Merge git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi-rc-fixes-2.6
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include "drmP.h"
32 #include "intel_drv.h"
33 #include "i915_drm.h"
34 #include "i915_drv.h"
35 #include "intel_dp.h"
36
37 #include "drm_crtc_helper.h"
38
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
40
41 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
42 static void intel_update_watermarks(struct drm_device *dev);
43 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
44
45 typedef struct {
46     /* given values */
47     int n;
48     int m1, m2;
49     int p1, p2;
50     /* derived values */
51     int dot;
52     int vco;
53     int m;
54     int p;
55 } intel_clock_t;
56
57 typedef struct {
58     int min, max;
59 } intel_range_t;
60
61 typedef struct {
62     int dot_limit;
63     int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 #define INTEL_P2_NUM                  2
67 typedef struct intel_limit intel_limit_t;
68 struct intel_limit {
69     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
70     intel_p2_t      p2;
71     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
72                       int, int, intel_clock_t *);
73     bool (* find_reduced_pll)(const intel_limit_t *, struct drm_crtc *,
74                               int, int, intel_clock_t *);
75 };
76
77 #define I8XX_DOT_MIN              25000
78 #define I8XX_DOT_MAX             350000
79 #define I8XX_VCO_MIN             930000
80 #define I8XX_VCO_MAX            1400000
81 #define I8XX_N_MIN                    3
82 #define I8XX_N_MAX                   16
83 #define I8XX_M_MIN                   96
84 #define I8XX_M_MAX                  140
85 #define I8XX_M1_MIN                  18
86 #define I8XX_M1_MAX                  26
87 #define I8XX_M2_MIN                   6
88 #define I8XX_M2_MAX                  16
89 #define I8XX_P_MIN                    4
90 #define I8XX_P_MAX                  128
91 #define I8XX_P1_MIN                   2
92 #define I8XX_P1_MAX                  33
93 #define I8XX_P1_LVDS_MIN              1
94 #define I8XX_P1_LVDS_MAX              6
95 #define I8XX_P2_SLOW                  4
96 #define I8XX_P2_FAST                  2
97 #define I8XX_P2_LVDS_SLOW             14
98 #define I8XX_P2_LVDS_FAST             7
99 #define I8XX_P2_SLOW_LIMIT       165000
100
101 #define I9XX_DOT_MIN              20000
102 #define I9XX_DOT_MAX             400000
103 #define I9XX_VCO_MIN            1400000
104 #define I9XX_VCO_MAX            2800000
105 #define IGD_VCO_MIN             1700000
106 #define IGD_VCO_MAX             3500000
107 #define I9XX_N_MIN                    1
108 #define I9XX_N_MAX                    6
109 /* IGD's Ncounter is a ring counter */
110 #define IGD_N_MIN                     3
111 #define IGD_N_MAX                     6
112 #define I9XX_M_MIN                   70
113 #define I9XX_M_MAX                  120
114 #define IGD_M_MIN                     2
115 #define IGD_M_MAX                   256
116 #define I9XX_M1_MIN                  10
117 #define I9XX_M1_MAX                  22
118 #define I9XX_M2_MIN                   5
119 #define I9XX_M2_MAX                   9
120 /* IGD M1 is reserved, and must be 0 */
121 #define IGD_M1_MIN                    0
122 #define IGD_M1_MAX                    0
123 #define IGD_M2_MIN                    0
124 #define IGD_M2_MAX                    254
125 #define I9XX_P_SDVO_DAC_MIN           5
126 #define I9XX_P_SDVO_DAC_MAX          80
127 #define I9XX_P_LVDS_MIN               7
128 #define I9XX_P_LVDS_MAX              98
129 #define IGD_P_LVDS_MIN                7
130 #define IGD_P_LVDS_MAX               112
131 #define I9XX_P1_MIN                   1
132 #define I9XX_P1_MAX                   8
133 #define I9XX_P2_SDVO_DAC_SLOW                10
134 #define I9XX_P2_SDVO_DAC_FAST                 5
135 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
136 #define I9XX_P2_LVDS_SLOW                    14
137 #define I9XX_P2_LVDS_FAST                     7
138 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
139
140 /*The parameter is for SDVO on G4x platform*/
141 #define G4X_DOT_SDVO_MIN           25000
142 #define G4X_DOT_SDVO_MAX           270000
143 #define G4X_VCO_MIN                1750000
144 #define G4X_VCO_MAX                3500000
145 #define G4X_N_SDVO_MIN             1
146 #define G4X_N_SDVO_MAX             4
147 #define G4X_M_SDVO_MIN             104
148 #define G4X_M_SDVO_MAX             138
149 #define G4X_M1_SDVO_MIN            17
150 #define G4X_M1_SDVO_MAX            23
151 #define G4X_M2_SDVO_MIN            5
152 #define G4X_M2_SDVO_MAX            11
153 #define G4X_P_SDVO_MIN             10
154 #define G4X_P_SDVO_MAX             30
155 #define G4X_P1_SDVO_MIN            1
156 #define G4X_P1_SDVO_MAX            3
157 #define G4X_P2_SDVO_SLOW           10
158 #define G4X_P2_SDVO_FAST           10
159 #define G4X_P2_SDVO_LIMIT          270000
160
161 /*The parameter is for HDMI_DAC on G4x platform*/
162 #define G4X_DOT_HDMI_DAC_MIN           22000
163 #define G4X_DOT_HDMI_DAC_MAX           400000
164 #define G4X_N_HDMI_DAC_MIN             1
165 #define G4X_N_HDMI_DAC_MAX             4
166 #define G4X_M_HDMI_DAC_MIN             104
167 #define G4X_M_HDMI_DAC_MAX             138
168 #define G4X_M1_HDMI_DAC_MIN            16
169 #define G4X_M1_HDMI_DAC_MAX            23
170 #define G4X_M2_HDMI_DAC_MIN            5
171 #define G4X_M2_HDMI_DAC_MAX            11
172 #define G4X_P_HDMI_DAC_MIN             5
173 #define G4X_P_HDMI_DAC_MAX             80
174 #define G4X_P1_HDMI_DAC_MIN            1
175 #define G4X_P1_HDMI_DAC_MAX            8
176 #define G4X_P2_HDMI_DAC_SLOW           10
177 #define G4X_P2_HDMI_DAC_FAST           5
178 #define G4X_P2_HDMI_DAC_LIMIT          165000
179
180 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
198
199 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
202 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
203 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
204 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
205 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
210 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
211 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
214 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
217
218 /*The parameter is for DISPLAY PORT on G4x platform*/
219 #define G4X_DOT_DISPLAY_PORT_MIN           161670
220 #define G4X_DOT_DISPLAY_PORT_MAX           227000
221 #define G4X_N_DISPLAY_PORT_MIN             1
222 #define G4X_N_DISPLAY_PORT_MAX             2
223 #define G4X_M_DISPLAY_PORT_MIN             97
224 #define G4X_M_DISPLAY_PORT_MAX             108
225 #define G4X_M1_DISPLAY_PORT_MIN            0x10
226 #define G4X_M1_DISPLAY_PORT_MAX            0x12
227 #define G4X_M2_DISPLAY_PORT_MIN            0x05
228 #define G4X_M2_DISPLAY_PORT_MAX            0x06
229 #define G4X_P_DISPLAY_PORT_MIN             10
230 #define G4X_P_DISPLAY_PORT_MAX             20
231 #define G4X_P1_DISPLAY_PORT_MIN            1
232 #define G4X_P1_DISPLAY_PORT_MAX            2
233 #define G4X_P2_DISPLAY_PORT_SLOW           10
234 #define G4X_P2_DISPLAY_PORT_FAST           10
235 #define G4X_P2_DISPLAY_PORT_LIMIT          0
236
237 /* IGDNG */
238 /* as we calculate clock using (register_value + 2) for
239    N/M1/M2, so here the range value for them is (actual_value-2).
240  */
241 #define IGDNG_DOT_MIN         25000
242 #define IGDNG_DOT_MAX         350000
243 #define IGDNG_VCO_MIN         1760000
244 #define IGDNG_VCO_MAX         3510000
245 #define IGDNG_N_MIN           1
246 #define IGDNG_N_MAX           5
247 #define IGDNG_M_MIN           79
248 #define IGDNG_M_MAX           118
249 #define IGDNG_M1_MIN          12
250 #define IGDNG_M1_MAX          23
251 #define IGDNG_M2_MIN          5
252 #define IGDNG_M2_MAX          9
253 #define IGDNG_P_SDVO_DAC_MIN  5
254 #define IGDNG_P_SDVO_DAC_MAX  80
255 #define IGDNG_P_LVDS_MIN      28
256 #define IGDNG_P_LVDS_MAX      112
257 #define IGDNG_P1_MIN          1
258 #define IGDNG_P1_MAX          8
259 #define IGDNG_P2_SDVO_DAC_SLOW 10
260 #define IGDNG_P2_SDVO_DAC_FAST 5
261 #define IGDNG_P2_LVDS_SLOW    14 /* single channel */
262 #define IGDNG_P2_LVDS_FAST    7  /* double channel */
263 #define IGDNG_P2_DOT_LIMIT    225000 /* 225Mhz */
264
265 static bool
266 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
267                     int target, int refclk, intel_clock_t *best_clock);
268 static bool
269 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
270                             int target, int refclk, intel_clock_t *best_clock);
271 static bool
272 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
273                         int target, int refclk, intel_clock_t *best_clock);
274 static bool
275 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
276                         int target, int refclk, intel_clock_t *best_clock);
277
278 static bool
279 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
280                       int target, int refclk, intel_clock_t *best_clock);
281 static bool
282 intel_find_pll_igdng_dp(const intel_limit_t *, struct drm_crtc *crtc,
283                       int target, int refclk, intel_clock_t *best_clock);
284
285 static const intel_limit_t intel_limits_i8xx_dvo = {
286         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
287         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
288         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
289         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
290         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
291         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
292         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
293         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
294         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
295                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
296         .find_pll = intel_find_best_PLL,
297         .find_reduced_pll = intel_find_best_reduced_PLL,
298 };
299
300 static const intel_limit_t intel_limits_i8xx_lvds = {
301         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
302         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
303         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
304         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
305         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
306         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
307         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
308         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
309         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
310                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
311         .find_pll = intel_find_best_PLL,
312         .find_reduced_pll = intel_find_best_reduced_PLL,
313 };
314         
315 static const intel_limit_t intel_limits_i9xx_sdvo = {
316         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
317         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
318         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
319         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
320         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
321         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
322         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
323         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
324         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
325                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
326         .find_pll = intel_find_best_PLL,
327         .find_reduced_pll = intel_find_best_reduced_PLL,
328 };
329
330 static const intel_limit_t intel_limits_i9xx_lvds = {
331         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
332         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
333         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
334         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
335         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
336         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
337         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
338         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
339         /* The single-channel range is 25-112Mhz, and dual-channel
340          * is 80-224Mhz.  Prefer single channel as much as possible.
341          */
342         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
343                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
344         .find_pll = intel_find_best_PLL,
345         .find_reduced_pll = intel_find_best_reduced_PLL,
346 };
347
348     /* below parameter and function is for G4X Chipset Family*/
349 static const intel_limit_t intel_limits_g4x_sdvo = {
350         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
351         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
352         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
353         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
354         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
355         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
356         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
357         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
358         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
359                  .p2_slow = G4X_P2_SDVO_SLOW,
360                  .p2_fast = G4X_P2_SDVO_FAST
361         },
362         .find_pll = intel_g4x_find_best_PLL,
363         .find_reduced_pll = intel_g4x_find_best_PLL,
364 };
365
366 static const intel_limit_t intel_limits_g4x_hdmi = {
367         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
368         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
369         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
370         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
371         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
372         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
373         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
374         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
375         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
376                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
377                  .p2_fast = G4X_P2_HDMI_DAC_FAST
378         },
379         .find_pll = intel_g4x_find_best_PLL,
380         .find_reduced_pll = intel_g4x_find_best_PLL,
381 };
382
383 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
384         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
385                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
386         .vco = { .min = G4X_VCO_MIN,
387                  .max = G4X_VCO_MAX },
388         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
389                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
390         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
391                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
392         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
393                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
394         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
395                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
396         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
397                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
398         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
399                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
400         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
401                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
402                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
403         },
404         .find_pll = intel_g4x_find_best_PLL,
405         .find_reduced_pll = intel_g4x_find_best_PLL,
406 };
407
408 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
409         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
410                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
411         .vco = { .min = G4X_VCO_MIN,
412                  .max = G4X_VCO_MAX },
413         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
414                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
415         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
416                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
417         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
418                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
419         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
420                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
421         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
422                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
423         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
424                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
425         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
426                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
427                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
428         },
429         .find_pll = intel_g4x_find_best_PLL,
430         .find_reduced_pll = intel_g4x_find_best_PLL,
431 };
432
433 static const intel_limit_t intel_limits_g4x_display_port = {
434         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
435                  .max = G4X_DOT_DISPLAY_PORT_MAX },
436         .vco = { .min = G4X_VCO_MIN,
437                  .max = G4X_VCO_MAX},
438         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
439                  .max = G4X_N_DISPLAY_PORT_MAX },
440         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
441                  .max = G4X_M_DISPLAY_PORT_MAX },
442         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
443                  .max = G4X_M1_DISPLAY_PORT_MAX },
444         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
445                  .max = G4X_M2_DISPLAY_PORT_MAX },
446         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
447                  .max = G4X_P_DISPLAY_PORT_MAX },
448         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
449                  .max = G4X_P1_DISPLAY_PORT_MAX},
450         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
451                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
452                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
453         .find_pll = intel_find_pll_g4x_dp,
454 };
455
456 static const intel_limit_t intel_limits_igd_sdvo = {
457         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
458         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
459         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
460         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
461         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
462         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
463         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
464         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
465         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
466                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
467         .find_pll = intel_find_best_PLL,
468         .find_reduced_pll = intel_find_best_reduced_PLL,
469 };
470
471 static const intel_limit_t intel_limits_igd_lvds = {
472         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
473         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
474         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
475         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
476         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
477         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
478         .p   = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
479         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
480         /* IGD only supports single-channel mode. */
481         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
482                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
483         .find_pll = intel_find_best_PLL,
484         .find_reduced_pll = intel_find_best_reduced_PLL,
485 };
486
487 static const intel_limit_t intel_limits_igdng_sdvo = {
488         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
489         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
490         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
491         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
492         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
493         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
494         .p   = { .min = IGDNG_P_SDVO_DAC_MIN,   .max = IGDNG_P_SDVO_DAC_MAX },
495         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
496         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
497                  .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
498                  .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
499         .find_pll = intel_igdng_find_best_PLL,
500 };
501
502 static const intel_limit_t intel_limits_igdng_lvds = {
503         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
504         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
505         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
506         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
507         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
508         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
509         .p   = { .min = IGDNG_P_LVDS_MIN,       .max = IGDNG_P_LVDS_MAX },
510         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
511         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
512                  .p2_slow = IGDNG_P2_LVDS_SLOW,
513                  .p2_fast = IGDNG_P2_LVDS_FAST },
514         .find_pll = intel_igdng_find_best_PLL,
515 };
516
517 static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
518 {
519         const intel_limit_t *limit;
520         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
521                 limit = &intel_limits_igdng_lvds;
522         else
523                 limit = &intel_limits_igdng_sdvo;
524
525         return limit;
526 }
527
528 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
529 {
530         struct drm_device *dev = crtc->dev;
531         struct drm_i915_private *dev_priv = dev->dev_private;
532         const intel_limit_t *limit;
533
534         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
535                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
536                     LVDS_CLKB_POWER_UP)
537                         /* LVDS with dual channel */
538                         limit = &intel_limits_g4x_dual_channel_lvds;
539                 else
540                         /* LVDS with dual channel */
541                         limit = &intel_limits_g4x_single_channel_lvds;
542         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
543                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
544                 limit = &intel_limits_g4x_hdmi;
545         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
546                 limit = &intel_limits_g4x_sdvo;
547         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
548                 limit = &intel_limits_g4x_display_port;
549         } else /* The option is for other outputs */
550                 limit = &intel_limits_i9xx_sdvo;
551
552         return limit;
553 }
554
555 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
556 {
557         struct drm_device *dev = crtc->dev;
558         const intel_limit_t *limit;
559
560         if (IS_IGDNG(dev))
561                 limit = intel_igdng_limit(crtc);
562         else if (IS_G4X(dev)) {
563                 limit = intel_g4x_limit(crtc);
564         } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
565                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
566                         limit = &intel_limits_i9xx_lvds;
567                 else
568                         limit = &intel_limits_i9xx_sdvo;
569         } else if (IS_IGD(dev)) {
570                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
571                         limit = &intel_limits_igd_lvds;
572                 else
573                         limit = &intel_limits_igd_sdvo;
574         } else {
575                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
576                         limit = &intel_limits_i8xx_lvds;
577                 else
578                         limit = &intel_limits_i8xx_dvo;
579         }
580         return limit;
581 }
582
583 /* m1 is reserved as 0 in IGD, n is a ring counter */
584 static void igd_clock(int refclk, intel_clock_t *clock)
585 {
586         clock->m = clock->m2 + 2;
587         clock->p = clock->p1 * clock->p2;
588         clock->vco = refclk * clock->m / clock->n;
589         clock->dot = clock->vco / clock->p;
590 }
591
592 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
593 {
594         if (IS_IGD(dev)) {
595                 igd_clock(refclk, clock);
596                 return;
597         }
598         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
599         clock->p = clock->p1 * clock->p2;
600         clock->vco = refclk * clock->m / (clock->n + 2);
601         clock->dot = clock->vco / clock->p;
602 }
603
604 /**
605  * Returns whether any output on the specified pipe is of the specified type
606  */
607 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
608 {
609     struct drm_device *dev = crtc->dev;
610     struct drm_mode_config *mode_config = &dev->mode_config;
611     struct drm_connector *l_entry;
612
613     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
614             if (l_entry->encoder &&
615                 l_entry->encoder->crtc == crtc) {
616                     struct intel_output *intel_output = to_intel_output(l_entry);
617                     if (intel_output->type == type)
618                             return true;
619             }
620     }
621     return false;
622 }
623
624 struct drm_connector *
625 intel_pipe_get_output (struct drm_crtc *crtc)
626 {
627     struct drm_device *dev = crtc->dev;
628     struct drm_mode_config *mode_config = &dev->mode_config;
629     struct drm_connector *l_entry, *ret = NULL;
630
631     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
632             if (l_entry->encoder &&
633                 l_entry->encoder->crtc == crtc) {
634                     ret = l_entry;
635                     break;
636             }
637     }
638     return ret;
639 }
640
641 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
642 /**
643  * Returns whether the given set of divisors are valid for a given refclk with
644  * the given connectors.
645  */
646
647 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
648 {
649         const intel_limit_t *limit = intel_limit (crtc);
650         struct drm_device *dev = crtc->dev;
651
652         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
653                 INTELPllInvalid ("p1 out of range\n");
654         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
655                 INTELPllInvalid ("p out of range\n");
656         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
657                 INTELPllInvalid ("m2 out of range\n");
658         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
659                 INTELPllInvalid ("m1 out of range\n");
660         if (clock->m1 <= clock->m2 && !IS_IGD(dev))
661                 INTELPllInvalid ("m1 <= m2\n");
662         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
663                 INTELPllInvalid ("m out of range\n");
664         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
665                 INTELPllInvalid ("n out of range\n");
666         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
667                 INTELPllInvalid ("vco out of range\n");
668         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
669          * connector, etc., rather than just a single range.
670          */
671         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
672                 INTELPllInvalid ("dot out of range\n");
673
674         return true;
675 }
676
677 static bool
678 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
679                     int target, int refclk, intel_clock_t *best_clock)
680
681 {
682         struct drm_device *dev = crtc->dev;
683         struct drm_i915_private *dev_priv = dev->dev_private;
684         intel_clock_t clock;
685         int err = target;
686
687         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
688             (I915_READ(LVDS)) != 0) {
689                 /*
690                  * For LVDS, if the panel is on, just rely on its current
691                  * settings for dual-channel.  We haven't figured out how to
692                  * reliably set up different single/dual channel state, if we
693                  * even can.
694                  */
695                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
696                     LVDS_CLKB_POWER_UP)
697                         clock.p2 = limit->p2.p2_fast;
698                 else
699                         clock.p2 = limit->p2.p2_slow;
700         } else {
701                 if (target < limit->p2.dot_limit)
702                         clock.p2 = limit->p2.p2_slow;
703                 else
704                         clock.p2 = limit->p2.p2_fast;
705         }
706
707         memset (best_clock, 0, sizeof (*best_clock));
708
709         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
710                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
711                      clock.m1++) {
712                         for (clock.m2 = limit->m2.min;
713                              clock.m2 <= limit->m2.max; clock.m2++) {
714                                 /* m1 is always 0 in IGD */
715                                 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
716                                         break;
717                                 for (clock.n = limit->n.min;
718                                      clock.n <= limit->n.max; clock.n++) {
719                                         int this_err;
720
721                                         intel_clock(dev, refclk, &clock);
722
723                                         if (!intel_PLL_is_valid(crtc, &clock))
724                                                 continue;
725
726                                         this_err = abs(clock.dot - target);
727                                         if (this_err < err) {
728                                                 *best_clock = clock;
729                                                 err = this_err;
730                                         }
731                                 }
732                         }
733                 }
734         }
735
736         return (err != target);
737 }
738
739
740 static bool
741 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742                             int target, int refclk, intel_clock_t *best_clock)
743
744 {
745         struct drm_device *dev = crtc->dev;
746         intel_clock_t clock;
747         int err = target;
748         bool found = false;
749
750         memcpy(&clock, best_clock, sizeof(intel_clock_t));
751
752         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
753                 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
754                         /* m1 is always 0 in IGD */
755                         if (clock.m2 >= clock.m1 && !IS_IGD(dev))
756                                 break;
757                         for (clock.n = limit->n.min; clock.n <= limit->n.max;
758                              clock.n++) {
759                                 int this_err;
760
761                                 intel_clock(dev, refclk, &clock);
762
763                                 if (!intel_PLL_is_valid(crtc, &clock))
764                                         continue;
765
766                                 this_err = abs(clock.dot - target);
767                                 if (this_err < err) {
768                                         *best_clock = clock;
769                                         err = this_err;
770                                         found = true;
771                                 }
772                         }
773                 }
774         }
775
776         return found;
777 }
778
779 static bool
780 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
781                         int target, int refclk, intel_clock_t *best_clock)
782 {
783         struct drm_device *dev = crtc->dev;
784         struct drm_i915_private *dev_priv = dev->dev_private;
785         intel_clock_t clock;
786         int max_n;
787         bool found;
788         /* approximately equals target * 0.00488 */
789         int err_most = (target >> 8) + (target >> 10);
790         found = false;
791
792         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
793                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
794                     LVDS_CLKB_POWER_UP)
795                         clock.p2 = limit->p2.p2_fast;
796                 else
797                         clock.p2 = limit->p2.p2_slow;
798         } else {
799                 if (target < limit->p2.dot_limit)
800                         clock.p2 = limit->p2.p2_slow;
801                 else
802                         clock.p2 = limit->p2.p2_fast;
803         }
804
805         memset(best_clock, 0, sizeof(*best_clock));
806         max_n = limit->n.max;
807         /* based on hardware requriment prefer smaller n to precision */
808         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809                 /* based on hardware requirment prefere larger m1,m2 */
810                 for (clock.m1 = limit->m1.max;
811                      clock.m1 >= limit->m1.min; clock.m1--) {
812                         for (clock.m2 = limit->m2.max;
813                              clock.m2 >= limit->m2.min; clock.m2--) {
814                                 for (clock.p1 = limit->p1.max;
815                                      clock.p1 >= limit->p1.min; clock.p1--) {
816                                         int this_err;
817
818                                         intel_clock(dev, refclk, &clock);
819                                         if (!intel_PLL_is_valid(crtc, &clock))
820                                                 continue;
821                                         this_err = abs(clock.dot - target) ;
822                                         if (this_err < err_most) {
823                                                 *best_clock = clock;
824                                                 err_most = this_err;
825                                                 max_n = clock.n;
826                                                 found = true;
827                                         }
828                                 }
829                         }
830                 }
831         }
832         return found;
833 }
834
835 static bool
836 intel_find_pll_igdng_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837                       int target, int refclk, intel_clock_t *best_clock)
838 {
839         struct drm_device *dev = crtc->dev;
840         intel_clock_t clock;
841         if (target < 200000) {
842                 clock.n = 1;
843                 clock.p1 = 2;
844                 clock.p2 = 10;
845                 clock.m1 = 12;
846                 clock.m2 = 9;
847         } else {
848                 clock.n = 2;
849                 clock.p1 = 1;
850                 clock.p2 = 10;
851                 clock.m1 = 14;
852                 clock.m2 = 8;
853         }
854         intel_clock(dev, refclk, &clock);
855         memcpy(best_clock, &clock, sizeof(intel_clock_t));
856         return true;
857 }
858
859 static bool
860 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
861                         int target, int refclk, intel_clock_t *best_clock)
862 {
863         struct drm_device *dev = crtc->dev;
864         struct drm_i915_private *dev_priv = dev->dev_private;
865         intel_clock_t clock;
866         int max_n;
867         bool found;
868         int err_most = 47;
869         found = false;
870
871         /* eDP has only 2 clock choice, no n/m/p setting */
872         if (HAS_eDP)
873                 return true;
874
875         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
876                 return intel_find_pll_igdng_dp(limit, crtc, target,
877                                                refclk, best_clock);
878
879         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
880                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
881                     LVDS_CLKB_POWER_UP)
882                         clock.p2 = limit->p2.p2_fast;
883                 else
884                         clock.p2 = limit->p2.p2_slow;
885         } else {
886                 if (target < limit->p2.dot_limit)
887                         clock.p2 = limit->p2.p2_slow;
888                 else
889                         clock.p2 = limit->p2.p2_fast;
890         }
891
892         memset(best_clock, 0, sizeof(*best_clock));
893         max_n = limit->n.max;
894         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
895                 /* based on hardware requriment prefer smaller n to precision */
896                 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
897                         /* based on hardware requirment prefere larger m1,m2 */
898                         for (clock.m1 = limit->m1.max;
899                              clock.m1 >= limit->m1.min; clock.m1--) {
900                                 for (clock.m2 = limit->m2.max;
901                                      clock.m2 >= limit->m2.min; clock.m2--) {
902                                         int this_err;
903
904                                         intel_clock(dev, refclk, &clock);
905                                         if (!intel_PLL_is_valid(crtc, &clock))
906                                                 continue;
907                                         this_err = abs((10000 - (target*10000/clock.dot)));
908                                         if (this_err < err_most) {
909                                                 *best_clock = clock;
910                                                 err_most = this_err;
911                                                 max_n = clock.n;
912                                                 found = true;
913                                                 /* found on first matching */
914                                                 goto out;
915                                         }
916                                 }
917                         }
918                 }
919         }
920 out:
921         return found;
922 }
923
924 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
925 static bool
926 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
927                       int target, int refclk, intel_clock_t *best_clock)
928 {
929     intel_clock_t clock;
930     if (target < 200000) {
931         clock.p1 = 2;
932         clock.p2 = 10;
933         clock.n = 2;
934         clock.m1 = 23;
935         clock.m2 = 8;
936     } else {
937         clock.p1 = 1;
938         clock.p2 = 10;
939         clock.n = 1;
940         clock.m1 = 14;
941         clock.m2 = 2;
942     }
943     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
944     clock.p = (clock.p1 * clock.p2);
945     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
946     clock.vco = 0;
947     memcpy(best_clock, &clock, sizeof(intel_clock_t));
948     return true;
949 }
950
951 void
952 intel_wait_for_vblank(struct drm_device *dev)
953 {
954         /* Wait for 20ms, i.e. one cycle at 50hz. */
955         mdelay(20);
956 }
957
958 /* Parameters have changed, update FBC info */
959 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
960 {
961         struct drm_device *dev = crtc->dev;
962         struct drm_i915_private *dev_priv = dev->dev_private;
963         struct drm_framebuffer *fb = crtc->fb;
964         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
965         struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
966         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
967         int plane, i;
968         u32 fbc_ctl, fbc_ctl2;
969
970         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
971
972         if (fb->pitch < dev_priv->cfb_pitch)
973                 dev_priv->cfb_pitch = fb->pitch;
974
975         /* FBC_CTL wants 64B units */
976         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
977         dev_priv->cfb_fence = obj_priv->fence_reg;
978         dev_priv->cfb_plane = intel_crtc->plane;
979         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
980
981         /* Clear old tags */
982         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
983                 I915_WRITE(FBC_TAG + (i * 4), 0);
984
985         /* Set it up... */
986         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
987         if (obj_priv->tiling_mode != I915_TILING_NONE)
988                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
989         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
990         I915_WRITE(FBC_FENCE_OFF, crtc->y);
991
992         /* enable it... */
993         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
994         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
995         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
996         if (obj_priv->tiling_mode != I915_TILING_NONE)
997                 fbc_ctl |= dev_priv->cfb_fence;
998         I915_WRITE(FBC_CONTROL, fbc_ctl);
999
1000         DRM_DEBUG("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1001                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1002 }
1003
1004 void i8xx_disable_fbc(struct drm_device *dev)
1005 {
1006         struct drm_i915_private *dev_priv = dev->dev_private;
1007         u32 fbc_ctl;
1008
1009         if (!I915_HAS_FBC(dev))
1010                 return;
1011
1012         /* Disable compression */
1013         fbc_ctl = I915_READ(FBC_CONTROL);
1014         fbc_ctl &= ~FBC_CTL_EN;
1015         I915_WRITE(FBC_CONTROL, fbc_ctl);
1016
1017         /* Wait for compressing bit to clear */
1018         while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
1019                 ; /* nothing */
1020
1021         intel_wait_for_vblank(dev);
1022
1023         DRM_DEBUG("disabled FBC\n");
1024 }
1025
1026 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
1027 {
1028         struct drm_device *dev = crtc->dev;
1029         struct drm_i915_private *dev_priv = dev->dev_private;
1030
1031         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1032 }
1033
1034 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1035 {
1036         struct drm_device *dev = crtc->dev;
1037         struct drm_i915_private *dev_priv = dev->dev_private;
1038         struct drm_framebuffer *fb = crtc->fb;
1039         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1040         struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
1041         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1042         int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1043                      DPFC_CTL_PLANEB);
1044         unsigned long stall_watermark = 200;
1045         u32 dpfc_ctl;
1046
1047         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1048         dev_priv->cfb_fence = obj_priv->fence_reg;
1049         dev_priv->cfb_plane = intel_crtc->plane;
1050
1051         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1052         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1053                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1054                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1055         } else {
1056                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1057         }
1058
1059         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1060         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1061                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1062                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1063         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1064
1065         /* enable it... */
1066         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1067
1068         DRM_DEBUG("enabled fbc on plane %d\n", intel_crtc->plane);
1069 }
1070
1071 void g4x_disable_fbc(struct drm_device *dev)
1072 {
1073         struct drm_i915_private *dev_priv = dev->dev_private;
1074         u32 dpfc_ctl;
1075
1076         /* Disable compression */
1077         dpfc_ctl = I915_READ(DPFC_CONTROL);
1078         dpfc_ctl &= ~DPFC_CTL_EN;
1079         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1080         intel_wait_for_vblank(dev);
1081
1082         DRM_DEBUG("disabled FBC\n");
1083 }
1084
1085 static bool g4x_fbc_enabled(struct drm_crtc *crtc)
1086 {
1087         struct drm_device *dev = crtc->dev;
1088         struct drm_i915_private *dev_priv = dev->dev_private;
1089
1090         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1091 }
1092
1093 /**
1094  * intel_update_fbc - enable/disable FBC as needed
1095  * @crtc: CRTC to point the compressor at
1096  * @mode: mode in use
1097  *
1098  * Set up the framebuffer compression hardware at mode set time.  We
1099  * enable it if possible:
1100  *   - plane A only (on pre-965)
1101  *   - no pixel mulitply/line duplication
1102  *   - no alpha buffer discard
1103  *   - no dual wide
1104  *   - framebuffer <= 2048 in width, 1536 in height
1105  *
1106  * We can't assume that any compression will take place (worst case),
1107  * so the compressed buffer has to be the same size as the uncompressed
1108  * one.  It also must reside (along with the line length buffer) in
1109  * stolen memory.
1110  *
1111  * We need to enable/disable FBC on a global basis.
1112  */
1113 static void intel_update_fbc(struct drm_crtc *crtc,
1114                              struct drm_display_mode *mode)
1115 {
1116         struct drm_device *dev = crtc->dev;
1117         struct drm_i915_private *dev_priv = dev->dev_private;
1118         struct drm_framebuffer *fb = crtc->fb;
1119         struct intel_framebuffer *intel_fb;
1120         struct drm_i915_gem_object *obj_priv;
1121         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1122         int plane = intel_crtc->plane;
1123
1124         if (!i915_powersave)
1125                 return;
1126
1127         if (!dev_priv->display.fbc_enabled ||
1128             !dev_priv->display.enable_fbc ||
1129             !dev_priv->display.disable_fbc)
1130                 return;
1131
1132         if (!crtc->fb)
1133                 return;
1134
1135         intel_fb = to_intel_framebuffer(fb);
1136         obj_priv = intel_fb->obj->driver_private;
1137
1138         /*
1139          * If FBC is already on, we just have to verify that we can
1140          * keep it that way...
1141          * Need to disable if:
1142          *   - changing FBC params (stride, fence, mode)
1143          *   - new fb is too large to fit in compressed buffer
1144          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1145          */
1146         if (intel_fb->obj->size > dev_priv->cfb_size) {
1147                 DRM_DEBUG("framebuffer too large, disabling compression\n");
1148                 goto out_disable;
1149         }
1150         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1151             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1152                 DRM_DEBUG("mode incompatible with compression, disabling\n");
1153                 goto out_disable;
1154         }
1155         if ((mode->hdisplay > 2048) ||
1156             (mode->vdisplay > 1536)) {
1157                 DRM_DEBUG("mode too large for compression, disabling\n");
1158                 goto out_disable;
1159         }
1160         if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1161                 DRM_DEBUG("plane not 0, disabling compression\n");
1162                 goto out_disable;
1163         }
1164         if (obj_priv->tiling_mode != I915_TILING_X) {
1165                 DRM_DEBUG("framebuffer not tiled, disabling compression\n");
1166                 goto out_disable;
1167         }
1168
1169         if (dev_priv->display.fbc_enabled(crtc)) {
1170                 /* We can re-enable it in this case, but need to update pitch */
1171                 if (fb->pitch > dev_priv->cfb_pitch)
1172                         dev_priv->display.disable_fbc(dev);
1173                 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1174                         dev_priv->display.disable_fbc(dev);
1175                 if (plane != dev_priv->cfb_plane)
1176                         dev_priv->display.disable_fbc(dev);
1177         }
1178
1179         if (!dev_priv->display.fbc_enabled(crtc)) {
1180                 /* Now try to turn it back on if possible */
1181                 dev_priv->display.enable_fbc(crtc, 500);
1182         }
1183
1184         return;
1185
1186 out_disable:
1187         DRM_DEBUG("unsupported config, disabling FBC\n");
1188         /* Multiple disables should be harmless */
1189         if (dev_priv->display.fbc_enabled(crtc))
1190                 dev_priv->display.disable_fbc(dev);
1191 }
1192
1193 static int
1194 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1195                     struct drm_framebuffer *old_fb)
1196 {
1197         struct drm_device *dev = crtc->dev;
1198         struct drm_i915_private *dev_priv = dev->dev_private;
1199         struct drm_i915_master_private *master_priv;
1200         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1201         struct intel_framebuffer *intel_fb;
1202         struct drm_i915_gem_object *obj_priv;
1203         struct drm_gem_object *obj;
1204         int pipe = intel_crtc->pipe;
1205         int plane = intel_crtc->plane;
1206         unsigned long Start, Offset;
1207         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1208         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1209         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1210         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1211         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1212         u32 dspcntr, alignment;
1213         int ret;
1214
1215         /* no fb bound */
1216         if (!crtc->fb) {
1217                 DRM_DEBUG("No FB bound\n");
1218                 return 0;
1219         }
1220
1221         switch (plane) {
1222         case 0:
1223         case 1:
1224                 break;
1225         default:
1226                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1227                 return -EINVAL;
1228         }
1229
1230         intel_fb = to_intel_framebuffer(crtc->fb);
1231         obj = intel_fb->obj;
1232         obj_priv = obj->driver_private;
1233
1234         switch (obj_priv->tiling_mode) {
1235         case I915_TILING_NONE:
1236                 alignment = 64 * 1024;
1237                 break;
1238         case I915_TILING_X:
1239                 /* pin() will align the object as required by fence */
1240                 alignment = 0;
1241                 break;
1242         case I915_TILING_Y:
1243                 /* FIXME: Is this true? */
1244                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1245                 return -EINVAL;
1246         default:
1247                 BUG();
1248         }
1249
1250         mutex_lock(&dev->struct_mutex);
1251         ret = i915_gem_object_pin(obj, alignment);
1252         if (ret != 0) {
1253                 mutex_unlock(&dev->struct_mutex);
1254                 return ret;
1255         }
1256
1257         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1258         if (ret != 0) {
1259                 i915_gem_object_unpin(obj);
1260                 mutex_unlock(&dev->struct_mutex);
1261                 return ret;
1262         }
1263
1264         /* Install a fence for tiled scan-out. Pre-i965 always needs a fence,
1265          * whereas 965+ only requires a fence if using framebuffer compression.
1266          * For simplicity, we always install a fence as the cost is not that onerous.
1267          */
1268         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1269             obj_priv->tiling_mode != I915_TILING_NONE) {
1270                 ret = i915_gem_object_get_fence_reg(obj);
1271                 if (ret != 0) {
1272                         i915_gem_object_unpin(obj);
1273                         mutex_unlock(&dev->struct_mutex);
1274                         return ret;
1275                 }
1276         }
1277
1278         dspcntr = I915_READ(dspcntr_reg);
1279         /* Mask out pixel format bits in case we change it */
1280         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1281         switch (crtc->fb->bits_per_pixel) {
1282         case 8:
1283                 dspcntr |= DISPPLANE_8BPP;
1284                 break;
1285         case 16:
1286                 if (crtc->fb->depth == 15)
1287                         dspcntr |= DISPPLANE_15_16BPP;
1288                 else
1289                         dspcntr |= DISPPLANE_16BPP;
1290                 break;
1291         case 24:
1292         case 32:
1293                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1294                 break;
1295         default:
1296                 DRM_ERROR("Unknown color depth\n");
1297                 i915_gem_object_unpin(obj);
1298                 mutex_unlock(&dev->struct_mutex);
1299                 return -EINVAL;
1300         }
1301         if (IS_I965G(dev)) {
1302                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1303                         dspcntr |= DISPPLANE_TILED;
1304                 else
1305                         dspcntr &= ~DISPPLANE_TILED;
1306         }
1307
1308         if (IS_IGDNG(dev))
1309                 /* must disable */
1310                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1311
1312         I915_WRITE(dspcntr_reg, dspcntr);
1313
1314         Start = obj_priv->gtt_offset;
1315         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1316
1317         DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1318         I915_WRITE(dspstride, crtc->fb->pitch);
1319         if (IS_I965G(dev)) {
1320                 I915_WRITE(dspbase, Offset);
1321                 I915_READ(dspbase);
1322                 I915_WRITE(dspsurf, Start);
1323                 I915_READ(dspsurf);
1324                 I915_WRITE(dsptileoff, (y << 16) | x);
1325         } else {
1326                 I915_WRITE(dspbase, Start + Offset);
1327                 I915_READ(dspbase);
1328         }
1329
1330         if ((IS_I965G(dev) || plane == 0))
1331                 intel_update_fbc(crtc, &crtc->mode);
1332
1333         intel_wait_for_vblank(dev);
1334
1335         if (old_fb) {
1336                 intel_fb = to_intel_framebuffer(old_fb);
1337                 obj_priv = intel_fb->obj->driver_private;
1338                 i915_gem_object_unpin(intel_fb->obj);
1339         }
1340         intel_increase_pllclock(crtc, true);
1341
1342         mutex_unlock(&dev->struct_mutex);
1343
1344         if (!dev->primary->master)
1345                 return 0;
1346
1347         master_priv = dev->primary->master->driver_priv;
1348         if (!master_priv->sarea_priv)
1349                 return 0;
1350
1351         if (pipe) {
1352                 master_priv->sarea_priv->pipeB_x = x;
1353                 master_priv->sarea_priv->pipeB_y = y;
1354         } else {
1355                 master_priv->sarea_priv->pipeA_x = x;
1356                 master_priv->sarea_priv->pipeA_y = y;
1357         }
1358
1359         return 0;
1360 }
1361
1362 /* Disable the VGA plane that we never use */
1363 static void i915_disable_vga (struct drm_device *dev)
1364 {
1365         struct drm_i915_private *dev_priv = dev->dev_private;
1366         u8 sr1;
1367         u32 vga_reg;
1368
1369         if (IS_IGDNG(dev))
1370                 vga_reg = CPU_VGACNTRL;
1371         else
1372                 vga_reg = VGACNTRL;
1373
1374         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1375                 return;
1376
1377         I915_WRITE8(VGA_SR_INDEX, 1);
1378         sr1 = I915_READ8(VGA_SR_DATA);
1379         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1380         udelay(100);
1381
1382         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1383 }
1384
1385 static void igdng_disable_pll_edp (struct drm_crtc *crtc)
1386 {
1387         struct drm_device *dev = crtc->dev;
1388         struct drm_i915_private *dev_priv = dev->dev_private;
1389         u32 dpa_ctl;
1390
1391         DRM_DEBUG("\n");
1392         dpa_ctl = I915_READ(DP_A);
1393         dpa_ctl &= ~DP_PLL_ENABLE;
1394         I915_WRITE(DP_A, dpa_ctl);
1395 }
1396
1397 static void igdng_enable_pll_edp (struct drm_crtc *crtc)
1398 {
1399         struct drm_device *dev = crtc->dev;
1400         struct drm_i915_private *dev_priv = dev->dev_private;
1401         u32 dpa_ctl;
1402
1403         dpa_ctl = I915_READ(DP_A);
1404         dpa_ctl |= DP_PLL_ENABLE;
1405         I915_WRITE(DP_A, dpa_ctl);
1406         udelay(200);
1407 }
1408
1409
1410 static void igdng_set_pll_edp (struct drm_crtc *crtc, int clock)
1411 {
1412         struct drm_device *dev = crtc->dev;
1413         struct drm_i915_private *dev_priv = dev->dev_private;
1414         u32 dpa_ctl;
1415
1416         DRM_DEBUG("eDP PLL enable for clock %d\n", clock);
1417         dpa_ctl = I915_READ(DP_A);
1418         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1419
1420         if (clock < 200000) {
1421                 u32 temp;
1422                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1423                 /* workaround for 160Mhz:
1424                    1) program 0x4600c bits 15:0 = 0x8124
1425                    2) program 0x46010 bit 0 = 1
1426                    3) program 0x46034 bit 24 = 1
1427                    4) program 0x64000 bit 14 = 1
1428                    */
1429                 temp = I915_READ(0x4600c);
1430                 temp &= 0xffff0000;
1431                 I915_WRITE(0x4600c, temp | 0x8124);
1432
1433                 temp = I915_READ(0x46010);
1434                 I915_WRITE(0x46010, temp | 1);
1435
1436                 temp = I915_READ(0x46034);
1437                 I915_WRITE(0x46034, temp | (1 << 24));
1438         } else {
1439                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1440         }
1441         I915_WRITE(DP_A, dpa_ctl);
1442
1443         udelay(500);
1444 }
1445
1446 static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
1447 {
1448         struct drm_device *dev = crtc->dev;
1449         struct drm_i915_private *dev_priv = dev->dev_private;
1450         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1451         int pipe = intel_crtc->pipe;
1452         int plane = intel_crtc->plane;
1453         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1454         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1455         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1456         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1457         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1458         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1459         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1460         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1461         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1462         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1463         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1464         int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1465         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1466         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1467         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1468         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1469         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1470         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1471         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1472         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1473         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1474         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1475         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1476         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1477         u32 temp;
1478         int tries = 5, j, n;
1479
1480         /* XXX: When our outputs are all unaware of DPMS modes other than off
1481          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1482          */
1483         switch (mode) {
1484         case DRM_MODE_DPMS_ON:
1485         case DRM_MODE_DPMS_STANDBY:
1486         case DRM_MODE_DPMS_SUSPEND:
1487                 DRM_DEBUG("crtc %d dpms on\n", pipe);
1488                 if (HAS_eDP) {
1489                         /* enable eDP PLL */
1490                         igdng_enable_pll_edp(crtc);
1491                 } else {
1492                         /* enable PCH DPLL */
1493                         temp = I915_READ(pch_dpll_reg);
1494                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1495                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1496                                 I915_READ(pch_dpll_reg);
1497                         }
1498
1499                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1500                         temp = I915_READ(fdi_rx_reg);
1501                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1502                                         FDI_SEL_PCDCLK |
1503                                         FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1504                         I915_READ(fdi_rx_reg);
1505                         udelay(200);
1506
1507                         /* Enable CPU FDI TX PLL, always on for IGDNG */
1508                         temp = I915_READ(fdi_tx_reg);
1509                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1510                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1511                                 I915_READ(fdi_tx_reg);
1512                                 udelay(100);
1513                         }
1514                 }
1515
1516                 /* Enable panel fitting for LVDS */
1517                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1518                         temp = I915_READ(pf_ctl_reg);
1519                         I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1520
1521                         /* currently full aspect */
1522                         I915_WRITE(pf_win_pos, 0);
1523
1524                         I915_WRITE(pf_win_size,
1525                                    (dev_priv->panel_fixed_mode->hdisplay << 16) |
1526                                    (dev_priv->panel_fixed_mode->vdisplay));
1527                 }
1528
1529                 /* Enable CPU pipe */
1530                 temp = I915_READ(pipeconf_reg);
1531                 if ((temp & PIPEACONF_ENABLE) == 0) {
1532                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1533                         I915_READ(pipeconf_reg);
1534                         udelay(100);
1535                 }
1536
1537                 /* configure and enable CPU plane */
1538                 temp = I915_READ(dspcntr_reg);
1539                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1540                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1541                         /* Flush the plane changes */
1542                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1543                 }
1544
1545                 if (!HAS_eDP) {
1546                         /* enable CPU FDI TX and PCH FDI RX */
1547                         temp = I915_READ(fdi_tx_reg);
1548                         temp |= FDI_TX_ENABLE;
1549                         temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1550                         temp &= ~FDI_LINK_TRAIN_NONE;
1551                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1552                         I915_WRITE(fdi_tx_reg, temp);
1553                         I915_READ(fdi_tx_reg);
1554
1555                         temp = I915_READ(fdi_rx_reg);
1556                         temp &= ~FDI_LINK_TRAIN_NONE;
1557                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1558                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1559                         I915_READ(fdi_rx_reg);
1560
1561                         udelay(150);
1562
1563                         /* Train FDI. */
1564                         /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1565                            for train result */
1566                         temp = I915_READ(fdi_rx_imr_reg);
1567                         temp &= ~FDI_RX_SYMBOL_LOCK;
1568                         temp &= ~FDI_RX_BIT_LOCK;
1569                         I915_WRITE(fdi_rx_imr_reg, temp);
1570                         I915_READ(fdi_rx_imr_reg);
1571                         udelay(150);
1572
1573                         temp = I915_READ(fdi_rx_iir_reg);
1574                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1575
1576                         if ((temp & FDI_RX_BIT_LOCK) == 0) {
1577                                 for (j = 0; j < tries; j++) {
1578                                         temp = I915_READ(fdi_rx_iir_reg);
1579                                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1580                                         if (temp & FDI_RX_BIT_LOCK)
1581                                                 break;
1582                                         udelay(200);
1583                                 }
1584                                 if (j != tries)
1585                                         I915_WRITE(fdi_rx_iir_reg,
1586                                                         temp | FDI_RX_BIT_LOCK);
1587                                 else
1588                                         DRM_DEBUG("train 1 fail\n");
1589                         } else {
1590                                 I915_WRITE(fdi_rx_iir_reg,
1591                                                 temp | FDI_RX_BIT_LOCK);
1592                                 DRM_DEBUG("train 1 ok 2!\n");
1593                         }
1594                         temp = I915_READ(fdi_tx_reg);
1595                         temp &= ~FDI_LINK_TRAIN_NONE;
1596                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1597                         I915_WRITE(fdi_tx_reg, temp);
1598
1599                         temp = I915_READ(fdi_rx_reg);
1600                         temp &= ~FDI_LINK_TRAIN_NONE;
1601                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1602                         I915_WRITE(fdi_rx_reg, temp);
1603
1604                         udelay(150);
1605
1606                         temp = I915_READ(fdi_rx_iir_reg);
1607                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1608
1609                         if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1610                                 for (j = 0; j < tries; j++) {
1611                                         temp = I915_READ(fdi_rx_iir_reg);
1612                                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1613                                         if (temp & FDI_RX_SYMBOL_LOCK)
1614                                                 break;
1615                                         udelay(200);
1616                                 }
1617                                 if (j != tries) {
1618                                         I915_WRITE(fdi_rx_iir_reg,
1619                                                         temp | FDI_RX_SYMBOL_LOCK);
1620                                         DRM_DEBUG("train 2 ok 1!\n");
1621                                 } else
1622                                         DRM_DEBUG("train 2 fail\n");
1623                         } else {
1624                                 I915_WRITE(fdi_rx_iir_reg,
1625                                                 temp | FDI_RX_SYMBOL_LOCK);
1626                                 DRM_DEBUG("train 2 ok 2!\n");
1627                         }
1628                         DRM_DEBUG("train done\n");
1629
1630                         /* set transcoder timing */
1631                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1632                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1633                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1634
1635                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1636                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1637                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1638
1639                         /* enable PCH transcoder */
1640                         temp = I915_READ(transconf_reg);
1641                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1642                         I915_READ(transconf_reg);
1643
1644                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1645                                 ;
1646
1647                         /* enable normal */
1648
1649                         temp = I915_READ(fdi_tx_reg);
1650                         temp &= ~FDI_LINK_TRAIN_NONE;
1651                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1652                                         FDI_TX_ENHANCE_FRAME_ENABLE);
1653                         I915_READ(fdi_tx_reg);
1654
1655                         temp = I915_READ(fdi_rx_reg);
1656                         temp &= ~FDI_LINK_TRAIN_NONE;
1657                         I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1658                                         FDI_RX_ENHANCE_FRAME_ENABLE);
1659                         I915_READ(fdi_rx_reg);
1660
1661                         /* wait one idle pattern time */
1662                         udelay(100);
1663
1664                 }
1665
1666                 intel_crtc_load_lut(crtc);
1667
1668         break;
1669         case DRM_MODE_DPMS_OFF:
1670                 DRM_DEBUG("crtc %d dpms off\n", pipe);
1671
1672                 i915_disable_vga(dev);
1673
1674                 /* Disable display plane */
1675                 temp = I915_READ(dspcntr_reg);
1676                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1677                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1678                         /* Flush the plane changes */
1679                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1680                         I915_READ(dspbase_reg);
1681                 }
1682
1683                 /* disable cpu pipe, disable after all planes disabled */
1684                 temp = I915_READ(pipeconf_reg);
1685                 if ((temp & PIPEACONF_ENABLE) != 0) {
1686                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1687                         I915_READ(pipeconf_reg);
1688                         n = 0;
1689                         /* wait for cpu pipe off, pipe state */
1690                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1691                                 n++;
1692                                 if (n < 60) {
1693                                         udelay(500);
1694                                         continue;
1695                                 } else {
1696                                         DRM_DEBUG("pipe %d off delay\n", pipe);
1697                                         break;
1698                                 }
1699                         }
1700                 } else
1701                         DRM_DEBUG("crtc %d is disabled\n", pipe);
1702
1703                 if (HAS_eDP) {
1704                         igdng_disable_pll_edp(crtc);
1705                 }
1706
1707                 /* disable CPU FDI tx and PCH FDI rx */
1708                 temp = I915_READ(fdi_tx_reg);
1709                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1710                 I915_READ(fdi_tx_reg);
1711
1712                 temp = I915_READ(fdi_rx_reg);
1713                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1714                 I915_READ(fdi_rx_reg);
1715
1716                 udelay(100);
1717
1718                 /* still set train pattern 1 */
1719                 temp = I915_READ(fdi_tx_reg);
1720                 temp &= ~FDI_LINK_TRAIN_NONE;
1721                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1722                 I915_WRITE(fdi_tx_reg, temp);
1723
1724                 temp = I915_READ(fdi_rx_reg);
1725                 temp &= ~FDI_LINK_TRAIN_NONE;
1726                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1727                 I915_WRITE(fdi_rx_reg, temp);
1728
1729                 udelay(100);
1730
1731                 /* disable PCH transcoder */
1732                 temp = I915_READ(transconf_reg);
1733                 if ((temp & TRANS_ENABLE) != 0) {
1734                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1735                         I915_READ(transconf_reg);
1736                         n = 0;
1737                         /* wait for PCH transcoder off, transcoder state */
1738                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1739                                 n++;
1740                                 if (n < 60) {
1741                                         udelay(500);
1742                                         continue;
1743                                 } else {
1744                                         DRM_DEBUG("transcoder %d off delay\n", pipe);
1745                                         break;
1746                                 }
1747                         }
1748                 }
1749
1750                 /* disable PCH DPLL */
1751                 temp = I915_READ(pch_dpll_reg);
1752                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1753                         I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1754                         I915_READ(pch_dpll_reg);
1755                 }
1756
1757                 temp = I915_READ(fdi_rx_reg);
1758                 if ((temp & FDI_RX_PLL_ENABLE) != 0) {
1759                         temp &= ~FDI_SEL_PCDCLK;
1760                         temp &= ~FDI_RX_PLL_ENABLE;
1761                         I915_WRITE(fdi_rx_reg, temp);
1762                         I915_READ(fdi_rx_reg);
1763                 }
1764
1765                 /* Disable CPU FDI TX PLL */
1766                 temp = I915_READ(fdi_tx_reg);
1767                 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1768                         I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1769                         I915_READ(fdi_tx_reg);
1770                         udelay(100);
1771                 }
1772
1773                 /* Disable PF */
1774                 temp = I915_READ(pf_ctl_reg);
1775                 if ((temp & PF_ENABLE) != 0) {
1776                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1777                         I915_READ(pf_ctl_reg);
1778                 }
1779                 I915_WRITE(pf_win_size, 0);
1780
1781                 /* Wait for the clocks to turn off. */
1782                 udelay(150);
1783                 break;
1784         }
1785 }
1786
1787 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1788 {
1789         struct drm_device *dev = crtc->dev;
1790         struct drm_i915_private *dev_priv = dev->dev_private;
1791         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1792         int pipe = intel_crtc->pipe;
1793         int plane = intel_crtc->plane;
1794         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1795         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1796         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1797         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1798         u32 temp;
1799
1800         /* XXX: When our outputs are all unaware of DPMS modes other than off
1801          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1802          */
1803         switch (mode) {
1804         case DRM_MODE_DPMS_ON:
1805         case DRM_MODE_DPMS_STANDBY:
1806         case DRM_MODE_DPMS_SUSPEND:
1807                 intel_update_watermarks(dev);
1808
1809                 /* Enable the DPLL */
1810                 temp = I915_READ(dpll_reg);
1811                 if ((temp & DPLL_VCO_ENABLE) == 0) {
1812                         I915_WRITE(dpll_reg, temp);
1813                         I915_READ(dpll_reg);
1814                         /* Wait for the clocks to stabilize. */
1815                         udelay(150);
1816                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1817                         I915_READ(dpll_reg);
1818                         /* Wait for the clocks to stabilize. */
1819                         udelay(150);
1820                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1821                         I915_READ(dpll_reg);
1822                         /* Wait for the clocks to stabilize. */
1823                         udelay(150);
1824                 }
1825
1826                 /* Enable the pipe */
1827                 temp = I915_READ(pipeconf_reg);
1828                 if ((temp & PIPEACONF_ENABLE) == 0)
1829                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1830
1831                 /* Enable the plane */
1832                 temp = I915_READ(dspcntr_reg);
1833                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1834                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1835                         /* Flush the plane changes */
1836                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1837                 }
1838
1839                 intel_crtc_load_lut(crtc);
1840
1841                 if ((IS_I965G(dev) || plane == 0))
1842                         intel_update_fbc(crtc, &crtc->mode);
1843
1844                 /* Give the overlay scaler a chance to enable if it's on this pipe */
1845                 //intel_crtc_dpms_video(crtc, true); TODO
1846         break;
1847         case DRM_MODE_DPMS_OFF:
1848                 intel_update_watermarks(dev);
1849                 /* Give the overlay scaler a chance to disable if it's on this pipe */
1850                 //intel_crtc_dpms_video(crtc, FALSE); TODO
1851
1852                 if (dev_priv->cfb_plane == plane &&
1853                     dev_priv->display.disable_fbc)
1854                         dev_priv->display.disable_fbc(dev);
1855
1856                 /* Disable the VGA plane that we never use */
1857                 i915_disable_vga(dev);
1858
1859                 /* Disable display plane */
1860                 temp = I915_READ(dspcntr_reg);
1861                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1862                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1863                         /* Flush the plane changes */
1864                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1865                         I915_READ(dspbase_reg);
1866                 }
1867
1868                 if (!IS_I9XX(dev)) {
1869                         /* Wait for vblank for the disable to take effect */
1870                         intel_wait_for_vblank(dev);
1871                 }
1872
1873                 /* Next, disable display pipes */
1874                 temp = I915_READ(pipeconf_reg);
1875                 if ((temp & PIPEACONF_ENABLE) != 0) {
1876                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1877                         I915_READ(pipeconf_reg);
1878                 }
1879
1880                 /* Wait for vblank for the disable to take effect. */
1881                 intel_wait_for_vblank(dev);
1882
1883                 temp = I915_READ(dpll_reg);
1884                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1885                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1886                         I915_READ(dpll_reg);
1887                 }
1888
1889                 /* Wait for the clocks to turn off. */
1890                 udelay(150);
1891                 break;
1892         }
1893 }
1894
1895 /**
1896  * Sets the power management mode of the pipe and plane.
1897  *
1898  * This code should probably grow support for turning the cursor off and back
1899  * on appropriately at the same time as we're turning the pipe off/on.
1900  */
1901 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1902 {
1903         struct drm_device *dev = crtc->dev;
1904         struct drm_i915_private *dev_priv = dev->dev_private;
1905         struct drm_i915_master_private *master_priv;
1906         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1907         int pipe = intel_crtc->pipe;
1908         bool enabled;
1909
1910         dev_priv->display.dpms(crtc, mode);
1911
1912         intel_crtc->dpms_mode = mode;
1913
1914         if (!dev->primary->master)
1915                 return;
1916
1917         master_priv = dev->primary->master->driver_priv;
1918         if (!master_priv->sarea_priv)
1919                 return;
1920
1921         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1922
1923         switch (pipe) {
1924         case 0:
1925                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1926                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1927                 break;
1928         case 1:
1929                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1930                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1931                 break;
1932         default:
1933                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1934                 break;
1935         }
1936 }
1937
1938 static void intel_crtc_prepare (struct drm_crtc *crtc)
1939 {
1940         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1941         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1942 }
1943
1944 static void intel_crtc_commit (struct drm_crtc *crtc)
1945 {
1946         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1947         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1948 }
1949
1950 void intel_encoder_prepare (struct drm_encoder *encoder)
1951 {
1952         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1953         /* lvds has its own version of prepare see intel_lvds_prepare */
1954         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1955 }
1956
1957 void intel_encoder_commit (struct drm_encoder *encoder)
1958 {
1959         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1960         /* lvds has its own version of commit see intel_lvds_commit */
1961         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1962 }
1963
1964 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
1965                                   struct drm_display_mode *mode,
1966                                   struct drm_display_mode *adjusted_mode)
1967 {
1968         struct drm_device *dev = crtc->dev;
1969         if (IS_IGDNG(dev)) {
1970                 /* FDI link clock is fixed at 2.7G */
1971                 if (mode->clock * 3 > 27000 * 4)
1972                         return MODE_CLOCK_HIGH;
1973         }
1974         return true;
1975 }
1976
1977 static int i945_get_display_clock_speed(struct drm_device *dev)
1978 {
1979         return 400000;
1980 }
1981
1982 static int i915_get_display_clock_speed(struct drm_device *dev)
1983 {
1984         return 333000;
1985 }
1986
1987 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
1988 {
1989         return 200000;
1990 }
1991
1992 static int i915gm_get_display_clock_speed(struct drm_device *dev)
1993 {
1994         u16 gcfgc = 0;
1995
1996         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
1997
1998         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
1999                 return 133000;
2000         else {
2001                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2002                 case GC_DISPLAY_CLOCK_333_MHZ:
2003                         return 333000;
2004                 default:
2005                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2006                         return 190000;
2007                 }
2008         }
2009 }
2010
2011 static int i865_get_display_clock_speed(struct drm_device *dev)
2012 {
2013         return 266000;
2014 }
2015
2016 static int i855_get_display_clock_speed(struct drm_device *dev)
2017 {
2018         u16 hpllcc = 0;
2019         /* Assume that the hardware is in the high speed state.  This
2020          * should be the default.
2021          */
2022         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2023         case GC_CLOCK_133_200:
2024         case GC_CLOCK_100_200:
2025                 return 200000;
2026         case GC_CLOCK_166_250:
2027                 return 250000;
2028         case GC_CLOCK_100_133:
2029                 return 133000;
2030         }
2031
2032         /* Shouldn't happen */
2033         return 0;
2034 }
2035
2036 static int i830_get_display_clock_speed(struct drm_device *dev)
2037 {
2038         return 133000;
2039 }
2040
2041 /**
2042  * Return the pipe currently connected to the panel fitter,
2043  * or -1 if the panel fitter is not present or not in use
2044  */
2045 static int intel_panel_fitter_pipe (struct drm_device *dev)
2046 {
2047         struct drm_i915_private *dev_priv = dev->dev_private;
2048         u32  pfit_control;
2049
2050         /* i830 doesn't have a panel fitter */
2051         if (IS_I830(dev))
2052                 return -1;
2053
2054         pfit_control = I915_READ(PFIT_CONTROL);
2055
2056         /* See if the panel fitter is in use */
2057         if ((pfit_control & PFIT_ENABLE) == 0)
2058                 return -1;
2059
2060         /* 965 can place panel fitter on either pipe */
2061         if (IS_I965G(dev))
2062                 return (pfit_control >> 29) & 0x3;
2063
2064         /* older chips can only use pipe 1 */
2065         return 1;
2066 }
2067
2068 struct fdi_m_n {
2069         u32        tu;
2070         u32        gmch_m;
2071         u32        gmch_n;
2072         u32        link_m;
2073         u32        link_n;
2074 };
2075
2076 static void
2077 fdi_reduce_ratio(u32 *num, u32 *den)
2078 {
2079         while (*num > 0xffffff || *den > 0xffffff) {
2080                 *num >>= 1;
2081                 *den >>= 1;
2082         }
2083 }
2084
2085 #define DATA_N 0x800000
2086 #define LINK_N 0x80000
2087
2088 static void
2089 igdng_compute_m_n(int bits_per_pixel, int nlanes,
2090                 int pixel_clock, int link_clock,
2091                 struct fdi_m_n *m_n)
2092 {
2093         u64 temp;
2094
2095         m_n->tu = 64; /* default size */
2096
2097         temp = (u64) DATA_N * pixel_clock;
2098         temp = div_u64(temp, link_clock);
2099         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2100         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2101         m_n->gmch_n = DATA_N;
2102         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2103
2104         temp = (u64) LINK_N * pixel_clock;
2105         m_n->link_m = div_u64(temp, link_clock);
2106         m_n->link_n = LINK_N;
2107         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2108 }
2109
2110
2111 struct intel_watermark_params {
2112         unsigned long fifo_size;
2113         unsigned long max_wm;
2114         unsigned long default_wm;
2115         unsigned long guard_size;
2116         unsigned long cacheline_size;
2117 };
2118
2119 /* IGD has different values for various configs */
2120 static struct intel_watermark_params igd_display_wm = {
2121         IGD_DISPLAY_FIFO,
2122         IGD_MAX_WM,
2123         IGD_DFT_WM,
2124         IGD_GUARD_WM,
2125         IGD_FIFO_LINE_SIZE
2126 };
2127 static struct intel_watermark_params igd_display_hplloff_wm = {
2128         IGD_DISPLAY_FIFO,
2129         IGD_MAX_WM,
2130         IGD_DFT_HPLLOFF_WM,
2131         IGD_GUARD_WM,
2132         IGD_FIFO_LINE_SIZE
2133 };
2134 static struct intel_watermark_params igd_cursor_wm = {
2135         IGD_CURSOR_FIFO,
2136         IGD_CURSOR_MAX_WM,
2137         IGD_CURSOR_DFT_WM,
2138         IGD_CURSOR_GUARD_WM,
2139         IGD_FIFO_LINE_SIZE,
2140 };
2141 static struct intel_watermark_params igd_cursor_hplloff_wm = {
2142         IGD_CURSOR_FIFO,
2143         IGD_CURSOR_MAX_WM,
2144         IGD_CURSOR_DFT_WM,
2145         IGD_CURSOR_GUARD_WM,
2146         IGD_FIFO_LINE_SIZE
2147 };
2148 static struct intel_watermark_params g4x_wm_info = {
2149         G4X_FIFO_SIZE,
2150         G4X_MAX_WM,
2151         G4X_MAX_WM,
2152         2,
2153         G4X_FIFO_LINE_SIZE,
2154 };
2155 static struct intel_watermark_params i945_wm_info = {
2156         I945_FIFO_SIZE,
2157         I915_MAX_WM,
2158         1,
2159         2,
2160         I915_FIFO_LINE_SIZE
2161 };
2162 static struct intel_watermark_params i915_wm_info = {
2163         I915_FIFO_SIZE,
2164         I915_MAX_WM,
2165         1,
2166         2,
2167         I915_FIFO_LINE_SIZE
2168 };
2169 static struct intel_watermark_params i855_wm_info = {
2170         I855GM_FIFO_SIZE,
2171         I915_MAX_WM,
2172         1,
2173         2,
2174         I830_FIFO_LINE_SIZE
2175 };
2176 static struct intel_watermark_params i830_wm_info = {
2177         I830_FIFO_SIZE,
2178         I915_MAX_WM,
2179         1,
2180         2,
2181         I830_FIFO_LINE_SIZE
2182 };
2183
2184 /**
2185  * intel_calculate_wm - calculate watermark level
2186  * @clock_in_khz: pixel clock
2187  * @wm: chip FIFO params
2188  * @pixel_size: display pixel size
2189  * @latency_ns: memory latency for the platform
2190  *
2191  * Calculate the watermark level (the level at which the display plane will
2192  * start fetching from memory again).  Each chip has a different display
2193  * FIFO size and allocation, so the caller needs to figure that out and pass
2194  * in the correct intel_watermark_params structure.
2195  *
2196  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2197  * on the pixel size.  When it reaches the watermark level, it'll start
2198  * fetching FIFO line sized based chunks from memory until the FIFO fills
2199  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2200  * will occur, and a display engine hang could result.
2201  */
2202 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2203                                         struct intel_watermark_params *wm,
2204                                         int pixel_size,
2205                                         unsigned long latency_ns)
2206 {
2207         long entries_required, wm_size;
2208
2209         /*
2210          * Note: we need to make sure we don't overflow for various clock &
2211          * latency values.
2212          * clocks go from a few thousand to several hundred thousand.
2213          * latency is usually a few thousand
2214          */
2215         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2216                 1000;
2217         entries_required /= wm->cacheline_size;
2218
2219         DRM_DEBUG("FIFO entries required for mode: %d\n", entries_required);
2220
2221         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2222
2223         DRM_DEBUG("FIFO watermark level: %d\n", wm_size);
2224
2225         /* Don't promote wm_size to unsigned... */
2226         if (wm_size > (long)wm->max_wm)
2227                 wm_size = wm->max_wm;
2228         if (wm_size <= 0)
2229                 wm_size = wm->default_wm;
2230         return wm_size;
2231 }
2232
2233 struct cxsr_latency {
2234         int is_desktop;
2235         unsigned long fsb_freq;
2236         unsigned long mem_freq;
2237         unsigned long display_sr;
2238         unsigned long display_hpll_disable;
2239         unsigned long cursor_sr;
2240         unsigned long cursor_hpll_disable;
2241 };
2242
2243 static struct cxsr_latency cxsr_latency_table[] = {
2244         {1, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2245         {1, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2246         {1, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2247
2248         {1, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2249         {1, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2250         {1, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2251
2252         {1, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2253         {1, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2254         {1, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2255
2256         {0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2257         {0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2258         {0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2259
2260         {0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2261         {0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2262         {0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2263
2264         {0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2265         {0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2266         {0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2267 };
2268
2269 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2270                                                    int mem)
2271 {
2272         int i;
2273         struct cxsr_latency *latency;
2274
2275         if (fsb == 0 || mem == 0)
2276                 return NULL;
2277
2278         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2279                 latency = &cxsr_latency_table[i];
2280                 if (is_desktop == latency->is_desktop &&
2281                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2282                         return latency;
2283         }
2284
2285         DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
2286
2287         return NULL;
2288 }
2289
2290 static void igd_disable_cxsr(struct drm_device *dev)
2291 {
2292         struct drm_i915_private *dev_priv = dev->dev_private;
2293         u32 reg;
2294
2295         /* deactivate cxsr */
2296         reg = I915_READ(DSPFW3);
2297         reg &= ~(IGD_SELF_REFRESH_EN);
2298         I915_WRITE(DSPFW3, reg);
2299         DRM_INFO("Big FIFO is disabled\n");
2300 }
2301
2302 static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
2303                             int pixel_size)
2304 {
2305         struct drm_i915_private *dev_priv = dev->dev_private;
2306         u32 reg;
2307         unsigned long wm;
2308         struct cxsr_latency *latency;
2309
2310         latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
2311                 dev_priv->mem_freq);
2312         if (!latency) {
2313                 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
2314                 igd_disable_cxsr(dev);
2315                 return;
2316         }
2317
2318         /* Display SR */
2319         wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
2320                                 latency->display_sr);
2321         reg = I915_READ(DSPFW1);
2322         reg &= 0x7fffff;
2323         reg |= wm << 23;
2324         I915_WRITE(DSPFW1, reg);
2325         DRM_DEBUG("DSPFW1 register is %x\n", reg);
2326
2327         /* cursor SR */
2328         wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
2329                                 latency->cursor_sr);
2330         reg = I915_READ(DSPFW3);
2331         reg &= ~(0x3f << 24);
2332         reg |= (wm & 0x3f) << 24;
2333         I915_WRITE(DSPFW3, reg);
2334
2335         /* Display HPLL off SR */
2336         wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
2337                 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
2338         reg = I915_READ(DSPFW3);
2339         reg &= 0xfffffe00;
2340         reg |= wm & 0x1ff;
2341         I915_WRITE(DSPFW3, reg);
2342
2343         /* cursor HPLL off SR */
2344         wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
2345                                 latency->cursor_hpll_disable);
2346         reg = I915_READ(DSPFW3);
2347         reg &= ~(0x3f << 16);
2348         reg |= (wm & 0x3f) << 16;
2349         I915_WRITE(DSPFW3, reg);
2350         DRM_DEBUG("DSPFW3 register is %x\n", reg);
2351
2352         /* activate cxsr */
2353         reg = I915_READ(DSPFW3);
2354         reg |= IGD_SELF_REFRESH_EN;
2355         I915_WRITE(DSPFW3, reg);
2356
2357         DRM_INFO("Big FIFO is enabled\n");
2358
2359         return;
2360 }
2361
2362 /*
2363  * Latency for FIFO fetches is dependent on several factors:
2364  *   - memory configuration (speed, channels)
2365  *   - chipset
2366  *   - current MCH state
2367  * It can be fairly high in some situations, so here we assume a fairly
2368  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2369  * set this value too high, the FIFO will fetch frequently to stay full)
2370  * and power consumption (set it too low to save power and we might see
2371  * FIFO underruns and display "flicker").
2372  *
2373  * A value of 5us seems to be a good balance; safe for very low end
2374  * platforms but not overly aggressive on lower latency configs.
2375  */
2376 const static int latency_ns = 5000;
2377
2378 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2379 {
2380         struct drm_i915_private *dev_priv = dev->dev_private;
2381         uint32_t dsparb = I915_READ(DSPARB);
2382         int size;
2383
2384         if (plane == 0)
2385                 size = dsparb & 0x7f;
2386         else
2387                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2388                         (dsparb & 0x7f);
2389
2390         DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2391                   size);
2392
2393         return size;
2394 }
2395
2396 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2397 {
2398         struct drm_i915_private *dev_priv = dev->dev_private;
2399         uint32_t dsparb = I915_READ(DSPARB);
2400         int size;
2401
2402         if (plane == 0)
2403                 size = dsparb & 0x1ff;
2404         else
2405                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2406                         (dsparb & 0x1ff);
2407         size >>= 1; /* Convert to cachelines */
2408
2409         DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2410                   size);
2411
2412         return size;
2413 }
2414
2415 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2416 {
2417         struct drm_i915_private *dev_priv = dev->dev_private;
2418         uint32_t dsparb = I915_READ(DSPARB);
2419         int size;
2420
2421         size = dsparb & 0x7f;
2422         size >>= 2; /* Convert to cachelines */
2423
2424         DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2425                   size);
2426
2427         return size;
2428 }
2429
2430 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2431 {
2432         struct drm_i915_private *dev_priv = dev->dev_private;
2433         uint32_t dsparb = I915_READ(DSPARB);
2434         int size;
2435
2436         size = dsparb & 0x7f;
2437         size >>= 1; /* Convert to cachelines */
2438
2439         DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2440                   size);
2441
2442         return size;
2443 }
2444
2445 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
2446                           int planeb_clock, int sr_hdisplay, int pixel_size)
2447 {
2448         struct drm_i915_private *dev_priv = dev->dev_private;
2449         int total_size, cacheline_size;
2450         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2451         struct intel_watermark_params planea_params, planeb_params;
2452         unsigned long line_time_us;
2453         int sr_clock, sr_entries = 0, entries_required;
2454
2455         /* Create copies of the base settings for each pipe */
2456         planea_params = planeb_params = g4x_wm_info;
2457
2458         /* Grab a couple of global values before we overwrite them */
2459         total_size = planea_params.fifo_size;
2460         cacheline_size = planea_params.cacheline_size;
2461
2462         /*
2463          * Note: we need to make sure we don't overflow for various clock &
2464          * latency values.
2465          * clocks go from a few thousand to several hundred thousand.
2466          * latency is usually a few thousand
2467          */
2468         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2469                 1000;
2470         entries_required /= G4X_FIFO_LINE_SIZE;
2471         planea_wm = entries_required + planea_params.guard_size;
2472
2473         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2474                 1000;
2475         entries_required /= G4X_FIFO_LINE_SIZE;
2476         planeb_wm = entries_required + planeb_params.guard_size;
2477
2478         cursora_wm = cursorb_wm = 16;
2479         cursor_sr = 32;
2480
2481         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2482
2483         /* Calc sr entries for one plane configs */
2484         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2485                 /* self-refresh has much higher latency */
2486                 const static int sr_latency_ns = 12000;
2487
2488                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2489                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2490
2491                 /* Use ns/us then divide to preserve precision */
2492                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2493                               pixel_size * sr_hdisplay) / 1000;
2494                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2495                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2496                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2497         }
2498
2499         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2500                   planea_wm, planeb_wm, sr_entries);
2501
2502         planea_wm &= 0x3f;
2503         planeb_wm &= 0x3f;
2504
2505         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2506                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2507                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2508         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2509                    (cursora_wm << DSPFW_CURSORA_SHIFT));
2510         /* HPLL off in SR has some issues on G4x... disable it */
2511         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2512                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2513 }
2514
2515 static void i965_update_wm(struct drm_device *dev, int unused, int unused2,
2516                            int unused3, int unused4)
2517 {
2518         struct drm_i915_private *dev_priv = dev->dev_private;
2519
2520         DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
2521
2522         /* 965 has limitations... */
2523         I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
2524         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2525 }
2526
2527 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2528                            int planeb_clock, int sr_hdisplay, int pixel_size)
2529 {
2530         struct drm_i915_private *dev_priv = dev->dev_private;
2531         uint32_t fwater_lo;
2532         uint32_t fwater_hi;
2533         int total_size, cacheline_size, cwm, srwm = 1;
2534         int planea_wm, planeb_wm;
2535         struct intel_watermark_params planea_params, planeb_params;
2536         unsigned long line_time_us;
2537         int sr_clock, sr_entries = 0;
2538
2539         /* Create copies of the base settings for each pipe */
2540         if (IS_I965GM(dev) || IS_I945GM(dev))
2541                 planea_params = planeb_params = i945_wm_info;
2542         else if (IS_I9XX(dev))
2543                 planea_params = planeb_params = i915_wm_info;
2544         else
2545                 planea_params = planeb_params = i855_wm_info;
2546
2547         /* Grab a couple of global values before we overwrite them */
2548         total_size = planea_params.fifo_size;
2549         cacheline_size = planea_params.cacheline_size;
2550
2551         /* Update per-plane FIFO sizes */
2552         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2553         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
2554
2555         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2556                                        pixel_size, latency_ns);
2557         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2558                                        pixel_size, latency_ns);
2559         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2560
2561         /*
2562          * Overlay gets an aggressive default since video jitter is bad.
2563          */
2564         cwm = 2;
2565
2566         /* Calc sr entries for one plane configs */
2567         if (HAS_FW_BLC(dev) && sr_hdisplay &&
2568             (!planea_clock || !planeb_clock)) {
2569                 /* self-refresh has much higher latency */
2570                 const static int sr_latency_ns = 6000;
2571
2572                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2573                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2574
2575                 /* Use ns/us then divide to preserve precision */
2576                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2577                               pixel_size * sr_hdisplay) / 1000;
2578                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2579                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2580                 srwm = total_size - sr_entries;
2581                 if (srwm < 0)
2582                         srwm = 1;
2583                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN | (srwm & 0x3f));
2584         }
2585
2586         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2587                   planea_wm, planeb_wm, cwm, srwm);
2588
2589         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2590         fwater_hi = (cwm & 0x1f);
2591
2592         /* Set request length to 8 cachelines per fetch */
2593         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2594         fwater_hi = fwater_hi | (1 << 8);
2595
2596         I915_WRITE(FW_BLC, fwater_lo);
2597         I915_WRITE(FW_BLC2, fwater_hi);
2598 }
2599
2600 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
2601                            int unused2, int pixel_size)
2602 {
2603         struct drm_i915_private *dev_priv = dev->dev_private;
2604         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2605         int planea_wm;
2606
2607         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2608
2609         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2610                                        pixel_size, latency_ns);
2611         fwater_lo |= (3<<8) | planea_wm;
2612
2613         DRM_DEBUG("Setting FIFO watermarks - A: %d\n", planea_wm);
2614
2615         I915_WRITE(FW_BLC, fwater_lo);
2616 }
2617
2618 /**
2619  * intel_update_watermarks - update FIFO watermark values based on current modes
2620  *
2621  * Calculate watermark values for the various WM regs based on current mode
2622  * and plane configuration.
2623  *
2624  * There are several cases to deal with here:
2625  *   - normal (i.e. non-self-refresh)
2626  *   - self-refresh (SR) mode
2627  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2628  *   - lines are small relative to FIFO size (buffer can hold more than 2
2629  *     lines), so need to account for TLB latency
2630  *
2631  *   The normal calculation is:
2632  *     watermark = dotclock * bytes per pixel * latency
2633  *   where latency is platform & configuration dependent (we assume pessimal
2634  *   values here).
2635  *
2636  *   The SR calculation is:
2637  *     watermark = (trunc(latency/line time)+1) * surface width *
2638  *       bytes per pixel
2639  *   where
2640  *     line time = htotal / dotclock
2641  *   and latency is assumed to be high, as above.
2642  *
2643  * The final value programmed to the register should always be rounded up,
2644  * and include an extra 2 entries to account for clock crossings.
2645  *
2646  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2647  * to set the non-SR watermarks to 8.
2648   */
2649 static void intel_update_watermarks(struct drm_device *dev)
2650 {
2651         struct drm_i915_private *dev_priv = dev->dev_private;
2652         struct drm_crtc *crtc;
2653         struct intel_crtc *intel_crtc;
2654         int sr_hdisplay = 0;
2655         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2656         int enabled = 0, pixel_size = 0;
2657
2658         if (!dev_priv->display.update_wm)
2659                 return;
2660
2661         /* Get the clock config from both planes */
2662         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2663                 intel_crtc = to_intel_crtc(crtc);
2664                 if (crtc->enabled) {
2665                         enabled++;
2666                         if (intel_crtc->plane == 0) {
2667                                 DRM_DEBUG("plane A (pipe %d) clock: %d\n",
2668                                           intel_crtc->pipe, crtc->mode.clock);
2669                                 planea_clock = crtc->mode.clock;
2670                         } else {
2671                                 DRM_DEBUG("plane B (pipe %d) clock: %d\n",
2672                                           intel_crtc->pipe, crtc->mode.clock);
2673                                 planeb_clock = crtc->mode.clock;
2674                         }
2675                         sr_hdisplay = crtc->mode.hdisplay;
2676                         sr_clock = crtc->mode.clock;
2677                         if (crtc->fb)
2678                                 pixel_size = crtc->fb->bits_per_pixel / 8;
2679                         else
2680                                 pixel_size = 4; /* by default */
2681                 }
2682         }
2683
2684         if (enabled <= 0)
2685                 return;
2686
2687         /* Single plane configs can enable self refresh */
2688         if (enabled == 1 && IS_IGD(dev))
2689                 igd_enable_cxsr(dev, sr_clock, pixel_size);
2690         else if (IS_IGD(dev))
2691                 igd_disable_cxsr(dev);
2692
2693         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
2694                                     sr_hdisplay, pixel_size);
2695 }
2696
2697 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2698                                struct drm_display_mode *mode,
2699                                struct drm_display_mode *adjusted_mode,
2700                                int x, int y,
2701                                struct drm_framebuffer *old_fb)
2702 {
2703         struct drm_device *dev = crtc->dev;
2704         struct drm_i915_private *dev_priv = dev->dev_private;
2705         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2706         int pipe = intel_crtc->pipe;
2707         int plane = intel_crtc->plane;
2708         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2709         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2710         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2711         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2712         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2713         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2714         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2715         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2716         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2717         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2718         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2719         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
2720         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
2721         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2722         int refclk, num_outputs = 0;
2723         intel_clock_t clock, reduced_clock;
2724         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
2725         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
2726         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2727         bool is_edp = false;
2728         struct drm_mode_config *mode_config = &dev->mode_config;
2729         struct drm_connector *connector;
2730         const intel_limit_t *limit;
2731         int ret;
2732         struct fdi_m_n m_n = {0};
2733         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2734         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2735         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2736         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2737         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2738         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2739         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2740         int lvds_reg = LVDS;
2741         u32 temp;
2742         int sdvo_pixel_multiply;
2743         int target_clock;
2744
2745         drm_vblank_pre_modeset(dev, pipe);
2746
2747         list_for_each_entry(connector, &mode_config->connector_list, head) {
2748                 struct intel_output *intel_output = to_intel_output(connector);
2749
2750                 if (!connector->encoder || connector->encoder->crtc != crtc)
2751                         continue;
2752
2753                 switch (intel_output->type) {
2754                 case INTEL_OUTPUT_LVDS:
2755                         is_lvds = true;
2756                         break;
2757                 case INTEL_OUTPUT_SDVO:
2758                 case INTEL_OUTPUT_HDMI:
2759                         is_sdvo = true;
2760                         if (intel_output->needs_tv_clock)
2761                                 is_tv = true;
2762                         break;
2763                 case INTEL_OUTPUT_DVO:
2764                         is_dvo = true;
2765                         break;
2766                 case INTEL_OUTPUT_TVOUT:
2767                         is_tv = true;
2768                         break;
2769                 case INTEL_OUTPUT_ANALOG:
2770                         is_crt = true;
2771                         break;
2772                 case INTEL_OUTPUT_DISPLAYPORT:
2773                         is_dp = true;
2774                         break;
2775                 case INTEL_OUTPUT_EDP:
2776                         is_edp = true;
2777                         break;
2778                 }
2779
2780                 num_outputs++;
2781         }
2782
2783         if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2784                 refclk = dev_priv->lvds_ssc_freq * 1000;
2785                 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
2786         } else if (IS_I9XX(dev)) {
2787                 refclk = 96000;
2788                 if (IS_IGDNG(dev))
2789                         refclk = 120000; /* 120Mhz refclk */
2790         } else {
2791                 refclk = 48000;
2792         }
2793         
2794
2795         /*
2796          * Returns a set of divisors for the desired target clock with the given
2797          * refclk, or FALSE.  The returned values represent the clock equation:
2798          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2799          */
2800         limit = intel_limit(crtc);
2801         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
2802         if (!ok) {
2803                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2804                 drm_vblank_post_modeset(dev, pipe);
2805                 return -EINVAL;
2806         }
2807
2808         if (limit->find_reduced_pll && dev_priv->lvds_downclock_avail) {
2809                 memcpy(&reduced_clock, &clock, sizeof(intel_clock_t));
2810                 has_reduced_clock = limit->find_reduced_pll(limit, crtc,
2811                                                             (adjusted_mode->clock*3/4),
2812                                                             refclk,
2813                                                             &reduced_clock);
2814         }
2815
2816         /* SDVO TV has fixed PLL values depend on its clock range,
2817            this mirrors vbios setting. */
2818         if (is_sdvo && is_tv) {
2819                 if (adjusted_mode->clock >= 100000
2820                                 && adjusted_mode->clock < 140500) {
2821                         clock.p1 = 2;
2822                         clock.p2 = 10;
2823                         clock.n = 3;
2824                         clock.m1 = 16;
2825                         clock.m2 = 8;
2826                 } else if (adjusted_mode->clock >= 140500
2827                                 && adjusted_mode->clock <= 200000) {
2828                         clock.p1 = 1;
2829                         clock.p2 = 10;
2830                         clock.n = 6;
2831                         clock.m1 = 12;
2832                         clock.m2 = 8;
2833                 }
2834         }
2835
2836         /* FDI link */
2837         if (IS_IGDNG(dev)) {
2838                 int lane, link_bw, bpp;
2839                 /* eDP doesn't require FDI link, so just set DP M/N
2840                    according to current link config */
2841                 if (is_edp) {
2842                         struct drm_connector *edp;
2843                         target_clock = mode->clock;
2844                         edp = intel_pipe_get_output(crtc);
2845                         intel_edp_link_config(to_intel_output(edp),
2846                                         &lane, &link_bw);
2847                 } else {
2848                         /* DP over FDI requires target mode clock
2849                            instead of link clock */
2850                         if (is_dp)
2851                                 target_clock = mode->clock;
2852                         else
2853                                 target_clock = adjusted_mode->clock;
2854                         lane = 4;
2855                         link_bw = 270000;
2856                 }
2857
2858                 /* determine panel color depth */
2859                 temp = I915_READ(pipeconf_reg);
2860
2861                 switch (temp & PIPE_BPC_MASK) {
2862                 case PIPE_8BPC:
2863                         bpp = 24;
2864                         break;
2865                 case PIPE_10BPC:
2866                         bpp = 30;
2867                         break;
2868                 case PIPE_6BPC:
2869                         bpp = 18;
2870                         break;
2871                 case PIPE_12BPC:
2872                         bpp = 36;
2873                         break;
2874                 default:
2875                         DRM_ERROR("unknown pipe bpc value\n");
2876                         bpp = 24;
2877                 }
2878
2879                 igdng_compute_m_n(bpp, lane, target_clock,
2880                                   link_bw, &m_n);
2881         }
2882
2883         /* Ironlake: try to setup display ref clock before DPLL
2884          * enabling. This is only under driver's control after
2885          * PCH B stepping, previous chipset stepping should be
2886          * ignoring this setting.
2887          */
2888         if (IS_IGDNG(dev)) {
2889                 temp = I915_READ(PCH_DREF_CONTROL);
2890                 /* Always enable nonspread source */
2891                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
2892                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
2893                 I915_WRITE(PCH_DREF_CONTROL, temp);
2894                 POSTING_READ(PCH_DREF_CONTROL);
2895
2896                 temp &= ~DREF_SSC_SOURCE_MASK;
2897                 temp |= DREF_SSC_SOURCE_ENABLE;
2898                 I915_WRITE(PCH_DREF_CONTROL, temp);
2899                 POSTING_READ(PCH_DREF_CONTROL);
2900
2901                 udelay(200);
2902
2903                 if (is_edp) {
2904                         if (dev_priv->lvds_use_ssc) {
2905                                 temp |= DREF_SSC1_ENABLE;
2906                                 I915_WRITE(PCH_DREF_CONTROL, temp);
2907                                 POSTING_READ(PCH_DREF_CONTROL);
2908
2909                                 udelay(200);
2910
2911                                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2912                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
2913                                 I915_WRITE(PCH_DREF_CONTROL, temp);
2914                                 POSTING_READ(PCH_DREF_CONTROL);
2915                         } else {
2916                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
2917                                 I915_WRITE(PCH_DREF_CONTROL, temp);
2918                                 POSTING_READ(PCH_DREF_CONTROL);
2919                         }
2920                 }
2921         }
2922
2923         if (IS_IGD(dev)) {
2924                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
2925                 if (has_reduced_clock)
2926                         fp2 = (1 << reduced_clock.n) << 16 |
2927                                 reduced_clock.m1 << 8 | reduced_clock.m2;
2928         } else {
2929                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
2930                 if (has_reduced_clock)
2931                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
2932                                 reduced_clock.m2;
2933         }
2934
2935         if (!IS_IGDNG(dev))
2936                 dpll = DPLL_VGA_MODE_DIS;
2937
2938         if (IS_I9XX(dev)) {
2939                 if (is_lvds)
2940                         dpll |= DPLLB_MODE_LVDS;
2941                 else
2942                         dpll |= DPLLB_MODE_DAC_SERIAL;
2943                 if (is_sdvo) {
2944                         dpll |= DPLL_DVO_HIGH_SPEED;
2945                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2946                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2947                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
2948                         else if (IS_IGDNG(dev))
2949                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
2950                 }
2951                 if (is_dp)
2952                         dpll |= DPLL_DVO_HIGH_SPEED;
2953
2954                 /* compute bitmask from p1 value */
2955                 if (IS_IGD(dev))
2956                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
2957                 else {
2958                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2959                         /* also FPA1 */
2960                         if (IS_IGDNG(dev))
2961                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2962                         if (IS_G4X(dev) && has_reduced_clock)
2963                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2964                 }
2965                 switch (clock.p2) {
2966                 case 5:
2967                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
2968                         break;
2969                 case 7:
2970                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
2971                         break;
2972                 case 10:
2973                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
2974                         break;
2975                 case 14:
2976                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
2977                         break;
2978                 }
2979                 if (IS_I965G(dev) && !IS_IGDNG(dev))
2980                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2981         } else {
2982                 if (is_lvds) {
2983                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2984                 } else {
2985                         if (clock.p1 == 2)
2986                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
2987                         else
2988                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2989                         if (clock.p2 == 4)
2990                                 dpll |= PLL_P2_DIVIDE_BY_4;
2991                 }
2992         }
2993
2994         if (is_sdvo && is_tv)
2995                 dpll |= PLL_REF_INPUT_TVCLKINBC;
2996         else if (is_tv)
2997                 /* XXX: just matching BIOS for now */
2998                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
2999                 dpll |= 3;
3000         else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
3001                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3002         else
3003                 dpll |= PLL_REF_INPUT_DREFCLK;
3004
3005         /* setup pipeconf */
3006         pipeconf = I915_READ(pipeconf_reg);
3007
3008         /* Set up the display plane register */
3009         dspcntr = DISPPLANE_GAMMA_ENABLE;
3010
3011         /* IGDNG's plane is forced to pipe, bit 24 is to
3012            enable color space conversion */
3013         if (!IS_IGDNG(dev)) {
3014                 if (pipe == 0)
3015                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3016                 else
3017                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3018         }
3019
3020         if (pipe == 0 && !IS_I965G(dev)) {
3021                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3022                  * core speed.
3023                  *
3024                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3025                  * pipe == 0 check?
3026                  */
3027                 if (mode->clock >
3028                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3029                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
3030                 else
3031                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3032         }
3033
3034         dspcntr |= DISPLAY_PLANE_ENABLE;
3035         pipeconf |= PIPEACONF_ENABLE;
3036         dpll |= DPLL_VCO_ENABLE;
3037
3038
3039         /* Disable the panel fitter if it was on our pipe */
3040         if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
3041                 I915_WRITE(PFIT_CONTROL, 0);
3042
3043         DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3044         drm_mode_debug_printmodeline(mode);
3045
3046         /* assign to IGDNG registers */
3047         if (IS_IGDNG(dev)) {
3048                 fp_reg = pch_fp_reg;
3049                 dpll_reg = pch_dpll_reg;
3050         }
3051
3052         if (is_edp) {
3053                 igdng_disable_pll_edp(crtc);
3054         } else if ((dpll & DPLL_VCO_ENABLE)) {
3055                 I915_WRITE(fp_reg, fp);
3056                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3057                 I915_READ(dpll_reg);
3058                 udelay(150);
3059         }
3060
3061         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3062          * This is an exception to the general rule that mode_set doesn't turn
3063          * things on.
3064          */
3065         if (is_lvds) {
3066                 u32 lvds;
3067
3068                 if (IS_IGDNG(dev))
3069                         lvds_reg = PCH_LVDS;
3070
3071                 lvds = I915_READ(lvds_reg);
3072                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
3073                 /* set the corresponsding LVDS_BORDER bit */
3074                 lvds |= dev_priv->lvds_border_bits;
3075                 /* Set the B0-B3 data pairs corresponding to whether we're going to
3076                  * set the DPLLs for dual-channel mode or not.
3077                  */
3078                 if (clock.p2 == 7)
3079                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3080                 else
3081                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3082
3083                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3084                  * appropriately here, but we need to look more thoroughly into how
3085                  * panels behave in the two modes.
3086                  */
3087
3088                 I915_WRITE(lvds_reg, lvds);
3089                 I915_READ(lvds_reg);
3090         }
3091         if (is_dp)
3092                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3093
3094         if (!is_edp) {
3095                 I915_WRITE(fp_reg, fp);
3096                 I915_WRITE(dpll_reg, dpll);
3097                 I915_READ(dpll_reg);
3098                 /* Wait for the clocks to stabilize. */
3099                 udelay(150);
3100
3101                 if (IS_I965G(dev) && !IS_IGDNG(dev)) {
3102                         if (is_sdvo) {
3103                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3104                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3105                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3106                         } else
3107                                 I915_WRITE(dpll_md_reg, 0);
3108                 } else {
3109                         /* write it again -- the BIOS does, after all */
3110                         I915_WRITE(dpll_reg, dpll);
3111                 }
3112                 I915_READ(dpll_reg);
3113                 /* Wait for the clocks to stabilize. */
3114                 udelay(150);
3115         }
3116
3117         if (is_lvds && has_reduced_clock && i915_powersave) {
3118                 I915_WRITE(fp_reg + 4, fp2);
3119                 intel_crtc->lowfreq_avail = true;
3120                 if (HAS_PIPE_CXSR(dev)) {
3121                         DRM_DEBUG("enabling CxSR downclocking\n");
3122                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3123                 }
3124         } else {
3125                 I915_WRITE(fp_reg + 4, fp);
3126                 intel_crtc->lowfreq_avail = false;
3127                 if (HAS_PIPE_CXSR(dev)) {
3128                         DRM_DEBUG("disabling CxSR downclocking\n");
3129                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3130                 }
3131         }
3132
3133         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3134                    ((adjusted_mode->crtc_htotal - 1) << 16));
3135         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3136                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
3137         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3138                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
3139         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3140                    ((adjusted_mode->crtc_vtotal - 1) << 16));
3141         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3142                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
3143         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3144                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
3145         /* pipesrc and dspsize control the size that is scaled from, which should
3146          * always be the user's requested size.
3147          */
3148         if (!IS_IGDNG(dev)) {
3149                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3150                                 (mode->hdisplay - 1));
3151                 I915_WRITE(dsppos_reg, 0);
3152         }
3153         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3154
3155         if (IS_IGDNG(dev)) {
3156                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3157                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3158                 I915_WRITE(link_m1_reg, m_n.link_m);
3159                 I915_WRITE(link_n1_reg, m_n.link_n);
3160
3161                 if (is_edp) {
3162                         igdng_set_pll_edp(crtc, adjusted_mode->clock);
3163                 } else {
3164                         /* enable FDI RX PLL too */
3165                         temp = I915_READ(fdi_rx_reg);
3166                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3167                         udelay(200);
3168                 }
3169         }
3170
3171         I915_WRITE(pipeconf_reg, pipeconf);
3172         I915_READ(pipeconf_reg);
3173
3174         intel_wait_for_vblank(dev);
3175
3176         if (IS_IGDNG(dev)) {
3177                 /* enable address swizzle for tiling buffer */
3178                 temp = I915_READ(DISP_ARB_CTL);
3179                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3180         }
3181
3182         I915_WRITE(dspcntr_reg, dspcntr);
3183
3184         /* Flush the plane changes */
3185         ret = intel_pipe_set_base(crtc, x, y, old_fb);
3186
3187         if ((IS_I965G(dev) || plane == 0))
3188                 intel_update_fbc(crtc, &crtc->mode);
3189
3190         intel_update_watermarks(dev);
3191
3192         drm_vblank_post_modeset(dev, pipe);
3193
3194         return ret;
3195 }
3196
3197 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3198 void intel_crtc_load_lut(struct drm_crtc *crtc)
3199 {
3200         struct drm_device *dev = crtc->dev;
3201         struct drm_i915_private *dev_priv = dev->dev_private;
3202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3203         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3204         int i;
3205
3206         /* The clocks have to be on to load the palette. */
3207         if (!crtc->enabled)
3208                 return;
3209
3210         /* use legacy palette for IGDNG */
3211         if (IS_IGDNG(dev))
3212                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3213                                                    LGC_PALETTE_B;
3214
3215         for (i = 0; i < 256; i++) {
3216                 I915_WRITE(palreg + 4 * i,
3217                            (intel_crtc->lut_r[i] << 16) |
3218                            (intel_crtc->lut_g[i] << 8) |
3219                            intel_crtc->lut_b[i]);
3220         }
3221 }
3222
3223 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3224                                  struct drm_file *file_priv,
3225                                  uint32_t handle,
3226                                  uint32_t width, uint32_t height)
3227 {
3228         struct drm_device *dev = crtc->dev;
3229         struct drm_i915_private *dev_priv = dev->dev_private;
3230         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3231         struct drm_gem_object *bo;
3232         struct drm_i915_gem_object *obj_priv;
3233         int pipe = intel_crtc->pipe;
3234         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3235         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3236         uint32_t temp = I915_READ(control);
3237         size_t addr;
3238         int ret;
3239
3240         DRM_DEBUG("\n");
3241
3242         /* if we want to turn off the cursor ignore width and height */
3243         if (!handle) {
3244                 DRM_DEBUG("cursor off\n");
3245                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3246                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3247                         temp |= CURSOR_MODE_DISABLE;
3248                 } else {
3249                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3250                 }
3251                 addr = 0;
3252                 bo = NULL;
3253                 mutex_lock(&dev->struct_mutex);
3254                 goto finish;
3255         }
3256
3257         /* Currently we only support 64x64 cursors */
3258         if (width != 64 || height != 64) {
3259                 DRM_ERROR("we currently only support 64x64 cursors\n");
3260                 return -EINVAL;
3261         }
3262
3263         bo = drm_gem_object_lookup(dev, file_priv, handle);
3264         if (!bo)
3265                 return -ENOENT;
3266
3267         obj_priv = bo->driver_private;
3268
3269         if (bo->size < width * height * 4) {
3270                 DRM_ERROR("buffer is to small\n");
3271                 ret = -ENOMEM;
3272                 goto fail;
3273         }
3274
3275         /* we only need to pin inside GTT if cursor is non-phy */
3276         mutex_lock(&dev->struct_mutex);
3277         if (!dev_priv->cursor_needs_physical) {
3278                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3279                 if (ret) {
3280                         DRM_ERROR("failed to pin cursor bo\n");
3281                         goto fail_locked;
3282                 }
3283                 addr = obj_priv->gtt_offset;
3284         } else {
3285                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3286                 if (ret) {
3287                         DRM_ERROR("failed to attach phys object\n");
3288                         goto fail_locked;
3289                 }
3290                 addr = obj_priv->phys_obj->handle->busaddr;
3291         }
3292
3293         if (!IS_I9XX(dev))
3294                 I915_WRITE(CURSIZE, (height << 12) | width);
3295
3296         /* Hooray for CUR*CNTR differences */
3297         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3298                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3299                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3300                 temp |= (pipe << 28); /* Connect to correct pipe */
3301         } else {
3302                 temp &= ~(CURSOR_FORMAT_MASK);
3303                 temp |= CURSOR_ENABLE;
3304                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3305         }
3306
3307  finish:
3308         I915_WRITE(control, temp);
3309         I915_WRITE(base, addr);
3310
3311         if (intel_crtc->cursor_bo) {
3312                 if (dev_priv->cursor_needs_physical) {
3313                         if (intel_crtc->cursor_bo != bo)
3314                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3315                 } else
3316                         i915_gem_object_unpin(intel_crtc->cursor_bo);
3317                 drm_gem_object_unreference(intel_crtc->cursor_bo);
3318         }
3319
3320         mutex_unlock(&dev->struct_mutex);
3321
3322         intel_crtc->cursor_addr = addr;
3323         intel_crtc->cursor_bo = bo;
3324
3325         return 0;
3326 fail:
3327         mutex_lock(&dev->struct_mutex);
3328 fail_locked:
3329         drm_gem_object_unreference(bo);
3330         mutex_unlock(&dev->struct_mutex);
3331         return ret;
3332 }
3333
3334 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3335 {
3336         struct drm_device *dev = crtc->dev;
3337         struct drm_i915_private *dev_priv = dev->dev_private;
3338         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3339         struct intel_framebuffer *intel_fb;
3340         int pipe = intel_crtc->pipe;
3341         uint32_t temp = 0;
3342         uint32_t adder;
3343
3344         if (crtc->fb) {
3345                 intel_fb = to_intel_framebuffer(crtc->fb);
3346                 intel_mark_busy(dev, intel_fb->obj);
3347         }
3348
3349         if (x < 0) {
3350                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3351                 x = -x;
3352         }
3353         if (y < 0) {
3354                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3355                 y = -y;
3356         }
3357
3358         temp |= x << CURSOR_X_SHIFT;
3359         temp |= y << CURSOR_Y_SHIFT;
3360
3361         adder = intel_crtc->cursor_addr;
3362         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3363         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3364
3365         return 0;
3366 }
3367
3368 /** Sets the color ramps on behalf of RandR */
3369 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3370                                  u16 blue, int regno)
3371 {
3372         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3373
3374         intel_crtc->lut_r[regno] = red >> 8;
3375         intel_crtc->lut_g[regno] = green >> 8;
3376         intel_crtc->lut_b[regno] = blue >> 8;
3377 }
3378
3379 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
3380                              u16 *blue, int regno)
3381 {
3382         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3383
3384         *red = intel_crtc->lut_r[regno] << 8;
3385         *green = intel_crtc->lut_g[regno] << 8;
3386         *blue = intel_crtc->lut_b[regno] << 8;
3387 }
3388
3389 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
3390                                  u16 *blue, uint32_t size)
3391 {
3392         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3393         int i;
3394
3395         if (size != 256)
3396                 return;
3397
3398         for (i = 0; i < 256; i++) {
3399                 intel_crtc->lut_r[i] = red[i] >> 8;
3400                 intel_crtc->lut_g[i] = green[i] >> 8;
3401                 intel_crtc->lut_b[i] = blue[i] >> 8;
3402         }
3403
3404         intel_crtc_load_lut(crtc);
3405 }
3406
3407 /**
3408  * Get a pipe with a simple mode set on it for doing load-based monitor
3409  * detection.
3410  *
3411  * It will be up to the load-detect code to adjust the pipe as appropriate for
3412  * its requirements.  The pipe will be connected to no other outputs.
3413  *
3414  * Currently this code will only succeed if there is a pipe with no outputs
3415  * configured for it.  In the future, it could choose to temporarily disable
3416  * some outputs to free up a pipe for its use.
3417  *
3418  * \return crtc, or NULL if no pipes are available.
3419  */
3420
3421 /* VESA 640x480x72Hz mode to set on the pipe */
3422 static struct drm_display_mode load_detect_mode = {
3423         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
3424                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
3425 };
3426
3427 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
3428                                             struct drm_display_mode *mode,
3429                                             int *dpms_mode)
3430 {
3431         struct intel_crtc *intel_crtc;
3432         struct drm_crtc *possible_crtc;
3433         struct drm_crtc *supported_crtc =NULL;
3434         struct drm_encoder *encoder = &intel_output->enc;
3435         struct drm_crtc *crtc = NULL;
3436         struct drm_device *dev = encoder->dev;
3437         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3438         struct drm_crtc_helper_funcs *crtc_funcs;
3439         int i = -1;
3440
3441         /*
3442          * Algorithm gets a little messy:
3443          *   - if the connector already has an assigned crtc, use it (but make
3444          *     sure it's on first)
3445          *   - try to find the first unused crtc that can drive this connector,
3446          *     and use that if we find one
3447          *   - if there are no unused crtcs available, try to use the first
3448          *     one we found that supports the connector
3449          */
3450
3451         /* See if we already have a CRTC for this connector */
3452         if (encoder->crtc) {
3453                 crtc = encoder->crtc;
3454                 /* Make sure the crtc and connector are running */
3455                 intel_crtc = to_intel_crtc(crtc);
3456                 *dpms_mode = intel_crtc->dpms_mode;
3457                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3458                         crtc_funcs = crtc->helper_private;
3459                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3460                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3461                 }
3462                 return crtc;
3463         }
3464
3465         /* Find an unused one (if possible) */
3466         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
3467                 i++;
3468                 if (!(encoder->possible_crtcs & (1 << i)))
3469                         continue;
3470                 if (!possible_crtc->enabled) {
3471                         crtc = possible_crtc;
3472                         break;
3473                 }
3474                 if (!supported_crtc)
3475                         supported_crtc = possible_crtc;
3476         }
3477
3478         /*
3479          * If we didn't find an unused CRTC, don't use any.
3480          */
3481         if (!crtc) {
3482                 return NULL;
3483         }
3484
3485         encoder->crtc = crtc;
3486         intel_output->base.encoder = encoder;
3487         intel_output->load_detect_temp = true;
3488
3489         intel_crtc = to_intel_crtc(crtc);
3490         *dpms_mode = intel_crtc->dpms_mode;
3491
3492         if (!crtc->enabled) {
3493                 if (!mode)
3494                         mode = &load_detect_mode;
3495                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
3496         } else {
3497                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3498                         crtc_funcs = crtc->helper_private;
3499                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3500                 }
3501
3502                 /* Add this connector to the crtc */
3503                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
3504                 encoder_funcs->commit(encoder);
3505         }
3506         /* let the connector get through one full cycle before testing */
3507         intel_wait_for_vblank(dev);
3508
3509         return crtc;
3510 }
3511
3512 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
3513 {
3514         struct drm_encoder *encoder = &intel_output->enc;
3515         struct drm_device *dev = encoder->dev;
3516         struct drm_crtc *crtc = encoder->crtc;
3517         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3518         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3519
3520         if (intel_output->load_detect_temp) {
3521                 encoder->crtc = NULL;
3522                 intel_output->base.encoder = NULL;
3523                 intel_output->load_detect_temp = false;
3524                 crtc->enabled = drm_helper_crtc_in_use(crtc);
3525                 drm_helper_disable_unused_functions(dev);
3526         }
3527
3528         /* Switch crtc and output back off if necessary */
3529         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
3530                 if (encoder->crtc == crtc)
3531                         encoder_funcs->dpms(encoder, dpms_mode);
3532                 crtc_funcs->dpms(crtc, dpms_mode);
3533         }
3534 }
3535
3536 /* Returns the clock of the currently programmed mode of the given pipe. */
3537 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
3538 {
3539         struct drm_i915_private *dev_priv = dev->dev_private;
3540         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3541         int pipe = intel_crtc->pipe;
3542         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
3543         u32 fp;
3544         intel_clock_t clock;
3545
3546         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3547                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
3548         else
3549                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
3550
3551         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
3552         if (IS_IGD(dev)) {
3553                 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
3554                 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
3555         } else {
3556                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
3557                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
3558         }
3559
3560         if (IS_I9XX(dev)) {
3561                 if (IS_IGD(dev))
3562                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
3563                                 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
3564                 else
3565                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
3566                                DPLL_FPA01_P1_POST_DIV_SHIFT);
3567
3568                 switch (dpll & DPLL_MODE_MASK) {
3569                 case DPLLB_MODE_DAC_SERIAL:
3570                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
3571                                 5 : 10;
3572                         break;
3573                 case DPLLB_MODE_LVDS:
3574                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
3575                                 7 : 14;
3576                         break;
3577                 default:
3578                         DRM_DEBUG("Unknown DPLL mode %08x in programmed "
3579                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
3580                         return 0;
3581                 }
3582
3583                 /* XXX: Handle the 100Mhz refclk */
3584                 intel_clock(dev, 96000, &clock);
3585         } else {
3586                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
3587
3588                 if (is_lvds) {
3589                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
3590                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
3591                         clock.p2 = 14;
3592
3593                         if ((dpll & PLL_REF_INPUT_MASK) ==
3594                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
3595                                 /* XXX: might not be 66MHz */
3596                                 intel_clock(dev, 66000, &clock);
3597                         } else
3598                                 intel_clock(dev, 48000, &clock);
3599                 } else {
3600                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
3601                                 clock.p1 = 2;
3602                         else {
3603                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3604                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3605                         }
3606                         if (dpll & PLL_P2_DIVIDE_BY_4)
3607                                 clock.p2 = 4;
3608                         else
3609                                 clock.p2 = 2;
3610
3611                         intel_clock(dev, 48000, &clock);
3612                 }
3613         }
3614
3615         /* XXX: It would be nice to validate the clocks, but we can't reuse
3616          * i830PllIsValid() because it relies on the xf86_config connector
3617          * configuration being accurate, which it isn't necessarily.
3618          */
3619
3620         return clock.dot;
3621 }
3622
3623 /** Returns the currently programmed mode of the given pipe. */
3624 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3625                                              struct drm_crtc *crtc)
3626 {
3627         struct drm_i915_private *dev_priv = dev->dev_private;
3628         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3629         int pipe = intel_crtc->pipe;
3630         struct drm_display_mode *mode;
3631         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3632         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3633         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3634         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3635
3636         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3637         if (!mode)
3638                 return NULL;
3639
3640         mode->clock = intel_crtc_clock_get(dev, crtc);
3641         mode->hdisplay = (htot & 0xffff) + 1;
3642         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3643         mode->hsync_start = (hsync & 0xffff) + 1;
3644         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3645         mode->vdisplay = (vtot & 0xffff) + 1;
3646         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3647         mode->vsync_start = (vsync & 0xffff) + 1;
3648         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3649
3650         drm_mode_set_name(mode);
3651         drm_mode_set_crtcinfo(mode, 0);
3652
3653         return mode;
3654 }
3655
3656 #define GPU_IDLE_TIMEOUT 500 /* ms */
3657
3658 /* When this timer fires, we've been idle for awhile */
3659 static void intel_gpu_idle_timer(unsigned long arg)
3660 {
3661         struct drm_device *dev = (struct drm_device *)arg;
3662         drm_i915_private_t *dev_priv = dev->dev_private;
3663
3664         DRM_DEBUG("idle timer fired, downclocking\n");
3665
3666         dev_priv->busy = false;
3667
3668         queue_work(dev_priv->wq, &dev_priv->idle_work);
3669 }
3670
3671 void intel_increase_renderclock(struct drm_device *dev, bool schedule)
3672 {
3673         drm_i915_private_t *dev_priv = dev->dev_private;
3674
3675         if (IS_IGDNG(dev))
3676                 return;
3677
3678         if (!dev_priv->render_reclock_avail) {
3679                 DRM_DEBUG("not reclocking render clock\n");
3680                 return;
3681         }
3682
3683         /* Restore render clock frequency to original value */
3684         if (IS_G4X(dev) || IS_I9XX(dev))
3685                 pci_write_config_word(dev->pdev, GCFGC, dev_priv->orig_clock);
3686         else if (IS_I85X(dev))
3687                 pci_write_config_word(dev->pdev, HPLLCC, dev_priv->orig_clock);
3688         DRM_DEBUG("increasing render clock frequency\n");
3689
3690         /* Schedule downclock */
3691         if (schedule)
3692                 mod_timer(&dev_priv->idle_timer, jiffies +
3693                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
3694 }
3695
3696 void intel_decrease_renderclock(struct drm_device *dev)
3697 {
3698         drm_i915_private_t *dev_priv = dev->dev_private;
3699
3700         if (IS_IGDNG(dev))
3701                 return;
3702
3703         if (!dev_priv->render_reclock_avail) {
3704                 DRM_DEBUG("not reclocking render clock\n");
3705                 return;
3706         }
3707
3708         if (IS_G4X(dev)) {
3709                 u16 gcfgc;
3710
3711                 /* Adjust render clock... */
3712                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3713
3714                 /* Down to minimum... */
3715                 gcfgc &= ~GM45_GC_RENDER_CLOCK_MASK;
3716                 gcfgc |= GM45_GC_RENDER_CLOCK_266_MHZ;
3717
3718                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3719         } else if (IS_I965G(dev)) {
3720                 u16 gcfgc;
3721
3722                 /* Adjust render clock... */
3723                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3724
3725                 /* Down to minimum... */
3726                 gcfgc &= ~I965_GC_RENDER_CLOCK_MASK;
3727                 gcfgc |= I965_GC_RENDER_CLOCK_267_MHZ;
3728
3729                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3730         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
3731                 u16 gcfgc;
3732
3733                 /* Adjust render clock... */
3734                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3735
3736                 /* Down to minimum... */
3737                 gcfgc &= ~I945_GC_RENDER_CLOCK_MASK;
3738                 gcfgc |= I945_GC_RENDER_CLOCK_166_MHZ;
3739
3740                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3741         } else if (IS_I915G(dev)) {
3742                 u16 gcfgc;
3743
3744                 /* Adjust render clock... */
3745                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3746
3747                 /* Down to minimum... */
3748                 gcfgc &= ~I915_GC_RENDER_CLOCK_MASK;
3749                 gcfgc |= I915_GC_RENDER_CLOCK_166_MHZ;
3750
3751                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3752         } else if (IS_I85X(dev)) {
3753                 u16 hpllcc;
3754
3755                 /* Adjust render clock... */
3756                 pci_read_config_word(dev->pdev, HPLLCC, &hpllcc);
3757
3758                 /* Up to maximum... */
3759                 hpllcc &= ~GC_CLOCK_CONTROL_MASK;
3760                 hpllcc |= GC_CLOCK_133_200;
3761
3762                 pci_write_config_word(dev->pdev, HPLLCC, hpllcc);
3763         }
3764         DRM_DEBUG("decreasing render clock frequency\n");
3765 }
3766
3767 /* Note that no increase function is needed for this - increase_renderclock()
3768  *  will also rewrite these bits
3769  */
3770 void intel_decrease_displayclock(struct drm_device *dev)
3771 {
3772         if (IS_IGDNG(dev))
3773                 return;
3774
3775         if (IS_I945G(dev) || IS_I945GM(dev) || IS_I915G(dev) ||
3776             IS_I915GM(dev)) {
3777                 u16 gcfgc;
3778
3779                 /* Adjust render clock... */
3780                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3781
3782                 /* Down to minimum... */
3783                 gcfgc &= ~0xf0;
3784                 gcfgc |= 0x80;
3785
3786                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3787         }
3788 }
3789
3790 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3791
3792 static void intel_crtc_idle_timer(unsigned long arg)
3793 {
3794         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
3795         struct drm_crtc *crtc = &intel_crtc->base;
3796         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
3797
3798         DRM_DEBUG("idle timer fired, downclocking\n");
3799
3800         intel_crtc->busy = false;
3801
3802         queue_work(dev_priv->wq, &dev_priv->idle_work);
3803 }
3804
3805 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
3806 {
3807         struct drm_device *dev = crtc->dev;
3808         drm_i915_private_t *dev_priv = dev->dev_private;
3809         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3810         int pipe = intel_crtc->pipe;
3811         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3812         int dpll = I915_READ(dpll_reg);
3813
3814         if (IS_IGDNG(dev))
3815                 return;
3816
3817         if (!dev_priv->lvds_downclock_avail)
3818                 return;
3819
3820         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
3821                 DRM_DEBUG("upclocking LVDS\n");
3822
3823                 /* Unlock panel regs */
3824                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3825
3826                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
3827                 I915_WRITE(dpll_reg, dpll);
3828                 dpll = I915_READ(dpll_reg);
3829                 intel_wait_for_vblank(dev);
3830                 dpll = I915_READ(dpll_reg);
3831                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
3832                         DRM_DEBUG("failed to upclock LVDS!\n");
3833
3834                 /* ...and lock them again */
3835                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3836         }
3837
3838         /* Schedule downclock */
3839         if (schedule)
3840                 mod_timer(&intel_crtc->idle_timer, jiffies +
3841                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3842 }
3843
3844 static void intel_decrease_pllclock(struct drm_crtc *crtc)
3845 {
3846         struct drm_device *dev = crtc->dev;
3847         drm_i915_private_t *dev_priv = dev->dev_private;
3848         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3849         int pipe = intel_crtc->pipe;
3850         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3851         int dpll = I915_READ(dpll_reg);
3852
3853         if (IS_IGDNG(dev))
3854                 return;
3855
3856         if (!dev_priv->lvds_downclock_avail)
3857                 return;
3858
3859         /*
3860          * Since this is called by a timer, we should never get here in
3861          * the manual case.
3862          */
3863         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
3864                 DRM_DEBUG("downclocking LVDS\n");
3865
3866                 /* Unlock panel regs */
3867                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3868
3869                 dpll |= DISPLAY_RATE_SELECT_FPA1;
3870                 I915_WRITE(dpll_reg, dpll);
3871                 dpll = I915_READ(dpll_reg);
3872                 intel_wait_for_vblank(dev);
3873                 dpll = I915_READ(dpll_reg);
3874                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
3875                         DRM_DEBUG("failed to downclock LVDS!\n");
3876
3877                 /* ...and lock them again */
3878                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3879         }
3880
3881 }
3882
3883 /**
3884  * intel_idle_update - adjust clocks for idleness
3885  * @work: work struct
3886  *
3887  * Either the GPU or display (or both) went idle.  Check the busy status
3888  * here and adjust the CRTC and GPU clocks as necessary.
3889  */
3890 static void intel_idle_update(struct work_struct *work)
3891 {
3892         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3893                                                     idle_work);
3894         struct drm_device *dev = dev_priv->dev;
3895         struct drm_crtc *crtc;
3896         struct intel_crtc *intel_crtc;
3897
3898         if (!i915_powersave)
3899                 return;
3900
3901         mutex_lock(&dev->struct_mutex);
3902
3903         /* GPU isn't processing, downclock it. */
3904         if (!dev_priv->busy) {
3905                 intel_decrease_renderclock(dev);
3906                 intel_decrease_displayclock(dev);
3907         }
3908
3909         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3910                 /* Skip inactive CRTCs */
3911                 if (!crtc->fb)
3912                         continue;
3913
3914                 intel_crtc = to_intel_crtc(crtc);
3915                 if (!intel_crtc->busy)
3916                         intel_decrease_pllclock(crtc);
3917         }
3918
3919         mutex_unlock(&dev->struct_mutex);
3920 }
3921
3922 /**
3923  * intel_mark_busy - mark the GPU and possibly the display busy
3924  * @dev: drm device
3925  * @obj: object we're operating on
3926  *
3927  * Callers can use this function to indicate that the GPU is busy processing
3928  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
3929  * buffer), we'll also mark the display as busy, so we know to increase its
3930  * clock frequency.
3931  */
3932 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
3933 {
3934         drm_i915_private_t *dev_priv = dev->dev_private;
3935         struct drm_crtc *crtc = NULL;
3936         struct intel_framebuffer *intel_fb;
3937         struct intel_crtc *intel_crtc;
3938
3939         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3940                 return;
3941
3942         dev_priv->busy = true;
3943         intel_increase_renderclock(dev, true);
3944
3945         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3946                 if (!crtc->fb)
3947                         continue;
3948
3949                 intel_crtc = to_intel_crtc(crtc);
3950                 intel_fb = to_intel_framebuffer(crtc->fb);
3951                 if (intel_fb->obj == obj) {
3952                         if (!intel_crtc->busy) {
3953                                 /* Non-busy -> busy, upclock */
3954                                 intel_increase_pllclock(crtc, true);
3955                                 intel_crtc->busy = true;
3956                         } else {
3957                                 /* Busy -> busy, put off timer */
3958                                 mod_timer(&intel_crtc->idle_timer, jiffies +
3959                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3960                         }
3961                 }
3962         }
3963 }
3964
3965 static void intel_crtc_destroy(struct drm_crtc *crtc)
3966 {
3967         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3968
3969         drm_crtc_cleanup(crtc);
3970         kfree(intel_crtc);
3971 }
3972
3973 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
3974         .dpms = intel_crtc_dpms,
3975         .mode_fixup = intel_crtc_mode_fixup,
3976         .mode_set = intel_crtc_mode_set,
3977         .mode_set_base = intel_pipe_set_base,
3978         .prepare = intel_crtc_prepare,
3979         .commit = intel_crtc_commit,
3980         .load_lut = intel_crtc_load_lut,
3981 };
3982
3983 static const struct drm_crtc_funcs intel_crtc_funcs = {
3984         .cursor_set = intel_crtc_cursor_set,
3985         .cursor_move = intel_crtc_cursor_move,
3986         .gamma_set = intel_crtc_gamma_set,
3987         .set_config = drm_crtc_helper_set_config,
3988         .destroy = intel_crtc_destroy,
3989 };
3990
3991
3992 static void intel_crtc_init(struct drm_device *dev, int pipe)
3993 {
3994         struct intel_crtc *intel_crtc;
3995         int i;
3996
3997         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
3998         if (intel_crtc == NULL)
3999                 return;
4000
4001         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4002
4003         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4004         intel_crtc->pipe = pipe;
4005         intel_crtc->plane = pipe;
4006         for (i = 0; i < 256; i++) {
4007                 intel_crtc->lut_r[i] = i;
4008                 intel_crtc->lut_g[i] = i;
4009                 intel_crtc->lut_b[i] = i;
4010         }
4011
4012         /* Swap pipes & planes for FBC on pre-965 */
4013         intel_crtc->pipe = pipe;
4014         intel_crtc->plane = pipe;
4015         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4016                 DRM_DEBUG("swapping pipes & planes for FBC\n");
4017                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4018         }
4019
4020         intel_crtc->cursor_addr = 0;
4021         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4022         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4023
4024         intel_crtc->busy = false;
4025
4026         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4027                     (unsigned long)intel_crtc);
4028 }
4029
4030 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4031                                 struct drm_file *file_priv)
4032 {
4033         drm_i915_private_t *dev_priv = dev->dev_private;
4034         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4035         struct drm_mode_object *drmmode_obj;
4036         struct intel_crtc *crtc;
4037
4038         if (!dev_priv) {
4039                 DRM_ERROR("called with no initialization\n");
4040                 return -EINVAL;
4041         }
4042
4043         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4044                         DRM_MODE_OBJECT_CRTC);
4045
4046         if (!drmmode_obj) {
4047                 DRM_ERROR("no such CRTC id\n");
4048                 return -EINVAL;
4049         }
4050
4051         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4052         pipe_from_crtc_id->pipe = crtc->pipe;
4053
4054         return 0;
4055 }
4056
4057 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4058 {
4059         struct drm_crtc *crtc = NULL;
4060
4061         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4062                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4063                 if (intel_crtc->pipe == pipe)
4064                         break;
4065         }
4066         return crtc;
4067 }
4068
4069 static int intel_connector_clones(struct drm_device *dev, int type_mask)
4070 {
4071         int index_mask = 0;
4072         struct drm_connector *connector;
4073         int entry = 0;
4074
4075         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4076                 struct intel_output *intel_output = to_intel_output(connector);
4077                 if (type_mask & intel_output->clone_mask)
4078                         index_mask |= (1 << entry);
4079                 entry++;
4080         }
4081         return index_mask;
4082 }
4083
4084
4085 static void intel_setup_outputs(struct drm_device *dev)
4086 {
4087         struct drm_i915_private *dev_priv = dev->dev_private;
4088         struct drm_connector *connector;
4089
4090         intel_crt_init(dev);
4091
4092         /* Set up integrated LVDS */
4093         if (IS_MOBILE(dev) && !IS_I830(dev))
4094                 intel_lvds_init(dev);
4095
4096         if (IS_IGDNG(dev)) {
4097                 int found;
4098
4099                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4100                         intel_dp_init(dev, DP_A);
4101
4102                 if (I915_READ(HDMIB) & PORT_DETECTED) {
4103                         /* check SDVOB */
4104                         /* found = intel_sdvo_init(dev, HDMIB); */
4105                         found = 0;
4106                         if (!found)
4107                                 intel_hdmi_init(dev, HDMIB);
4108                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4109                                 intel_dp_init(dev, PCH_DP_B);
4110                 }
4111
4112                 if (I915_READ(HDMIC) & PORT_DETECTED)
4113                         intel_hdmi_init(dev, HDMIC);
4114
4115                 if (I915_READ(HDMID) & PORT_DETECTED)
4116                         intel_hdmi_init(dev, HDMID);
4117
4118                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4119                         intel_dp_init(dev, PCH_DP_C);
4120
4121                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4122                         intel_dp_init(dev, PCH_DP_D);
4123
4124         } else if (IS_I9XX(dev)) {
4125                 bool found = false;
4126
4127                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4128                         found = intel_sdvo_init(dev, SDVOB);
4129                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
4130                                 intel_hdmi_init(dev, SDVOB);
4131
4132                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
4133                                 intel_dp_init(dev, DP_B);
4134                 }
4135
4136                 /* Before G4X SDVOC doesn't have its own detect register */
4137
4138                 if (I915_READ(SDVOB) & SDVO_DETECTED)
4139                         found = intel_sdvo_init(dev, SDVOC);
4140
4141                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4142
4143                         if (SUPPORTS_INTEGRATED_HDMI(dev))
4144                                 intel_hdmi_init(dev, SDVOC);
4145                         if (SUPPORTS_INTEGRATED_DP(dev))
4146                                 intel_dp_init(dev, DP_C);
4147                 }
4148
4149                 if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
4150                         intel_dp_init(dev, DP_D);
4151         } else
4152                 intel_dvo_init(dev);
4153
4154         if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
4155                 intel_tv_init(dev);
4156
4157         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4158                 struct intel_output *intel_output = to_intel_output(connector);
4159                 struct drm_encoder *encoder = &intel_output->enc;
4160
4161                 encoder->possible_crtcs = intel_output->crtc_mask;
4162                 encoder->possible_clones = intel_connector_clones(dev,
4163                                                 intel_output->clone_mask);
4164         }
4165 }
4166
4167 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4168 {
4169         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4170         struct drm_device *dev = fb->dev;
4171
4172         if (fb->fbdev)
4173                 intelfb_remove(dev, fb);
4174
4175         drm_framebuffer_cleanup(fb);
4176         mutex_lock(&dev->struct_mutex);
4177         drm_gem_object_unreference(intel_fb->obj);
4178         mutex_unlock(&dev->struct_mutex);
4179
4180         kfree(intel_fb);
4181 }
4182
4183 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4184                                                 struct drm_file *file_priv,
4185                                                 unsigned int *handle)
4186 {
4187         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4188         struct drm_gem_object *object = intel_fb->obj;
4189
4190         return drm_gem_handle_create(file_priv, object, handle);
4191 }
4192
4193 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4194         .destroy = intel_user_framebuffer_destroy,
4195         .create_handle = intel_user_framebuffer_create_handle,
4196 };
4197
4198 int intel_framebuffer_create(struct drm_device *dev,
4199                              struct drm_mode_fb_cmd *mode_cmd,
4200                              struct drm_framebuffer **fb,
4201                              struct drm_gem_object *obj)
4202 {
4203         struct intel_framebuffer *intel_fb;
4204         int ret;
4205
4206         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4207         if (!intel_fb)
4208                 return -ENOMEM;
4209
4210         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4211         if (ret) {
4212                 DRM_ERROR("framebuffer init failed %d\n", ret);
4213                 return ret;
4214         }
4215
4216         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4217
4218         intel_fb->obj = obj;
4219
4220         *fb = &intel_fb->base;
4221
4222         return 0;
4223 }
4224
4225
4226 static struct drm_framebuffer *
4227 intel_user_framebuffer_create(struct drm_device *dev,
4228                               struct drm_file *filp,
4229                               struct drm_mode_fb_cmd *mode_cmd)
4230 {
4231         struct drm_gem_object *obj;
4232         struct drm_framebuffer *fb;
4233         int ret;
4234
4235         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4236         if (!obj)
4237                 return NULL;
4238
4239         ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
4240         if (ret) {
4241                 mutex_lock(&dev->struct_mutex);
4242                 drm_gem_object_unreference(obj);
4243                 mutex_unlock(&dev->struct_mutex);
4244                 return NULL;
4245         }
4246
4247         return fb;
4248 }
4249
4250 static const struct drm_mode_config_funcs intel_mode_funcs = {
4251         .fb_create = intel_user_framebuffer_create,
4252         .fb_changed = intelfb_probe,
4253 };
4254
4255 void intel_init_clock_gating(struct drm_device *dev)
4256 {
4257         struct drm_i915_private *dev_priv = dev->dev_private;
4258
4259         /*
4260          * Disable clock gating reported to work incorrectly according to the
4261          * specs, but enable as much else as we can.
4262          */
4263         if (IS_IGDNG(dev)) {
4264                 return;
4265         } else if (IS_G4X(dev)) {
4266                 uint32_t dspclk_gate;
4267                 I915_WRITE(RENCLK_GATE_D1, 0);
4268                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4269                        GS_UNIT_CLOCK_GATE_DISABLE |
4270                        CL_UNIT_CLOCK_GATE_DISABLE);
4271                 I915_WRITE(RAMCLK_GATE_D, 0);
4272                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4273                         OVRUNIT_CLOCK_GATE_DISABLE |
4274                         OVCUNIT_CLOCK_GATE_DISABLE;
4275                 if (IS_GM45(dev))
4276                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4277                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4278         } else if (IS_I965GM(dev)) {
4279                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4280                 I915_WRITE(RENCLK_GATE_D2, 0);
4281                 I915_WRITE(DSPCLK_GATE_D, 0);
4282                 I915_WRITE(RAMCLK_GATE_D, 0);
4283                 I915_WRITE16(DEUC, 0);
4284         } else if (IS_I965G(dev)) {
4285                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4286                        I965_RCC_CLOCK_GATE_DISABLE |
4287                        I965_RCPB_CLOCK_GATE_DISABLE |
4288                        I965_ISC_CLOCK_GATE_DISABLE |
4289                        I965_FBC_CLOCK_GATE_DISABLE);
4290                 I915_WRITE(RENCLK_GATE_D2, 0);
4291         } else if (IS_I9XX(dev)) {
4292                 u32 dstate = I915_READ(D_STATE);
4293
4294                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4295                         DSTATE_DOT_CLOCK_GATING;
4296                 I915_WRITE(D_STATE, dstate);
4297         } else if (IS_I855(dev) || IS_I865G(dev)) {
4298                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4299         } else if (IS_I830(dev)) {
4300                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4301         }
4302 }
4303
4304 /* Set up chip specific display functions */
4305 static void intel_init_display(struct drm_device *dev)
4306 {
4307         struct drm_i915_private *dev_priv = dev->dev_private;
4308
4309         /* We always want a DPMS function */
4310         if (IS_IGDNG(dev))
4311                 dev_priv->display.dpms = igdng_crtc_dpms;
4312         else
4313                 dev_priv->display.dpms = i9xx_crtc_dpms;
4314
4315         /* Only mobile has FBC, leave pointers NULL for other chips */
4316         if (IS_MOBILE(dev)) {
4317                 if (IS_GM45(dev)) {
4318                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4319                         dev_priv->display.enable_fbc = g4x_enable_fbc;
4320                         dev_priv->display.disable_fbc = g4x_disable_fbc;
4321                 } else if (IS_I965GM(dev) || IS_I945GM(dev) || IS_I915GM(dev)) {
4322                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4323                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
4324                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
4325                 }
4326                 /* 855GM needs testing */
4327         }
4328
4329         /* Returns the core display clock speed */
4330         if (IS_I945G(dev))
4331                 dev_priv->display.get_display_clock_speed =
4332                         i945_get_display_clock_speed;
4333         else if (IS_I915G(dev))
4334                 dev_priv->display.get_display_clock_speed =
4335                         i915_get_display_clock_speed;
4336         else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
4337                 dev_priv->display.get_display_clock_speed =
4338                         i9xx_misc_get_display_clock_speed;
4339         else if (IS_I915GM(dev))
4340                 dev_priv->display.get_display_clock_speed =
4341                         i915gm_get_display_clock_speed;
4342         else if (IS_I865G(dev))
4343                 dev_priv->display.get_display_clock_speed =
4344                         i865_get_display_clock_speed;
4345         else if (IS_I855(dev))
4346                 dev_priv->display.get_display_clock_speed =
4347                         i855_get_display_clock_speed;
4348         else /* 852, 830 */
4349                 dev_priv->display.get_display_clock_speed =
4350                         i830_get_display_clock_speed;
4351
4352         /* For FIFO watermark updates */
4353         if (IS_IGDNG(dev))
4354                 dev_priv->display.update_wm = NULL;
4355         else if (IS_G4X(dev))
4356                 dev_priv->display.update_wm = g4x_update_wm;
4357         else if (IS_I965G(dev))
4358                 dev_priv->display.update_wm = i965_update_wm;
4359         else if (IS_I9XX(dev) || IS_MOBILE(dev)) {
4360                 dev_priv->display.update_wm = i9xx_update_wm;
4361                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4362         } else {
4363                 if (IS_I85X(dev))
4364                         dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4365                 else if (IS_845G(dev))
4366                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
4367                 else
4368                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
4369                 dev_priv->display.update_wm = i830_update_wm;
4370         }
4371 }
4372
4373 void intel_modeset_init(struct drm_device *dev)
4374 {
4375         struct drm_i915_private *dev_priv = dev->dev_private;
4376         int num_pipe;
4377         int i;
4378
4379         drm_mode_config_init(dev);
4380
4381         dev->mode_config.min_width = 0;
4382         dev->mode_config.min_height = 0;
4383
4384         dev->mode_config.funcs = (void *)&intel_mode_funcs;
4385
4386         intel_init_display(dev);
4387
4388         if (IS_I965G(dev)) {
4389                 dev->mode_config.max_width = 8192;
4390                 dev->mode_config.max_height = 8192;
4391         } else if (IS_I9XX(dev)) {
4392                 dev->mode_config.max_width = 4096;
4393                 dev->mode_config.max_height = 4096;
4394         } else {
4395                 dev->mode_config.max_width = 2048;
4396                 dev->mode_config.max_height = 2048;
4397         }
4398
4399         /* set memory base */
4400         if (IS_I9XX(dev))
4401                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
4402         else
4403                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
4404
4405         if (IS_MOBILE(dev) || IS_I9XX(dev))
4406                 num_pipe = 2;
4407         else
4408                 num_pipe = 1;
4409         DRM_DEBUG("%d display pipe%s available.\n",
4410                   num_pipe, num_pipe > 1 ? "s" : "");
4411
4412         if (IS_I85X(dev))
4413                 pci_read_config_word(dev->pdev, HPLLCC, &dev_priv->orig_clock);
4414         else if (IS_I9XX(dev) || IS_G4X(dev))
4415                 pci_read_config_word(dev->pdev, GCFGC, &dev_priv->orig_clock);
4416
4417         for (i = 0; i < num_pipe; i++) {
4418                 intel_crtc_init(dev, i);
4419         }
4420
4421         intel_setup_outputs(dev);
4422
4423         intel_init_clock_gating(dev);
4424
4425         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
4426         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
4427                     (unsigned long)dev);
4428 }
4429
4430 void intel_modeset_cleanup(struct drm_device *dev)
4431 {
4432         struct drm_i915_private *dev_priv = dev->dev_private;
4433         struct drm_crtc *crtc;
4434         struct intel_crtc *intel_crtc;
4435
4436         mutex_lock(&dev->struct_mutex);
4437
4438         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4439                 /* Skip inactive CRTCs */
4440                 if (!crtc->fb)
4441                         continue;
4442
4443                 intel_crtc = to_intel_crtc(crtc);
4444                 intel_increase_pllclock(crtc, false);
4445                 del_timer_sync(&intel_crtc->idle_timer);
4446         }
4447
4448         intel_increase_renderclock(dev, false);
4449         del_timer_sync(&dev_priv->idle_timer);
4450
4451         mutex_unlock(&dev->struct_mutex);
4452
4453         if (dev_priv->display.disable_fbc)
4454                 dev_priv->display.disable_fbc(dev);
4455
4456         drm_mode_config_cleanup(dev);
4457 }
4458
4459
4460 /* current intel driver doesn't take advantage of encoders
4461    always give back the encoder for the connector
4462 */
4463 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
4464 {
4465         struct intel_output *intel_output = to_intel_output(connector);
4466
4467         return &intel_output->enc;
4468 }
4469
4470 /*
4471  * set vga decode state - true == enable VGA decode
4472  */
4473 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
4474 {
4475         struct drm_i915_private *dev_priv = dev->dev_private;
4476         u16 gmch_ctrl;
4477
4478         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
4479         if (state)
4480                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
4481         else
4482                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
4483         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
4484         return 0;
4485 }