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
8420                         pipeconf |= PIPECONF_DITHER_EN |
8421                                     PIPECONF_DITHER_TYPE_SP;
8422
8423                 switch (intel_crtc->config->pipe_bpp) {
8424                 case 18:
8425                         pipeconf |= PIPECONF_6BPC;
8426                         break;
8427                 case 24:
8428                         pipeconf |= PIPECONF_8BPC;
8429                         break;
8430                 case 30:
8431                         pipeconf |= PIPECONF_10BPC;
8432                         break;
8433                 default:
8434                         /* Case prevented by intel_choose_pipe_bpp_dither. */
8435                         BUG();
8436                 }
8437         }
8438
8439         if (HAS_PIPE_CXSR(dev)) {
8440                 if (intel_crtc->lowfreq_avail) {
8441                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
8442                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
8443                 } else {
8444                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
8445                 }
8446         }
8447
8448         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8449                 if (INTEL_INFO(dev)->gen < 4 ||
8450                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8451                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8452                 else
8453                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8454         } else
8455                 pipeconf |= PIPECONF_PROGRESSIVE;
8456
8457         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8458              intel_crtc->config->limited_color_range)
8459                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8460
8461         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
8462         POSTING_READ(PIPECONF(intel_crtc->pipe));
8463 }
8464
8465 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8466                                    struct intel_crtc_state *crtc_state)
8467 {
8468         struct drm_device *dev = crtc->base.dev;
8469         struct drm_i915_private *dev_priv = to_i915(dev);
8470         const struct intel_limit *limit;
8471         int refclk = 48000;
8472
8473         memset(&crtc_state->dpll_hw_state, 0,
8474                sizeof(crtc_state->dpll_hw_state));
8475
8476         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8477                 if (intel_panel_use_ssc(dev_priv)) {
8478                         refclk = dev_priv->vbt.lvds_ssc_freq;
8479                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8480                 }
8481
8482                 limit = &intel_limits_i8xx_lvds;
8483         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8484                 limit = &intel_limits_i8xx_dvo;
8485         } else {
8486                 limit = &intel_limits_i8xx_dac;
8487         }
8488
8489         if (!crtc_state->clock_set &&
8490             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8491                                  refclk, NULL, &crtc_state->dpll)) {
8492                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8493                 return -EINVAL;
8494         }
8495
8496         i8xx_compute_dpll(crtc, crtc_state, NULL);
8497
8498         return 0;
8499 }
8500
8501 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8502                                   struct intel_crtc_state *crtc_state)
8503 {
8504         struct drm_device *dev = crtc->base.dev;
8505         struct drm_i915_private *dev_priv = to_i915(dev);
8506         const struct intel_limit *limit;
8507         int refclk = 96000;
8508
8509         memset(&crtc_state->dpll_hw_state, 0,
8510                sizeof(crtc_state->dpll_hw_state));
8511
8512         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8513                 if (intel_panel_use_ssc(dev_priv)) {
8514                         refclk = dev_priv->vbt.lvds_ssc_freq;
8515                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8516                 }
8517
8518                 if (intel_is_dual_link_lvds(dev))
8519                         limit = &intel_limits_g4x_dual_channel_lvds;
8520                 else
8521                         limit = &intel_limits_g4x_single_channel_lvds;
8522         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8523                    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8524                 limit = &intel_limits_g4x_hdmi;
8525         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8526                 limit = &intel_limits_g4x_sdvo;
8527         } else {
8528                 /* The option is for other outputs */
8529                 limit = &intel_limits_i9xx_sdvo;
8530         }
8531
8532         if (!crtc_state->clock_set &&
8533             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8534                                 refclk, NULL, &crtc_state->dpll)) {
8535                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8536                 return -EINVAL;
8537         }
8538
8539         i9xx_compute_dpll(crtc, crtc_state, NULL);
8540
8541         return 0;
8542 }
8543
8544 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8545                                   struct intel_crtc_state *crtc_state)
8546 {
8547         struct drm_device *dev = crtc->base.dev;
8548         struct drm_i915_private *dev_priv = to_i915(dev);
8549         const struct intel_limit *limit;
8550         int refclk = 96000;
8551
8552         memset(&crtc_state->dpll_hw_state, 0,
8553                sizeof(crtc_state->dpll_hw_state));
8554
8555         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8556                 if (intel_panel_use_ssc(dev_priv)) {
8557                         refclk = dev_priv->vbt.lvds_ssc_freq;
8558                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8559                 }
8560
8561                 limit = &intel_limits_pineview_lvds;
8562         } else {
8563                 limit = &intel_limits_pineview_sdvo;
8564         }
8565
8566         if (!crtc_state->clock_set &&
8567             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8568                                 refclk, NULL, &crtc_state->dpll)) {
8569                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8570                 return -EINVAL;
8571         }
8572
8573         i9xx_compute_dpll(crtc, crtc_state, NULL);
8574
8575         return 0;
8576 }
8577
8578 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8579                                    struct intel_crtc_state *crtc_state)
8580 {
8581         struct drm_device *dev = crtc->base.dev;
8582         struct drm_i915_private *dev_priv = to_i915(dev);
8583         const struct intel_limit *limit;
8584         int refclk = 96000;
8585
8586         memset(&crtc_state->dpll_hw_state, 0,
8587                sizeof(crtc_state->dpll_hw_state));
8588
8589         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8590                 if (intel_panel_use_ssc(dev_priv)) {
8591                         refclk = dev_priv->vbt.lvds_ssc_freq;
8592                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8593                 }
8594
8595                 limit = &intel_limits_i9xx_lvds;
8596         } else {
8597                 limit = &intel_limits_i9xx_sdvo;
8598         }
8599
8600         if (!crtc_state->clock_set &&
8601             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8602                                  refclk, NULL, &crtc_state->dpll)) {
8603                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8604                 return -EINVAL;
8605         }
8606
8607         i9xx_compute_dpll(crtc, crtc_state, NULL);
8608
8609         return 0;
8610 }
8611
8612 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8613                                   struct intel_crtc_state *crtc_state)
8614 {
8615         int refclk = 100000;
8616         const struct intel_limit *limit = &intel_limits_chv;
8617
8618         memset(&crtc_state->dpll_hw_state, 0,
8619                sizeof(crtc_state->dpll_hw_state));
8620
8621         if (!crtc_state->clock_set &&
8622             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8623                                 refclk, NULL, &crtc_state->dpll)) {
8624                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8625                 return -EINVAL;
8626         }
8627
8628         chv_compute_dpll(crtc, crtc_state);
8629
8630         return 0;
8631 }
8632
8633 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8634                                   struct intel_crtc_state *crtc_state)
8635 {
8636         int refclk = 100000;
8637         const struct intel_limit *limit = &intel_limits_vlv;
8638
8639         memset(&crtc_state->dpll_hw_state, 0,
8640                sizeof(crtc_state->dpll_hw_state));
8641
8642         if (!crtc_state->clock_set &&
8643             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8644                                 refclk, NULL, &crtc_state->dpll)) {
8645                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8646                 return -EINVAL;
8647         }
8648
8649         vlv_compute_dpll(crtc, crtc_state);
8650
8651         return 0;
8652 }
8653
8654 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8655                                  struct intel_crtc_state *pipe_config)
8656 {
8657         struct drm_device *dev = crtc->base.dev;
8658         struct drm_i915_private *dev_priv = to_i915(dev);
8659         uint32_t tmp;
8660
8661         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8662                 return;
8663
8664         tmp = I915_READ(PFIT_CONTROL);
8665         if (!(tmp & PFIT_ENABLE))
8666                 return;
8667
8668         /* Check whether the pfit is attached to our pipe. */
8669         if (INTEL_INFO(dev)->gen < 4) {
8670                 if (crtc->pipe != PIPE_B)
8671                         return;
8672         } else {
8673                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8674                         return;
8675         }
8676
8677         pipe_config->gmch_pfit.control = tmp;
8678         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8679 }
8680
8681 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8682                                struct intel_crtc_state *pipe_config)
8683 {
8684         struct drm_device *dev = crtc->base.dev;
8685         struct drm_i915_private *dev_priv = to_i915(dev);
8686         int pipe = pipe_config->cpu_transcoder;
8687         struct dpll clock;
8688         u32 mdiv;
8689         int refclk = 100000;
8690
8691         /* In case of DSI, DPLL will not be used */
8692         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8693                 return;
8694
8695         mutex_lock(&dev_priv->sb_lock);
8696         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8697         mutex_unlock(&dev_priv->sb_lock);
8698
8699         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8700         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8701         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8702         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8703         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8704
8705         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8706 }
8707
8708 static void
8709 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8710                               struct intel_initial_plane_config *plane_config)
8711 {
8712         struct drm_device *dev = crtc->base.dev;
8713         struct drm_i915_private *dev_priv = to_i915(dev);
8714         u32 val, base, offset;
8715         int pipe = crtc->pipe, plane = crtc->plane;
8716         int fourcc, pixel_format;
8717         unsigned int aligned_height;
8718         struct drm_framebuffer *fb;
8719         struct intel_framebuffer *intel_fb;
8720
8721         val = I915_READ(DSPCNTR(plane));
8722         if (!(val & DISPLAY_PLANE_ENABLE))
8723                 return;
8724
8725         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8726         if (!intel_fb) {
8727                 DRM_DEBUG_KMS("failed to alloc fb\n");
8728                 return;
8729         }
8730
8731         fb = &intel_fb->base;
8732
8733         if (INTEL_INFO(dev)->gen >= 4) {
8734                 if (val & DISPPLANE_TILED) {
8735                         plane_config->tiling = I915_TILING_X;
8736                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8737                 }
8738         }
8739
8740         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8741         fourcc = i9xx_format_to_fourcc(pixel_format);
8742         fb->pixel_format = fourcc;
8743         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8744
8745         if (INTEL_INFO(dev)->gen >= 4) {
8746                 if (plane_config->tiling)
8747                         offset = I915_READ(DSPTILEOFF(plane));
8748                 else
8749                         offset = I915_READ(DSPLINOFF(plane));
8750                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8751         } else {
8752                 base = I915_READ(DSPADDR(plane));
8753         }
8754         plane_config->base = base;
8755
8756         val = I915_READ(PIPESRC(pipe));
8757         fb->width = ((val >> 16) & 0xfff) + 1;
8758         fb->height = ((val >> 0) & 0xfff) + 1;
8759
8760         val = I915_READ(DSPSTRIDE(pipe));
8761         fb->pitches[0] = val & 0xffffffc0;
8762
8763         aligned_height = intel_fb_align_height(dev, fb->height,
8764                                                fb->pixel_format,
8765                                                fb->modifier[0]);
8766
8767         plane_config->size = fb->pitches[0] * aligned_height;
8768
8769         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8770                       pipe_name(pipe), plane, fb->width, fb->height,
8771                       fb->bits_per_pixel, base, fb->pitches[0],
8772                       plane_config->size);
8773
8774         plane_config->fb = intel_fb;
8775 }
8776
8777 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8778                                struct intel_crtc_state *pipe_config)
8779 {
8780         struct drm_device *dev = crtc->base.dev;
8781         struct drm_i915_private *dev_priv = to_i915(dev);
8782         int pipe = pipe_config->cpu_transcoder;
8783         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8784         struct dpll clock;
8785         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8786         int refclk = 100000;
8787
8788         /* In case of DSI, DPLL will not be used */
8789         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8790                 return;
8791
8792         mutex_lock(&dev_priv->sb_lock);
8793         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8794         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8795         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8796         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8797         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8798         mutex_unlock(&dev_priv->sb_lock);
8799
8800         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8801         clock.m2 = (pll_dw0 & 0xff) << 22;
8802         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8803                 clock.m2 |= pll_dw2 & 0x3fffff;
8804         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8805         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8806         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8807
8808         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8809 }
8810
8811 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8812                                  struct intel_crtc_state *pipe_config)
8813 {
8814         struct drm_device *dev = crtc->base.dev;
8815         struct drm_i915_private *dev_priv = to_i915(dev);
8816         enum intel_display_power_domain power_domain;
8817         uint32_t tmp;
8818         bool ret;
8819
8820         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8821         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8822                 return false;
8823
8824         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8825         pipe_config->shared_dpll = NULL;
8826
8827         ret = false;
8828
8829         tmp = I915_READ(PIPECONF(crtc->pipe));
8830         if (!(tmp & PIPECONF_ENABLE))
8831                 goto out;
8832
8833         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8834                 switch (tmp & PIPECONF_BPC_MASK) {
8835                 case PIPECONF_6BPC:
8836                         pipe_config->pipe_bpp = 18;
8837                         break;
8838                 case PIPECONF_8BPC:
8839                         pipe_config->pipe_bpp = 24;
8840                         break;
8841                 case PIPECONF_10BPC:
8842                         pipe_config->pipe_bpp = 30;
8843                         break;
8844                 default:
8845                         break;
8846                 }
8847         }
8848
8849         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8850             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8851                 pipe_config->limited_color_range = true;
8852
8853         if (INTEL_INFO(dev)->gen < 4)
8854                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8855
8856         intel_get_pipe_timings(crtc, pipe_config);
8857         intel_get_pipe_src_size(crtc, pipe_config);
8858
8859         i9xx_get_pfit_config(crtc, pipe_config);
8860
8861         if (INTEL_INFO(dev)->gen >= 4) {
8862                 /* No way to read it out on pipes B and C */
8863                 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8864                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
8865                 else
8866                         tmp = I915_READ(DPLL_MD(crtc->pipe));
8867                 pipe_config->pixel_multiplier =
8868                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8869                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8870                 pipe_config->dpll_hw_state.dpll_md = tmp;
8871         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8872                 tmp = I915_READ(DPLL(crtc->pipe));
8873                 pipe_config->pixel_multiplier =
8874                         ((tmp & SDVO_MULTIPLIER_MASK)
8875                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8876         } else {
8877                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8878                  * port and will be fixed up in the encoder->get_config
8879                  * function. */
8880                 pipe_config->pixel_multiplier = 1;
8881         }
8882         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8883         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8884                 /*
8885                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8886                  * on 830. Filter it out here so that we don't
8887                  * report errors due to that.
8888                  */
8889                 if (IS_I830(dev))
8890                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8891
8892                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8893                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8894         } else {
8895                 /* Mask out read-only status bits. */
8896                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8897                                                      DPLL_PORTC_READY_MASK |
8898                                                      DPLL_PORTB_READY_MASK);
8899         }
8900
8901         if (IS_CHERRYVIEW(dev))
8902                 chv_crtc_clock_get(crtc, pipe_config);
8903         else if (IS_VALLEYVIEW(dev))
8904                 vlv_crtc_clock_get(crtc, pipe_config);
8905         else
8906                 i9xx_crtc_clock_get(crtc, pipe_config);
8907
8908         /*
8909          * Normally the dotclock is filled in by the encoder .get_config()
8910          * but in case the pipe is enabled w/o any ports we need a sane
8911          * default.
8912          */
8913         pipe_config->base.adjusted_mode.crtc_clock =
8914                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8915
8916         ret = true;
8917
8918 out:
8919         intel_display_power_put(dev_priv, power_domain);
8920
8921         return ret;
8922 }
8923
8924 static void ironlake_init_pch_refclk(struct drm_device *dev)
8925 {
8926         struct drm_i915_private *dev_priv = to_i915(dev);
8927         struct intel_encoder *encoder;
8928         int i;
8929         u32 val, final;
8930         bool has_lvds = false;
8931         bool has_cpu_edp = false;
8932         bool has_panel = false;
8933         bool has_ck505 = false;
8934         bool can_ssc = false;
8935         bool using_ssc_source = false;
8936
8937         /* We need to take the global config into account */
8938         for_each_intel_encoder(dev, encoder) {
8939                 switch (encoder->type) {
8940                 case INTEL_OUTPUT_LVDS:
8941                         has_panel = true;
8942                         has_lvds = true;
8943                         break;
8944                 case INTEL_OUTPUT_EDP:
8945                         has_panel = true;
8946                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8947                                 has_cpu_edp = true;
8948                         break;
8949                 default:
8950                         break;
8951                 }
8952         }
8953
8954         if (HAS_PCH_IBX(dev)) {
8955                 has_ck505 = dev_priv->vbt.display_clock_mode;
8956                 can_ssc = has_ck505;
8957         } else {
8958                 has_ck505 = false;
8959                 can_ssc = true;
8960         }
8961
8962         /* Check if any DPLLs are using the SSC source */
8963         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8964                 u32 temp = I915_READ(PCH_DPLL(i));
8965
8966                 if (!(temp & DPLL_VCO_ENABLE))
8967                         continue;
8968
8969                 if ((temp & PLL_REF_INPUT_MASK) ==
8970                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8971                         using_ssc_source = true;
8972                         break;
8973                 }
8974         }
8975
8976         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8977                       has_panel, has_lvds, has_ck505, using_ssc_source);
8978
8979         /* Ironlake: try to setup display ref clock before DPLL
8980          * enabling. This is only under driver's control after
8981          * PCH B stepping, previous chipset stepping should be
8982          * ignoring this setting.
8983          */
8984         val = I915_READ(PCH_DREF_CONTROL);
8985
8986         /* As we must carefully and slowly disable/enable each source in turn,
8987          * compute the final state we want first and check if we need to
8988          * make any changes at all.
8989          */
8990         final = val;
8991         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8992         if (has_ck505)
8993                 final |= DREF_NONSPREAD_CK505_ENABLE;
8994         else
8995                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8996
8997         final &= ~DREF_SSC_SOURCE_MASK;
8998         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8999         final &= ~DREF_SSC1_ENABLE;
9000
9001         if (has_panel) {
9002                 final |= DREF_SSC_SOURCE_ENABLE;
9003
9004                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9005                         final |= DREF_SSC1_ENABLE;
9006
9007                 if (has_cpu_edp) {
9008                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
9009                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9010                         else
9011                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9012                 } else
9013                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9014         } else if (using_ssc_source) {
9015                 final |= DREF_SSC_SOURCE_ENABLE;
9016                 final |= DREF_SSC1_ENABLE;
9017         }
9018
9019         if (final == val)
9020                 return;
9021
9022         /* Always enable nonspread source */
9023         val &= ~DREF_NONSPREAD_SOURCE_MASK;
9024
9025         if (has_ck505)
9026                 val |= DREF_NONSPREAD_CK505_ENABLE;
9027         else
9028                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
9029
9030         if (has_panel) {
9031                 val &= ~DREF_SSC_SOURCE_MASK;
9032                 val |= DREF_SSC_SOURCE_ENABLE;
9033
9034                 /* SSC must be turned on before enabling the CPU output  */
9035                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9036                         DRM_DEBUG_KMS("Using SSC on panel\n");
9037                         val |= DREF_SSC1_ENABLE;
9038                 } else
9039                         val &= ~DREF_SSC1_ENABLE;
9040
9041                 /* Get SSC going before enabling the outputs */
9042                 I915_WRITE(PCH_DREF_CONTROL, val);
9043                 POSTING_READ(PCH_DREF_CONTROL);
9044                 udelay(200);
9045
9046                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9047
9048                 /* Enable CPU source on CPU attached eDP */
9049                 if (has_cpu_edp) {
9050                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9051                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
9052                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9053                         } else
9054                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9055                 } else
9056                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9057
9058                 I915_WRITE(PCH_DREF_CONTROL, val);
9059                 POSTING_READ(PCH_DREF_CONTROL);
9060                 udelay(200);
9061         } else {
9062                 DRM_DEBUG_KMS("Disabling CPU source output\n");
9063
9064                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9065
9066                 /* Turn off CPU output */
9067                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9068
9069                 I915_WRITE(PCH_DREF_CONTROL, val);
9070                 POSTING_READ(PCH_DREF_CONTROL);
9071                 udelay(200);
9072
9073                 if (!using_ssc_source) {
9074                         DRM_DEBUG_KMS("Disabling SSC source\n");
9075
9076                         /* Turn off the SSC source */
9077                         val &= ~DREF_SSC_SOURCE_MASK;
9078                         val |= DREF_SSC_SOURCE_DISABLE;
9079
9080                         /* Turn off SSC1 */
9081                         val &= ~DREF_SSC1_ENABLE;
9082
9083                         I915_WRITE(PCH_DREF_CONTROL, val);
9084                         POSTING_READ(PCH_DREF_CONTROL);
9085                         udelay(200);
9086                 }
9087         }
9088
9089         BUG_ON(val != final);
9090 }
9091
9092 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9093 {
9094         uint32_t tmp;
9095
9096         tmp = I915_READ(SOUTH_CHICKEN2);
9097         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9098         I915_WRITE(SOUTH_CHICKEN2, tmp);
9099
9100         if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9101                         FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9102                 DRM_ERROR("FDI mPHY reset assert timeout\n");
9103
9104         tmp = I915_READ(SOUTH_CHICKEN2);
9105         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9106         I915_WRITE(SOUTH_CHICKEN2, tmp);
9107
9108         if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9109                          FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9110                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9111 }
9112
9113 /* WaMPhyProgramming:hsw */
9114 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9115 {
9116         uint32_t tmp;
9117
9118         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9119         tmp &= ~(0xFF << 24);
9120         tmp |= (0x12 << 24);
9121         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9122
9123         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9124         tmp |= (1 << 11);
9125         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9126
9127         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9128         tmp |= (1 << 11);
9129         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9130
9131         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9132         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9133         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9134
9135         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9136         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9137         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9138
9139         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9140         tmp &= ~(7 << 13);
9141         tmp |= (5 << 13);
9142         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9143
9144         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9145         tmp &= ~(7 << 13);
9146         tmp |= (5 << 13);
9147         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9148
9149         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9150         tmp &= ~0xFF;
9151         tmp |= 0x1C;
9152         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9153
9154         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9155         tmp &= ~0xFF;
9156         tmp |= 0x1C;
9157         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9158
9159         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9160         tmp &= ~(0xFF << 16);
9161         tmp |= (0x1C << 16);
9162         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9163
9164         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9165         tmp &= ~(0xFF << 16);
9166         tmp |= (0x1C << 16);
9167         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9168
9169         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9170         tmp |= (1 << 27);
9171         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9172
9173         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9174         tmp |= (1 << 27);
9175         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9176
9177         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9178         tmp &= ~(0xF << 28);
9179         tmp |= (4 << 28);
9180         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9181
9182         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9183         tmp &= ~(0xF << 28);
9184         tmp |= (4 << 28);
9185         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9186 }
9187
9188 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9189  * Programming" based on the parameters passed:
9190  * - Sequence to enable CLKOUT_DP
9191  * - Sequence to enable CLKOUT_DP without spread
9192  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9193  */
9194 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
9195                                  bool with_fdi)
9196 {
9197         struct drm_i915_private *dev_priv = to_i915(dev);
9198         uint32_t reg, tmp;
9199
9200         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9201                 with_spread = true;
9202         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
9203                 with_fdi = false;
9204
9205         mutex_lock(&dev_priv->sb_lock);
9206
9207         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9208         tmp &= ~SBI_SSCCTL_DISABLE;
9209         tmp |= SBI_SSCCTL_PATHALT;
9210         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9211
9212         udelay(24);
9213
9214         if (with_spread) {
9215                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9216                 tmp &= ~SBI_SSCCTL_PATHALT;
9217                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9218
9219                 if (with_fdi) {
9220                         lpt_reset_fdi_mphy(dev_priv);
9221                         lpt_program_fdi_mphy(dev_priv);
9222                 }
9223         }
9224
9225         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
9226         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9227         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9228         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9229
9230         mutex_unlock(&dev_priv->sb_lock);
9231 }
9232
9233 /* Sequence to disable CLKOUT_DP */
9234 static void lpt_disable_clkout_dp(struct drm_device *dev)
9235 {
9236         struct drm_i915_private *dev_priv = to_i915(dev);
9237         uint32_t reg, tmp;
9238
9239         mutex_lock(&dev_priv->sb_lock);
9240
9241         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
9242         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9243         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9244         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9245
9246         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9247         if (!(tmp & SBI_SSCCTL_DISABLE)) {
9248                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9249                         tmp |= SBI_SSCCTL_PATHALT;
9250                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9251                         udelay(32);
9252                 }
9253                 tmp |= SBI_SSCCTL_DISABLE;
9254                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9255         }
9256
9257         mutex_unlock(&dev_priv->sb_lock);
9258 }
9259
9260 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9261
9262 static const uint16_t sscdivintphase[] = {
9263         [BEND_IDX( 50)] = 0x3B23,
9264         [BEND_IDX( 45)] = 0x3B23,
9265         [BEND_IDX( 40)] = 0x3C23,
9266         [BEND_IDX( 35)] = 0x3C23,
9267         [BEND_IDX( 30)] = 0x3D23,
9268         [BEND_IDX( 25)] = 0x3D23,
9269         [BEND_IDX( 20)] = 0x3E23,
9270         [BEND_IDX( 15)] = 0x3E23,
9271         [BEND_IDX( 10)] = 0x3F23,
9272         [BEND_IDX(  5)] = 0x3F23,
9273         [BEND_IDX(  0)] = 0x0025,
9274         [BEND_IDX( -5)] = 0x0025,
9275         [BEND_IDX(-10)] = 0x0125,
9276         [BEND_IDX(-15)] = 0x0125,
9277         [BEND_IDX(-20)] = 0x0225,
9278         [BEND_IDX(-25)] = 0x0225,
9279         [BEND_IDX(-30)] = 0x0325,
9280         [BEND_IDX(-35)] = 0x0325,
9281         [BEND_IDX(-40)] = 0x0425,
9282         [BEND_IDX(-45)] = 0x0425,
9283         [BEND_IDX(-50)] = 0x0525,
9284 };
9285
9286 /*
9287  * Bend CLKOUT_DP
9288  * steps -50 to 50 inclusive, in steps of 5
9289  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9290  * change in clock period = -(steps / 10) * 5.787 ps
9291  */
9292 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9293 {
9294         uint32_t tmp;
9295         int idx = BEND_IDX(steps);
9296
9297         if (WARN_ON(steps % 5 != 0))
9298                 return;
9299
9300         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9301                 return;
9302
9303         mutex_lock(&dev_priv->sb_lock);
9304
9305         if (steps % 10 != 0)
9306                 tmp = 0xAAAAAAAB;
9307         else
9308                 tmp = 0x00000000;
9309         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9310
9311         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9312         tmp &= 0xffff0000;
9313         tmp |= sscdivintphase[idx];
9314         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9315
9316         mutex_unlock(&dev_priv->sb_lock);
9317 }
9318
9319 #undef BEND_IDX
9320
9321 static void lpt_init_pch_refclk(struct drm_device *dev)
9322 {
9323         struct intel_encoder *encoder;
9324         bool has_vga = false;
9325
9326         for_each_intel_encoder(dev, encoder) {
9327                 switch (encoder->type) {
9328                 case INTEL_OUTPUT_ANALOG:
9329                         has_vga = true;
9330                         break;
9331                 default:
9332                         break;
9333                 }
9334         }
9335
9336         if (has_vga) {
9337                 lpt_bend_clkout_dp(to_i915(dev), 0);
9338                 lpt_enable_clkout_dp(dev, true, true);
9339         } else {
9340                 lpt_disable_clkout_dp(dev);
9341         }
9342 }
9343
9344 /*
9345  * Initialize reference clocks when the driver loads
9346  */
9347 void intel_init_pch_refclk(struct drm_device *dev)
9348 {
9349         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9350                 ironlake_init_pch_refclk(dev);
9351         else if (HAS_PCH_LPT(dev))
9352                 lpt_init_pch_refclk(dev);
9353 }
9354
9355 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
9356 {
9357         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9358         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9359         int pipe = intel_crtc->pipe;
9360         uint32_t val;
9361
9362         val = 0;
9363
9364         switch (intel_crtc->config->pipe_bpp) {
9365         case 18:
9366                 val |= PIPECONF_6BPC;
9367                 break;
9368         case 24:
9369                 val |= PIPECONF_8BPC;
9370                 break;
9371         case 30:
9372                 val |= PIPECONF_10BPC;
9373                 break;
9374         case 36:
9375                 val |= PIPECONF_12BPC;
9376                 break;
9377         default:
9378                 /* Case prevented by intel_choose_pipe_bpp_dither. */
9379                 BUG();
9380         }
9381
9382         if (intel_crtc->config->dither)
9383                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9384
9385         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9386                 val |= PIPECONF_INTERLACED_ILK;
9387         else
9388                 val |= PIPECONF_PROGRESSIVE;
9389
9390         if (intel_crtc->config->limited_color_range)
9391                 val |= PIPECONF_COLOR_RANGE_SELECT;
9392
9393         I915_WRITE(PIPECONF(pipe), val);
9394         POSTING_READ(PIPECONF(pipe));
9395 }
9396
9397 static void haswell_set_pipeconf(struct drm_crtc *crtc)
9398 {
9399         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9400         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9401         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9402         u32 val = 0;
9403
9404         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
9405                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9406
9407         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9408                 val |= PIPECONF_INTERLACED_ILK;
9409         else
9410                 val |= PIPECONF_PROGRESSIVE;
9411
9412         I915_WRITE(PIPECONF(cpu_transcoder), val);
9413         POSTING_READ(PIPECONF(cpu_transcoder));
9414 }
9415
9416 static void haswell_set_pipemisc(struct drm_crtc *crtc)
9417 {
9418         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9419         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9420
9421         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
9422                 u32 val = 0;
9423
9424                 switch (intel_crtc->config->pipe_bpp) {
9425                 case 18:
9426                         val |= PIPEMISC_DITHER_6_BPC;
9427                         break;
9428                 case 24:
9429                         val |= PIPEMISC_DITHER_8_BPC;
9430                         break;
9431                 case 30:
9432                         val |= PIPEMISC_DITHER_10_BPC;
9433                         break;
9434                 case 36:
9435                         val |= PIPEMISC_DITHER_12_BPC;
9436                         break;
9437                 default:
9438                         /* Case prevented by pipe_config_set_bpp. */
9439                         BUG();
9440                 }
9441
9442                 if (intel_crtc->config->dither)
9443                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9444
9445                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
9446         }
9447 }
9448
9449 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9450 {
9451         /*
9452          * Account for spread spectrum to avoid
9453          * oversubscribing the link. Max center spread
9454          * is 2.5%; use 5% for safety's sake.
9455          */
9456         u32 bps = target_clock * bpp * 21 / 20;
9457         return DIV_ROUND_UP(bps, link_bw * 8);
9458 }
9459
9460 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9461 {
9462         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9463 }
9464
9465 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
9466                                   struct intel_crtc_state *crtc_state,
9467                                   struct dpll *reduced_clock)
9468 {
9469         struct drm_crtc *crtc = &intel_crtc->base;
9470         struct drm_device *dev = crtc->dev;
9471         struct drm_i915_private *dev_priv = to_i915(dev);
9472         u32 dpll, fp, fp2;
9473         int factor;
9474
9475         /* Enable autotuning of the PLL clock (if permissible) */
9476         factor = 21;
9477         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9478                 if ((intel_panel_use_ssc(dev_priv) &&
9479                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
9480                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
9481                         factor = 25;
9482         } else if (crtc_state->sdvo_tv_clock)
9483                 factor = 20;
9484
9485         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9486
9487         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9488                 fp |= FP_CB_TUNE;
9489
9490         if (reduced_clock) {
9491                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
9492
9493                 if (reduced_clock->m < factor * reduced_clock->n)
9494                         fp2 |= FP_CB_TUNE;
9495         } else {
9496                 fp2 = fp;
9497         }
9498
9499         dpll = 0;
9500
9501         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9502                 dpll |= DPLLB_MODE_LVDS;
9503         else
9504                 dpll |= DPLLB_MODE_DAC_SERIAL;
9505
9506         dpll |= (crtc_state->pixel_multiplier - 1)
9507                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9508
9509         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9510             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9511                 dpll |= DPLL_SDVO_HIGH_SPEED;
9512
9513         if (intel_crtc_has_dp_encoder(crtc_state))
9514                 dpll |= DPLL_SDVO_HIGH_SPEED;
9515
9516         /*
9517          * The high speed IO clock is only really required for
9518          * SDVO/HDMI/DP, but we also enable it for CRT to make it
9519          * possible to share the DPLL between CRT and HDMI. Enabling
9520          * the clock needlessly does no real harm, except use up a
9521          * bit of power potentially.
9522          *
9523          * We'll limit this to IVB with 3 pipes, since it has only two
9524          * DPLLs and so DPLL sharing is the only way to get three pipes
9525          * driving PCH ports at the same time. On SNB we could do this,
9526          * and potentially avoid enabling the second DPLL, but it's not
9527          * clear if it''s a win or loss power wise. No point in doing
9528          * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9529          */
9530         if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
9531             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9532                 dpll |= DPLL_SDVO_HIGH_SPEED;
9533
9534         /* compute bitmask from p1 value */
9535         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9536         /* also FPA1 */
9537         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9538
9539         switch (crtc_state->dpll.p2) {
9540         case 5:
9541                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9542                 break;
9543         case 7:
9544                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9545                 break;
9546         case 10:
9547                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9548                 break;
9549         case 14:
9550                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9551                 break;
9552         }
9553
9554         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9555             intel_panel_use_ssc(dev_priv))
9556                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9557         else
9558                 dpll |= PLL_REF_INPUT_DREFCLK;
9559
9560         dpll |= DPLL_VCO_ENABLE;
9561
9562         crtc_state->dpll_hw_state.dpll = dpll;
9563         crtc_state->dpll_hw_state.fp0 = fp;
9564         crtc_state->dpll_hw_state.fp1 = fp2;
9565 }
9566
9567 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9568                                        struct intel_crtc_state *crtc_state)
9569 {
9570         struct drm_device *dev = crtc->base.dev;
9571         struct drm_i915_private *dev_priv = to_i915(dev);
9572         struct dpll reduced_clock;
9573         bool has_reduced_clock = false;
9574         struct intel_shared_dpll *pll;
9575         const struct intel_limit *limit;
9576         int refclk = 120000;
9577
9578         memset(&crtc_state->dpll_hw_state, 0,
9579                sizeof(crtc_state->dpll_hw_state));
9580
9581         crtc->lowfreq_avail = false;
9582
9583         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9584         if (!crtc_state->has_pch_encoder)
9585                 return 0;
9586
9587         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9588                 if (intel_panel_use_ssc(dev_priv)) {
9589                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9590                                       dev_priv->vbt.lvds_ssc_freq);
9591                         refclk = dev_priv->vbt.lvds_ssc_freq;
9592                 }
9593
9594                 if (intel_is_dual_link_lvds(dev)) {
9595                         if (refclk == 100000)
9596                                 limit = &intel_limits_ironlake_dual_lvds_100m;
9597                         else
9598                                 limit = &intel_limits_ironlake_dual_lvds;
9599                 } else {
9600                         if (refclk == 100000)
9601                                 limit = &intel_limits_ironlake_single_lvds_100m;
9602                         else
9603                                 limit = &intel_limits_ironlake_single_lvds;
9604                 }
9605         } else {
9606                 limit = &intel_limits_ironlake_dac;
9607         }
9608
9609         if (!crtc_state->clock_set &&
9610             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9611                                 refclk, NULL, &crtc_state->dpll)) {
9612                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9613                 return -EINVAL;
9614         }
9615
9616         ironlake_compute_dpll(crtc, crtc_state,
9617                               has_reduced_clock ? &reduced_clock : NULL);
9618
9619         pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9620         if (pll == NULL) {
9621                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9622                                  pipe_name(crtc->pipe));
9623                 return -EINVAL;
9624         }
9625
9626         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9627             has_reduced_clock)
9628                 crtc->lowfreq_avail = true;
9629
9630         return 0;
9631 }
9632
9633 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9634                                          struct intel_link_m_n *m_n)
9635 {
9636         struct drm_device *dev = crtc->base.dev;
9637         struct drm_i915_private *dev_priv = to_i915(dev);
9638         enum pipe pipe = crtc->pipe;
9639
9640         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9641         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9642         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9643                 & ~TU_SIZE_MASK;
9644         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9645         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9646                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9647 }
9648
9649 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9650                                          enum transcoder transcoder,
9651                                          struct intel_link_m_n *m_n,
9652                                          struct intel_link_m_n *m2_n2)
9653 {
9654         struct drm_device *dev = crtc->base.dev;
9655         struct drm_i915_private *dev_priv = to_i915(dev);
9656         enum pipe pipe = crtc->pipe;
9657
9658         if (INTEL_INFO(dev)->gen >= 5) {
9659                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9660                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9661                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9662                         & ~TU_SIZE_MASK;
9663                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9664                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9665                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9666                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9667                  * gen < 8) and if DRRS is supported (to make sure the
9668                  * registers are not unnecessarily read).
9669                  */
9670                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9671                         crtc->config->has_drrs) {
9672                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9673                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9674                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9675                                         & ~TU_SIZE_MASK;
9676                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9677                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9678                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9679                 }
9680         } else {
9681                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9682                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9683                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9684                         & ~TU_SIZE_MASK;
9685                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9686                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9687                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9688         }
9689 }
9690
9691 void intel_dp_get_m_n(struct intel_crtc *crtc,
9692                       struct intel_crtc_state *pipe_config)
9693 {
9694         if (pipe_config->has_pch_encoder)
9695                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9696         else
9697                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9698                                              &pipe_config->dp_m_n,
9699                                              &pipe_config->dp_m2_n2);
9700 }
9701
9702 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9703                                         struct intel_crtc_state *pipe_config)
9704 {
9705         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9706                                      &pipe_config->fdi_m_n, NULL);
9707 }
9708
9709 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9710                                     struct intel_crtc_state *pipe_config)
9711 {
9712         struct drm_device *dev = crtc->base.dev;
9713         struct drm_i915_private *dev_priv = to_i915(dev);
9714         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9715         uint32_t ps_ctrl = 0;
9716         int id = -1;
9717         int i;
9718
9719         /* find scaler attached to this pipe */
9720         for (i = 0; i < crtc->num_scalers; i++) {
9721                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9722                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9723                         id = i;
9724                         pipe_config->pch_pfit.enabled = true;
9725                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9726                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9727                         break;
9728                 }
9729         }
9730
9731         scaler_state->scaler_id = id;
9732         if (id >= 0) {
9733                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9734         } else {
9735                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9736         }
9737 }
9738
9739 static void
9740 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9741                                  struct intel_initial_plane_config *plane_config)
9742 {
9743         struct drm_device *dev = crtc->base.dev;
9744         struct drm_i915_private *dev_priv = to_i915(dev);
9745         u32 val, base, offset, stride_mult, tiling;
9746         int pipe = crtc->pipe;
9747         int fourcc, pixel_format;
9748         unsigned int aligned_height;
9749         struct drm_framebuffer *fb;
9750         struct intel_framebuffer *intel_fb;
9751
9752         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9753         if (!intel_fb) {
9754                 DRM_DEBUG_KMS("failed to alloc fb\n");
9755                 return;
9756         }
9757
9758         fb = &intel_fb->base;
9759
9760         val = I915_READ(PLANE_CTL(pipe, 0));
9761         if (!(val & PLANE_CTL_ENABLE))
9762                 goto error;
9763
9764         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9765         fourcc = skl_format_to_fourcc(pixel_format,
9766                                       val & PLANE_CTL_ORDER_RGBX,
9767                                       val & PLANE_CTL_ALPHA_MASK);
9768         fb->pixel_format = fourcc;
9769         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9770
9771         tiling = val & PLANE_CTL_TILED_MASK;
9772         switch (tiling) {
9773         case PLANE_CTL_TILED_LINEAR:
9774                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9775                 break;
9776         case PLANE_CTL_TILED_X:
9777                 plane_config->tiling = I915_TILING_X;
9778                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9779                 break;
9780         case PLANE_CTL_TILED_Y:
9781                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9782                 break;
9783         case PLANE_CTL_TILED_YF:
9784                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9785                 break;
9786         default:
9787                 MISSING_CASE(tiling);
9788                 goto error;
9789         }
9790
9791         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9792         plane_config->base = base;
9793
9794         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9795
9796         val = I915_READ(PLANE_SIZE(pipe, 0));
9797         fb->height = ((val >> 16) & 0xfff) + 1;
9798         fb->width = ((val >> 0) & 0x1fff) + 1;
9799
9800         val = I915_READ(PLANE_STRIDE(pipe, 0));
9801         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9802                                                 fb->pixel_format);
9803         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9804
9805         aligned_height = intel_fb_align_height(dev, fb->height,
9806                                                fb->pixel_format,
9807                                                fb->modifier[0]);
9808
9809         plane_config->size = fb->pitches[0] * aligned_height;
9810
9811         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9812                       pipe_name(pipe), fb->width, fb->height,
9813                       fb->bits_per_pixel, base, fb->pitches[0],
9814                       plane_config->size);
9815
9816         plane_config->fb = intel_fb;
9817         return;
9818
9819 error:
9820         kfree(intel_fb);
9821 }
9822
9823 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9824                                      struct intel_crtc_state *pipe_config)
9825 {
9826         struct drm_device *dev = crtc->base.dev;
9827         struct drm_i915_private *dev_priv = to_i915(dev);
9828         uint32_t tmp;
9829
9830         tmp = I915_READ(PF_CTL(crtc->pipe));
9831
9832         if (tmp & PF_ENABLE) {
9833                 pipe_config->pch_pfit.enabled = true;
9834                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9835                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9836
9837                 /* We currently do not free assignements of panel fitters on
9838                  * ivb/hsw (since we don't use the higher upscaling modes which
9839                  * differentiates them) so just WARN about this case for now. */
9840                 if (IS_GEN7(dev)) {
9841                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9842                                 PF_PIPE_SEL_IVB(crtc->pipe));
9843                 }
9844         }
9845 }
9846
9847 static void
9848 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9849                                   struct intel_initial_plane_config *plane_config)
9850 {
9851         struct drm_device *dev = crtc->base.dev;
9852         struct drm_i915_private *dev_priv = to_i915(dev);
9853         u32 val, base, offset;
9854         int pipe = crtc->pipe;
9855         int fourcc, pixel_format;
9856         unsigned int aligned_height;
9857         struct drm_framebuffer *fb;
9858         struct intel_framebuffer *intel_fb;
9859
9860         val = I915_READ(DSPCNTR(pipe));
9861         if (!(val & DISPLAY_PLANE_ENABLE))
9862                 return;
9863
9864         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9865         if (!intel_fb) {
9866                 DRM_DEBUG_KMS("failed to alloc fb\n");
9867                 return;
9868         }
9869
9870         fb = &intel_fb->base;
9871
9872         if (INTEL_INFO(dev)->gen >= 4) {
9873                 if (val & DISPPLANE_TILED) {
9874                         plane_config->tiling = I915_TILING_X;
9875                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9876                 }
9877         }
9878
9879         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9880         fourcc = i9xx_format_to_fourcc(pixel_format);
9881         fb->pixel_format = fourcc;
9882         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9883
9884         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9885         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9886                 offset = I915_READ(DSPOFFSET(pipe));
9887         } else {
9888                 if (plane_config->tiling)
9889                         offset = I915_READ(DSPTILEOFF(pipe));
9890                 else
9891                         offset = I915_READ(DSPLINOFF(pipe));
9892         }
9893         plane_config->base = base;
9894
9895         val = I915_READ(PIPESRC(pipe));
9896         fb->width = ((val >> 16) & 0xfff) + 1;
9897         fb->height = ((val >> 0) & 0xfff) + 1;
9898
9899         val = I915_READ(DSPSTRIDE(pipe));
9900         fb->pitches[0] = val & 0xffffffc0;
9901
9902         aligned_height = intel_fb_align_height(dev, fb->height,
9903                                                fb->pixel_format,
9904                                                fb->modifier[0]);
9905
9906         plane_config->size = fb->pitches[0] * aligned_height;
9907
9908         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9909                       pipe_name(pipe), fb->width, fb->height,
9910                       fb->bits_per_pixel, base, fb->pitches[0],
9911                       plane_config->size);
9912
9913         plane_config->fb = intel_fb;
9914 }
9915
9916 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9917                                      struct intel_crtc_state *pipe_config)
9918 {
9919         struct drm_device *dev = crtc->base.dev;
9920         struct drm_i915_private *dev_priv = to_i915(dev);
9921         enum intel_display_power_domain power_domain;
9922         uint32_t tmp;
9923         bool ret;
9924
9925         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9926         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9927                 return false;
9928
9929         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9930         pipe_config->shared_dpll = NULL;
9931
9932         ret = false;
9933         tmp = I915_READ(PIPECONF(crtc->pipe));
9934         if (!(tmp & PIPECONF_ENABLE))
9935                 goto out;
9936
9937         switch (tmp & PIPECONF_BPC_MASK) {
9938         case PIPECONF_6BPC:
9939                 pipe_config->pipe_bpp = 18;
9940                 break;
9941         case PIPECONF_8BPC:
9942                 pipe_config->pipe_bpp = 24;
9943                 break;
9944         case PIPECONF_10BPC:
9945                 pipe_config->pipe_bpp = 30;
9946                 break;
9947         case PIPECONF_12BPC:
9948                 pipe_config->pipe_bpp = 36;
9949                 break;
9950         default:
9951                 break;
9952         }
9953
9954         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9955                 pipe_config->limited_color_range = true;
9956
9957         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9958                 struct intel_shared_dpll *pll;
9959                 enum intel_dpll_id pll_id;
9960
9961                 pipe_config->has_pch_encoder = true;
9962
9963                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9964                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9965                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9966
9967                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9968
9969                 if (HAS_PCH_IBX(dev_priv)) {
9970                         /*
9971                          * The pipe->pch transcoder and pch transcoder->pll
9972                          * mapping is fixed.
9973                          */
9974                         pll_id = (enum intel_dpll_id) crtc->pipe;
9975                 } else {
9976                         tmp = I915_READ(PCH_DPLL_SEL);
9977                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9978                                 pll_id = DPLL_ID_PCH_PLL_B;
9979                         else
9980                                 pll_id= DPLL_ID_PCH_PLL_A;
9981                 }
9982
9983                 pipe_config->shared_dpll =
9984                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
9985                 pll = pipe_config->shared_dpll;
9986
9987                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9988                                                  &pipe_config->dpll_hw_state));
9989
9990                 tmp = pipe_config->dpll_hw_state.dpll;
9991                 pipe_config->pixel_multiplier =
9992                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9993                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9994
9995                 ironlake_pch_clock_get(crtc, pipe_config);
9996         } else {
9997                 pipe_config->pixel_multiplier = 1;
9998         }
9999
10000         intel_get_pipe_timings(crtc, pipe_config);
10001         intel_get_pipe_src_size(crtc, pipe_config);
10002
10003         ironlake_get_pfit_config(crtc, pipe_config);
10004
10005         ret = true;
10006
10007 out:
10008         intel_display_power_put(dev_priv, power_domain);
10009
10010         return ret;
10011 }
10012
10013 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
10014 {
10015         struct drm_device *dev = &dev_priv->drm;
10016         struct intel_crtc *crtc;
10017
10018         for_each_intel_crtc(dev, crtc)
10019                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
10020                      pipe_name(crtc->pipe));
10021
10022         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
10023         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
10024         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
10025         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
10026         I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
10027         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
10028              "CPU PWM1 enabled\n");
10029         if (IS_HASWELL(dev))
10030                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
10031                      "CPU PWM2 enabled\n");
10032         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
10033              "PCH PWM1 enabled\n");
10034         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
10035              "Utility pin enabled\n");
10036         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
10037
10038         /*
10039          * In theory we can still leave IRQs enabled, as long as only the HPD
10040          * interrupts remain enabled. We used to check for that, but since it's
10041          * gen-specific and since we only disable LCPLL after we fully disable
10042          * the interrupts, the check below should be enough.
10043          */
10044         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
10045 }
10046
10047 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
10048 {
10049         struct drm_device *dev = &dev_priv->drm;
10050
10051         if (IS_HASWELL(dev))
10052                 return I915_READ(D_COMP_HSW);
10053         else
10054                 return I915_READ(D_COMP_BDW);
10055 }
10056
10057 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
10058 {
10059         struct drm_device *dev = &dev_priv->drm;
10060
10061         if (IS_HASWELL(dev)) {
10062                 mutex_lock(&dev_priv->rps.hw_lock);
10063                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
10064                                             val))
10065                         DRM_DEBUG_KMS("Failed to write to D_COMP\n");
10066                 mutex_unlock(&dev_priv->rps.hw_lock);
10067         } else {
10068                 I915_WRITE(D_COMP_BDW, val);
10069                 POSTING_READ(D_COMP_BDW);
10070         }
10071 }
10072
10073 /*
10074  * This function implements pieces of two sequences from BSpec:
10075  * - Sequence for display software to disable LCPLL
10076  * - Sequence for display software to allow package C8+
10077  * The steps implemented here are just the steps that actually touch the LCPLL
10078  * register. Callers should take care of disabling all the display engine
10079  * functions, doing the mode unset, fixing interrupts, etc.
10080  */
10081 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
10082                               bool switch_to_fclk, bool allow_power_down)
10083 {
10084         uint32_t val;
10085
10086         assert_can_disable_lcpll(dev_priv);
10087
10088         val = I915_READ(LCPLL_CTL);
10089
10090         if (switch_to_fclk) {
10091                 val |= LCPLL_CD_SOURCE_FCLK;
10092                 I915_WRITE(LCPLL_CTL, val);
10093
10094                 if (wait_for_us(I915_READ(LCPLL_CTL) &
10095                                 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10096                         DRM_ERROR("Switching to FCLK failed\n");
10097
10098                 val = I915_READ(LCPLL_CTL);
10099         }
10100
10101         val |= LCPLL_PLL_DISABLE;
10102         I915_WRITE(LCPLL_CTL, val);
10103         POSTING_READ(LCPLL_CTL);
10104
10105         if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
10106                 DRM_ERROR("LCPLL still locked\n");
10107
10108         val = hsw_read_dcomp(dev_priv);
10109         val |= D_COMP_COMP_DISABLE;
10110         hsw_write_dcomp(dev_priv, val);
10111         ndelay(100);
10112
10113         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
10114                      1))
10115                 DRM_ERROR("D_COMP RCOMP still in progress\n");
10116
10117         if (allow_power_down) {
10118                 val = I915_READ(LCPLL_CTL);
10119                 val |= LCPLL_POWER_DOWN_ALLOW;
10120                 I915_WRITE(LCPLL_CTL, val);
10121                 POSTING_READ(LCPLL_CTL);
10122         }
10123 }
10124
10125 /*
10126  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
10127  * source.
10128  */
10129 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
10130 {
10131         uint32_t val;
10132
10133         val = I915_READ(LCPLL_CTL);
10134
10135         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
10136                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
10137                 return;
10138
10139         /*
10140          * Make sure we're not on PC8 state before disabling PC8, otherwise
10141          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
10142          */
10143         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
10144
10145         if (val & LCPLL_POWER_DOWN_ALLOW) {
10146                 val &= ~LCPLL_POWER_DOWN_ALLOW;
10147                 I915_WRITE(LCPLL_CTL, val);
10148                 POSTING_READ(LCPLL_CTL);
10149         }
10150
10151         val = hsw_read_dcomp(dev_priv);
10152         val |= D_COMP_COMP_FORCE;
10153         val &= ~D_COMP_COMP_DISABLE;
10154         hsw_write_dcomp(dev_priv, val);
10155
10156         val = I915_READ(LCPLL_CTL);
10157         val &= ~LCPLL_PLL_DISABLE;
10158         I915_WRITE(LCPLL_CTL, val);
10159
10160         if (intel_wait_for_register(dev_priv,
10161                                     LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
10162                                     5))
10163                 DRM_ERROR("LCPLL not locked yet\n");
10164
10165         if (val & LCPLL_CD_SOURCE_FCLK) {
10166                 val = I915_READ(LCPLL_CTL);
10167                 val &= ~LCPLL_CD_SOURCE_FCLK;
10168                 I915_WRITE(LCPLL_CTL, val);
10169
10170                 if (wait_for_us((I915_READ(LCPLL_CTL) &
10171                                  LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10172                         DRM_ERROR("Switching back to LCPLL failed\n");
10173         }
10174
10175         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
10176         intel_update_cdclk(&dev_priv->drm);
10177 }
10178
10179 /*
10180  * Package states C8 and deeper are really deep PC states that can only be
10181  * reached when all the devices on the system allow it, so even if the graphics
10182  * device allows PC8+, it doesn't mean the system will actually get to these
10183  * states. Our driver only allows PC8+ when going into runtime PM.
10184  *
10185  * The requirements for PC8+ are that all the outputs are disabled, the power
10186  * well is disabled and most interrupts are disabled, and these are also
10187  * requirements for runtime PM. When these conditions are met, we manually do
10188  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10189  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10190  * hang the machine.
10191  *
10192  * When we really reach PC8 or deeper states (not just when we allow it) we lose
10193  * the state of some registers, so when we come back from PC8+ we need to
10194  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10195  * need to take care of the registers kept by RC6. Notice that this happens even
10196  * if we don't put the device in PCI D3 state (which is what currently happens
10197  * because of the runtime PM support).
10198  *
10199  * For more, read "Display Sequences for Package C8" on the hardware
10200  * documentation.
10201  */
10202 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
10203 {
10204         struct drm_device *dev = &dev_priv->drm;
10205         uint32_t val;
10206
10207         DRM_DEBUG_KMS("Enabling package C8+\n");
10208
10209         if (HAS_PCH_LPT_LP(dev)) {
10210                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10211                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
10212                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10213         }
10214
10215         lpt_disable_clkout_dp(dev);
10216         hsw_disable_lcpll(dev_priv, true, true);
10217 }
10218
10219 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
10220 {
10221         struct drm_device *dev = &dev_priv->drm;
10222         uint32_t val;
10223
10224         DRM_DEBUG_KMS("Disabling package C8+\n");
10225
10226         hsw_restore_lcpll(dev_priv);
10227         lpt_init_pch_refclk(dev);
10228
10229         if (HAS_PCH_LPT_LP(dev)) {
10230                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10231                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
10232                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10233         }
10234 }
10235
10236 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10237 {
10238         struct drm_device *dev = old_state->dev;
10239         struct intel_atomic_state *old_intel_state =
10240                 to_intel_atomic_state(old_state);
10241         unsigned int req_cdclk = old_intel_state->dev_cdclk;
10242
10243         bxt_set_cdclk(to_i915(dev), req_cdclk);
10244 }
10245
10246 static int bdw_adjust_min_pipe_pixel_rate(struct intel_crtc_state *crtc_state,
10247                                           int pixel_rate)
10248 {
10249         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
10250
10251         /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
10252         if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
10253                 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
10254
10255         /* BSpec says "Do not use DisplayPort with CDCLK less than
10256          * 432 MHz, audio enabled, port width x4, and link rate
10257          * HBR2 (5.4 GHz), or else there may be audio corruption or
10258          * screen corruption."
10259          */
10260         if (intel_crtc_has_dp_encoder(crtc_state) &&
10261             crtc_state->has_audio &&
10262             crtc_state->port_clock >= 540000 &&
10263             crtc_state->lane_count == 4)
10264                 pixel_rate = max(432000, pixel_rate);
10265
10266         return pixel_rate;
10267 }
10268
10269 /* compute the max rate for new configuration */
10270 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
10271 {
10272         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10273         struct drm_i915_private *dev_priv = to_i915(state->dev);
10274         struct drm_crtc *crtc;
10275         struct drm_crtc_state *cstate;
10276         struct intel_crtc_state *crtc_state;
10277         unsigned max_pixel_rate = 0, i;
10278         enum pipe pipe;
10279
10280         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
10281                sizeof(intel_state->min_pixclk));
10282
10283         for_each_crtc_in_state(state, crtc, cstate, i) {
10284                 int pixel_rate;
10285
10286                 crtc_state = to_intel_crtc_state(cstate);
10287                 if (!crtc_state->base.enable) {
10288                         intel_state->min_pixclk[i] = 0;
10289                         continue;
10290                 }
10291
10292                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
10293
10294                 if (IS_BROADWELL(dev_priv) || IS_GEN9(dev_priv))
10295                         pixel_rate = bdw_adjust_min_pipe_pixel_rate(crtc_state,
10296                                                                     pixel_rate);
10297
10298                 intel_state->min_pixclk[i] = pixel_rate;
10299         }
10300
10301         for_each_pipe(dev_priv, pipe)
10302                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
10303
10304         return max_pixel_rate;
10305 }
10306
10307 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
10308 {
10309         struct drm_i915_private *dev_priv = to_i915(dev);
10310         uint32_t val, data;
10311         int ret;
10312
10313         if (WARN((I915_READ(LCPLL_CTL) &
10314                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
10315                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
10316                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
10317                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
10318                  "trying to change cdclk frequency with cdclk not enabled\n"))
10319                 return;
10320
10321         mutex_lock(&dev_priv->rps.hw_lock);
10322         ret = sandybridge_pcode_write(dev_priv,
10323                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
10324         mutex_unlock(&dev_priv->rps.hw_lock);
10325         if (ret) {
10326                 DRM_ERROR("failed to inform pcode about cdclk change\n");
10327                 return;
10328         }
10329
10330         val = I915_READ(LCPLL_CTL);
10331         val |= LCPLL_CD_SOURCE_FCLK;
10332         I915_WRITE(LCPLL_CTL, val);
10333
10334         if (wait_for_us(I915_READ(LCPLL_CTL) &
10335                         LCPLL_CD_SOURCE_FCLK_DONE, 1))
10336                 DRM_ERROR("Switching to FCLK failed\n");
10337
10338         val = I915_READ(LCPLL_CTL);
10339         val &= ~LCPLL_CLK_FREQ_MASK;
10340
10341         switch (cdclk) {
10342         case 450000:
10343                 val |= LCPLL_CLK_FREQ_450;
10344                 data = 0;
10345                 break;
10346         case 540000:
10347                 val |= LCPLL_CLK_FREQ_54O_BDW;
10348                 data = 1;
10349                 break;
10350         case 337500:
10351                 val |= LCPLL_CLK_FREQ_337_5_BDW;
10352                 data = 2;
10353                 break;
10354         case 675000:
10355                 val |= LCPLL_CLK_FREQ_675_BDW;
10356                 data = 3;
10357                 break;
10358         default:
10359                 WARN(1, "invalid cdclk frequency\n");
10360                 return;
10361         }
10362
10363         I915_WRITE(LCPLL_CTL, val);
10364
10365         val = I915_READ(LCPLL_CTL);
10366         val &= ~LCPLL_CD_SOURCE_FCLK;
10367         I915_WRITE(LCPLL_CTL, val);
10368
10369         if (wait_for_us((I915_READ(LCPLL_CTL) &
10370                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10371                 DRM_ERROR("Switching back to LCPLL failed\n");
10372
10373         mutex_lock(&dev_priv->rps.hw_lock);
10374         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
10375         mutex_unlock(&dev_priv->rps.hw_lock);
10376
10377         I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
10378
10379         intel_update_cdclk(dev);
10380
10381         WARN(cdclk != dev_priv->cdclk_freq,
10382              "cdclk requested %d kHz but got %d kHz\n",
10383              cdclk, dev_priv->cdclk_freq);
10384 }
10385
10386 static int broadwell_calc_cdclk(int max_pixclk)
10387 {
10388         if (max_pixclk > 540000)
10389                 return 675000;
10390         else if (max_pixclk > 450000)
10391                 return 540000;
10392         else if (max_pixclk > 337500)
10393                 return 450000;
10394         else
10395                 return 337500;
10396 }
10397
10398 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
10399 {
10400         struct drm_i915_private *dev_priv = to_i915(state->dev);
10401         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10402         int max_pixclk = ilk_max_pixel_rate(state);
10403         int cdclk;
10404
10405         /*
10406          * FIXME should also account for plane ratio
10407          * once 64bpp pixel formats are supported.
10408          */
10409         cdclk = broadwell_calc_cdclk(max_pixclk);
10410
10411         if (cdclk > dev_priv->max_cdclk_freq) {
10412                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10413                               cdclk, dev_priv->max_cdclk_freq);
10414                 return -EINVAL;
10415         }
10416
10417         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10418         if (!intel_state->active_crtcs)
10419                 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
10420
10421         return 0;
10422 }
10423
10424 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10425 {
10426         struct drm_device *dev = old_state->dev;
10427         struct intel_atomic_state *old_intel_state =
10428                 to_intel_atomic_state(old_state);
10429         unsigned req_cdclk = old_intel_state->dev_cdclk;
10430
10431         broadwell_set_cdclk(dev, req_cdclk);
10432 }
10433
10434 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
10435 {
10436         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10437         struct drm_i915_private *dev_priv = to_i915(state->dev);
10438         const int max_pixclk = ilk_max_pixel_rate(state);
10439         int vco = intel_state->cdclk_pll_vco;
10440         int cdclk;
10441
10442         /*
10443          * FIXME should also account for plane ratio
10444          * once 64bpp pixel formats are supported.
10445          */
10446         cdclk = skl_calc_cdclk(max_pixclk, vco);
10447
10448         /*
10449          * FIXME move the cdclk caclulation to
10450          * compute_config() so we can fail gracegully.
10451          */
10452         if (cdclk > dev_priv->max_cdclk_freq) {
10453                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10454                           cdclk, dev_priv->max_cdclk_freq);
10455                 cdclk = dev_priv->max_cdclk_freq;
10456         }
10457
10458         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10459         if (!intel_state->active_crtcs)
10460                 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
10461
10462         return 0;
10463 }
10464
10465 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10466 {
10467         struct drm_i915_private *dev_priv = to_i915(old_state->dev);
10468         struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
10469         unsigned int req_cdclk = intel_state->dev_cdclk;
10470         unsigned int req_vco = intel_state->cdclk_pll_vco;
10471
10472         skl_set_cdclk(dev_priv, req_cdclk, req_vco);
10473 }
10474
10475 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10476                                       struct intel_crtc_state *crtc_state)
10477 {
10478         if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
10479                 if (!intel_ddi_pll_select(crtc, crtc_state))
10480                         return -EINVAL;
10481         }
10482
10483         crtc->lowfreq_avail = false;
10484
10485         return 0;
10486 }
10487
10488 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10489                                 enum port port,
10490                                 struct intel_crtc_state *pipe_config)
10491 {
10492         enum intel_dpll_id id;
10493
10494         switch (port) {
10495         case PORT_A:
10496                 id = DPLL_ID_SKL_DPLL0;
10497                 break;
10498         case PORT_B:
10499                 id = DPLL_ID_SKL_DPLL1;
10500                 break;
10501         case PORT_C:
10502                 id = DPLL_ID_SKL_DPLL2;
10503                 break;
10504         default:
10505                 DRM_ERROR("Incorrect port type\n");
10506                 return;
10507         }
10508
10509         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10510 }
10511
10512 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10513                                 enum port port,
10514                                 struct intel_crtc_state *pipe_config)
10515 {
10516         enum intel_dpll_id id;
10517         u32 temp;
10518
10519         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10520         id = temp >> (port * 3 + 1);
10521
10522         if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10523                 return;
10524
10525         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10526 }
10527
10528 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10529                                 enum port port,
10530                                 struct intel_crtc_state *pipe_config)
10531 {
10532         enum intel_dpll_id id;
10533         uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10534
10535         switch (ddi_pll_sel) {
10536         case PORT_CLK_SEL_WRPLL1:
10537                 id = DPLL_ID_WRPLL1;
10538                 break;
10539         case PORT_CLK_SEL_WRPLL2:
10540                 id = DPLL_ID_WRPLL2;
10541                 break;
10542         case PORT_CLK_SEL_SPLL:
10543                 id = DPLL_ID_SPLL;
10544                 break;
10545         case PORT_CLK_SEL_LCPLL_810:
10546                 id = DPLL_ID_LCPLL_810;
10547                 break;
10548         case PORT_CLK_SEL_LCPLL_1350:
10549                 id = DPLL_ID_LCPLL_1350;
10550                 break;
10551         case PORT_CLK_SEL_LCPLL_2700:
10552                 id = DPLL_ID_LCPLL_2700;
10553                 break;
10554         default:
10555                 MISSING_CASE(ddi_pll_sel);
10556                 /* fall through */
10557         case PORT_CLK_SEL_NONE:
10558                 return;
10559         }
10560
10561         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10562 }
10563
10564 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10565                                      struct intel_crtc_state *pipe_config,
10566                                      unsigned long *power_domain_mask)
10567 {
10568         struct drm_device *dev = crtc->base.dev;
10569         struct drm_i915_private *dev_priv = to_i915(dev);
10570         enum intel_display_power_domain power_domain;
10571         u32 tmp;
10572
10573         /*
10574          * The pipe->transcoder mapping is fixed with the exception of the eDP
10575          * transcoder handled below.
10576          */
10577         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10578
10579         /*
10580          * XXX: Do intel_display_power_get_if_enabled before reading this (for
10581          * consistency and less surprising code; it's in always on power).
10582          */
10583         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10584         if (tmp & TRANS_DDI_FUNC_ENABLE) {
10585                 enum pipe trans_edp_pipe;
10586                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10587                 default:
10588                         WARN(1, "unknown pipe linked to edp transcoder\n");
10589                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10590                 case TRANS_DDI_EDP_INPUT_A_ON:
10591                         trans_edp_pipe = PIPE_A;
10592                         break;
10593                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10594                         trans_edp_pipe = PIPE_B;
10595                         break;
10596                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10597                         trans_edp_pipe = PIPE_C;
10598                         break;
10599                 }
10600
10601                 if (trans_edp_pipe == crtc->pipe)
10602                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
10603         }
10604
10605         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10606         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10607                 return false;
10608         *power_domain_mask |= BIT(power_domain);
10609
10610         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10611
10612         return tmp & PIPECONF_ENABLE;
10613 }
10614
10615 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10616                                          struct intel_crtc_state *pipe_config,
10617                                          unsigned long *power_domain_mask)
10618 {
10619         struct drm_device *dev = crtc->base.dev;
10620         struct drm_i915_private *dev_priv = to_i915(dev);
10621         enum intel_display_power_domain power_domain;
10622         enum port port;
10623         enum transcoder cpu_transcoder;
10624         u32 tmp;
10625
10626         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10627                 if (port == PORT_A)
10628                         cpu_transcoder = TRANSCODER_DSI_A;
10629                 else
10630                         cpu_transcoder = TRANSCODER_DSI_C;
10631
10632                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10633                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10634                         continue;
10635                 *power_domain_mask |= BIT(power_domain);
10636
10637                 /*
10638                  * The PLL needs to be enabled with a valid divider
10639                  * configuration, otherwise accessing DSI registers will hang
10640                  * the machine. See BSpec North Display Engine
10641                  * registers/MIPI[BXT]. We can break out here early, since we
10642                  * need the same DSI PLL to be enabled for both DSI ports.
10643                  */
10644                 if (!intel_dsi_pll_is_enabled(dev_priv))
10645                         break;
10646
10647                 /* XXX: this works for video mode only */
10648                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10649                 if (!(tmp & DPI_ENABLE))
10650                         continue;
10651
10652                 tmp = I915_READ(MIPI_CTRL(port));
10653                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10654                         continue;
10655
10656                 pipe_config->cpu_transcoder = cpu_transcoder;
10657                 break;
10658         }
10659
10660         return transcoder_is_dsi(pipe_config->cpu_transcoder);
10661 }
10662
10663 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10664                                        struct intel_crtc_state *pipe_config)
10665 {
10666         struct drm_device *dev = crtc->base.dev;
10667         struct drm_i915_private *dev_priv = to_i915(dev);
10668         struct intel_shared_dpll *pll;
10669         enum port port;
10670         uint32_t tmp;
10671
10672         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10673
10674         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10675
10676         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
10677                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10678         else if (IS_BROXTON(dev))
10679                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10680         else
10681                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10682
10683         pll = pipe_config->shared_dpll;
10684         if (pll) {
10685                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10686                                                  &pipe_config->dpll_hw_state));
10687         }
10688
10689         /*
10690          * Haswell has only FDI/PCH transcoder A. It is which is connected to
10691          * DDI E. So just check whether this pipe is wired to DDI E and whether
10692          * the PCH transcoder is on.
10693          */
10694         if (INTEL_INFO(dev)->gen < 9 &&
10695             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10696                 pipe_config->has_pch_encoder = true;
10697
10698                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10699                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10700                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
10701
10702                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10703         }
10704 }
10705
10706 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10707                                     struct intel_crtc_state *pipe_config)
10708 {
10709         struct drm_device *dev = crtc->base.dev;
10710         struct drm_i915_private *dev_priv = to_i915(dev);
10711         enum intel_display_power_domain power_domain;
10712         unsigned long power_domain_mask;
10713         bool active;
10714
10715         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10716         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10717                 return false;
10718         power_domain_mask = BIT(power_domain);
10719
10720         pipe_config->shared_dpll = NULL;
10721
10722         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10723
10724         if (IS_BROXTON(dev_priv) &&
10725             bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10726                 WARN_ON(active);
10727                 active = true;
10728         }
10729
10730         if (!active)
10731                 goto out;
10732
10733         if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10734                 haswell_get_ddi_port_state(crtc, pipe_config);
10735                 intel_get_pipe_timings(crtc, pipe_config);
10736         }
10737
10738         intel_get_pipe_src_size(crtc, pipe_config);
10739
10740         pipe_config->gamma_mode =
10741                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10742
10743         if (INTEL_INFO(dev)->gen >= 9) {
10744                 skl_init_scalers(dev, crtc, pipe_config);
10745         }
10746
10747         if (INTEL_INFO(dev)->gen >= 9) {
10748                 pipe_config->scaler_state.scaler_id = -1;
10749                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10750         }
10751
10752         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10753         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10754                 power_domain_mask |= BIT(power_domain);
10755                 if (INTEL_INFO(dev)->gen >= 9)
10756                         skylake_get_pfit_config(crtc, pipe_config);
10757                 else
10758                         ironlake_get_pfit_config(crtc, pipe_config);
10759         }
10760
10761         if (IS_HASWELL(dev))
10762                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10763                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10764
10765         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10766             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10767                 pipe_config->pixel_multiplier =
10768                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10769         } else {
10770                 pipe_config->pixel_multiplier = 1;
10771         }
10772
10773 out:
10774         for_each_power_domain(power_domain, power_domain_mask)
10775                 intel_display_power_put(dev_priv, power_domain);
10776
10777         return active;
10778 }
10779
10780 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10781                                const struct intel_plane_state *plane_state)
10782 {
10783         struct drm_device *dev = crtc->dev;
10784         struct drm_i915_private *dev_priv = to_i915(dev);
10785         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10786         uint32_t cntl = 0, size = 0;
10787
10788         if (plane_state && plane_state->base.visible) {
10789                 unsigned int width = plane_state->base.crtc_w;
10790                 unsigned int height = plane_state->base.crtc_h;
10791                 unsigned int stride = roundup_pow_of_two(width) * 4;
10792
10793                 switch (stride) {
10794                 default:
10795                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10796                                   width, stride);
10797                         stride = 256;
10798                         /* fallthrough */
10799                 case 256:
10800                 case 512:
10801                 case 1024:
10802                 case 2048:
10803                         break;
10804                 }
10805
10806                 cntl |= CURSOR_ENABLE |
10807                         CURSOR_GAMMA_ENABLE |
10808                         CURSOR_FORMAT_ARGB |
10809                         CURSOR_STRIDE(stride);
10810
10811                 size = (height << 12) | width;
10812         }
10813
10814         if (intel_crtc->cursor_cntl != 0 &&
10815             (intel_crtc->cursor_base != base ||
10816              intel_crtc->cursor_size != size ||
10817              intel_crtc->cursor_cntl != cntl)) {
10818                 /* On these chipsets we can only modify the base/size/stride
10819                  * whilst the cursor is disabled.
10820                  */
10821                 I915_WRITE(CURCNTR(PIPE_A), 0);
10822                 POSTING_READ(CURCNTR(PIPE_A));
10823                 intel_crtc->cursor_cntl = 0;
10824         }
10825
10826         if (intel_crtc->cursor_base != base) {
10827                 I915_WRITE(CURBASE(PIPE_A), base);
10828                 intel_crtc->cursor_base = base;
10829         }
10830
10831         if (intel_crtc->cursor_size != size) {
10832                 I915_WRITE(CURSIZE, size);
10833                 intel_crtc->cursor_size = size;
10834         }
10835
10836         if (intel_crtc->cursor_cntl != cntl) {
10837                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10838                 POSTING_READ(CURCNTR(PIPE_A));
10839                 intel_crtc->cursor_cntl = cntl;
10840         }
10841 }
10842
10843 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10844                                const struct intel_plane_state *plane_state)
10845 {
10846         struct drm_device *dev = crtc->dev;
10847         struct drm_i915_private *dev_priv = to_i915(dev);
10848         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10849         const struct skl_wm_values *wm = &dev_priv->wm.skl_results;
10850         int pipe = intel_crtc->pipe;
10851         uint32_t cntl = 0;
10852
10853         if (INTEL_GEN(dev_priv) >= 9 && wm->dirty_pipes & drm_crtc_mask(crtc))
10854                 skl_write_cursor_wm(intel_crtc, wm);
10855
10856         if (plane_state && plane_state->base.visible) {
10857                 cntl = MCURSOR_GAMMA_ENABLE;
10858                 switch (plane_state->base.crtc_w) {
10859                         case 64:
10860                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10861                                 break;
10862                         case 128:
10863                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10864                                 break;
10865                         case 256:
10866                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10867                                 break;
10868                         default:
10869                                 MISSING_CASE(plane_state->base.crtc_w);
10870                                 return;
10871                 }
10872                 cntl |= pipe << 28; /* Connect to correct pipe */
10873
10874                 if (HAS_DDI(dev))
10875                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10876
10877                 if (plane_state->base.rotation == DRM_ROTATE_180)
10878                         cntl |= CURSOR_ROTATE_180;
10879         }
10880
10881         if (intel_crtc->cursor_cntl != cntl) {
10882                 I915_WRITE(CURCNTR(pipe), cntl);
10883                 POSTING_READ(CURCNTR(pipe));
10884                 intel_crtc->cursor_cntl = cntl;
10885         }
10886
10887         /* and commit changes on next vblank */
10888         I915_WRITE(CURBASE(pipe), base);
10889         POSTING_READ(CURBASE(pipe));
10890
10891         intel_crtc->cursor_base = base;
10892 }
10893
10894 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10895 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10896                                      const struct intel_plane_state *plane_state)
10897 {
10898         struct drm_device *dev = crtc->dev;
10899         struct drm_i915_private *dev_priv = to_i915(dev);
10900         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10901         int pipe = intel_crtc->pipe;
10902         u32 base = intel_crtc->cursor_addr;
10903         u32 pos = 0;
10904
10905         if (plane_state) {
10906                 int x = plane_state->base.crtc_x;
10907                 int y = plane_state->base.crtc_y;
10908
10909                 if (x < 0) {
10910                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10911                         x = -x;
10912                 }
10913                 pos |= x << CURSOR_X_SHIFT;
10914
10915                 if (y < 0) {
10916                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10917                         y = -y;
10918                 }
10919                 pos |= y << CURSOR_Y_SHIFT;
10920
10921                 /* ILK+ do this automagically */
10922                 if (HAS_GMCH_DISPLAY(dev) &&
10923                     plane_state->base.rotation == DRM_ROTATE_180) {
10924                         base += (plane_state->base.crtc_h *
10925                                  plane_state->base.crtc_w - 1) * 4;
10926                 }
10927         }
10928
10929         I915_WRITE(CURPOS(pipe), pos);
10930
10931         if (IS_845G(dev) || IS_I865G(dev))
10932                 i845_update_cursor(crtc, base, plane_state);
10933         else
10934                 i9xx_update_cursor(crtc, base, plane_state);
10935 }
10936
10937 static bool cursor_size_ok(struct drm_device *dev,
10938                            uint32_t width, uint32_t height)
10939 {
10940         if (width == 0 || height == 0)
10941                 return false;
10942
10943         /*
10944          * 845g/865g are special in that they are only limited by
10945          * the width of their cursors, the height is arbitrary up to
10946          * the precision of the register. Everything else requires
10947          * square cursors, limited to a few power-of-two sizes.
10948          */
10949         if (IS_845G(dev) || IS_I865G(dev)) {
10950                 if ((width & 63) != 0)
10951                         return false;
10952
10953                 if (width > (IS_845G(dev) ? 64 : 512))
10954                         return false;
10955
10956                 if (height > 1023)
10957                         return false;
10958         } else {
10959                 switch (width | height) {
10960                 case 256:
10961                 case 128:
10962                         if (IS_GEN2(dev))
10963                                 return false;
10964                 case 64:
10965                         break;
10966                 default:
10967                         return false;
10968                 }
10969         }
10970
10971         return true;
10972 }
10973
10974 /* VESA 640x480x72Hz mode to set on the pipe */
10975 static struct drm_display_mode load_detect_mode = {
10976         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10977                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10978 };
10979
10980 struct drm_framebuffer *
10981 __intel_framebuffer_create(struct drm_device *dev,
10982                            struct drm_mode_fb_cmd2 *mode_cmd,
10983                            struct drm_i915_gem_object *obj)
10984 {
10985         struct intel_framebuffer *intel_fb;
10986         int ret;
10987
10988         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10989         if (!intel_fb)
10990                 return ERR_PTR(-ENOMEM);
10991
10992         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10993         if (ret)
10994                 goto err;
10995
10996         return &intel_fb->base;
10997
10998 err:
10999         kfree(intel_fb);
11000         return ERR_PTR(ret);
11001 }
11002
11003 static struct drm_framebuffer *
11004 intel_framebuffer_create(struct drm_device *dev,
11005                          struct drm_mode_fb_cmd2 *mode_cmd,
11006                          struct drm_i915_gem_object *obj)
11007 {
11008         struct drm_framebuffer *fb;
11009         int ret;
11010
11011         ret = i915_mutex_lock_interruptible(dev);
11012         if (ret)
11013                 return ERR_PTR(ret);
11014         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
11015         mutex_unlock(&dev->struct_mutex);
11016
11017         return fb;
11018 }
11019
11020 static u32
11021 intel_framebuffer_pitch_for_width(int width, int bpp)
11022 {
11023         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
11024         return ALIGN(pitch, 64);
11025 }
11026
11027 static u32
11028 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
11029 {
11030         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
11031         return PAGE_ALIGN(pitch * mode->vdisplay);
11032 }
11033
11034 static struct drm_framebuffer *
11035 intel_framebuffer_create_for_mode(struct drm_device *dev,
11036                                   struct drm_display_mode *mode,
11037                                   int depth, int bpp)
11038 {
11039         struct drm_framebuffer *fb;
11040         struct drm_i915_gem_object *obj;
11041         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
11042
11043         obj = i915_gem_object_create(dev,
11044                                     intel_framebuffer_size_for_mode(mode, bpp));
11045         if (IS_ERR(obj))
11046                 return ERR_CAST(obj);
11047
11048         mode_cmd.width = mode->hdisplay;
11049         mode_cmd.height = mode->vdisplay;
11050         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
11051                                                                 bpp);
11052         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
11053
11054         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
11055         if (IS_ERR(fb))
11056                 i915_gem_object_put_unlocked(obj);
11057
11058         return fb;
11059 }
11060
11061 static struct drm_framebuffer *
11062 mode_fits_in_fbdev(struct drm_device *dev,
11063                    struct drm_display_mode *mode)
11064 {
11065 #ifdef CONFIG_DRM_FBDEV_EMULATION
11066         struct drm_i915_private *dev_priv = to_i915(dev);
11067         struct drm_i915_gem_object *obj;
11068         struct drm_framebuffer *fb;
11069
11070         if (!dev_priv->fbdev)
11071                 return NULL;
11072
11073         if (!dev_priv->fbdev->fb)
11074                 return NULL;
11075
11076         obj = dev_priv->fbdev->fb->obj;
11077         BUG_ON(!obj);
11078
11079         fb = &dev_priv->fbdev->fb->base;
11080         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
11081                                                                fb->bits_per_pixel))
11082                 return NULL;
11083
11084         if (obj->base.size < mode->vdisplay * fb->pitches[0])
11085                 return NULL;
11086
11087         drm_framebuffer_reference(fb);
11088         return fb;
11089 #else
11090         return NULL;
11091 #endif
11092 }
11093
11094 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
11095                                            struct drm_crtc *crtc,
11096                                            struct drm_display_mode *mode,
11097                                            struct drm_framebuffer *fb,
11098                                            int x, int y)
11099 {
11100         struct drm_plane_state *plane_state;
11101         int hdisplay, vdisplay;
11102         int ret;
11103
11104         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
11105         if (IS_ERR(plane_state))
11106                 return PTR_ERR(plane_state);
11107
11108         if (mode)
11109                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11110         else
11111                 hdisplay = vdisplay = 0;
11112
11113         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
11114         if (ret)
11115                 return ret;
11116         drm_atomic_set_fb_for_plane(plane_state, fb);
11117         plane_state->crtc_x = 0;
11118         plane_state->crtc_y = 0;
11119         plane_state->crtc_w = hdisplay;
11120         plane_state->crtc_h = vdisplay;
11121         plane_state->src_x = x << 16;
11122         plane_state->src_y = y << 16;
11123         plane_state->src_w = hdisplay << 16;
11124         plane_state->src_h = vdisplay << 16;
11125
11126         return 0;
11127 }
11128
11129 bool intel_get_load_detect_pipe(struct drm_connector *connector,
11130                                 struct drm_display_mode *mode,
11131                                 struct intel_load_detect_pipe *old,
11132                                 struct drm_modeset_acquire_ctx *ctx)
11133 {
11134         struct intel_crtc *intel_crtc;
11135         struct intel_encoder *intel_encoder =
11136                 intel_attached_encoder(connector);
11137         struct drm_crtc *possible_crtc;
11138         struct drm_encoder *encoder = &intel_encoder->base;
11139         struct drm_crtc *crtc = NULL;
11140         struct drm_device *dev = encoder->dev;
11141         struct drm_framebuffer *fb;
11142         struct drm_mode_config *config = &dev->mode_config;
11143         struct drm_atomic_state *state = NULL, *restore_state = NULL;
11144         struct drm_connector_state *connector_state;
11145         struct intel_crtc_state *crtc_state;
11146         int ret, i = -1;
11147
11148         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11149                       connector->base.id, connector->name,
11150                       encoder->base.id, encoder->name);
11151
11152         old->restore_state = NULL;
11153
11154 retry:
11155         ret = drm_modeset_lock(&config->connection_mutex, ctx);
11156         if (ret)
11157                 goto fail;
11158
11159         /*
11160          * Algorithm gets a little messy:
11161          *
11162          *   - if the connector already has an assigned crtc, use it (but make
11163          *     sure it's on first)
11164          *
11165          *   - try to find the first unused crtc that can drive this connector,
11166          *     and use that if we find one
11167          */
11168
11169         /* See if we already have a CRTC for this connector */
11170         if (connector->state->crtc) {
11171                 crtc = connector->state->crtc;
11172
11173                 ret = drm_modeset_lock(&crtc->mutex, ctx);
11174                 if (ret)
11175                         goto fail;
11176
11177                 /* Make sure the crtc and connector are running */
11178                 goto found;
11179         }
11180
11181         /* Find an unused one (if possible) */
11182         for_each_crtc(dev, possible_crtc) {
11183                 i++;
11184                 if (!(encoder->possible_crtcs & (1 << i)))
11185                         continue;
11186
11187                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11188                 if (ret)
11189                         goto fail;
11190
11191                 if (possible_crtc->state->enable) {
11192                         drm_modeset_unlock(&possible_crtc->mutex);
11193                         continue;
11194                 }
11195
11196                 crtc = possible_crtc;
11197                 break;
11198         }
11199
11200         /*
11201          * If we didn't find an unused CRTC, don't use any.
11202          */
11203         if (!crtc) {
11204                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
11205                 goto fail;
11206         }
11207
11208 found:
11209         intel_crtc = to_intel_crtc(crtc);
11210
11211         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
11212         if (ret)
11213                 goto fail;
11214
11215         state = drm_atomic_state_alloc(dev);
11216         restore_state = drm_atomic_state_alloc(dev);
11217         if (!state || !restore_state) {
11218                 ret = -ENOMEM;
11219                 goto fail;
11220         }
11221
11222         state->acquire_ctx = ctx;
11223         restore_state->acquire_ctx = ctx;
11224
11225         connector_state = drm_atomic_get_connector_state(state, connector);
11226         if (IS_ERR(connector_state)) {
11227                 ret = PTR_ERR(connector_state);
11228                 goto fail;
11229         }
11230
11231         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11232         if (ret)
11233                 goto fail;
11234
11235         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11236         if (IS_ERR(crtc_state)) {
11237                 ret = PTR_ERR(crtc_state);
11238                 goto fail;
11239         }
11240
11241         crtc_state->base.active = crtc_state->base.enable = true;
11242
11243         if (!mode)
11244                 mode = &load_detect_mode;
11245
11246         /* We need a framebuffer large enough to accommodate all accesses
11247          * that the plane may generate whilst we perform load detection.
11248          * We can not rely on the fbcon either being present (we get called
11249          * during its initialisation to detect all boot displays, or it may
11250          * not even exist) or that it is large enough to satisfy the
11251          * requested mode.
11252          */
11253         fb = mode_fits_in_fbdev(dev, mode);
11254         if (fb == NULL) {
11255                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
11256                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
11257         } else
11258                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
11259         if (IS_ERR(fb)) {
11260                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
11261                 goto fail;
11262         }
11263
11264         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
11265         if (ret)
11266                 goto fail;
11267
11268         drm_framebuffer_unreference(fb);
11269
11270         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11271         if (ret)
11272                 goto fail;
11273
11274         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11275         if (!ret)
11276                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11277         if (!ret)
11278                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
11279         if (ret) {
11280                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11281                 goto fail;
11282         }
11283
11284         ret = drm_atomic_commit(state);
11285         if (ret) {
11286                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11287                 goto fail;
11288         }
11289
11290         old->restore_state = restore_state;
11291
11292         /* let the connector get through one full cycle before testing */
11293         intel_wait_for_vblank(dev, intel_crtc->pipe);
11294         return true;
11295
11296 fail:
11297         drm_atomic_state_free(state);
11298         drm_atomic_state_free(restore_state);
11299         restore_state = state = NULL;
11300
11301         if (ret == -EDEADLK) {
11302                 drm_modeset_backoff(ctx);
11303                 goto retry;
11304         }
11305
11306         return false;
11307 }
11308
11309 void intel_release_load_detect_pipe(struct drm_connector *connector,
11310                                     struct intel_load_detect_pipe *old,
11311                                     struct drm_modeset_acquire_ctx *ctx)
11312 {
11313         struct intel_encoder *intel_encoder =
11314                 intel_attached_encoder(connector);
11315         struct drm_encoder *encoder = &intel_encoder->base;
11316         struct drm_atomic_state *state = old->restore_state;
11317         int ret;
11318
11319         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11320                       connector->base.id, connector->name,
11321                       encoder->base.id, encoder->name);
11322
11323         if (!state)
11324                 return;
11325
11326         ret = drm_atomic_commit(state);
11327         if (ret) {
11328                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11329                 drm_atomic_state_free(state);
11330         }
11331 }
11332
11333 static int i9xx_pll_refclk(struct drm_device *dev,
11334                            const struct intel_crtc_state *pipe_config)
11335 {
11336         struct drm_i915_private *dev_priv = to_i915(dev);
11337         u32 dpll = pipe_config->dpll_hw_state.dpll;
11338
11339         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11340                 return dev_priv->vbt.lvds_ssc_freq;
11341         else if (HAS_PCH_SPLIT(dev))
11342                 return 120000;
11343         else if (!IS_GEN2(dev))
11344                 return 96000;
11345         else
11346                 return 48000;
11347 }
11348
11349 /* Returns the clock of the currently programmed mode of the given pipe. */
11350 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11351                                 struct intel_crtc_state *pipe_config)
11352 {
11353         struct drm_device *dev = crtc->base.dev;
11354         struct drm_i915_private *dev_priv = to_i915(dev);
11355         int pipe = pipe_config->cpu_transcoder;
11356         u32 dpll = pipe_config->dpll_hw_state.dpll;
11357         u32 fp;
11358         struct dpll clock;
11359         int port_clock;
11360         int refclk = i9xx_pll_refclk(dev, pipe_config);
11361
11362         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11363                 fp = pipe_config->dpll_hw_state.fp0;
11364         else
11365                 fp = pipe_config->dpll_hw_state.fp1;
11366
11367         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11368         if (IS_PINEVIEW(dev)) {
11369                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11370                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11371         } else {
11372                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11373                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11374         }
11375
11376         if (!IS_GEN2(dev)) {
11377                 if (IS_PINEVIEW(dev))
11378                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11379                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11380                 else
11381                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11382                                DPLL_FPA01_P1_POST_DIV_SHIFT);
11383
11384                 switch (dpll & DPLL_MODE_MASK) {
11385                 case DPLLB_MODE_DAC_SERIAL:
11386                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11387                                 5 : 10;
11388                         break;
11389                 case DPLLB_MODE_LVDS:
11390                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11391                                 7 : 14;
11392                         break;
11393                 default:
11394                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11395                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
11396                         return;
11397                 }
11398
11399                 if (IS_PINEVIEW(dev))
11400                         port_clock = pnv_calc_dpll_params(refclk, &clock);
11401                 else
11402                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
11403         } else {
11404                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
11405                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11406
11407                 if (is_lvds) {
11408                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11409                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
11410
11411                         if (lvds & LVDS_CLKB_POWER_UP)
11412                                 clock.p2 = 7;
11413                         else
11414                                 clock.p2 = 14;
11415                 } else {
11416                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
11417                                 clock.p1 = 2;
11418                         else {
11419                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11420                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11421                         }
11422                         if (dpll & PLL_P2_DIVIDE_BY_4)
11423                                 clock.p2 = 4;
11424                         else
11425                                 clock.p2 = 2;
11426                 }
11427
11428                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11429         }
11430
11431         /*
11432          * This value includes pixel_multiplier. We will use
11433          * port_clock to compute adjusted_mode.crtc_clock in the
11434          * encoder's get_config() function.
11435          */
11436         pipe_config->port_clock = port_clock;
11437 }
11438
11439 int intel_dotclock_calculate(int link_freq,
11440                              const struct intel_link_m_n *m_n)
11441 {
11442         /*
11443          * The calculation for the data clock is:
11444          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11445          * But we want to avoid losing precison if possible, so:
11446          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11447          *
11448          * and the link clock is simpler:
11449          * link_clock = (m * link_clock) / n
11450          */
11451
11452         if (!m_n->link_n)
11453                 return 0;
11454
11455         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
11456 }
11457
11458 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11459                                    struct intel_crtc_state *pipe_config)
11460 {
11461         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11462
11463         /* read out port_clock from the DPLL */
11464         i9xx_crtc_clock_get(crtc, pipe_config);
11465
11466         /*
11467          * In case there is an active pipe without active ports,
11468          * we may need some idea for the dotclock anyway.
11469          * Calculate one based on the FDI configuration.
11470          */
11471         pipe_config->base.adjusted_mode.crtc_clock =
11472                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11473                                          &pipe_config->fdi_m_n);
11474 }
11475
11476 /** Returns the currently programmed mode of the given pipe. */
11477 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
11478                                              struct drm_crtc *crtc)
11479 {
11480         struct drm_i915_private *dev_priv = to_i915(dev);
11481         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11482         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
11483         struct drm_display_mode *mode;
11484         struct intel_crtc_state *pipe_config;
11485         int htot = I915_READ(HTOTAL(cpu_transcoder));
11486         int hsync = I915_READ(HSYNC(cpu_transcoder));
11487         int vtot = I915_READ(VTOTAL(cpu_transcoder));
11488         int vsync = I915_READ(VSYNC(cpu_transcoder));
11489         enum pipe pipe = intel_crtc->pipe;
11490
11491         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11492         if (!mode)
11493                 return NULL;
11494
11495         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
11496         if (!pipe_config) {
11497                 kfree(mode);
11498                 return NULL;
11499         }
11500
11501         /*
11502          * Construct a pipe_config sufficient for getting the clock info
11503          * back out of crtc_clock_get.
11504          *
11505          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11506          * to use a real value here instead.
11507          */
11508         pipe_config->cpu_transcoder = (enum transcoder) pipe;
11509         pipe_config->pixel_multiplier = 1;
11510         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
11511         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
11512         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
11513         i9xx_crtc_clock_get(intel_crtc, pipe_config);
11514
11515         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
11516         mode->hdisplay = (htot & 0xffff) + 1;
11517         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
11518         mode->hsync_start = (hsync & 0xffff) + 1;
11519         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
11520         mode->vdisplay = (vtot & 0xffff) + 1;
11521         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
11522         mode->vsync_start = (vsync & 0xffff) + 1;
11523         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
11524
11525         drm_mode_set_name(mode);
11526
11527         kfree(pipe_config);
11528
11529         return mode;
11530 }
11531
11532 static void intel_crtc_destroy(struct drm_crtc *crtc)
11533 {
11534         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11535         struct drm_device *dev = crtc->dev;
11536         struct intel_flip_work *work;
11537
11538         spin_lock_irq(&dev->event_lock);
11539         work = intel_crtc->flip_work;
11540         intel_crtc->flip_work = NULL;
11541         spin_unlock_irq(&dev->event_lock);
11542
11543         if (work) {
11544                 cancel_work_sync(&work->mmio_work);
11545                 cancel_work_sync(&work->unpin_work);
11546                 kfree(work);
11547         }
11548
11549         drm_crtc_cleanup(crtc);
11550
11551         kfree(intel_crtc);
11552 }
11553
11554 static void intel_unpin_work_fn(struct work_struct *__work)
11555 {
11556         struct intel_flip_work *work =
11557                 container_of(__work, struct intel_flip_work, unpin_work);
11558         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11559         struct drm_device *dev = crtc->base.dev;
11560         struct drm_plane *primary = crtc->base.primary;
11561
11562         if (is_mmio_work(work))
11563                 flush_work(&work->mmio_work);
11564
11565         mutex_lock(&dev->struct_mutex);
11566         intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
11567         i915_gem_object_put(work->pending_flip_obj);
11568         mutex_unlock(&dev->struct_mutex);
11569
11570         i915_gem_request_put(work->flip_queued_req);
11571
11572         intel_frontbuffer_flip_complete(to_i915(dev),
11573                                         to_intel_plane(primary)->frontbuffer_bit);
11574         intel_fbc_post_update(crtc);
11575         drm_framebuffer_unreference(work->old_fb);
11576
11577         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11578         atomic_dec(&crtc->unpin_work_count);
11579
11580         kfree(work);
11581 }
11582
11583 /* Is 'a' after or equal to 'b'? */
11584 static bool g4x_flip_count_after_eq(u32 a, u32 b)
11585 {
11586         return !((a - b) & 0x80000000);
11587 }
11588
11589 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11590                                    struct intel_flip_work *work)
11591 {
11592         struct drm_device *dev = crtc->base.dev;
11593         struct drm_i915_private *dev_priv = to_i915(dev);
11594
11595         if (abort_flip_on_reset(crtc))
11596                 return true;
11597
11598         /*
11599          * The relevant registers doen't exist on pre-ctg.
11600          * As the flip done interrupt doesn't trigger for mmio
11601          * flips on gmch platforms, a flip count check isn't
11602          * really needed there. But since ctg has the registers,
11603          * include it in the check anyway.
11604          */
11605         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
11606                 return true;
11607
11608         /*
11609          * BDW signals flip done immediately if the plane
11610          * is disabled, even if the plane enable is already
11611          * armed to occur at the next vblank :(
11612          */
11613
11614         /*
11615          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11616          * used the same base address. In that case the mmio flip might
11617          * have completed, but the CS hasn't even executed the flip yet.
11618          *
11619          * A flip count check isn't enough as the CS might have updated
11620          * the base address just after start of vblank, but before we
11621          * managed to process the interrupt. This means we'd complete the
11622          * CS flip too soon.
11623          *
11624          * Combining both checks should get us a good enough result. It may
11625          * still happen that the CS flip has been executed, but has not
11626          * yet actually completed. But in case the base address is the same
11627          * anyway, we don't really care.
11628          */
11629         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11630                 crtc->flip_work->gtt_offset &&
11631                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11632                                     crtc->flip_work->flip_count);
11633 }
11634
11635 static bool
11636 __pageflip_finished_mmio(struct intel_crtc *crtc,
11637                                struct intel_flip_work *work)
11638 {
11639         /*
11640          * MMIO work completes when vblank is different from
11641          * flip_queued_vblank.
11642          *
11643          * Reset counter value doesn't matter, this is handled by
11644          * i915_wait_request finishing early, so no need to handle
11645          * reset here.
11646          */
11647         return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11648 }
11649
11650
11651 static bool pageflip_finished(struct intel_crtc *crtc,
11652                               struct intel_flip_work *work)
11653 {
11654         if (!atomic_read(&work->pending))
11655                 return false;
11656
11657         smp_rmb();
11658
11659         if (is_mmio_work(work))
11660                 return __pageflip_finished_mmio(crtc, work);
11661         else
11662                 return __pageflip_finished_cs(crtc, work);
11663 }
11664
11665 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11666 {
11667         struct drm_device *dev = &dev_priv->drm;
11668         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11669         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11670         struct intel_flip_work *work;
11671         unsigned long flags;
11672
11673         /* Ignore early vblank irqs */
11674         if (!crtc)
11675                 return;
11676
11677         /*
11678          * This is called both by irq handlers and the reset code (to complete
11679          * lost pageflips) so needs the full irqsave spinlocks.
11680          */
11681         spin_lock_irqsave(&dev->event_lock, flags);
11682         work = intel_crtc->flip_work;
11683
11684         if (work != NULL &&
11685             !is_mmio_work(work) &&
11686             pageflip_finished(intel_crtc, work))
11687                 page_flip_completed(intel_crtc);
11688
11689         spin_unlock_irqrestore(&dev->event_lock, flags);
11690 }
11691
11692 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11693 {
11694         struct drm_device *dev = &dev_priv->drm;
11695         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11696         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11697         struct intel_flip_work *work;
11698         unsigned long flags;
11699
11700         /* Ignore early vblank irqs */
11701         if (!crtc)
11702                 return;
11703
11704         /*
11705          * This is called both by irq handlers and the reset code (to complete
11706          * lost pageflips) so needs the full irqsave spinlocks.
11707          */
11708         spin_lock_irqsave(&dev->event_lock, flags);
11709         work = intel_crtc->flip_work;
11710
11711         if (work != NULL &&
11712             is_mmio_work(work) &&
11713             pageflip_finished(intel_crtc, work))
11714                 page_flip_completed(intel_crtc);
11715
11716         spin_unlock_irqrestore(&dev->event_lock, flags);
11717 }
11718
11719 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11720                                                struct intel_flip_work *work)
11721 {
11722         work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11723
11724         /* Ensure that the work item is consistent when activating it ... */
11725         smp_mb__before_atomic();
11726         atomic_set(&work->pending, 1);
11727 }
11728
11729 static int intel_gen2_queue_flip(struct drm_device *dev,
11730                                  struct drm_crtc *crtc,
11731                                  struct drm_framebuffer *fb,
11732                                  struct drm_i915_gem_object *obj,
11733                                  struct drm_i915_gem_request *req,
11734                                  uint32_t flags)
11735 {
11736         struct intel_ring *ring = req->ring;
11737         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11738         u32 flip_mask;
11739         int ret;
11740
11741         ret = intel_ring_begin(req, 6);
11742         if (ret)
11743                 return ret;
11744
11745         /* Can't queue multiple flips, so wait for the previous
11746          * one to finish before executing the next.
11747          */
11748         if (intel_crtc->plane)
11749                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11750         else
11751                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11752         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11753         intel_ring_emit(ring, MI_NOOP);
11754         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11755                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11756         intel_ring_emit(ring, fb->pitches[0]);
11757         intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11758         intel_ring_emit(ring, 0); /* aux display base address, unused */
11759
11760         return 0;
11761 }
11762
11763 static int intel_gen3_queue_flip(struct drm_device *dev,
11764                                  struct drm_crtc *crtc,
11765                                  struct drm_framebuffer *fb,
11766                                  struct drm_i915_gem_object *obj,
11767                                  struct drm_i915_gem_request *req,
11768                                  uint32_t flags)
11769 {
11770         struct intel_ring *ring = req->ring;
11771         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11772         u32 flip_mask;
11773         int ret;
11774
11775         ret = intel_ring_begin(req, 6);
11776         if (ret)
11777                 return ret;
11778
11779         if (intel_crtc->plane)
11780                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11781         else
11782                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11783         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11784         intel_ring_emit(ring, MI_NOOP);
11785         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11786                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11787         intel_ring_emit(ring, fb->pitches[0]);
11788         intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11789         intel_ring_emit(ring, MI_NOOP);
11790
11791         return 0;
11792 }
11793
11794 static int intel_gen4_queue_flip(struct drm_device *dev,
11795                                  struct drm_crtc *crtc,
11796                                  struct drm_framebuffer *fb,
11797                                  struct drm_i915_gem_object *obj,
11798                                  struct drm_i915_gem_request *req,
11799                                  uint32_t flags)
11800 {
11801         struct intel_ring *ring = req->ring;
11802         struct drm_i915_private *dev_priv = to_i915(dev);
11803         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11804         uint32_t pf, pipesrc;
11805         int ret;
11806
11807         ret = intel_ring_begin(req, 4);
11808         if (ret)
11809                 return ret;
11810
11811         /* i965+ uses the linear or tiled offsets from the
11812          * Display Registers (which do not change across a page-flip)
11813          * so we need only reprogram the base address.
11814          */
11815         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11816                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11817         intel_ring_emit(ring, fb->pitches[0]);
11818         intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
11819                         intel_fb_modifier_to_tiling(fb->modifier[0]));
11820
11821         /* XXX Enabling the panel-fitter across page-flip is so far
11822          * untested on non-native modes, so ignore it for now.
11823          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11824          */
11825         pf = 0;
11826         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11827         intel_ring_emit(ring, pf | pipesrc);
11828
11829         return 0;
11830 }
11831
11832 static int intel_gen6_queue_flip(struct drm_device *dev,
11833                                  struct drm_crtc *crtc,
11834                                  struct drm_framebuffer *fb,
11835                                  struct drm_i915_gem_object *obj,
11836                                  struct drm_i915_gem_request *req,
11837                                  uint32_t flags)
11838 {
11839         struct intel_ring *ring = req->ring;
11840         struct drm_i915_private *dev_priv = to_i915(dev);
11841         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11842         uint32_t pf, pipesrc;
11843         int ret;
11844
11845         ret = intel_ring_begin(req, 4);
11846         if (ret)
11847                 return ret;
11848
11849         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11850                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11851         intel_ring_emit(ring, fb->pitches[0] |
11852                         intel_fb_modifier_to_tiling(fb->modifier[0]));
11853         intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11854
11855         /* Contrary to the suggestions in the documentation,
11856          * "Enable Panel Fitter" does not seem to be required when page
11857          * flipping with a non-native mode, and worse causes a normal
11858          * modeset to fail.
11859          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11860          */
11861         pf = 0;
11862         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11863         intel_ring_emit(ring, pf | pipesrc);
11864
11865         return 0;
11866 }
11867
11868 static int intel_gen7_queue_flip(struct drm_device *dev,
11869                                  struct drm_crtc *crtc,
11870                                  struct drm_framebuffer *fb,
11871                                  struct drm_i915_gem_object *obj,
11872                                  struct drm_i915_gem_request *req,
11873                                  uint32_t flags)
11874 {
11875         struct intel_ring *ring = req->ring;
11876         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11877         uint32_t plane_bit = 0;
11878         int len, ret;
11879
11880         switch (intel_crtc->plane) {
11881         case PLANE_A:
11882                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11883                 break;
11884         case PLANE_B:
11885                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11886                 break;
11887         case PLANE_C:
11888                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11889                 break;
11890         default:
11891                 WARN_ONCE(1, "unknown plane in flip command\n");
11892                 return -ENODEV;
11893         }
11894
11895         len = 4;
11896         if (req->engine->id == RCS) {
11897                 len += 6;
11898                 /*
11899                  * On Gen 8, SRM is now taking an extra dword to accommodate
11900                  * 48bits addresses, and we need a NOOP for the batch size to
11901                  * stay even.
11902                  */
11903                 if (IS_GEN8(dev))
11904                         len += 2;
11905         }
11906
11907         /*
11908          * BSpec MI_DISPLAY_FLIP for IVB:
11909          * "The full packet must be contained within the same cache line."
11910          *
11911          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11912          * cacheline, if we ever start emitting more commands before
11913          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11914          * then do the cacheline alignment, and finally emit the
11915          * MI_DISPLAY_FLIP.
11916          */
11917         ret = intel_ring_cacheline_align(req);
11918         if (ret)
11919                 return ret;
11920
11921         ret = intel_ring_begin(req, len);
11922         if (ret)
11923                 return ret;
11924
11925         /* Unmask the flip-done completion message. Note that the bspec says that
11926          * we should do this for both the BCS and RCS, and that we must not unmask
11927          * more than one flip event at any time (or ensure that one flip message
11928          * can be sent by waiting for flip-done prior to queueing new flips).
11929          * Experimentation says that BCS works despite DERRMR masking all
11930          * flip-done completion events and that unmasking all planes at once
11931          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11932          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11933          */
11934         if (req->engine->id == RCS) {
11935                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11936                 intel_ring_emit_reg(ring, DERRMR);
11937                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11938                                           DERRMR_PIPEB_PRI_FLIP_DONE |
11939                                           DERRMR_PIPEC_PRI_FLIP_DONE));
11940                 if (IS_GEN8(dev))
11941                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11942                                               MI_SRM_LRM_GLOBAL_GTT);
11943                 else
11944                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11945                                               MI_SRM_LRM_GLOBAL_GTT);
11946                 intel_ring_emit_reg(ring, DERRMR);
11947                 intel_ring_emit(ring,
11948                                 i915_ggtt_offset(req->engine->scratch) + 256);
11949                 if (IS_GEN8(dev)) {
11950                         intel_ring_emit(ring, 0);
11951                         intel_ring_emit(ring, MI_NOOP);
11952                 }
11953         }
11954
11955         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11956         intel_ring_emit(ring, fb->pitches[0] |
11957                         intel_fb_modifier_to_tiling(fb->modifier[0]));
11958         intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11959         intel_ring_emit(ring, (MI_NOOP));
11960
11961         return 0;
11962 }
11963
11964 static bool use_mmio_flip(struct intel_engine_cs *engine,
11965                           struct drm_i915_gem_object *obj)
11966 {
11967         struct reservation_object *resv;
11968
11969         /*
11970          * This is not being used for older platforms, because
11971          * non-availability of flip done interrupt forces us to use
11972          * CS flips. Older platforms derive flip done using some clever
11973          * tricks involving the flip_pending status bits and vblank irqs.
11974          * So using MMIO flips there would disrupt this mechanism.
11975          */
11976
11977         if (engine == NULL)
11978                 return true;
11979
11980         if (INTEL_GEN(engine->i915) < 5)
11981                 return false;
11982
11983         if (i915.use_mmio_flip < 0)
11984                 return false;
11985         else if (i915.use_mmio_flip > 0)
11986                 return true;
11987         else if (i915.enable_execlists)
11988                 return true;
11989
11990         resv = i915_gem_object_get_dmabuf_resv(obj);
11991         if (resv && !reservation_object_test_signaled_rcu(resv, false))
11992                 return true;
11993
11994         return engine != i915_gem_active_get_engine(&obj->last_write,
11995                                                     &obj->base.dev->struct_mutex);
11996 }
11997
11998 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11999                              unsigned int rotation,
12000                              struct intel_flip_work *work)
12001 {
12002         struct drm_device *dev = intel_crtc->base.dev;
12003         struct drm_i915_private *dev_priv = to_i915(dev);
12004         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
12005         const enum pipe pipe = intel_crtc->pipe;
12006         u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
12007
12008         ctl = I915_READ(PLANE_CTL(pipe, 0));
12009         ctl &= ~PLANE_CTL_TILED_MASK;
12010         switch (fb->modifier[0]) {
12011         case DRM_FORMAT_MOD_NONE:
12012                 break;
12013         case I915_FORMAT_MOD_X_TILED:
12014                 ctl |= PLANE_CTL_TILED_X;
12015                 break;
12016         case I915_FORMAT_MOD_Y_TILED:
12017                 ctl |= PLANE_CTL_TILED_Y;
12018                 break;
12019         case I915_FORMAT_MOD_Yf_TILED:
12020                 ctl |= PLANE_CTL_TILED_YF;
12021                 break;
12022         default:
12023                 MISSING_CASE(fb->modifier[0]);
12024         }
12025
12026         /*
12027          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
12028          * PLANE_SURF updates, the update is then guaranteed to be atomic.
12029          */
12030         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
12031         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
12032
12033         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
12034         POSTING_READ(PLANE_SURF(pipe, 0));
12035 }
12036
12037 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
12038                              struct intel_flip_work *work)
12039 {
12040         struct drm_device *dev = intel_crtc->base.dev;
12041         struct drm_i915_private *dev_priv = to_i915(dev);
12042         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
12043         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
12044         u32 dspcntr;
12045
12046         dspcntr = I915_READ(reg);
12047
12048         if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
12049                 dspcntr |= DISPPLANE_TILED;
12050         else
12051                 dspcntr &= ~DISPPLANE_TILED;
12052
12053         I915_WRITE(reg, dspcntr);
12054
12055         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
12056         POSTING_READ(DSPSURF(intel_crtc->plane));
12057 }
12058
12059 static void intel_mmio_flip_work_func(struct work_struct *w)
12060 {
12061         struct intel_flip_work *work =
12062                 container_of(w, struct intel_flip_work, mmio_work);
12063         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
12064         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12065         struct intel_framebuffer *intel_fb =
12066                 to_intel_framebuffer(crtc->base.primary->fb);
12067         struct drm_i915_gem_object *obj = intel_fb->obj;
12068         struct reservation_object *resv;
12069
12070         if (work->flip_queued_req)
12071                 WARN_ON(i915_wait_request(work->flip_queued_req,
12072                                           0, NULL, NO_WAITBOOST));
12073
12074         /* For framebuffer backed by dmabuf, wait for fence */
12075         resv = i915_gem_object_get_dmabuf_resv(obj);
12076         if (resv)
12077                 WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
12078                                                             MAX_SCHEDULE_TIMEOUT) < 0);
12079
12080         intel_pipe_update_start(crtc);
12081
12082         if (INTEL_GEN(dev_priv) >= 9)
12083                 skl_do_mmio_flip(crtc, work->rotation, work);
12084         else
12085                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
12086                 ilk_do_mmio_flip(crtc, work);
12087
12088         intel_pipe_update_end(crtc, work);
12089 }
12090
12091 static int intel_default_queue_flip(struct drm_device *dev,
12092                                     struct drm_crtc *crtc,
12093                                     struct drm_framebuffer *fb,
12094                                     struct drm_i915_gem_object *obj,
12095                                     struct drm_i915_gem_request *req,
12096                                     uint32_t flags)
12097 {
12098         return -ENODEV;
12099 }
12100
12101 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
12102                                       struct intel_crtc *intel_crtc,
12103                                       struct intel_flip_work *work)
12104 {
12105         u32 addr, vblank;
12106
12107         if (!atomic_read(&work->pending))
12108                 return false;
12109
12110         smp_rmb();
12111
12112         vblank = intel_crtc_get_vblank_counter(intel_crtc);
12113         if (work->flip_ready_vblank == 0) {
12114                 if (work->flip_queued_req &&
12115                     !i915_gem_request_completed(work->flip_queued_req))
12116                         return false;
12117
12118                 work->flip_ready_vblank = vblank;
12119         }
12120
12121         if (vblank - work->flip_ready_vblank < 3)
12122                 return false;
12123
12124         /* Potential stall - if we see that the flip has happened,
12125          * assume a missed interrupt. */
12126         if (INTEL_GEN(dev_priv) >= 4)
12127                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
12128         else
12129                 addr = I915_READ(DSPADDR(intel_crtc->plane));
12130
12131         /* There is a potential issue here with a false positive after a flip
12132          * to the same address. We could address this by checking for a
12133          * non-incrementing frame counter.
12134          */
12135         return addr == work->gtt_offset;
12136 }
12137
12138 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
12139 {
12140         struct drm_device *dev = &dev_priv->drm;
12141         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
12142         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12143         struct intel_flip_work *work;
12144
12145         WARN_ON(!in_interrupt());
12146
12147         if (crtc == NULL)
12148                 return;
12149
12150         spin_lock(&dev->event_lock);
12151         work = intel_crtc->flip_work;
12152
12153         if (work != NULL && !is_mmio_work(work) &&
12154             __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
12155                 WARN_ONCE(1,
12156                           "Kicking stuck page flip: queued at %d, now %d\n",
12157                         work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
12158                 page_flip_completed(intel_crtc);
12159                 work = NULL;
12160         }
12161
12162         if (work != NULL && !is_mmio_work(work) &&
12163             intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
12164                 intel_queue_rps_boost_for_request(work->flip_queued_req);
12165         spin_unlock(&dev->event_lock);
12166 }
12167
12168 static int intel_crtc_page_flip(struct drm_crtc *crtc,
12169                                 struct drm_framebuffer *fb,
12170                                 struct drm_pending_vblank_event *event,
12171                                 uint32_t page_flip_flags)
12172 {
12173         struct drm_device *dev = crtc->dev;
12174         struct drm_i915_private *dev_priv = to_i915(dev);
12175         struct drm_framebuffer *old_fb = crtc->primary->fb;
12176         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12177         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12178         struct drm_plane *primary = crtc->primary;
12179         enum pipe pipe = intel_crtc->pipe;
12180         struct intel_flip_work *work;
12181         struct intel_engine_cs *engine;
12182         bool mmio_flip;
12183         struct drm_i915_gem_request *request;
12184         struct i915_vma *vma;
12185         int ret;
12186
12187         /*
12188          * drm_mode_page_flip_ioctl() should already catch this, but double
12189          * check to be safe.  In the future we may enable pageflipping from
12190          * a disabled primary plane.
12191          */
12192         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
12193                 return -EBUSY;
12194
12195         /* Can't change pixel format via MI display flips. */
12196         if (fb->pixel_format != crtc->primary->fb->pixel_format)
12197                 return -EINVAL;
12198
12199         /*
12200          * TILEOFF/LINOFF registers can't be changed via MI display flips.
12201          * Note that pitch changes could also affect these register.
12202          */
12203         if (INTEL_INFO(dev)->gen > 3 &&
12204             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
12205              fb->pitches[0] != crtc->primary->fb->pitches[0]))
12206                 return -EINVAL;
12207
12208         if (i915_terminally_wedged(&dev_priv->gpu_error))
12209                 goto out_hang;
12210
12211         work = kzalloc(sizeof(*work), GFP_KERNEL);
12212         if (work == NULL)
12213                 return -ENOMEM;
12214
12215         work->event = event;
12216         work->crtc = crtc;
12217         work->old_fb = old_fb;
12218         INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12219
12220         ret = drm_crtc_vblank_get(crtc);
12221         if (ret)
12222                 goto free_work;
12223
12224         /* We borrow the event spin lock for protecting flip_work */
12225         spin_lock_irq(&dev->event_lock);
12226         if (intel_crtc->flip_work) {
12227                 /* Before declaring the flip queue wedged, check if
12228                  * the hardware completed the operation behind our backs.
12229                  */
12230                 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
12231                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12232                         page_flip_completed(intel_crtc);
12233                 } else {
12234                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12235                         spin_unlock_irq(&dev->event_lock);
12236
12237                         drm_crtc_vblank_put(crtc);
12238                         kfree(work);
12239                         return -EBUSY;
12240                 }
12241         }
12242         intel_crtc->flip_work = work;
12243         spin_unlock_irq(&dev->event_lock);
12244
12245         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12246                 flush_workqueue(dev_priv->wq);
12247
12248         /* Reference the objects for the scheduled work. */
12249         drm_framebuffer_reference(work->old_fb);
12250
12251         crtc->primary->fb = fb;
12252         update_state_fb(crtc->primary);
12253
12254         work->pending_flip_obj = i915_gem_object_get(obj);
12255
12256         ret = i915_mutex_lock_interruptible(dev);
12257         if (ret)
12258                 goto cleanup;
12259
12260         intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
12261         if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) {
12262                 ret = -EIO;
12263                 goto unlock;
12264         }
12265
12266         atomic_inc(&intel_crtc->unpin_work_count);
12267
12268         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
12269                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
12270
12271         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
12272                 engine = &dev_priv->engine[BCS];
12273                 if (fb->modifier[0] != old_fb->modifier[0])
12274                         /* vlv: DISPLAY_FLIP fails to change tiling */
12275                         engine = NULL;
12276         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
12277                 engine = &dev_priv->engine[BCS];
12278         } else if (INTEL_INFO(dev)->gen >= 7) {
12279                 engine = i915_gem_active_get_engine(&obj->last_write,
12280                                                     &obj->base.dev->struct_mutex);
12281                 if (engine == NULL || engine->id != RCS)
12282                         engine = &dev_priv->engine[BCS];
12283         } else {
12284                 engine = &dev_priv->engine[RCS];
12285         }
12286
12287         mmio_flip = use_mmio_flip(engine, obj);
12288
12289         vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
12290         if (IS_ERR(vma)) {
12291                 ret = PTR_ERR(vma);
12292                 goto cleanup_pending;
12293         }
12294
12295         work->gtt_offset = intel_fb_gtt_offset(fb, primary->state->rotation);
12296         work->gtt_offset += intel_crtc->dspaddr_offset;
12297         work->rotation = crtc->primary->state->rotation;
12298
12299         /*
12300          * There's the potential that the next frame will not be compatible with
12301          * FBC, so we want to call pre_update() before the actual page flip.
12302          * The problem is that pre_update() caches some information about the fb
12303          * object, so we want to do this only after the object is pinned. Let's
12304          * be on the safe side and do this immediately before scheduling the
12305          * flip.
12306          */
12307         intel_fbc_pre_update(intel_crtc, intel_crtc->config,
12308                              to_intel_plane_state(primary->state));
12309
12310         if (mmio_flip) {
12311                 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12312
12313                 work->flip_queued_req = i915_gem_active_get(&obj->last_write,
12314                                                             &obj->base.dev->struct_mutex);
12315                 schedule_work(&work->mmio_work);
12316         } else {
12317                 request = i915_gem_request_alloc(engine, engine->last_context);
12318                 if (IS_ERR(request)) {
12319                         ret = PTR_ERR(request);
12320                         goto cleanup_unpin;
12321                 }
12322
12323                 ret = i915_gem_request_await_object(request, obj, false);
12324                 if (ret)
12325                         goto cleanup_request;
12326
12327                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
12328                                                    page_flip_flags);
12329                 if (ret)
12330                         goto cleanup_request;
12331
12332                 intel_mark_page_flip_active(intel_crtc, work);
12333
12334                 work->flip_queued_req = i915_gem_request_get(request);
12335                 i915_add_request_no_flush(request);
12336         }
12337
12338         i915_gem_track_fb(intel_fb_obj(old_fb), obj,
12339                           to_intel_plane(primary)->frontbuffer_bit);
12340         mutex_unlock(&dev->struct_mutex);
12341
12342         intel_frontbuffer_flip_prepare(to_i915(dev),
12343                                        to_intel_plane(primary)->frontbuffer_bit);
12344
12345         trace_i915_flip_request(intel_crtc->plane, obj);
12346
12347         return 0;
12348
12349 cleanup_request:
12350         i915_add_request_no_flush(request);
12351 cleanup_unpin:
12352         intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
12353 cleanup_pending:
12354         atomic_dec(&intel_crtc->unpin_work_count);
12355 unlock:
12356         mutex_unlock(&dev->struct_mutex);
12357 cleanup:
12358         crtc->primary->fb = old_fb;
12359         update_state_fb(crtc->primary);
12360
12361         i915_gem_object_put_unlocked(obj);
12362         drm_framebuffer_unreference(work->old_fb);
12363
12364         spin_lock_irq(&dev->event_lock);
12365         intel_crtc->flip_work = NULL;
12366         spin_unlock_irq(&dev->event_lock);
12367
12368         drm_crtc_vblank_put(crtc);
12369 free_work:
12370         kfree(work);
12371
12372         if (ret == -EIO) {
12373                 struct drm_atomic_state *state;
12374                 struct drm_plane_state *plane_state;
12375
12376 out_hang:
12377                 state = drm_atomic_state_alloc(dev);
12378                 if (!state)
12379                         return -ENOMEM;
12380                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
12381
12382 retry:
12383                 plane_state = drm_atomic_get_plane_state(state, primary);
12384                 ret = PTR_ERR_OR_ZERO(plane_state);
12385                 if (!ret) {
12386                         drm_atomic_set_fb_for_plane(plane_state, fb);
12387
12388                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
12389                         if (!ret)
12390                                 ret = drm_atomic_commit(state);
12391                 }
12392
12393                 if (ret == -EDEADLK) {
12394                         drm_modeset_backoff(state->acquire_ctx);
12395                         drm_atomic_state_clear(state);
12396                         goto retry;
12397                 }
12398
12399                 if (ret)
12400                         drm_atomic_state_free(state);
12401
12402                 if (ret == 0 && event) {
12403                         spin_lock_irq(&dev->event_lock);
12404                         drm_crtc_send_vblank_event(crtc, event);
12405                         spin_unlock_irq(&dev->event_lock);
12406                 }
12407         }
12408         return ret;
12409 }
12410
12411
12412 /**
12413  * intel_wm_need_update - Check whether watermarks need updating
12414  * @plane: drm plane
12415  * @state: new plane state
12416  *
12417  * Check current plane state versus the new one to determine whether
12418  * watermarks need to be recalculated.
12419  *
12420  * Returns true or false.
12421  */
12422 static bool intel_wm_need_update(struct drm_plane *plane,
12423                                  struct drm_plane_state *state)
12424 {
12425         struct intel_plane_state *new = to_intel_plane_state(state);
12426         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
12427
12428         /* Update watermarks on tiling or size changes. */
12429         if (new->base.visible != cur->base.visible)
12430                 return true;
12431
12432         if (!cur->base.fb || !new->base.fb)
12433                 return false;
12434
12435         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
12436             cur->base.rotation != new->base.rotation ||
12437             drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
12438             drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
12439             drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
12440             drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
12441                 return true;
12442
12443         return false;
12444 }
12445
12446 static bool needs_scaling(struct intel_plane_state *state)
12447 {
12448         int src_w = drm_rect_width(&state->base.src) >> 16;
12449         int src_h = drm_rect_height(&state->base.src) >> 16;
12450         int dst_w = drm_rect_width(&state->base.dst);
12451         int dst_h = drm_rect_height(&state->base.dst);
12452
12453         return (src_w != dst_w || src_h != dst_h);
12454 }
12455
12456 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
12457                                     struct drm_plane_state *plane_state)
12458 {
12459         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
12460         struct drm_crtc *crtc = crtc_state->crtc;
12461         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12462         struct drm_plane *plane = plane_state->plane;
12463         struct drm_device *dev = crtc->dev;
12464         struct drm_i915_private *dev_priv = to_i915(dev);
12465         struct intel_plane_state *old_plane_state =
12466                 to_intel_plane_state(plane->state);
12467         bool mode_changed = needs_modeset(crtc_state);
12468         bool was_crtc_enabled = crtc->state->active;
12469         bool is_crtc_enabled = crtc_state->active;
12470         bool turn_off, turn_on, visible, was_visible;
12471         struct drm_framebuffer *fb = plane_state->fb;
12472         int ret;
12473
12474         if (INTEL_GEN(dev) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
12475                 ret = skl_update_scaler_plane(
12476                         to_intel_crtc_state(crtc_state),
12477                         to_intel_plane_state(plane_state));
12478                 if (ret)
12479                         return ret;
12480         }
12481
12482         was_visible = old_plane_state->base.visible;
12483         visible = to_intel_plane_state(plane_state)->base.visible;
12484
12485         if (!was_crtc_enabled && WARN_ON(was_visible))
12486                 was_visible = false;
12487
12488         /*
12489          * Visibility is calculated as if the crtc was on, but
12490          * after scaler setup everything depends on it being off
12491          * when the crtc isn't active.
12492          *
12493          * FIXME this is wrong for watermarks. Watermarks should also
12494          * be computed as if the pipe would be active. Perhaps move
12495          * per-plane wm computation to the .check_plane() hook, and
12496          * only combine the results from all planes in the current place?
12497          */
12498         if (!is_crtc_enabled)
12499                 to_intel_plane_state(plane_state)->base.visible = visible = false;
12500
12501         if (!was_visible && !visible)
12502                 return 0;
12503
12504         if (fb != old_plane_state->base.fb)
12505                 pipe_config->fb_changed = true;
12506
12507         turn_off = was_visible && (!visible || mode_changed);
12508         turn_on = visible && (!was_visible || mode_changed);
12509
12510         DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
12511                          intel_crtc->base.base.id,
12512                          intel_crtc->base.name,
12513                          plane->base.id, plane->name,
12514                          fb ? fb->base.id : -1);
12515
12516         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12517                          plane->base.id, plane->name,
12518                          was_visible, visible,
12519                          turn_off, turn_on, mode_changed);
12520
12521         if (turn_on) {
12522                 pipe_config->update_wm_pre = true;
12523
12524                 /* must disable cxsr around plane enable/disable */
12525                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12526                         pipe_config->disable_cxsr = true;
12527         } else if (turn_off) {
12528                 pipe_config->update_wm_post = true;
12529
12530                 /* must disable cxsr around plane enable/disable */
12531                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12532                         pipe_config->disable_cxsr = true;
12533         } else if (intel_wm_need_update(plane, plane_state)) {
12534                 /* FIXME bollocks */
12535                 pipe_config->update_wm_pre = true;
12536                 pipe_config->update_wm_post = true;
12537         }
12538
12539         /* Pre-gen9 platforms need two-step watermark updates */
12540         if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12541             INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
12542                 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12543
12544         if (visible || was_visible)
12545                 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12546
12547         /*
12548          * WaCxSRDisabledForSpriteScaling:ivb
12549          *
12550          * cstate->update_wm was already set above, so this flag will
12551          * take effect when we commit and program watermarks.
12552          */
12553         if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
12554             needs_scaling(to_intel_plane_state(plane_state)) &&
12555             !needs_scaling(old_plane_state))
12556                 pipe_config->disable_lp_wm = true;
12557
12558         return 0;
12559 }
12560
12561 static bool encoders_cloneable(const struct intel_encoder *a,
12562                                const struct intel_encoder *b)
12563 {
12564         /* masks could be asymmetric, so check both ways */
12565         return a == b || (a->cloneable & (1 << b->type) &&
12566                           b->cloneable & (1 << a->type));
12567 }
12568
12569 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12570                                          struct intel_crtc *crtc,
12571                                          struct intel_encoder *encoder)
12572 {
12573         struct intel_encoder *source_encoder;
12574         struct drm_connector *connector;
12575         struct drm_connector_state *connector_state;
12576         int i;
12577
12578         for_each_connector_in_state(state, connector, connector_state, i) {
12579                 if (connector_state->crtc != &crtc->base)
12580                         continue;
12581
12582                 source_encoder =
12583                         to_intel_encoder(connector_state->best_encoder);
12584                 if (!encoders_cloneable(encoder, source_encoder))
12585                         return false;
12586         }
12587
12588         return true;
12589 }
12590
12591 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12592                                    struct drm_crtc_state *crtc_state)
12593 {
12594         struct drm_device *dev = crtc->dev;
12595         struct drm_i915_private *dev_priv = to_i915(dev);
12596         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12597         struct intel_crtc_state *pipe_config =
12598                 to_intel_crtc_state(crtc_state);
12599         struct drm_atomic_state *state = crtc_state->state;
12600         int ret;
12601         bool mode_changed = needs_modeset(crtc_state);
12602
12603         if (mode_changed && !crtc_state->active)
12604                 pipe_config->update_wm_post = true;
12605
12606         if (mode_changed && crtc_state->enable &&
12607             dev_priv->display.crtc_compute_clock &&
12608             !WARN_ON(pipe_config->shared_dpll)) {
12609                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12610                                                            pipe_config);
12611                 if (ret)
12612                         return ret;
12613         }
12614
12615         if (crtc_state->color_mgmt_changed) {
12616                 ret = intel_color_check(crtc, crtc_state);
12617                 if (ret)
12618                         return ret;
12619
12620                 /*
12621                  * Changing color management on Intel hardware is
12622                  * handled as part of planes update.
12623                  */
12624                 crtc_state->planes_changed = true;
12625         }
12626
12627         ret = 0;
12628         if (dev_priv->display.compute_pipe_wm) {
12629                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12630                 if (ret) {
12631                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12632                         return ret;
12633                 }
12634         }
12635
12636         if (dev_priv->display.compute_intermediate_wm &&
12637             !to_intel_atomic_state(state)->skip_intermediate_wm) {
12638                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12639                         return 0;
12640
12641                 /*
12642                  * Calculate 'intermediate' watermarks that satisfy both the
12643                  * old state and the new state.  We can program these
12644                  * immediately.
12645                  */
12646                 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12647                                                                 intel_crtc,
12648                                                                 pipe_config);
12649                 if (ret) {
12650                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12651                         return ret;
12652                 }
12653         } else if (dev_priv->display.compute_intermediate_wm) {
12654                 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12655                         pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12656         }
12657
12658         if (INTEL_INFO(dev)->gen >= 9) {
12659                 if (mode_changed)
12660                         ret = skl_update_scaler_crtc(pipe_config);
12661
12662                 if (!ret)
12663                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
12664                                                          pipe_config);
12665         }
12666
12667         return ret;
12668 }
12669
12670 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12671         .mode_set_base_atomic = intel_pipe_set_base_atomic,
12672         .atomic_begin = intel_begin_crtc_commit,
12673         .atomic_flush = intel_finish_crtc_commit,
12674         .atomic_check = intel_crtc_atomic_check,
12675 };
12676
12677 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12678 {
12679         struct intel_connector *connector;
12680
12681         for_each_intel_connector(dev, connector) {
12682                 if (connector->base.state->crtc)
12683                         drm_connector_unreference(&connector->base);
12684
12685                 if (connector->base.encoder) {
12686                         connector->base.state->best_encoder =
12687                                 connector->base.encoder;
12688                         connector->base.state->crtc =
12689                                 connector->base.encoder->crtc;
12690
12691                         drm_connector_reference(&connector->base);
12692                 } else {
12693                         connector->base.state->best_encoder = NULL;
12694                         connector->base.state->crtc = NULL;
12695                 }
12696         }
12697 }
12698
12699 static void
12700 connected_sink_compute_bpp(struct intel_connector *connector,
12701                            struct intel_crtc_state *pipe_config)
12702 {
12703         const struct drm_display_info *info = &connector->base.display_info;
12704         int bpp = pipe_config->pipe_bpp;
12705
12706         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12707                       connector->base.base.id,
12708                       connector->base.name);
12709
12710         /* Don't use an invalid EDID bpc value */
12711         if (info->bpc != 0 && info->bpc * 3 < bpp) {
12712                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12713                               bpp, info->bpc * 3);
12714                 pipe_config->pipe_bpp = info->bpc * 3;
12715         }
12716
12717         /* Clamp bpp to 8 on screens without EDID 1.4 */
12718         if (info->bpc == 0 && bpp > 24) {
12719                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12720                               bpp);
12721                 pipe_config->pipe_bpp = 24;
12722         }
12723 }
12724
12725 static int
12726 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12727                           struct intel_crtc_state *pipe_config)
12728 {
12729         struct drm_device *dev = crtc->base.dev;
12730         struct drm_atomic_state *state;
12731         struct drm_connector *connector;
12732         struct drm_connector_state *connector_state;
12733         int bpp, i;
12734
12735         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12736                 bpp = 10*3;
12737         else if (INTEL_INFO(dev)->gen >= 5)
12738                 bpp = 12*3;
12739         else
12740                 bpp = 8*3;
12741
12742
12743         pipe_config->pipe_bpp = bpp;
12744
12745         state = pipe_config->base.state;
12746
12747         /* Clamp display bpp to EDID value */
12748         for_each_connector_in_state(state, connector, connector_state, i) {
12749                 if (connector_state->crtc != &crtc->base)
12750                         continue;
12751
12752                 connected_sink_compute_bpp(to_intel_connector(connector),
12753                                            pipe_config);
12754         }
12755
12756         return bpp;
12757 }
12758
12759 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12760 {
12761         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12762                         "type: 0x%x flags: 0x%x\n",
12763                 mode->crtc_clock,
12764                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12765                 mode->crtc_hsync_end, mode->crtc_htotal,
12766                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12767                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12768 }
12769
12770 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12771                                    struct intel_crtc_state *pipe_config,
12772                                    const char *context)
12773 {
12774         struct drm_device *dev = crtc->base.dev;
12775         struct drm_plane *plane;
12776         struct intel_plane *intel_plane;
12777         struct intel_plane_state *state;
12778         struct drm_framebuffer *fb;
12779
12780         DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
12781                       crtc->base.base.id, crtc->base.name,
12782                       context, pipe_config, pipe_name(crtc->pipe));
12783
12784         DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12785         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12786                       pipe_config->pipe_bpp, pipe_config->dither);
12787         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12788                       pipe_config->has_pch_encoder,
12789                       pipe_config->fdi_lanes,
12790                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12791                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12792                       pipe_config->fdi_m_n.tu);
12793         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12794                       intel_crtc_has_dp_encoder(pipe_config),
12795                       pipe_config->lane_count,
12796                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12797                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12798                       pipe_config->dp_m_n.tu);
12799
12800         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12801                       intel_crtc_has_dp_encoder(pipe_config),
12802                       pipe_config->lane_count,
12803                       pipe_config->dp_m2_n2.gmch_m,
12804                       pipe_config->dp_m2_n2.gmch_n,
12805                       pipe_config->dp_m2_n2.link_m,
12806                       pipe_config->dp_m2_n2.link_n,
12807                       pipe_config->dp_m2_n2.tu);
12808
12809         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12810                       pipe_config->has_audio,
12811                       pipe_config->has_infoframe);
12812
12813         DRM_DEBUG_KMS("requested mode:\n");
12814         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12815         DRM_DEBUG_KMS("adjusted mode:\n");
12816         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12817         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12818         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12819         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12820                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12821         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12822                       crtc->num_scalers,
12823                       pipe_config->scaler_state.scaler_users,
12824                       pipe_config->scaler_state.scaler_id);
12825         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12826                       pipe_config->gmch_pfit.control,
12827                       pipe_config->gmch_pfit.pgm_ratios,
12828                       pipe_config->gmch_pfit.lvds_border_bits);
12829         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12830                       pipe_config->pch_pfit.pos,
12831                       pipe_config->pch_pfit.size,
12832                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12833         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12834         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12835
12836         if (IS_BROXTON(dev)) {
12837                 DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12838                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12839                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12840                               pipe_config->dpll_hw_state.ebb0,
12841                               pipe_config->dpll_hw_state.ebb4,
12842                               pipe_config->dpll_hw_state.pll0,
12843                               pipe_config->dpll_hw_state.pll1,
12844                               pipe_config->dpll_hw_state.pll2,
12845                               pipe_config->dpll_hw_state.pll3,
12846                               pipe_config->dpll_hw_state.pll6,
12847                               pipe_config->dpll_hw_state.pll8,
12848                               pipe_config->dpll_hw_state.pll9,
12849                               pipe_config->dpll_hw_state.pll10,
12850                               pipe_config->dpll_hw_state.pcsdw12);
12851         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12852                 DRM_DEBUG_KMS("dpll_hw_state: "
12853                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12854                               pipe_config->dpll_hw_state.ctrl1,
12855                               pipe_config->dpll_hw_state.cfgcr1,
12856                               pipe_config->dpll_hw_state.cfgcr2);
12857         } else if (HAS_DDI(dev)) {
12858                 DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12859                               pipe_config->dpll_hw_state.wrpll,
12860                               pipe_config->dpll_hw_state.spll);
12861         } else {
12862                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12863                               "fp0: 0x%x, fp1: 0x%x\n",
12864                               pipe_config->dpll_hw_state.dpll,
12865                               pipe_config->dpll_hw_state.dpll_md,
12866                               pipe_config->dpll_hw_state.fp0,
12867                               pipe_config->dpll_hw_state.fp1);
12868         }
12869
12870         DRM_DEBUG_KMS("planes on this crtc\n");
12871         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12872                 char *format_name;
12873                 intel_plane = to_intel_plane(plane);
12874                 if (intel_plane->pipe != crtc->pipe)
12875                         continue;
12876
12877                 state = to_intel_plane_state(plane->state);
12878                 fb = state->base.fb;
12879                 if (!fb) {
12880                         DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12881                                       plane->base.id, plane->name, state->scaler_id);
12882                         continue;
12883                 }
12884
12885                 format_name = drm_get_format_name(fb->pixel_format);
12886
12887                 DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
12888                               plane->base.id, plane->name);
12889                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
12890                               fb->base.id, fb->width, fb->height, format_name);
12891                 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12892                               state->scaler_id,
12893                               state->base.src.x1 >> 16,
12894                               state->base.src.y1 >> 16,
12895                               drm_rect_width(&state->base.src) >> 16,
12896                               drm_rect_height(&state->base.src) >> 16,
12897                               state->base.dst.x1, state->base.dst.y1,
12898                               drm_rect_width(&state->base.dst),
12899                               drm_rect_height(&state->base.dst));
12900
12901                 kfree(format_name);
12902         }
12903 }
12904
12905 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12906 {
12907         struct drm_device *dev = state->dev;
12908         struct drm_connector *connector;
12909         unsigned int used_ports = 0;
12910         unsigned int used_mst_ports = 0;
12911
12912         /*
12913          * Walk the connector list instead of the encoder
12914          * list to detect the problem on ddi platforms
12915          * where there's just one encoder per digital port.
12916          */
12917         drm_for_each_connector(connector, dev) {
12918                 struct drm_connector_state *connector_state;
12919                 struct intel_encoder *encoder;
12920
12921                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12922                 if (!connector_state)
12923                         connector_state = connector->state;
12924
12925                 if (!connector_state->best_encoder)
12926                         continue;
12927
12928                 encoder = to_intel_encoder(connector_state->best_encoder);
12929
12930                 WARN_ON(!connector_state->crtc);
12931
12932                 switch (encoder->type) {
12933                         unsigned int port_mask;
12934                 case INTEL_OUTPUT_UNKNOWN:
12935                         if (WARN_ON(!HAS_DDI(dev)))
12936                                 break;
12937                 case INTEL_OUTPUT_DP:
12938                 case INTEL_OUTPUT_HDMI:
12939                 case INTEL_OUTPUT_EDP:
12940                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12941
12942                         /* the same port mustn't appear more than once */
12943                         if (used_ports & port_mask)
12944                                 return false;
12945
12946                         used_ports |= port_mask;
12947                         break;
12948                 case INTEL_OUTPUT_DP_MST:
12949                         used_mst_ports |=
12950                                 1 << enc_to_mst(&encoder->base)->primary->port;
12951                         break;
12952                 default:
12953                         break;
12954                 }
12955         }
12956
12957         /* can't mix MST and SST/HDMI on the same port */
12958         if (used_ports & used_mst_ports)
12959                 return false;
12960
12961         return true;
12962 }
12963
12964 static void
12965 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12966 {
12967         struct drm_crtc_state tmp_state;
12968         struct intel_crtc_scaler_state scaler_state;
12969         struct intel_dpll_hw_state dpll_hw_state;
12970         struct intel_shared_dpll *shared_dpll;
12971         bool force_thru;
12972
12973         /* FIXME: before the switch to atomic started, a new pipe_config was
12974          * kzalloc'd. Code that depends on any field being zero should be
12975          * fixed, so that the crtc_state can be safely duplicated. For now,
12976          * only fields that are know to not cause problems are preserved. */
12977
12978         tmp_state = crtc_state->base;
12979         scaler_state = crtc_state->scaler_state;
12980         shared_dpll = crtc_state->shared_dpll;
12981         dpll_hw_state = crtc_state->dpll_hw_state;
12982         force_thru = crtc_state->pch_pfit.force_thru;
12983
12984         memset(crtc_state, 0, sizeof *crtc_state);
12985
12986         crtc_state->base = tmp_state;
12987         crtc_state->scaler_state = scaler_state;
12988         crtc_state->shared_dpll = shared_dpll;
12989         crtc_state->dpll_hw_state = dpll_hw_state;
12990         crtc_state->pch_pfit.force_thru = force_thru;
12991 }
12992
12993 static int
12994 intel_modeset_pipe_config(struct drm_crtc *crtc,
12995                           struct intel_crtc_state *pipe_config)
12996 {
12997         struct drm_atomic_state *state = pipe_config->base.state;
12998         struct intel_encoder *encoder;
12999         struct drm_connector *connector;
13000         struct drm_connector_state *connector_state;
13001         int base_bpp, ret = -EINVAL;
13002         int i;
13003         bool retry = true;
13004
13005         clear_intel_crtc_state(pipe_config);
13006
13007         pipe_config->cpu_transcoder =
13008                 (enum transcoder) to_intel_crtc(crtc)->pipe;
13009
13010         /*
13011          * Sanitize sync polarity flags based on requested ones. If neither
13012          * positive or negative polarity is requested, treat this as meaning
13013          * negative polarity.
13014          */
13015         if (!(pipe_config->base.adjusted_mode.flags &
13016               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
13017                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
13018
13019         if (!(pipe_config->base.adjusted_mode.flags &
13020               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
13021                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
13022
13023         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
13024                                              pipe_config);
13025         if (base_bpp < 0)
13026                 goto fail;
13027
13028         /*
13029          * Determine the real pipe dimensions. Note that stereo modes can
13030          * increase the actual pipe size due to the frame doubling and
13031          * insertion of additional space for blanks between the frame. This
13032          * is stored in the crtc timings. We use the requested mode to do this
13033          * computation to clearly distinguish it from the adjusted mode, which
13034          * can be changed by the connectors in the below retry loop.
13035          */
13036         drm_crtc_get_hv_timing(&pipe_config->base.mode,
13037                                &pipe_config->pipe_src_w,
13038                                &pipe_config->pipe_src_h);
13039
13040         for_each_connector_in_state(state, connector, connector_state, i) {
13041                 if (connector_state->crtc != crtc)
13042                         continue;
13043
13044                 encoder = to_intel_encoder(connector_state->best_encoder);
13045
13046                 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
13047                         DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
13048                         goto fail;
13049                 }
13050
13051                 /*
13052                  * Determine output_types before calling the .compute_config()
13053                  * hooks so that the hooks can use this information safely.
13054                  */
13055                 pipe_config->output_types |= 1 << encoder->type;
13056         }
13057
13058 encoder_retry:
13059         /* Ensure the port clock defaults are reset when retrying. */
13060         pipe_config->port_clock = 0;
13061         pipe_config->pixel_multiplier = 1;
13062
13063         /* Fill in default crtc timings, allow encoders to overwrite them. */
13064         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
13065                               CRTC_STEREO_DOUBLE);
13066
13067         /* Pass our mode to the connectors and the CRTC to give them a chance to
13068          * adjust it according to limitations or connector properties, and also
13069          * a chance to reject the mode entirely.
13070          */
13071         for_each_connector_in_state(state, connector, connector_state, i) {
13072                 if (connector_state->crtc != crtc)
13073                         continue;
13074
13075                 encoder = to_intel_encoder(connector_state->best_encoder);
13076
13077                 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
13078                         DRM_DEBUG_KMS("Encoder config failure\n");
13079                         goto fail;
13080                 }
13081         }
13082
13083         /* Set default port clock if not overwritten by the encoder. Needs to be
13084          * done afterwards in case the encoder adjusts the mode. */
13085         if (!pipe_config->port_clock)
13086                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
13087                         * pipe_config->pixel_multiplier;
13088
13089         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13090         if (ret < 0) {
13091                 DRM_DEBUG_KMS("CRTC fixup failed\n");
13092                 goto fail;
13093         }
13094
13095         if (ret == RETRY) {
13096                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
13097                         ret = -EINVAL;
13098                         goto fail;
13099                 }
13100
13101                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13102                 retry = false;
13103                 goto encoder_retry;
13104         }
13105
13106         /* Dithering seems to not pass-through bits correctly when it should, so
13107          * only enable it on 6bpc panels. */
13108         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
13109         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13110                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13111
13112 fail:
13113         return ret;
13114 }
13115
13116 static void
13117 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
13118 {
13119         struct drm_crtc *crtc;
13120         struct drm_crtc_state *crtc_state;
13121         int i;
13122
13123         /* Double check state. */
13124         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13125                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
13126
13127                 /* Update hwmode for vblank functions */
13128                 if (crtc->state->active)
13129                         crtc->hwmode = crtc->state->adjusted_mode;
13130                 else
13131                         crtc->hwmode.crtc_clock = 0;
13132
13133                 /*
13134                  * Update legacy state to satisfy fbc code. This can
13135                  * be removed when fbc uses the atomic state.
13136                  */
13137                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
13138                         struct drm_plane_state *plane_state = crtc->primary->state;
13139
13140                         crtc->primary->fb = plane_state->fb;
13141                         crtc->x = plane_state->src_x >> 16;
13142                         crtc->y = plane_state->src_y >> 16;
13143                 }
13144         }
13145 }
13146
13147 static bool intel_fuzzy_clock_check(int clock1, int clock2)
13148 {
13149         int diff;
13150
13151         if (clock1 == clock2)
13152                 return true;
13153
13154         if (!clock1 || !clock2)
13155                 return false;
13156
13157         diff = abs(clock1 - clock2);
13158
13159         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13160                 return true;
13161
13162         return false;
13163 }
13164
13165 static bool
13166 intel_compare_m_n(unsigned int m, unsigned int n,
13167                   unsigned int m2, unsigned int n2,
13168                   bool exact)
13169 {
13170         if (m == m2 && n == n2)
13171                 return true;
13172
13173         if (exact || !m || !n || !m2 || !n2)
13174                 return false;
13175
13176         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13177
13178         if (n > n2) {
13179                 while (n > n2) {
13180                         m2 <<= 1;
13181                         n2 <<= 1;
13182                 }
13183         } else if (n < n2) {
13184                 while (n < n2) {
13185                         m <<= 1;
13186                         n <<= 1;
13187                 }
13188         }
13189
13190         if (n != n2)
13191                 return false;
13192
13193         return intel_fuzzy_clock_check(m, m2);
13194 }
13195
13196 static bool
13197 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13198                        struct intel_link_m_n *m2_n2,
13199                        bool adjust)
13200 {
13201         if (m_n->tu == m2_n2->tu &&
13202             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13203                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
13204             intel_compare_m_n(m_n->link_m, m_n->link_n,
13205                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
13206                 if (adjust)
13207                         *m2_n2 = *m_n;
13208
13209                 return true;
13210         }
13211
13212         return false;
13213 }
13214
13215 static bool
13216 intel_pipe_config_compare(struct drm_device *dev,
13217                           struct intel_crtc_state *current_config,
13218                           struct intel_crtc_state *pipe_config,
13219                           bool adjust)
13220 {
13221         bool ret = true;
13222
13223 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
13224         do { \
13225                 if (!adjust) \
13226                         DRM_ERROR(fmt, ##__VA_ARGS__); \
13227                 else \
13228                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
13229         } while (0)
13230
13231 #define PIPE_CONF_CHECK_X(name) \
13232         if (current_config->name != pipe_config->name) { \
13233                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13234                           "(expected 0x%08x, found 0x%08x)\n", \
13235                           current_config->name, \
13236                           pipe_config->name); \
13237                 ret = false; \
13238         }
13239
13240 #define PIPE_CONF_CHECK_I(name) \
13241         if (current_config->name != pipe_config->name) { \
13242                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13243                           "(expected %i, found %i)\n", \
13244                           current_config->name, \
13245                           pipe_config->name); \
13246                 ret = false; \
13247         }
13248
13249 #define PIPE_CONF_CHECK_P(name) \
13250         if (current_config->name != pipe_config->name) { \
13251                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13252                           "(expected %p, found %p)\n", \
13253                           current_config->name, \
13254                           pipe_config->name); \
13255                 ret = false; \
13256         }
13257
13258 #define PIPE_CONF_CHECK_M_N(name) \
13259         if (!intel_compare_link_m_n(&current_config->name, \
13260                                     &pipe_config->name,\
13261                                     adjust)) { \
13262                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13263                           "(expected tu %i gmch %i/%i link %i/%i, " \
13264                           "found tu %i, gmch %i/%i link %i/%i)\n", \
13265                           current_config->name.tu, \
13266                           current_config->name.gmch_m, \
13267                           current_config->name.gmch_n, \
13268                           current_config->name.link_m, \
13269                           current_config->name.link_n, \
13270                           pipe_config->name.tu, \
13271                           pipe_config->name.gmch_m, \
13272                           pipe_config->name.gmch_n, \
13273                           pipe_config->name.link_m, \
13274                           pipe_config->name.link_n); \
13275                 ret = false; \
13276         }
13277
13278 /* This is required for BDW+ where there is only one set of registers for
13279  * switching between high and low RR.
13280  * This macro can be used whenever a comparison has to be made between one
13281  * hw state and multiple sw state variables.
13282  */
13283 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13284         if (!intel_compare_link_m_n(&current_config->name, \
13285                                     &pipe_config->name, adjust) && \
13286             !intel_compare_link_m_n(&current_config->alt_name, \
13287                                     &pipe_config->name, adjust)) { \
13288                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13289                           "(expected tu %i gmch %i/%i link %i/%i, " \
13290                           "or tu %i gmch %i/%i link %i/%i, " \
13291                           "found tu %i, gmch %i/%i link %i/%i)\n", \
13292                           current_config->name.tu, \
13293                           current_config->name.gmch_m, \
13294                           current_config->name.gmch_n, \
13295                           current_config->name.link_m, \
13296                           current_config->name.link_n, \
13297                           current_config->alt_name.tu, \
13298                           current_config->alt_name.gmch_m, \
13299                           current_config->alt_name.gmch_n, \
13300                           current_config->alt_name.link_m, \
13301                           current_config->alt_name.link_n, \
13302                           pipe_config->name.tu, \
13303                           pipe_config->name.gmch_m, \
13304                           pipe_config->name.gmch_n, \
13305                           pipe_config->name.link_m, \
13306                           pipe_config->name.link_n); \
13307                 ret = false; \
13308         }
13309
13310 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
13311         if ((current_config->name ^ pipe_config->name) & (mask)) { \
13312                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
13313                           "(expected %i, found %i)\n", \
13314                           current_config->name & (mask), \
13315                           pipe_config->name & (mask)); \
13316                 ret = false; \
13317         }
13318
13319 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13320         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13321                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13322                           "(expected %i, found %i)\n", \
13323                           current_config->name, \
13324                           pipe_config->name); \
13325                 ret = false; \
13326         }
13327
13328 #define PIPE_CONF_QUIRK(quirk)  \
13329         ((current_config->quirks | pipe_config->quirks) & (quirk))
13330
13331         PIPE_CONF_CHECK_I(cpu_transcoder);
13332
13333         PIPE_CONF_CHECK_I(has_pch_encoder);
13334         PIPE_CONF_CHECK_I(fdi_lanes);
13335         PIPE_CONF_CHECK_M_N(fdi_m_n);
13336
13337         PIPE_CONF_CHECK_I(lane_count);
13338         PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13339
13340         if (INTEL_INFO(dev)->gen < 8) {
13341                 PIPE_CONF_CHECK_M_N(dp_m_n);
13342
13343                 if (current_config->has_drrs)
13344                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
13345         } else
13346                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13347
13348         PIPE_CONF_CHECK_X(output_types);
13349
13350         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13351         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13352         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13353         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13354         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13355         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
13356
13357         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13358         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13359         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13360         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13361         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13362         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
13363
13364         PIPE_CONF_CHECK_I(pixel_multiplier);
13365         PIPE_CONF_CHECK_I(has_hdmi_sink);
13366         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
13367             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
13368                 PIPE_CONF_CHECK_I(limited_color_range);
13369         PIPE_CONF_CHECK_I(has_infoframe);
13370
13371         PIPE_CONF_CHECK_I(has_audio);
13372
13373         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13374                               DRM_MODE_FLAG_INTERLACE);
13375
13376         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13377                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13378                                       DRM_MODE_FLAG_PHSYNC);
13379                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13380                                       DRM_MODE_FLAG_NHSYNC);
13381                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13382                                       DRM_MODE_FLAG_PVSYNC);
13383                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13384                                       DRM_MODE_FLAG_NVSYNC);
13385         }
13386
13387         PIPE_CONF_CHECK_X(gmch_pfit.control);
13388         /* pfit ratios are autocomputed by the hw on gen4+ */
13389         if (INTEL_INFO(dev)->gen < 4)
13390                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13391         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13392
13393         if (!adjust) {
13394                 PIPE_CONF_CHECK_I(pipe_src_w);
13395                 PIPE_CONF_CHECK_I(pipe_src_h);
13396
13397                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
13398                 if (current_config->pch_pfit.enabled) {
13399                         PIPE_CONF_CHECK_X(pch_pfit.pos);
13400                         PIPE_CONF_CHECK_X(pch_pfit.size);
13401                 }
13402
13403                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13404         }
13405
13406         /* BDW+ don't expose a synchronous way to read the state */
13407         if (IS_HASWELL(dev))
13408                 PIPE_CONF_CHECK_I(ips_enabled);
13409
13410         PIPE_CONF_CHECK_I(double_wide);
13411
13412         PIPE_CONF_CHECK_P(shared_dpll);
13413         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13414         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13415         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13416         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13417         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13418         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13419         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13420         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13421         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13422
13423         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13424         PIPE_CONF_CHECK_X(dsi_pll.div);
13425
13426         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
13427                 PIPE_CONF_CHECK_I(pipe_bpp);
13428
13429         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
13430         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13431
13432 #undef PIPE_CONF_CHECK_X
13433 #undef PIPE_CONF_CHECK_I
13434 #undef PIPE_CONF_CHECK_P
13435 #undef PIPE_CONF_CHECK_FLAGS
13436 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13437 #undef PIPE_CONF_QUIRK
13438 #undef INTEL_ERR_OR_DBG_KMS
13439
13440         return ret;
13441 }
13442
13443 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13444                                            const struct intel_crtc_state *pipe_config)
13445 {
13446         if (pipe_config->has_pch_encoder) {
13447                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13448                                                             &pipe_config->fdi_m_n);
13449                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13450
13451                 /*
13452                  * FDI already provided one idea for the dotclock.
13453                  * Yell if the encoder disagrees.
13454                  */
13455                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13456                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13457                      fdi_dotclock, dotclock);
13458         }
13459 }
13460
13461 static void verify_wm_state(struct drm_crtc *crtc,
13462                             struct drm_crtc_state *new_state)
13463 {
13464         struct drm_device *dev = crtc->dev;
13465         struct drm_i915_private *dev_priv = to_i915(dev);
13466         struct skl_ddb_allocation hw_ddb, *sw_ddb;
13467         struct skl_ddb_entry *hw_entry, *sw_entry;
13468         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13469         const enum pipe pipe = intel_crtc->pipe;
13470         int plane;
13471
13472         if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
13473                 return;
13474
13475         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
13476         sw_ddb = &dev_priv->wm.skl_hw.ddb;
13477
13478         /* planes */
13479         for_each_plane(dev_priv, pipe, plane) {
13480                 hw_entry = &hw_ddb.plane[pipe][plane];
13481                 sw_entry = &sw_ddb->plane[pipe][plane];
13482
13483                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
13484                         continue;
13485
13486                 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
13487                           "(expected (%u,%u), found (%u,%u))\n",
13488                           pipe_name(pipe), plane + 1,
13489                           sw_entry->start, sw_entry->end,
13490                           hw_entry->start, hw_entry->end);
13491         }
13492
13493         /*
13494          * cursor
13495          * If the cursor plane isn't active, we may not have updated it's ddb
13496          * allocation. In that case since the ddb allocation will be updated
13497          * once the plane becomes visible, we can skip this check
13498          */
13499         if (intel_crtc->cursor_addr) {
13500                 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13501                 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13502
13503                 if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
13504                         DRM_ERROR("mismatch in DDB state pipe %c cursor "
13505                                   "(expected (%u,%u), found (%u,%u))\n",
13506                                   pipe_name(pipe),
13507                                   sw_entry->start, sw_entry->end,
13508                                   hw_entry->start, hw_entry->end);
13509                 }
13510         }
13511 }
13512
13513 static void
13514 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
13515 {
13516         struct drm_connector *connector;
13517
13518         drm_for_each_connector(connector, dev) {
13519                 struct drm_encoder *encoder = connector->encoder;
13520                 struct drm_connector_state *state = connector->state;
13521
13522                 if (state->crtc != crtc)
13523                         continue;
13524
13525                 intel_connector_verify_state(to_intel_connector(connector));
13526
13527                 I915_STATE_WARN(state->best_encoder != encoder,
13528                      "connector's atomic encoder doesn't match legacy encoder\n");
13529         }
13530 }
13531
13532 static void
13533 verify_encoder_state(struct drm_device *dev)
13534 {
13535         struct intel_encoder *encoder;
13536         struct intel_connector *connector;
13537
13538         for_each_intel_encoder(dev, encoder) {
13539                 bool enabled = false;
13540                 enum pipe pipe;
13541
13542                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13543                               encoder->base.base.id,
13544                               encoder->base.name);
13545
13546                 for_each_intel_connector(dev, connector) {
13547                         if (connector->base.state->best_encoder != &encoder->base)
13548                                 continue;
13549                         enabled = true;
13550
13551                         I915_STATE_WARN(connector->base.state->crtc !=
13552                                         encoder->base.crtc,
13553                              "connector's crtc doesn't match encoder crtc\n");
13554                 }
13555
13556                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
13557                      "encoder's enabled state mismatch "
13558                      "(expected %i, found %i)\n",
13559                      !!encoder->base.crtc, enabled);
13560
13561                 if (!encoder->base.crtc) {
13562                         bool active;
13563
13564                         active = encoder->get_hw_state(encoder, &pipe);
13565                         I915_STATE_WARN(active,
13566                              "encoder detached but still enabled on pipe %c.\n",
13567                              pipe_name(pipe));
13568                 }
13569         }
13570 }
13571
13572 static void
13573 verify_crtc_state(struct drm_crtc *crtc,
13574                   struct drm_crtc_state *old_crtc_state,
13575                   struct drm_crtc_state *new_crtc_state)
13576 {
13577         struct drm_device *dev = crtc->dev;
13578         struct drm_i915_private *dev_priv = to_i915(dev);
13579         struct intel_encoder *encoder;
13580         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13581         struct intel_crtc_state *pipe_config, *sw_config;
13582         struct drm_atomic_state *old_state;
13583         bool active;
13584
13585         old_state = old_crtc_state->state;
13586         __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13587         pipe_config = to_intel_crtc_state(old_crtc_state);
13588         memset(pipe_config, 0, sizeof(*pipe_config));
13589         pipe_config->base.crtc = crtc;
13590         pipe_config->base.state = old_state;
13591
13592         DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13593
13594         active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13595
13596         /* hw state is inconsistent with the pipe quirk */
13597         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13598             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13599                 active = new_crtc_state->active;
13600
13601         I915_STATE_WARN(new_crtc_state->active != active,
13602              "crtc active state doesn't match with hw state "
13603              "(expected %i, found %i)\n", new_crtc_state->active, active);
13604
13605         I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13606              "transitional active state does not match atomic hw state "
13607              "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13608
13609         for_each_encoder_on_crtc(dev, crtc, encoder) {
13610                 enum pipe pipe;
13611
13612                 active = encoder->get_hw_state(encoder, &pipe);
13613                 I915_STATE_WARN(active != new_crtc_state->active,
13614                         "[ENCODER:%i] active %i with crtc active %i\n",
13615                         encoder->base.base.id, active, new_crtc_state->active);
13616
13617                 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13618                                 "Encoder connected to wrong pipe %c\n",
13619                                 pipe_name(pipe));
13620
13621                 if (active) {
13622                         pipe_config->output_types |= 1 << encoder->type;
13623                         encoder->get_config(encoder, pipe_config);
13624                 }
13625         }
13626
13627         if (!new_crtc_state->active)
13628                 return;
13629
13630         intel_pipe_config_sanity_check(dev_priv, pipe_config);
13631
13632         sw_config = to_intel_crtc_state(crtc->state);
13633         if (!intel_pipe_config_compare(dev, sw_config,
13634                                        pipe_config, false)) {
13635                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13636                 intel_dump_pipe_config(intel_crtc, pipe_config,
13637                                        "[hw state]");
13638                 intel_dump_pipe_config(intel_crtc, sw_config,
13639                                        "[sw state]");
13640         }
13641 }
13642
13643 static void
13644 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13645                          struct intel_shared_dpll *pll,
13646                          struct drm_crtc *crtc,
13647                          struct drm_crtc_state *new_state)
13648 {
13649         struct intel_dpll_hw_state dpll_hw_state;
13650         unsigned crtc_mask;
13651         bool active;
13652
13653         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13654
13655         DRM_DEBUG_KMS("%s\n", pll->name);
13656
13657         active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13658
13659         if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13660                 I915_STATE_WARN(!pll->on && pll->active_mask,
13661                      "pll in active use but not on in sw tracking\n");
13662                 I915_STATE_WARN(pll->on && !pll->active_mask,
13663                      "pll is on but not used by any active crtc\n");
13664                 I915_STATE_WARN(pll->on != active,
13665                      "pll on state mismatch (expected %i, found %i)\n",
13666                      pll->on, active);
13667         }
13668
13669         if (!crtc) {
13670                 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13671                                 "more active pll users than references: %x vs %x\n",
13672                                 pll->active_mask, pll->config.crtc_mask);
13673
13674                 return;
13675         }
13676
13677         crtc_mask = 1 << drm_crtc_index(crtc);
13678
13679         if (new_state->active)
13680                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13681                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13682                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13683         else
13684                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13685                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13686                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13687
13688         I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13689                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13690                         crtc_mask, pll->config.crtc_mask);
13691
13692         I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13693                                           &dpll_hw_state,
13694                                           sizeof(dpll_hw_state)),
13695                         "pll hw state mismatch\n");
13696 }
13697
13698 static void
13699 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13700                          struct drm_crtc_state *old_crtc_state,
13701                          struct drm_crtc_state *new_crtc_state)
13702 {
13703         struct drm_i915_private *dev_priv = to_i915(dev);
13704         struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13705         struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13706
13707         if (new_state->shared_dpll)
13708                 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13709
13710         if (old_state->shared_dpll &&
13711             old_state->shared_dpll != new_state->shared_dpll) {
13712                 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13713                 struct intel_shared_dpll *pll = old_state->shared_dpll;
13714
13715                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13716                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13717                                 pipe_name(drm_crtc_index(crtc)));
13718                 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13719                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13720                                 pipe_name(drm_crtc_index(crtc)));
13721         }
13722 }
13723
13724 static void
13725 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13726                          struct drm_crtc_state *old_state,
13727                          struct drm_crtc_state *new_state)
13728 {
13729         if (!needs_modeset(new_state) &&
13730             !to_intel_crtc_state(new_state)->update_pipe)
13731                 return;
13732
13733         verify_wm_state(crtc, new_state);
13734         verify_connector_state(crtc->dev, crtc);
13735         verify_crtc_state(crtc, old_state, new_state);
13736         verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13737 }
13738
13739 static void
13740 verify_disabled_dpll_state(struct drm_device *dev)
13741 {
13742         struct drm_i915_private *dev_priv = to_i915(dev);
13743         int i;
13744
13745         for (i = 0; i < dev_priv->num_shared_dpll; i++)
13746                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13747 }
13748
13749 static void
13750 intel_modeset_verify_disabled(struct drm_device *dev)
13751 {
13752         verify_encoder_state(dev);
13753         verify_connector_state(dev, NULL);
13754         verify_disabled_dpll_state(dev);
13755 }
13756
13757 static void update_scanline_offset(struct intel_crtc *crtc)
13758 {
13759         struct drm_device *dev = crtc->base.dev;
13760
13761         /*
13762          * The scanline counter increments at the leading edge of hsync.
13763          *
13764          * On most platforms it starts counting from vtotal-1 on the
13765          * first active line. That means the scanline counter value is
13766          * always one less than what we would expect. Ie. just after
13767          * start of vblank, which also occurs at start of hsync (on the
13768          * last active line), the scanline counter will read vblank_start-1.
13769          *
13770          * On gen2 the scanline counter starts counting from 1 instead
13771          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13772          * to keep the value positive), instead of adding one.
13773          *
13774          * On HSW+ the behaviour of the scanline counter depends on the output
13775          * type. For DP ports it behaves like most other platforms, but on HDMI
13776          * there's an extra 1 line difference. So we need to add two instead of
13777          * one to the value.
13778          */
13779         if (IS_GEN2(dev)) {
13780                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13781                 int vtotal;
13782
13783                 vtotal = adjusted_mode->crtc_vtotal;
13784                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13785                         vtotal /= 2;
13786
13787                 crtc->scanline_offset = vtotal - 1;
13788         } else if (HAS_DDI(dev) &&
13789                    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13790                 crtc->scanline_offset = 2;
13791         } else
13792                 crtc->scanline_offset = 1;
13793 }
13794
13795 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13796 {
13797         struct drm_device *dev = state->dev;
13798         struct drm_i915_private *dev_priv = to_i915(dev);
13799         struct intel_shared_dpll_config *shared_dpll = NULL;
13800         struct drm_crtc *crtc;
13801         struct drm_crtc_state *crtc_state;
13802         int i;
13803
13804         if (!dev_priv->display.crtc_compute_clock)
13805                 return;
13806
13807         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13808                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13809                 struct intel_shared_dpll *old_dpll =
13810                         to_intel_crtc_state(crtc->state)->shared_dpll;
13811
13812                 if (!needs_modeset(crtc_state))
13813                         continue;
13814
13815                 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13816
13817                 if (!old_dpll)
13818                         continue;
13819
13820                 if (!shared_dpll)
13821                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13822
13823                 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13824         }
13825 }
13826
13827 /*
13828  * This implements the workaround described in the "notes" section of the mode
13829  * set sequence documentation. When going from no pipes or single pipe to
13830  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13831  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13832  */
13833 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13834 {
13835         struct drm_crtc_state *crtc_state;
13836         struct intel_crtc *intel_crtc;
13837         struct drm_crtc *crtc;
13838         struct intel_crtc_state *first_crtc_state = NULL;
13839         struct intel_crtc_state *other_crtc_state = NULL;
13840         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13841         int i;
13842
13843         /* look at all crtc's that are going to be enabled in during modeset */
13844         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13845                 intel_crtc = to_intel_crtc(crtc);
13846
13847                 if (!crtc_state->active || !needs_modeset(crtc_state))
13848                         continue;
13849
13850                 if (first_crtc_state) {
13851                         other_crtc_state = to_intel_crtc_state(crtc_state);
13852                         break;
13853                 } else {
13854                         first_crtc_state = to_intel_crtc_state(crtc_state);
13855                         first_pipe = intel_crtc->pipe;
13856                 }
13857         }
13858
13859         /* No workaround needed? */
13860         if (!first_crtc_state)
13861                 return 0;
13862
13863         /* w/a possibly needed, check how many crtc's are already enabled. */
13864         for_each_intel_crtc(state->dev, intel_crtc) {
13865                 struct intel_crtc_state *pipe_config;
13866
13867                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13868                 if (IS_ERR(pipe_config))
13869                         return PTR_ERR(pipe_config);
13870
13871                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13872
13873                 if (!pipe_config->base.active ||
13874                     needs_modeset(&pipe_config->base))
13875                         continue;
13876
13877                 /* 2 or more enabled crtcs means no need for w/a */
13878                 if (enabled_pipe != INVALID_PIPE)
13879                         return 0;
13880
13881                 enabled_pipe = intel_crtc->pipe;
13882         }
13883
13884         if (enabled_pipe != INVALID_PIPE)
13885                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13886         else if (other_crtc_state)
13887                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13888
13889         return 0;
13890 }
13891
13892 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13893 {
13894         struct drm_crtc *crtc;
13895         struct drm_crtc_state *crtc_state;
13896         int ret = 0;
13897
13898         /* add all active pipes to the state */
13899         for_each_crtc(state->dev, crtc) {
13900                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13901                 if (IS_ERR(crtc_state))
13902                         return PTR_ERR(crtc_state);
13903
13904                 if (!crtc_state->active || needs_modeset(crtc_state))
13905                         continue;
13906
13907                 crtc_state->mode_changed = true;
13908
13909                 ret = drm_atomic_add_affected_connectors(state, crtc);
13910                 if (ret)
13911                         break;
13912
13913                 ret = drm_atomic_add_affected_planes(state, crtc);
13914                 if (ret)
13915                         break;
13916         }
13917
13918         return ret;
13919 }
13920
13921 static int intel_modeset_checks(struct drm_atomic_state *state)
13922 {
13923         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13924         struct drm_i915_private *dev_priv = to_i915(state->dev);
13925         struct drm_crtc *crtc;
13926         struct drm_crtc_state *crtc_state;
13927         int ret = 0, i;
13928
13929         if (!check_digital_port_conflicts(state)) {
13930                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13931                 return -EINVAL;
13932         }
13933
13934         intel_state->modeset = true;
13935         intel_state->active_crtcs = dev_priv->active_crtcs;
13936
13937         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13938                 if (crtc_state->active)
13939                         intel_state->active_crtcs |= 1 << i;
13940                 else
13941                         intel_state->active_crtcs &= ~(1 << i);
13942
13943                 if (crtc_state->active != crtc->state->active)
13944                         intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13945         }
13946
13947         /*
13948          * See if the config requires any additional preparation, e.g.
13949          * to adjust global state with pipes off.  We need to do this
13950          * here so we can get the modeset_pipe updated config for the new
13951          * mode set on this crtc.  For other crtcs we need to use the
13952          * adjusted_mode bits in the crtc directly.
13953          */
13954         if (dev_priv->display.modeset_calc_cdclk) {
13955                 if (!intel_state->cdclk_pll_vco)
13956                         intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13957                 if (!intel_state->cdclk_pll_vco)
13958                         intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13959
13960                 ret = dev_priv->display.modeset_calc_cdclk(state);
13961                 if (ret < 0)
13962                         return ret;
13963
13964                 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13965                     intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
13966                         ret = intel_modeset_all_pipes(state);
13967
13968                 if (ret < 0)
13969                         return ret;
13970
13971                 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13972                               intel_state->cdclk, intel_state->dev_cdclk);
13973         } else
13974                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13975
13976         intel_modeset_clear_plls(state);
13977
13978         if (IS_HASWELL(dev_priv))
13979                 return haswell_mode_set_planes_workaround(state);
13980
13981         return 0;
13982 }
13983
13984 /*
13985  * Handle calculation of various watermark data at the end of the atomic check
13986  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13987  * handlers to ensure that all derived state has been updated.
13988  */
13989 static int calc_watermark_data(struct drm_atomic_state *state)
13990 {
13991         struct drm_device *dev = state->dev;
13992         struct drm_i915_private *dev_priv = to_i915(dev);
13993
13994         /* Is there platform-specific watermark information to calculate? */
13995         if (dev_priv->display.compute_global_watermarks)
13996                 return dev_priv->display.compute_global_watermarks(state);
13997
13998         return 0;
13999 }
14000
14001 /**
14002  * intel_atomic_check - validate state object
14003  * @dev: drm device
14004  * @state: state to validate
14005  */
14006 static int intel_atomic_check(struct drm_device *dev,
14007                               struct drm_atomic_state *state)
14008 {
14009         struct drm_i915_private *dev_priv = to_i915(dev);
14010         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14011         struct drm_crtc *crtc;
14012         struct drm_crtc_state *crtc_state;
14013         int ret, i;
14014         bool any_ms = false;
14015
14016         ret = drm_atomic_helper_check_modeset(dev, state);
14017         if (ret)
14018                 return ret;
14019
14020         for_each_crtc_in_state(state, crtc, crtc_state, i) {
14021                 struct intel_crtc_state *pipe_config =
14022                         to_intel_crtc_state(crtc_state);
14023
14024                 /* Catch I915_MODE_FLAG_INHERITED */
14025                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
14026                         crtc_state->mode_changed = true;
14027
14028                 if (!needs_modeset(crtc_state))
14029                         continue;
14030
14031                 if (!crtc_state->enable) {
14032                         any_ms = true;
14033                         continue;
14034                 }
14035
14036                 /* FIXME: For only active_changed we shouldn't need to do any
14037                  * state recomputation at all. */
14038
14039                 ret = drm_atomic_add_affected_connectors(state, crtc);
14040                 if (ret)
14041                         return ret;
14042
14043                 ret = intel_modeset_pipe_config(crtc, pipe_config);
14044                 if (ret) {
14045                         intel_dump_pipe_config(to_intel_crtc(crtc),
14046                                                pipe_config, "[failed]");
14047                         return ret;
14048                 }
14049
14050                 if (i915.fastboot &&
14051                     intel_pipe_config_compare(dev,
14052                                         to_intel_crtc_state(crtc->state),
14053                                         pipe_config, true)) {
14054                         crtc_state->mode_changed = false;
14055                         to_intel_crtc_state(crtc_state)->update_pipe = true;
14056                 }
14057
14058                 if (needs_modeset(crtc_state))
14059                         any_ms = true;
14060
14061                 ret = drm_atomic_add_affected_planes(state, crtc);
14062                 if (ret)
14063                         return ret;
14064
14065                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
14066                                        needs_modeset(crtc_state) ?
14067                                        "[modeset]" : "[fastset]");
14068         }
14069
14070         if (any_ms) {
14071                 ret = intel_modeset_checks(state);
14072
14073                 if (ret)
14074                         return ret;
14075         } else
14076                 intel_state->cdclk = dev_priv->cdclk_freq;
14077
14078         ret = drm_atomic_helper_check_planes(dev, state);
14079         if (ret)
14080                 return ret;
14081
14082         intel_fbc_choose_crtc(dev_priv, state);
14083         return calc_watermark_data(state);
14084 }
14085
14086 static int intel_atomic_prepare_commit(struct drm_device *dev,
14087                                        struct drm_atomic_state *state,
14088                                        bool nonblock)
14089 {
14090         struct drm_i915_private *dev_priv = to_i915(dev);
14091         struct drm_plane_state *plane_state;
14092         struct drm_crtc_state *crtc_state;
14093         struct drm_plane *plane;
14094         struct drm_crtc *crtc;
14095         int i, ret;
14096
14097         for_each_crtc_in_state(state, crtc, crtc_state, i) {
14098                 if (state->legacy_cursor_update)
14099                         continue;
14100
14101                 ret = intel_crtc_wait_for_pending_flips(crtc);
14102                 if (ret)
14103                         return ret;
14104
14105                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
14106                         flush_workqueue(dev_priv->wq);
14107         }
14108
14109         ret = mutex_lock_interruptible(&dev->struct_mutex);
14110         if (ret)
14111                 return ret;
14112
14113         ret = drm_atomic_helper_prepare_planes(dev, state);
14114         mutex_unlock(&dev->struct_mutex);
14115
14116         if (!ret && !nonblock) {
14117                 for_each_plane_in_state(state, plane, plane_state, i) {
14118                         struct intel_plane_state *intel_plane_state =
14119                                 to_intel_plane_state(plane_state);
14120
14121                         if (!intel_plane_state->wait_req)
14122                                 continue;
14123
14124                         ret = i915_wait_request(intel_plane_state->wait_req,
14125                                                 I915_WAIT_INTERRUPTIBLE,
14126                                                 NULL, NULL);
14127                         if (ret) {
14128                                 /* Any hang should be swallowed by the wait */
14129                                 WARN_ON(ret == -EIO);
14130                                 mutex_lock(&dev->struct_mutex);
14131                                 drm_atomic_helper_cleanup_planes(dev, state);
14132                                 mutex_unlock(&dev->struct_mutex);
14133                                 break;
14134                         }
14135                 }
14136         }
14137
14138         return ret;
14139 }
14140
14141 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14142 {
14143         struct drm_device *dev = crtc->base.dev;
14144
14145         if (!dev->max_vblank_count)
14146                 return drm_accurate_vblank_count(&crtc->base);
14147
14148         return dev->driver->get_vblank_counter(dev, crtc->pipe);
14149 }
14150
14151 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
14152                                           struct drm_i915_private *dev_priv,
14153                                           unsigned crtc_mask)
14154 {
14155         unsigned last_vblank_count[I915_MAX_PIPES];
14156         enum pipe pipe;
14157         int ret;
14158
14159         if (!crtc_mask)
14160                 return;
14161
14162         for_each_pipe(dev_priv, pipe) {
14163                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
14164
14165                 if (!((1 << pipe) & crtc_mask))
14166                         continue;
14167
14168                 ret = drm_crtc_vblank_get(crtc);
14169                 if (WARN_ON(ret != 0)) {
14170                         crtc_mask &= ~(1 << pipe);
14171                         continue;
14172                 }
14173
14174                 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
14175         }
14176
14177         for_each_pipe(dev_priv, pipe) {
14178                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
14179                 long lret;
14180
14181                 if (!((1 << pipe) & crtc_mask))
14182                         continue;
14183
14184                 lret = wait_event_timeout(dev->vblank[pipe].queue,
14185                                 last_vblank_count[pipe] !=
14186                                         drm_crtc_vblank_count(crtc),
14187                                 msecs_to_jiffies(50));
14188
14189                 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
14190
14191                 drm_crtc_vblank_put(crtc);
14192         }
14193 }
14194
14195 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
14196 {
14197         /* fb updated, need to unpin old fb */
14198         if (crtc_state->fb_changed)
14199                 return true;
14200
14201         /* wm changes, need vblank before final wm's */
14202         if (crtc_state->update_wm_post)
14203                 return true;
14204
14205         /*
14206          * cxsr is re-enabled after vblank.
14207          * This is already handled by crtc_state->update_wm_post,
14208          * but added for clarity.
14209          */
14210         if (crtc_state->disable_cxsr)
14211                 return true;
14212
14213         return false;
14214 }
14215
14216 static void intel_update_crtc(struct drm_crtc *crtc,
14217                               struct drm_atomic_state *state,
14218                               struct drm_crtc_state *old_crtc_state,
14219                               unsigned int *crtc_vblank_mask)
14220 {
14221         struct drm_device *dev = crtc->dev;
14222         struct drm_i915_private *dev_priv = to_i915(dev);
14223         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14224         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state);
14225         bool modeset = needs_modeset(crtc->state);
14226
14227         if (modeset) {
14228                 update_scanline_offset(intel_crtc);
14229                 dev_priv->display.crtc_enable(pipe_config, state);
14230         } else {
14231                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14232         }
14233
14234         if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
14235                 intel_fbc_enable(
14236                     intel_crtc, pipe_config,
14237                     to_intel_plane_state(crtc->primary->state));
14238         }
14239
14240         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
14241
14242         if (needs_vblank_wait(pipe_config))
14243                 *crtc_vblank_mask |= drm_crtc_mask(crtc);
14244 }
14245
14246 static void intel_update_crtcs(struct drm_atomic_state *state,
14247                                unsigned int *crtc_vblank_mask)
14248 {
14249         struct drm_crtc *crtc;
14250         struct drm_crtc_state *old_crtc_state;
14251         int i;
14252
14253         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14254                 if (!crtc->state->active)
14255                         continue;
14256
14257                 intel_update_crtc(crtc, state, old_crtc_state,
14258                                   crtc_vblank_mask);
14259         }
14260 }
14261
14262 static void skl_update_crtcs(struct drm_atomic_state *state,
14263                              unsigned int *crtc_vblank_mask)
14264 {
14265         struct drm_device *dev = state->dev;
14266         struct drm_i915_private *dev_priv = to_i915(dev);
14267         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14268         struct drm_crtc *crtc;
14269         struct drm_crtc_state *old_crtc_state;
14270         struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
14271         struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
14272         unsigned int updated = 0;
14273         bool progress;
14274         enum pipe pipe;
14275
14276         /*
14277          * Whenever the number of active pipes changes, we need to make sure we
14278          * update the pipes in the right order so that their ddb allocations
14279          * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14280          * cause pipe underruns and other bad stuff.
14281          */
14282         do {
14283                 int i;
14284                 progress = false;
14285
14286                 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14287                         bool vbl_wait = false;
14288                         unsigned int cmask = drm_crtc_mask(crtc);
14289                         pipe = to_intel_crtc(crtc)->pipe;
14290
14291                         if (updated & cmask || !crtc->state->active)
14292                                 continue;
14293                         if (skl_ddb_allocation_overlaps(state, cur_ddb, new_ddb,
14294                                                         pipe))
14295                                 continue;
14296
14297                         updated |= cmask;
14298
14299                         /*
14300                          * If this is an already active pipe, it's DDB changed,
14301                          * and this isn't the last pipe that needs updating
14302                          * then we need to wait for a vblank to pass for the
14303                          * new ddb allocation to take effect.
14304                          */
14305                         if (!skl_ddb_allocation_equals(cur_ddb, new_ddb, pipe) &&
14306                             !crtc->state->active_changed &&
14307                             intel_state->wm_results.dirty_pipes != updated)
14308                                 vbl_wait = true;
14309
14310                         intel_update_crtc(crtc, state, old_crtc_state,
14311                                           crtc_vblank_mask);
14312
14313                         if (vbl_wait)
14314                                 intel_wait_for_vblank(dev, pipe);
14315
14316                         progress = true;
14317                 }
14318         } while (progress);
14319 }
14320
14321 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
14322 {
14323         struct drm_device *dev = state->dev;
14324         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14325         struct drm_i915_private *dev_priv = to_i915(dev);
14326         struct drm_crtc_state *old_crtc_state;
14327         struct drm_crtc *crtc;
14328         struct intel_crtc_state *intel_cstate;
14329         struct drm_plane *plane;
14330         struct drm_plane_state *plane_state;
14331         bool hw_check = intel_state->modeset;
14332         unsigned long put_domains[I915_MAX_PIPES] = {};
14333         unsigned crtc_vblank_mask = 0;
14334         int i, ret;
14335
14336         for_each_plane_in_state(state, plane, plane_state, i) {
14337                 struct intel_plane_state *intel_plane_state =
14338                         to_intel_plane_state(plane->state);
14339
14340                 if (!intel_plane_state->wait_req)
14341                         continue;
14342
14343                 ret = i915_wait_request(intel_plane_state->wait_req,
14344                                         0, NULL, NULL);
14345                 /* EIO should be eaten, and we can't get interrupted in the
14346                  * worker, and blocking commits have waited already. */
14347                 WARN_ON(ret);
14348         }
14349
14350         drm_atomic_helper_wait_for_dependencies(state);
14351
14352         if (intel_state->modeset) {
14353                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
14354                        sizeof(intel_state->min_pixclk));
14355                 dev_priv->active_crtcs = intel_state->active_crtcs;
14356                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
14357
14358                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14359         }
14360
14361         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14362                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14363
14364                 if (needs_modeset(crtc->state) ||
14365                     to_intel_crtc_state(crtc->state)->update_pipe) {
14366                         hw_check = true;
14367
14368                         put_domains[to_intel_crtc(crtc)->pipe] =
14369                                 modeset_get_crtc_power_domains(crtc,
14370                                         to_intel_crtc_state(crtc->state));
14371                 }
14372
14373                 if (!needs_modeset(crtc->state))
14374                         continue;
14375
14376                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14377
14378                 if (old_crtc_state->active) {
14379                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
14380                         dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
14381                         intel_crtc->active = false;
14382                         intel_fbc_disable(intel_crtc);
14383                         intel_disable_shared_dpll(intel_crtc);
14384
14385                         /*
14386                          * Underruns don't always raise
14387                          * interrupts, so check manually.
14388                          */
14389                         intel_check_cpu_fifo_underruns(dev_priv);
14390                         intel_check_pch_fifo_underruns(dev_priv);
14391
14392                         if (!crtc->state->active)
14393                                 intel_update_watermarks(crtc);
14394                 }
14395         }
14396
14397         /* Only after disabling all output pipelines that will be changed can we
14398          * update the the output configuration. */
14399         intel_modeset_update_crtc_state(state);
14400
14401         if (intel_state->modeset) {
14402                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
14403
14404                 if (dev_priv->display.modeset_commit_cdclk &&
14405                     (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14406                      intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
14407                         dev_priv->display.modeset_commit_cdclk(state);
14408
14409                 /*
14410                  * SKL workaround: bspec recommends we disable the SAGV when we
14411                  * have more then one pipe enabled
14412                  */
14413                 if (!intel_can_enable_sagv(state))
14414                         intel_disable_sagv(dev_priv);
14415
14416                 intel_modeset_verify_disabled(dev);
14417         }
14418
14419         /* Complete the events for pipes that have now been disabled */
14420         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14421                 bool modeset = needs_modeset(crtc->state);
14422
14423                 /* Complete events for now disable pipes here. */
14424                 if (modeset && !crtc->state->active && crtc->state->event) {
14425                         spin_lock_irq(&dev->event_lock);
14426                         drm_crtc_send_vblank_event(crtc, crtc->state->event);
14427                         spin_unlock_irq(&dev->event_lock);
14428
14429                         crtc->state->event = NULL;
14430                 }
14431         }
14432
14433         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
14434         dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
14435
14436         /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14437          * already, but still need the state for the delayed optimization. To
14438          * fix this:
14439          * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14440          * - schedule that vblank worker _before_ calling hw_done
14441          * - at the start of commit_tail, cancel it _synchrously
14442          * - switch over to the vblank wait helper in the core after that since
14443          *   we don't need out special handling any more.
14444          */
14445         if (!state->legacy_cursor_update)
14446                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
14447
14448         /*
14449          * Now that the vblank has passed, we can go ahead and program the
14450          * optimal watermarks on platforms that need two-step watermark
14451          * programming.
14452          *
14453          * TODO: Move this (and other cleanup) to an async worker eventually.
14454          */
14455         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14456                 intel_cstate = to_intel_crtc_state(crtc->state);
14457
14458                 if (dev_priv->display.optimize_watermarks)
14459                         dev_priv->display.optimize_watermarks(intel_cstate);
14460         }
14461
14462         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14463                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
14464
14465                 if (put_domains[i])
14466                         modeset_put_power_domains(dev_priv, put_domains[i]);
14467
14468                 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
14469         }
14470
14471         if (intel_state->modeset && intel_can_enable_sagv(state))
14472                 intel_enable_sagv(dev_priv);
14473
14474         drm_atomic_helper_commit_hw_done(state);
14475
14476         if (intel_state->modeset)
14477                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
14478
14479         mutex_lock(&dev->struct_mutex);
14480         drm_atomic_helper_cleanup_planes(dev, state);
14481         mutex_unlock(&dev->struct_mutex);
14482
14483         drm_atomic_helper_commit_cleanup_done(state);
14484
14485         drm_atomic_state_free(state);
14486
14487         /* As one of the primary mmio accessors, KMS has a high likelihood
14488          * of triggering bugs in unclaimed access. After we finish
14489          * modesetting, see if an error has been flagged, and if so
14490          * enable debugging for the next modeset - and hope we catch
14491          * the culprit.
14492          *
14493          * XXX note that we assume display power is on at this point.
14494          * This might hold true now but we need to add pm helper to check
14495          * unclaimed only when the hardware is on, as atomic commits
14496          * can happen also when the device is completely off.
14497          */
14498         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
14499 }
14500
14501 static void intel_atomic_commit_work(struct work_struct *work)
14502 {
14503         struct drm_atomic_state *state = container_of(work,
14504                                                       struct drm_atomic_state,
14505                                                       commit_work);
14506         intel_atomic_commit_tail(state);
14507 }
14508
14509 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
14510 {
14511         struct drm_plane_state *old_plane_state;
14512         struct drm_plane *plane;
14513         int i;
14514
14515         for_each_plane_in_state(state, plane, old_plane_state, i)
14516                 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
14517                                   intel_fb_obj(plane->state->fb),
14518                                   to_intel_plane(plane)->frontbuffer_bit);
14519 }
14520
14521 /**
14522  * intel_atomic_commit - commit validated state object
14523  * @dev: DRM device
14524  * @state: the top-level driver state object
14525  * @nonblock: nonblocking commit
14526  *
14527  * This function commits a top-level state object that has been validated
14528  * with drm_atomic_helper_check().
14529  *
14530  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
14531  * nonblocking commits are only safe for pure plane updates. Everything else
14532  * should work though.
14533  *
14534  * RETURNS
14535  * Zero for success or -errno.
14536  */
14537 static int intel_atomic_commit(struct drm_device *dev,
14538                                struct drm_atomic_state *state,
14539                                bool nonblock)
14540 {
14541         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14542         struct drm_i915_private *dev_priv = to_i915(dev);
14543         int ret = 0;
14544
14545         if (intel_state->modeset && nonblock) {
14546                 DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
14547                 return -EINVAL;
14548         }
14549
14550         ret = drm_atomic_helper_setup_commit(state, nonblock);
14551         if (ret)
14552                 return ret;
14553
14554         INIT_WORK(&state->commit_work, intel_atomic_commit_work);
14555
14556         ret = intel_atomic_prepare_commit(dev, state, nonblock);
14557         if (ret) {
14558                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14559                 return ret;
14560         }
14561
14562         drm_atomic_helper_swap_state(state, true);
14563         dev_priv->wm.distrust_bios_wm = false;
14564         dev_priv->wm.skl_results = intel_state->wm_results;
14565         intel_shared_dpll_commit(state);
14566         intel_atomic_track_fbs(state);
14567
14568         if (nonblock)
14569                 queue_work(system_unbound_wq, &state->commit_work);
14570         else
14571                 intel_atomic_commit_tail(state);
14572
14573         return 0;
14574 }
14575
14576 void intel_crtc_restore_mode(struct drm_crtc *crtc)
14577 {
14578         struct drm_device *dev = crtc->dev;
14579         struct drm_atomic_state *state;
14580         struct drm_crtc_state *crtc_state;
14581         int ret;
14582
14583         state = drm_atomic_state_alloc(dev);
14584         if (!state) {
14585                 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14586                               crtc->base.id, crtc->name);
14587                 return;
14588         }
14589
14590         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
14591
14592 retry:
14593         crtc_state = drm_atomic_get_crtc_state(state, crtc);
14594         ret = PTR_ERR_OR_ZERO(crtc_state);
14595         if (!ret) {
14596                 if (!crtc_state->active)
14597                         goto out;
14598
14599                 crtc_state->mode_changed = true;
14600                 ret = drm_atomic_commit(state);
14601         }
14602
14603         if (ret == -EDEADLK) {
14604                 drm_atomic_state_clear(state);
14605                 drm_modeset_backoff(state->acquire_ctx);
14606                 goto retry;
14607         }
14608
14609         if (ret)
14610 out:
14611                 drm_atomic_state_free(state);
14612 }
14613
14614 /*
14615  * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14616  *        drm_atomic_helper_legacy_gamma_set() directly.
14617  */
14618 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14619                                          u16 *red, u16 *green, u16 *blue,
14620                                          uint32_t size)
14621 {
14622         struct drm_device *dev = crtc->dev;
14623         struct drm_mode_config *config = &dev->mode_config;
14624         struct drm_crtc_state *state;
14625         int ret;
14626
14627         ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14628         if (ret)
14629                 return ret;
14630
14631         /*
14632          * Make sure we update the legacy properties so this works when
14633          * atomic is not enabled.
14634          */
14635
14636         state = crtc->state;
14637
14638         drm_object_property_set_value(&crtc->base,
14639                                       config->degamma_lut_property,
14640                                       (state->degamma_lut) ?
14641                                       state->degamma_lut->base.id : 0);
14642
14643         drm_object_property_set_value(&crtc->base,
14644                                       config->ctm_property,
14645                                       (state->ctm) ?
14646                                       state->ctm->base.id : 0);
14647
14648         drm_object_property_set_value(&crtc->base,
14649                                       config->gamma_lut_property,
14650                                       (state->gamma_lut) ?
14651                                       state->gamma_lut->base.id : 0);
14652
14653         return 0;
14654 }
14655
14656 static const struct drm_crtc_funcs intel_crtc_funcs = {
14657         .gamma_set = intel_atomic_legacy_gamma_set,
14658         .set_config = drm_atomic_helper_set_config,
14659         .set_property = drm_atomic_helper_crtc_set_property,
14660         .destroy = intel_crtc_destroy,
14661         .page_flip = intel_crtc_page_flip,
14662         .atomic_duplicate_state = intel_crtc_duplicate_state,
14663         .atomic_destroy_state = intel_crtc_destroy_state,
14664 };
14665
14666 /**
14667  * intel_prepare_plane_fb - Prepare fb for usage on plane
14668  * @plane: drm plane to prepare for
14669  * @fb: framebuffer to prepare for presentation
14670  *
14671  * Prepares a framebuffer for usage on a display plane.  Generally this
14672  * involves pinning the underlying object and updating the frontbuffer tracking
14673  * bits.  Some older platforms need special physical address handling for
14674  * cursor planes.
14675  *
14676  * Must be called with struct_mutex held.
14677  *
14678  * Returns 0 on success, negative error code on failure.
14679  */
14680 int
14681 intel_prepare_plane_fb(struct drm_plane *plane,
14682                        struct drm_plane_state *new_state)
14683 {
14684         struct drm_device *dev = plane->dev;
14685         struct drm_framebuffer *fb = new_state->fb;
14686         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14687         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14688         struct reservation_object *resv;
14689         int ret = 0;
14690
14691         if (!obj && !old_obj)
14692                 return 0;
14693
14694         if (old_obj) {
14695                 struct drm_crtc_state *crtc_state =
14696                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
14697
14698                 /* Big Hammer, we also need to ensure that any pending
14699                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14700                  * current scanout is retired before unpinning the old
14701                  * framebuffer. Note that we rely on userspace rendering
14702                  * into the buffer attached to the pipe they are waiting
14703                  * on. If not, userspace generates a GPU hang with IPEHR
14704                  * point to the MI_WAIT_FOR_EVENT.
14705                  *
14706                  * This should only fail upon a hung GPU, in which case we
14707                  * can safely continue.
14708                  */
14709                 if (needs_modeset(crtc_state))
14710                         ret = i915_gem_object_wait_rendering(old_obj, true);
14711                 if (ret) {
14712                         /* GPU hangs should have been swallowed by the wait */
14713                         WARN_ON(ret == -EIO);
14714                         return ret;
14715                 }
14716         }
14717
14718         if (!obj)
14719                 return 0;
14720
14721         /* For framebuffer backed by dmabuf, wait for fence */
14722         resv = i915_gem_object_get_dmabuf_resv(obj);
14723         if (resv) {
14724                 long lret;
14725
14726                 lret = reservation_object_wait_timeout_rcu(resv, false, true,
14727                                                            MAX_SCHEDULE_TIMEOUT);
14728                 if (lret == -ERESTARTSYS)
14729                         return lret;
14730
14731                 WARN(lret < 0, "waiting returns %li\n", lret);
14732         }
14733
14734         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14735             INTEL_INFO(dev)->cursor_needs_physical) {
14736                 int align = IS_I830(dev) ? 16 * 1024 : 256;
14737                 ret = i915_gem_object_attach_phys(obj, align);
14738                 if (ret)
14739                         DRM_DEBUG_KMS("failed to attach phys object\n");
14740         } else {
14741                 struct i915_vma *vma;
14742
14743                 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14744                 if (IS_ERR(vma))
14745                         ret = PTR_ERR(vma);
14746         }
14747
14748         if (ret == 0) {
14749                 to_intel_plane_state(new_state)->wait_req =
14750                         i915_gem_active_get(&obj->last_write,
14751                                             &obj->base.dev->struct_mutex);
14752         }
14753
14754         return ret;
14755 }
14756
14757 /**
14758  * intel_cleanup_plane_fb - Cleans up an fb after plane use
14759  * @plane: drm plane to clean up for
14760  * @fb: old framebuffer that was on plane
14761  *
14762  * Cleans up a framebuffer that has just been removed from a plane.
14763  *
14764  * Must be called with struct_mutex held.
14765  */
14766 void
14767 intel_cleanup_plane_fb(struct drm_plane *plane,
14768                        struct drm_plane_state *old_state)
14769 {
14770         struct drm_device *dev = plane->dev;
14771         struct intel_plane_state *old_intel_state;
14772         struct intel_plane_state *intel_state = to_intel_plane_state(plane->state);
14773         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14774         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
14775
14776         old_intel_state = to_intel_plane_state(old_state);
14777
14778         if (!obj && !old_obj)
14779                 return;
14780
14781         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14782             !INTEL_INFO(dev)->cursor_needs_physical))
14783                 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
14784
14785         i915_gem_request_assign(&intel_state->wait_req, NULL);
14786         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
14787 }
14788
14789 int
14790 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14791 {
14792         int max_scale;
14793         int crtc_clock, cdclk;
14794
14795         if (!intel_crtc || !crtc_state->base.enable)
14796                 return DRM_PLANE_HELPER_NO_SCALING;
14797
14798         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14799         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14800
14801         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14802                 return DRM_PLANE_HELPER_NO_SCALING;
14803
14804         /*
14805          * skl max scale is lower of:
14806          *    close to 3 but not 3, -1 is for that purpose
14807          *            or
14808          *    cdclk/crtc_clock
14809          */
14810         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14811
14812         return max_scale;
14813 }
14814
14815 static int
14816 intel_check_primary_plane(struct drm_plane *plane,
14817                           struct intel_crtc_state *crtc_state,
14818                           struct intel_plane_state *state)
14819 {
14820         struct drm_i915_private *dev_priv = to_i915(plane->dev);
14821         struct drm_crtc *crtc = state->base.crtc;
14822         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14823         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14824         bool can_position = false;
14825         int ret;
14826
14827         if (INTEL_GEN(dev_priv) >= 9) {
14828                 /* use scaler when colorkey is not required */
14829                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14830                         min_scale = 1;
14831                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14832                 }
14833                 can_position = true;
14834         }
14835
14836         ret = drm_plane_helper_check_state(&state->base,
14837                                            &state->clip,
14838                                            min_scale, max_scale,
14839                                            can_position, true);
14840         if (ret)
14841                 return ret;
14842
14843         if (!state->base.fb)
14844                 return 0;
14845
14846         if (INTEL_GEN(dev_priv) >= 9) {
14847                 ret = skl_check_plane_surface(state);
14848                 if (ret)
14849                         return ret;
14850         }
14851
14852         return 0;
14853 }
14854
14855 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14856                                     struct drm_crtc_state *old_crtc_state)
14857 {
14858         struct drm_device *dev = crtc->dev;
14859         struct drm_i915_private *dev_priv = to_i915(dev);
14860         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14861         struct intel_crtc_state *old_intel_state =
14862                 to_intel_crtc_state(old_crtc_state);
14863         bool modeset = needs_modeset(crtc->state);
14864         enum pipe pipe = intel_crtc->pipe;
14865
14866         /* Perform vblank evasion around commit operation */
14867         intel_pipe_update_start(intel_crtc);
14868
14869         if (modeset)
14870                 return;
14871
14872         if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14873                 intel_color_set_csc(crtc->state);
14874                 intel_color_load_luts(crtc->state);
14875         }
14876
14877         if (to_intel_crtc_state(crtc->state)->update_pipe)
14878                 intel_update_pipe_config(intel_crtc, old_intel_state);
14879         else if (INTEL_GEN(dev_priv) >= 9) {
14880                 skl_detach_scalers(intel_crtc);
14881
14882                 I915_WRITE(PIPE_WM_LINETIME(pipe),
14883                            dev_priv->wm.skl_hw.wm_linetime[pipe]);
14884         }
14885 }
14886
14887 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14888                                      struct drm_crtc_state *old_crtc_state)
14889 {
14890         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14891
14892         intel_pipe_update_end(intel_crtc, NULL);
14893 }
14894
14895 /**
14896  * intel_plane_destroy - destroy a plane
14897  * @plane: plane to destroy
14898  *
14899  * Common destruction function for all types of planes (primary, cursor,
14900  * sprite).
14901  */
14902 void intel_plane_destroy(struct drm_plane *plane)
14903 {
14904         if (!plane)
14905                 return;
14906
14907         drm_plane_cleanup(plane);
14908         kfree(to_intel_plane(plane));
14909 }
14910
14911 const struct drm_plane_funcs intel_plane_funcs = {
14912         .update_plane = drm_atomic_helper_update_plane,
14913         .disable_plane = drm_atomic_helper_disable_plane,
14914         .destroy = intel_plane_destroy,
14915         .set_property = drm_atomic_helper_plane_set_property,
14916         .atomic_get_property = intel_plane_atomic_get_property,
14917         .atomic_set_property = intel_plane_atomic_set_property,
14918         .atomic_duplicate_state = intel_plane_duplicate_state,
14919         .atomic_destroy_state = intel_plane_destroy_state,
14920
14921 };
14922
14923 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14924                                                     int pipe)
14925 {
14926         struct intel_plane *primary = NULL;
14927         struct intel_plane_state *state = NULL;
14928         const uint32_t *intel_primary_formats;
14929         unsigned int num_formats;
14930         int ret;
14931
14932         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14933         if (!primary)
14934                 goto fail;
14935
14936         state = intel_create_plane_state(&primary->base);
14937         if (!state)
14938                 goto fail;
14939         primary->base.state = &state->base;
14940
14941         primary->can_scale = false;
14942         primary->max_downscale = 1;
14943         if (INTEL_INFO(dev)->gen >= 9) {
14944                 primary->can_scale = true;
14945                 state->scaler_id = -1;
14946         }
14947         primary->pipe = pipe;
14948         primary->plane = pipe;
14949         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14950         primary->check_plane = intel_check_primary_plane;
14951         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14952                 primary->plane = !pipe;
14953
14954         if (INTEL_INFO(dev)->gen >= 9) {
14955                 intel_primary_formats = skl_primary_formats;
14956                 num_formats = ARRAY_SIZE(skl_primary_formats);
14957
14958                 primary->update_plane = skylake_update_primary_plane;
14959                 primary->disable_plane = skylake_disable_primary_plane;
14960         } else if (HAS_PCH_SPLIT(dev)) {
14961                 intel_primary_formats = i965_primary_formats;
14962                 num_formats = ARRAY_SIZE(i965_primary_formats);
14963
14964                 primary->update_plane = ironlake_update_primary_plane;
14965                 primary->disable_plane = i9xx_disable_primary_plane;
14966         } else if (INTEL_INFO(dev)->gen >= 4) {
14967                 intel_primary_formats = i965_primary_formats;
14968                 num_formats = ARRAY_SIZE(i965_primary_formats);
14969
14970                 primary->update_plane = i9xx_update_primary_plane;
14971                 primary->disable_plane = i9xx_disable_primary_plane;
14972         } else {
14973                 intel_primary_formats = i8xx_primary_formats;
14974                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14975
14976                 primary->update_plane = i9xx_update_primary_plane;
14977                 primary->disable_plane = i9xx_disable_primary_plane;
14978         }
14979
14980         if (INTEL_INFO(dev)->gen >= 9)
14981                 ret = drm_universal_plane_init(dev, &primary->base, 0,
14982                                                &intel_plane_funcs,
14983                                                intel_primary_formats, num_formats,
14984                                                DRM_PLANE_TYPE_PRIMARY,
14985                                                "plane 1%c", pipe_name(pipe));
14986         else if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
14987                 ret = drm_universal_plane_init(dev, &primary->base, 0,
14988                                                &intel_plane_funcs,
14989                                                intel_primary_formats, num_formats,
14990                                                DRM_PLANE_TYPE_PRIMARY,
14991                                                "primary %c", pipe_name(pipe));
14992         else
14993                 ret = drm_universal_plane_init(dev, &primary->base, 0,
14994                                                &intel_plane_funcs,
14995                                                intel_primary_formats, num_formats,
14996                                                DRM_PLANE_TYPE_PRIMARY,
14997                                                "plane %c", plane_name(primary->plane));
14998         if (ret)
14999                 goto fail;
15000
15001         if (INTEL_INFO(dev)->gen >= 4)
15002                 intel_create_rotation_property(dev, primary);
15003
15004         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
15005
15006         return &primary->base;
15007
15008 fail:
15009         kfree(state);
15010         kfree(primary);
15011
15012         return NULL;
15013 }
15014
15015 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
15016 {
15017         if (!dev->mode_config.rotation_property) {
15018                 unsigned long flags = DRM_ROTATE_0 |
15019                         DRM_ROTATE_180;
15020
15021                 if (INTEL_INFO(dev)->gen >= 9)
15022                         flags |= DRM_ROTATE_90 | DRM_ROTATE_270;
15023
15024                 dev->mode_config.rotation_property =
15025                         drm_mode_create_rotation_property(dev, flags);
15026         }
15027         if (dev->mode_config.rotation_property)
15028                 drm_object_attach_property(&plane->base.base,
15029                                 dev->mode_config.rotation_property,
15030                                 plane->base.state->rotation);
15031 }
15032
15033 static int
15034 intel_check_cursor_plane(struct drm_plane *plane,
15035                          struct intel_crtc_state *crtc_state,
15036                          struct intel_plane_state *state)
15037 {
15038         struct drm_framebuffer *fb = state->base.fb;
15039         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15040         enum pipe pipe = to_intel_plane(plane)->pipe;
15041         unsigned stride;
15042         int ret;
15043
15044         ret = drm_plane_helper_check_state(&state->base,
15045                                            &state->clip,
15046                                            DRM_PLANE_HELPER_NO_SCALING,
15047                                            DRM_PLANE_HELPER_NO_SCALING,
15048                                            true, true);
15049         if (ret)
15050                 return ret;
15051
15052         /* if we want to turn off the cursor ignore width and height */
15053         if (!obj)
15054                 return 0;
15055
15056         /* Check for which cursor types we support */
15057         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
15058                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
15059                           state->base.crtc_w, state->base.crtc_h);
15060                 return -EINVAL;
15061         }
15062
15063         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
15064         if (obj->base.size < stride * state->base.crtc_h) {
15065                 DRM_DEBUG_KMS("buffer is too small\n");
15066                 return -ENOMEM;
15067         }
15068
15069         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
15070                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
15071                 return -EINVAL;
15072         }
15073
15074         /*
15075          * There's something wrong with the cursor on CHV pipe C.
15076          * If it straddles the left edge of the screen then
15077          * moving it away from the edge or disabling it often
15078          * results in a pipe underrun, and often that can lead to
15079          * dead pipe (constant underrun reported, and it scans
15080          * out just a solid color). To recover from that, the
15081          * display power well must be turned off and on again.
15082          * Refuse the put the cursor into that compromised position.
15083          */
15084         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
15085             state->base.visible && state->base.crtc_x < 0) {
15086                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
15087                 return -EINVAL;
15088         }
15089
15090         return 0;
15091 }
15092
15093 static void
15094 intel_disable_cursor_plane(struct drm_plane *plane,
15095                            struct drm_crtc *crtc)
15096 {
15097         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15098
15099         intel_crtc->cursor_addr = 0;
15100         intel_crtc_update_cursor(crtc, NULL);
15101 }
15102
15103 static void
15104 intel_update_cursor_plane(struct drm_plane *plane,
15105                           const struct intel_crtc_state *crtc_state,
15106                           const struct intel_plane_state *state)
15107 {
15108         struct drm_crtc *crtc = crtc_state->base.crtc;
15109         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15110         struct drm_device *dev = plane->dev;
15111         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
15112         uint32_t addr;
15113
15114         if (!obj)
15115                 addr = 0;
15116         else if (!INTEL_INFO(dev)->cursor_needs_physical)
15117                 addr = i915_gem_object_ggtt_offset(obj, NULL);
15118         else
15119                 addr = obj->phys_handle->busaddr;
15120
15121         intel_crtc->cursor_addr = addr;
15122         intel_crtc_update_cursor(crtc, state);
15123 }
15124
15125 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
15126                                                    int pipe)
15127 {
15128         struct intel_plane *cursor = NULL;
15129         struct intel_plane_state *state = NULL;
15130         int ret;
15131
15132         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
15133         if (!cursor)
15134                 goto fail;
15135
15136         state = intel_create_plane_state(&cursor->base);
15137         if (!state)
15138                 goto fail;
15139         cursor->base.state = &state->base;
15140
15141         cursor->can_scale = false;
15142         cursor->max_downscale = 1;
15143         cursor->pipe = pipe;
15144         cursor->plane = pipe;
15145         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
15146         cursor->check_plane = intel_check_cursor_plane;
15147         cursor->update_plane = intel_update_cursor_plane;
15148         cursor->disable_plane = intel_disable_cursor_plane;
15149
15150         ret = drm_universal_plane_init(dev, &cursor->base, 0,
15151                                        &intel_plane_funcs,
15152                                        intel_cursor_formats,
15153                                        ARRAY_SIZE(intel_cursor_formats),
15154                                        DRM_PLANE_TYPE_CURSOR,
15155                                        "cursor %c", pipe_name(pipe));
15156         if (ret)
15157                 goto fail;
15158
15159         if (INTEL_INFO(dev)->gen >= 4) {
15160                 if (!dev->mode_config.rotation_property)
15161                         dev->mode_config.rotation_property =
15162                                 drm_mode_create_rotation_property(dev,
15163                                                         DRM_ROTATE_0 |
15164                                                         DRM_ROTATE_180);
15165                 if (dev->mode_config.rotation_property)
15166                         drm_object_attach_property(&cursor->base.base,
15167                                 dev->mode_config.rotation_property,
15168                                 state->base.rotation);
15169         }
15170
15171         if (INTEL_INFO(dev)->gen >=9)
15172                 state->scaler_id = -1;
15173
15174         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15175
15176         return &cursor->base;
15177
15178 fail:
15179         kfree(state);
15180         kfree(cursor);
15181
15182         return NULL;
15183 }
15184
15185 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
15186         struct intel_crtc_state *crtc_state)
15187 {
15188         int i;
15189         struct intel_scaler *intel_scaler;
15190         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
15191
15192         for (i = 0; i < intel_crtc->num_scalers; i++) {
15193                 intel_scaler = &scaler_state->scalers[i];
15194                 intel_scaler->in_use = 0;
15195                 intel_scaler->mode = PS_SCALER_MODE_DYN;
15196         }
15197
15198         scaler_state->scaler_id = -1;
15199 }
15200
15201 static void intel_crtc_init(struct drm_device *dev, int pipe)
15202 {
15203         struct drm_i915_private *dev_priv = to_i915(dev);
15204         struct intel_crtc *intel_crtc;
15205         struct intel_crtc_state *crtc_state = NULL;
15206         struct drm_plane *primary = NULL;
15207         struct drm_plane *cursor = NULL;
15208         int ret;
15209
15210         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
15211         if (intel_crtc == NULL)
15212                 return;
15213
15214         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15215         if (!crtc_state)
15216                 goto fail;
15217         intel_crtc->config = crtc_state;
15218         intel_crtc->base.state = &crtc_state->base;
15219         crtc_state->base.crtc = &intel_crtc->base;
15220
15221         /* initialize shared scalers */
15222         if (INTEL_INFO(dev)->gen >= 9) {
15223                 if (pipe == PIPE_C)
15224                         intel_crtc->num_scalers = 1;
15225                 else
15226                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
15227
15228                 skl_init_scalers(dev, intel_crtc, crtc_state);
15229         }
15230
15231         primary = intel_primary_plane_create(dev, pipe);
15232         if (!primary)
15233                 goto fail;
15234
15235         cursor = intel_cursor_plane_create(dev, pipe);
15236         if (!cursor)
15237                 goto fail;
15238
15239         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
15240                                         cursor, &intel_crtc_funcs,
15241                                         "pipe %c", pipe_name(pipe));
15242         if (ret)
15243                 goto fail;
15244
15245         /*
15246          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
15247          * is hooked to pipe B. Hence we want plane A feeding pipe B.
15248          */
15249         intel_crtc->pipe = pipe;
15250         intel_crtc->plane = pipe;
15251         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
15252                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
15253                 intel_crtc->plane = !pipe;
15254         }
15255
15256         intel_crtc->cursor_base = ~0;
15257         intel_crtc->cursor_cntl = ~0;
15258         intel_crtc->cursor_size = ~0;
15259
15260         intel_crtc->wm.cxsr_allowed = true;
15261
15262         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15263                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
15264         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
15265         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
15266
15267         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
15268
15269         intel_color_init(&intel_crtc->base);
15270
15271         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15272         return;
15273
15274 fail:
15275         intel_plane_destroy(primary);
15276         intel_plane_destroy(cursor);
15277         kfree(crtc_state);
15278         kfree(intel_crtc);
15279 }
15280
15281 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
15282 {
15283         struct drm_encoder *encoder = connector->base.encoder;
15284         struct drm_device *dev = connector->base.dev;
15285
15286         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
15287
15288         if (!encoder || WARN_ON(!encoder->crtc))
15289                 return INVALID_PIPE;
15290
15291         return to_intel_crtc(encoder->crtc)->pipe;
15292 }
15293
15294 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
15295                                 struct drm_file *file)
15296 {
15297         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15298         struct drm_crtc *drmmode_crtc;
15299         struct intel_crtc *crtc;
15300
15301         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
15302         if (!drmmode_crtc)
15303                 return -ENOENT;
15304
15305         crtc = to_intel_crtc(drmmode_crtc);
15306         pipe_from_crtc_id->pipe = crtc->pipe;
15307
15308         return 0;
15309 }
15310
15311 static int intel_encoder_clones(struct intel_encoder *encoder)
15312 {
15313         struct drm_device *dev = encoder->base.dev;
15314         struct intel_encoder *source_encoder;
15315         int index_mask = 0;
15316         int entry = 0;
15317
15318         for_each_intel_encoder(dev, source_encoder) {
15319                 if (encoders_cloneable(encoder, source_encoder))
15320                         index_mask |= (1 << entry);
15321
15322                 entry++;
15323         }
15324
15325         return index_mask;
15326 }
15327
15328 static bool has_edp_a(struct drm_device *dev)
15329 {
15330         struct drm_i915_private *dev_priv = to_i915(dev);
15331
15332         if (!IS_MOBILE(dev))
15333                 return false;
15334
15335         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15336                 return false;
15337
15338         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15339                 return false;
15340
15341         return true;
15342 }
15343
15344 static bool intel_crt_present(struct drm_device *dev)
15345 {
15346         struct drm_i915_private *dev_priv = to_i915(dev);
15347
15348         if (INTEL_INFO(dev)->gen >= 9)
15349                 return false;
15350
15351         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
15352                 return false;
15353
15354         if (IS_CHERRYVIEW(dev))
15355                 return false;
15356
15357         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15358                 return false;
15359
15360         /* DDI E can't be used if DDI A requires 4 lanes */
15361         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15362                 return false;
15363
15364         if (!dev_priv->vbt.int_crt_support)
15365                 return false;
15366
15367         return true;
15368 }
15369
15370 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15371 {
15372         int pps_num;
15373         int pps_idx;
15374
15375         if (HAS_DDI(dev_priv))
15376                 return;
15377         /*
15378          * This w/a is needed at least on CPT/PPT, but to be sure apply it
15379          * everywhere where registers can be write protected.
15380          */
15381         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15382                 pps_num = 2;
15383         else
15384                 pps_num = 1;
15385
15386         for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15387                 u32 val = I915_READ(PP_CONTROL(pps_idx));
15388
15389                 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15390                 I915_WRITE(PP_CONTROL(pps_idx), val);
15391         }
15392 }
15393
15394 static void intel_pps_init(struct drm_i915_private *dev_priv)
15395 {
15396         if (HAS_PCH_SPLIT(dev_priv) || IS_BROXTON(dev_priv))
15397                 dev_priv->pps_mmio_base = PCH_PPS_BASE;
15398         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15399                 dev_priv->pps_mmio_base = VLV_PPS_BASE;
15400         else
15401                 dev_priv->pps_mmio_base = PPS_BASE;
15402
15403         intel_pps_unlock_regs_wa(dev_priv);
15404 }
15405
15406 static void intel_setup_outputs(struct drm_device *dev)
15407 {
15408         struct drm_i915_private *dev_priv = to_i915(dev);
15409         struct intel_encoder *encoder;
15410         bool dpd_is_edp = false;
15411
15412         intel_pps_init(dev_priv);
15413
15414         /*
15415          * intel_edp_init_connector() depends on this completing first, to
15416          * prevent the registeration of both eDP and LVDS and the incorrect
15417          * sharing of the PPS.
15418          */
15419         intel_lvds_init(dev);
15420
15421         if (intel_crt_present(dev))
15422                 intel_crt_init(dev);
15423
15424         if (IS_BROXTON(dev)) {
15425                 /*
15426                  * FIXME: Broxton doesn't support port detection via the
15427                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15428                  * detect the ports.
15429                  */
15430                 intel_ddi_init(dev, PORT_A);
15431                 intel_ddi_init(dev, PORT_B);
15432                 intel_ddi_init(dev, PORT_C);
15433
15434                 intel_dsi_init(dev);
15435         } else if (HAS_DDI(dev)) {
15436                 int found;
15437
15438                 /*
15439                  * Haswell uses DDI functions to detect digital outputs.
15440                  * On SKL pre-D0 the strap isn't connected, so we assume
15441                  * it's there.
15442                  */
15443                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15444                 /* WaIgnoreDDIAStrap: skl */
15445                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
15446                         intel_ddi_init(dev, PORT_A);
15447
15448                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
15449                  * register */
15450                 found = I915_READ(SFUSE_STRAP);
15451
15452                 if (found & SFUSE_STRAP_DDIB_DETECTED)
15453                         intel_ddi_init(dev, PORT_B);
15454                 if (found & SFUSE_STRAP_DDIC_DETECTED)
15455                         intel_ddi_init(dev, PORT_C);
15456                 if (found & SFUSE_STRAP_DDID_DETECTED)
15457                         intel_ddi_init(dev, PORT_D);
15458                 /*
15459                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15460                  */
15461                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
15462                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
15463                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
15464                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
15465                         intel_ddi_init(dev, PORT_E);
15466
15467         } else if (HAS_PCH_SPLIT(dev)) {
15468                 int found;
15469                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
15470
15471                 if (has_edp_a(dev))
15472                         intel_dp_init(dev, DP_A, PORT_A);
15473
15474                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
15475                         /* PCH SDVOB multiplex with HDMIB */
15476                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
15477                         if (!found)
15478                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
15479                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
15480                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
15481                 }
15482
15483                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
15484                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
15485
15486                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
15487                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
15488
15489                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
15490                         intel_dp_init(dev, PCH_DP_C, PORT_C);
15491
15492                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
15493                         intel_dp_init(dev, PCH_DP_D, PORT_D);
15494         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
15495                 bool has_edp, has_port;
15496
15497                 /*
15498                  * The DP_DETECTED bit is the latched state of the DDC
15499                  * SDA pin at boot. However since eDP doesn't require DDC
15500                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
15501                  * eDP ports may have been muxed to an alternate function.
15502                  * Thus we can't rely on the DP_DETECTED bit alone to detect
15503                  * eDP ports. Consult the VBT as well as DP_DETECTED to
15504                  * detect eDP ports.
15505                  *
15506                  * Sadly the straps seem to be missing sometimes even for HDMI
15507                  * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15508                  * and VBT for the presence of the port. Additionally we can't
15509                  * trust the port type the VBT declares as we've seen at least
15510                  * HDMI ports that the VBT claim are DP or eDP.
15511                  */
15512                 has_edp = intel_dp_is_edp(dev, PORT_B);
15513                 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15514                 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
15515                         has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
15516                 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
15517                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
15518
15519                 has_edp = intel_dp_is_edp(dev, PORT_C);
15520                 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15521                 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
15522                         has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
15523                 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
15524                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
15525
15526                 if (IS_CHERRYVIEW(dev)) {
15527                         /*
15528                          * eDP not supported on port D,
15529                          * so no need to worry about it
15530                          */
15531                         has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15532                         if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
15533                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
15534                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15535                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
15536                 }
15537
15538                 intel_dsi_init(dev);
15539         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
15540                 bool found = false;
15541
15542                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15543                         DRM_DEBUG_KMS("probing SDVOB\n");
15544                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
15545                         if (!found && IS_G4X(dev)) {
15546                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15547                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
15548                         }
15549
15550                         if (!found && IS_G4X(dev))
15551                                 intel_dp_init(dev, DP_B, PORT_B);
15552                 }
15553
15554                 /* Before G4X SDVOC doesn't have its own detect register */
15555
15556                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15557                         DRM_DEBUG_KMS("probing SDVOC\n");
15558                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
15559                 }
15560
15561                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
15562
15563                         if (IS_G4X(dev)) {
15564                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15565                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
15566                         }
15567                         if (IS_G4X(dev))
15568                                 intel_dp_init(dev, DP_C, PORT_C);
15569                 }
15570
15571                 if (IS_G4X(dev) &&
15572                     (I915_READ(DP_D) & DP_DETECTED))
15573                         intel_dp_init(dev, DP_D, PORT_D);
15574         } else if (IS_GEN2(dev))
15575                 intel_dvo_init(dev);
15576
15577         if (SUPPORTS_TV(dev))
15578                 intel_tv_init(dev);
15579
15580         intel_psr_init(dev);
15581
15582         for_each_intel_encoder(dev, encoder) {
15583                 encoder->base.possible_crtcs = encoder->crtc_mask;
15584                 encoder->base.possible_clones =
15585                         intel_encoder_clones(encoder);
15586         }
15587
15588         intel_init_pch_refclk(dev);
15589
15590         drm_helper_move_panel_connectors_to_head(dev);
15591 }
15592
15593 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15594 {
15595         struct drm_device *dev = fb->dev;
15596         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15597
15598         drm_framebuffer_cleanup(fb);
15599         mutex_lock(&dev->struct_mutex);
15600         WARN_ON(!intel_fb->obj->framebuffer_references--);
15601         i915_gem_object_put(intel_fb->obj);
15602         mutex_unlock(&dev->struct_mutex);
15603         kfree(intel_fb);
15604 }
15605
15606 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
15607                                                 struct drm_file *file,
15608                                                 unsigned int *handle)
15609 {
15610         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15611         struct drm_i915_gem_object *obj = intel_fb->obj;
15612
15613         if (obj->userptr.mm) {
15614                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15615                 return -EINVAL;
15616         }
15617
15618         return drm_gem_handle_create(file, &obj->base, handle);
15619 }
15620
15621 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15622                                         struct drm_file *file,
15623                                         unsigned flags, unsigned color,
15624                                         struct drm_clip_rect *clips,
15625                                         unsigned num_clips)
15626 {
15627         struct drm_device *dev = fb->dev;
15628         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15629         struct drm_i915_gem_object *obj = intel_fb->obj;
15630
15631         mutex_lock(&dev->struct_mutex);
15632         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
15633         mutex_unlock(&dev->struct_mutex);
15634
15635         return 0;
15636 }
15637
15638 static const struct drm_framebuffer_funcs intel_fb_funcs = {
15639         .destroy = intel_user_framebuffer_destroy,
15640         .create_handle = intel_user_framebuffer_create_handle,
15641         .dirty = intel_user_framebuffer_dirty,
15642 };
15643
15644 static
15645 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
15646                          uint32_t pixel_format)
15647 {
15648         u32 gen = INTEL_INFO(dev)->gen;
15649
15650         if (gen >= 9) {
15651                 int cpp = drm_format_plane_cpp(pixel_format, 0);
15652
15653                 /* "The stride in bytes must not exceed the of the size of 8K
15654                  *  pixels and 32K bytes."
15655                  */
15656                 return min(8192 * cpp, 32768);
15657         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
15658                 return 32*1024;
15659         } else if (gen >= 4) {
15660                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15661                         return 16*1024;
15662                 else
15663                         return 32*1024;
15664         } else if (gen >= 3) {
15665                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15666                         return 8*1024;
15667                 else
15668                         return 16*1024;
15669         } else {
15670                 /* XXX DSPC is limited to 4k tiled */
15671                 return 8*1024;
15672         }
15673 }
15674
15675 static int intel_framebuffer_init(struct drm_device *dev,
15676                                   struct intel_framebuffer *intel_fb,
15677                                   struct drm_mode_fb_cmd2 *mode_cmd,
15678                                   struct drm_i915_gem_object *obj)
15679 {
15680         struct drm_i915_private *dev_priv = to_i915(dev);
15681         unsigned int tiling = i915_gem_object_get_tiling(obj);
15682         int ret;
15683         u32 pitch_limit, stride_alignment;
15684         char *format_name;
15685
15686         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15687
15688         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15689                 /*
15690                  * If there's a fence, enforce that
15691                  * the fb modifier and tiling mode match.
15692                  */
15693                 if (tiling != I915_TILING_NONE &&
15694                     tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15695                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15696                         return -EINVAL;
15697                 }
15698         } else {
15699                 if (tiling == I915_TILING_X) {
15700                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15701                 } else if (tiling == I915_TILING_Y) {
15702                         DRM_DEBUG("No Y tiling for legacy addfb\n");
15703                         return -EINVAL;
15704                 }
15705         }
15706
15707         /* Passed in modifier sanity checking. */
15708         switch (mode_cmd->modifier[0]) {
15709         case I915_FORMAT_MOD_Y_TILED:
15710         case I915_FORMAT_MOD_Yf_TILED:
15711                 if (INTEL_INFO(dev)->gen < 9) {
15712                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15713                                   mode_cmd->modifier[0]);
15714                         return -EINVAL;
15715                 }
15716         case DRM_FORMAT_MOD_NONE:
15717         case I915_FORMAT_MOD_X_TILED:
15718                 break;
15719         default:
15720                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15721                           mode_cmd->modifier[0]);
15722                 return -EINVAL;
15723         }
15724
15725         /*
15726          * gen2/3 display engine uses the fence if present,
15727          * so the tiling mode must match the fb modifier exactly.
15728          */
15729         if (INTEL_INFO(dev_priv)->gen < 4 &&
15730             tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15731                 DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15732                 return -EINVAL;
15733         }
15734
15735         stride_alignment = intel_fb_stride_alignment(dev_priv,
15736                                                      mode_cmd->modifier[0],
15737                                                      mode_cmd->pixel_format);
15738         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15739                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15740                           mode_cmd->pitches[0], stride_alignment);
15741                 return -EINVAL;
15742         }
15743
15744         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
15745                                            mode_cmd->pixel_format);
15746         if (mode_cmd->pitches[0] > pitch_limit) {
15747                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15748                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15749                           "tiled" : "linear",
15750                           mode_cmd->pitches[0], pitch_limit);
15751                 return -EINVAL;
15752         }
15753
15754         /*
15755          * If there's a fence, enforce that
15756          * the fb pitch and fence stride match.
15757          */
15758         if (tiling != I915_TILING_NONE &&
15759             mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
15760                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15761                           mode_cmd->pitches[0],
15762                           i915_gem_object_get_stride(obj));
15763                 return -EINVAL;
15764         }
15765
15766         /* Reject formats not supported by any plane early. */
15767         switch (mode_cmd->pixel_format) {
15768         case DRM_FORMAT_C8:
15769         case DRM_FORMAT_RGB565:
15770         case DRM_FORMAT_XRGB8888:
15771         case DRM_FORMAT_ARGB8888:
15772                 break;
15773         case DRM_FORMAT_XRGB1555:
15774                 if (INTEL_INFO(dev)->gen > 3) {
15775                         format_name = drm_get_format_name(mode_cmd->pixel_format);
15776                         DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15777                         kfree(format_name);
15778                         return -EINVAL;
15779                 }
15780                 break;
15781         case DRM_FORMAT_ABGR8888:
15782                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
15783                     INTEL_INFO(dev)->gen < 9) {
15784                         format_name = drm_get_format_name(mode_cmd->pixel_format);
15785                         DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15786                         kfree(format_name);
15787                         return -EINVAL;
15788                 }
15789                 break;
15790         case DRM_FORMAT_XBGR8888:
15791         case DRM_FORMAT_XRGB2101010:
15792         case DRM_FORMAT_XBGR2101010:
15793                 if (INTEL_INFO(dev)->gen < 4) {
15794                         format_name = drm_get_format_name(mode_cmd->pixel_format);
15795                         DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15796                         kfree(format_name);
15797                         return -EINVAL;
15798                 }
15799                 break;
15800         case DRM_FORMAT_ABGR2101010:
15801                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
15802                         format_name = drm_get_format_name(mode_cmd->pixel_format);
15803                         DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15804                         kfree(format_name);
15805                         return -EINVAL;
15806                 }
15807                 break;
15808         case DRM_FORMAT_YUYV:
15809         case DRM_FORMAT_UYVY:
15810         case DRM_FORMAT_YVYU:
15811         case DRM_FORMAT_VYUY:
15812                 if (INTEL_INFO(dev)->gen < 5) {
15813                         format_name = drm_get_format_name(mode_cmd->pixel_format);
15814                         DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15815                         kfree(format_name);
15816                         return -EINVAL;
15817                 }
15818                 break;
15819         default:
15820                 format_name = drm_get_format_name(mode_cmd->pixel_format);
15821                 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15822                 kfree(format_name);
15823                 return -EINVAL;
15824         }
15825
15826         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15827         if (mode_cmd->offsets[0] != 0)
15828                 return -EINVAL;
15829
15830         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15831         intel_fb->obj = obj;
15832
15833         ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
15834         if (ret)
15835                 return ret;
15836
15837         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15838         if (ret) {
15839                 DRM_ERROR("framebuffer init failed %d\n", ret);
15840                 return ret;
15841         }
15842
15843         intel_fb->obj->framebuffer_references++;
15844
15845         return 0;
15846 }
15847
15848 static struct drm_framebuffer *
15849 intel_user_framebuffer_create(struct drm_device *dev,
15850                               struct drm_file *filp,
15851                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
15852 {
15853         struct drm_framebuffer *fb;
15854         struct drm_i915_gem_object *obj;
15855         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15856
15857         obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15858         if (!obj)
15859                 return ERR_PTR(-ENOENT);
15860
15861         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15862         if (IS_ERR(fb))
15863                 i915_gem_object_put_unlocked(obj);
15864
15865         return fb;
15866 }
15867
15868 #ifndef CONFIG_DRM_FBDEV_EMULATION
15869 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
15870 {
15871 }
15872 #endif
15873
15874 static const struct drm_mode_config_funcs intel_mode_funcs = {
15875         .fb_create = intel_user_framebuffer_create,
15876         .output_poll_changed = intel_fbdev_output_poll_changed,
15877         .atomic_check = intel_atomic_check,
15878         .atomic_commit = intel_atomic_commit,
15879         .atomic_state_alloc = intel_atomic_state_alloc,
15880         .atomic_state_clear = intel_atomic_state_clear,
15881 };
15882
15883 /**
15884  * intel_init_display_hooks - initialize the display modesetting hooks
15885  * @dev_priv: device private
15886  */
15887 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15888 {
15889         if (INTEL_INFO(dev_priv)->gen >= 9) {
15890                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15891                 dev_priv->display.get_initial_plane_config =
15892                         skylake_get_initial_plane_config;
15893                 dev_priv->display.crtc_compute_clock =
15894                         haswell_crtc_compute_clock;
15895                 dev_priv->display.crtc_enable = haswell_crtc_enable;
15896                 dev_priv->display.crtc_disable = haswell_crtc_disable;
15897         } else if (HAS_DDI(dev_priv)) {
15898                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15899                 dev_priv->display.get_initial_plane_config =
15900                         ironlake_get_initial_plane_config;
15901                 dev_priv->display.crtc_compute_clock =
15902                         haswell_crtc_compute_clock;
15903                 dev_priv->display.crtc_enable = haswell_crtc_enable;
15904                 dev_priv->display.crtc_disable = haswell_crtc_disable;
15905         } else if (HAS_PCH_SPLIT(dev_priv)) {
15906                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15907                 dev_priv->display.get_initial_plane_config =
15908                         ironlake_get_initial_plane_config;
15909                 dev_priv->display.crtc_compute_clock =
15910                         ironlake_crtc_compute_clock;
15911                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15912                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
15913         } else if (IS_CHERRYVIEW(dev_priv)) {
15914                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15915                 dev_priv->display.get_initial_plane_config =
15916                         i9xx_get_initial_plane_config;
15917                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15918                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15919                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15920         } else if (IS_VALLEYVIEW(dev_priv)) {
15921                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15922                 dev_priv->display.get_initial_plane_config =
15923                         i9xx_get_initial_plane_config;
15924                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15925                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15926                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15927         } else if (IS_G4X(dev_priv)) {
15928                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15929                 dev_priv->display.get_initial_plane_config =
15930                         i9xx_get_initial_plane_config;
15931                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15932                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15933                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15934         } else if (IS_PINEVIEW(dev_priv)) {
15935                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15936                 dev_priv->display.get_initial_plane_config =
15937                         i9xx_get_initial_plane_config;
15938                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15939                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15940                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15941         } else if (!IS_GEN2(dev_priv)) {
15942                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15943                 dev_priv->display.get_initial_plane_config =
15944                         i9xx_get_initial_plane_config;
15945                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15946                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15947                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15948         } else {
15949                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15950                 dev_priv->display.get_initial_plane_config =
15951                         i9xx_get_initial_plane_config;
15952                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15953                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15954                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15955         }
15956
15957         /* Returns the core display clock speed */
15958         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15959                 dev_priv->display.get_display_clock_speed =
15960                         skylake_get_display_clock_speed;
15961         else if (IS_BROXTON(dev_priv))
15962                 dev_priv->display.get_display_clock_speed =
15963                         broxton_get_display_clock_speed;
15964         else if (IS_BROADWELL(dev_priv))
15965                 dev_priv->display.get_display_clock_speed =
15966                         broadwell_get_display_clock_speed;
15967         else if (IS_HASWELL(dev_priv))
15968                 dev_priv->display.get_display_clock_speed =
15969                         haswell_get_display_clock_speed;
15970         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15971                 dev_priv->display.get_display_clock_speed =
15972                         valleyview_get_display_clock_speed;
15973         else if (IS_GEN5(dev_priv))
15974                 dev_priv->display.get_display_clock_speed =
15975                         ilk_get_display_clock_speed;
15976         else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15977                  IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
15978                 dev_priv->display.get_display_clock_speed =
15979                         i945_get_display_clock_speed;
15980         else if (IS_GM45(dev_priv))
15981                 dev_priv->display.get_display_clock_speed =
15982                         gm45_get_display_clock_speed;
15983         else if (IS_CRESTLINE(dev_priv))
15984                 dev_priv->display.get_display_clock_speed =
15985                         i965gm_get_display_clock_speed;
15986         else if (IS_PINEVIEW(dev_priv))
15987                 dev_priv->display.get_display_clock_speed =
15988                         pnv_get_display_clock_speed;
15989         else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15990                 dev_priv->display.get_display_clock_speed =
15991                         g33_get_display_clock_speed;
15992         else if (IS_I915G(dev_priv))
15993                 dev_priv->display.get_display_clock_speed =
15994                         i915_get_display_clock_speed;
15995         else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
15996                 dev_priv->display.get_display_clock_speed =
15997                         i9xx_misc_get_display_clock_speed;
15998         else if (IS_I915GM(dev_priv))
15999                 dev_priv->display.get_display_clock_speed =
16000                         i915gm_get_display_clock_speed;
16001         else if (IS_I865G(dev_priv))
16002                 dev_priv->display.get_display_clock_speed =
16003                         i865_get_display_clock_speed;
16004         else if (IS_I85X(dev_priv))
16005                 dev_priv->display.get_display_clock_speed =
16006                         i85x_get_display_clock_speed;
16007         else { /* 830 */
16008                 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
16009                 dev_priv->display.get_display_clock_speed =
16010                         i830_get_display_clock_speed;
16011         }
16012
16013         if (IS_GEN5(dev_priv)) {
16014                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
16015         } else if (IS_GEN6(dev_priv)) {
16016                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
16017         } else if (IS_IVYBRIDGE(dev_priv)) {
16018                 /* FIXME: detect B0+ stepping and use auto training */
16019                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
16020         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
16021                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
16022         }
16023
16024         if (IS_BROADWELL(dev_priv)) {
16025                 dev_priv->display.modeset_commit_cdclk =
16026                         broadwell_modeset_commit_cdclk;
16027                 dev_priv->display.modeset_calc_cdclk =
16028                         broadwell_modeset_calc_cdclk;
16029         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16030                 dev_priv->display.modeset_commit_cdclk =
16031                         valleyview_modeset_commit_cdclk;
16032                 dev_priv->display.modeset_calc_cdclk =
16033                         valleyview_modeset_calc_cdclk;
16034         } else if (IS_BROXTON(dev_priv)) {
16035                 dev_priv->display.modeset_commit_cdclk =
16036                         bxt_modeset_commit_cdclk;
16037                 dev_priv->display.modeset_calc_cdclk =
16038                         bxt_modeset_calc_cdclk;
16039         } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
16040                 dev_priv->display.modeset_commit_cdclk =
16041                         skl_modeset_commit_cdclk;
16042                 dev_priv->display.modeset_calc_cdclk =
16043                         skl_modeset_calc_cdclk;
16044         }
16045
16046         if (dev_priv->info.gen >= 9)
16047                 dev_priv->display.update_crtcs = skl_update_crtcs;
16048         else
16049                 dev_priv->display.update_crtcs = intel_update_crtcs;
16050
16051         switch (INTEL_INFO(dev_priv)->gen) {
16052         case 2:
16053                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
16054                 break;
16055
16056         case 3:
16057                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
16058                 break;
16059
16060         case 4:
16061         case 5:
16062                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
16063                 break;
16064
16065         case 6:
16066                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
16067                 break;
16068         case 7:
16069         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
16070                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
16071                 break;
16072         case 9:
16073                 /* Drop through - unsupported since execlist only. */
16074         default:
16075                 /* Default just returns -ENODEV to indicate unsupported */
16076                 dev_priv->display.queue_flip = intel_default_queue_flip;
16077         }
16078 }
16079
16080 /*
16081  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
16082  * resume, or other times.  This quirk makes sure that's the case for
16083  * affected systems.
16084  */
16085 static void quirk_pipea_force(struct drm_device *dev)
16086 {
16087         struct drm_i915_private *dev_priv = to_i915(dev);
16088
16089         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
16090         DRM_INFO("applying pipe a force quirk\n");
16091 }
16092
16093 static void quirk_pipeb_force(struct drm_device *dev)
16094 {
16095         struct drm_i915_private *dev_priv = to_i915(dev);
16096
16097         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
16098         DRM_INFO("applying pipe b force quirk\n");
16099 }
16100
16101 /*
16102  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
16103  */
16104 static void quirk_ssc_force_disable(struct drm_device *dev)
16105 {
16106         struct drm_i915_private *dev_priv = to_i915(dev);
16107         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
16108         DRM_INFO("applying lvds SSC disable quirk\n");
16109 }
16110
16111 /*
16112  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
16113  * brightness value
16114  */
16115 static void quirk_invert_brightness(struct drm_device *dev)
16116 {
16117         struct drm_i915_private *dev_priv = to_i915(dev);
16118         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
16119         DRM_INFO("applying inverted panel brightness quirk\n");
16120 }
16121
16122 /* Some VBT's incorrectly indicate no backlight is present */
16123 static void quirk_backlight_present(struct drm_device *dev)
16124 {
16125         struct drm_i915_private *dev_priv = to_i915(dev);
16126         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
16127         DRM_INFO("applying backlight present quirk\n");
16128 }
16129
16130 struct intel_quirk {
16131         int device;
16132         int subsystem_vendor;
16133         int subsystem_device;
16134         void (*hook)(struct drm_device *dev);
16135 };
16136
16137 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
16138 struct intel_dmi_quirk {
16139         void (*hook)(struct drm_device *dev);
16140         const struct dmi_system_id (*dmi_id_list)[];
16141 };
16142
16143 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
16144 {
16145         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
16146         return 1;
16147 }
16148
16149 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
16150         {
16151                 .dmi_id_list = &(const struct dmi_system_id[]) {
16152                         {
16153                                 .callback = intel_dmi_reverse_brightness,
16154                                 .ident = "NCR Corporation",
16155                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
16156                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
16157                                 },
16158                         },
16159                         { }  /* terminating entry */
16160                 },
16161                 .hook = quirk_invert_brightness,
16162         },
16163 };
16164
16165 static struct intel_quirk intel_quirks[] = {
16166         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
16167         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
16168
16169         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
16170         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
16171
16172         /* 830 needs to leave pipe A & dpll A up */
16173         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
16174
16175         /* 830 needs to leave pipe B & dpll B up */
16176         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
16177
16178         /* Lenovo U160 cannot use SSC on LVDS */
16179         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
16180
16181         /* Sony Vaio Y cannot use SSC on LVDS */
16182         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
16183
16184         /* Acer Aspire 5734Z must invert backlight brightness */
16185         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
16186
16187         /* Acer/eMachines G725 */
16188         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
16189
16190         /* Acer/eMachines e725 */
16191         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
16192
16193         /* Acer/Packard Bell NCL20 */
16194         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
16195
16196         /* Acer Aspire 4736Z */
16197         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
16198
16199         /* Acer Aspire 5336 */
16200         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
16201
16202         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
16203         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
16204
16205         /* Acer C720 Chromebook (Core i3 4005U) */
16206         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
16207
16208         /* Apple Macbook 2,1 (Core 2 T7400) */
16209         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
16210
16211         /* Apple Macbook 4,1 */
16212         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
16213
16214         /* Toshiba CB35 Chromebook (Celeron 2955U) */
16215         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
16216
16217         /* HP Chromebook 14 (Celeron 2955U) */
16218         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
16219
16220         /* Dell Chromebook 11 */
16221         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
16222
16223         /* Dell Chromebook 11 (2015 version) */
16224         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
16225 };
16226
16227 static void intel_init_quirks(struct drm_device *dev)
16228 {
16229         struct pci_dev *d = dev->pdev;
16230         int i;
16231
16232         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
16233                 struct intel_quirk *q = &intel_quirks[i];
16234
16235                 if (d->device == q->device &&
16236                     (d->subsystem_vendor == q->subsystem_vendor ||
16237                      q->subsystem_vendor == PCI_ANY_ID) &&
16238                     (d->subsystem_device == q->subsystem_device ||
16239                      q->subsystem_device == PCI_ANY_ID))
16240                         q->hook(dev);
16241         }
16242         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
16243                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
16244                         intel_dmi_quirks[i].hook(dev);
16245         }
16246 }
16247
16248 /* Disable the VGA plane that we never use */
16249 static void i915_disable_vga(struct drm_device *dev)
16250 {
16251         struct drm_i915_private *dev_priv = to_i915(dev);
16252         struct pci_dev *pdev = dev_priv->drm.pdev;
16253         u8 sr1;
16254         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
16255
16256         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
16257         vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
16258         outb(SR01, VGA_SR_INDEX);
16259         sr1 = inb(VGA_SR_DATA);
16260         outb(sr1 | 1<<5, VGA_SR_DATA);
16261         vga_put(pdev, VGA_RSRC_LEGACY_IO);
16262         udelay(300);
16263
16264         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
16265         POSTING_READ(vga_reg);
16266 }
16267
16268 void intel_modeset_init_hw(struct drm_device *dev)
16269 {
16270         struct drm_i915_private *dev_priv = to_i915(dev);
16271
16272         intel_update_cdclk(dev);
16273
16274         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16275
16276         intel_init_clock_gating(dev);
16277 }
16278
16279 /*
16280  * Calculate what we think the watermarks should be for the state we've read
16281  * out of the hardware and then immediately program those watermarks so that
16282  * we ensure the hardware settings match our internal state.
16283  *
16284  * We can calculate what we think WM's should be by creating a duplicate of the
16285  * current state (which was constructed during hardware readout) and running it
16286  * through the atomic check code to calculate new watermark values in the
16287  * state object.
16288  */
16289 static void sanitize_watermarks(struct drm_device *dev)
16290 {
16291         struct drm_i915_private *dev_priv = to_i915(dev);
16292         struct drm_atomic_state *state;
16293         struct drm_crtc *crtc;
16294         struct drm_crtc_state *cstate;
16295         struct drm_modeset_acquire_ctx ctx;
16296         int ret;
16297         int i;
16298
16299         /* Only supported on platforms that use atomic watermark design */
16300         if (!dev_priv->display.optimize_watermarks)
16301                 return;
16302
16303         /*
16304          * We need to hold connection_mutex before calling duplicate_state so
16305          * that the connector loop is protected.
16306          */
16307         drm_modeset_acquire_init(&ctx, 0);
16308 retry:
16309         ret = drm_modeset_lock_all_ctx(dev, &ctx);
16310         if (ret == -EDEADLK) {
16311                 drm_modeset_backoff(&ctx);
16312                 goto retry;
16313         } else if (WARN_ON(ret)) {
16314                 goto fail;
16315         }
16316
16317         state = drm_atomic_helper_duplicate_state(dev, &ctx);
16318         if (WARN_ON(IS_ERR(state)))
16319                 goto fail;
16320
16321         /*
16322          * Hardware readout is the only time we don't want to calculate
16323          * intermediate watermarks (since we don't trust the current
16324          * watermarks).
16325          */
16326         to_intel_atomic_state(state)->skip_intermediate_wm = true;
16327
16328         ret = intel_atomic_check(dev, state);
16329         if (ret) {
16330                 /*
16331                  * If we fail here, it means that the hardware appears to be
16332                  * programmed in a way that shouldn't be possible, given our
16333                  * understanding of watermark requirements.  This might mean a
16334                  * mistake in the hardware readout code or a mistake in the
16335                  * watermark calculations for a given platform.  Raise a WARN
16336                  * so that this is noticeable.
16337                  *
16338                  * If this actually happens, we'll have to just leave the
16339                  * BIOS-programmed watermarks untouched and hope for the best.
16340                  */
16341                 WARN(true, "Could not determine valid watermarks for inherited state\n");
16342                 goto fail;
16343         }
16344
16345         /* Write calculated watermark values back */
16346         for_each_crtc_in_state(state, crtc, cstate, i) {
16347                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
16348
16349                 cs->wm.need_postvbl_update = true;
16350                 dev_priv->display.optimize_watermarks(cs);
16351         }
16352
16353         drm_atomic_state_free(state);
16354 fail:
16355         drm_modeset_drop_locks(&ctx);
16356         drm_modeset_acquire_fini(&ctx);
16357 }
16358
16359 void intel_modeset_init(struct drm_device *dev)
16360 {
16361         struct drm_i915_private *dev_priv = to_i915(dev);
16362         struct i915_ggtt *ggtt = &dev_priv->ggtt;
16363         int sprite, ret;
16364         enum pipe pipe;
16365         struct intel_crtc *crtc;
16366
16367         drm_mode_config_init(dev);
16368
16369         dev->mode_config.min_width = 0;
16370         dev->mode_config.min_height = 0;
16371
16372         dev->mode_config.preferred_depth = 24;
16373         dev->mode_config.prefer_shadow = 1;
16374
16375         dev->mode_config.allow_fb_modifiers = true;
16376
16377         dev->mode_config.funcs = &intel_mode_funcs;
16378
16379         intel_init_quirks(dev);
16380
16381         intel_init_pm(dev);
16382
16383         if (INTEL_INFO(dev)->num_pipes == 0)
16384                 return;
16385
16386         /*
16387          * There may be no VBT; and if the BIOS enabled SSC we can
16388          * just keep using it to avoid unnecessary flicker.  Whereas if the
16389          * BIOS isn't using it, don't assume it will work even if the VBT
16390          * indicates as much.
16391          */
16392         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
16393                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16394                                             DREF_SSC1_ENABLE);
16395
16396                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16397                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16398                                      bios_lvds_use_ssc ? "en" : "dis",
16399                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16400                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16401                 }
16402         }
16403
16404         if (IS_GEN2(dev)) {
16405                 dev->mode_config.max_width = 2048;
16406                 dev->mode_config.max_height = 2048;
16407         } else if (IS_GEN3(dev)) {
16408                 dev->mode_config.max_width = 4096;
16409                 dev->mode_config.max_height = 4096;
16410         } else {
16411                 dev->mode_config.max_width = 8192;
16412                 dev->mode_config.max_height = 8192;
16413         }
16414
16415         if (IS_845G(dev) || IS_I865G(dev)) {
16416                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
16417                 dev->mode_config.cursor_height = 1023;
16418         } else if (IS_GEN2(dev)) {
16419                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
16420                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
16421         } else {
16422                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
16423                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
16424         }
16425
16426         dev->mode_config.fb_base = ggtt->mappable_base;
16427
16428         DRM_DEBUG_KMS("%d display pipe%s available.\n",
16429                       INTEL_INFO(dev)->num_pipes,
16430                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
16431
16432         for_each_pipe(dev_priv, pipe) {
16433                 intel_crtc_init(dev, pipe);
16434                 for_each_sprite(dev_priv, pipe, sprite) {
16435                         ret = intel_plane_init(dev, pipe, sprite);
16436                         if (ret)
16437                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
16438                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
16439                 }
16440         }
16441
16442         intel_update_czclk(dev_priv);
16443         intel_update_cdclk(dev);
16444
16445         intel_shared_dpll_init(dev);
16446
16447         if (dev_priv->max_cdclk_freq == 0)
16448                 intel_update_max_cdclk(dev);
16449
16450         /* Just disable it once at startup */
16451         i915_disable_vga(dev);
16452         intel_setup_outputs(dev);
16453
16454         drm_modeset_lock_all(dev);
16455         intel_modeset_setup_hw_state(dev);
16456         drm_modeset_unlock_all(dev);
16457
16458         for_each_intel_crtc(dev, crtc) {
16459                 struct intel_initial_plane_config plane_config = {};
16460
16461                 if (!crtc->active)
16462                         continue;
16463
16464                 /*
16465                  * Note that reserving the BIOS fb up front prevents us
16466                  * from stuffing other stolen allocations like the ring
16467                  * on top.  This prevents some ugliness at boot time, and
16468                  * can even allow for smooth boot transitions if the BIOS
16469                  * fb is large enough for the active pipe configuration.
16470                  */
16471                 dev_priv->display.get_initial_plane_config(crtc,
16472                                                            &plane_config);
16473
16474                 /*
16475                  * If the fb is shared between multiple heads, we'll
16476                  * just get the first one.
16477                  */
16478                 intel_find_initial_plane_obj(crtc, &plane_config);
16479         }
16480
16481         /*
16482          * Make sure hardware watermarks really match the state we read out.
16483          * Note that we need to do this after reconstructing the BIOS fb's
16484          * since the watermark calculation done here will use pstate->fb.
16485          */
16486         sanitize_watermarks(dev);
16487 }
16488
16489 static void intel_enable_pipe_a(struct drm_device *dev)
16490 {
16491         struct intel_connector *connector;
16492         struct drm_connector *crt = NULL;
16493         struct intel_load_detect_pipe load_detect_temp;
16494         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
16495
16496         /* We can't just switch on the pipe A, we need to set things up with a
16497          * proper mode and output configuration. As a gross hack, enable pipe A
16498          * by enabling the load detect pipe once. */
16499         for_each_intel_connector(dev, connector) {
16500                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
16501                         crt = &connector->base;
16502                         break;
16503                 }
16504         }
16505
16506         if (!crt)
16507                 return;
16508
16509         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
16510                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
16511 }
16512
16513 static bool
16514 intel_check_plane_mapping(struct intel_crtc *crtc)
16515 {
16516         struct drm_device *dev = crtc->base.dev;
16517         struct drm_i915_private *dev_priv = to_i915(dev);
16518         u32 val;
16519
16520         if (INTEL_INFO(dev)->num_pipes == 1)
16521                 return true;
16522
16523         val = I915_READ(DSPCNTR(!crtc->plane));
16524
16525         if ((val & DISPLAY_PLANE_ENABLE) &&
16526             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
16527                 return false;
16528
16529         return true;
16530 }
16531
16532 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16533 {
16534         struct drm_device *dev = crtc->base.dev;
16535         struct intel_encoder *encoder;
16536
16537         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16538                 return true;
16539
16540         return false;
16541 }
16542
16543 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16544 {
16545         struct drm_device *dev = encoder->base.dev;
16546         struct intel_connector *connector;
16547
16548         for_each_connector_on_encoder(dev, &encoder->base, connector)
16549                 return connector;
16550
16551         return NULL;
16552 }
16553
16554 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16555                               enum transcoder pch_transcoder)
16556 {
16557         return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16558                 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
16559 }
16560
16561 static void intel_sanitize_crtc(struct intel_crtc *crtc)
16562 {
16563         struct drm_device *dev = crtc->base.dev;
16564         struct drm_i915_private *dev_priv = to_i915(dev);
16565         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
16566
16567         /* Clear any frame start delays used for debugging left by the BIOS */
16568         if (!transcoder_is_dsi(cpu_transcoder)) {
16569                 i915_reg_t reg = PIPECONF(cpu_transcoder);
16570
16571                 I915_WRITE(reg,
16572                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16573         }
16574
16575         /* restore vblank interrupts to correct state */
16576         drm_crtc_vblank_reset(&crtc->base);
16577         if (crtc->active) {
16578                 struct intel_plane *plane;
16579
16580                 drm_crtc_vblank_on(&crtc->base);
16581
16582                 /* Disable everything but the primary plane */
16583                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
16584                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
16585                                 continue;
16586
16587                         plane->disable_plane(&plane->base, &crtc->base);
16588                 }
16589         }
16590
16591         /* We need to sanitize the plane -> pipe mapping first because this will
16592          * disable the crtc (and hence change the state) if it is wrong. Note
16593          * that gen4+ has a fixed plane -> pipe mapping.  */
16594         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
16595                 bool plane;
16596
16597                 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16598                               crtc->base.base.id, crtc->base.name);
16599
16600                 /* Pipe has the wrong plane attached and the plane is active.
16601                  * Temporarily change the plane mapping and disable everything
16602                  * ...  */
16603                 plane = crtc->plane;
16604                 to_intel_plane_state(crtc->base.primary->state)->base.visible = true;
16605                 crtc->plane = !plane;
16606                 intel_crtc_disable_noatomic(&crtc->base);
16607                 crtc->plane = plane;
16608         }
16609
16610         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
16611             crtc->pipe == PIPE_A && !crtc->active) {
16612                 /* BIOS forgot to enable pipe A, this mostly happens after
16613                  * resume. Force-enable the pipe to fix this, the update_dpms
16614                  * call below we restore the pipe to the right state, but leave
16615                  * the required bits on. */
16616                 intel_enable_pipe_a(dev);
16617         }
16618
16619         /* Adjust the state of the output pipe according to whether we
16620          * have active connectors/encoders. */
16621         if (crtc->active && !intel_crtc_has_encoders(crtc))
16622                 intel_crtc_disable_noatomic(&crtc->base);
16623
16624         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
16625                 /*
16626                  * We start out with underrun reporting disabled to avoid races.
16627                  * For correct bookkeeping mark this on active crtcs.
16628                  *
16629                  * Also on gmch platforms we dont have any hardware bits to
16630                  * disable the underrun reporting. Which means we need to start
16631                  * out with underrun reporting disabled also on inactive pipes,
16632                  * since otherwise we'll complain about the garbage we read when
16633                  * e.g. coming up after runtime pm.
16634                  *
16635                  * No protection against concurrent access is required - at
16636                  * worst a fifo underrun happens which also sets this to false.
16637                  */
16638                 crtc->cpu_fifo_underrun_disabled = true;
16639                 /*
16640                  * We track the PCH trancoder underrun reporting state
16641                  * within the crtc. With crtc for pipe A housing the underrun
16642                  * reporting state for PCH transcoder A, crtc for pipe B housing
16643                  * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16644                  * and marking underrun reporting as disabled for the non-existing
16645                  * PCH transcoders B and C would prevent enabling the south
16646                  * error interrupt (see cpt_can_enable_serr_int()).
16647                  */
16648                 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
16649                         crtc->pch_fifo_underrun_disabled = true;
16650         }
16651 }
16652
16653 static void intel_sanitize_encoder(struct intel_encoder *encoder)
16654 {
16655         struct intel_connector *connector;
16656
16657         /* We need to check both for a crtc link (meaning that the
16658          * encoder is active and trying to read from a pipe) and the
16659          * pipe itself being active. */
16660         bool has_active_crtc = encoder->base.crtc &&
16661                 to_intel_crtc(encoder->base.crtc)->active;
16662
16663         connector = intel_encoder_find_connector(encoder);
16664         if (connector && !has_active_crtc) {
16665                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16666                               encoder->base.base.id,
16667                               encoder->base.name);
16668
16669                 /* Connector is active, but has no active pipe. This is
16670                  * fallout from our resume register restoring. Disable
16671                  * the encoder manually again. */
16672                 if (encoder->base.crtc) {
16673                         struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
16674
16675                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16676                                       encoder->base.base.id,
16677                                       encoder->base.name);
16678                         encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16679                         if (encoder->post_disable)
16680                                 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16681                 }
16682                 encoder->base.crtc = NULL;
16683
16684                 /* Inconsistent output/port/pipe state happens presumably due to
16685                  * a bug in one of the get_hw_state functions. Or someplace else
16686                  * in our code, like the register restore mess on resume. Clamp
16687                  * things to off as a safer default. */
16688
16689                 connector->base.dpms = DRM_MODE_DPMS_OFF;
16690                 connector->base.encoder = NULL;
16691         }
16692         /* Enabled encoders without active connectors will be fixed in
16693          * the crtc fixup. */
16694 }
16695
16696 void i915_redisable_vga_power_on(struct drm_device *dev)
16697 {
16698         struct drm_i915_private *dev_priv = to_i915(dev);
16699         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
16700
16701         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16702                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16703                 i915_disable_vga(dev);
16704         }
16705 }
16706
16707 void i915_redisable_vga(struct drm_device *dev)
16708 {
16709         struct drm_i915_private *dev_priv = to_i915(dev);
16710
16711         /* This function can be called both from intel_modeset_setup_hw_state or
16712          * at a very early point in our resume sequence, where the power well
16713          * structures are not yet restored. Since this function is at a very
16714          * paranoid "someone might have enabled VGA while we were not looking"
16715          * level, just check if the power well is enabled instead of trying to
16716          * follow the "don't touch the power well if we don't need it" policy
16717          * the rest of the driver uses. */
16718         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16719                 return;
16720
16721         i915_redisable_vga_power_on(dev);
16722
16723         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16724 }
16725
16726 static bool primary_get_hw_state(struct intel_plane *plane)
16727 {
16728         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16729
16730         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16731 }
16732
16733 /* FIXME read out full plane state for all planes */
16734 static void readout_plane_state(struct intel_crtc *crtc)
16735 {
16736         struct drm_plane *primary = crtc->base.primary;
16737         struct intel_plane_state *plane_state =
16738                 to_intel_plane_state(primary->state);
16739
16740         plane_state->base.visible = crtc->active &&
16741                 primary_get_hw_state(to_intel_plane(primary));
16742
16743         if (plane_state->base.visible)
16744                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
16745 }
16746
16747 static void intel_modeset_readout_hw_state(struct drm_device *dev)
16748 {
16749         struct drm_i915_private *dev_priv = to_i915(dev);
16750         enum pipe pipe;
16751         struct intel_crtc *crtc;
16752         struct intel_encoder *encoder;
16753         struct intel_connector *connector;
16754         int i;
16755
16756         dev_priv->active_crtcs = 0;
16757
16758         for_each_intel_crtc(dev, crtc) {
16759                 struct intel_crtc_state *crtc_state = crtc->config;
16760                 int pixclk = 0;
16761
16762                 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16763                 memset(crtc_state, 0, sizeof(*crtc_state));
16764                 crtc_state->base.crtc = &crtc->base;
16765
16766                 crtc_state->base.active = crtc_state->base.enable =
16767                         dev_priv->display.get_pipe_config(crtc, crtc_state);
16768
16769                 crtc->base.enabled = crtc_state->base.enable;
16770                 crtc->active = crtc_state->base.active;
16771
16772                 if (crtc_state->base.active) {
16773                         dev_priv->active_crtcs |= 1 << crtc->pipe;
16774
16775                         if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
16776                                 pixclk = ilk_pipe_pixel_rate(crtc_state);
16777                         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16778                                 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
16779                         else
16780                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
16781
16782                         /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16783                         if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
16784                                 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
16785                 }
16786
16787                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
16788
16789                 readout_plane_state(crtc);
16790
16791                 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16792                               crtc->base.base.id, crtc->base.name,
16793                               crtc->active ? "enabled" : "disabled");
16794         }
16795
16796         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16797                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16798
16799                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16800                                                   &pll->config.hw_state);
16801                 pll->config.crtc_mask = 0;
16802                 for_each_intel_crtc(dev, crtc) {
16803                         if (crtc->active && crtc->config->shared_dpll == pll)
16804                                 pll->config.crtc_mask |= 1 << crtc->pipe;
16805                 }
16806                 pll->active_mask = pll->config.crtc_mask;
16807
16808                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16809                               pll->name, pll->config.crtc_mask, pll->on);
16810         }
16811
16812         for_each_intel_encoder(dev, encoder) {
16813                 pipe = 0;
16814
16815                 if (encoder->get_hw_state(encoder, &pipe)) {
16816                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16817                         encoder->base.crtc = &crtc->base;
16818                         crtc->config->output_types |= 1 << encoder->type;
16819                         encoder->get_config(encoder, crtc->config);
16820                 } else {
16821                         encoder->base.crtc = NULL;
16822                 }
16823
16824                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16825                               encoder->base.base.id,
16826                               encoder->base.name,
16827                               encoder->base.crtc ? "enabled" : "disabled",
16828                               pipe_name(pipe));
16829         }
16830
16831         for_each_intel_connector(dev, connector) {
16832                 if (connector->get_hw_state(connector)) {
16833                         connector->base.dpms = DRM_MODE_DPMS_ON;
16834
16835                         encoder = connector->encoder;
16836                         connector->base.encoder = &encoder->base;
16837
16838                         if (encoder->base.crtc &&
16839                             encoder->base.crtc->state->active) {
16840                                 /*
16841                                  * This has to be done during hardware readout
16842                                  * because anything calling .crtc_disable may
16843                                  * rely on the connector_mask being accurate.
16844                                  */
16845                                 encoder->base.crtc->state->connector_mask |=
16846                                         1 << drm_connector_index(&connector->base);
16847                                 encoder->base.crtc->state->encoder_mask |=
16848                                         1 << drm_encoder_index(&encoder->base);
16849                         }
16850
16851                 } else {
16852                         connector->base.dpms = DRM_MODE_DPMS_OFF;
16853                         connector->base.encoder = NULL;
16854                 }
16855                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16856                               connector->base.base.id,
16857                               connector->base.name,
16858                               connector->base.encoder ? "enabled" : "disabled");
16859         }
16860
16861         for_each_intel_crtc(dev, crtc) {
16862                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16863
16864                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16865                 if (crtc->base.state->active) {
16866                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16867                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16868                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16869
16870                         /*
16871                          * The initial mode needs to be set in order to keep
16872                          * the atomic core happy. It wants a valid mode if the
16873                          * crtc's enabled, so we do the above call.
16874                          *
16875                          * At this point some state updated by the connectors
16876                          * in their ->detect() callback has not run yet, so
16877                          * no recalculation can be done yet.
16878                          *
16879                          * Even if we could do a recalculation and modeset
16880                          * right now it would cause a double modeset if
16881                          * fbdev or userspace chooses a different initial mode.
16882                          *
16883                          * If that happens, someone indicated they wanted a
16884                          * mode change, which means it's safe to do a full
16885                          * recalculation.
16886                          */
16887                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16888
16889                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16890                         update_scanline_offset(crtc);
16891                 }
16892
16893                 intel_pipe_config_sanity_check(dev_priv, crtc->config);
16894         }
16895 }
16896
16897 /* Scan out the current hw modeset state,
16898  * and sanitizes it to the current state
16899  */
16900 static void
16901 intel_modeset_setup_hw_state(struct drm_device *dev)
16902 {
16903         struct drm_i915_private *dev_priv = to_i915(dev);
16904         enum pipe pipe;
16905         struct intel_crtc *crtc;
16906         struct intel_encoder *encoder;
16907         int i;
16908
16909         intel_modeset_readout_hw_state(dev);
16910
16911         /* HW state is read out, now we need to sanitize this mess. */
16912         for_each_intel_encoder(dev, encoder) {
16913                 intel_sanitize_encoder(encoder);
16914         }
16915
16916         for_each_pipe(dev_priv, pipe) {
16917                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16918                 intel_sanitize_crtc(crtc);
16919                 intel_dump_pipe_config(crtc, crtc->config,
16920                                        "[setup_hw_state]");
16921         }
16922
16923         intel_modeset_update_connector_atomic_state(dev);
16924
16925         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16926                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16927
16928                 if (!pll->on || pll->active_mask)
16929                         continue;
16930
16931                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16932
16933                 pll->funcs.disable(dev_priv, pll);
16934                 pll->on = false;
16935         }
16936
16937         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
16938                 vlv_wm_get_hw_state(dev);
16939         else if (IS_GEN9(dev))
16940                 skl_wm_get_hw_state(dev);
16941         else if (HAS_PCH_SPLIT(dev))
16942                 ilk_wm_get_hw_state(dev);
16943
16944         for_each_intel_crtc(dev, crtc) {
16945                 unsigned long put_domains;
16946
16947                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
16948                 if (WARN_ON(put_domains))
16949                         modeset_put_power_domains(dev_priv, put_domains);
16950         }
16951         intel_display_set_init_power(dev_priv, false);
16952
16953         intel_fbc_init_pipe_state(dev_priv);
16954 }
16955
16956 void intel_display_resume(struct drm_device *dev)
16957 {
16958         struct drm_i915_private *dev_priv = to_i915(dev);
16959         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16960         struct drm_modeset_acquire_ctx ctx;
16961         int ret;
16962
16963         dev_priv->modeset_restore_state = NULL;
16964         if (state)
16965                 state->acquire_ctx = &ctx;
16966
16967         /*
16968          * This is a cludge because with real atomic modeset mode_config.mutex
16969          * won't be taken. Unfortunately some probed state like
16970          * audio_codec_enable is still protected by mode_config.mutex, so lock
16971          * it here for now.
16972          */
16973         mutex_lock(&dev->mode_config.mutex);
16974         drm_modeset_acquire_init(&ctx, 0);
16975
16976         while (1) {
16977                 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16978                 if (ret != -EDEADLK)
16979                         break;
16980
16981                 drm_modeset_backoff(&ctx);
16982         }
16983
16984         if (!ret)
16985                 ret = __intel_display_resume(dev, state);
16986
16987         drm_modeset_drop_locks(&ctx);
16988         drm_modeset_acquire_fini(&ctx);
16989         mutex_unlock(&dev->mode_config.mutex);
16990
16991         if (ret) {
16992                 DRM_ERROR("Restoring old state failed with %i\n", ret);
16993                 drm_atomic_state_free(state);
16994         }
16995 }
16996
16997 void intel_modeset_gem_init(struct drm_device *dev)
16998 {
16999         struct drm_i915_private *dev_priv = to_i915(dev);
17000         struct drm_crtc *c;
17001         struct drm_i915_gem_object *obj;
17002
17003         intel_init_gt_powersave(dev_priv);
17004
17005         intel_modeset_init_hw(dev);
17006
17007         intel_setup_overlay(dev_priv);
17008
17009         /*
17010          * Make sure any fbs we allocated at startup are properly
17011          * pinned & fenced.  When we do the allocation it's too early
17012          * for this.
17013          */
17014         for_each_crtc(dev, c) {
17015                 struct i915_vma *vma;
17016
17017                 obj = intel_fb_obj(c->primary->fb);
17018                 if (obj == NULL)
17019                         continue;
17020
17021                 mutex_lock(&dev->struct_mutex);
17022                 vma = intel_pin_and_fence_fb_obj(c->primary->fb,
17023                                                  c->primary->state->rotation);
17024                 mutex_unlock(&dev->struct_mutex);
17025                 if (IS_ERR(vma)) {
17026                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
17027                                   to_intel_crtc(c)->pipe);
17028                         drm_framebuffer_unreference(c->primary->fb);
17029                         c->primary->fb = NULL;
17030                         c->primary->crtc = c->primary->state->crtc = NULL;
17031                         update_state_fb(c->primary);
17032                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
17033                 }
17034         }
17035 }
17036
17037 int intel_connector_register(struct drm_connector *connector)
17038 {
17039         struct intel_connector *intel_connector = to_intel_connector(connector);
17040         int ret;
17041
17042         ret = intel_backlight_device_register(intel_connector);
17043         if (ret)
17044                 goto err;
17045
17046         return 0;
17047
17048 err:
17049         return ret;
17050 }
17051
17052 void intel_connector_unregister(struct drm_connector *connector)
17053 {
17054         struct intel_connector *intel_connector = to_intel_connector(connector);
17055
17056         intel_backlight_device_unregister(intel_connector);
17057         intel_panel_destroy_backlight(connector);
17058 }
17059
17060 void intel_modeset_cleanup(struct drm_device *dev)
17061 {
17062         struct drm_i915_private *dev_priv = to_i915(dev);
17063
17064         intel_disable_gt_powersave(dev_priv);
17065
17066         /*
17067          * Interrupts and polling as the first thing to avoid creating havoc.
17068          * Too much stuff here (turning of connectors, ...) would
17069          * experience fancy races otherwise.
17070          */
17071         intel_irq_uninstall(dev_priv);
17072
17073         /*
17074          * Due to the hpd irq storm handling the hotplug work can re-arm the
17075          * poll handlers. Hence disable polling after hpd handling is shut down.
17076          */
17077         drm_kms_helper_poll_fini(dev);
17078
17079         intel_unregister_dsm_handler();
17080
17081         intel_fbc_global_disable(dev_priv);
17082
17083         /* flush any delayed tasks or pending work */
17084         flush_scheduled_work();
17085
17086         drm_mode_config_cleanup(dev);
17087
17088         intel_cleanup_overlay(dev_priv);
17089
17090         intel_cleanup_gt_powersave(dev_priv);
17091
17092         intel_teardown_gmbus(dev);
17093 }
17094
17095 void intel_connector_attach_encoder(struct intel_connector *connector,
17096                                     struct intel_encoder *encoder)
17097 {
17098         connector->encoder = encoder;
17099         drm_mode_connector_attach_encoder(&connector->base,
17100                                           &encoder->base);
17101 }
17102
17103 /*
17104  * set vga decode state - true == enable VGA decode
17105  */
17106 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
17107 {
17108         struct drm_i915_private *dev_priv = to_i915(dev);
17109         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
17110         u16 gmch_ctrl;
17111
17112         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
17113                 DRM_ERROR("failed to read control word\n");
17114                 return -EIO;
17115         }
17116
17117         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
17118                 return 0;
17119
17120         if (state)
17121                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
17122         else
17123                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
17124
17125         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
17126                 DRM_ERROR("failed to write control word\n");
17127                 return -EIO;
17128         }
17129
17130         return 0;
17131 }
17132
17133 struct intel_display_error_state {
17134
17135         u32 power_well_driver;
17136
17137         int num_transcoders;
17138
17139         struct intel_cursor_error_state {
17140                 u32 control;
17141                 u32 position;
17142                 u32 base;
17143                 u32 size;
17144         } cursor[I915_MAX_PIPES];
17145
17146         struct intel_pipe_error_state {
17147                 bool power_domain_on;
17148                 u32 source;
17149                 u32 stat;
17150         } pipe[I915_MAX_PIPES];
17151
17152         struct intel_plane_error_state {
17153                 u32 control;
17154                 u32 stride;
17155                 u32 size;
17156                 u32 pos;
17157                 u32 addr;
17158                 u32 surface;
17159                 u32 tile_offset;
17160         } plane[I915_MAX_PIPES];
17161
17162         struct intel_transcoder_error_state {
17163                 bool power_domain_on;
17164                 enum transcoder cpu_transcoder;
17165
17166                 u32 conf;
17167
17168                 u32 htotal;
17169                 u32 hblank;
17170                 u32 hsync;
17171                 u32 vtotal;
17172                 u32 vblank;
17173                 u32 vsync;
17174         } transcoder[4];
17175 };
17176
17177 struct intel_display_error_state *
17178 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
17179 {
17180         struct intel_display_error_state *error;
17181         int transcoders[] = {
17182                 TRANSCODER_A,
17183                 TRANSCODER_B,
17184                 TRANSCODER_C,
17185                 TRANSCODER_EDP,
17186         };
17187         int i;
17188
17189         if (INTEL_INFO(dev_priv)->num_pipes == 0)
17190                 return NULL;
17191
17192         error = kzalloc(sizeof(*error), GFP_ATOMIC);
17193         if (error == NULL)
17194                 return NULL;
17195
17196         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17197                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
17198
17199         for_each_pipe(dev_priv, i) {
17200                 error->pipe[i].power_domain_on =
17201                         __intel_display_power_is_enabled(dev_priv,
17202                                                          POWER_DOMAIN_PIPE(i));
17203                 if (!error->pipe[i].power_domain_on)
17204                         continue;
17205
17206                 error->cursor[i].control = I915_READ(CURCNTR(i));
17207                 error->cursor[i].position = I915_READ(CURPOS(i));
17208                 error->cursor[i].base = I915_READ(CURBASE(i));
17209
17210                 error->plane[i].control = I915_READ(DSPCNTR(i));
17211                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
17212                 if (INTEL_GEN(dev_priv) <= 3) {
17213                         error->plane[i].size = I915_READ(DSPSIZE(i));
17214                         error->plane[i].pos = I915_READ(DSPPOS(i));
17215                 }
17216                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17217                         error->plane[i].addr = I915_READ(DSPADDR(i));
17218                 if (INTEL_GEN(dev_priv) >= 4) {
17219                         error->plane[i].surface = I915_READ(DSPSURF(i));
17220                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17221                 }
17222
17223                 error->pipe[i].source = I915_READ(PIPESRC(i));
17224
17225                 if (HAS_GMCH_DISPLAY(dev_priv))
17226                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
17227         }
17228
17229         /* Note: this does not include DSI transcoders. */
17230         error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
17231         if (HAS_DDI(dev_priv))
17232                 error->num_transcoders++; /* Account for eDP. */
17233
17234         for (i = 0; i < error->num_transcoders; i++) {
17235                 enum transcoder cpu_transcoder = transcoders[i];
17236
17237                 error->transcoder[i].power_domain_on =
17238                         __intel_display_power_is_enabled(dev_priv,
17239                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
17240                 if (!error->transcoder[i].power_domain_on)
17241                         continue;
17242
17243                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
17244
17245                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17246                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17247                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17248                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17249                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17250                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17251                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
17252         }
17253
17254         return error;
17255 }
17256
17257 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17258
17259 void
17260 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
17261                                 struct drm_device *dev,
17262                                 struct intel_display_error_state *error)
17263 {
17264         struct drm_i915_private *dev_priv = to_i915(dev);
17265         int i;
17266
17267         if (!error)
17268                 return;
17269
17270         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
17271         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
17272                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
17273                            error->power_well_driver);
17274         for_each_pipe(dev_priv, i) {
17275                 err_printf(m, "Pipe [%d]:\n", i);
17276                 err_printf(m, "  Power: %s\n",
17277                            onoff(error->pipe[i].power_domain_on));
17278                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
17279                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
17280
17281                 err_printf(m, "Plane [%d]:\n", i);
17282                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
17283                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
17284                 if (INTEL_INFO(dev)->gen <= 3) {
17285                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
17286                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
17287                 }
17288                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
17289                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
17290                 if (INTEL_INFO(dev)->gen >= 4) {
17291                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
17292                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
17293                 }
17294
17295                 err_printf(m, "Cursor [%d]:\n", i);
17296                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
17297                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
17298                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
17299         }
17300
17301         for (i = 0; i < error->num_transcoders; i++) {
17302                 err_printf(m, "CPU transcoder: %s\n",
17303                            transcoder_name(error->transcoder[i].cpu_transcoder));
17304                 err_printf(m, "  Power: %s\n",
17305                            onoff(error->transcoder[i].power_domain_on));
17306                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
17307                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
17308                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
17309                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
17310                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
17311                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
17312                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
17313         }
17314 }